WO2019037143A1 - 一种oct成像回抽性能测试装置及方法 - Google Patents

一种oct成像回抽性能测试装置及方法 Download PDF

Info

Publication number
WO2019037143A1
WO2019037143A1 PCT/CN2017/099584 CN2017099584W WO2019037143A1 WO 2019037143 A1 WO2019037143 A1 WO 2019037143A1 CN 2017099584 W CN2017099584 W CN 2017099584W WO 2019037143 A1 WO2019037143 A1 WO 2019037143A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard material
oct
oct imaging
resolution
imaging
Prior art date
Application number
PCT/CN2017/099584
Other languages
English (en)
French (fr)
Inventor
蔡志岗
宋李烟
孔冠岳
邱宇民
王福娟
李佼洋
Original Assignee
广州永士达医疗科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州永士达医疗科技有限责任公司 filed Critical 广州永士达医疗科技有限责任公司
Publication of WO2019037143A1 publication Critical patent/WO2019037143A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging

Definitions

  • the invention relates to the technical field of medical instruments, in particular to an OCT imaging back pumping performance testing device and method.
  • OCT optical coherence tomography
  • OCT optical coherence tomography
  • Traditional OCT equipment has obtained a wide range of clinical diagnostic applications in the field of ophthalmology.
  • fiber optics and endoscopic technology research has begun to apply OCT imaging methods to many fields such as skin, teeth, cardiovascular, esophagus, and brain imaging.
  • the application of OCT technology ranges from the longitudinal detection of transparent biological tissues to the detection of highly scattering non-transparent tissue samples, from the detection of biological tissues to the detection of non-biological materials.
  • OCT optical coherence tomography
  • Imaging resolution of the OCT device includes not only the traditional X-axis and Y-axis lateral resolution, but also the resolution and axial resolution in the detection depth direction. Since the biggest advantage of OCT technology is the ability to provide tomographic images in the depth direction, it is particularly important to evaluate its axial resolution.
  • the imaging resolution of their own OCT equipment is obtained by using the traditional optical resolution board test, and the plane mirror is measured as a sample and indirectly obtained by the axial resolution of the OCT equipment. rate.
  • the lateral resolution test method is relatively simple and straightforward, but since the metal image layer of the conventional resolution plate is very thin, the test can only obtain the lateral resolution on a certain plane.
  • the axial resolution test method needs to accurately adjust the pitch angle and axial distance of the plane mirror, which is very cumbersome, and needs to obtain the data of the intermediate process of the OCT equipment imaging, which is an indirect measurement.
  • the manufacturer can operate the OCT equipment before leaving the factory. However, it is difficult for end users or third-party organizations to use this method to obtain OCT axial resolution.
  • one of the objects of the present invention is to provide an OCT imaging back-draw performance testing device that can solve the technical problem of the OCT imaging back-draw test.
  • the second object of the present invention is to provide an OCT imaging back pumping performance testing method, which can solve Technical issues in OCT imaging back-draw testing.
  • An OCT imaging back pumping performance testing device includes a first hard material group and a second hard material group, the first hard material group and the second hard material group each including at least two pieces of hard material.
  • a spacer layer is disposed between the hard material sheets, and the first hard material group and the second hard material are fixedly mounted and form a receiving groove for placing the OCT catheter.
  • the number of hard material sheets in the first hard material group is two, and the number of hard material sheets in the second hard material group is three.
  • the accommodating groove has a trapezoidal cross section.
  • trapezoid is a right-angled trapezoid.
  • the number of the first hard material group and the second hard material group are two groups, and the two sets of the first hard material group and the two groups of the second hard material group are sequentially cross-fixed and installed to form Hold the slot.
  • the accommodating groove has an isosceles trapezoidal cross section.
  • the hard material sheet is a glass hard material sheet or a silica hard material sheet.
  • An OCT imaging recovery performance test method includes the following steps:
  • Image acquisition step sequentially placing the OCT catheter in the hollow channel of the test device, and acquiring an OCT image
  • the determining step determining whether the interval layer corresponding to the testing device can be identified, and if yes, performing a resolution obtaining step, and if not, replacing the testing device of different specifications to determine;
  • Resolution acquisition step the resolution corresponding to the thickness of the spacer layer is taken as the resolution of the OCT catheter.
  • a back pumping test step is further included: acquiring an OCT image of the OCT catheter during the pumping process, and determining the OCT pumping performance according to the position of the spacer layer in the OCT image.
  • the OCT imaging back pumping performance testing device of the present invention can intuitively and effectively measure the lateral resolution and axial resolution of the OCT catheter, and can also test the pumping stability of the OCT device.
  • 1 is a front elevational view of the OCT imaging recovery performance testing device of the second embodiment
  • FIG. 2 is a top plan view of the OCT imaging back pumping performance testing device of the second embodiment
  • FIG. 3 is a flow chart of a method for testing the OCT imaging back pumping performance of the present invention.
  • Reference numerals 1, a first hard material group; 2, a second hard material group; 3, a spacer layer; 4, a hollow channel; 5, an OCT catheter.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the embodiment provides an OCT imaging back pumping performance testing device, including a first hard material group and a second hard material group, wherein the first hard material group and the second hard material group each include at least two pieces.
  • a hard material sheet preferably an embodiment, wherein the number of hard material sheets in the first hard material group is two, and the number of hard material sheets in the second hard material group is three; in addition to the above embodiment
  • a plurality of hard material sheets may also be provided to be combined to form a hard material group; the hard material sheets are provided with a spacer layer, wherein the first hard material group spacer layer is used for testing OCT
  • the lateral resolution of the catheter, the spacer layer of the second hard material set is intended to test the longitudinal resolution of the OCT catheter;
  • the hard material sheet is a sheet of hard glass material or a sheet of silica hard material.
  • the first hard material group and the second hard material are fixedly mounted and form a receiving groove, wherein the receiving groove is used for placing an OCT catheter, the receiving groove has a trapezoidal shape in cross section, and most preferably, the The trapezoid is a right-angled trapezoid. By setting it in a trapezoidal shape, it can be tested when the OCT catheter is pumped back.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the embodiment provides an OCT imaging extraction performance testing device, including a first hard material group 1 and a second hard material group 2, and the first hard material group 1 There are two groups of the second hard material group 2, and the first hard material group 1 and the second hard material group 2 each include at least two pieces of hard material, the two sets of first hard materials.
  • the group 1 is disposed on the same plane, the two sets of the second hard material group 2 are parallel, and the two sets of the first hard material group 1 are combined with the two groups of the second hard material group 2 to form the hollow channel 4,
  • the hollow channel 4 is used to place the OCT catheter 5.
  • the number of hard material sheets in the first hard material group 1 is two, and the number of hard material sheets in the second hard material group 2 is three.
  • the hollow passage 4 has a trapezoidal shape in cross section, and more preferably, the trapezoid is an isosceles trapezoid, which makes it easier to test the pumping performance.
  • the test device has various specifications, each of which is determined by the thickness of the spacer layer 3 of the first hard material group 1 and the second hard material group 2 of the test device, and the thickness of each spacer layer 3 corresponds to one Image recognition resolution.
  • the left and right hard material sheet groups and the front and rear hard material sheet groups which are present in this embodiment refer to the first hard material group 1 and the second hard material group 2.
  • the test device is a combination of four sets of hard material sheets.
  • the two sets of hard material sheets are made up of three pieces of hard material, and the left and right sets of hard materials are made up of two pieces of hard material.
  • the thickness of the spacer layer 3 between the hard materials in the hard material sheet group is a fixed value.
  • One side of the front and rear hard material sheet group is seamlessly fitted to both sides of the left and right hard material sheet groups rotated by a certain angle, and a hollow passage 4 is formed in the middle.
  • the imaging performance and the pumping stability performance of the OCT apparatus can be evaluated using the test apparatus.
  • OCT technology is based on detecting backscattered light at different depths of the sample and reconstructing a three-dimensional image of the detected area through a series of signal processing. Because of this, OCT images tend to have higher contrast at interfaces where the difference in scattering coefficient or reflectance is large. However, if the reflectivity of a certain interface of the sample is too large, such as the mirror surface, the OCT signal will be too strong and will flood other effective information.
  • the test device proposed by the present invention is designed such that four sets of hard material sheets are combined in a certain manner and a certain hollow area is left in the middle to insert the OCT catheter 5 into the test area, which is a good simulation of OCT imaging.
  • the present invention also provides an OCT imaging recovery performance testing method, comprising the following steps:
  • the OCT catheter 5 is sequentially placed in the hollow channel 4 of the test device, and an OCT image is acquired; the surface of the OCT catheter 5 may be coated with a release agent, so that the OCT catheter 5 can be more conveniently placed in the hollow channel 4;
  • S4 Obtain an OCT imaging image during the withdrawal of the OCT catheter 5, and determine the OCT retraction performance according to the position of the spacer layer in the OCT imaging image.
  • This method is one of the embodiments, and the resolution can be measured at one time, or in another embodiment, the resolution of the OCT catheter 5 is determined by changing test devices of different specifications.
  • the lateral resolution and axial resolution test functions are respectively implemented by two sets of hard material sheets of left and right and front and back.
  • the thickness of the spacer layer 3 of the hard material sheet set of each of the test devices of the specification is fixed and different. Inserting the OCT catheter 5 into the hollow channel 4, using the test device as a target object The detection is performed to obtain an OCT image thereof.
  • the lateral resolution and axial resolution of the OCT catheter 5 were obtained by analyzing the C-Scan map (i.e., the XY plane scan) and the B-Scan map (X-Z plane scan), respectively.
  • the thin line width size corresponding to the smallest set of patterns visible in the C-Scan map ie, the thickness of the spacer layer of the left and right hard material sheets
  • the thin line height dimension corresponding to the smallest set of patterns visible in the B-Scan map ie, the thickness of the spacer layer of the front and rear hard material sheets
  • the back pumping stability test function is realized by a hollow region (that is, a hollow channel 4); the left and right sets of the hard material sheet groups in the standard block test sample are formed at a certain angle, that is, the hollow channel 4 is formed.
  • the cross section is an isosceles trapezoid, and the angle of the waist of the isosceles trapezoid can be set to different angles in order to test the retraction performance of different precisions.
  • the OCT catheter 5 is inserted into the hollow channel 4, and the resulting OCT image is observed in real time during the pumping process. Observe whether the position of the spacer layer in the image in the front and rear and left and right hard material sheets in the standard block test sample is changed, thereby judging the stability of the pumping performance.
  • the standard block test sample proposed by the invention adopts a combination of hard material sheets to form a module, which can more intuitively and effectively test the lateral resolution and axial resolution of the OCT device, not only It can be used for two-dimensional resolution and also for evaluating the axial resolution of the OCT device in the depth direction. Further, the present invention can also test the withdrawal stability of an OCT apparatus.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Endoscopes (AREA)

Abstract

一种OCT成像回抽性能测试装置和测试方法,该OCT成像回抽性能测试装置包括硬质材料组(1,2),硬质材料组(1,2)包括至少两片硬质材料片,硬质材料片之间设置有间隔层(3),硬质材料组(1,2)包括第一硬质材料组(1)和第二硬质材料组(2),第一硬质材料组(1)和第二硬质材料组(2)固定安装且形成容置槽,容置槽用于放置OCT导管(5)。该OCT成像回抽性能测试装置能够直观有效的测得OCT导管(5)的横向分辨率和轴向分辨率,并且还可以测试OCT设备的回抽稳定性。

Description

一种OCT成像回抽性能测试装置及方法 技术领域
本发明涉及一种医疗器械技术领域,尤其涉及一种OCT成像回抽性能测试装置及方法。
背景技术
目前,光学相干层析(OCT)成像是20世纪90年代初期研究提出的一种无创三维成像诊断技术。与传统的核磁,X射线和超声等成像技术相比,OCT具有更高的分辨率,可至微米级,而且由于是近红外光学成像,不用担心任何辐射风险;与离体检测的光学共聚焦显微镜相比,OCT具有更大的穿透深度,而且通过借助光纤技术很容易就能实现小型化与便携式,可以对活体组织进行在线检测。1996年,德国卡尔蔡司公司研发出世界上第一台商业化的OCT设备,2002年首次通过美国食药监局(FDA)的认证。1997年,我国中山大学中山眼科中心从国外引进国内第一台OCT仪器,并用于临床检查和临床研究。
近年来,OCT作为一种新的成像技术获得了突飞猛进的发展,传统的OCT设备已经在眼科领域获得了广泛的临床诊断应用。不仅如此,结合光纤与内窥镜技术,研究已开始将OCT成像方法应用于皮肤、牙齿、心血管、食道,脑成像等多个领域。OCT技术的应用范围由对透明生物组织的纵向探测发展到对高散射非透明组织结构样品的探测,从生物组织的探测发展到对非生物材料的检测等工业领域。
因为OCT是一种新兴的成像技术,目前在国际上还没有相应的技术标准。在国际标准化组织ISO/TC172/SC7“眼科光学和仪器”技术委员会2010年年会上,德国代表团提出起草OCT国际标准的申请,目前标准依然在准备阶段,中国计量科学研究院医学与生物研究所作为中国眼科光学的技术代表一直在积极 参与ISO工作组对OCT标准的讨论。当前OCT设备的现状是,所有技术参数基本都由厂家自己提供,尤其在中国,没有第三方机构具备能力对厂家给出的参数进行验证或检定。OCT是一种成像技术,而分辨率是评价成像性能很重要的一个指标。像显微镜这样传统的二维光学成像系统通常采用分辨率测试板(比如USAF1951分辨率板)对分辨率进行测试。这种分辨率板通常是以石英硬质材料作为基片,表面图案采用蒸镀或沉积一层纳米级厚度的金属镍或者铬而形成。而OCT设备的成像分辨率不仅包括传统的X轴、Y轴横向分辨率,还需要评价其在探测深度方向上的分辨率及轴向分辨率。由于OCT技术最大的优势就是能提供深度方向的断层图像,因此评价其轴向分辨率显得尤为重要。
根据调研,大部分OCT厂家标称自家OCT设备成像分辨率的方法是:采用传统光学分辨率板测试得到OCT设备的横向分辨率,将平面反射镜作为样品测量并间接得到OCT设备的轴向分辨率。横向分辨率的测试方法比较简单直接,但由于传统分辨率板的金属图像层很薄,所以测试仅能得到某一个平面上的横向分辨率。轴向分辨率的测试方法需要精确调整平面反射镜的俯仰角度与轴向距离,十分繁琐,而且需要获取OCT设备成像中间过程的数据,属于间接测量,厂家在OCT设备出厂前调试可以这么操作,但对于终端用户或第三方机构则很难采用这种方法去得到OCT轴向分辨率。
因此,迫切需要提供一种简单直接的测量方法和标准器具可以同时有效得到OCT设备的横向分辨率与轴向分辨率。
发明内容
为了克服现有技术的不足,本发明的目的之一在于提供一种OCT成像回抽性能测试装置,其能解决OCT成像回抽测试的技术问题。
本发明的目的之二在于提供一种OCT成像回抽性能测试方法,其能解决 OCT成像回抽测试的技术问题。
本发明的目的之一采用如下技术方案实现:
一种OCT成像回抽性能测试装置,包括第一硬质材料组和第二硬质材料组,所述第一硬质材料组和第二硬质材料组均包括至少两片硬质材料片,所述硬质材料片之间的设置有间隔层,所述第一硬质材料组和第二硬质材料固定安装且形成容置槽,所述容置槽用于放置OCT导管。
进一步地,所述第一硬质材料组中硬质材料片的数量为两个,所述第二硬质材料组中硬质材料片的数量为三个。
进一步地,所述容置槽的横截面为梯形。
进一步地,所述梯形为直角梯形。
进一步地,所述第一硬质材料组和第二硬质材料组的数量均为两组,所述两组第一硬质材料组和两组第二硬质材料组依次交叉固定安装以形成容置槽。
进一步地,所述容置槽的横截面为等腰梯形。
进一步地,所述硬质材料片为玻璃硬质材料片或者二氧化硅硬质材料片。
本发明的目的之二采用如下技术方案实现:
一种OCT成像回抽性能测试方法,包括以下步骤:
图像获取步骤:将OCT导管依次放置于测试装置的中空通道内,并获取OCT成像图像;
判断步骤:判断是否可以识别到该测试装置对应的间隔层,如果是,则执行分辨率获取步骤,如果否,则更换不同规格的测试装置进行判断;
分辨率获取步骤:将该间隔层厚度对应的分辨率作为该OCT导管的分辨率。
进一步地,还包括回抽测试步骤:获取OCT导管回抽过程中的OCT成像图像,并根据OCT成像图像中间隔层的位置来确定OCT回抽性能。
相比现有技术,本发明的有益效果在于:
本发明的OCT成像回抽性能测试装置能够直观有效的测得OCT导管的横向分辨率和轴向分辨率,并且还可以测试OCT设备的回抽稳定性。
附图说明
图1为实施例二的OCT成像回抽性能测试装置的正视图;
图2为实施例二的OCT成像回抽性能测试装置的俯视图;
图3为本发明的OCT成像回抽性能测试方法的流程图。
附图标记:1、第一硬质材料组;2、第二硬质材料组;3、间隔层;4、中空通道;5、OCT导管。
具体实施方式
下面,结合附图以及具体实施方式,对本发明做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
实施例一:
本实施例提供了一种OCT成像回抽性能测试装置,包括第一硬质材料组和第二硬质材料组,所述第一硬质材料组和第二硬质材料组均包括至少两片硬质材料片,优选地实施方式,第一硬质材料组中硬质材料片的数量为两个,第二硬质材料组中硬质材料片的数量为三个;除了上述的实施方式外,还可以设置多个硬质材料片来组合形成硬质材料组;所述硬质材料片之间的设置有间隔层,其中第一硬质材料组的间隔层,其目的是用于测试OCT导管的横向分辨率,第二硬质材料组的间隔层其目的是用于测试OCT导管的纵向分辨率;所述硬质材料片为玻璃硬质材料片或者二氧化硅硬质材料片。
所述第一硬质材料组和第二硬质材料固定安装且形成容置槽,所述容置槽用于放置OCT导管,所述容置槽的横截面为梯形形状,最为优选地,该梯形为直角梯形,通过设置成梯形形状即可以在OCT导管回抽的时候对其回抽性能进行测试。
实施例二:
如图1和图2所示,本实施例提供了一种OCT成像回抽性能测试装置,包括第一硬质材料组1和第二硬质材料组2,所述第一硬质材料组1和第二硬质材料组2的数量均有两组,所述第一硬质材料组1和第二硬质材料组2均包括至少两片硬质材料片,该两组第一硬质材料组1设置于同一平面上,该两组第二硬质材料组2所在平面平行,所述两组第一硬质材料组1与两组第二硬质材料组2组合以形成中空通道4,所述中空通道4用于放置OCT导管5。
优选地,所述第一硬质材料组1中硬质材料片的数量为两个,所述第二硬质材料组2中硬质材料片的数量为三个。所述中空通道4的横截面为梯形形状,更为优选地,该梯形为等腰梯形,这样更便于对回抽性能进行测试。
该测试装置有多种规格,每种规格由测试装置第一硬质材料组1和第二硬质材料组2的间隔层3的厚度来决定的,每一个间隔层3的厚度即对应于一个图像识别分辨率。在本实施例中所出现的左右硬质材料片组和前后硬质材料片组指的即是第一硬质材料组1和第二硬质材料组2。
该测试装置由四组硬质材料片组合而成。前后两组硬质材料片组由三块硬质材料片叠加而成,左右两组硬质材料片组由两块硬质材料片叠加而成。硬质材料片组中硬质材料之间的间隔层3的厚度为一个固定值。前后硬质材料片组的一边与旋转了一定角度的左右两硬质材料片组的两边无缝贴合,中间形成一块中空通道4。
在本实施例中,使用测试装置可以对OCT设备成像性能及回抽稳定性能进行评价。不同于一般的光学显微成像,OCT技术是基于探测样品不同深度的背向散射光进而通过一系列信号处理重构出被探测区域的三维图像。正因为于此,OCT图像往往在散射系数或反射率差异大的界面会有较高的对比度。但如果样品的某个界面反射率太大,比如反射镜面,又会造成OCT信号过强反而会淹没掉其他有效信息。考虑到OCT这样的成像机理,本发明提出的测试装置设计成四组硬质材料片组以一定方式结合并中间留有一定中空区域为OCT导管5插入测试区域,很好地仿真了OCT成像的理想环境,从而能有效的评价其成像性能。
如图3所示,本发明还提供了一种OCT成像回抽性能测试方法,包括以下步骤:
S1:将OCT导管5依次放置于测试装置的中空通道4内,并获取OCT成像图像;该OCT导管5表面可以涂覆有脱模剂,可以使得OCT导管5更加方便放置于中空通道4内;
S2:判断是否可以识别到该测试装置对应的间隔层3,如果是,则执行S3,如果否,则更换不同规格的测试装置进行识别判断;
S3:将该间隔层3厚度对应的分辨率作为该OCT导管5的分辨率;
S4:获取OCT导管5回抽过程中的OCT成像图像,并根据OCT成像图像中间隔层的位置来确定OCT回抽性能。这种方法为其中一种实施方式,可以一次性测得分辨率,或者还有一种实施方式是,通过变换不同规格的测试装置来确定该OCT导管5的分辨率。
所述横向分辨率和轴向分辨率测试功能分别由左右和前后两组硬质材料片组实现。所述的每一种规格的测试装置的硬质材料片组的间隔层3的厚度都固定且不相同。将OCT导管5插入中空通道4,将所述的测试装置作为目标物体 进行检测,得到其OCT成像图像。OCT导管5的横向分辨率与轴向分辨率是通过分析其C-Scan图(即XY平面扫描图)与B-Scan图(X-Z平面扫描图)分别得到的。通过不断更换不同规格的标准块测试装置,C-Scan图中能看清的最小的那组图案所对应的细线宽度尺寸(即左右硬质材料片组的间隔层厚度)即可用来表征所用OCT设备的横向分辨率。B-Scan图中能看清的最小那组图案所对应的细线高度尺寸(即前后硬质材料片组的间隔层厚度)即可用来表征所用OCT设备的轴向分辨率。
所述回抽稳定性测试功能由中空区域(也即是中空通道4)实现;所述标准块测试样品中左右两组硬质材料片组所成角度一定,也即是中空通道4所形成的横截面为等腰梯形,该等腰梯形的腰的角度可以设置为不同的角度以便于对其进行不同精度的回抽性能的测试。将OCT导管5插入中空通道4,回抽的过程中,实时观察所成OCT图像。观察标准块测试样品中前后及左右硬质材料片组中间隔层在图像中的位置是否改变,从而判断回抽性能的稳定性。
与传统的光学分辨率测试版相比,本发明所提出的标准块测试样品采用硬质材料片组合形成模件,可以更加直观有效的测试出OCT设备的横向分辨率及轴向分辨率,不仅可用于二维分辨,也同时用于评价OCT设备在深度方向上的轴向分辨率。更多的,本发明还可测试OCT设备的回抽稳定性。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (9)

  1. 一种OCT成像回抽性能测试装置,其特征在于,包括硬质材料组,所述硬质材料组包括至少两片硬质材料片,所述硬质材料片之间的设置有间隔层,所述硬质材料组包括第一硬质材料组和第二硬质材料,所述第一硬质材料组和第二硬质材料固定安装且形成容置槽,所述容置槽用于放置OCT导管。
  2. 如权利要求1所述的OCT成像回抽性能测试装置,其特征在于,所述第一硬质材料组中硬质材料片的数量为两个,所述第二硬质材料组中硬质材料片的数量为三个。
  3. 如权利要求1所述的OCT成像回抽性能测试装置,其特征在于,所述容置槽的横截面为梯形。
  4. 如权利要求3中任意一项所述的OCT成像回抽性能测试装置,其特征在于,所述梯形为直角梯形。
  5. 如权利要求1所述的OCT成像回抽性能测试装置,其特征在于,所述第一硬质材料组和第二硬质材料组的数量均为两组,所述两组第一硬质材料组和两组第二硬质材料组依次交叉固定安装以形成容置槽。
  6. 如权利要求5所述的OCT成像回抽性能测试装置,其特征在于,所述容置槽的横截面为等腰梯形。
  7. 如权利要求1-6中任意一项所述的OCT成像回抽性能测试装置,其特征在于,所述硬质材料片为玻璃硬质材料片或者二氧化硅硬质材料片。
  8. 一种OCT成像回抽性能测试方法,其特征在于,包括以下步骤:
    图像获取步骤:将OCT导管依次放置于测试装置的中空通道内,并获取OCT成像图像;
    判断步骤:判断是否可以识别到该测试装置对应的间隔层,如果是,则执行分辨率获取步骤,如果否,则更换不同规格的测试装置进行判断;
    分辨率获取步骤:将该间隔层厚度对应的分辨率作为该OCT导管的分辨率。
  9. 如权利要求8所述的OCT成像回抽性能测试方法,其特征在于,还包括图像获取步骤之后的回抽测试步骤:获取OCT导管回抽过程中的OCT成像图像,并根据OCT成像图像中间隔层的位置来确定OCT回抽性能。
PCT/CN2017/099584 2017-08-25 2017-08-30 一种oct成像回抽性能测试装置及方法 WO2019037143A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710744902.XA CN107478414B (zh) 2017-08-25 2017-08-25 一种oct成像回抽性能测试装置及方法
CN201710744902.X 2017-08-25

Publications (1)

Publication Number Publication Date
WO2019037143A1 true WO2019037143A1 (zh) 2019-02-28

Family

ID=60602758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099584 WO2019037143A1 (zh) 2017-08-25 2017-08-30 一种oct成像回抽性能测试装置及方法

Country Status (2)

Country Link
CN (1) CN107478414B (zh)
WO (1) WO2019037143A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110346114B (zh) * 2018-04-08 2024-03-26 中国科学院声学研究所 一种用于检测高频超声成像仪器轴向分辨力的成套试件
CN112957012B (zh) * 2021-02-01 2022-09-30 浙江省医疗器械检验研究院 一种光学干涉断层成像系统轴向分辨率测量装置及测量方法
CN115778431A (zh) * 2022-12-27 2023-03-14 深圳市赛禾医疗技术有限公司 超声换能器分辨力测试工装及其测试方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101983619A (zh) * 2010-11-24 2011-03-09 上海英诺伟微创医疗器械有限公司 一种腹腔微创手术隐形內镜通道
CN102333555A (zh) * 2008-12-31 2012-01-25 凯希特许有限公司 用于将减压施用于皮下组织部位的歧管、系统和方法
US20140066756A1 (en) * 2012-09-04 2014-03-06 Ninepoint Medical, Inc. Low cost molded optical probe with astigmatic correction, fiber port, low back reflection, and highly reproducible in manufacturing quantities
US20150146211A1 (en) * 2013-11-27 2015-05-28 Corning Incorporated Optical coherence tomography probe
CN106880340A (zh) * 2017-03-09 2017-06-23 广州永士达医疗科技有限责任公司 一种oct设备成像性能评价装置及其使用方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9192294B2 (en) * 2012-05-10 2015-11-24 Carl Zeiss Meditec, Inc. Systems and methods for faster optical coherence tomography acquisition and processing
CN103315703B (zh) * 2013-05-31 2015-08-12 北京大学 一种用于眼底成像的人眼光学测试模型
CN103932682B (zh) * 2014-05-07 2015-10-28 中国计量科学研究院 一种用于oct设备成像性能评价的三维分辨率板及其使用方法
US9934603B2 (en) * 2015-04-22 2018-04-03 The Phantom Laboratory, Incorporated Three-dimensional resolution gauge for evaluating performance of tomographic imaging systems
CN207336028U (zh) * 2017-08-25 2018-05-08 广州永士达医疗科技有限责任公司 一种oct成像回抽性能测试装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102333555A (zh) * 2008-12-31 2012-01-25 凯希特许有限公司 用于将减压施用于皮下组织部位的歧管、系统和方法
CN101983619A (zh) * 2010-11-24 2011-03-09 上海英诺伟微创医疗器械有限公司 一种腹腔微创手术隐形內镜通道
US20140066756A1 (en) * 2012-09-04 2014-03-06 Ninepoint Medical, Inc. Low cost molded optical probe with astigmatic correction, fiber port, low back reflection, and highly reproducible in manufacturing quantities
US20150146211A1 (en) * 2013-11-27 2015-05-28 Corning Incorporated Optical coherence tomography probe
CN106880340A (zh) * 2017-03-09 2017-06-23 广州永士达医疗科技有限责任公司 一种oct设备成像性能评价装置及其使用方法

Also Published As

Publication number Publication date
CN107478414B (zh) 2023-09-22
CN107478414A (zh) 2017-12-15

Similar Documents

Publication Publication Date Title
US7787129B2 (en) Method and apparatus for measurement of optical properties in tissue
CN103932682B (zh) 一种用于oct设备成像性能评价的三维分辨率板及其使用方法
Park et al. Assessment of interfacial defects at composite restorations by swept source optical coherence tomography
WO2019037143A1 (zh) 一种oct成像回抽性能测试装置及方法
Sridhar et al. Enhanced contrast and depth resolution in polarization imaging using elliptically polarized light
JP2015231526A (ja) 光コヒーレンストモグラフィ画像から組織特徴を取得する定量的方法
Cho et al. Quantitative assessment of touch-screen panel by nondestructive inspection with three-dimensional real-time display optical coherence tomography
WO2018161386A1 (zh) 一种oct设备成像性能评价装置及其使用方法
JP2013522619A (ja) シングルモード光ファイバベースの角度分解低コヒーレンス干渉計測(LCI)(a/LCI)および不干渉計測システムならびに方法
Wijesinghe et al. Strain tensor imaging in compression optical coherence elastography
Peng et al. Stiffness mapping prostate biopsy samples using a tactile sensor
CN104019964A (zh) 微小自聚焦透镜聚焦光斑质量检测装置及方法
CN207336028U (zh) 一种oct成像回抽性能测试装置
CN207370699U (zh) 一种oct设备成像性能评价装置
US20130236923A1 (en) Characteristic Parameters of Cells and Tissue from Quantitative Phase Imaging
RU2306868C1 (ru) Способ диагностики рака
CN103411907B (zh) 一种极浅层探测光谱探头
US20180317818A1 (en) Tissue Sample Analysis
Yang et al. Nondestructive in situ detection of microbubble defects in the screen by optical coherence tomography
CN106963392B (zh) 光学无创血糖检测二维相关性标定方法及系统
CN107348940B (zh) 基于Linnik型近红外同步移相干涉的视网膜血流速度检测装置
GUPTA et al. Tissue characterization using axicon probe assisted common-path optical coherence tomography
Jiang et al. Diagnostic application of multiphoton microscopy in epithelial tissues
Zhao et al. Evaluation of the standard test methods for optical coherence tomograph for the posterior segment of the human eye
CN209388364U (zh) 一种皮肤图像检测装置以及基于该装置的皮肤图像分析系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17922877

Country of ref document: EP

Kind code of ref document: A1