WO2019037071A1 - Device and method for feedback and control using optical fibers in catheters - Google Patents

Device and method for feedback and control using optical fibers in catheters Download PDF

Info

Publication number
WO2019037071A1
WO2019037071A1 PCT/CN2017/099004 CN2017099004W WO2019037071A1 WO 2019037071 A1 WO2019037071 A1 WO 2019037071A1 CN 2017099004 W CN2017099004 W CN 2017099004W WO 2019037071 A1 WO2019037071 A1 WO 2019037071A1
Authority
WO
WIPO (PCT)
Prior art keywords
catheter
catheters
control
feedback signals
optical fibers
Prior art date
Application number
PCT/CN2017/099004
Other languages
French (fr)
Inventor
Weyland CHENG
Original Assignee
Cheng Weyland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cheng Weyland filed Critical Cheng Weyland
Priority to PCT/CN2017/099004 priority Critical patent/WO2019037071A1/en
Publication of WO2019037071A1 publication Critical patent/WO2019037071A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/065Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/268Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2061Tracking techniques using shape-sensors, e.g. fiber shape sensors with Bragg gratings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/301Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/35Surgical robots for telesurgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/71Manipulators operated by drive cable mechanisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/02195Refractive index modulation gratings, e.g. Bragg gratings characterised by means for tuning the grating
    • G02B6/022Refractive index modulation gratings, e.g. Bragg gratings characterised by means for tuning the grating using mechanical stress, e.g. tuning by compression or elongation, special geometrical shapes such as "dog-bone" or taper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • G06N5/048Fuzzy inferencing

Definitions

  • the present invention relates to generating new feedback data in a fiber optic catheter by modeling multiple feedback signals along the length of one or more optical fibers.
  • Catheters are used for a variety of diagnostic and therapeutic procedures throughout the body allowing for minimally invasive operations. It is optimal to have finer control of the catheter to minimize the procedural duration, surgical mistakes, and the skill and training requirements of the catheter operator. Remote catheters using magnetic resonance or robotic control have been introduced to allow for faster operation times. Remote systems also allow the operator to work from a separate workstation rather than by the patient’s bedside where x-ray fluoroscopy is often used to provide visual feedback images. At a distant location, operators are no longer required to wear protective heavy lead suits that often lead to chronic back injuries.
  • Robotic catheter procedures rely on internal and external feedback to provide optimal control and to reveal a clearer picture of the operating environment to the physician.
  • quality feedback is still difficult to obtain due to the size and safety requirements of intrinsic sensors and the expense, speed and efficiency of external sensors such as image analysis systems.
  • Optical fibers have been implemented in catheters, relaying in-vivo feedback signals of from the proximal end of the catheter, such as the contact tip force, oxygen saturation of the blood, fluid concentration, temperature, pressure, etc.
  • Optical fibers are optimal in that they require no electrical activity within the catheter, produce fast response signals, and can be relatively small in size.
  • Additional existing technologies in optical fibers includes the ability to receive multiple feedback signals from a single-mode fiber. For instance, using wavelength division multiplexing (WDM) , different wavelengths of light are multiplexed into a single optical fiber.
  • Fiber Bragg grating (FBG) sensors and out-coupling taps are written within the core of the fiber to generate temperature, strain, pressure, chemical or interferometric feedback from the various wavelengths. [Morey WW, Dunphy JR, Meltz G. Multiplexing fiber bragg grating sensors. 1991; 10 (4) : 351-360. ]
  • these optical fibers can be placed into the length of the catheter wall.
  • a mathematical model can be implemented to the feedback data to indirectly derive new and different data points that regular sensors cannot or have difficulty obtaining in catheter procedures.
  • the invention uses one or more optical fibers within a catheter. Preferably three to four optical fibers.
  • the optical fibers are preferably symmetrically embedded within the catheter wall.
  • Each fiber consists of multiple sensors such as stress, strain, displacement, , contact force, pressure, temperature, vibration, chemical, etc.
  • Each optical fiber may consist of only one type of sensor or a combination of these sensors. These sensors may be intrinsic or extrinsic or a combination of both.
  • the optical fiber may be a single-mode fiber or multi-mode fiber. More preferably a single-mode fiber. Multiple sensors within one optical fiber is achieved through any form of optical splitting and combining techniques such as wavelength division multiplexing, time division multiplexing or frequency division multiplexing. More preferably wavelength division multiplexing.
  • An interrogation unit is located at the proximal end of the catheter where it emits and receives the wavelength signals.
  • the signals from the optical fibers are then relayed to an operating system or microprocessor where new data is derived by implementing mathematical or statistical models such as artificial neural networks, a machine learning algorithm.
  • the newly derived data may consist of the catheter’s relative tip coordinates, the coordinate position of the entire catheter body, the tip angle or orientation, the orientation of the catheter body, the vibration of the catheter body, the momentum, speed or acceleration of the catheter’s movement, and so on.
  • the optical fiber sensor system may also be implemented in a control system to robotically control or automate the catheter.
  • the control system may use the newly derived data or it may directly use the multiple feedback signals from the fibers.
  • Common control methods may be used, such as proportional-integral-derivative (PID) control or state space models. Less common methods may also be used, such as in machine learning techniques like deep learning.
  • PID proportional-integral-derivative
  • machine learning techniques like deep learning.
  • a mass amount of data is collected, depicting the catheter in thousands of scenarios and shapes.
  • the collected data of fiber optic feedback signals and other features are processed through the machine learning algorithm to calculate a target output, which could be the distance, speed or acceleration that the robotic actuators need to actuate.
  • FIG. 1 is a depiction of the optical fibers and its sensors within the catheter
  • FIG. 2 shows a radial view of how three optical fibers may be installed within the catheter
  • FIG. 3 is a depiction of how the catheter would be shaped in various configurations to amass data for the machine learning algorithm
  • FIG. 4 is a depiction of how the sensors can placed in different patterns within the optical fibe
  • FIG. 5 is overall schematic of how the optical fiber sensor system can be used
  • FIG. 6 is a schematic of an example experimental set-up with actuators in order to collect data for a machine learning algorithm
  • One embodiment uses machine learning algorithms to derive the positional catheter tip coordinates from multiple strain sensor signals spread evenly across three symmetrically placed single-moded optical fibers 2 within the catheter 1 as in FIG. 1.
  • One of the three optical fibers also includes a temperature sensor in the event that the values of the strain sensors are temperature dependent.
  • the optical fibers run from the proximal end of the catheter to the distal end and are positioned near the outer surface of the catheter or embedded within the catheter wall, radially forming triangular points and allowing a three-dimensional platform as in FIG. 2.
  • Multiple strain sensors 3 are implemented evenly along the length of the fiber from the proximal end to the distal end. Fiber Bragg gratings 3 are used to form the strain sensors.
  • the optic signals are processed through a multiplexer and demultiplexer 5 at the proximal end 4 of the device using wavelength division multiplexing to achieve multiple signals within a single-mode fiber.
  • the feedback data is sent to a processor or operating system where it is fed to an established algorithm or mathematical model that translates the strain data to the relative coordinate position of the entire catheter body.
  • the positional coordinates of the catheter body can then be translated to a graphical display screen to give visual feedback for the physician or to a control system to robotically or remotely control the catheter through proximal actuators.
  • the multiple strain values can be directly sent to the control system where it uses these values in its control models.
  • An overall schematic of the system is displayed in FIG. 5.
  • the possible catheter control mechanisms include, but are not limited to, pull wires, smart material-actuated catheters, hydraulically driven catheters, ionic polymer-metal composites, and magnetic resonance control.
  • control system may also use different control models such as PID control, PID control with inverse kinematics, state space, fuzzy logic, deep learning or neural networks, etc.
  • Another embodiment incorporates contact force sensors at the catheter tip to account for obstructions.
  • the new shape or position of the catheter is still derived using the same data modeling methods when the tip experiences contact.
  • Another embodiment measures the vibration of the catheter caused by robotic actuation or pressure from the dynamic environment.
  • Yet another embodiment has the sensors located in different patterns throughout the optical fibers or in a specified pattern as in FIG. 4.
  • the sensors in FIG. 4 are arranged closer together near the distal end where more curves or deflection of the catheter may occur.
  • a prototype catheter as seen in FIG. 6 is automated to change shapes using external 6 and proximal 7 actuators to randomly move its body into various configurations. Examples of these configurations are seen in FIG. 3.
  • the tip 9 of the catheter may be deflected in any random direction using actuators at the proximal end 4 to pull on four pull wires 8 within the catheter.
  • the four pull wires allow for omnidirectional deflection.

Abstract

A catheter (1) using one or more optical fibers (2) to produce multiple feedback signals located along the length of the catheter (1). The feedback signals may include strain, pressure, temperature or other variables obtainable by optical fibers (2). Sequentially, the feedback signals are used in an analytical model to further derive new data information, such as the catheter's tip position, geometrical body shape, tip orientation, bodily vibration, and so on. The collected data from the fiber optic catheter (1) may also be used to optimize the control of the catheter (1) or to achieve automated movement.

Description

DEVICE AND METHOD FOR FEEDBACK AND CONTROL USING OPTICAL FIBERS IN CATHETERS Field of the Invention
The present invention relates to generating new feedback data in a fiber optic catheter by modeling multiple feedback signals along the length of one or more optical fibers.
Background of the Invention
Catheters are used for a variety of diagnostic and therapeutic procedures throughout the body allowing for minimally invasive operations. It is optimal to have finer control of the catheter to minimize the procedural duration, surgical mistakes, and the skill and training requirements of the catheter operator. Remote catheters using magnetic resonance or robotic control have been introduced to allow for faster operation times. Remote systems also allow the operator to work from a separate workstation rather than by the patient’s bedside where x-ray fluoroscopy is often used to provide visual feedback images. At a distant location, operators are no longer required to wear protective heavy lead suits that often lead to chronic back injuries.
Robotic catheter procedures rely on internal and external feedback to provide optimal control and to reveal a clearer picture of the operating environment to the physician. However, quality feedback is still difficult to obtain due to the size and safety requirements of intrinsic sensors and the expense, speed and efficiency of external sensors such as image analysis systems.
Following the remote control of catheters is the refinement and improvement the system’s performance. Due to the variety of shapes, lengths, material properties and forces that come into play when manipulating a catheter, robotically maneuvering a catheter can still be highly non-intuitive where the distal end does not move in accordance with the operator’s directions. [J. Jung, Penning, R., N.J. Ferrier, M.R. Zinn, “A Modeling Approach for  Continuum Robotic Manipulators: Effects of Nonlinear Internal Device Friction, ” IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, September 25-30, 201. ]
Attempts to automate or model the movements of the catheter have resulted in limited success in terms of accuracy, 3-dimensionality, speed and reaction time, and dynamical adjustments to the moving environment. One issue in remote control is the lack of immediate feedback. Image analysis or magnetic resonance systems that can determine the catheter’s position have a time-delay when providing feedback to the control system. [Cheng W, Law PK. Conceptual Design and Procedure for an Autonomous Intramyocardial Injection Catheter. Cell Transplantation. 2017; 26 (5) : 735-751. ]
Optical fibers have been implemented in catheters, relaying in-vivo feedback signals of from the proximal end of the catheter, such as the contact tip force, oxygen saturation of the blood, fluid concentration, temperature, pressure, etc. Optical fibers are optimal in that they require no electrical activity within the catheter, produce fast response signals, and can be relatively small in size. Additional existing technologies in optical fibers includes the ability to receive multiple feedback signals from a single-mode fiber. For instance, using wavelength division multiplexing (WDM) , different wavelengths of light are multiplexed into a single optical fiber. Fiber Bragg grating (FBG) sensors and out-coupling taps are written within the core of the fiber to generate temperature, strain, pressure, chemical or interferometric feedback from the various wavelengths. [Morey WW, Dunphy JR, Meltz G. Multiplexing fiber bragg grating sensors. 1991; 10 (4) : 351-360. ]
Using such technology, these optical fibers can be placed into the length of the catheter wall. Using the multiple feedback signals from the fibers, a mathematical model can be implemented to the feedback data to indirectly derive new and different data points that regular sensors cannot or have difficulty obtaining in catheter procedures.
Summary of the Invention
The invention uses one or more optical fibers within a catheter. Preferably three to four optical fibers. The optical fibers are preferably symmetrically embedded within  the catheter wall. Each fiber consists of multiple sensors such as stress, strain, displacement, , contact force, pressure, temperature, vibration, chemical, etc. Each optical fiber may consist of only one type of sensor or a combination of these sensors. These sensors may be intrinsic or extrinsic or a combination of both. The optical fiber may be a single-mode fiber or multi-mode fiber. More preferably a single-mode fiber. Multiple sensors within one optical fiber is achieved through any form of optical splitting and combining techniques such as wavelength division multiplexing, time division multiplexing or frequency division multiplexing. More preferably wavelength division multiplexing.
An interrogation unit is located at the proximal end of the catheter where it emits and receives the wavelength signals. The signals from the optical fibers are then relayed to an operating system or microprocessor where new data is derived by implementing mathematical or statistical models such as artificial neural networks, a machine learning algorithm. The newly derived data may consist of the catheter’s relative tip coordinates, the coordinate position of the entire catheter body, the tip angle or orientation, the orientation of the catheter body, the vibration of the catheter body, the momentum, speed or acceleration of the catheter’s movement, and so on.
The optical fiber sensor system may also be implemented in a control system to robotically control or automate the catheter. The control system may use the newly derived data or it may directly use the multiple feedback signals from the fibers. Common control methods may be used, such as proportional-integral-derivative (PID) control or state space models. Less common methods may also be used, such as in machine learning techniques like deep learning. In a machine learning model, a mass amount of data is collected, depicting the catheter in thousands of scenarios and shapes. The collected data of fiber optic feedback signals and other features are processed through the machine learning algorithm to calculate a target output, which could be the distance, speed or acceleration that the robotic actuators need to actuate.
Brief Description of the Drawings
FIG. 1 is a depiction of the optical fibers and its sensors within the catheter;
FIG. 2 shows a radial view of how three optical fibers may be installed within the catheter;
FIG. 3 is a depiction of how the catheter would be shaped in various configurations to amass data for the machine learning algorithm;
FIG. 4 is a depiction of how the sensors can placed in different patterns within the optical fibe;
FIG. 5 is overall schematic of how the optical fiber sensor system can be used;
FIG. 6 is a schematic of an example experimental set-up with actuators in order to collect data for a machine learning algorithm;
Detailed Description of Exemplary Embodiments of the Invention
In the following description of the embodiments, references to the accompanying drawings are by way of illustration of an example by which the invention may be practiced. It will be understood that other embodiments may be made without departing from the scope of the invention disclosed.
One embodiment uses machine learning algorithms to derive the positional catheter tip coordinates from multiple strain sensor signals spread evenly across three symmetrically placed single-moded optical fibers 2 within the catheter 1 as in FIG. 1. One of the three optical fibers also includes a temperature sensor in the event that the values of the strain sensors are temperature dependent. The optical fibers run from the proximal end of the catheter to the distal end and are positioned near the outer surface of the catheter or embedded within the catheter wall, radially forming triangular points and allowing a three-dimensional platform as in FIG. 2. Multiple strain sensors 3 are implemented evenly along the length of the fiber from the proximal end to the distal end. Fiber Bragg gratings 3 are used to form the strain sensors. The optic signals are processed through a multiplexer and demultiplexer 5 at the proximal end 4 of the device using wavelength division multiplexing to achieve multiple signals within a single-mode fiber. The feedback data is sent to a processor or operating  system where it is fed to an established algorithm or mathematical model that translates the strain data to the relative coordinate position of the entire catheter body.
The positional coordinates of the catheter body can then be translated to a graphical display screen to give visual feedback for the physician or to a control system to robotically or remotely control the catheter through proximal actuators. Alternatively, instead of being processed into new data, the multiple strain values can be directly sent to the control system where it uses these values in its control models. An overall schematic of the system is displayed in FIG. 5.
To achieve remote or robotic control, the possible catheter control mechanisms include, but are not limited to, pull wires, smart material-actuated catheters, hydraulically driven catheters, ionic polymer-metal composites, and magnetic resonance control.
Other embodiments process the multiple feedback signals using models such as the lumped parameter model, finite element analysis, statistical models or other machine learning algorithms. The control system may also use different control models such as PID control, PID control with inverse kinematics, state space, fuzzy logic, deep learning or neural networks, etc.
Another embodiment incorporates contact force sensors at the catheter tip to account for obstructions. The new shape or position of the catheter is still derived using the same data modeling methods when the tip experiences contact.
Another embodiment measures the vibration of the catheter caused by robotic actuation or pressure from the dynamic environment.
Yet another embodiment has the sensors located in different patterns throughout the optical fibers or in a specified pattern as in FIG. 4. The sensors in FIG. 4 are arranged closer together near the distal end where more curves or deflection of the catheter may occur.
Practical implementation of a machine learning algorithm to convert the feedback strain values to the catheter body’s position can be accomplished with the following  embodiment. A prototype catheter as seen in FIG. 6 is automated to change shapes using external 6 and proximal 7 actuators to randomly move its body into various configurations. Examples of these configurations are seen in FIG. 3. The tip 9 of the catheter may be deflected in any random direction using actuators at the proximal end 4 to pull on four pull wires 8 within the catheter. The four pull wires allow for omnidirectional deflection.
Thousands of random shapes and configurations of the catheter are automated and two orthogonal stereo cameras 10 capture the shape of the catheter body. Using image analysis tools that detect colored tags on the catheter, multiple positional coordinates of each catheter shape is recorded along with the feedback strain values from the optical fibers. The amassed data is then processed in a artificial neural network where the input features consistent of the strain values and the target outputs are the Cartesian coordinates of the segmented points along the catheter body.
Although the present invention has been described hereinabove by way of specific embodiments thereof, it can be modified, without departing from the spirit and nature of the subject invention as defined herein.

Claims (7)

  1. A catheter for diagnostic and therapeutic procedures, comprising:
    at least one optical fiber installed within the catheter body and runs axially along the catheter length, wherein the at least one optical fiber comprises at least one type of sensor;
    a multiplexer and a demuliplexer or interrogator arranged at the proximal end of the catheter, configured to process the feedback signals received from the at least one type of sensor to obtain multiple feedback signals;
    wherein, the obtained multiple feedback signals are relayed to an operating system or microprocessor to derive new data information through algorithms or models.
  2. The catheters of claim 1, wherein the sensor comprised in the optical fibers detects the signals comprising at least one of the following types of signals: stress, strain, displacement, contact force, pressure, temperature, vibration, and chemical.
  3. The catheters of claim 1, wherein the derived new data information includes at least one of the following: catheter’s relative tip coordinates, the coordinate position of the entire catheter body, the tip angle or orientation, bodily orientation, the physical vibration of the catheter body, and the momentum, speed or acceleration of the catheter’s movement.
  4. The catheters of claim 1, further comprising one or more external and proximal actuators configured to accurately control, automate or autonomize the catheter based on the obtained multiple feedback signals.
  5. The catheters of claim 4, wherein the multiple feedback signals along the catheter length or derived new data information is used in a control model or algorithm to control the catheter.
  6. The catheters of claim 5, wherein the control model or algorithm comprises at least one of the following: PID control, PID control with inverse kinematics, state space, fuzzy logic, a machine learning algorithm .
  7. The catheters of claim 4, wherein at least one of the following control mechanisms is used to control the catheter: pull wires, smart material-actuated catheters, hydraulically driven catheters, ionic polymer-metal composites, and magnetic resonance control.
PCT/CN2017/099004 2017-08-25 2017-08-25 Device and method for feedback and control using optical fibers in catheters WO2019037071A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/099004 WO2019037071A1 (en) 2017-08-25 2017-08-25 Device and method for feedback and control using optical fibers in catheters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/099004 WO2019037071A1 (en) 2017-08-25 2017-08-25 Device and method for feedback and control using optical fibers in catheters

Publications (1)

Publication Number Publication Date
WO2019037071A1 true WO2019037071A1 (en) 2019-02-28

Family

ID=65439328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099004 WO2019037071A1 (en) 2017-08-25 2017-08-25 Device and method for feedback and control using optical fibers in catheters

Country Status (1)

Country Link
WO (1) WO2019037071A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021174117A1 (en) * 2020-02-28 2021-09-02 Bard Access Systems, Inc. Catheter with optic shape sensing capabilities
US20220221373A1 (en) * 2019-09-12 2022-07-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for determining the shape of an optical waveguide, and device for producing training data for a neural network
US11474310B2 (en) 2020-02-28 2022-10-18 Bard Access Systems, Inc. Optical connection systems and methods thereof
US11525670B2 (en) 2019-11-25 2022-12-13 Bard Access Systems, Inc. Shape-sensing systems with filters and methods thereof
US11624677B2 (en) 2020-07-10 2023-04-11 Bard Access Systems, Inc. Continuous fiber optic functionality monitoring and self-diagnostic reporting system
US11622816B2 (en) 2020-06-26 2023-04-11 Bard Access Systems, Inc. Malposition detection system
US11630009B2 (en) 2020-08-03 2023-04-18 Bard Access Systems, Inc. Bragg grated fiber optic fluctuation sensing and monitoring system
US11850338B2 (en) 2019-11-25 2023-12-26 Bard Access Systems, Inc. Optical tip-tracking systems and methods thereof
US11883609B2 (en) 2020-06-29 2024-01-30 Bard Access Systems, Inc. Automatic dimensional frame reference for fiber optic
US11899249B2 (en) 2020-10-13 2024-02-13 Bard Access Systems, Inc. Disinfecting covers for functional connectors of medical devices and methods thereof
US11931112B2 (en) 2019-08-12 2024-03-19 Bard Access Systems, Inc. Shape-sensing system and methods for medical devices
US11931179B2 (en) 2020-03-30 2024-03-19 Bard Access Systems, Inc. Optical and electrical diagnostic systems and methods thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001033165A1 (en) * 1999-10-29 2001-05-10 Advanced Sensor Technology, Llc Optical fiber navigation system
US20120265102A1 (en) * 2011-04-14 2012-10-18 Giovanni Leo Compact force sensor for catheters
WO2013061281A1 (en) * 2011-10-28 2013-05-02 Hemodynamix Medical Systems Inc. Apparatus, system and methods for measuring a blood pressure gradient
CN105686811A (en) * 2016-02-24 2016-06-22 南京航空航天大学 Minimally-invasive encephalic multi-parameter detection probe
CN106214128A (en) * 2016-08-01 2016-12-14 华中科技大学 A kind of optical fiber pressure catheter for digestive tract detection, preparation method and application

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001033165A1 (en) * 1999-10-29 2001-05-10 Advanced Sensor Technology, Llc Optical fiber navigation system
US20120265102A1 (en) * 2011-04-14 2012-10-18 Giovanni Leo Compact force sensor for catheters
WO2013061281A1 (en) * 2011-10-28 2013-05-02 Hemodynamix Medical Systems Inc. Apparatus, system and methods for measuring a blood pressure gradient
CN105686811A (en) * 2016-02-24 2016-06-22 南京航空航天大学 Minimally-invasive encephalic multi-parameter detection probe
CN106214128A (en) * 2016-08-01 2016-12-14 华中科技大学 A kind of optical fiber pressure catheter for digestive tract detection, preparation method and application

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11931112B2 (en) 2019-08-12 2024-03-19 Bard Access Systems, Inc. Shape-sensing system and methods for medical devices
US20220221373A1 (en) * 2019-09-12 2022-07-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for determining the shape of an optical waveguide, and device for producing training data for a neural network
US11525670B2 (en) 2019-11-25 2022-12-13 Bard Access Systems, Inc. Shape-sensing systems with filters and methods thereof
US11850338B2 (en) 2019-11-25 2023-12-26 Bard Access Systems, Inc. Optical tip-tracking systems and methods thereof
WO2021174117A1 (en) * 2020-02-28 2021-09-02 Bard Access Systems, Inc. Catheter with optic shape sensing capabilities
US11474310B2 (en) 2020-02-28 2022-10-18 Bard Access Systems, Inc. Optical connection systems and methods thereof
US11638536B1 (en) 2020-02-28 2023-05-02 Bard Access Systems, Inc. Optical connection systems and methods thereof
US11931179B2 (en) 2020-03-30 2024-03-19 Bard Access Systems, Inc. Optical and electrical diagnostic systems and methods thereof
US11622816B2 (en) 2020-06-26 2023-04-11 Bard Access Systems, Inc. Malposition detection system
US11883609B2 (en) 2020-06-29 2024-01-30 Bard Access Systems, Inc. Automatic dimensional frame reference for fiber optic
US11624677B2 (en) 2020-07-10 2023-04-11 Bard Access Systems, Inc. Continuous fiber optic functionality monitoring and self-diagnostic reporting system
US11630009B2 (en) 2020-08-03 2023-04-18 Bard Access Systems, Inc. Bragg grated fiber optic fluctuation sensing and monitoring system
US11899249B2 (en) 2020-10-13 2024-02-13 Bard Access Systems, Inc. Disinfecting covers for functional connectors of medical devices and methods thereof

Similar Documents

Publication Publication Date Title
WO2019037071A1 (en) Device and method for feedback and control using optical fibers in catheters
US20200163581A1 (en) Systems and methods for configuring components in a minimally invasive instrument
US20200367719A1 (en) Systems and Methods for Medical Instrument Force Sensing
US20230157776A1 (en) Systems and methods for constraining a virtual reality surgical system
JP6386998B2 (en) System and method for registration of medical devices using limited search space
KR102620057B1 (en) Systems and methods for adaptive input mapping
CN105050525B (en) Shape sensor system and application method for tracking intervention apparatus
KR102301021B1 (en) Systems and methods for registration of multiple vision systems
KR101942390B1 (en) Optic fiber connection for a force sensing instrument
JP6334517B2 (en) System and method for deformation compensation using shape sensing
US10376178B2 (en) Systems and methods for registration of a medical device using rapid pose search
Abdi et al. Haptics in teleoperated medical interventions: Force measurement, haptic interfaces and their influence on user's performance
WO2013164622A1 (en) System and method for manipulating objects using one or more active effectors controlled by one or more haptic manipulators
WO2015082904A1 (en) Method and assembly for discriminating an attribute or state or characteristic
US20220370139A1 (en) Robotic surgery
Zhang et al. Flexible instrument with contact‐aided structure and force feedback for endoscopic surgery
CN114833795A (en) Mechanical arm operating device and robot system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17922342

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17922342

Country of ref document: EP

Kind code of ref document: A1