WO2019035681A2 - 전고체 전지용 전극 및 그 제조방법 - Google Patents

전고체 전지용 전극 및 그 제조방법 Download PDF

Info

Publication number
WO2019035681A2
WO2019035681A2 PCT/KR2018/009444 KR2018009444W WO2019035681A2 WO 2019035681 A2 WO2019035681 A2 WO 2019035681A2 KR 2018009444 W KR2018009444 W KR 2018009444W WO 2019035681 A2 WO2019035681 A2 WO 2019035681A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
solid electrolyte
polyimide
solid
active material
Prior art date
Application number
PCT/KR2018/009444
Other languages
English (en)
French (fr)
Other versions
WO2019035681A3 (ko
Inventor
성다영
박세호
장민철
윤석일
손병국
박은경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880049324.0A priority Critical patent/CN110998922B/zh
Priority to JP2020504137A priority patent/JP7048842B2/ja
Priority to US16/636,442 priority patent/US11557750B2/en
Priority to EP18846958.9A priority patent/EP3651242A4/en
Priority claimed from KR1020180095862A external-priority patent/KR102160711B1/ko
Publication of WO2019035681A2 publication Critical patent/WO2019035681A2/ko
Publication of WO2019035681A3 publication Critical patent/WO2019035681A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode for a full solid battery and a method of manufacturing the same.
  • metal-air batteries with a theoretical capacity in terms of capacity as compared to current lithium secondary batteries, all solid batteries with no risk of explosion in terms of safety, and super capacitors supercapacitor, NaS cell or RFB (redox flow battery) in the aspect of enlargement, and thin film battery in the aspect of miniaturization have been continuously studied in academia and industry.
  • all solid-state batteries refer to a cell in which a liquid electrolyte used in a lithium secondary battery has been replaced with a solid. Since no flammable solvent is used in the battery, no ignition or explosion occurs due to the decomposition reaction of the conventional electrolyte solution The safety can be greatly improved. In addition, since Li metal or Li alloy can be used as a negative electrode material, energy density with respect to the mass and volume of the battery can be remarkably improved.
  • dry mixing is performed, followed by pressing. Specifically, the solid electrolyte powder is charged into the active material powder and the conductive material powder, mixed by dry mixing, and then the electrode composite powder is pressed on the current collector to form an electrode.
  • the active material powder and the conductive material powder are mixed with a solid electrolyte powder and a binder solution.
  • the electrode material is coated on the current collector in the form of a slurry, dried, and pressed to form an electrode.
  • the dry mixing method has a disadvantage in that the interface resistance between the current collector / electrode / electrolyte is high and the pore in the electrode is difficult to control, and there is a disadvantage that the contact between the electrode material and the electrolyte is not maintained due to no binder have.
  • both of the above methods are disadvantageous in that the electrode dispersion is not well dispersed because the three kinds of electrode materials of the active material, the electrolyte and the conductive material must be uniformly dispersed. In addition, all three materials have point contact, which causes a large contact resistance.
  • Patent Document 1 Japanese Laid-Open Patent Application No. 2016-025020 "Electrode Composite, Lithium Battery and Method for Producing Electrode Composite”
  • the inventors of the present invention have conducted various studies and have found that a solid electrolyte having a characteristic of being melted at a low temperature and a high heat-resistant binder are used to manufacture a full solid electrode.
  • the solid electrolyte can be melted and impregnated into the pores in the electrode, so that the electron and ion transfer path can be formed well.
  • the solid electrolyte can be brought into contact with the surface of the active material in a wetting manner, so that the active material / solid electrolyte bonding property is good and the interface resistance is small.
  • pores in the electrode are not additionally generated, resulting in a reduced resistance due to the pores.
  • the present invention provides a method of manufacturing a semiconductor device, comprising: (a) coating a current collector on a slurry containing an active material, a conductive material, and a polyimide-based high heat-resistant binder; And (b) placing a solid electrolyte having a melting temperature of 50 ° C to 500 ° C on the coating layer, followed by heating / melting the solid electrolyte.
  • the present invention provides a method of manufacturing a semiconductor device, A coating layer formed on the current collector, the coating layer including an active material, a conductive material, and a polyimide-based high heat-resistant binder; And a solid electrolyte having a melting temperature of 50 DEG C to 500 DEG C formed on the coating layer.
  • the entire solid electrode and the method of manufacturing the same according to the present invention are characterized in that a solid electrolyte is produced by using a solid electrolyte having a characteristic of being melted at a low temperature and a high heat resistant binder so that the solid electrolyte is melted and impregnated into pores in the electrode And electron and ion transport pathways can be formed well.
  • the solid electrolyte when the solid electrolyte is melted and impregnated into the pores in the electrode, the solid electrolyte can be brought into contact with the surface of the active material in a wetting manner, so that the active material / solid electrolyte bonding property is good and the interface resistance is reduced .
  • pores in the electrode are not additionally generated, and resistance due to the pores is reduced.
  • FIG. 1 is an SEM photograph of an electrode for a pre-solid battery manufactured according to the prior art
  • FIG. 2 is a photograph of a manufacturing process of an electrode for a full-solid battery of the present invention.
  • FIG. 3 is an SEM photograph of an electrode for a pre-solid battery manufactured according to the first embodiment of the present invention.
  • FIG. 1 is a photograph of a surface of an electrode for an all solid-state battery manufactured by a conventional manufacturing method.
  • a conventional manufacturing method is a dry manufacturing method in which a solid electrolyte powder is charged into an active material powder and a conductive material powder and mixed by dry mixing and then an electrode composite powder is pressed onto the current collector to form an electrode,
  • There is a wet production method in which a solid electrolyte powder and a binder solution are added to a powder and mixed by wet mixing, and then an electrode material is coated on a current collector in the form of a slurry, followed by drying and pressing to form an electrode.
  • the present inventors have conducted various studies, and as a result, they have succeeded in producing a pre-solid electrode which solves the above problems by using a solid electrolyte having a characteristic to be melted at a low temperature and a high heat-resistant binder.
  • a method for manufacturing an electrode for a full solid battery of the present invention comprises the steps of: (a) coating a current collector on a slurry containing an active material, a conductive material, and a polyimide-based high heat-resistant binder; And (b) placing a solid electrolyte having a melting temperature of 50 ° C to 500 ° C on the coating layer, followed by heating / melting.
  • a method for manufacturing an electrode for a full solid-state battery of the present invention includes the steps of (a) coating a current collector with a slurry containing an active material, a conductive material, and a polyimide-based high-temperature-resistant binder.
  • the slurry includes an active material, a conductive material, and a polyimide-based high heat-resistant binder.
  • the active material may be a positive electrode active material when the electrode is a positive electrode, or a negative electrode active material when the electrode is a negative electrode.
  • each of the electrode active materials can be any active material applied to conventional electrodes, and is not particularly limited in the present invention.
  • the cathode active material may be varied depending on the use of the lithium secondary battery, and a known material is used for the specific composition.
  • the negative electrode active material may be selected from the group consisting of lithium metal, a lithium alloy, a lithium metal composite oxide, a lithium-containing titanium composite oxide (LTO), and combinations thereof.
  • the lithium alloy may be an alloy of lithium and at least one metal selected from Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al and Sn.
  • the lithium metal composite oxide is any one of metal (Me) oxides (MeO x ) selected from the group consisting of lithium and Si, Sn, Zn, Mg, Cd, Ce, Ni and Fe. For example, LixFe 2 O 3 0 ⁇ x? 1) or LixWO 2 (0 ⁇ x? 1).
  • the negative electrode active material is SnxMe 1 - x Me 'y O z (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, of the periodic table Group 1, Group 2, Group 3 element, Halogen; 0 ⁇ x? 1; 1? Y? 3; 1? Z? 8); SnO, SnO 2, PbO, PbO 2, Pb 2 O 3, Pb 3 O 4, Sb 2 O 3, Sb 2 O 4, Sb 2 O 5, GeO, GeO2 2, Bi 2 O 3, Bi 2 O 4 , and Bi 2 O 5 and the like, and carbonaceous anode active materials such as crystalline carbon, amorphous carbon or carbon composite may be used alone or in combination of two or more.
  • an electrode current collector may be used.
  • the electrode current collector is a positive electrode current collector when the electrode is a positive electrode, and is a negative electrode current collector when the electrode is a negative electrode.
  • the positive electrode current collector is not particularly limited as long as it has high conductivity without causing a chemical change in the battery.
  • carbon, nickel , Titanium, silver, or the like may be used.
  • the negative electrode current collector is not particularly limited as long as it has electrical conductivity without causing chemical change in the battery.
  • carbon, stainless steel, aluminum, nickel, titanium, sintered carbon, , Nickel, titanium, silver or the like, an aluminum-cadmium alloy, or the like can be used.
  • the negative electrode current collector may be formed in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric having fine irregularities on its surface, as in the case of the positive electrode collector.
  • Examples of the conductive material include nickel powder, cobalt oxide, titanium oxide, carbon, and the like.
  • Examples of the carbon include any one selected from the group consisting of Ketjen black, acetylene black, furnace black, graphite, carbon fiber and fullerene, or at least one of them.
  • the conductive material is a carbon fiber having a fiber shape
  • the conductive material can not be uniformly mixed in the slurry and the aggregation phenomenon occurs more seriously than other conductive materials. In this case, .
  • the carbon fibers used as the conductive material include polyacrylonitrile carbon fibers, rayon carbon fibers, pitch carbon fibers, carbon nanotubes, vapor grown carbon fibers (VGCF), carbon nanofibers (CNFs) Nano Fiber, Activated Carbon Nanofiber (ACNF), Chopped Fiber, and combinations thereof.
  • VGCF vapor grown carbon fibers
  • CNFs carbon nanofibers
  • ACNF Activated Carbon Nanofiber
  • Chopped Fiber Preferably, vapor-grown carbon fibers are used.
  • the conductive material is used in an amount of 0.5 to 20 parts by weight, preferably 3 to 10 parts by weight, based on 100 parts by weight of the active material. If the content is less than the above range, the effect of improving the electrical conductivity can not be ensured and the output characteristics and capacity of the battery are lowered. On the other hand, if the content exceeds the above range, the effect is not greatly increased, Therefore, it should be adjusted within the above range.
  • the slurry of step (a) includes a polyimide-based high heat-resistant binder.
  • a polyimide-based high heat-resistant binder by using the polyimide-based high heat-resistant binder, it is possible to prevent the binder from being deteriorated or melted by the heat generated in the process of melting the solid electrolyte and filling the electrode pore.
  • high heat resistance refers to a level of 300 to 600 ° C based on a decomposition temperature at which 5% of the total weight is decomposed, preferably 400 to 600 ° C, Means the level of 450 ⁇ 600 °C.
  • the polyimide-based high heat-resistant binder is not particularly limited as long as it is a high heat-resistant binder containing polyimide, but preferably one selected from the group consisting of polyimide, polyamideimide and combinations thereof can be used. Specifically, polyimide compounds of the following formula (A) may be used.
  • R is an alkyl or alkylene having 1 to 20 carbon atoms and R is alkyl when it is at the terminal of the formula A.
  • m is 0 to 20 and n is 0 to 20, And m is an integer of 0 or more, and one of m, n, and l is not necessarily 0.
  • the formula (A) may specifically be a polyimide compound of any one of the following formulas (1) to (3).
  • R is alkylene having 1 to 20 carbon atoms and m is 1 to 20).
  • R is alkyl or alkylene having 1 to 20 carbon atoms, and when R is at the terminal of formula (2), R is alkyl, and n is 1 to 20.
  • R is alkyl or alkylene having 1 to 20 carbon atoms, and when R is at the terminal of formula (3), it is alkyl, and 1 is 1 to 20.
  • the polyimide-based high heat-resistant binder may be contained in an amount of 1 to 10% by weight based on the total weight of the slurry. If the content is less than the above range, there is a problem that the electrode adhesive strength is lowered. On the other hand, if the content is out of the above range, there arises a problem that the resistance in the electrode becomes large.
  • the method for manufacturing an electrode for a full-solid-state cell of the present invention comprises coating an electrode on a slurry containing an active material, a conductive material and a polyimide-based high-temperature-resistant binder as described above.
  • the coating of the slurry may be applied in a thickness of 10 [mu] m to 500 [mu] m and then dried.
  • the coating method may be selected from known methods in consideration of the characteristics of the material and the like or may be carried out by a new appropriate method. For example, it is preferable to uniformly disperse using a doctor blade or the like. In some cases, a method of performing the distribution and dispersion processes in a single process may be used. In addition, various coating methods such as dip coating, gravure coating, slit die coating, spin coating, comma coating, bar coating, reverse roll coating reverse roll coating, screen coating, cap coating and the like.
  • the drying step may be appropriately selected in accordance with a conventional method used in the production of an electrode.
  • the method for manufacturing an electrode for a full-solid-state cell of the present invention comprises the steps of (b) placing a solid electrolyte having a melting temperature of 50 ° C to 500 ° C on the coating layer, followed by heating / melting.
  • the present invention can melt the solid electrolyte having a melting temperature of 50 ° C to 500 ° C, preferably 200 ° C to 400 ° C, as described above to impregnate pores in the electrode coating layer, Ion transport pathway can be formed well.
  • the solid electrolyte when the solid electrolyte is melted and impregnated into the pores in the electrode coating layer, the solid electrolyte can be brought into contact with the surface of the active material in a wetting manner, so that the active material / solid electrolyte bonding property is good and the effect of reducing the interface resistance have.
  • An electrode for a full solid battery of the present invention comprises: a current collector; A coating layer formed on the current collector, the coating layer including an active material, a conductive material, and a polyimide-based high heat-resistant binder; And a solid electrolyte having a melting temperature of 50 ° C to 500 ° C formed on the coating layer.
  • the electrode for the entire solid-state battery of the present invention is formed by melting the solid electrolyte and applying it on the coating layer as described in the above-mentioned manufacturing method, the molten solid electrolyte is impregnated into the pores in the coating layer of the electrode, Ion transport pathways can be well formed.
  • the solid electrolyte is evenly contacted as it is wetted to the surface of the active material, and the contact area is a point contact such as a solid- But rather forms a contact surface in a form close to surface contact similar to a liquid-solid interface. Therefore, the bonding property between the active material and the solid electrolyte is improved, and the interface resistance can also be reduced.
  • the electrode may be an anode or a cathode, and the details are the same as those in the method for manufacturing an electrode for a pre-solid battery.
  • the active material may be a cathode active material or an anode active material for an all-solid-state cell.
  • the conductive material may include one selected from the group consisting of nickel powder, cobalt oxide, titanium oxide, ketjen black, acetylene black, furnace black, graphite, carbon fiber, fullerene, And specific details are as shown in the above-described method for manufacturing the electrode for a solid-state battery.
  • the polyimide-based high heat-resistant binder is not particularly limited as long as it is a high heat-resistant binder containing polyimide, but preferably one selected from the group consisting of polyimide, polyamideimide and combinations thereof can be used. Specifically, polyimide compounds of the following formula (A) may be used.
  • R is an alkyl or alkylene having 1 to 20 carbon atoms and R is alkyl when it is at the terminal of the formula A.
  • m is 0 to 20 and n is 0 to 20, And m is an integer of 0 or more, and one of m, n, and l is not necessarily 0.
  • the formula (A) may specifically be a polyimide compound of any one of the following formulas (1) to (3).
  • R is alkylene having 1 to 20 carbon atoms and m is 1 to 20).
  • R is alkyl or alkylene having 1 to 20 carbon atoms, and when R is at the terminal of formula (2), R is alkyl, and n is 1 to 20.
  • R is alkyl or alkylene having 1 to 20 carbon atoms, and when R is at the terminal of formula (3), it is alkyl, and 1 is 1 to 20.
  • the polyimide-based high heat-resistant binder may be contained in an amount of 0.5 to 10% by weight, and preferably 1.0 to 3% by weight based on the weight of the entire electrode.
  • the production of the all-solid-state cell using the electrode for the all-solid-state cell having the above-described configuration is not particularly limited in the present invention, and a known method can be used.
  • an electrode for a full solid battery of the present invention When an electrode for a full solid battery of the present invention is used as a positive electrode in the production of a full solid battery of the present invention, a normal negative electrode for a full solid battery can be used. When the electrode for a full solid battery of the present invention is used as a negative electrode A conventional positive electrode for a solid-state battery can be used.
  • a cell is assembled by disposing electrodes and then pressing them.
  • the assembled cell is installed in a casing and sealed by heat pressing or the like.
  • Laminate packs made of aluminum, stainless steel or the like, and cylindrical or square metal containers are very suitable for the exterior material.
  • Active material to the mixer LiCoO 2, 9g
  • the conductive material was added to (SuperP, 5g) and a binder (LV042, Toray Inc. polyimide, 5g), were charged into a homogenizer to prepare a slurry and mixed for 30 minutes by 3000rpm.
  • the slurry prepared above was coated on the electrode (Al, thickness: 20 ⁇ m) to a thickness of 200 ⁇ m and then dried under a vacuum oven at 130 ° C for 12 hours to form a coating layer.
  • a solid electrolyte move up to (Li 2. 99 Ba 0. 005 OCl, 5g), was heated to 300 °C / melt was prepared the all-solid battery electrode is a solid electrolyte layer formed on the coating layer, The process is shown in Fig.
  • the cross-section of the prepared electrode for a solid-state battery was photographed using SEM / EDS, and the result is shown in FIG.
  • the yellow portion of the electrode cross-sectional photograph of FIG. 3 maps the element (Cl) contained in the meltable solid electrolyte, and the red portion represents the Al current collector.
  • the molten solid electrolyte is entirely It was found that it was evenly impregnated.
  • the above-mentioned electrode was used as a positive electrode, and a Li metal (150 mu m) was applied to the negative electrode and the solid electrolyte layer (20 mu m) was positioned as a separator layer between the positive electrode and the negative electrode.
  • An electrode for an all solid-state cell and an all-solid-state cell were prepared in the same manner as in Example 1 except that a solid electrolyte (Li 3 OCl, 5 g) was used.
  • Electrode and an all solid battery were prepared in the same manner as in Example 1, except that a binder (SBU, 5 g of toray yarn) was used.
  • An electrode for an all-solid-state cell and an all solid-state cell were prepared in the same manner as in Example 1, except that the solid-electrolyte layer was not formed.
  • An electrode for an all solid-state cell and an all-solid-state cell were prepared in the same manner as in Example 1, except that PVDF-HFP was used as a binder.
  • the porosity was obtained by subtracting the electrode density at 1 from the density of the electrode obtained by collecting the electrode of 1 x 1 cm 2 area and then dividing this value by the density excluding the electrode substrate at the electrode, The results are shown in Table 1 below.
  • the battery having the electrodes according to Examples 1 to 3 according to the present invention has a charge / discharge capacity of at least 1.5 times to 3 times higher than that of Comparative Examples 1 and 2 due to low porosity Able to know.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 활물질, 도전재 및 폴리이미드계 바인더를 포함하는 슬러리를 집전체에 코팅하는 단계; 및 상기 코팅층 상에 50℃ 내지 500℃의 용융온도를 가지는 고체 전해질을 용융시켜 도포하는 단계; 를 포함하는, 전고체 전지용 전극의 제조방법 및 그에 의하여 제조된 전극에 관한 것이다.

Description

전고체 전지용 전극 및 그 제조방법
본 출원은 2017년 8월 17일자 한국 특허 출원 제10-2017-01042649호 및 2018년 8월 17일자 한국 특허 출원 제10-2018-0095862호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
본 발명은 전고체 전지용 전극 및 그 제조방법에 관한 것이다.
전지의 용량, 안전성, 출력, 대형화, 초소형화 등의 관점에서 현재 리튬이차전지의 한계를 극복할 수 있는 다양한 전지들이 연구되고 있다.
대표적으로 현재의 리튬이차전지에 비해 용량 측면에서 이론 용량이 매우 큰 금속-공기 전지(metal-air battery), 안전성 측면에서 폭발 위험이 없는 전고체 전지(all solid battery), 출력 측면에서는 슈퍼 캐퍼시터(supercapacitor), 대형화 측면에서는 NaS 전지 혹은 RFB(redox flow battery), 초소형화 측면에서는 박막전지(thin film battery) 등이 학계 및 산업계에서 지속적인 연구가 진행되고 있다.
이 중 전고체 전지는 기존에 리튬이차전지에서 사용되는 액체 전해질을 고체로 대체한 전지를 의미하며, 전지 내 가연성의 용매를 사용하지 않아 종래 전해액의 분해반응 등에 의한 발화나 폭발이 전혀 발생하지 않으므로 안전성을 대폭 개선할 수 있다. 또한, 음극 소재로 Li 금속 또는 Li 합금을 사용할 수 있기 때문에 전지의 질량 및 부피에 대한 에너지 밀도를 획기적으로 향상시킬 수 있는 장점이 있다.
이러한 전고체 전지의 제조에 사용되는 방법은 크게 두 가지이다.
먼저 건식 혼합 (dry mixing) 후, 가압을 하는 방식이 있다. 구체적으로, 활물질 분말, 도전재 분말에 고체 전해질 분말을 투입하여 건식으로 혼합 (mixing)한 후, 집전체 위에 전극 복합 분말을 가압하여 전극을 형성한다.
또한, 습식 혼합 (Wet mixing) 후 가압을 하는 방식이 있다. 구체적으로, 활물질 분말, 도전재 분말에 고체 전해질 분말과 바인더 용액을 투입하여 습식으로 혼합 (mixing)한 후, 집전체 위에 슬러리 형태로 전극 재료를 코팅 및 건조한 뒤 가압하여 전극을 형성한다.
이 중, 건식 혼합 (Dry mixing) 방법의 경우, 집전체/전극/전해질간 계면 저항이 높고, 전극 내 pore 조절이 어렵다는 단점이 있고, 바인더가 없어 전극 물질과 전해질간 접촉이 유지되지 않는 단점이 있다.
또한, 습식 혼합 (Wet mixing) 방법의 경우, 기존 이차 전지 공정에 사용되는 바인더 및 용매 적용이 어려우며, 용매가 기화하게 되면, 전극에 pore가 발생하여 전극/ 전해질 내 저항이 높아지는 단점이 있다.
또한, 상기 두 방법 모두, 활물질, 전해질, 도전재의 3종류 전극 물질을 모두 고르게 분산 시켜야 하므로 입자 분산이 잘 이루어 지지 않을 가능성이 높고, 때문에 전극 저항이 크다는 단점이 있다. 또 3가지 물질이 모두 point contact을 이루어 접촉 저항이 크다는 단점이 있다.
[특허문헌]
(특허문헌 1) 일본공개특허 제2016-025020호 "전극 복합체, 리튬 전지 및 전극 복합체의 제조 방법"
상기한 문제를 해결하기 위해 본 발명자들은 다각적으로 연구를 수행한 결과, 저온에서 용융되는 특성이 있는 고체 전해질과 고내열성 바인더를 사용하여 전고체 전극을 제조하였다. 이를 통하여, 고체 전해질을 용융시켜 전극 내의 기공(pore)에 함침시킬 수 있어 전자 및 이온 전달 경로가 잘 형성할 수 있다. 또한, 고체 전해질을 용융시켜 전극 내의 기공(pore)에 함침시킬 때 고체 전해질이 활물질 표면에 습식 (wetting) 방식으로 접촉될 수 있어 활물질/고체 전해질 접합 특성이 좋고, 계면 저항이 작아진다. 또한, 제조 공정 중 용매를 건조하는 공정이 없으므로, 전극 내의 기공(pore)이 추가적으로 발생하지 않아 공극으로 인한 저항이 작아진다.
이에 본 발명의 목적은 저온에서 용융되는 특성이 있는 고체 전해질과 고내열성 바인더를 사용하여 전자 및 이온 전달 경로가 잘 형성되고, 활물질/고체 전해질 접합 특성이 좋으며, 활물질/고체 전해질 사이의 계면 저항이 작을 뿐만 아니라, 전극 제조시 전극 내의 기공(pore)이 추가적으로 발생하지 않는 전고체 전극 및 그 제조방법을 제공하는 데 있다.
상기 목적을 달성하기 위해, 본 발명은 (a) 활물질, 도전재 및 폴리이미드계 고내열성 바인더를 포함하는 슬러리를 집전체에 코팅하는 단계; 및 (b) 상기 코팅층 상에 50℃ 내지 500℃의 용융온도를 가지는 고체 전해질을 위치시킨 후, 가열/용융시키는 단계;를 포함하는, 전고체 전지용 전극의 제조방법을 제공한다.
또한, 본 발명은 집전체; 상기 집전체 상에 형성된, 활물질, 도전재 및 폴리이미드계 고내열성 바인더를 포함하는 코팅층; 및 상기 코팅층 상에 형성된 50℃ 내지 500℃의 용융온도를 가지는 고체 전해질;을 포함하는, 전고체 전지용 전극를 제공한다.
본 발명에 따른 전고체 전극 및 그 제조방법은, 저온에서 용융되는 특성이 있는 고체 전해질과 고내열성 바인더를 사용하여 전고체 전극을 제조함으로써, 고체 전해질을 용융시켜 전극 내의 기공(pore)에 함침시킬 수 있어 전자 및 이온 전달 경로가 잘 형성할 수 있는 효과가 있다. 또한, 고체 전해질을 용융시켜 전극 내의 기공(pore)에 함침시킬 때 고체 전해질이 활물질 표면에 습식 (wetting) 방식으로 접촉될 수 있어 활물질/고체 전해질 접합 특성이 좋고, 계면 저항이 작아지는 효과가 있다. 또한, 제조 공정 중 용매를 건조하는 공정이 없으므로, 전극 내의 기공(pore)이 추가적으로 발생하지 않아 공극으로 인한 저항이 작아지는 효과가 있다.
도 1은 종래 기술에 의하여 제조된 전고체 전지용 전극을 촬영한 SEM 사진이다.
도 2는 본 발명의 전고체 전지용 전극의 제조과정을 촬영한 사진이다.
도 3은 본 발명의 제1 구현예에 따라 제조된 전고체 전지용 전극을 촬영한 SEM 사진이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 첨부한 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 본 명세서에 한정되지 않는다.
도면에서는 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분을 생략하였고, 명세서 전체를 통해 유사한 부분에 대해서는 유사한 도면 부호를 사용하였다. 또한, 도면에서 표시된 구성요소의 크기 및 상대적인 크기는 실제 축척과는 무관하며, 설명의 명료성을 위해 축소되거나 과장된 것일 수 있다.
도 1은 종래의 제조방법에 의하여 제조된 전고체 전지용 전극의 표면을 촬영한 사진이다. 종래의 제조방법은, 활물질 분말, 도전재 분말에 고체 전해질 분말을 투입하여 건식으로 혼합 (mixing)한 후, 집전체 위에 전극 복합 분말을 가압하여 전극을 형성하는 건식 제조방법 및 활물질 분말, 도전재 분말에 고체 전해질 분말과 바인더 용액을 투입하여 습식으로 혼합 (mixing)한 후, 집전체 위에 슬러리 형태로 전극 재료를 코팅 및 건조한 뒤 가압하여 전극을 형성하는 습식 제조방법이 있었다. 건식 제조방법의 경우, 고체 전해질 분말을 사용하기 때문에, 전극 내의 기공(pore)를 조절하기가 어렵고, 습식 제조방법의 경우, 제조 공정 중 용매를 기화시킴에 따라서, 기공(pore)이 발생하였다. 따라서, 종래의 제조방법에 의하면, 건식 제조방법이나 습식 제조방법 모두 도 1에 나타난 바와 같이, 전극에 많은 기공(pore)가 발생하게 되었다.
상기한 문제를 해결하기 위해 본 발명자들은 다각적으로 연구를 수행한 결과, 저온에서 용융되는 특성이 있는 고체 전해질과 고내열성 바인더를 사용하여, 상기 문제점을 해결한 전고체 전극을 제조하기에 이르렀다.
이를 위하여, 본 발명의 전고체 전지용 전극의 제조방법은, (a) 활물질, 도전재 및 폴리이미드계 고내열성 바인더를 포함하는 슬러리를 집전체에 코팅하는 단계; 및 (b) 상기 코팅층 상에 50℃ 내지 500℃의 용융온도를 가지는 고체 전해질을 위치시킨 후, 가열/용융시키는 단계;를 포함한다.
먼저, 본 발명의 전고체 전지용 전극의 제조방법은 (a) 활물질, 도전재 및 폴리이미드계 고내열성 바인더를 포함하는 슬러리를 집전체에 코팅하는 단계를 포함한다.
상기 (a) 단계에서, 상기 슬러리는 활물질, 도전재 및 폴리이미드계 고내열성 바인더를 포함한다.
상기 활물질은 본 발명에서 제시하는 전극이 양극일 경우에는 양극 활물질이, 음극일 경우에는 음극 활물질이 사용될 수 있다. 이때 각 전극 활물질은 종래 전극에 적용되는 활물질이면 어느 것이든 가능하고, 본 발명에서 특별히 한정하지 않는다.
상기 양극 활물질은 리튬 이차전지의 용도에 따라 달라질 수 있으며, 구체적인 조성은 공지된 물질을 사용한다. 일례로, 리튬 코발트계 산화물, 리튬 망간계 산화물, 리튬 구리 산화물, 리튬 니켈계 산화물 및 리튬 망간 복합 산화물, 리튬-니켈-망간-코발트계 산화물로 이루어진 군으로부터 선택된 어느 하나의 리튬 전이금속 산화물을 들 수 있고, 보다 구체적으로는 Li1 + xMn2 - xO4(여기서, x는 0 내지 0.33임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 구리산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; LiNi1 - xMxO2 (여기서, M=Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x=0.01 내지 0.3임)으로 표현되는 리튬 니켈 산화물; LiMn2 - xMxO2(여기서, M=Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x=0.01 내지 0.1임) 또는 Li2Mn3MO8(여기서, M=Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합산화물, Li(NiaCobMnc)O2(여기에서, 0<a<1, 0<b<1, 0<c<1, a+b+c=1)으로 표현되는 리튬-니켈-망간-코발트계 산화물, Fe2(MoO4)3; 황 원소, 디설파이드 화합물, 유기황 화합물(Organosulfur compound) 및 탄소-황 폴리머((C2Sx)n: x= 2.5 내지 50, n≥2 ), 탄소-황 복합체; 흑연계 물질; 슈퍼-P(Super-P), 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 카본 블랙과 같은 카본 블랙계 물질; 플러렌 등의 탄소 유도체; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 및 폴리아닐린, 폴리티오펜, 폴리아세틸렌, 폴리피롤 등의 전도성 고분자; 다공성 탄소 지지체에 Pt 또는 Ru 등 촉매가 담지된 형태 등이 가능하며 이들만으로 한정되는 것은 아니다.
또한, 음극 활물질은 리튬 금속, 리튬 합금, 리튬 금속 복합 산화물, 리튬 함유 티타늄 복합 산화물(LTO) 및 이들의 조합으로 이루어진 군에서 선택된 1종이 가능하다. 이때 리튬 합금은 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al 및 Sn으로부터 선택되는 적어도 하나의 금속으로 이루어진 합금을 사용할 수 있다. 또한, 리튬 금속 복합 산화물은 리튬과 Si, Sn, Zn, Mg, Cd, Ce, Ni 및 Fe로 이루어진 군으로부터 선택된 어느 하나의 금속(Me) 산화물(MeOx)이고, 일례로 LixFe2O3(0<x≤1) 또는 LixWO2(0<x≤1)일 수 있다.
여기에 더하여, 음극 활물질은 SnxMe1 - xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO22, Bi2O3, Bi2O4 및 Bi2O5 등의 산화물 등을 사용할 수 있고, 결정질 탄소, 비정질 탄소 또는 탄소 복합체와 같은 탄소계 음극 활물질이 단독으로 또는 2종 이상이 혼용되어 사용될 수 있다.
필요한 경우 전극 집전체를 사용할 수 있다.
전극 집전체는 상기 전극이 양극일 경우 양극 집전체이고, 음극일 경우에는 음극 집전체이다.
양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않으며, 예를 들면 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
또한, 음극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지 않으며, 예를 들면 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 상기 음극 집전체는 양극 집전체와 마찬가지로, 표면에 미세한 요철이 형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 사용될 수 있다.
상기 도전재로는 니켈 분말, 산화 코발트, 산화 티탄, 카본 등을 예시할 수 있다. 카본으로는, 케첸 블랙, 아세틸렌 블랙, 퍼니스 블랙, 흑연, 탄소 섬유 및 플러렌으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 1종 이상을 들 수 있다.
특히, 상기 도전재의 형태가 섬유 형태인 탄소 섬유인 경우 슬러리 내 균일하게 혼합되지 못하고 뭉치는 현상이 다른 도전재에 비해 심각하게 발생하는데, 이때에도 본 발명에서 제시하는 방법을 통해 공극률이 낮은 전극의 제조를 가능케 한다.
도전재로서 사용하는 탄소 섬유는 폴리아크릴로니트릴계 탄소 섬유, 레이온계 탄소 섬유, 피치계 탄소 섬유, 탄소나노튜브, 기상성장 탄소섬유(VGCF: Vapor Grown Carbon Fiber), 탄소나노섬유(CNF: Carbon Nano Fiber), 활성화 탄소나노섬유(ACNF: Activated carbon nanofiber), 흑연섬유(chopped fiber) 및 이들의 조합으로 이루어진 군에서 선택된 1종이 가능하며, 바람직하기로 기상성장 탄소섬유를 사용한다.
이러한 도전재의 함량은 활물질 100 중량부에 대해 0.5 내지 20 중량부, 바람직하기로 3 내지 10 중량부로 사용한다. 만약 그 함량이 상기 범위 미만이면 적절한 전기 전도도 향상 효과를 확보할 수 없어 전지의 출력 특성 및 용량이 저하되고, 이와 반대로 상기 범위를 초과하더라도 그 효과가 크게 증가하지 않거나 오히려 전지 특성의 저하를 야기할 우려가 있으므로, 상기 범위 내에서 적절히 조절한다.
상기 (a) 단계의 슬러리는 폴리이미드계 고내열성 바인더를 포함한다. 본 발명에서는 상기 폴리이미드계 고내열성 바인더를 사용함으로써, 고체 전해질을 용융시켜 전극 pore에 채워 넣는 과정에서 발생하는 열에 의해 바인더가 열화되거나 용융되는 방지할 수 있다.
상기 폴리이미드계 고내열성 바인더에서 고내열성이라 함은 전체 무게의 5%가 분해되는 분해 온도(Decomposition Temperature)를 기준으로 하여, 300~600℃ 수준을 말하며, 바람직하게는 400~600℃, 더욱 바람직하게는 450~600℃ 수준을 의미한다.
상기 폴리이미드계 고내열성 바인더는 폴리이미드를 포함하고 있는 고내열성 바인더라면 특별한 제한은 없으나, 바람직하게는 폴리이미드계, 폴리아미드이미드계 및 이들의 조합으로 이루어진 군에서 선택된 1종을 사용할 수 있으며, 구체적으로 하기 화학식 A와 같은 형식의 폴리이미드 화합물을 포함하는 것을 사용할 수 있다.
[화학식 A]
Figure PCTKR2018009444-appb-I000001
(상기 화학식 A에서, 상기 R은 탄소수 1 내지 20의 알킬 또는 알킬렌이고, 상기 R이 화학식 A의 말단에 있을 때에는 알킬이다. 또한 상기 m은 0 내지 20이고, 상기 n은 0 내지 20이고, 상기 l은 0 내지 20이고, 상기 m+n+l≥1 이다. 즉, 상기 m, n 및 l은 0 이상의 정수 일 수 있으며, 상기 m, n 및 l 중 어느 하나는 반드시 0이 아니다.)
또한 상기 화학식 A는 구체적으로 하기 화학식 1 내지 화학식 3 중 어느 하나의 폴리이미드 화합물일 수 있다.
[화학식 1]
Figure PCTKR2018009444-appb-I000002
(상기 화학식 1에서, 상기 R은 탄소수 1 내지 20의 알킬렌이고, 상기 m은 1 내지 20이다.)
[화학식 2]
Figure PCTKR2018009444-appb-I000003
(상기 화학식 2에서, 상기 R은 탄소수 1 내지 20의 알킬 또는 알킬렌이고, 상기 R이 화학식 2의 말단에 있을 때에는 알킬이다. 또한 상기 n은 1 내지 20이다.)
[화학식 3]
Figure PCTKR2018009444-appb-I000004
(상기 화학식 3에서, 상기 R은 탄소수 1 내지 20의 알킬 또는 알킬렌이고, 상기 R이 화학식 3의 말단에 있을 때에는 알킬이다. 또한 상기 l은 1 내지 20이다.)
상기 폴리이미드계 고내열성 바인더는 상기 슬러리의 총중량을 기준으로 1 내지 10 중량%로 포함될 수 있다. 만약 그 함량이 상기 범위 미만이면 전극 접착력이 저하되는 문제가 있고, 이와 반대로 상기 범위를 초과하면 전극 내 저항이 커지는 문제가 있다.
본 발명의 전고체 전지용 전극의 제조방법은 상기와 같이 활물질, 도전재 및 폴리이미드계 고내열성 바인더를 포함하는 슬러리를 전극에 코팅한다.
상기 슬러리의 코팅은 10um 내지 500um의 두께로 도포한 후, 건조 할 수 있다. 상기 도포방법으로는 재료의 특성 등을 감안하여 공지 방법 중에서 선택하거나 새로운 적절한 방법으로 행할 수 있다. 예를 들어, 닥터 블레이드(doctor blade) 등을 사용하여 균일하게 분산시키는 것이 바람직하다. 경우에 따라서는, 분배와 분산 과정을 하나의 공정으로 실행하는 방법을 사용할 수도 있다. 이 밖에도, 딥 코팅(dip coating), 그라비어 코팅(gravure coating), 슬릿 다이 코팅(slit die coating), 스핀 코팅(spin coating), 콤마 코팅(comma coating), 바 코팅(bar coating), 리버스 롤 코팅(reverse roll coating), 스크린 코팅(screen coating), 캡 코팅(cap coating) 방법 등을 수행하여 제조할 수 있다.
또한, 상기 건조 공정은, 전극 제조시에 사용되는 통상의 방법에 의거하여 적절히 선택할 수 있다.
이 후, 본 발명의 전고체 전지용 전극의 제조방법은 (b) 상기 코팅층 상에 50℃ 내지 500℃의 용융온도를 가지는 고체 전해질을 위치시킨 후, 가열/용융시키는 단계를 포함한다.
본 발명은, 상기와 같이 50℃ 내지 500℃의 용융온도를 가지는, 바람직하게는 200℃ 내지 400℃의 용융온도를 가지는 고체 전해질을 용융시켜 전극 코팅층 내의 기공(pore)에 함침시킬 수 있어 전자 및 이온 전달 경로가 잘 형성할 수 있는 효과가 있다. 또한, 고체 전해질을 용융시켜 전극 코팅층 내의 기공(pore)에 함침시킬 때 고체 전해질이 활물질 표면에 습식 (wetting) 방식으로 접촉될 수 있어 활물질/고체 전해질 접합 특성이 좋고, 계면 저항이 작아지는 효과가 있다.
구체적으로 본 발명에서 사용할 수 있는 고체 전해질로는,
Li3 - xClO1 - xHalx, Li(3-x)Mx / 2OHal, Li3 - 2xMxOHal, Li(3-x)Nx / 3OHal1 및 Li2(OH)1 -xHal1xHal2 (상기 M = Mg, Ca, Sr, Ba, Sr; N = 3가 금속; Hal = F, Br, I; Hal1, Hal2= F, Cl, Br, I; 0≤X≤1) 으로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다.
본 발명의 전고체 전지용 전극은, 집전체; 상기 집전체 상에 형성된, 활물질, 도전재 및 폴리이미드계 고내열성 바인더를 포함하는 코팅층; 및 상기 코팅층 상에 형성된 50℃ 내지 500℃의 용융온도를 가지는 고체 전해질;을 포함한다.
본 발명의 전고체 전지용 전극은, 앞선 제조방법에서 설명한 바와 같이, 고체 전해질을 용융시켜 코팅층 상에 도포하기 때문에, 용융된 고체 전해질이 전극의 코팅층 내의 기공(pore)에 함침되고, 이를 통하여 전자 및 이온 전달 경로가 잘 형성될 수 있다.
또한 용융된 고체 전해질이 전극의 코팅층의 기공(pore) 내에 함침됨에 따라서, 고체 전해질이 활물질 표면에 웻팅(Wetting) 되는 것과 같이 고르게 접촉되며 접촉 면적이 고체-고체 계면과 같이 점접촉(point contact)이 아닌, 액체-고체 계면과 유사하게 면접촉에 가까운 형태로 접촉면을 이루게 된다. 따라서, 활물질과 고체 전해질 사이의 접합 특성이 좋아지고, 계면 저항 역시 감소시킬 수 있다.
본 발명의 전고체 전지용 전극에서, 상기 전극은 양극 또는 음극일 수 있으며, 구체적인 내용은 상기 전고체 전지용 전극의 제조방법에서 본 바와 같다.
본 발명의 전고체 전지용 전극에서, 상기 활물질은 전고체 전지용 양극 활물질 또는 음극 활물질 일 수 있으며, 구체적인 내용은 상기 전고체 전지용 전극의 제조방법에서 본 바와 같다.
본 발명의 전고체 전지용 전극에서, 상기 도전재는 니켈 분말, 산화 코발트, 산화 티탄, 케첸 블랙, 아세틸렌 블랙, 퍼니스 블랙, 흑연, 탄소 섬유, 플러렌 및 이들의 조합으로 이루어진 군에서 선택된 1종을 포함할 수 있으며, 구체적인 내용은 상기 전고체 전지용 전극의 제조방법에서 본 바와 같다.
상기 폴리이미드계 고내열성 바인더는 폴리이미드를 포함하고 있는 고내열성 바인더라면 특별한 제한은 없으나, 바람직하게는 폴리이미드계, 폴리아미드이미드계 및 이들의 조합으로 이루어진 군에서 선택된 1종을 사용할 수 있으며, 구체적으로 하기 화학식 A와 같은 형식의 폴리이미드 화합물을 포함하는 것을 사용할 수 있다.
[화학식 A]
Figure PCTKR2018009444-appb-I000005
(상기 화학식 A에서, 상기 R은 탄소수 1 내지 20의 알킬 또는 알킬렌이고, 상기 R이 화학식 A의 말단에 있을 때에는 알킬이다. 또한 상기 m은 0 내지 20이고, 상기 n은 0 내지 20이고, 상기 l은 0 내지 20이고, 상기 m+n+l≥1 이다. 즉, 상기 m, n 및 l은 0 이상의 정수 일 수 있으며, 상기 m, n 및 l 중 어느 하나는 반드시 0이 아니다.)
또한 상기 화학식 A는 구체적으로 하기 화학식 1 내지 화학식 3 중 어느 하나의 폴리이미드 화합물일 수 있다.
[화학식 1]
Figure PCTKR2018009444-appb-I000006
(상기 화학식 1에서, 상기 R은 탄소수 1 내지 20의 알킬렌이고, 상기 m은 1 내지 20이다.)
[화학식 2]
Figure PCTKR2018009444-appb-I000007
(상기 화학식 2에서, 상기 R은 탄소수 1 내지 20의 알킬 또는 알킬렌이고, 상기 R이 화학식 2의 말단에 있을 때에는 알킬이다. 또한 상기 n은 1 내지 20이다.)
[화학식 3]
Figure PCTKR2018009444-appb-I000008
(상기 화학식 3에서, 상기 R은 탄소수 1 내지 20의 알킬 또는 알킬렌이고, 상기 R이 화학식 3의 말단에 있을 때에는 알킬이다. 또한 상기 l은 1 내지 20이다.)
상기 폴리이미드계 고내열성 바인더는 전극 전체의 중량을 기준으로 0.5 내지 10 중량%로 포함될 수 있으며, 바람직하게는 1.0 내지 3 중량%로 포함될 수 있다.
본 발명의 전고체 전지용 전극에서, 상기 고체 전해질은 바람직하게는 200℃ 내지 500℃의 용융온도를 가지는 고체 전해질일 수 있으며, 구체적으로는 Li3 - xClO1 -xHalx, Li(3-x)Mx / 2OHal, Li3 - 2xMxOHal, Li(3-x)Nx / 3OHal1 및 Li2(OH)1 - xHal1xHal2 (상기 M = Mg, Ca, Sr, Ba, Sr; N = 3가 금속; Hal = F, Br, I; Hal1, Hal2= F, Cl, Br, I; 0≤X≤1) 으로 이루어진 군에서 선택된 1종 이상을 포함하여 사용될 수 있다.
상기한 구성을 갖는 전고체 전지용 전극을 사용한 전고체 전지의 제조는 본 발명에서 특별히 한정하지 않으며, 공지의 방법이 사용될 수 있다.
본 발명의 전고체 전지의 제조 시에, 본 발명의 전고체 전지용 전극을 양극으로 사용하는 경우에는 통상의 전고체 전지용 음극을 사용할 수 있으며, 본 발명의 전고체 전지용 전극을 음극으로 사용하는 경우에는 통상의 전고체 전지용 양극을 사용할 수 있다.
일례로, 전극을 배치시킨 후 이를 가압 성형하여 셀을 조립한다.
상기 조립된 셀은 외장재 내에 설치한 후 가열 압착 등에 의해 봉지한다. 외장재로는 알루미늄, 스테인레스 등의 라미네이트 팩, 원통형이나 각형의 금속제 용기가 매우 적합하다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
실시예: 전극 및 전고체 전지의 제조
[실시예 1]
믹서에 활물질 (LiCoO2, 9g), 도전재 (SuperP, 5g) 및 바인더 (LV042, Toray사 polyimide, 5g)를 첨가한 후, homogenizer에 투입하여 3000rpm으로 30분간 혼합하여 슬러리를 제조하였다.
전극 (Al, 두께 20um) 상에 상기 제조된 슬러리를 200 νm두께로 도포한 후, 130℃ vacuum oven하 12h 조건에서 건조하여 코팅층을 형성하였다.
이 후 상기 코팅층 상에, 고체 전해질(Li2 . 99Ba0 . 005OCl,5g)을 올려 놓은 후, 300℃로 가열/용융시켜 코팅층 상에 고체 전해질층이 형성된 전고체 전지용 전극을 제조하였으며, 그 과정을 도 2에 나타내었다. 제조된 전고체 전지용 전극의 단면을 SEM/EDS를 사용하여 촬영하였으며, 그 결과를 도 3에 나타내었다. 도 3의 전극 단면 사진의 노란색 부분은 용융 가능한 고체 전해질에 함유된 원소 (Cl)를 mapping한 것이고 붉은색 부분은 Al 집전체를 나타내는데, 용융 가능한 고체 전해질이 전극 내부(집전체 부분)까지 전반적으로 고르게 함침되어 있는 것을 알 수 있었다.
이 후, 상기 전극을 양극으로 한 후, 음극은 Li 금속(150㎛)을 적용하고 양극과 음극 사이에 상기 고체 전해질 층(20㎛)이 분리막 층으로 위치하도록 하여 전고체 전지를 제조하였다.
[실시예 2]
고체 전해질(Li3OCl, 5g)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전고체 전지용 전극 및 전고체 전지를 제조하였다.
[실시예 3]
바인더로 (SBU, toray사 5g)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전고체 전지용 전극 및 전고체 전지를 제조하였다.
[비교예 1]
고체 전해질층을 형성하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 전고체 전지용 전극 및 전고체 전지를 제조하였다.
[비교예 2]
바인더로 PVDF-HFP를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전고체 전지용 전극 및 전고체 전지를 제조하였다.
실험예 1: 전극 평가
(공극률 평가)
공극률은 1x1 cm2 면적의 전극을 채취하여 얻은 전극의 밀도를 이용하여, 1 에서 상기 전극 밀도를 차감한 후, 이 값을 전극에서 전극 기재를 제외한 밀도로 나눈 후 백분율로 환산하여 얻었으며, 그 결과를 하기 표 1에 나타내었다.
공극률
실시예 1 1.4 %
실시예 2 2.0 %
실시예 3 1.9 %
비교예 1 ~30 %
비교예 2 ~10 %
실험예 2: 전지 평가
상기 실시예 1 내지 3 및 비교예 1 내지 2에서 제조된 전극의 전지 특성을 확인하였으며, 그 결과를 표 2에 나타내었다.
충방전 용량
실시예 1 138 mAh/g
실시예 2 125 mAh/g
실시예 3 131 mAh/g
비교예 1 구동 안됨.
비교예 2 50 mAh/g
상기 표 2를 보면, 본 발명에 따른 실시예 1 내지 3의 전극을 구비한 전지의 경우 낮은 공극률로 인해 충방전 용량이 비교예 1 내지 2에 대비하여, 최소 1.5 배 내지 최대 3 배 가량 향상됨을 알 수 있다.

Claims (18)

  1. (a) 활물질, 도전재 및 폴리이미드계 고내열성 바인더를 포함하는 슬러리를 집전체에 코팅하는 단계; 및
    (b) 상기 코팅층 상에 50℃ 내지 500℃의 용융온도를 가지는 고체 전해질을 위치시킨 후, 가열/용융시키는 단계;를 포함하는, 전고체 전지용 전극의 제조방법.
  2. 제1항에 있어서,
    상기 활물질은 전고체 전지용 양극 활물질 또는 음극 활물질인, 전고체 전지용 전극의 제조방법.
  3. 제1항에 있어서,
    상기 도전재는 니켈 분말, 산화 코발트, 산화 티탄, 케첸 블랙, 아세틸렌 블랙, 퍼니스 블랙, 흑연, 탄소 섬유, 플러렌 및 이들의 조합으로 이루어진 군에서 선택된 1종을 포함하는, 전고체 전지용 전극의 제조방법.
  4. 제1항에 있어서,
    상기 폴리이미드계 고내열성 바인더는 폴리이미드계, 폴리아미드이미드계 및 이들의 조합으로 이루어진 군에서 선택된 1종을 포함하는, 전고체 전지용 전극의 제조방법.
  5. 제1항에 있어서,
    상기 고체 전해질은 200℃ 내지 500℃의 용융온도를 가지는 고체 전해질인, 전고체 전지용 전극의 제조방법.
  6. 제1항에 있어서,
    상기 고체 전해질은 Li3-xClO1-xHalx, Li(3-x)Mx/2OHal, Li3-2xMxOHal, Li(3-x)Nx/3OHal1 및 Li2(OH)1-xHal1xHal2 (상기 M = Mg, Ca, Sr, Ba, Sr; N = 3가 금속; Hal = F, Br, I; Hal1, Hal2= F, Cl, Br, I; 0≤X≤1) 으로 이루어진 군에서 선택된 1종 이상을 포함하는, 전고체 전지용 전극의 제조방법.
  7. 제1항에 있어서,
    상기 폴리이미드계 고내열성 바인더는 하기 화학식 A의 폴리이미드 화합물을 포함하는, 전고체 전지용 전극의 제조방법.
    [화학식 A]
    Figure PCTKR2018009444-appb-I000009
    (상기 화학식 A에서, 상기 R은 탄소수 1 내지 20의 알킬 또는 알킬렌이고, 상기 R이 화학식 A의 말단에 있을 때에는 알킬이다. 또한 상기 m은 0 내지 20이고, 상기 n은 0 내지 20이고, 상기 l은 0 내지 20이고, 상기 m+n+l≥1 이다.)
  8. 집전체;
    상기 집전체 상에 형성된, 활물질, 도전재 및 폴리이미드계 고내열성 바인더를 포함하는 코팅층; 및
    상기 코팅층 상에 형성된 50℃ 내지 500℃의 용융온도를 가지는 고체 전해질; 을 포함하는, 전고체 전지용 전극.
  9. 제8항에 있어서,
    상기 코팅층 내의 기공(pore)에 상기 고체 전해질이 함침되어 있는, 전고체 전지용 전극.
  10. 제8항에 있어서,
    상기 전극은 양극 또는 음극인, 전고체 전지용 전극.
  11. 제8항에 있어서,
    상기 활물질은 전고체 전지용 양극 활물질 또는 음극 활물질인, 전고체 전지용 전극.
  12. 제8항에 있어서,
    상기 도전재는 니켈 분말, 산화 코발트, 산화 티탄, 케첸 블랙, 아세틸렌 블랙, 퍼니스 블랙, 흑연, 탄소 섬유, 플러렌 및 이들의 조합으로 이루어진 군에서 선택된 1종을 포함하는, 전고체 전지용 전극.
  13. 제8항에 있어서,
    상기 폴리이미드계 고내열성 바인더는 폴리이미드계, 폴리아미드이미드계 및 이들의 조합으로 이루어진 군에서 선택된 1종을 포함하는, 전고체 전지용 전극.
  14. 제8항에 있어서,
    상기 폴리이미드계 고내열성 바인더는 전극 전체의 중량을 기준으로 0.5 내지 10 중량%로 포함되는, 전고체 전지용 전극.
  15. 제8항에 있어서,
    상기 폴리이미드계 고내열성 바인더는 하기 화학식 A의 폴리이미드 화합물을 포함하는, 전고체 전지용 전극.
    [화학식 A]
    Figure PCTKR2018009444-appb-I000010
    (상기 화학식 A에서, 상기 R은 탄소수 1 내지 20의 알킬 또는 알킬렌이고, 상기 R이 화학식 A의 말단에 있을 때에는 알킬이다. 또한 상기 m은 0 내지 20이고, 상기 n은 0 내지 20이고, 상기 l은 0 내지 20이고, 상기 m+n+l≥1 이다.)
  16. 제8항에 있어서,
    상기 고체 전해질은 200℃ 내지 400℃의 용융온도를 가지는 고체 전해질인, 전고체 전지용 전극.
  17. 제8항에 있어서,
    상기 고체 전해질은 Li3 - xClO1 - xHalx, Li(3-x)Mx / 2OHal, Li3 - 2xMxOHal, Li(3-x)Nx /3OHal1 및 Li2(OH)1 - xHal1xHal2 (상기 M = Mg, Ca, Sr, Ba, Sr; N = 3가 금속; Hal = F, Br, I; Hal1, Hal2= F, Cl, Br, I; 0≤X≤1) 으로 이루어진 군에서 선택된 1종 이상을 포함하는, 전고체 전지용 전극.
  18. 제8항의 전극을 포함하는, 전고체 전지.
PCT/KR2018/009444 2017-08-17 2018-08-17 전고체 전지용 전극 및 그 제조방법 WO2019035681A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880049324.0A CN110998922B (zh) 2017-08-17 2018-08-17 固态电池用电极及其制造方法
JP2020504137A JP7048842B2 (ja) 2017-08-17 2018-08-17 全固体電池用電極及びその製造方法
US16/636,442 US11557750B2 (en) 2017-08-17 2018-08-17 Electrode for solid-state battery and manufacturing method therefor
EP18846958.9A EP3651242A4 (en) 2017-08-17 2018-08-17 ELECTRODE FOR ANY SOLID BATTERY AND ASSOCIATED MANUFACTURING PROCESS

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0104264 2017-08-17
KR20170104264 2017-08-17
KR10-2018-0095862 2018-08-17
KR1020180095862A KR102160711B1 (ko) 2017-08-17 2018-08-17 전고체 전지용 전극 및 그 제조방법

Publications (2)

Publication Number Publication Date
WO2019035681A2 true WO2019035681A2 (ko) 2019-02-21
WO2019035681A3 WO2019035681A3 (ko) 2019-04-25

Family

ID=65362932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/009444 WO2019035681A2 (ko) 2017-08-17 2018-08-17 전고체 전지용 전극 및 그 제조방법

Country Status (1)

Country Link
WO (1) WO2019035681A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220199974A1 (en) * 2020-12-23 2022-06-23 Panasonic Intellectual Property Management Co., Ltd. Electrode active material, all-solid-state battery, and method for manufacturing electrode active material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016025020A (ja) 2014-07-23 2016-02-08 セイコーエプソン株式会社 電極複合体、リチウム電池および電極複合体の製造方法
KR20180095862A (ko) 2015-12-18 2018-08-28 에자이 알앤드디 매니지먼트 가부시키가이샤 C-말단 리신 접합된 이뮤노글로불린

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2982083B1 (fr) * 2011-11-02 2014-06-27 Fabien Gaben Procede de realisation de films minces d'electrolyte solide pour les batteries a ions de lithium
WO2017112804A1 (en) * 2015-12-21 2017-06-29 Johnson Ip Holding, Llc Solid-state batteries, separators, electrodes, and methods of fabrication

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016025020A (ja) 2014-07-23 2016-02-08 セイコーエプソン株式会社 電極複合体、リチウム電池および電極複合体の製造方法
KR20180095862A (ko) 2015-12-18 2018-08-28 에자이 알앤드디 매니지먼트 가부시키가이샤 C-말단 리신 접합된 이뮤노글로불린

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3651242A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220199974A1 (en) * 2020-12-23 2022-06-23 Panasonic Intellectual Property Management Co., Ltd. Electrode active material, all-solid-state battery, and method for manufacturing electrode active material

Also Published As

Publication number Publication date
WO2019035681A3 (ko) 2019-04-25

Similar Documents

Publication Publication Date Title
WO2018135862A1 (en) A solid electrolyte for a negative electrode of a secondary battery and method for manufacture of an electrochemical cell
WO2016204565A1 (ko) 실리콘 산화물-탄소-고분자 복합체, 및 이를 포함하는 음극 활물질
WO2014014274A1 (ko) 탄소-실리콘 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질
WO2019172661A1 (ko) 음극의 제조 방법
KR20180091847A (ko) 고체상 Li-S 배터리 및 그의 제조 방법
WO2019059724A2 (ko) 이차전지용 전극을 제조하는 방법 및 이에 의해 제조된 전극
WO2015023154A1 (ko) 리튬-황 전지용 양극 및 이의 제조방법
WO2020226322A1 (ko) 전고체전지의 양극 제조방법 및 이를 이용하여 제조된 전고체전지의 양극
WO2018212567A1 (ko) 전고체 전지용 전극 및 이를 제조하는 방법
WO2015020338A1 (ko) 플렉시블 집전체 및 그 제조방법과 이를 이용한 이차전지
WO2019066497A2 (ko) 전극 합제의 제조 방법 및 전극 합제
WO2021080052A1 (ko) 리튬 메탈 음극 구조체, 이를 포함하는 전기화학소자, 및 상기 리튬 메탈 음극 구조체의 제조방법
WO2019093709A1 (ko) 리튬-황 전지용 전해질 복합체, 이를 포함하는 전기화학소자 및 그 제조방법
WO2022010121A1 (ko) 급속충전 성능이 향상된 음극 및 리튬 이차전지
KR20200039713A (ko) 고체 상태 배터리용 혼합 이온 및 전자 도체
WO2022014736A1 (ko) 저온 소결공정을 위한 산화물계 고체전해질을 포함하는 전고체전지 및 이의 제조방법
KR20190019860A (ko) 전고체 전지용 전극 및 그 제조방법
WO2019054811A1 (ko) 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2022092679A1 (ko) 전극 조립체 및 이를 포함하는 전지셀
WO2014084636A1 (ko) 다공성 규소 산화물-탄소재 복합체를 포함하는 음극 활물질 및 이의 제조방법
WO2016122196A1 (ko) 전극, 전지 및 전극의 제조 방법
WO2019177402A1 (ko) 양극의 제조 방법
WO2022045852A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2020226329A1 (ko) 촉매점이 도입된 기능성 분리막, 그 제조 방법 및 이를 포함하는 리튬 이차전지
WO2018135929A1 (ko) 리튬 이차전지용 음극, 이를 포함하는 리튬 이차전지, 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18846958

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2020504137

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018846958

Country of ref document: EP

Effective date: 20200203

NENP Non-entry into the national phase

Ref country code: DE