WO2018161386A1 - 一种oct设备成像性能评价装置及其使用方法 - Google Patents

一种oct设备成像性能评价装置及其使用方法 Download PDF

Info

Publication number
WO2018161386A1
WO2018161386A1 PCT/CN2017/078568 CN2017078568W WO2018161386A1 WO 2018161386 A1 WO2018161386 A1 WO 2018161386A1 CN 2017078568 W CN2017078568 W CN 2017078568W WO 2018161386 A1 WO2018161386 A1 WO 2018161386A1
Authority
WO
WIPO (PCT)
Prior art keywords
side slide
oct
imaging performance
fixed
resolution
Prior art date
Application number
PCT/CN2017/078568
Other languages
English (en)
French (fr)
Inventor
蔡志岗
王自鑫
潘江帆
王福娟
李佼洋
高峻
李百灵
Original Assignee
广州永士达医疗科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州永士达医疗科技有限责任公司 filed Critical 广州永士达医疗科技有限责任公司
Publication of WO2018161386A1 publication Critical patent/WO2018161386A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for

Definitions

  • the invention relates to an imaging performance evaluation device for an OCT device and a using method thereof, and belongs to the technical field of instrument detection.
  • OCT optical coherence tomography
  • OCT imaging is a non-invasive three-dimensional high-resolution imaging diagnostic technology developed rapidly in the past decade. It is based on the principle of low-coherence light interference and combined with confocal microscopy to detect biological tissue.
  • the time-delay and echo intensity signals of the backscattered wave echoes of the incident weak coherent light at different depth layers are obtained by scanning to obtain the high-resolution microstructure of the sample in two or three dimensions, thereby obtaining a tomographic image of the sample to be non-destructive.
  • OCT imaging has extremely high resolution (on the order of micrometers).
  • OCT Compared with traditional laser confocal microscopy, OCT has obvious imaging depth.
  • the advantage is that high-resolution imaging can be performed on a few micrometers of tissue below the epidermis, and micro-morphization can be realized by means of optical fiber technology, and the living body can be detected in vivo to realize early detection and positioning of the lesion.
  • patent CN201410191226.4 designed a three-dimensional resolution plate for imaging performance evaluation of OCT equipment, using a transparent resin doped with polymer micro/nano scattering particles as a substrate.
  • the resolution test pattern is formed on the substrate by 3D printing or micro-nano processing technology, and finally the OCT device to be tested is scanned and imaged on the substrate, and the degree of discrimination of the different discrete size test patterns on the reconstructed image is discriminated by the human eye. Perform verification of the resolution of the OCT device.
  • the patent better solves the problem of indirect measurement.
  • a first object of the present invention is to provide an OCT device imaging performance evaluation device, which adjusts the relative distance between the moving side slide and the fixed side slide by a cross roller guide, which is more precise and stable.
  • the axial resolution of the OCT equipment used is characterized by the minimum distance between the two, and the resolution pattern separation and resolution board production in the prior art is solved. Insufficient process and so on.
  • an imaging performance evaluation device for an OCT device comprising: a fixing frame, a resolution box, a rail assembly and a bionic transparent colloid;
  • the fixing frame includes a first supporting member, a second supporting member and a base; the first supporting member is vertically fixed to the base, the first supporting member and the second supporting member are opposite, and the resolution box is clamped at Between the first support member and the second support member; the first support member is further provided with an OCT probe conduit fixing passage;
  • the resolution box comprises a fixed side slide and a moving side slide;
  • the fixed side slide comprises a vertical portion and a horizontal portion perpendicular to each other in a plane such that the longitudinal section of the fixed side slide is L-shaped;
  • the plane of the sheet is opposite to the plane of the vertical portion, the lower end of the moving side slide is opposite to the front end of the horizontal portion;
  • the fixed side slide is fixedly connected to the first support;
  • the moving side slide is fixedly connected to the second support
  • the OCT probe catheter fixed channel is opposite to the fixed side slide;
  • the rail assembly includes a cross roller guide rail, a driving mechanism and a control mechanism; the cross roller guide rail is fixed on the base; the second support member is disposed on the cross roller guide rail; An output end of the control mechanism is electrically connected to an input end of the driving mechanism; an output end of the driving mechanism is electrically connected to an input end of the cross roller guide;
  • the bionic transparent gel is disposed in a resolution box.
  • a first positioning member is disposed on an outer surface of the vertical portion and an outer surface of the moving side slide; a second positioning member is disposed on the first supporting member and the second supporting member; The positioning member and the second positioning member are magnetically coupled to each other such that the vertical portion is fixed to the first support member and the movable side slide member is fixed to the second support member.
  • the vertical portion and the moving side slide are respectively provided with two first positioning members, and the two first positioning members on the same plane are disposed diagonally.
  • the cross roller guide rail is provided with a zero position; when the second support member is at the zero position, the distance between the moving side slide and the opposite surface of the vertical portion is 100 um.
  • control mechanism is a computer.
  • the biomimetic transparent colloid is doped with polymeric micro-nanoparticles.
  • the bionic transparent colloid-containing polymer micro-nanoparticles have a mass fraction of from 3 to 20%.
  • a second object of the present invention is to provide a method of using the above-described OCT apparatus imaging performance evaluation apparatus.
  • the object of the present invention can be achieved by adopting the following technical solution: a method for using an imaging performance evaluation device for an OCT apparatus as described above: comprising the following steps:
  • the axial resolution of the OCT device is obtained by analyzing the B-SCAN map, that is, the XZ plane scan image: the XZ plane scan image when the distance between the moving side slide and the opposite side of the vertical portion is different, according to the XZ plane
  • the scan map plots the average gray value distribution curve, compares the maximum peak and valley drop difference in the average gray value distribution curve with the Rayleigh criterion discrimination threshold, and moves the side slide under the condition that the drop value is greater than the discriminant threshold
  • the minimum distance from the fixed side slides is used to characterize the axial resolution of the OCT equipment used.
  • the analysis of the axial resolution of the OCT device is based on the point spread function (PSF).
  • the point spread function is used to describe the optical imaging system's ability to resolve the point source. Any optical imaging system is not ideal, so any point source will form a diffuse image point after passing through the optical system, and Rayleigh It can be used to distinguish between diffuse pixels.
  • Two point sources (representing the moving side slide and the fixed side slide) are convoluted with the point spread function of the OCT system to obtain a diffuse image gray scale image, and then the gray value distribution curve, that is, the intensity distribution curve, according to The Rayleigh criterion, when the resolution limit is met, the trough point intensity of the overlap region is 73.5% of the center intensity of the spot.
  • the difference between the maximum peak in the average gray value distribution curve (the position where the gray value is lowest in the figure) and the trough (the distance between the moving side slide and the center of the spot on the fixed side slide formed in the scan image) is larger than Judging the threshold (26.5% ⁇ maximum peak value) to determine that the moving side slide and the fixed side slide can be distinguished, and in the case where the two can be distinguished, the axis of the OCT device used is characterized by the minimum distance between the two. To the resolution.
  • step 2) the step unit of the crossed roller guide is 1 um.
  • the maximum distance between the moving side slide and the vertical portion is 100 um, and the maximum step distance of the cross roller guide is 99 um.
  • the imaging performance evaluation device of the OCT device of the present invention is different from the traditional optical resolution test board. According to the tissue characteristics to be detected by the OCT device, the biomimetic colloid having the corresponding scattering coefficient is used to simulate the biological tissue, and the detection is more accurate;
  • the imaging performance evaluation device for the OCT apparatus of the present invention can achieve the effect of adjusting the scattering coefficient of the bionic transparent colloid by doping the bionic transparent colloid with the polymer micro/nano particles with different doping amounts;
  • the imaging performance evaluation device of the OCT apparatus of the present invention is controlled by a cross roller guide with a control mechanism, and the detection process is stable and accurate, so that the distance between the moving side slide and the fixed side slide can be distinguished, and the minimum distance between the two is To characterize the axial resolution of the OCT equipment used, and to solve the deficiencies in the prior art resolution pattern separation and the complexity of the resolution board fabrication process;
  • the present invention analyzes the average gray value distribution curve, compares the maximum peak and trough drop difference and the Rayleigh criterion discriminant threshold, and defines the moving side slide and the fixed side slide as the minimum when the drop difference is greater than the discriminant threshold.
  • the condition of the distance is more accurate in place of the error observed by the human eye.
  • Figure 1 is a schematic structural view of the present invention
  • FIG. 2 is a schematic structural view of a resolution box and a fixing frame
  • Figure 3 is a schematic view showing the structure of a fixed side slide and a fixed side slide
  • Figure 4 is a schematic block diagram of the circuit of the present invention.
  • Figure 5 is a view of the OCT scan B-SCAN corresponding to the detection of the moving side slide and the fixed side slide at a distance of 50 um;
  • Figure 6 is a graph showing the distribution of the average gray value of the moving side slide and the fixed side slide when detected at a distance of 50 um;
  • Figure 7 is a view of the OCT scan B-SCAN corresponding to the detection of the moving side slide and the fixed side slide at a distance of 30 um;
  • Figure 8 is a graph showing the distribution of the average gray value of the moving side slide and the fixed side slide when detected at a distance of 30 um;
  • Figure 9 is a view of the OCT scan B-SCAN corresponding to the detection of the moving side slide and the fixed side slide at a distance of 25 um;
  • Figure 10 is a graph showing the distribution of average gray value values when the moving side slide and the fixed side slide are detected at a distance of 25 um;
  • an imaging performance evaluation apparatus for an OCT apparatus includes: a fixing frame 1, a resolution box 2, a rail assembly 3, and a bionic transparent colloid 4;
  • the fixing frame 1 includes a first supporting member 11, a second supporting member 12 and a base 13; the first supporting member 11 is vertically fixed to the base 13, the first supporting member 11 and the second supporting member The case 12 is opposite, the resolution box 2 is sandwiched between the first support member 11 and the second support member 12; the first support member 11 is further provided with an OCT probe conduit fixing channel 111;
  • the resolution cassette 2 includes a fixed side slide 21 and a moving side slide 22;
  • the fixed side slide 21 includes a vertical portion 211 and a horizontal portion 212 which are perpendicular to each other in a plane such that the longitudinal section of the fixed side slide 21 is L
  • the plane of the moving side slide 22 is opposite to the plane of the vertical portion 211, and the lower end of the moving side slide 22 abuts against the front end of the horizontal portion 212; in conjunction with FIG. 3, the outer surface of the vertical portion 211 and the moving side glass
  • the first surface of the piece 22 is provided with two first positioning members 23, and the two first positioning members 23 on the same plane are arranged diagonally, and the diagonal lines are arranged so that the fixing points are evenly applied and the degree of fixation is better.
  • the first supporting member 11 and the second supporting member 12 are provided with a second positioning member 14; the first positioning member 23 and the second positioning member 14 are mutually attracted male magnets and female magnets, and are magnetically connected to each other.
  • the vertical portion 211 is fixed on the first support member 11, and the movable side slide 22 is fixed on the second support member 12; the OCT probe conduit fixing passage 111 is opposite to the fixed side slide 21;
  • the rail assembly 3 includes a cross roller guide 31, a drive mechanism 32 and a control mechanism (not shown); the cross roller guide 31 is fixed on the base 13; the second support 12 is disposed on the cross roll Referring to FIG. 4, the output end of the control mechanism is electrically connected to the input end of the driving mechanism 32; the output end of the driving mechanism 32 is The input ends of the cross roller guides 31 are electrically connected;
  • the bionic transparent colloid 4 is disposed in the resolution box 2 and supported by the horizontal portion 212.
  • the distance between the opposite side of the moving side slide 22 and the vertical portion 211 is 100 um.
  • control mechanism is a computer.
  • the bionic transparent colloid 4 is doped with polystyrene micro-nano particles.
  • the scattering coefficient of the bionic transparent colloid 4 can be made 0.52 to 2.1815.
  • the mm -1 range is adjusted so that it is close to the tissue being tested and the detection is more accurate.
  • a method of using an imaging performance evaluation apparatus for an OCT apparatus as described above includes the following steps:
  • the resolution box containing the bionic transparent colloid is detected as a target, and the control mechanism controls the driving mechanism to drive the cross roller guide to move at a constant speed.
  • the stepping unit of the crossed roller guide is 1 um, so that the moving side slide and the moving side slide The distance between the opposite faces of the vertical portion is gradually reduced to obtain a reconstructed image of the OCT; wherein the maximum distance between the moving side slide and the vertical portion is 100 um, and the maximum step distance of the crossed roller guide is 99um;
  • the axial resolution of the OCT equipment is obtained by analyzing the B-SCAN map, that is, the X-Z plane scan: when the distance between the moving side slide and the opposite side of the vertical portion is different.
  • the XZ plane scan map the average gray value distribution curve is drawn according to the XZ plane scan pattern, and then the maximum peak value and the valley drop difference value in the average gray value distribution curve are compared with the Rayleigh criterion discrimination threshold value, and the drop difference value is larger than the discrimination value.
  • the axial resolution of the used OCT device is characterized by the minimum distance between the moving side slide and the fixed side slide.
  • the operator can adjust the step unit, the step speed through the control mechanism, or manually.
  • Figures 5, 7, and 9 show the OCT scan B-SCAN maps of the moving side slides and the fixed side slides when they are detected at distances of 50 um, 30 um, and 25 um, respectively.
  • Figures 6, 8, and 10 are graphs showing the average gray value distribution of the moving side slide and the fixed side slide when detected at distances of 50 um, 30 um, and 25 um, respectively.
  • the maximum peak (point A) in Figure 8 is 220
  • the trough (point B) is 140
  • the drop is 80.
  • the maximum peak (point A) in Figure 10 is 245, and the trough (point B) is 205.
  • the axial resolution of the OCT equipment to be tested is between 25 and 30 um, and the measured axial distance between the two slides can be changed by further adjusting the cross roller guide rail to obtain an accurate axial resolution of 27 um for the OCT device to be tested.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种OCT设备成像性能评价装置,包括:固定架(1)、分辨率盒(2)、导轨组件(3)和仿生透明胶体(4);所述固定架(1)包括第一支撑件(11)、第二支撑件(12)和底座(13);所述分辨率盒(2)包括固定侧玻片(21)和移动侧玻片(22);所述导轨组件(3)包括交叉滚柱导轨(31)、驱动机构(32)和控制机构;所述仿生透明胶体(4)设置在分辨率盒中(2)。该装置的使用方法包括:1)将需要检定的OCT设备的探头导管固定于OCT探头导管固定通道(111)中;2)对含有仿生透明胶体(4)的分辨率盒(2)作为目标物进行检测,得到OCT的重构图像;3)OCT设备的轴向分辨率是通过分析B-SCAN图,即X-Z平面扫描图得到。该装置以交叉滚柱导轨(31)调节移动侧玻片(22)和固定侧玻片(21)的相对距离,对相对距离的控制更加精确稳定。

Description

一种OCT设备成像性能评价装置及其使用方法 技术领域
本发明涉及一种OCT设备成像性能评价装置及其使用方法,属于仪器检测技术领域。
背景技术
光学相干层析技术(Optical coherence Tomography,OCT)是近十年迅速发展的一种无创三维高分辨率成像诊断技术,该技术是基于低相干光干涉原理,并与共焦显微技术相结合,检测生物组织不同深度层对入射弱相干光的后向散射波回波时间延迟及回波强度信号,通过扫描得到样品二维或三维的高分辨率微观组织结构,从而获得被测样品无损的断层层析图像。与现有的X光检测、MRI、CT、超声等其他成像技术相比,OCT成像具有极高的分辨率(微米量级),与传统的激光共聚焦显微镜相比,OCT具有明显的成像深度优势,能够对表皮以下几个微米的组织进行高分辨率成像,同时借助光纤技术可实现微形化,能够对人体内部管腔道组织进行活体检测,实现早期病灶检测及定位目的。
目前国内OCT厂商在OCT设备的技术参数测定方面上大都还是由其自行提供,在中国,目前并没有第三方机构具有能力和资质对于厂商给出的参数进行验证或检定。OCT技术最大的优势在于其能够提供深度方向的断层信息,因此评价其轴向分辨率尤为重要。据悉,国内大部分OCT厂商标称其轴向分辨率的方法是:采用平面反射镜 作为样品测量并间接得到OCT设备的轴向分辨率。该轴向分辨率的测试方法需要精确调整平面反射镜的俯仰角度与轴向距离,同时亦需要获取OCT设备成像中间过程的数据才能得出设备的分辨率数据。该方法属于间接测量,并不能直接从探测图像中得到设备的分辨率参数,因此第三方鉴定机构很难采用该方式。针对这种情况,已有相关研究单位提出解决方案,如专利CN201410191226.4设计了一种用于OCT设备成像性能评价的三维分辨率板,采用掺杂聚合物微纳散射颗粒的透明树脂作为基板,通过3D打印或微纳加工技术在其基板上制作分辨率测试图案,最后将待测的OCT设备在该基板上进行扫描成像,通过人眼判别不同分立尺寸测试图案在重建图像上的区分程度进行OCT设备分辨率的检定。该专利较好的解决了间接测量的问题,然而亦存在基板散射系数不可调、分辨率图案分立及分辨率板制作工艺复杂等不足。如今的OCT技术,不仅广泛应用于眼科领域,在人体的心血管、呼吸道、消化道等管腔道组织也有非常广泛的医学应用。人体组织是一种高散射介质,不同组织的散射系数并不一致。当激光入射到组织时,一部分被吸收,大部分被散射,经过组织的吸收和散射,入射光的特性(光强度、相干性、偏振性、方向性等)均有所改变,而其改变的程度取决于生物组织本身的散射、吸收系数。然而,目前所采用的分辨率板所提供的分辨率图案均为分立,只能提供一种近似的分辨率。
因此,迫切需要提供一种简单直接且能够全面评估及检定OCT设备在不同管腔道组织应用时的轴向分辨率的装置。
发明内容
为了克服现有技术的不足,本发明的第一个目的在于提供一种OCT设备成像性能评价装置,该装置以交叉滚柱导轨调节移动侧玻片和固定侧玻片的相对距离,更加精确稳定,以能够区分出移动侧玻片和固定侧玻片的条件下,以二者最小的距离来表征所用OCT设备的轴向分辨率,解决了现有技术中分辨率图案分立及分辨率板制作工艺复杂等不足。
实现本发明的目的可以通过采取如下技术方案达到:一种OCT设备成像性能评价装置,包括:固定架、分辨率盒、导轨组件和仿生透明胶体;
所述固定架包括第一支撑件、第二支撑件和底座;所述第一支撑件垂直固定于底座上,所述第一支撑件和第二支撑件相对,所述分辨率盒夹持在第一支撑件和第二支撑件之间;所述第一支撑件上还设有OCT探头导管固定通道;
所述分辨率盒包括固定侧玻片和移动侧玻片;所述固定侧玻片包括平面互相垂直的垂直部和水平部,使得固定侧玻片的纵截面为L形;所述移动侧玻片的平面与垂直部的平面相对,移动侧玻片的下端与水平部的前端相抵;所述固定侧玻片固定连接在第一支撑件上;所述移动侧玻片固定连接在第二支撑件上;所述OCT探头导管固定通道与固定侧玻片相对;
所述导轨组件包括交叉滚柱导轨、驱动机构和控制机构;所述交叉滚柱导轨固定在底座上;所述第二支撑件设置在交叉滚柱导轨上; 所述控制机构的输出端与驱动机构的输入端电性连接;所述驱动机构的输出端与交叉滚柱导轨的输入端电性连接;
所述仿生透明胶体设置在分辨率盒中。
作为优选,所述垂直部的外表面和移动侧玻片的外表面上均设有第一定位件;所述第一支撑件和第二支撑件上设有第二定位件;所述第一定位件和第二定位件互相磁性连接,使得垂直部固定在第一支撑件上,移动侧玻片固定在第二支撑件上。
再优选地,所述垂直部和移动侧玻片上各自设有两个第一定位件,同一平面上的两个第一定位件沿对角线设置。
作为优选,所述交叉滚柱导轨上设有零点位置;所述第二支撑件位于零点位置时,移动侧玻片与垂直部的相对面之间的距离为100um。
作为优选,所述控制机构为计算机。
作为优选,所述仿生透明胶体中掺有聚合物微纳颗粒。
再优选地,所述仿生透明胶体含聚合物微纳颗粒的质量分数为3~20%。
本发明的第二个目的在于提供一种上述OCT设备成像性能评价装置的使用方法。
实现本发明的目的可以通过采取如下技术方案达到:一种如上所述的OCT设备成像性能评价装置的使用方法:包括以下步骤:
1)将需要检定的OCT设备的探头导管固定于OCT探头导管固定通道中,使得导管的出射窗口与固定侧玻片的外表面相对;
2)对含有仿生透明胶体的分辨率盒作为目标物进行检测,控制机构控制驱动机构,带动交叉滚柱导轨匀速移动,使得移动侧玻片与垂直部的相对面之间的距离逐渐减小,得到OCT的重构图像;
3)OCT设备的轴向分辨率是通过分析B-SCAN图,即X-Z平面扫描图得到:得到移动侧玻片与垂直部的相对面之间的距离不同时的X-Z平面扫描图,根据X-Z平面扫描图绘制平均灰度值分布曲线,将平均灰度值分布曲线中最大波峰与波谷的落差值与瑞利判据判别阈值相比较,在落差值大于判别阈值的条件下,以移动侧玻片和固定侧玻片最小的距离来表征所用OCT设备的轴向分辨率。
OCT设备的轴向分辨率的分析,是从点扩散函数(Point Spread Function,PSF)的角度出发。所述点扩散函数是用于描述光学成像系统对点源解析能力的函数,任何光学成像系统都不是理想的,因此任意点源在经过光学系统后会形成一个弥散的像点,而瑞利判据可用于对弥散像点的区分。两个点源(代表移动侧玻片和固定侧玻片)通过与OCT系统的点扩散函数相卷积得到弥散像点灰度图,进而得到其灰度值分布曲线,即强度分布曲线,根据瑞利判据,当满足分辨率极限时,重叠区域的波谷点强度为光斑中心强度的73.5%。因此,利用平均灰度值分布曲线中最大波峰(图中灰度值最低的位置)与波谷(移动侧玻片和固定侧玻片在扫描图中形成的像斑中心的距离)的落差值大于判别阈值(26.5%×最大波峰值),来判断移动侧玻片和固定侧玻片能够被区分,并在二者能够被区分的情况下,以二者最小的距离来表征所用OCT设备的轴向分辨率。
作为优选,步骤2)中,所述交叉滚柱导轨的步进单位为1um。
作为优选,步骤2)中,所述移动侧玻片与垂直部相对之间的最大距离为100um,交叉滚柱导轨的最大步进距离为99um。
相比现有技术,本发明的有益效果在于:
1、本发明的OCT设备成像性能评价装置区别于传统的光学分辨率测试板,根据OCT设备所要检测的组织特性,采用具有对应散射系数的仿生透明胶体进行模拟生物组织,检测更加精确;
2、本发明的OCT设备成像性能评价装置通过对仿生透明胶体掺杂聚合物微纳颗粒,掺杂的量不同,可达到调节仿生透明胶体散射系数的效果;
3、本发明的OCT设备成像性能评价装置以交叉滚柱导轨配合控制机构进行控制,检测过程稳定精确,以能够区分出移动侧玻片和固定侧玻片的条件下,以二者最小的距离来表征所用OCT设备的轴向分辨率,解决了现有技术中分辨率图案分立及分辨率板制作工艺复杂等不足;
4、本发明通过分析平均灰度值分布曲线,根据最大波峰与波谷的落差值和瑞利判据判别阈值相比较,以落差值大于判别阈值定义出移动侧玻片和固定侧玻片为最小距离的条件,代替人眼观察的误差,更加准确。
附图说明
图1为本发明结构示意图;
图2为分辨率盒与固定架的结构示意图;
图3为固定侧玻片和固定侧玻片的结构示意图;
图4为本发明的电路示意框图;
图5为移动侧玻片和固定侧玻片在相距50um距离探测时所对应的OCT扫描B-SCAN图;
图6为移动侧玻片和固定侧玻片在相距50um距离探测时的平均灰度值分布曲线图;
图7为移动侧玻片和固定侧玻片在相距30um距离探测时所对应的OCT扫描B-SCAN图;
图8为移动侧玻片和固定侧玻片在相距30um距离探测时的平均灰度值分布曲线图;
图9为移动侧玻片和固定侧玻片在相距25um距离探测时所对应的OCT扫描B-SCAN图;
图10为移动侧玻片和固定侧玻片在相距25um距离探测时的平均灰度值分布曲线图;
其中,1、固定架;11、第一支撑件;111、OCT探头导管固定通道;12、第二支撑件;13、底座;14、第二定位件;2、分辨率盒;21、固定侧玻片;211、垂直部;212、水平部;22、固定侧玻片;23、第一定位件;3、导轨组件;31、交叉滚柱导轨;32、驱动机构;4、仿生透明胶体。
具体实施方式
下面,结合附图以及具体实施方式,对本发明做进一步描述:
实施例1:
参照图1,一种OCT设备成像性能评价装置,包括:固定架1、分辨率盒2、导轨组件3和仿生透明胶体4;
结合图2,所述固定架1包括第一支撑件11、第二支撑件12和底座13;所述第一支撑件11垂直固定于底座13上,所述第一支撑件11和第二支撑件12相对,所述分辨率盒2夹持在第一支撑件11和第二支撑件12之间;所述第一支撑件11上还设有OCT探头导管固定通道111;
所述分辨率盒2包括固定侧玻片21和移动侧玻片22;所述固定侧玻片21包括平面互相垂直的垂直部211和水平部212,使得固定侧玻片21的纵截面为L形;所述移动侧玻片22的平面与垂直部211的平面相对,移动侧玻片22的下端与水平部212的前端相抵;结合图3,所述垂直部211的外表面和移动侧玻片22的外表面上各自设有两个第一定位件23,同一平面上的两个第一定位件23沿对角线设置,以对角线设置使得固定点受力均匀,固定程度更好;所述第一支撑件11和第二支撑件12上设有第二定位件14;所述第一定位件23和第二定位件14为互相吸引的公磁铁和母磁铁,互相磁性连接,使得垂直部211固定在第一支撑件11上,移动侧玻片22固定在第二支撑件12上;所述OCT探头导管固定通道111与固定侧玻片21相对;
所述导轨组件3包括交叉滚柱导轨31、驱动机构32和控制机构(图中未示出);所述交叉滚柱导轨31固定在底座13上;所述第二支撑件12设置在交叉滚柱导轨31上;参照图4,所述控制机构的输出端与驱动机构32的输入端电性连接;所述驱动机构32的输出端与 交叉滚柱导轨31的输入端电性连接;
所述仿生透明胶体4设置在分辨率盒2中,并通过水平部212支撑。
本实施例中,所述第二支撑件12位于零点位置时,移动侧玻片22与垂直部211的相对面之间的距离为100um。
本实施例中,所述控制机构为计算机。
本实施例中,所述仿生透明胶体4中掺有聚苯乙烯微纳颗粒,通过调节聚合物微纳颗粒的质量分数为3~20%,可以使得仿生透明胶体4的散射系数在0.52~2.1815mm-1范围中调节,使之与被检测的组织相近,检测更加精确。
实施例2:
一种如上所述的OCT设备成像性能评价装置的使用方法:包括以下步骤:
1)将需要检定的OCT设备的探头导管固定于OCT探头导管固定通道中,使得导管的出射窗口与固定侧玻片的外表面相对;
2)对含有仿生透明胶体的分辨率盒作为目标物进行检测,控制机构控制驱动机构,带动交叉滚柱导轨匀速移动,所述交叉滚柱导轨的步进单位为1um,使得移动侧玻片与垂直部的相对面之间的距离逐渐减小,得到OCT的重构图像;其中,所述移动侧玻片与垂直部相对之间的最大距离为100um,交叉滚柱导轨的最大步进距离为99um;
3)OCT设备的轴向分辨率是通过分析B-SCAN图,即X-Z平面扫描图得到:得到移动侧玻片与垂直部的相对面之间的距离不同时 的X-Z平面扫描图,根据X-Z平面扫描图绘制平均灰度值分布曲线,然后将平均灰度值分布曲线中最大波峰与波谷的落差值与瑞利判据判别阈值相比较,在落差值大于判别阈值的条件下,以移动侧玻片和固定侧玻片最小的距离来表征所用OCT设备的轴向分辨率。
在实际操作中,操作者可以通过控制机构调节步进单位、步进速度,也可以手动控制。
图5、7、9分别为移动侧玻片和固定侧玻片在相距50um、30um、25um距离探测时所对应的OCT扫描B-SCAN图。
图6、8、10分别为移动侧玻片和固定侧玻片在相距50um、30um、25um距离探测时的平均灰度值分布曲线图。
如图5和6所示,两块玻片之间的测量距离50um时,此时图6中最大波峰(A点)的值为120,波谷(B点)的值为9,落差值为111,比判别阈值26.5%×120=31.8大,表示待测OCT设备所成B-SCAN图中能清晰分辨出两块玻片并清晰分辨出两块玻片之间的间隙;
如图7和8所示,两块玻片之间的测量距离30um时,此时图8中最大波峰(A点)的值为220,波谷(B点)的值为140,落差值为80,比判别阈值26.5%×220=58.3大,表示待测OCT设备所成B-SCAN图中能清晰分辨出两块玻片并清晰分辨出两块玻片之间的间隙;
说明50um和30um不是该待测OCT设备的轴向分辨率;
如图9和10所示,两块玻片之间的测量距离为25um时,此时图10中最大波峰(A点)的值为245,波谷(B点)的值为205,落 差值为40,比判别阈值26.5%×245=64.925小,所以从待测OCT设备所成的B-SCAN图中已经无法清晰分辨出两块玻片以及两块玻片之间的间隙,说明待测OCT设备的轴向分辨率在25~30um之间,可通过进一步调节交叉滚柱导轨改变两块玻片之间的测量距离从而获得该待测OCT设备的准确轴向分辨率为27um。
对于本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及变形,而所有的这些改变以及变形都应该属于本发明权利要求的保护范围之内。

Claims (10)

  1. 一种OCT设备成像性能评价装置,其特征在于包括:固定架、分辨率盒、导轨组件和仿生透明胶体;
    所述固定架包括第一支撑件、第二支撑件和底座;所述第一支撑件垂直固定于底座上,所述第一支撑件和第二支撑件相对,所述分辨率盒夹持在第一支撑件和第二支撑件之间;所述第一支撑件上还设有OCT探头导管固定通道;
    所述分辨率盒包括固定侧玻片和移动侧玻片;所述固定侧玻片包括平面互相垂直的垂直部和水平部,使得固定侧玻片的纵截面为L形;所述移动侧玻片的平面与垂直部的平面相对,移动侧玻片的下端与水平部的前端相抵;所述固定侧玻片固定连接在第一支撑件上;所述移动侧玻片固定连接在第二支撑件上;所述OCT探头导管固定通道与固定侧玻片相对;
    所述导轨组件包括交叉滚柱导轨、驱动机构和控制机构;所述交叉滚柱导轨固定在底座上;所述第二支撑件设置在交叉滚柱导轨上;所述控制机构的输出端与驱动机构的输入端电性连接;所述驱动机构的输出端与交叉滚柱导轨的输入端电性连接;
    所述仿生透明胶体设置在分辨率盒中。
  2. 如权利要求1所述的OCT设备成像性能评价装置,其特征在于:所述垂直部的外表面和移动侧玻片的外表面上均设有第一定位件;所述第一支撑件和第二支撑件上设有第二定位件;所述第一定位件和第二定位件互相磁性连接,使得垂直部固定在第一支撑件上,移动侧玻片固定在第二支撑件上。
  3. 如权利要求2所述的OCT设备成像性能评价装置,其特征在于:所述垂直部和移动侧玻片上各自设有两个第一定位件,同一平面上的两个第一定位件沿对角线设置。
  4. 如权利要求1所述的OCT设备成像性能评价装置,其特征在于:所述交叉滚柱导轨上设有零点位置;所述第二支撑件位于零点位置时,移动侧玻片与垂直部的相对面之间的距离为100um。
  5. 如权利要求1所述的OCT设备成像性能评价装置,其特征在于:所述控制机构为计算机。
  6. 如权利要求1所述的OCT设备成像性能评价装置,其特征在于:所述仿生透明胶体中掺有聚合物微纳颗粒。
  7. 如权利要求6所述的OCT设备成像性能评价装置,其特征在于:所述仿生透明胶体含聚合物微纳颗粒的质量分数为3~20%。
  8. 一种如权利要求1-7任一所述的OCT设备成像性能评价装置的使用方法:其特征在于包括以下步骤:
    1)将需要检定的OCT设备的探头导管固定于OCT探头导管固定通道中,使得导管的出射窗口与固定侧玻片的外表面相对;
    2)对含有仿生透明胶体的分辨率盒作为目标物进行检测,控制机构控制驱动机构,带动交叉滚柱导轨匀速移动,使得移动侧玻片与垂直部的相对面之间的距离逐渐减小,得到OCT的重构图像;
    3)OCT设备的轴向分辨率是通过分析B-SCAN图,即X-Z平面扫描图得到:得到移动侧玻片与垂直部的相对面之间的距离不同时的X-Z平面扫描图,根据X-Z平面扫描图绘制平均灰度值分布曲线, 然后将平均灰度值分布曲线中最大波峰与波谷的落差值与瑞利判据判别阈值相比较,在落差值大于判别阈值的条件下,以移动侧玻片和固定侧玻片最小的距离来表征所用OCT设备的轴向分辨率。
  9. 如权利要求8所述的OCT设备成像性能评价装置的使用方法:其特征在于:步骤2)中,所述交叉滚柱导轨的步进单位为1um。
  10. 如权利要求8所述的OCT设备成像性能评价装置的使用方法:其特征在于:步骤2)中,所述移动侧玻片与垂直部相对之间的最大距离为100um,交叉滚柱导轨的最大步进距离为99um。
PCT/CN2017/078568 2017-03-09 2017-03-29 一种oct设备成像性能评价装置及其使用方法 WO2018161386A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710138338.7A CN106880340B (zh) 2017-03-09 2017-03-09 一种oct设备成像性能评价装置及其使用方法
CN201710138338.7 2017-03-09

Publications (1)

Publication Number Publication Date
WO2018161386A1 true WO2018161386A1 (zh) 2018-09-13

Family

ID=59179547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078568 WO2018161386A1 (zh) 2017-03-09 2017-03-29 一种oct设备成像性能评价装置及其使用方法

Country Status (2)

Country Link
CN (1) CN106880340B (zh)
WO (1) WO2018161386A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107478414B (zh) * 2017-08-25 2023-09-22 广州永士达医疗科技有限责任公司 一种oct成像回抽性能测试装置及方法
WO2019119309A1 (zh) * 2017-12-20 2019-06-27 深圳先进技术研究院 一种用于超声换能器回波测试的测试装置和测试方法
CN109084958A (zh) * 2018-09-04 2018-12-25 南京沃福曼医疗科技有限公司 一种多功能oct设备光敏检测盒
CN111896228B (zh) * 2020-07-10 2021-06-01 浙江大学 基于光学相干成像的镜头可靠性前后无损检测方法与装置
CN112957012B (zh) * 2021-02-01 2022-09-30 浙江省医疗器械检验研究院 一种光学干涉断层成像系统轴向分辨率测量装置及测量方法
CN114066889B (zh) * 2022-01-12 2022-04-29 广州永士达医疗科技有限责任公司 一种oct主机的成像质量检测方法及装置
CN114305340B (zh) * 2022-01-12 2023-02-17 广州永士达医疗科技有限责任公司 一种应用于oct主机的分辨率检测方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102007369A (zh) * 2008-02-18 2011-04-06 维森盖特有限公司 利用紫外线放射对活细胞进行3d成像
WO2011127584A1 (en) * 2010-04-13 2011-10-20 University Of Manitoba Methods and systems for use in imaging using interferometry
CN103315703A (zh) * 2013-05-31 2013-09-25 北京大学 一种用于眼底成像的人眼光学测试模型
CN203354522U (zh) * 2013-05-31 2013-12-25 北京大学 一种人眼光学测试模型
CN103932675A (zh) * 2014-05-07 2014-07-23 中国计量科学研究院 一种用于眼科oct设备三维成像性能评价的测试人眼模型及其使用方法
CN104755908A (zh) * 2012-07-27 2015-07-01 统雷有限公司 敏捷成像系统
CN106097343A (zh) * 2016-06-14 2016-11-09 西安理工大学 光场成像设备轴向分辨率测定装置与方法
CN106537200A (zh) * 2014-03-07 2017-03-22 瓦里奥管理有限合伙 基于反射镜的微机电系统和方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103932682B (zh) * 2014-05-07 2015-10-28 中国计量科学研究院 一种用于oct设备成像性能评价的三维分辨率板及其使用方法
CN207370699U (zh) * 2017-03-09 2018-05-18 广州永士达医疗科技有限责任公司 一种oct设备成像性能评价装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102007369A (zh) * 2008-02-18 2011-04-06 维森盖特有限公司 利用紫外线放射对活细胞进行3d成像
WO2011127584A1 (en) * 2010-04-13 2011-10-20 University Of Manitoba Methods and systems for use in imaging using interferometry
CN104755908A (zh) * 2012-07-27 2015-07-01 统雷有限公司 敏捷成像系统
CN103315703A (zh) * 2013-05-31 2013-09-25 北京大学 一种用于眼底成像的人眼光学测试模型
CN203354522U (zh) * 2013-05-31 2013-12-25 北京大学 一种人眼光学测试模型
CN106537200A (zh) * 2014-03-07 2017-03-22 瓦里奥管理有限合伙 基于反射镜的微机电系统和方法
CN103932675A (zh) * 2014-05-07 2014-07-23 中国计量科学研究院 一种用于眼科oct设备三维成像性能评价的测试人眼模型及其使用方法
CN106097343A (zh) * 2016-06-14 2016-11-09 西安理工大学 光场成像设备轴向分辨率测定装置与方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
REN, YUHANG: "Research on Spectral Domain Optical Coherence Tomography and its Applications", MASTER'S DISSERTATION OF BEIJING INSTITUTE OF TECHNOLOGY, 31 January 2016 (2016-01-31), pages 40 - 50 *

Also Published As

Publication number Publication date
CN106880340B (zh) 2020-03-13
CN106880340A (zh) 2017-06-23

Similar Documents

Publication Publication Date Title
WO2018161386A1 (zh) 一种oct设备成像性能评价装置及其使用方法
US9920188B2 (en) PVCP phantoms and their use
JP6014026B2 (ja) 強化された眼科測定方法および装置
JP5234470B2 (ja) レーザドップラー血流測定方法及び装置
CN110693457B (zh) 一种基于光学相干技术的组织活性检测的方法与系统
JP2013522619A (ja) シングルモード光ファイバベースの角度分解低コヒーレンス干渉計測(LCI)(a/LCI)および不干渉計測システムならびに方法
Palma-Chavez et al. Review of consensus test methods in medical imaging and current practices in photoacoustic image quality assessment
CN108309244A (zh) 一种新型压力传感皮肤微血管扫描装置和系统及工作方法
Hariri et al. Polyacrylamide hydrogel phantoms for performance evaluation of multispectral photoacoustic imaging systems
CN111288902A (zh) 一种双视场光相干断层扫描成像系统及材料厚度检测法
CN107478414B (zh) 一种oct成像回抽性能测试装置及方法
Thompson et al. Spatially compounded plane wave imaging using a laser-induced ultrasound source
WO2015109127A1 (en) Angled confocal spectroscopy
CN207370699U (zh) 一种oct设备成像性能评价装置
Palma-Chavez et al. Photoacoustic imaging phantoms for assessment of object detectability and boundary buildup artifacts
EP4132351A1 (en) System and method of dynamic micro-optical coherence tomography for mapping cellular functions
Kim et al. Optical phantoms for ultrasound-modulated optical tomography
Zhu et al. Novel acoustic radiation force optical coherence elastography based on ultrasmall ultrasound transducer for biomechanics evaluation of in vivo cornea
CN100464695C (zh) 乳腺光学参数测量仪
CN115715668A (zh) 一种结合oct成像和吸收光谱的脂质斑块检测方法和装置
CN214804636U (zh) 眼科光学相干断层扫描仪测量装置和测量系统
WO2019037142A1 (zh) 一种oct导管的校准装置及方法
CN209421973U (zh) 一种用于检测高频超声仪器侧向分辨力的成套试件
Elvira et al. A New Methodology for the Assessment of Very Low Concentrations of Cells in Serous Body Fluids Based on the Count of Ultrasound Echoes Backscattered From Cells
RU2306868C1 (ru) Способ диагностики рака

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.01.20)

122 Ep: pct application non-entry in european phase

Ref document number: 17899489

Country of ref document: EP

Kind code of ref document: A1