WO2019035476A1 - 匂いの定量方法、それに用いる細胞及びその細胞の製造方法 - Google Patents

匂いの定量方法、それに用いる細胞及びその細胞の製造方法 Download PDF

Info

Publication number
WO2019035476A1
WO2019035476A1 PCT/JP2018/030453 JP2018030453W WO2019035476A1 WO 2019035476 A1 WO2019035476 A1 WO 2019035476A1 JP 2018030453 W JP2018030453 W JP 2018030453W WO 2019035476 A1 WO2019035476 A1 WO 2019035476A1
Authority
WO
WIPO (PCT)
Prior art keywords
receptor
activation
degree
cells
cell
Prior art date
Application number
PCT/JP2018/030453
Other languages
English (en)
French (fr)
Inventor
黒田 俊一
Original Assignee
株式会社香味醗酵
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社香味醗酵 filed Critical 株式会社香味醗酵
Priority to EP18846527.2A priority Critical patent/EP3670656A4/en
Priority to CN201880060338.2A priority patent/CN111344406A/zh
Priority to KR1020207007709A priority patent/KR20200037403A/ko
Priority to JP2019536790A priority patent/JPWO2019035476A1/ja
Priority to US16/638,880 priority patent/US20200240978A1/en
Priority to KR1020247008641A priority patent/KR20240042529A/ko
Publication of WO2019035476A1 publication Critical patent/WO2019035476A1/ja
Priority to JP2023029882A priority patent/JP2023081909A/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54393Improving reaction conditions or stability, e.g. by coating or irradiation of surface, by reduction of non-specific binding, by promotion of specific binding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/566Immunoassay; Biospecific binding assay; Materials therefor using specific carrier or receptor proteins as ligand binding reagents where possible specific carrier or receptor proteins are classified with their target compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/74Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/72Assays involving receptors, cell surface antigens or cell surface determinants for hormones
    • G01N2333/726G protein coupled receptor, e.g. TSHR-thyrotropin-receptor, LH/hCG receptor, FSH
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/04Screening involving studying the effect of compounds C directly on molecule A (e.g. C are potential ligands for a receptor A, or potential substrates for an enzyme A)

Definitions

  • the present invention relates to a method for quantifying odor and cells used therefor.
  • Receptors interact with extracellular substances (ligands) to trigger signal transduction.
  • ligands extracellular substances
  • recent genetic analysis has also found a protein whose structure is similar to that of the receptor but whose function is unknown, and there is also one called an orphan receptor.
  • a receptor array in which predetermined receptors having different genetic information are arranged one by one and a predetermined ligand simultaneously act on the array to measure the responsiveness of the receptors Establishment of measurement technology is expected.
  • the olfactory receptor is one of seven transmembrane receptors expressed in olfactory neurons, and interacts with G protein in the intracellular region of the olfactory receptor. Stimulation by the odor molecule from the outside of the cell activates the olfactory receptor and then activates G ⁇ olf protein, which is a type of G protein, in the cell. This G ⁇ olf activates adenylate cyclase and uses ATP as a source to accumulate cAMP in olfactory neurons.
  • CNG Cyclic Nucleotide Gated ion-channel
  • the receptor is an olfactory receptor
  • information in the olfactory nerve cell is caused by the binding of an odorant molecule to a protein called an olfactory receptor expressed on the surface of an olfactory nerve cell in the nasal cavity. Transmission is triggered and odor information is transmitted into the brain.
  • Olfactory receptors are believed to be present in about 400 types in humans and approximately 1,100 types in mice based on genomic analysis, and olfactory receptor groups for specific odor molecules are activated to different degrees, and these stimuli are transmitted to the brain It is understood that the various odors are identified in the brain by being combined.
  • the receptor is an olfactory receptor
  • a level suitable for measuring the degree of activation of the receptor ie, presentation to the cell surface, sufficient expression amount, efficient with the intracellular signal transduction protein
  • Patent Document 1 describes a method for expressing an olfactory receptor and measuring activation by an odorant molecule, but for the cell group in which a plurality of olfactory receptors are expressed, the degree of activation to each odor stimulus is illustrated. There is no description of a method to evaluate it at all.
  • a receptor array in which a predetermined receptor is comprehensively disposed, and a measurement system that causes a predetermined ligand to simultaneously act on the array and collectively measures the degree of activation of each receptor Intended to be provided.
  • Purpose is to provide a method to evaluate it as Another object of the present invention is to provide a method for constructing a target odor and a method for correcting the target odor based on the measured activation degree when the receptor is an olfactory receptor.
  • the inventors of the present invention have made intensive studies to solve the above-mentioned problems, and as a result, they have been completed, and include, for example, the inventions of the embodiments described below.
  • the hydrophobic coating has a plurality of through holes, An array in which a nucleic acid containing a gene encoding a predetermined receptor is provided in contact with the substrate inside the through hole.
  • each of the through holes is provided with a nucleic acid containing a gene encoding a different predetermined receptor.
  • Vector A having a gene encoding CNGA2 and GNAL or variants thereof
  • Vector B having a gene encoding CNGA4 and / or CNGB1b or variants thereof
  • transferring an olfactory receptor expressed in cells from the endoplasmic reticulum membrane to a cell membrane, the cells of the olfactory receptor At least one vector selected from the group consisting of Vector C having a gene encoding a protein capable of increasing the efficiency of presentation on the surface.
  • a eukaryotic cell comprising at least one vector described in (12).
  • a eukaryotic cell having a region for incorporating a gene encoding a fixed number of mammalian-derived olfactory receptors on the chromosome of the cell described in any of (9) to (11) or (13) .
  • a method of calculating the degree of activation of a test substance to a predetermined receptor (1) measuring the amount of ions taken up into each of the plurality of eukaryotic cells expressing the receptor when the test substance is brought into contact; (2) a step of measuring the amount of ions in each of the cells when the same cell as the cell used in the measurement in the step 1 is depolarized, and (3) a numerical value measured in the step 1 and the step Calculating the ratio to the numerical value measured in 2;
  • the means for measuring the amount of ions taken into cells is a means using a dye or a means using a fluorescent binding protein, The method described in (17).
  • a method of calculating the degree of activation of a test substance to a receptor When the test substance is brought into contact with a plurality of eukaryotic cells expressing the receptor, Measuring the amount of substance taken up into each of said cells, The average value of fluorescence at the first predetermined time before the contact is Fbase, When the maximum value of fluorescence in the second predetermined time after the contact is Fmax, Method to calculate Fmax / Fbase and make it activation degree.
  • the arithmetic processing may be performed by setting the average value of fluorescence at the first predetermined time before the contact to Fbase, When the maximum value of fluorescence in the second predetermined time after the contact is Fmax, The method according to (26), which is a process of calculating Fmax / Fbase and setting the degree of activation.
  • the arithmetic processing sets the standard deviation of fluorescence at the first predetermined time before the contact as SD, When the Fmax is Fbase + 5SD or more, it is adopted as the activation degree, The method according to (27), wherein the degree of activation is not adopted when the Fmax is less than Fbase + 5SD.
  • the combination method is The degree of activation of each receptor for each standard substance is quantified as first data, The degree of activation of each receptor for the target substance is quantified as second data, The method of (30) or (31) which is an operation of said 1st data and said 2nd data.
  • (33) A method of screening a substance for correcting the odor of a sample to a target odor state, The activity of each receptor measured using the measuring method according to (29) in the odor state of the target, regarding the degree of activation of each receptor measured using the measuring method according to (29), regarding the sample
  • a method including the step of selecting a candidate substance using the approach to the degree of conversion as an index.
  • the selection is performed by adding candidate substances to the sample and measuring the activation degree of each of the receptors, and based on whether the activation degree approaches the activation degree in the odor state of the target (33).
  • the present invention it is possible to provide a receptor array, a technique for measuring the degree of activation of a receptor for a ligand, and its application.
  • absolute is a term used as an antonym of "relative” and means that the value is less likely to be influenced by the measurement conditions. Also, this does not mean that the values do not change at all even if the measurement conditions change, but that even if the measurement conditions change, sufficient accuracy values can be obtained to achieve the object of the present invention. means.
  • the array 1 of the present invention comprises a substrate 5 and a hydrophobic coating 6 on the substrate 5.
  • the hydrophobic film 6 is provided with a plurality of through holes 2, and the through holes 2 reach the substrate 5.
  • the substrate 5 is a material having a strength that can be handled, for example, the Young's modulus at 25 ° C. is 0 in loading of a nucleic acid, loading of a eukaryotic cell, application of a ligand, and measurement of activation to a ligand as described later.
  • a material of .01 GPa or more and 1000 GPa or less can be used, and a material of 1 or more and 500 GPa or less which can be easily handled by a mechanical hand (robot hand) can be preferably used.
  • the substrate 5 is preferably a substrate that does not exert a chemical or biological inhibitory effect in loading of nucleic acids, loading of eukaryotic cells, loading of ligands described later, quartz glass, borosilicate glass, soda aluminosilicate glass ( Examples thereof include various synthetic resins such as glass and ceramics exemplified by chemically tempered glass, barium borosilicate glass, soda lime glass, polycarbonate, polymethyl methacrylate, polystyrene, alicyclic polyolefin, and polymethylpentene.
  • thermoplastic resins thermosetting resins
  • radiation curable resins for example, if attention is paid to the action of additives, if attention is paid so as not to exert the above-mentioned chemical and biological inhibitory effects.
  • UV including the example of electron beam
  • One example is a slide glass using borosilicate glass.
  • the substrate 5 may have the surface of the substrate 5 made hydrophilic by surface activation treatment such as plasma treatment, ozone treatment, ion treatment, radiation treatment and the like.
  • the size of the substrate 5 is not limited, it is preferable that the size of the substrate 5 is typically 100 mm or less because both human operation and mechanical operation are easy to handle. Further, the thickness of the substrate 5 is not limited, but it is preferable that the thickness is more than 0 mm and 10 mm or less, because both human operation and mechanical operation are easy to handle.
  • the hydrophobic film 6 has an effect of appropriately repelling the eukaryotic cell at the time of loading of the eukaryotic cell described later and facilitating the eukaryotic cell to be accommodated in the through hole 2 in the hydrophobic film 6. That is, the hydrophobic film 6 has appropriate hydrophobicity, and the hydrophobicity can be defined by the contact angle (°) at a plane portion other than the through hole 2 of the hydrophobic film 6.
  • the contact angle of the hydrophobic coating 6 is desirably 70 ° or more and 175 ° or less when water at 23 ° C. is used. That is, a film exhibiting a contact angle called water repellency or super water repellency is also included.
  • the contact angle of the hydrophobic film 6 of the present invention is typically 75 ° or more, 80 ° or more, 90 ° or more, 100 ° or more, 110 ° or more, 120 ° or more, 130 ° or more, 130 ° or more, 135 ° or more, 140 ° or more, 145 ° or more, 150 ° or more, 155 ° or more, 160 ° or more, 165 ° or more, 170 ° or more.
  • the contact angle of the hydrophobic coating 6 is 130 ° or more and 165 ° or less when water at 23 ° C. is used.
  • the hydrophobic film 6 having such a contact angle silicon resin, fluorine resin, silicon-fluorine resin can be used. Further, aliphatic hydrocarbons such as polyethylene glycol (PEG) or derivatives obtained by introducing a hydrophobic group to aromatic hydrocarbons can also be used. In addition, it is also possible to use a resin in which a silicon based silane coupling agent or a fluorine based silane coupling agent is allowed to act on a thermoplastic resin, a thermosetting resin, and a radiation curing resin (including examples of ultraviolet rays and electron beams) Yes (action includes copolymerization, surface deposition, surface coating).
  • the hydrophobic film 6 is preferably one that does not exert a chemical or biological inhibitory action in loading of a nucleic acid, loading of a eukaryotic cell, or application of a ligand described later.
  • the thickness of the hydrophobic film 6 is not limited, but is preferably 1 ⁇ m or more and 200 ⁇ m or less from the viewpoint that the loading of nucleic acids and eukaryotic cells described later can be performed well.
  • the size is preferably 10 ⁇ m or more and 200 ⁇ m or less so that mounted eukaryotic cells are not detached by vibration of the external environment.
  • 25 ⁇ m or more and 200 ⁇ m or less is desirable so that mounted eukaryotic cells do not move out of the through-hole 2 due to disturbances such as vibration of the external environment or temperature change.
  • it is 30 ⁇ m or more, 35 ⁇ m or more, 40 ⁇ m or more, 45 ⁇ m or more, 50 ⁇ m or more, 55 ⁇ m or more, 60 ⁇ m or more. Also, typically, it is 180 ⁇ m or less, 160 ⁇ m or less, 140 ⁇ m or less, 120 ⁇ m or less, 100 ⁇ m or less, 80 ⁇ m or less.
  • the hydrophobic coating 6 may be formed by a method of simultaneously forming the coating of the hydrophobic coating 6 such as offset printing, tampo printing, screen printing, ink jet printing and the through holes 2, or the hydrophobic coating 6 on the entire surface.
  • the through holes 2 may be created by means of lithography.
  • offset printing and tampo printing a thickness of 1 ⁇ m or more and 10 ⁇ m or less is suitable.
  • screen printing a thickness of 20 ⁇ m or more and 70 ⁇ m or less is suitable.
  • the range in which the hydrophobic coating 6 covers the substrate 5 is not particularly limited as long as it can cover the area where all the through holes 2 are disposed, and the entire surface of the substrate 2 is covered in the array 1 It may be.
  • the periphery of the array 1 may be formed to expose the substrate 5 while covering all the through holes 2.
  • nucleic acids 3 capable of forming a predetermined receptor are mounted in contact with the substrate 5.
  • the nucleic acid 3 includes a nucleic acid containing a gene encoding a predetermined receptor.
  • the nucleic acids 3 are mounted on each of the through holes 2 of the array 1.
  • the nucleic acid 3 containing a gene encoding a predetermined receptor may be loaded with a different type of nucleic acid 3 for each through hole 2.
  • the receptors refer to so-called transmembrane receptors, and include metabotropic receptors and ion channel receptors.
  • metabotropic receptors include G protein coupled receptors, tyrosine kinase receptors, and guanylate cyclase receptors.
  • G protein coupled receptors examples include olfactory receptors, muscarinic acetylcholine receptors, adenosine receptors, adrenergic receptors, GABA receptors (type B), angiotensin receptors, cannabinoid receptors, cholecystokinin receptors , Dopamine receptors, glucagon receptors, histamine receptors, opioid receptors, secretin receptors, serotonin receptors, gastrin receptors, P2Y receptors, rhodopsin.
  • tyrosine kinase receptors are insulin receptors, receptors for cell growth factors, and receptors for cytokines.
  • guanylate cyclase receptors are GC-A, GC-B, GC-C.
  • ion channel receptors include nicotinic acetylcholine receptor, glycine receptor, GABA receptor (A and C types), glutamate receptor, serotonin receptor type 3, inositol trisphosphate (IP3) receptor , Ryanodine receptor, P2X receptor.
  • the origin of the receptor encoded by the gene contained in the above-described nucleic acid is not particularly limited as long as the effect of the present invention is exhibited.
  • animal origin, mammal origin, mouse origin, primate origin, or human origin can be mentioned.
  • the nucleic acid 3 loaded in the through hole 2 of the array 1 of the present invention is not particularly limited as long as the effect of the present invention is exhibited. Specifically, DNA, RNA, PNA and the like can be exemplified.
  • the nucleic acid 3 may further comprise lipids, polymers, viruses or magnetic particles used to introduce the nucleic acid 3 into eukaryotic cells. For example, it may contain a plasmid, a gene transfer reagent described later.
  • a compound that promotes cell adhesion may be included to enhance adhesion between the eukaryotic cell and the substrate 5.
  • the nucleic acid 3 loaded inside the through-hole 2 of the array 1 of the present invention is, for example, a human-derived olfactory receptor, 404 genes identified by the accession number of NCBI shown below.
  • NM_001004450 NM 0001004451.1, NM 0001004452.1, NM 0001004453.2, NM 0001004454.1, NM 0001004456.1, NM 001004457, NM 0001004458.1, NM 0001004459.1, NM 00 1004460.1, NM 001 00 446 61, NM 00 00 2014 461. NM 00 00 2014 622, NM 00 00 2014 462.1, NM 00 00 1 0463.
  • NM_001005193 NM_001005194.1, NM_001005195.1, NM_001005196.1, NM_001005197.1, NM_001005198.1, NM_001005190.1, NM_001005200.1, NM_001005201.1, NM_001005202.1, NM_001005202.1, NM_001005203.2, NM_001005204, NM_001005205.2, NM_001005211, NM_001005212.3, NM_001005216.3, NM_001005218.1, NM_0010052221, NM_001005222, NM_001005222.2, NM_0010052222.2, NM_001005226.2, NM_001005234.1, NM_001005235, NM_001005236.3, NM_001005237.1, NM_001005238, NM_001005239, NM_001005240, NM
  • NM_012364.1 NM_012365, NM_012367.2, NM_012369.2, NM_012367.2, NM_012374.2, NM_012374, NM_012375, NM_012378, NM_012378.1, NM_013936.3, NM_013937.3, NM_013938, NM_013939.2, NM_013940.2, NM_013941. .
  • the aspect of the nucleic acid 3 loaded on the array 1 of the present invention is not particularly limited as long as the effects of the present invention are exhibited.
  • the method of arranging the above-mentioned nucleic acid 3 on the substrate 5 in the through hole 2 is not particularly limited as long as the effect of the present invention is exhibited.
  • a method of printing the nucleic acid 3 in the form of dots can be mentioned.
  • a known device or an equivalent thereof such as an inkjet type printer, comprising a piezo element (including MEMS) that is not susceptible to solution modification during printing, as described in the following examples. It can be used.
  • the nucleic acid 3 in the through hole 2 is typically provided in a size of 10 ⁇ m to 300 ⁇ m in diameter.
  • the array 1 of the present invention can introduce a gene encoding a receptor into cells by contacting the cells.
  • the receptor can be expressed in the cells.
  • an olfactory receptor of animal origin, mammalian origin or human origin can be expressed.
  • the array 1 may use the area of the substrate 5 not covered by the hydrophobic film 6 or the area of the hydrophobic film 6 other than the through holes 2 to provide an area for describing the identification number.
  • alphanumeric characters predefined as one-dimensional barcodes, two-dimensional barcodes (including QR codes (registered trademark)) are described in a form that can be read optically, magnetically, and electronically.
  • QR codes registered trademark
  • the code may be a unique code different for each array 1 or the same fixed code for each array 1.
  • the identification number may include arrangement information of the nucleic acid 3 in the array 1.
  • region which describes an identification number may be a blank area
  • array 1 is housed in a film bag of a synthetic resin such as polyethylene or polypropylene, or in a container such as polystyrene or glass, for stable storage during the waiting time until the eukaryotic cell 4 is loaded. May be For storage, the inside of the bag or container may be filled with an inert gas such as vacuum, reduced pressure atmosphere, nitrogen, argon or the like.
  • an inert gas such as vacuum, reduced pressure atmosphere, nitrogen, argon or the like.
  • FIG. 2 is a macroscopic plan view showing the arrangement of the through holes 2 in the array 1.
  • the aforementioned substrate 5, hydrophobic coating 6, and nucleic acid 3 are not shown.
  • FIG. 2 is a plan view of the case where the array 1 is a rectangular solid, and the longitudinal direction of the array 1 is taken as an X axis, and the orthogonal direction (perpendicular to the X axis) as a Y axis.
  • a plurality of through holes 2 are provided in the array 1, and the shape is arbitrary, but a polygon such as a triangle or a square or a circle can be used.
  • the circle may be elliptical.
  • the shape of the through hole 2 is most preferably a circle, in particular a perfect circle.
  • FIG. 2 shows an example in which the through holes 2 are perfect circles and 25 pieces are arranged in the array 1.
  • the cross-sectional area average value is 0.125 mm 2 or more per one.
  • the cross-sectional area average value is obtained by calculating and averaging all the areas in the direction perpendicular to the central axis direction of through hole 2 in the height direction (depth direction) of through hole 2. . That is, when the shape of through hole 2 is a perfect circle in the bird's-eye view, its diameter (corresponding to diameter D of through hole 2B in FIG. 2) is 0.4 mm or more, Absent.
  • the size of the through hole 2 is 0.125 mm 2 or more in average cross sectional area, 400 or more eukaryotic cells can be brought into contact with one through hole 2.
  • the number of cells suitable for measurement Even if there are individual differences in the transformation of eukaryotic cells described later, it is easy to secure the number of cells suitable for measurement. For example, in the case of the through holes 2 having a cross-sectional average value of less than 0.125 mm 2 , the number of cells in the through holes 2 decreases, so that a sufficient number of transformed cells can not be secured. There is a disadvantage that a sufficient number of cells can not be secured to statistically process the degree of activation.
  • the predetermined receptor is an olfactory receptor
  • 10 or more eukaryotic cells corresponding to about 2.5 or more of 400 or more per 1 through hole 2 will be expressed. The number of cells required to statistically process the degree of receptor activation is obtained.
  • each through hole 2 is provided with a nucleic acid 3 including a gene encoding a different predetermined receptor.
  • the receptor is a human olfactory receptor
  • the odor sensing ability is influenced by environmental factors such as temperature, air volume, and atmospheric distribution (concentration distribution of molecules in the air generated by air flow), it corresponds to one set of receptors for one array. It is most desirable to place approximately 400 different nucleic acids 3 and to perform a batch of measurements for all one set of receptors in one measurement.
  • the array 1 has about 400 through holes 2.
  • the diameter D is preferably 0.4 mm or more and 0.6 mm or less, and the average pitch P1 and the average pitch P2 are 0.6 mm or more. 8 mm or less is desirable.
  • the diameter D may be 0.42 mm or more, 0.44 mm or more, 0.46 mm or more, 0.48 mm or more, 0.50 mm or more, and may be 0.58 mm or less, 0.56 mm or less, or 0.54 mm or less It may be 0.52 mm or less.
  • the average pitches P1 and P2 may be independently 0.64 mm or more, 0.68 mm or more, 0.72 mm or more, 0.76 mm or more, 0.76 mm or less, 0.72 mm or less, 0. It may be 68 mm or less.
  • the array 1 having 22 through X-axes and 18 through Y-axes (total of 396 through-holes 2), the center of each through-hole is within the range of 15.58 mm ⁇ 12.82 mm Will be placed.
  • the array 10 containing the eukaryotic cell of the present invention is based on the array 1, and comprises a substrate 5, a hydrophobic coating 6 on the substrate 5, and a nucleic acid 3. .
  • the hydrophobic coating 6 is provided with a plurality of through holes 2, and the shape and arrangement of the through holes 2 are the same as those of the array 1 (shown in FIG. 2).
  • a eukaryotic cell region 4 is provided in the through hole 2, a eukaryotic cell region 4 is provided.
  • FIG. 4 is a schematic plan view in which one of the through holes 2 is enlarged.
  • the hydrophobic film 6 is provided with the through holes 2A and the eukaryotic cell region 4A.
  • a plurality of eukaryotic cells are provided in the eukaryotic cell region 4A so as to overlap with the nucleic acid 3 loaded on the substrate 5 (in FIG. 4, five eukaryotic cells 4A1 are schematically shown). 4A5, nucleic acid 3 not shown).
  • the number of eukaryotic cells is exemplified as 5 for one through hole 2, but 2 or more, 5 or more, 10 or more, 50 or more, 100 or more, 200 or more, 300 or more
  • the number may be 400 or more, 500 or more, 600 or more, 700 or more, 800 or more, 1000 or more, 2000 or more. Further, it may be 10000 or less, 9000 or less, 8000 or less, 7000 or less, 6000 or less, 5000 or less, 4000 or less, 3000 or less, 3000 or less, 2000 or less, or 1000 or less.
  • Eukaryotic cells may be, for example, eukaryotic cells of animal origin, mammalian origin, primate origin, human origin. In one embodiment, the eukaryotic cell is a human-derived eukaryotic cell, and is 400 or more and 1000 or less.
  • the nucleic acid 3 is an olfactory receptor
  • the eukaryotic cell is a human-derived eukaryotic cell
  • 400 per 1 through-hole 2 one nucleic acid 3
  • about 40 eukaryotic cells corresponding to about 10% express measurably.
  • a measurement system is established that measures the degree of activation of the test substance for all about 400 types of human olfactory receptors. can do.
  • stable expression stable transfection
  • transient expression carried out by introducing a plasmid into the cell
  • transient expression carried out by introducing a plasmid into the cell
  • transfection two methods, ie, transfection.
  • stable expression since information on intracellular genes is rewritten, it can be used permanently, but because the yield of gene expression is poor, a predetermined receptor is selected from those cultured in cells and used as a device. It will be installed. Therefore, mounting a stably expressed receptor, for example, several hundred receptors, in one device requires a great deal of effort and cost.
  • transient expression can only be used continuously for a short period of time, typically around one week, but it is relatively easy to make and can be incorporated into a single device. . Although relatively easy to make, there is a variation in the degree of expression.
  • the eukaryotic cell array 10 of the present invention is excellent in compatibility with the method of producing a receptor by such transient expression. That is, for example, 400 eukaryotic cells can be arranged with respect to nucleic acid 3 in through hole 2 (for example, 400 eukaryotic cells can be accommodated in through hole 2A). Even with variability, as many as 10 eukaryotic cells express measurable receptors. The approximately 10 receptors have different performance in measuring the degree of activation, but in the assay system they individually recognize each one of the 10 eukaryotic cells, and each cell will be described later. If the normalized activation degree is measured and calculated by the calculation method (A) or the calculation method (B) of the activation degree, information on the activation degree is appropriately provided to each receptor. be able to.
  • the method for obtaining a eukaryotic cell that expresses a mammalian-derived receptor is not particularly limited as long as the effect of the present invention is exhibited.
  • primary culture cells containing mouse-derived olfactory cells can be used.
  • the cells of the present invention described later can also be used.
  • the means for confirming the expression level described above is not particularly limited as long as the effect of the present invention is exhibited.
  • means based on known techniques such as Western blot can be mentioned.
  • the type of receptor expressed in the above-mentioned eukaryotic cells is not particularly limited as long as the effects of the present invention are exhibited.
  • one olfactory receptor may be expressed in one cell, or a plurality of olfactory receptors may be expressed. It is preferable to express one type of olfactory receptor in one cell.
  • the mammal-derived olfactory receptor being identified is four types of ⁇ , ⁇ , ⁇ and ⁇ , ⁇ and ⁇ are expressed in eukaryotic cell A, and ⁇ and ⁇ are eukaryotic cell B And ⁇ are expressed in eukaryotic cell C, and the total amount of ⁇ , ⁇ , ⁇ and ⁇ expressed in eukaryotic cells A, B and C are identical, and eukaryotic cells A, B and C It can be mentioned as a preferred embodiment that is expressed in the same system.
  • Receptors expressed in eukaryotic cells can be identified before or after the calculation method (A) or calculation method (B) of the present invention described later. If identification is carried out before implementation, the gene for expressing the previously identified mammalian-derived olfactory receptor may be introduced into the above-mentioned eukaryotic cells, and if identification is carried out after implementation, the activation described later The olfactory receptor contained in the cells is easily identified by combining the known techniques for gene analysis on the cells whose degree of activation has been measured by the degree calculation method (A) or calculation method (B). be able to.
  • the eukaryotic cell array 10 may be provided with a region for describing an identification number using a region of the substrate 5 not covered by the hydrophobic film 6 or a region other than the through holes 2 of the hydrophobic film 6 .
  • alphanumeric characters predefined as one-dimensional barcodes, two-dimensional barcodes (including QR codes (registered trademark)) are described in a form that can be read optically, magnetically, and electronically.
  • the code may be a unique code different for each eukaryotic cell array 10 or the same fixed code for each eukaryotic cell array 10.
  • the identification number may include arrangement information of the nucleic acid 3 in the array 1.
  • information on the X coordinate, the Y coordinate, and the configuration (sequence) of the nucleic acid placed at the position of the nucleic acid 3 in the array 1 may be encoded and recorded in the form of a matrix.
  • region which describes an identification number may be a blank area
  • the eukaryotic cell array 10 may be housed in a film bag of synthetic resin such as polyethylene or polypropylene, or in a container such as polystyrene or glass, for stable storage.
  • a film bag of synthetic resin such as polyethylene or polypropylene
  • a container such as polystyrene or glass
  • the inside of the bag or container may be filled with an inert gas such as vacuum, reduced pressure atmosphere, nitrogen, argon or the like.
  • the eukaryotic cells of the present invention are eukaryotic cells that express CNGA2 and GNAL as foreign genes when the predetermined receptor is an olfactory receptor.
  • the eukaryotic cell is not particularly limited as long as it exerts the effects of the present invention.
  • yeast cells, animal cells, insect cells, mammalian cells, primate cells and the like can be mentioned.
  • mammalian cells are preferable, and line cells represented by immortalized HEK 293 cells, CHO cells, HeLa cells and the like which are particularly easy to handle are preferable.
  • rat olfactory nerve cell-derived Rolf Ba. T cells (Glia 16: 247 (1996)) can also be used.
  • CNGA2 is a gene encoding a protein present in the cell membrane, called Cyclic Nucleotide Gated Channel Alpha 2, which functions as a calcium ion channel depending on cAMP.
  • the origin of CNGA 2 described above is not particularly limited as long as the effects of the present invention are exhibited.
  • it can be exemplified to be of mammalian origin.
  • mouse-derived and human-derived can be mentioned.
  • amino acid sequence of the protein encoded by CNGA2 is not particularly limited as long as the effect of the present invention is exhibited.
  • amino acid sequence encoded by the base sequence shown in SEQ ID NO: 1 can be mentioned.
  • variants thereof can also be included in CNGA2 described above.
  • the homology of amino acids before and after mutation is 80% or more, preferably 85% or more, preferably 90% or more, preferably 91% or more, and more preferably 95% or more.
  • Such mutations include such aspects as substitution, deletion, insertion and the like.
  • variants described above can also include splice variants.
  • glycine of amino acid sequence 342 of human-derived CNGA2 encoded by the nucleotide sequence shown in SEQ ID NO: 1 is glycine Preferred is a mutant in which the 460th cysteine is tryptophan and the 583 glutamic acid is methionine.
  • GNAL expressed in the cells of the present invention is a gene encoding a protein called Guanine nucleotide-binding protein G subunit alpha L, which is an olfactory receptor in cells expressing an olfactory receptor in olfactory neurons. It is a low molecular weight G protein responsible for signal transduction that is triggered in response to a stimulus to the body.
  • GNAL is not particularly limited as long as the effect of the present invention is exhibited.
  • it can be exemplified to be of mammalian origin. Among them, mouse-derived and human-derived can be mentioned.
  • the amino acid sequence of GNAL is not particularly limited as long as the effects of the present invention are exhibited.
  • the amino acid sequence encoded by the base sequence shown in SEQ ID NO: 2 can be mentioned.
  • the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 2 is capable of carrying out signal transduction triggered in response to stimulation of an olfactory receptor in cells expressing an olfactory receptor in an olfactory nerve cell.
  • variants thereof can also be included in the above-mentioned GNAL.
  • the homology of amino acids before and after mutation is 80% or more, preferably 85% or more, preferably 90% or more, preferably 91% or more, and more preferably 95% or more.
  • Such mutations include such aspects as substitution, deletion, insertion and the like.
  • variants described above can also include splice variants.
  • the cell of the present invention has, in addition to the protein encoded by the above-described gene, the adenylate cyclase, the ⁇ domain and the ⁇ domain of a low molecular weight G protein.
  • the above-mentioned cell of the present invention is preferably a cell expressing CNGA4 and / or CNGB1b as a foreign gene.
  • CNGA4 is a gene encoding a protein present in the cell membrane, called Cyclic Nucleotide Gated Channel Alpha 4, which also functions as a calcium ion channel, similar to the protein encoded by CNGA2 described above.
  • the origin of CNGA 4 described above is not particularly limited as long as the effects of the present invention are exhibited.
  • it can be exemplified to be of mammalian origin.
  • mouse-derived and human-derived can be mentioned.
  • amino acid sequence of the protein encoded by CNGA4 is not particularly limited as long as the effect of the present invention is exhibited.
  • amino acid sequence encoded by the base sequence shown in SEQ ID NO: 3 can be mentioned.
  • amino acid sequence encoded by the base sequence shown in SEQ ID NO: 3 can be included in CNGA4 described above as long as it can function as a calcium ion channel.
  • the homology of amino acids before and after mutation is 80% or more, preferably 85% or more, preferably 90% or more, preferably 91% or more, and more preferably 95% or more.
  • Such mutations include such aspects as substitution, deletion, insertion and the like.
  • variants described above can also include splice variants.
  • CNGB1b is a gene encoding a protein present in the cell membrane, called Cyclic Nucleotide Gated Channel Beta 1b, which also functions as a calcium ion channel, similarly to the proteins encoded by CNGA2 and CNGA4 described above.
  • the origin of CNGB 1b described above is not particularly limited as long as the effects of the present invention are exhibited.
  • it can be exemplified to be of mammalian origin.
  • mouse-derived and human-derived can be mentioned.
  • amino acid sequence of the protein encoded by CNGB1b is not particularly limited as long as the effect of the present invention is exhibited.
  • amino acid sequence encoded by the base sequence shown in SEQ ID NO: 4 can be mentioned.
  • amino acid sequence encoded by the base sequence shown in SEQ ID NO: 4 can be included in CNGB1b described above as long as it can function as a calcium ion channel.
  • the homology of amino acids before and after mutation is 80% or more, preferably 85% or more, preferably 90% or more, preferably 91% or more, and more preferably 95% or more.
  • Such mutations include such aspects as substitution, deletion, insertion and the like.
  • variants described above can also include splice variants.
  • CNGA2, CNGA4 and CNGB1b are expressed in the cells of the present invention, their expression at 2: 1: 1, respectively, increases in intracellular signal transduction triggered by stimulation to olfactory receptors This is preferable because the sensitivity to cAMP increases.
  • the cell of the present invention described above transfers a olfactory receptor expressed in the cell from the endoplasmic reticulum membrane to the cell membrane, and a gene encoding a protein capable of increasing the efficiency of presenting the olfactory receptor on the cell surface It is preferable to set it as the cell to express.
  • a protein capable of transferring the olfactory receptor expressed in the above-mentioned cells to the cell membrane from the endoplasmic reticulum membrane to increase the efficiency of presenting the olfactory receptor on the cell surface is within the range of exerting the effects of the invention. It is not particularly limited. For example, proteins such as RTP1, RTP2 and REEP1 can be mentioned.
  • the amino acid sequence of RTP1 is not particularly limited as long as the effects of the present invention are exhibited.
  • the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 5 can be mentioned.
  • the amino acid sequence encoded by the base sequence shown in SEQ ID NO: 5 transfers the olfactory receptor expressed in the cell from the endoplasmic reticulum membrane to the cell membrane to increase the efficiency of presenting the olfactory receptor on the cell surface
  • variants thereof can also be included in RTP1 described above.
  • the homology of amino acids before and after mutation is 80% or more, preferably 85% or more, preferably 90% or more, preferably 91% or more, and more preferably 95% or more.
  • Such mutations include such aspects as substitution, deletion, insertion and the like.
  • variants described above can also include splice variants.
  • RTP1 splice variants described above are not particularly limited as long as the effects of the present invention are exhibited.
  • RTP1L, RTP1S, etc. can be mentioned.
  • RTP1S the amino acid sequence encoded by the base sequence shown in SEQ ID NO: 6 can be mentioned.
  • the amino acid sequence of RTP2 is not particularly limited as long as the effects of the present invention are exhibited.
  • the amino acid sequence encoded by the base sequence shown in SEQ ID NO: 7 can be mentioned.
  • the amino acid sequence encoded by the base sequence shown in SEQ ID NO: 7 transfers the olfactory receptor expressed in the cell from the endoplasmic reticulum membrane to the cell membrane to increase the efficiency of presenting the olfactory receptor on the cell surface
  • variants thereof can also be included in RTP2 described above.
  • the homology of amino acids before and after mutation is 80% or more, preferably 85% or more, preferably 90% or more, preferably 91% or more, and more preferably 95% or more.
  • Such mutations include such aspects as substitution, deletion, insertion and the like.
  • variants described above can also include splice variants.
  • the amino acid sequence of REEP1 is not particularly limited as long as the effect of the present invention is exhibited.
  • the amino acid sequence encoded by the base sequence shown in SEQ ID NO: 8 can be mentioned.
  • the amino acid sequence encoded by the base sequence shown in SEQ ID NO: 8 transfers an olfactory receptor expressed in the cell from the endoplasmic reticulum membrane to a cell membrane to increase the efficiency of presenting the olfactory receptor on the cell surface
  • variants thereof can also be included in REEP1 described above.
  • the homology of amino acids before and after mutation is 80% or more, preferably 85% or more, preferably 90% or more, preferably 91% or more, and more preferably 95% or more.
  • Such mutations include such aspects as substitution, deletion, insertion and the like.
  • variants described above can also include splice variants.
  • a promoter is arranged so as not to affect the gene epigenetically.
  • Such a promoter is not particularly limited as long as the effect of the present invention is exhibited.
  • Elongation Factor-1 ⁇ EF-1 ⁇
  • EF-1 ⁇ Elongation Factor-1 ⁇
  • the origin of the promoter that does not exert the epigenetic effect described above is not particularly limited as long as the effect of the present invention is exhibited.
  • mouse origin or human origin can be mentioned.
  • the eukaryotic cell of the present invention can be produced by introducing a vector having CNGA2 and GNAL (which may be referred to herein as "vector A”) into eukaryotic cells.
  • a vector having CNGA4 and / or CNGB1b (which may be referred to as “vector B” herein) can be introduced into the cells thus produced.
  • a vector having a gene encoding a protein capable of causing the olfactory receptor expressed in the cell to transfer from the endoplasmic reticulum membrane to the cell membrane and increasing the efficiency of presentation of the olfactory receptor on the cell surface herein described (This may be referred to as "vector C").
  • the vector of the present invention is any of the vectors A, B and C described above.
  • eukaryotic cells into which these vectors can be introduced to express the genes they possess.
  • yeast cells, mammalian cells, insect cells can be mentioned.
  • mammalian cells are preferred.
  • the vector constructed as described above can produce a recombinant virus using a known virus, and such recombinant virus can induce transient expression in eukaryotic cells.
  • known viruses include adenovirus, retrovirus, adeno-associated virus and baculovirus.
  • the above-described vectors A, B and C can also induce stable expression if the conditions are adjusted.
  • stable expression is achieved by providing a fixed number or more of regions where genes encoding olfactory receptors are arranged on the chromosome of the cell of the present invention.
  • the above region is a region that reacts to recombinase provided at a predetermined position on the chromosome.
  • Such recombinase is not particularly limited as long as the effect of the present invention is exhibited.
  • Flp, Cre, etc. can be mentioned.
  • Frt and LoxP can be mentioned as an area
  • the chromosome of the cell of the present invention has a certain number or more of regions into which the gene encoding the olfactory receptor is integrated, it is possible to incorporate the gene encoding the olfactory receptor only in this region it can. For example, since the number of incorporated genes encoding olfactory receptors can also be adjusted according to the number of regions described above, the amount of olfactory receptors expressed in the cells can also be adjusted.
  • the above-described cell of the present invention can realize signal transduction triggered by stimulation of an olfactory receptor performed in an olfactory nerve cell. Therefore, the method of calculating the degree of activation (A) or (B) of the present invention described later can be suitably implemented by using the cell of the present invention.
  • the olfactory receptor described above includes the amino acid (MNGTEGPNFYVPFSNKTGVV) shown in SEQ ID NO: 9 which is the N-terminal 20 amino acid residue of the Rhodopsin molecule so that they are expressed in the correct topology on the cell membrane. It is preferable that they are incorporated into the cells of the present invention and co-expressed in a fused state.
  • calculation in the specification Method may be referred to as calculation method (A) and calculation method (B).
  • the method of calculating the degree of activation (A) is a method including the following steps 1 to 3.
  • Step 1 Measuring the amount of ions taken into the cell when the test substance is brought into contact with a eukaryotic cell expressing the receptor.
  • Step 2 A step of measuring the amount of ions in the cells when the same cells as the cells used in the measurement in the step 1 are depolarized.
  • Step 3 A step of calculating a ratio between the numerical value measured in the step 1 and the numerical value measured in the step 2;
  • Steps 1 and 2 may be performed before step 3.
  • the order of performing steps 1 and 2 is not particularly limited as long as the effects obtained by the calculation method of the present invention are not affected. . In view of the reliability of the numerical values obtained by the calculation method of the present invention, it is preferable to carry out step 2 after step 1.
  • test substance described above is not particularly limited as long as the effect of the present invention is exhibited.
  • substances containing odor components that are generally not recognized by animals such as humans can also be included as test substances in the calculation method of the present invention.
  • the category of the test substance described above is not particularly limited as long as the effect of the present invention is exhibited.
  • it may be a pure substance or a mixture.
  • the pure substance is a single substance or a compound.
  • test substance described above is also not particularly limited as long as the effects of the present invention are exhibited.
  • it may be in any form of gas, solid or liquid.
  • the above-mentioned receptor is not particularly limited as long as the effect of the present invention is exhibited.
  • it may be a predetermined receptor to which the nucleic acid 3 of the array 1 described above belongs, and refers to a so-called transmembrane receptor, which may include, for example, a metabotropic receptor, an ion channel receptor.
  • metabotropic receptors include G protein coupled receptors, tyrosine kinase receptors, and guanylate cyclase receptors.
  • G protein coupled receptors include olfactory receptors, muscarinic acetylcholine receptors, adenosine receptors, adrenergic receptors, GABA receptors (type B), angiotensin receptors, cannabinoid receptors, cholecystokinin receptors , Dopamine receptors, glucagon receptors, histamine receptors, opioid receptors, secretin receptors, serotonin receptors, gastrin receptors, P2Y receptors, rhodopsin.
  • tyrosine kinase receptors are insulin receptors, receptors for cell growth factors, and receptors for cytokines.
  • guanylate cyclase receptors are GC-A, GC-B, GC-C.
  • ion channel receptors include nicotinic acetylcholine receptor, glycine receptor, GABA receptor (A and C types), glutamate receptor, serotonin receptor type 3, inositol trisphosphate (IP3) receptor , Ryanodine receptor, P2X receptor.
  • the ion species targeted by the step of measuring the amount of ions in the cells in the step 1 and the step 2 differ depending on the type of the receptor.
  • the receptor is an olfactory receptor
  • calcium ions can be exemplified
  • sodium ions can be exemplified
  • chlorided can be exemplified.
  • the receptor is an olfactory receptor, and the method for contacting a test substance is described below.
  • the test substance is a solid
  • the test substance is applied to eukaryotic cells by applying a solution obtained using a known solvent capable of eluting the odor component contained therein to the eukaryotic cells. It can be in contact.
  • the test substance can be eukaryotic cells by applying a solution obtained using a known solvent capable of absorbing the odor component contained in the substance to the eukaryotic cells. Can be in contact with
  • Step 1 of the calculation method of the present invention is a step of measuring the amount of ions taken into the cells when the test substance is brought into contact with a eukaryotic cell that expresses a receptor.
  • the receptor will be a mammalian-derived olfactory receptor, and the ion taken into the cell will be described below as a representative example of which is a calcium ion.
  • step 1 the medium for maintaining eukaryotic cells expressing mammalian olfactory receptors, culture conditions and the like do not affect the measurement of the amount of calcium ion taken into eukaryotic cells in steps 1 and 2.
  • the scope is not particularly limited. For example, medium, temperature, carbon dioxide concentration, and the like in which cells usually derived from mammals can be cultured can be mentioned.
  • the place to measure the amount of calcium ion incorporated into eukaryotic cells that express mammalian-derived olfactory receptors in step 1 is not particularly limited as long as it can maintain the above-described culture medium and culture environment.
  • locations suitable for cell culture can be exemplified such as on a dish, on a plate, on a multiwell plate, on a chamber, on an array, and the like. From the viewpoint of carrying out the calculation method of the present invention at high throughput, it is preferable to measure on a multiwell, on a chamber provided with a multiwell, and on an array. At this time, it is preferable that the mammalian-derived olfactory receptors expressed by the cells stored in each well be different olfactory receptors.
  • the means for measuring the amount of calcium ion incorporated into eukaryotic cells that express mammalian-derived olfactory receptors in step 1 is not particularly limited as long as the effects of the present invention are exhibited.
  • means using a pigment, means using a calcium binding protein, and the like can be mentioned.
  • the dye used in the means described above is not particularly limited as long as the effect of the present invention is exhibited.
  • fluorescent dyes represented by Fluo-4, Rhod-3, Fluo-3, Fura-2, Indo-1, Quin-2, Rhod-2, or Fluo-8 can be mentioned.
  • These fluorescent dyes are preferably AM derivatives (protection with acetoxymethyl group) that increase cell membrane permeability.
  • the AM form may be in the form of granules in water
  • a surfactant such as Pluronic F-127 or Cremophor EL may be used for the purpose of incorporating the AM form into cells.
  • Pluronic F-127 or Cremophor EL may be used for the purpose of incorporating the AM form into cells.
  • a surfactant such as Pluronic F-127 or Cremophor EL
  • Fluo-3, Fluo-4, Quin-2 or the like from the viewpoint of having the following properties and having a Ca complex dissociation constant (Kd) of 1 nmol / ml or less.
  • the specific method for measuring the amount of calcium ion incorporated into cells using these dyes is not particularly limited. Specifically, there can be mentioned a method of contacting these dyes with calcium ions and measuring the fluorescence value emitted by the dyes in the state where they are bound to each other.
  • the calcium binding protein used in the above-mentioned means is not particularly limited as long as the effect of the present invention is exhibited.
  • mention fluorescent proteins that bind to calcium represented by Geco such as G-Geco, B-Geco, R-Geco, GEX-Geco, GEM-Geco, etc .; Case 12, CEPIA, Aequorin, Cameleon, Pericam or GcaMP etc.
  • the specific method for measuring the amount of calcium ion taken into cells using these calcium binding proteins is not particularly limited. Specifically, there can be mentioned a method of bringing these calcium binding proteins into contact with calcium ions and measuring the fluorescence value emitted by the calcium binding proteins in a state where they are bound to each other.
  • the method of measuring the amount of calcium ions in step 1 is not particularly limited as long as the effect of the present invention is exhibited.
  • the means for measuring the amount of calcium ion is a means using a dye
  • the value obtained after contacting the cell with the test substance is referred to as the amount of calcium ion based on the value (fluorescence value) of the state not stimulating cells. It should be measured as
  • the means for obtaining the numerical values specifically mentioned above is not particularly limited as long as the effects of the present invention are exhibited.
  • the fluorescence value measured without stimulation of cells sometimes referred to herein as “background value”.
  • the difference between the fluorescence value measured after stimulation and the one-dimensional numerical value may be used as the numerical value determined in step 1.
  • step 1 it is also possible to obtain the numerical value of step 1 based on the difference between the two-dimensional numerical value of the fluorescence value (background value) measured without stimulating cells and the fluorescence value measured after stimulation.
  • Step 2 Step 1 of the calculation method of the present invention is a step of measuring the amount of calcium ion when the same cell as the cell used for measurement in Step 1 is depolarized.
  • the means for depolarizing the same cells as the cells used for measurement in step 1 in step 2 is not particularly limited as long as the effects of the present invention are exhibited.
  • potassium compounds or means for contacting ionophores with the cells described above.
  • potassium compounds described above are not particularly limited as long as the effects of the present invention are exhibited.
  • inorganic potassium compounds are preferable from the viewpoint of solubility in the culture medium and cytotoxicity, and potassium chloride is most preferable.
  • the amount of the potassium compound used is not particularly limited as long as the effect of the present invention is exhibited.
  • the potassium compound to be used is potassium chloride
  • the amount is usually about 10 to 500 mM, and preferably about 50 to 200 mM.
  • the above ionophore is not particularly limited as long as the effect of the present invention is exhibited.
  • Ionomycin, A23187 (Calcimycin) and 4-Bromo-A23187 etc. can be mentioned.
  • the amount of ionophore used is also not particularly limited as long as the effect of the present invention is exhibited.
  • Ionomycin described above, it can usually be about 1 ⁇ M.
  • Step 3 of the calculation method of the present invention is a step of calculating the ratio between the numerical value measured in the step 1 and the numerical value measured in the step 2.
  • the ratio (ratio) calculated in step 3 can be a numerical value obtained by dividing the numerical value measured in step 1 by the numerical value calculated in step 2.
  • a chelating agent having a predetermined concentration for example, EDTA or EGTA
  • the numerical value calculated in step 3 can be made more precise by correcting the fluorescence value obtained using E., et al.) With the background value.
  • step 2 corresponds to the final event of the signal cascade triggered in response to olfactory stimuli in cells expressing olfactory receptors.
  • step of depolarizing the cells in step 2 corresponds to the step serving as a positive control of the final event of the cell expressing the olfactory receptor to be measured by the calculation method of the present invention, and thus obtained. It is understood that the specific numerical values given are not influenced by the conditions of the experiment, etc., and show a certain absolute value.
  • the numerical value obtained in the step 1 is obtained as a relative value to some reference value, not constant with the measurement conditions and the like.
  • the degree of activation of cells expressing a specific olfactory receptor for a specific test substance is to some extent It becomes possible to calculate as an absolute numerical value.
  • the second method of calculating the degree of activation of the test substance of the present invention to the receptor will be described. Specifically, the method includes the following steps 1 to 3.
  • Step 1 A step of starting fluorescence measurement before contacting a test substance with a eukaryotic cell that expresses a receptor, and using the average value of fluorescence at a first predetermined time before contacting as Fbase.
  • Step 2 Contacting a test substance with a eukaryotic cell that expresses a receptor, and setting the maximum value of fluorescence at a second predetermined time after the contact of the test substance to Fmax.
  • Step 3 A process of calculating Fmax / Fbase and making it an activation degree.
  • step 1, step 2, and step 3 may be performed in this order. Also in the case of repeated measurement, for example, the second measurement may be performed in the order of step 1, step 2, and step 3.
  • test substance described above is not particularly limited as long as the effect of the present invention is exhibited.
  • substances containing components which are generally not recognized by the sense organs of animals such as humans can also be included in the test substance in the calculation method of the present invention.
  • the category of the test substance described above is not particularly limited as long as the effect of the present invention is exhibited.
  • it may be a pure substance or a mixture.
  • the pure substance is a single substance or a compound.
  • test substance described above is also not particularly limited as long as the effects of the present invention are exhibited.
  • it may be in any form of gas, solid or liquid.
  • the above-mentioned receptor is not particularly limited as long as the effect of the present invention is exhibited.
  • it may be a predetermined receptor to which the nucleic acid 3 of the array 1 described above belongs, and refers to a so-called transmembrane receptor, which may include, for example, a metabotropic receptor, an ion channel receptor.
  • metabotropic receptors include G protein coupled receptors, tyrosine kinase receptors, and guanylate cyclase receptors.
  • G protein coupled receptors include olfactory receptors, muscarinic acetylcholine receptors, adenosine receptors, adrenergic receptors, GABA receptors (type B), angiotensin receptors, cannabinoid receptors, cholecystokinin receptors , Dopamine receptors, glucagon receptors, histamine receptors, opioid receptors, secretin receptors, serotonin receptors, gastrin receptors, P2Y receptors, rhodopsin.
  • tyrosine kinase receptors are insulin receptors, receptors for cell growth factors, and receptors for cytokines.
  • guanylate cyclase receptors are GC-A, GC-B, GC-C.
  • ion channel receptors include nicotinic acetylcholine receptor, glycine receptor, GABA receptor (A and C types), glutamate receptor, serotonin receptor type 3, inositol trisphosphate (IP3) receptor , Ryanodine receptor, P2X receptor.
  • substances known to be taken into cells can be measured.
  • the receptor is an olfactory receptor
  • calcium can be exemplified as a substance in cells.
  • the receptor is an olfactory receptor, and the method for contacting a test substance is described below.
  • the test substance is a solid
  • the test substance is applied to eukaryotic cells by applying a solution obtained using a known solvent capable of eluting the odor component contained therein to the eukaryotic cells. It can be in contact.
  • the test substance can be eukaryotic cells by applying a solution obtained using a known solvent capable of absorbing the odor component contained in the substance to the eukaryotic cells. Can be in contact with
  • the above-mentioned known solvents are not particularly limited as long as they do not respond to olfactory receptors of mammalian origin by the method of the present invention.
  • water, buffer solution, DMSO, methanol, ethanol, medium, Ringer's solution and the like can be mentioned.
  • Step 1 of the calculation method of the present invention is a step of measuring a substance to be taken into the cells when the test substance is brought into contact with a eukaryotic cell that expresses a receptor.
  • the receptor will be referred to as a mammalian-derived olfactory receptor, and the substance taken into the cell will be described as a representative of a system in which calcium is used.
  • a medium for maintaining a eukaryotic cell expressing a mammalian-derived olfactory receptor, culture conditions, and the like do not affect the measurement of the amount of calcium taken into eukaryotic cells in steps 1 and 2.
  • the location at which calcium is incorporated into eukaryotic cells that express mammalian-derived olfactory receptors in step 1 is not particularly limited as long as it can maintain the above-described culture medium and culture environment.
  • locations suitable for cell culture can be exemplified such as on a dish, on a plate, on a multiwell plate, on a chamber, on an array, and the like. From the viewpoint of carrying out the calculation method of the present invention at high throughput, it is preferable to measure on a multiwell, on a chamber provided with a multiwell, and on an array. At this time, it is preferable that the mammalian-derived olfactory receptors expressed by the cells stored in each well be different olfactory receptors.
  • the means for measuring calcium incorporated into eukaryotic cells that express mammalian-derived olfactory receptors in Step 1 is not particularly limited as long as the effect of the present invention is exhibited.
  • means using a fluorescent indicator for calcium can be mentioned.
  • the fluorescent indicator for calcium has an effect of changing the fluorescence intensity according to the amount of calcium.
  • the fluorescent indicator used in the means described above is not particularly limited as long as the effects of the present invention are exhibited.
  • so-called calcium indicators can be used to measure intracellular calcium.
  • an indicator that changes color of intracellular calcium concentration as fluorescence can be used.
  • These fluorescent indicators are preferably AM derivatives (protection with acetoxymethyl group) that enhance cell membrane permeability.
  • the AM form may be in the form of granules in water
  • a surfactant such as Pluronic F-127 or Cremophor EL may be used for the purpose of incorporating the AM form into cells.
  • Pluronic F-127 or Cremophor EL may be used for the purpose of incorporating the AM form into cells.
  • the specific method of measuring the amount of calcium taken into cells using these dyes is not particularly limited. Specifically, a method can be mentioned in which an indicator is brought into contact with intracellular calcium to measure the fluorescence value emitted by the indicator in the state where they are bound to each other.
  • Step 1 is a step of starting fluorescence measurement before contacting a test substance with a eukaryotic cell that has expressed a receptor, and using the average value of fluorescence at a first predetermined time before contact as Fbase.
  • the first predetermined time before the contact is a time for the eukaryotic cell array 10 and the measurement system to measure the thermal stability and the chemical stability before contacting the test substance. Therefore, the start time of the first predetermined time is set by the time when the eukaryotic cell array 10 is placed in the measurement system and the temperature reaches equilibrium thermally.
  • the end time of the first predetermined time does not include the timing at which the chemical equilibrium with the environment is broken, ie, the timing at which the eukaryotic cell array 10 is brought into contact with the test substance. Since the eukaryotic cell array 10 has a finite size, the end time of the first predetermined time is brought into contact with the test substance in consideration of the occurrence of a time difference in the contact of the test substance at both ends of the eukaryotic cell array 10 It is desirable to set before timing.
  • the first predetermined time is a time from the start of measurement to 1 minute before contact with the test substance, and typically, is a time from 5 minutes before test substance contact to 1 minute before contact with the test substance.
  • the start time of the first predetermined time is 30 minutes, 20 minutes, 10 minutes, 9 minutes, 8 minutes, 7 minutes, 5 minutes before the test substance contact as long as the effects of the present invention are exhibited.
  • the end time of the first predetermined time may be 3 minutes ago, 2 minutes 30 seconds ago, 2 minutes ago, 1 minute 30 seconds ago, 50 seconds ago, 40 seconds ago, 30 seconds ago, 20 seconds It may be 10 seconds before.
  • Step 2 is a step of starting fluorescence measurement from around when a test substance is brought into contact with a eukaryotic cell that has expressed the receptor, and setting the maximum value of fluorescence at the second predetermined time after the contact as Fmax is there. Therefore, it is necessary to set the second predetermined time including the additional time (the follow-up observation time) in which it is possible to confirm that the tendency of the decrease in fluorescence continues beyond Fmax.
  • the start time of the second predetermined time be the same as the time when the test substance is contacted.
  • the time for the peak to fall or the shape of the falling curve varies depending on the type of receptor and the test substance, so the additional time (follow-up observation time) is required relatively long It is.
  • the peak value is Fmax when the downward trend continues for 200 seconds or more after the fluorescence intensity starts to decrease from the peak value. It can be judged.
  • the fluorescence intensity turns from the peak value to the falling value, the falling tendency is over the additional time 0.3 times or more of the elapsed time from the start time of the second predetermined time to the peak value.
  • the second predetermined time is a time from 0 to 20 minutes after contact with the test substance, and typically, it is a time from 10 minutes after 0 to 10 minutes after contact with the test substance.
  • the start time of the second predetermined time may be 3 seconds, 5 seconds, 10 seconds, 20 seconds, 30 seconds after the contact with the test substance as long as the effect of the present invention is exhibited.
  • the end time of the predetermined time may be 12 minutes, 15 minutes, 25 minutes or 30 minutes.
  • FIG. 5 is a view showing an example of fluorescence measurement by the calculation method (B).
  • the horizontal axis is time (seconds), and the vertical axis is fluorescence intensity (arbitrary unit).
  • the time on the horizontal axis is 0 seconds for the measurement start, and the test substance is brought into contact with the eukaryotic cell that expresses the receptor at 360 seconds for measurement start (indicated as T360 in FIG. 5).
  • the first predetermined time is T0 to T300, that is, a time of 5 minutes from 6 minutes to 1 minute before contact with the test substance.
  • the second predetermined time is T360 to T900, that is, a time of 10 minutes after 0 minutes to 10 minutes of contact with the test substance.
  • calculation method (B) there is a high measurement reproducibility which does not necessarily require the step of depolarization and the step of contacting a positive control substance, as compared with the calculation method (A).
  • FIG. 6 shows the time response of the fluorescence intensity when the test substance is brought into contact with various olfactory receptors transiently expressed (the test substance is brought into contact in 360 seconds from the start of measurement) ing).
  • FIG. 6 [A] shows the results of examining the time responsiveness of five typical olfactory receptors. As shown in FIG. 6 [A], the fluorescence intensity shows a maximum value at 400 to 450 seconds after the start of the measurement, and is attenuated thereafter. However, for the receptor OR8U1 (FIG. 6 [D]), the fluorescence shows the maximum value in the vicinity of 500 seconds from the start of the measurement and is attenuated thereafter. In addition, for the receptor OR2G2 (Fig.
  • the fluorescence shows a maximum value in the vicinity of 600 seconds from the measurement start, and can be called approximately flat of 600 to 900 seconds. After the period has passed, it has turned to decay.
  • the time response is different, and some receptors may be affected by the test substance contact for a long time.
  • the tendency differs for each receptor.
  • the second predetermined time is set longer than the first predetermined time.
  • the measured value Fmax / Fbase has high reliability as an indicator of the activation degree.
  • the test substance can be repeatedly contacted and the degree of activation can be repeatedly measured without contacting the positive control substance.
  • the first predetermined time is a time of 5 minutes from 6 minutes to 1 minute before the test substance contact
  • the second predetermined time is a time of 10 minutes after 0 minutes to 10 minutes of test substance contact It is.
  • calculation method (B) can also aim at the improvement of reliability further by using the method of quality control together.
  • the cause is unknown, disturbance may be mixed in the whole measurement system, and noise may be superimposed on the measurement signal (fluorescence intensity).
  • the fluorescence intensity may be low as the whole measurement system.
  • the standard deviation (SD) of the fluorescence intensity during the first predetermined time is measured and used as a parameter for determining whether or not to adopt as the activation degree. Specifically, Fbase + 5SD is calculated and compared with the above-described measured value Fmax.
  • the measured value Fmax is Fbase + 5SD or more, it is adopted as the activation degree, and when the measured value Fmax is less than Fbase + 5SD, it is not adopted as the activation degree.
  • Fmax is Fbase + 5SD or more, which is an activation degree that can be sufficiently adopted as the activation degree.
  • the test substance is repeatedly contacted to make the degree of activation without contacting the positive control substance. It can be measured repeatedly.
  • the second measurement following the first measurement is Fbase in the second measurement (hereinafter sometimes referred to as Fbase 2) as described above.
  • Fbase 2 Fbase 2
  • Fbase + 5 SD eg, perfusing Ringer's solution
  • the relaxation time is different for each receptor, so it takes a long time until all the receptors satisfy the condition of Fbase2 ⁇ Fbase + 5SD Sometimes. Therefore, in the case where priority is given to the time efficiency of measurement, the second measurement can be performed even at the timing of Fbase2 ⁇ Fbase + 5SD. That is, by performing Step 1 of obtaining Fbase 2 before the start of the second measurement, the second measurement can be performed continuously. Similarly, the third and subsequent measurements can also be performed.
  • the method for calculating the degree of activation (B) of the present invention has been described above as a representative of a system in which a substance to be incorporated into eukaryotic cells is detected by a fluorescent indicator by contact with a test substance.
  • B) is not limited to this, and a wide range of applications are possible, for example, detection of an ion incorporated into eukaryotic cells by contact with a test substance by a fluorescent dye for measuring ions or a fluorescent binding protein The same applies to the system.
  • the method of calculating the degree of activation (A) of the present invention and the method of calculating the degree of activation (B) of the present invention are the eukaryotic cell array 10 of the present invention, in particular In the present specification, it can be applied to the receptor array 10r).
  • the maximum activation degree possessed by the receptor may be 100%, and may be expressed as a ratio (%) to that.
  • a positive control reagent such as calcium ionopha (reagent that increases intracellular calcium concentration to 100%) or dbcAMP (reagent that activates CNG of calcium channel)
  • Fmax / Fbase at the maximum activation degree is 2.2
  • the method of measuring the degree of activation for each receptor in the receptor array 10r of the present invention is typically as follows. Here, it demonstrates using the example using the calculation method (B) of activation degree.
  • a fluorescent substance for measurement, a fluorescent dye for measurement, or a fluorescent binding protein is allowed to act on the receptor array 10r to establish a reaction system in which the degree of activation based on the contact of the test substance is replaced with fluorescence. Subsequently, a measurement system is established in which a region including all of the through holes 2 of the receptor array 10r is simultaneously acquired collectively as image data.
  • the measuring system not only recognizes the through holes 2 (through holes 2A etc.) of the receptor array 10r individually, but also each eukaryotic cell (eukaryotic cells 4A1, 4A2, 4A3, 4A4 inside the through holes 2). , 4A5, etc.) are set separately.
  • the test substance is brought into contact with the receptor array 10r for which the reaction system has been established.
  • the measurement system is operated before contacting the test substance and acquires image data for a first predetermined time.
  • the measurement system is operated from the vicinity when contacting the test substance, and acquires image data for a second predetermined time.
  • the fluorescence of each eukaryotic cell is quantified, and the activation degree is calculated by calculating the numerical value in each cell unit.
  • the numerical value of the fluorescence of each cell unit performs quality control by the method of setting a slice level (fixed value of fluorescence intensity), adopts only the data more than a predetermined value, and calculates the numerical value in each cell unit It is also acceptable to calculate the degree of activation.
  • the activation degree of each cell unit is subjected to quality control by determination by Fbase + 5SD, and it is also acceptable to adopt and output highly reliable data.
  • the activation degree of each cell unit may be subjected to quality control by a known statistical method, and one data may be calculated and output for each receptor. As a result, for example, it is possible to output 400 activation degree values for 400 receptors.
  • the numerical value calculated by the method of the present invention can be used as a group of information together with, for example, the receptor for which the numerical value is calculated, the concentration of the test substance caused to act on the receptor, and the like. Therefore, when the receptor is an olfactory receptor, a group of information including numerical values calculated according to the present invention can be used as a database in a method of constructing an odor of the present invention described later, or an odor It is useful for the manufacturing method etc. of the composition comprised.
  • the method for constructing the odor of the target substance of the present invention (hereinafter sometimes referred to as “the method of constitution” in the present specification) is each of mammalian origin by two or more standard substances.
  • the odor of the target substance is determined by combining the two or more standard substances such that the degree of activation of each target substance derived from the mammal by the target substance is constituted on the basis of the degree of activation to the olfactory receptor. It is a method to configure.
  • the means for obtaining the degree of activation of each olfactory receptor of mammalian origin by the two or more standard substances described above is not particularly limited as long as the effect of the present invention is exhibited.
  • numerical values obtained by the calculation method (A) and / or the calculation method (B) of the present invention can be used.
  • the means for obtaining the degree of activation of each olfactory receptor of mammalian origin by the target substance described above is not particularly limited as long as the effect of the present invention is exhibited.
  • numerical values obtained by the calculation method (A) and / or the calculation method (B) of the present invention can be used.
  • the method to combine specifically is demonstrated based on the schematic diagram shown in FIG.
  • the schematic diagram of FIG. 7 shows the degree of activation of the target substance to the odor, that is, to a mammalian-derived olfactory receptor (for example, ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ ) by the target substance.
  • a mammalian-derived olfactory receptor for example, ⁇ , ⁇ , ⁇ , ⁇ , and ⁇
  • the combination method is a pattern matching method, and the activation degree of each of the olfactory receptors ⁇ , ⁇ , ⁇ , ⁇ and ⁇ to the target substance, and the olfactory receptors ⁇ , ⁇ , ⁇ , ⁇ and ⁇ of each standard substance It is a method to compare the degree of activation in each and select the closest one.
  • this pattern matching method is performed multiple times because the composition of the target material is not achieved by one standard material.
  • the standard substance a is selected by the first pattern matching method
  • the targets are achieved for the receptors ⁇ , ⁇ , and ⁇ , so in the second pattern matching method, , And receptors ⁇ and ⁇ .
  • the standard substance c is selected, and similarly, as a result of the third pattern matching being performed focusing on only the receptor ⁇ , the standard substance e is selected.
  • the stimulus concentration (test substance concentration) to the olfactory receptor of mammalian origin by the standard substance and the olfactory sensation of mammalian origin shown when reacting accordingly If no linearity is observed between the degree of activation to the receptor, the mammalian origin of the target substance is based on the degree of activation of the mammalian olfactory receptor by a specific concentration of the standard substance.
  • the degree of activation to olfactory receptors can be combined as configured.
  • the stimulation concentration (the test substance concentration) for the olfactory receptor and the activation degree of the olfactory receptor are often non-linear, and the relationship between the two may not be expressed by a function.
  • data on the degree of activation of various olfactory receptors may be collected for a plurality of standard substances at a plurality of concentrations, and this work may be further performed for a plurality of standard substances to be digitized (data) Conceivable.
  • the data obtained in this manner (hereinafter sometimes referred to as first data) can be represented by a three-dimensional matrix of standard substances, concentrations, and receptors.
  • the second data can be obtained by performing similar digitization on the target substance, and can be represented by a one-dimensional matrix. Therefore, by performing predetermined calculations on the first data using the second data, it is possible to obtain an optimal solution closest to the target substance in the combination of the plurality of standard substance candidates and the plurality of concentration candidates. .
  • a test step may be provided in which a difference with a target substance is obtained and tested for a virtual substance (virtual constituent substance on a computer) configured using a plurality of standard substances.
  • the method for producing the composition in which the odor of the target substance of the present invention is composed is based on the degree of activation of each olfactory receptor of mammalian origin by two or more standard substances.
  • the method is a method for producing a composition in which the odor of the target substance is constituted by combining the two or more standard substances such that the degree of activation of each target receptor on olfactory receptors of mammalian origin is constituted.
  • the means for obtaining the degree of activation of each olfactory receptor of mammalian origin by the two or more standard substances described above is not particularly limited as long as the effect of the present invention is exhibited.
  • numerical values obtained by the calculation method of the present invention can be used.
  • the means for obtaining the degree of activation of each olfactory receptor of mammalian origin by the target substance described above is not particularly limited as long as the effect of the present invention is exhibited.
  • numerical values obtained by the calculation method of the present invention can be used.
  • the method to be specifically combined can be described based on the schematic view shown in FIG. 7 as described in the method for constructing the odor described above. That is, in the example of FIG. 7, the target substance can be configured by mixing the standard substances a, c and e in equal amounts.
  • composition produced by the production method of the present invention exhibits an effect that even if the target substance is expensive, it is possible to inexpensively produce a composition having an odor equivalent to this.
  • the odor can be corrected by applying the above-described method of constructing odor. That is, for both the odor of the sample to be corrected and the odor of the target, the degree of activation to olfactory receptors (eg, ⁇ , ⁇ , ⁇ , ⁇ and ⁇ ) is measured.
  • the degree of activation to olfactory receptors eg, ⁇ , ⁇ , ⁇ , ⁇ and ⁇
  • the degree of activation for example, the calculation method (A) and / or the calculation method (B) described above can be used.
  • a comparison between the target odor and the odor of the sample to be corrected is made for each receptor.
  • a specific receptor for example, for receptor ⁇
  • selection is made based on whether the activation degree of the receptor approaches the activation degree of the receptor ⁇ of the target odor. I do.
  • the addition of the odor may be actually a mixture and configuration of standard substances, or may be a virtual configuration on a computer.
  • the judgment as to whether or not the target odor is approached is made on the basis of the degree of activation sought at the receptor ⁇ of the mixed and constituted substance. Such an operation can be repeated for the receptor ⁇ , and when closest, candidate substances can be selected and selected. Although the above focused on the receptor ⁇ for simplification of the description, it is also possible to simultaneously perform such an operation on a plurality of receptors. For example, in the case of n types of receptors, candidate substances can be selected so as to minimize Euclidean distance in n-dimensional space.
  • the database stores the known information on the degree of activation of each receptor by the standard substance in the database, and the degree of activation of the receptor approaches the degree of activation of the target odor by comparison with the information in the database. Selection may be performed based on the judgment criteria.
  • the database has been described above as a database of substances that emit a representative odor, it may be other than this, it may be a database of substances that erase a representative odor.
  • the method of correcting the odor of the sample to the desired odor can be applied to the correction of the odor of the environment (space) to a comfortable one, as well as the odor of the environment (space) is eliminated (deodorant) and comfortable It can also be applied to modifying things.
  • deodorant substances can also be provided as a further application of the present screening method.
  • the extracted olfactory epithelium is dispersed in Ca 2+ ringer solution (pH 7.2; NaCl 140 mM, KCl 5 mM, CaCl 2 1 mM, MgCl 2 1 mM, HEPES 10 mM, glucose 10 mM, and sodium pyruvate 1 mM) containing 1 mM Cystein, and 1 unit / mL Treated with papain or trypsin at 0.25 mg / mL.
  • Ca 2+ ringer solution pH 7.2; NaCl 140 mM, KCl 5 mM, CaCl 2 1 mM, MgCl 2 1 mM, HEPES 10 mM, glucose 10 mM, and sodium pyruvate 1 mM
  • the sample after removal was subjected to centrifugation and washed once to obtain an olfactory epithelium-derived cell solution.
  • Stimulation of olfactory epithelium-derived cells was performed as follows. After refluxing (250 ⁇ L / min) of Ca 2+ ringer solution for 2 minutes on a slide storing olfactory epithelium-derived cells described above, 100 ⁇ L of high K + ringer solution (pH 7.2; NaCl 40 mM, KCl 100 mM, CaCl 2) The position of olfactory nerve cells contained in olfactory epithelium-derived cells by enhancing transient fluorescence derived from Fluo-4 by refluxing 1 mM MgCl 2 1 mM HEPES 10 mM glucose 10 mM sodium pyruvate 20 mM for 20 seconds It was confirmed. As a result, among the olfactory epithelium-derived cells stored in the slide, the number of olfactory nerve cells was about 10,000.
  • the product of the reverse transcription reaction is a forward primer (SEQ ID NO: 10) for the third transmembrane domain of mouse olfactory receptor and a reverse primer for the seventh transmembrane domain (SEQ ID NO: 11) or (SEQ ID NO: 12) PCR was performed.
  • the enzyme for PCR is LA-Taq (Takara) and the PCR buffer is GC buffer I (Takara). After one cycle of reaction at 94 ° C for 1 min, 94 ° C for 0.5 min, 40 ° C for 0.5 min, 72 ° C for 2 min The reaction of 35 cycles was performed, and finally the reaction of 72 ° C. for 5 minutes was performed.
  • the DNA fragment thus obtained was subcloned into pMD20 plasmid (Takara), and the base sequence of the olfactory receptor expressed in cells (HI28-03 and HI25-18) reacted with 2-pentanone was determined.
  • HI28-03 was identified as Olfr168 (mOR271-1; GenBank accession number: AY317252), and HI25-18 as Olfr205 (mOR182-11P; GenBank accession number: BC150839).
  • olfactory nerve cells contained in the olfactory epithelium-derived cells two olfactory nerve cells responding to pyridine as an odorant molecule (cell numbers IG04-13 and HG28-24, respectively) are obtained by the above-mentioned method.
  • IG04-13 is Olfr45 (mOR253-2; GenBank accession number: AY317653)
  • HG28-24 is Olfr166 (mOR270-1; GenBank accession number: AY 317 250) was identified.
  • an olfactory nerve cell (cell number HE22-23) responding to 2-butanone as an odor molecule was obtained from among olfactory nerve cells contained in olfactory epithelium-derived cells by the above-mentioned method.
  • the olfactory receptor expressed in this cell was identified as the olfactory receptor Olfr1258 (mOR232-3; GenBank accession number: AY318460).
  • the above Ca 2+ ringer solution is refluxed on a slide glass storing olfactory epithelium-derived cells set in a one-cell device, and a Ca 2+ ringer solution solution containing 3 mM 2-pentanone described below every 2 minutes
  • the degree of the increase of the transient Fluo-4 derived fluorescence intensity to each olfactory nerve cell was repeatedly measured five times by adding for 20 seconds (FIG. 8).
  • the increase in the fluorescence intensity derived from Fluo-4 obtained when the CNG channel of HI28-03 cells and HI25-18 cells in response to 2-pentanone is depolarized by the high K + ringer solution described above is 100
  • the increase in fluorescence intensity derived from Fluo-4 of both olfactory nerve cells after stimulation with various concentrations of 2-pentanone is expressed as a relative value (assumed 5 independent experiments)
  • 74 ⁇ 3 for HI28-03 cells and 67 ⁇ 4 for HI25-18 cells and their CV values were remarkably stabilized at 4% and 6%, respectively.
  • IG04-13 cells and HG28-24 cells responding to stimulation with pyridine were again stimulated with pyridine, and Ca 2+ ions were taken up after stimulation into these cells. The amount was measured as the increase in fluorescence intensity derived from Fluo-4 (FIG. 9).
  • the increase value of the fluorescence intensity derived from Fluo-4 obtained when depolarizing the CNG channel of IG04-13 cells and HG28-24 cells in response to pyridine by the high K + ringer solution described above is set to 100%.
  • the increase in fluorescence intensity derived from Fluo-4 of both olfactory nerve cells after stimulation with various concentrations of pyridine with respect to this numerical value is expressed as a relative value (the experiment was performed independently for 5 times), IG04-13 In cells 120 ⁇ 6 and in HG28-24 cells 132 ⁇ 5, the CV values were remarkably stable at 5% and 4% respectively.
  • the high degree of quantitativity of the measurement system described above is not only based on the measurement of the amount of change in fluorescence intensity derived from Fluo-4 based on the height of its peak, but also based on the area of the peak. Also confirmed that it is maintained. And, it has been confirmed that agents that cause depolarization of CNG channels present in olfactory neurons that express olfactory receptors can be used not only in high K + ringer solutions but also in known ionophores.
  • a pME18S plasmid in which a gene obtained by fusing a DNA encoding the amino acid sequence shown in SEQ ID NO: 9 with Olfr 168, Olfr 205, Olfr 45 and Olfr 166, each of which is a mouse-derived olfactory receptor gene, was incorporated downstream of the SR ⁇ promoter
  • Olfr 168 which is a mouse-derived olfactory receptor gene
  • the luciferase activity stimulated and stimulated with the serially diluted odorant molecule 2-pentanone is measured in a concentration-dependent manner with respect to 2-pentanone.
  • the luciferase activity was increased, and the EC50 value was calculated to be 2.1 ⁇ 0.6 mM.
  • This is a response to 2-pentanone similar to that of Olfr 168-expressing olfactory neurons (FIG. 8), indicating that one odorant molecule capable of activating Olfr 168 is 2-pentanone.
  • EC50 value (about 4 mM) of HEK293 cells expressing Olfr205 showed responsiveness to 2-pentanone similar to olfactory nerve cells expressing Olfr 205
  • one odor molecule that can activate Olfr 205 is It shows that it is 2-pentanone.
  • EC50 values (about 5 mM) of HEK293 cells expressing Olfr45 or Olfr166 showed responsiveness to pyridine similar to olfactory neurons expressing Olfr45 or Olfr166, odors capable of activating Olfr45 or Olfr166
  • One of the molecules is shown to be pyridine.
  • a plasmid expressing each of 404 types of human-derived olfactory receptor genes selected from human-derived olfactory receptor gene group is constructed by synthetic DNA.
  • the gene encoding the amino acid shown in SEQ ID NO: X9 is fused with each of the human-derived olfactory receptor DNAs described above, and these are expressed by the SR ⁇ promoter.
  • the gene is inserted only at a predetermined position on the chromosome of HEK 293 cells and CHO cells, which corresponds to Flp-In system (Invitrogen).
  • Adopt a plasmid pcDNA5 / FRT.
  • EF-1 ⁇ Human Elongation Factor-1 ⁇
  • HTLV1 Human T-Cell Leukemia Virus 1
  • the DNA used is a DNA comprising the base sequence shown in SEQ ID NO: 1 for the CNGA2 subunit, SEQ ID NO: 3 for the CNGA4 subunit, and SEQ ID NO: 4 for the CNGB1b subunit.
  • CNGA2 subunit gene according to Kozak rule SV40 polyA site according to Kozak rule, at the multicloning site between CMV promoter and SV40 polyA site of pcDNA3.1 + / C-(K) DYK plasmid having neomycin resistance gene
  • a synthetic DNA composed of hEF1-HTLV promoter and G ⁇ olf gene according to Kozak rule is inserted in tandem and named as Construct 2.
  • a mutant (E342G) of a CNGA2 subunit 3 amino acid residue (the 342nd glutamic acid, the 460th cysteine and the 583rd glutamic acid of the amino acid sequence encoded by the base sequence shown in SEQ ID NO: 1) which is difficult to desensitize
  • / C460W / E583M the attenuation of intracellular Ca 2+ concentration is suppressed, even in the case of the endpoint assay, it is suitable when the activation efficiency of the human-derived olfactory receptor is weak.
  • the expression plasmid is prepared as described above for Construct 2 by applying the mutation described above to the CNGA2 subunit (this is designated as Construct M2).
  • CNG subunits In terms of CNG subunits, CNGA2 subunit alone can be used to measure the increase of intracellular Ca 2+ concentration in actual measurement, and sufficient sensitivity can be obtained with Construct 2 and Construct M2, but CNG also has CNGA4 subunit and CNGB1b subunit can also be expressed to exert sufficient activity.
  • each gene (CNGA4 subunit gene and CNGB1b subunit gene and puromycin resistance (Puro) gene which is a drug selection marker) according to the Kozak rule between the hEF1-HTLV promoter and the SV40-derived polyA site at the multicloning site of pUC18 plasmid Is inserted in tandem and named as Construct 3.
  • HEK 293 cells or CHO cells are transformed with Construct 1 according to a conventional method, and blastcidin selection is carried out to stably retain Blastcidin-resistant Construct 1 and then RTP1, RTP2 , Cells that express REEP1 are obtained.
  • transform the construct 2 into the above transformed cells perform neomycin selection, stably maintain neomycin blasticidin resistant Construct 1 and 2, and add it to RTP1, RTP2, REEP1.
  • Cells expressing CNGA2 subunit and G ⁇ olf are designated as strain HEK293-C1 / 2 and strain CHO-C1 / 2, respectively.
  • Flp-In-293 cells and cells are substituted for the HEK 293 cells or CHO cells described above for the purpose of integrating a vector expressing a human-derived olfactory receptor into a predetermined position on the chromosome of the cells to be introduced.
  • Flp-In-CHO cells both are Invitrogen
  • the above-described expression strains for stably retaining Constructs 1 and 2 and Constructs 1, 2 and 3 are similarly prepared. These are designated as F293-C1 / 2; FCHO-C1 / 2; F293-C1 / 2/3; FCHO-C1 / 2/3, respectively.
  • human-derived olfactory receptor expression plasmid 404 types and pOF44 plasmid (Invitrogen) prepared in the above 6) are transformed into F293-C1 / 2 strain, and hygromycin resistant / zeocin sensitive cells are selected. If the same assay as above is performed, it is expected that OR10G4 is also isolated as a human-derived olfactory receptor responding to vanillin.
  • the substrate on which colonies were formed was mounted on the one-cell system described above by the method shown in 2), and stimulation was performed at a concentration of 10 mM using vanillin which is an arbitrary odor molecule by the method shown in 3).
  • vanillin which is an arbitrary odor molecule
  • the substrate 5 used is one in which a slide glass (Matsunami Glass) is plasma-treated to increase its hydrophilicity.
  • the hydrophobic film 6 is a fluorine-based resin, and the hydrophobic film 6 having a plurality of through holes 2 is formed on the substrate 5 by screen printing.
  • the contact angle of the hydrophobic film 6 with water at 23 ° C. was 150 °.
  • HEK293-C1 / 2 strain is dropped to each of the through holes 2 of the array 1 in an equal amount, and a plurality of eukaryotic cells are accommodated in one through hole 2 to obtain eukaryotic cells.
  • the array 10 is completed.
  • the cells were incubated for 2 days under specific culture conditions.
  • the HEK293-C1 / 2 strain proliferated, and transient expression was induced in a plurality of cells inside each through hole 2 to form a plurality of receptors.
  • the receptor array 10r was completed.
  • the receptor array 10r was contacted with a latex / ringer solution as a test substance, and the degree of activation was measured by the calculation method (B).
  • the latex-ringer solution is a solution obtained by heating the latex to 250 ° C. and collecting the generated gas in the ringer solution.
  • a change in calcium concentration in cells was observed as a fluorescence intensity using Calbryte 520 AM solution which is a fluorescent indicator for calcium.
  • the Calbryte 520 AM solution is a solution containing Calbryte 520 AM and a surfactant Pluronic F-127 and using Ringer's solution as a solvent.
  • the first predetermined time of the fluorescence intensity measurement is a time of 5 minutes (T0 to T300 seconds) 6 minutes before to 1 minute before the test substance contact
  • the second predetermined time is 0 minutes after the test substance contact 0 to 10 10 minutes after the minute (T360 to T900 seconds).
  • the fluorescence intensities measured for 5 eukaryotic cells that expressed the receptor OR5A1 for the receptor OR5A1 are shown in FIG.
  • the horizontal axis represents time (seconds) and the vertical axis represents fluorescence intensity.
  • Five curves show five cells (Cell 1 to Cell 5) respectively. Although each cell has different response characteristics to the test substance, it can be seen that the tendency is similar (still, in FIG. 10, origin correction with Fbase being 0 is performed).
  • the activation degree (Fmax / Fbase) was calculated for each of these five cells, and the average value, standard deviation, and coefficient of variation of five pieces were determined. It can be confirmed that the average value is 1.5, the standard deviation is 0.08, and the CV value (coefficient of variation) is 5%, which is very repeatable.
  • Image data processing In the method of measuring the activation degree of the present invention, a region including all of the through holes 2 is simultaneously obtained as image data at one time, and eukaryotic cells in the through holes 2 are individually recognized. It includes the step of quantifying the fluorescence of each of the nuclear cells. Such individual recognition for individual cells, individual data processing, and arithmetic processing can be performed using known image processing software.
  • FIG. 11 shows an example in which image data is acquired at once for the receptor array 10r and individual recognition of cell units is performed.
  • [1] of FIG. 11 is, as an example of image processing, a difference image of an image one minute before contacting the test substance and an image one minute after contacting the test substance (Step 1).
  • the 99 through holes 2 provided in the hydrophobic film 6 can be viewed collectively. Further, it can be seen that a plurality of cells are accommodated in each through hole 2.
  • FIG. 11 [2] is an image in which cells having an intensity of 200 or more (slice level) are recognized in one cell unit and labeled in cell units, as an example of individual data processing, to the image data of Step 1 It is.
  • this image sample it can be collectively recognized that at most two cells exhibit a fluorescence intensity of 200 or more for one through hole 2.
  • FIG. 11 As an example of arithmetic processing, calculation was performed on a cell basis from images before and after contacting a test substance, cells where Fmax F Fbase + 5 SDStep were determined on a cell basis, and labeled on a cell basis. It is an image. In this image sample, three cells are adopted as a result of determination for the entire area.
  • the target substance is composed of melon odor as a target substance, and standard substances (cucumber odor, banana odor, mayonnaise odor).
  • Sample preparation 3 cubic centimeters of each sample (melon, cucumber, banana, mayonnaise) was placed at the bottom of a 30 mL vial, and the top of the top was contacted with the sample without contacting the sample with a silica monolith collector (Mono Trap RGPS TD (GL Science) ) was installed.
  • the composition of the Ringer solution is as follows, and the mixture of pH 7.2 was stored at 4 ° C .: NaCl 140 mM KCl 5mM CaCl 2 1 mM MgCl 2 1 mM HEPES 10 mM D-glucose 10 mM Sodium pyruvate 1 mM
  • the Ringer solution containing the odorous component derived from the sample obtained is immediately subjected to comprehensive odor analysis using a human olfactory receptor-expressing cell array (receptor array 10r), that is, the Ringer solution containing the odorous component is provided as a test substance, The degree of activation of the body was measured.
  • the measurement method is the same as the activation degree measurement described in 13).
  • the degree of activation of human olfactory receptors by the odor from each sample was visualized by the odor matrix.
  • the odor matrix is a concept in which each lattice point of the matrix corresponds to each human olfactory receptor. Specifically, a total of 400 types of human olfactory receptor (396 types), negative control receptor (2 types expressing non-olfactory receptor GPCR) and 2 types of non-receptor expressing cells, 20 ⁇ 20 It is expressed by the grid points of.
  • the melon odor which is a target substance is shown in FIG.
  • the cucumber odor which is the standard substance A is shown in FIG. 13 [A], the banana odor which is the standard substance B in FIG.
  • the sensory test of the above-mentioned component melon odor was carried out according to the QDA method (quantitative descriptive analysis method) described in Miho Imamura “Chemistry and Biology” (Vol. 50, No. 11, 2012).
  • the samples used included 1 ml of Ringer's solution containing melon odor, cucumber odor, banana odor, mayonnaise odor and melon odor respectively, and watermelon odor, pumpkin odor, peach odor and melon soda odor as similar odors.
  • One mL of Ringer's solution was prepared.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Endocrinology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明は、複数の受容体を、それぞれ異なる貫通孔内の核酸上の真核細胞に発現させるデバイスを構築し、デバイスの各貫通孔内に真核細胞を複数収容、受容体を発現させ、複数の各受容体に対する被験物質による活性化度について、一括測定し、これを具体的な数値として評価する方法を提供することを目的とする。 基板と、前記基板上の疎水性被膜と、を含み、前記疎水性被膜は、複数の貫通孔を有し、前記貫通孔の内部に、所定の受容体をコードする遺伝子を含む核酸が、前記基板に接して設けられているアレイ。

Description

匂いの定量方法、それに用いる細胞及びその細胞の製造方法
 本発明は、匂いの定量方法、及びそれに用いる細胞に関する。
 受容体は、細胞外の物質(リガンド)と作用して、情報伝達が惹起される。受容体にはリガンドや機能に応じて様々なタイプがあるが、受容体とリガンドの応答性については、充分に解明されていない。また近年の遺伝子解析によって、受容体に構造が似ているがその機能が不明なタンパク質も見つかっており、オーファン受容体と呼ばれているものもある。
 受容体とリガンドの関係を調べるうえで、異なる遺伝情報を有する所定の受容体を1つずつ配置した受容体アレイと、アレイに対し同時に所定のリガンドを作用させ、受容体の応答性を測定する測定技術の確立が期待されている。
 各種受容体のうち、特に嗅覚受容体に着目すると、動物は外界の匂い情報を、鼻という器官によって認識し、それの識別を行っている。その識別能力は非常に高く、訓練された動物(ヒトを含む)では、匂い物質をガスクロマトグラフィー等の検出機器では検出することができない匂いを識別することもできる。このような訓練された動物が保有する、高度に発達した匂いの認識メカニズムを模倣し、これを検出デバイス化とすることができれば、既存のガスクロマトグラフィー等の検出機器を採用する検出デバイスでは達成することができない、種々の匂いに対して高感度に識別することができる匂いの検出デバイスを創出することができる。
 嗅覚受容体は嗅神経細胞に発現する7回膜貫通型受容体の1種であり、嗅覚受容体の細胞内領域において、Gタンパク質と相互作用を行う。細胞外から匂い分子による刺激があると、嗅覚受容体が活性化状態になり、次いで細胞内においてGタンパク質の一種であるGαolfタンパク質が活性化される。このGαolfはアデニル酸シクラーゼを活性化させ、ATPを原料としてcAMPを嗅神経細胞内に蓄積させる。そして、cAMPは嗅神経細胞の細胞膜上にあるCyclic Nucleotide Gated ion-channel(CNG)と結合してこれを開口させ、CNGを介してカルシウムイオンが細胞内に流入し、結果として細胞内のカルシウムイオン濃度が上昇する。
国際公開公報WO03/100057パンフレット
 細胞外のリガンドとの作用を調べるべく受容体をデバイス化する場合、数百種類にも及ぶ受容体を、受容体の活性化の程度が測定可能な形態で1つのデバイスに構築する技術は、従来確立されていなかった。
 例えば、受容体が嗅覚受容体である場合、鼻腔内にある嗅神経細胞の表面に発現する嗅覚受容体と呼ばれるタンパク質に、匂い分子が結合することに起因して、嗅神経細胞内にて情報伝達が惹起され、匂い情報が脳内へ伝達される。嗅覚受容体はゲノム解析からヒトで約400種類、マウスでは約1100種類存在すると考えられており、特定の匂い分子に対しある嗅覚受容体群が異なる程度で活性化し、これらの刺激が脳に伝達されて組み合わせることによって、脳内にて種々の匂いを識別すると理解される。
 しかし、上述するような種々の匂いに対して高感度に識別することができる匂いの検出デバイスを創出するためには、上記する約400種(又は1100種)もの嗅覚受容体の全てを、実際にその機能を発揮できる状態で、嗅神経細胞以外の複数の培養細胞にて、それぞれの細胞上に発現させ、各嗅覚受容体の匂い刺激に対する活性化の程度を、具体的に比較できる系を構築する必要がある。
 しかしながら、受容体が嗅覚受容体の場合に、受容体の活性化の程度を測定するのに適したレベル(すなわち、細胞表層への提示、十分な発現量、細胞内情報伝達タンパク質との効率的な共役状態の維持)で嗅覚受容体を発現する細胞が確立されていなかった。
 また、このような嗅覚受容体を発現するための外来遺伝子を含むベクターが確立されていなかった。
 また、測定系に関しても、同一受容体を発現する細胞においても1細胞単位でみると上記レベルが均一でないため、受容体の活性化の程度を、高い精度で測定する方法が確立されていなかった。
 さらには、数百種類にも及ぶ受容体の活性化の程度を、デバイス全体を一括して測定する測定技術も、確立されていなかった。
 特許文献1には嗅覚受容体を発現させて匂い分子による活性化を計測する方法が記載されているが、複数の嗅覚受容体が発現した細胞群について、各匂い刺激に対する活性化の程度を画一的に評価する方法は、何ら記載されていない。
 また、嗅覚受容体を発現する細胞を用いた活性化の程度の測定値に基づいて、目標の匂いを構成する方法が確立されていなかった。
 また、嗅覚受容体を発現する細胞を用いた活性化の程度の測定値に基づいて、目標の匂いに修正する方法が確立されていなかった。
 そこで、本発明は、所定の受容体を網羅的に配置した受容体アレイと、アレイに対し同時に所定のリガンドを作用させ、各受容体の活性化の程度を、一括して測定する測定系を提供することを目的とする。
 また、複数の受容体を、それぞれ異なる細胞上に発現させる系を構築し、細胞外からのリガンドに対する各受容体の活性化の程度(以降、活性化度ということがある)について、これを具体的な数値として評価する方法を提供することを目的とする。
 また、受容体が嗅覚受容体であるときに、測定した活性化度をもとに、目標の匂いを構成する方法、さらには目標の匂いに修正する方法を提供することを目的とする。
 本発明者が、上記する課題を解決すべく鋭意研究を重ねた結果、完成されたものであり、例えば下記に示す態様の発明を広く包含するものである。
 (1) 基板と、前記基板上の疎水性被膜と、を含み、
 前記疎水性被膜は、複数の貫通孔を有し、
 前記貫通孔の内部に、所定の受容体をコードする遺伝子を含む核酸が、前記基板に接して設けられているアレイ。
 (2) 前記貫通孔ごとに、異なる前記所定の受容体をコードする遺伝子を含む核酸が設けられている(1)に記載のアレイ。
 (3) 前記複数の貫通孔の断面積平均値が、0.125mm以上0.283mm以下である(1)又は(2)のアレイ。
 (4) 前記貫通孔は、前記基板中に200以上設けられるとともに、前記貫通孔同士の平均ピッチが、0.6mm以上0.8mm以下である(3)に記載のアレイ。
 (5) 前記疎水性被膜は、23℃における水に対する接触角が、70°以上である(1)~(4)に記載のアレイ。
 (6) 前記所定の受容体は、Gタンパク質結合受容体を含む(1)~(5)に記載のアレイ。
 (7) 前記Gタンパク質結合受容体は、嗅覚受容体を含む(6)に記載のアレイ。
 (8) さらに、前記貫通孔1つあたり複数個の真核細胞が収容されている(1)~(7)に記載のアレイ。
 (9) 外来遺伝子として、CNGA2及びGNAL又はそれらの変異体を発現する真核細胞。
 (10) 外来遺伝子として、更に、CNGA4及び/又はCNGB1b又はそれらの変異体を発現する(9)記載の細胞。
 (11) 更に、前記細胞で発現する嗅覚受容体を小胞体膜から細胞膜に移行させ、該嗅覚受容体の該細胞表面への提示効率を上昇させることができるタンパク質をコードする遺伝子を発現する、(9)又は(10)記載の細胞。
 (12) (1)CNGA2及びGNAL又はそれらの変異体をコードする遺伝子を有するベクターA
(2)CNGA4及び/又はCNGB1b又はそれらの変異体をコードする遺伝子を有するベクターB、及び
(3)細胞で発現する嗅覚受容体を小胞体膜から細胞膜に移行させ、該嗅覚受容体の該細胞表面への提示効率を上昇させることができるタンパク質をコードする遺伝子を有するベクターCからなる群より選択される少なくとも1つのベクター。
 (13) (12)に記載する少なくとも1つのベクターが組まれている真核細胞。
 (14) (9)~(11)、又は(13)のいずれかに記載する細胞の染色体上に、一定個数の哺乳類由来の嗅覚受容体をコードする遺伝子を組み込むための領域を有する真核細胞。
 (15) (14)記載の前記領域に、ヒト由来嗅覚受容体遺伝子が組み込まれている真核細胞。
 (16) 前記真核細胞は、(9)~(11)、又は(13)~(15)に記載の真核細胞である(8)記載のアレイ。
 (17) 被験物質による所定の受容体に対する活性化度を算出する方法であって、;
(1)前記受容体を発現する複数の真核細胞に前記被験物質を接触させたときに、前記各々の細胞内に取り込まれるイオン量を測定する工程、
(2)前記工程1で測定に使用した細胞と同一の細胞を脱分極したときの前記各々の細胞内のイオン量を測定する工程、及び
(3)前記工程1にて測定した数値と前記工程2にて測定した数値との比を算出する工程、を含む、方法。
 (18) 前記工程1及び前記工程2において、
細胞内に取り込まれるイオン量を測定する手段が、色素を用いる手段、又は蛍光性結合タンパク質を用いる手段である、
(17)に記載の方法。
 (19) 前記工程2に記載する脱分極させる工程が、カリウム化合物、又はイオノフォアを、前記真核細胞に適用する工程である、(17)又は(18)に記載の方法。
 (20) 被験物質による受容体に対する活性化度を算出する方法であって、;
前記受容体を発現する複数の真核細胞に前記被験物質を接触させたときに、
前記各々の細胞内に取り込まれる物質の量を測定する工程を含み、
 前記接触前の第1所定時間における蛍光の平均値をFbase、
 前記接触後の第2所定時間における蛍光の最大値をFmax、とするときに、
 Fmax/Fbaseを算出し、活性化度とする方法。
 (21) 前記第1所定時間の蛍光の標準偏差をSDとし、
前記Fmaxが、Fbase+5SD以上であるときに、活性化度として採用し、
前記Fmaxが、Fbase+5SD未満であるときには、活性化度として採用しない(20)記載の方法。
 (22) ある被験物質に関する前記測定する工程の後、陽性対照物質を前記真核細胞に接触させることなく、次の被験物質を真核細胞に接触させる(20)又は(21)記載の方法。
 (23) 前記次の被験物質の接触は、前記ある被験物質による蛍光値が、Fbase+5SD以上であるタイミングで行う(22)記載の方法。
 (24) 前記真核細胞の受容体発現は、一過性発現である(17)~(23)に記載の方法。
 (25) 前記受容体は、嗅覚受容体である(24)記載の方法。
 (26) 被験物質による受容体に対する活性化度の測定方法であって、
(16)記載のアレイに対して、イオン測定用色素、又は蛍光性結合タンパク質を作用させる工程と、
前記被験物質を、前記アレイに接触させる工程と、
前記貫通孔の全てを含む領域を、同時に画像データとして取得する工程と、
前記真核細胞を個別に認識し、前記真核細胞各々の蛍光を数値化する工程と、
前記数値を演算処理し、活性化度を算出する工程と、
を含む方法。
 (27) 前記演算処理が、前記接触前の第1所定時間における蛍光の平均値をFbase、
 前記接触後の第2所定時間における蛍光の最大値をFmax、とするときに、
 Fmax/Fbaseを算出し、活性化度とする処理である(26)記載の方法。
 (28) 前記演算処理が、前記接触前の第1所定時間における蛍光の標準偏差をSDとし、
 前記Fmaxが、Fbase+5SD以上であるときに、活性化度として採用し、
 前記Fmaxが、Fbase+5SD未満であるときには、活性化度として採用しない(27)記載の方法。
 (29) 前記受容体が、ヒト由来嗅覚受容体である、(26)~(28)記載の方法。
 (30) 2つ以上の標準物質について、(29)の方法を用いて測定した各受容体の活性化度を基準に、
目標物質について前記測定方法を用いて測定した各受容体の活性化度が構成されるよう、
前記2つ以上の標準物質を組み合わせて、前記目標物質の匂いを構成する方法。
 (31) 2つ以上の標準物質について、(29)の方法を用いて測定した各受容体の活性化度を基準に、
目標物質について、前記測定方法を用いて測定した各受容体の活性化度が構成されるよう、
前記2つ以上の標準物質を組み合わせて、前記目標物質の匂いが構成される組成物の製造方法。
 (32) 前記組み合わせの方法は、
前記各標準物質についての各受容体の活性化度を、第1データとして数値化し、
前記目標物質についての各受容体の活性化度を、第2データとして数値化し、
前記第1データと、前記第2データと、の演算である(30)又は(31)の方法。
 (33) 試料の匂いを、目標の匂い状態に修正するための物質のスクリーニング方法であって、
 前記試料に関する、(29)記載の測定方法を用いて測定した各受容体の活性化度を、前記目標の匂い状態における、(29)記載の測定方法を用いて測定される各受容体の活性化度に近づけることを指標として、候補物質を選抜する工程を含む方法。
 (34) 前記選抜は、候補物質を前記試料に加えて、前記各受容体の活性化度を測定し、この活性化度が前記目標の匂い状態における前記活性化度に近づいたか否かに基づいて行う(33)記載の方法。
 (35) 前記選抜は、標準物質による前記各受容体の活性化度に関する既知の情報に基づき、前記標準物質の中から選抜することを含む(33)記載の方法。
 本発明によれば、受容体アレイと、リガンドに対する受容体の活性化度を測定する技術、及びその応用を提供することができる。
本発明のアレイを示す平面図である。 本発明のアレイ及び真核細胞アレイにおける貫通孔のレイアウトを示す平面図である。 本発明の真核細胞アレイを示す平面図である。 本発明の貫通孔と真核細胞を示す平面図である。 蛍光強度におけるFbase、Fmaxを説明する図である。 嗅覚受容体の被験物質に対する応答特性を示す図である。 活性化度を用いて匂いの構成を説明する図である。 被験物質に対する蛍光値の応答特性を示す図である。 被験物質に対する蛍光値の応答特性を示す図である。 嗅覚受容体の被験物質に対する応答特性を示す図である。 画像データの処理方法を説明する平面図である。 目標物質の匂いマトリックスを示す図である。 標準物質を用いた匂いの構成を説明する図である。
 本明細書において使用する「絶対的」との用語とは、「相対的」の反対語として用いられる用語であり、測定条件によって値が左右され難いということを意味する。また、測定条件が変化しても値が全く変化しないということを意味するのではなく、測定条件が変化したとしても本発明の目的を達成するためには十分な精度の値が得られることを意味する。
アレイ
 本発明のアレイについて、図1、2を用いて説明する。
 図1に示すように、本発明のアレイ1は、基板5と、基板5上の疎水性被膜6を含む。疎水性被膜6には、貫通孔2が複数設けられており、貫通孔2は、基板5に達してしている。
 ここで、基板5は、後述する核酸の搭載、真核細胞の搭載、リガンドの適用、リガンドに対する活性化度の測定において、ハンドリングできる程度の強度を有した材料、例えば25℃におけるヤング率が0.01GPa以上1000GPa以下の材料を用いることができ、メカニカルハンド(ロボットハンド)が扱いやすい1以上500GPa以下の材料を好ましく用いることができる。
 また基板5は、後述する核酸の搭載、真核細胞の搭載、リガンドの適用において、化学的、生物学的に阻害作用を奏さないものが好ましく、石英ガラス、ホウ珪酸ガラス、ソーダアルミノ珪酸ガラス(化学強化ガラスを含む)、バリウムホウ珪酸ガラス、ソーダライムガラスに例示されるガラスやセラミック、ポリカーボネート、ポリメチルメタクリレート、ポリスチレン、脂環式ポリオレフィン、ポリメチルペンテンなどの各種合成樹脂を例示することができる。このうち、合成樹脂に関しては、先述の化学的、生物学的阻害作用を奏しないように留意すれば、例えば添加剤の作用に留意すれば、熱可塑性樹脂、熱硬化性樹脂、放射線硬化樹脂(紫外線、電子線の例を含む)も用いることが可能性である。一例としては、ホウ珪酸ガラスを用いたスライドガラスがある。
 基板5は、プラズマ処理、オゾン処理、イオン処理、放射線処理等の表面活性化処理によって、基板5表面を親水化してもよい。
 基板5の大きさには制限がないが、典型的には100mm角以下であると、人による操作、機械操作ともに扱いやすく、好ましい。また、基板5の厚さには制限がないが、典型的には0mm超10mm以下であると、人による操作、機械操作ともに扱いやすく、好ましい。
 疎水性被膜6は、後述する真核細胞の搭載時において、真核細胞を適度に弾き、真核細胞を疎水性被膜6内の貫通孔2に収納しやすくする作用を有する。すなわち、疎水性被膜6は、適度な疎水性を有しており、その疎水性は、疎水性被膜6の貫通孔2以外の平面部分における接触角(°)で定義することができる。
 疎水性被膜6の接触角は、23℃の水を用いた場合に、70°以上175°以下が望ましい。すなわち撥水性、超撥水性と呼ばれる接触角を示す被膜も含まれる。本発明の疎水性被膜6の接触角は、典型的には、75°以上、80°以上、90°以上、100°以上、110°以上、120°以上、130°以上、135°以上、140°以上、145°以上、150°以上、155°以上、160°以上、165°以上、170°以上である。また、典型的には、170°以下、165°以下、160°以下、155°以下、150°以下、145°以下、140°以下、135°以下、130°以下、120°以下、110°以下、100°以下、90°以下、80°以下、である。
 本発明の一実施態様において、疎水性被膜6の接触角は、23℃の水を用いた場合に、130°以上165°以下である。
 このような接触角を有する疎水性被膜6の具体的な例としては、シリコン系樹脂、フッ素系樹脂、シリコン-フッ素系樹脂を用いることができる。また、ポリエチレングリコール(PEG)等の脂肪族炭化水素、または芳香族炭化水素に対し、疎水性基を導入した誘導体も用いることができる。
 また、熱可塑性樹脂、熱硬化性樹脂、放射線硬化樹脂(紫外線、電子線の例を含む)に対して、シリコン系シランカップリング剤やフッ素系シランカップリング剤を作用させた樹脂も用いることができる(作用とは、共重合や、表面析出、表面コーティングを含む)。疎水性被膜6は、後述する核酸の搭載、真核細胞の搭載、リガンドの適用において、化学的、生物学的に阻害作用を奏さないものが好ましく用いられる。
 疎水性被膜6の厚さに制限はないが、後述する核酸、及び真核細胞の搭載が良好に行える点で、1μm以上200μm以下であることが望ましい。特に搭載した真核細胞が、外部環境の振動により脱離しないように、10μm以上200μm以下が望ましい。また搭載した真核細胞が、外部環境の振動や温度変化等の外乱により、貫通孔2の外に移動しないよう、25μm以上200μm以下が望ましい。典型的には、30μm以上、35μm以上、40μm以上、45μm以上、50μm以上、55μm以上、60μm以上である。また、典型的には、180μm以下、160μm以下、140μm以下、120μm以下、100μm以下、80μm以下である。
 疎水性被膜6は、オフセット印刷、タンポ印刷、スクリーン印刷、インクジェットプリントといった疎水性被膜6の塗膜と、貫通孔2を同時に作成する方法で作成してもよいし、疎水性被膜6を全面に塗布してから、貫通孔2を、リソグラフィの手法で作成してもよい。オフセット印刷、タンポ印刷の場合には、1μm以上10μm以下の厚さ、スクリーン印刷の場合には、20μm以上70μm以下の厚さを作成するのに適している。
 疎水性被膜6が基板5を被覆する範囲は、すべての貫通孔2が配置された領域を覆い得る範囲以上であれば、特に制限されず、アレイ1において、基板2の全面を被覆するものであってもよい。例えば、図1に示すように、貫通孔2すべてを覆いつつ、アレイ1の周縁部は基板5が露出するように形成してよい。
 アレイ1の貫通孔2には、所定の受容体を形成し得る核酸3が、基板5に接して搭載されている。ここで、核酸3は、所定の受容体をコードする遺伝子を含む核酸を含んでいる。アレイ1に搭載され、基板5に接する核酸3は複数であり、アレイ1の貫通孔2のそれぞれに核酸3が搭載されている。例えば所定の受容体をコードする遺伝子を含む核酸3が、貫通孔2ごとに、それぞれ異なる種類の核酸3が搭載されていてもよい。
 ここで、受容体とは、いわゆる膜貫通型受容体を指し、代謝型受容体、イオンチャネル型受容体を含む。
 代謝型受容体の例としては、Gタンパク質共役型受容体、チロシンキナーゼ受容体、グアニル酸シクラーゼ受容体がある。
 Gタンパク質共役型受容体の例としては、嗅覚受容体、ムスカリン性アセチルコリン受容体、アデノシン受容体、アドレナリン受容体、GABA受容体(B型)、アンギオテンシン受容体、カンナビノイド受容体、コレシストキニン受容体、ドーパミン受容体、グルカゴン受容体、ヒスタミン受容体、オピオイド受容体、セクレチン受容体、セロトニン受容体、ガストリン受容体、P2Y受容体、ロドプシンがある。
 チロシンキナーゼ受容体の例としては、インスリン受容体、細胞増殖因子の受容体、サイトカインの受容体がある。
 グアニル酸シクラーゼ受容体の例としては、GC-A、GC-B、GC-Cがある。
 イオンチャネル型受容体の例としては、ニコチン性アセチルコリン受容体、グリシン受容体、GABA受容体(A型、C型)、グルタミン酸受容体、セロトニン受容体3型、イノシトールトリスリン酸(IP3)受容体、リアノジン受容体、P2X受容体がある。
 なお、上記する核酸に含まれる遺伝子によってコードされる受容体の由来は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、動物由来、哺乳類由来、マウス由来、霊長類由来、又はヒト由来を挙げることができる。
 本発明のアレイ1の貫通孔2に搭載される核酸3は、本発明の効果を発揮する範囲に限って特に限定されない。具体的には、DNA、RNA、PNA等を例示することができる。
 核酸3は、真核細胞に核酸3を導入するために用いられる脂質、ポリマー、ウイルス又は磁気粒子をさらに含んでもよい。例えば、後述するプラスミド、遺伝子導入試薬を含んでもよい。また、真核細胞と基板5との接着性を高めるための、細胞接着を促す化合物を含んでもよい。
 本発明のアレイ1の貫通孔2内部に搭載される核酸3は、例えば、ヒト由来の嗅覚受容体であれば、下記に示すNCBIのアクセッション番号にて特定される404個の遺伝子を挙げることができる。
KP290534.1、NG_002151.2、NG_004125、NG_004272.4、NG_004652.2、NM_001001656、NM_001001657、NM_001001658、NM_001001659、NM_001001667、NM_001001674、NM_001001821、NM_001001824、NM_001001827.1、NM_001001912.2、NM_001001913、NM_001001914、NM_001001915、NM_001001916.2、NM_001001917.2、NM_001001918、NM_001001919、NM_001001920、NM_001001921、NM_001001922.2、NM_001001923、NM_001001952、NM_001001953.1、NM_001001954、NM_001001955.2、NM_001001956、NM_001001957、NM_001001957.2、NM_001001958.1、NM_001001959、NM_001001960.1、NM_001001961、NM_001001963.1、NM_001001964.1、NM_001001965、NM_001001966、NM_001001967、NM_001001968、NM_001002905.1、NM_001002907.1、NM_001002917.1、NM_001002918.1、NM_001002925、NM_001003443.2、NM_001003745.1、NM_001003750.1、NM_001004052.1、NM_001004058.2、NM_001004059.2、NM_001004063.2、NM_001004064.1、NM_001004124.2、NM_001004134.1、NM_001004135、NM_001004136.1、NM_001004137、NM_001004195.2、NM_001004297.2、NM_001004450、NM_001004451.1、NM_001004452.1、NM_001004453.2、NM_001004454.1、NM_001004456.1、NM_001004457、NM_001004458.1、NM_001004459.1、NM_001004460.1、NM_001004461、NM_001004461.1、NM_001004462、NM_001004462.1、NM_001004463.1、NM_001004464.1、NM_001004465、NM_001004466、NM_001004467.1、NM_001004469、NM_001004471.2、NM_001004472、NM_001004473、NM_001004474、NM_001004475、NM_001004476、NM_001004477、NM_001004478、NM_001004479、NM_001004480、NM_001004481、NM_001004482、NM_001004483、NM_001004484、NM_001004484、NM_001004485、NM_001004486、NM_001004487、NM_001004488、NM_001004489.2、NM_001004490、NM_001004491、NM_001004491.1、NM_001004492、NM_001004684、NM_001004685、NM_001004686、NM_001004686.2、NM_001004687、NM_001004688、NM_001004689、NM_001004690、NM_001004691、NM_001004692、NM_001004693、NM_001004694.2、NM_001004695、NM_001004696、NM_001004697、NM_001004698.2、NM_001004699.2、NM_001004700.2、NM_001004701.2、NM_001004702.1、NM_001004703.1、NM_001004704.1、NM_001004705、NM_001004706.1、NM_001004707.3、NM_001004708、NM_001004711、NM_001004712、NM_001004713.1、NM_001004714、NM_001004715、NM_001004717、NM_001004719、NM_001004723.2、NM_001004724、NM_001004725、NM_001004726、NM_001004727.1、NM_001004728、NM_001004729、NM_001004730.1、NM_001004731、NM_001004733.2、NM_001004734、NM_001004735、NM_001004736.3、NM_001004737、NM_001004738.1、NM_001004739、NM_001004740、NM_001004741.1、NM_001004742.2、NM_001004743、NM_001004744.1、NM_001004745.1、NM_001004746.1、NM_001004747.1、NM_001004748.1、NM_001004749.1、NM_001004750.1、NM_001004751、NM_001004752.1、NM_001004753、NM_001004754.0、NM_001004755.1、NM_001004756.2、NM_001004757.2、NM_001004758.1、NM_001004759.1、NM_001004760、NM_001005160、NM_001005161.3、NM_001005162.2、NM_001005163、NM_001005164.2、NM_001005165、NM_001005167、NM_001005168、NM_001005169、NM_001005170.2、NM_001005171.2、NM_001005172.2、NM_001005173.3、NM_001005174、NM_001005175.3、NM_001005177.3、NM_001005178、NM_001005179.2、NM_001005180.2、NM_001005181、NM_001005181.2、NM_001005182、NM_001005182、NM_001005183、NM_001005184、NM_001005185、NM_001005186.2、NM_001005187、NM_001005188、NM_001005189、NM_001005190.1、NM_001005191.2、NM_001005192.2、NM_001005193、NM_001005194.1、NM_001005195.1、NM_001005196.1、NM_001005197.1、NM_001005198.1、NM_001005199.1、NM_001005200.1、NM_001005201.1、NM_001005202.1、NM_001005203.2、NM_001005204、NM_001005205.2、NM_001005211、NM_001005212.3、NM_001005213、NM_001005216.3、NM_001005218.1、NM_001005222、NM_001005222.2、NM_001005224、NM_001005226.2、NM_001005234.1、NM_001005235、NM_001005236.3、NM_001005237.1、NM_001005238、NM_001005239、NM_001005240、NM_001005241.3、NM_001005243、NM_001005245、NM_001005270.4、NM_001005272.3、NM_001005274.1、NM_001005275.1、NM_001005276、NM_001005278、NM_001005279、NM_001005280.1、NM_001005281、NM_001005282、NM_001005283.2、NM_001005284、NM_001005285、NM_001005286、NM_001005287、NM_001005288、NM_001005288.2、NM_001005289、NM_001005323、NM_001005324、NM_001005325、NM_001005326、NM_001005327.2、NM_001005328、NM_001005329、NM_001005329.1、NM_001005334、NM_001005338、NM_001005465.1、NM_001005466.2、NM_001005467.1、NM_001005468.1、NM_001005469、NM_001005470.1、NM_001005471、NM_001005479.1、NM_001005480.2、NM_001005482、NM_001005483、NM_001005484、NM_001005484、NM_001005486、NM_001005487.1、NM_001005489、NM_001005489、NM_001005490、NM_001005490.1、NM_001005491.1、NM_001005492、NM_001005493、NM_001005494、NM_001005495、NM_001005496、NM_001005497、NM_001005499、NM_001005500、NM_001005501、NM_001005503、NM_001005504、NM_001005504、NM_001005512.2、NM_001005513.1、NM_001005514、NM_001005515、NM_001005516、NM_001005517、NM_001005518、NM_001005519.2、NM_001005522、NM_001005566.2、NM_001005567、NM_001005853、NM_001013355.1、NM_001013356.2、NM_001013357.1、NM_001013358.2、NM_001079935、NM_001146033.1、NM_001160325、NM_001197287、NM_001258283、NM_001258284、NM_001258285、NM_001291438.1、NM_001317107.1、NM_001348224.1、NM_001348266.1、NM_001348271.1、NM_001348273.1、NM_001348286.1、NM_002548.2、NM_002550.2、NM_002551.3、NM_003552.3、NM_003553.2、NM_003554.2、NM_003555、NM_003696.2、NM_003697、NM_003700、NM_006637、NM_007160.3、NM_012351.2、NM_012352.2、NM_012353.、NM_012360、NM_012363.1、NM_012363.1.、NM_012364.1、NM_012365、NM_012367、NM_012368.2、NM_012369.2、NM_012373.2、NM_012374、NM_012375、NM_012377、NM_012378.1、NM_013936.3、NM_013937.3、NM_013938、NM_013939.2、NM_013940.2、NM_013941.、NM_014565.2、NM_014566、NM_01750、NM_017506.1、NM_019897.2、NM_030774.3、NM_030876.5、NM_030883.4、NM_030901.1、NM_030903.3、NM_030904、NM_
030905.2、NM_030908.2、NM_030946、NM_030959.2、NM_033057.2、NM_033179.2、NM_033180.4、NM_054104、NM_054105、NM_054106、NM_054107.1、NM_080859.1、NM_152430.3、NM_153444、NM_153445、NM_172194、NM_173351、NM_175883.2、NM_175911.3、NM_178168.1、NM_198074.4、NM_198944.1、NM_205859、NM_206880、NM_206899、NM_207186.2又はNM_207374.3。
 本発明のアレイ1に搭載される核酸3の態様は、本発明の効果を発揮する範囲に限って、特に限定されない。
 具体的に上記の核酸3を、貫通孔2の中の基板5上に配置させる方法は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、ドット状に核酸3をプリントする方法を挙げることができる。このようにプリントする際には、下記の実施例にて挙げる様な、プリント時に溶液の変性を受けにくいピエゾ素子(MEMSを含む)を備える公知の機器又はその同等品、例えばインクジェットタイプのプリンターを使用することができる。
 貫通孔2の中の核酸3は、典型的には直径10μm以上300μm以下の大きさで設けられる。
 本発明のアレイ1は、細胞と接触させることによって、該細胞内に受容体をコードする遺伝子を導入することができる。これによって、前記細胞内に受容体を発現させることができる。一例として、動物由来、哺乳類由来、又はヒト由来の嗅覚受容体を発現させることができる。
 なお本発明のアレイ1について、アレイ1が備える基本的な構成について説明してきたが、様々な応用が可能である。例えば、アレイ1は、基板5の疎水性被膜6に覆われていない領域、又は疎水性被膜6の貫通孔2以外の領域を利用して、識別番号を記載する領域を設けてもよい。具体的には、1次元バーコード、2次元バーコード(QRコード(登録商標)を含む)のようにあらかじめ定めた英数字を、光学的、磁気的、電子的に読み取ることのできる形態で記載してもよい。
 コードは、アレイ1毎に異なるユニークなコードであっても、アレイ1毎に同じ固定のコードであってもよい。また、識別番号は、アレイ1における核酸3の配置情報を含んでもよい。例えば、核酸3に関して、核酸3のアレイ1におけるX座標、Y座標、及びその位置に置かれた核酸の構成(配列)に関する情報を、行列の形でコード化して記録したものであってもよい。
 また、識別番号を記載する領域は、手書きやレーザー加工によって描画が可能なブランクな領域(例えば、粗面化した領域、レーザー光を受けて着色する材料を塗布した領域)であってもよい。
 また、アレイ1は、真核細胞4を搭載するまでの待機時間中、安定的に保存するため、ポリエチレン、ポリプロピレン等の合成樹脂のフィルム袋、またはポリスチレン、ガラス等の容器の中に、収納してもよい。収納にあたっては、袋または容器内は、真空、減圧大気、窒素、アルゴン等の不活性ガス封入としてもよい。
 次に、貫通孔2の形状、及びその配置について、図2を用いて説明する。図2は、アレイ1における貫通孔2の配置を示す、マクロ的な平面図である。この説明において、先述の基板5、疎水性被膜6、及び核酸3は、図示していない。具体的には、図2は、アレイ1が直方体である場合の平面図であり、アレイ1の長手方向をX軸、直交方向(X軸に対し垂直方向)をY軸としている。
 貫通孔2はアレイ1において、複数設けられており、その形状は任意であるが、三角、四角等の多角形や円を用いることができる。円は楕円であってもよい。貫通孔2の形状は、円、特に真円であることが最も望ましい。なお図2は、貫通孔2が真円であり、アレイ1に25個配置された例を図示している。
 貫通孔2の大きさは、その断面積平均値が、1個あたり0.125mm以上であることが望ましい。ここで断面積平均値とは、貫通孔2の中心軸方向に対して垂直な方向についての面積を、貫通孔2の高さ方向(深さ方向)について全て算出して平均化したものである。
 すなわち、貫通孔2の形状が、俯瞰図において真円である場合には、その直径(図2中、貫通孔2Bの直径Dに相当)は0.4mm以上であるが、これに限るものではない。貫通孔2の大きさが、その断面積平均値が、0.125mm以上であるである場合には、貫通孔2が1個に対し、400個以上の真核細胞を接触させることができ、後述する真核細胞の形質転換に個体差があっても、計測に適した細胞数を確保しやすい。例えば、断面積平均値が0.125mm未満の貫通孔2である場合には、貫通孔2内の細胞数が少なくなるため、充分な形質転換した細胞数が確保できない、あるいは、受容体の活性化度を統計処理するのに充分な細胞数が確保できない、といった不都合がある。なお、所定の受容体が嗅覚受容体である場合には、貫通孔2が1個に対し、400個以上の2.5%程度に相当する10個以上の真核細胞が発現することとなり、受容体の活性化度を統計処理するのに必要な細胞数が得られる。
 1つのアレイ1には、所定の受容体をコードする核酸3がすべて配置されていることが望ましい。すなわち、複数の核酸3によって、各々の核酸3ごとに対応する受容体が発現する場合、各々の核酸3が1つずつ、アレイ1の貫通孔2内に配置されるのが望ましい。言い換えると、各貫通孔2ごとに、異なる所定の受容体をコードする遺伝子を含む核酸3が設けられている。
 一例として、受容体がヒトの嗅覚受容体である場合、受容体の種類は約400種類にのぼる。このとき、匂いの感知能は、温度、風量、大気分布(気流により生ずる大気中の分子の濃度分布)といった環境要素によって左右されるために、1アレイに対し、受容体の1セットに相当する約400の互いに異なる核酸3を配置し、1回の測定で1セットすべての受容体について一括して測定を行うことが最も望ましい。このとき、アレイ1は、約400個の貫通孔2を有する。
 後述する測定方法において、活性化度の測定をリアルタイムに行う、特に秒単位で連続して測定するためには、数百個(例えば200個以上)の貫通孔2を同時に測定することが必要である。
 特に、蛍光を用いて測定を行うためには、蛍光測定に用いる光学系(例えば光学顕微鏡)の対物レンズの観察視野が有限であることから、貫通孔2の大きさ、貫通孔2同士の中心間隔(ピッチ)が制限を受けるものとなる。
 例えば300個以上、特に400個前後の貫通孔2を同時に測定するためには、典型的には、貫通孔2の断面積平均値は0.283mm以下であることが望ましい。貫通孔2の形状が、真円である場合には、その直径(図2中、貫通孔2Bの直径Dに相当)は0.6mm以下である。また、各スポットの中心間隔(図2中、貫通孔2Bと2AとがなすX軸上のピッチP1、または貫通孔2Bと2CとがなすY軸上のピッチP2)は、0.6mm以上0.8mm以下が望ましい。また、P1=P2であることが望ましい。P1=P2=0.6mm以上0.8mm以下であることが最も望ましい。
 すなわち、蛍光値を測定に用いる場合、例えば貫通孔2が真円の場合、直径Dは、0.4mm以上0.6mm以下が望ましく、平均ピッチP1及び平均ピッチP2は、0.6mm以上0.8mm以下が望ましい。
 ここで、直径Dは、0.42mm以上、0.44mm以上、0.46mm以上、0.48mm以上、0.50mm以上であってよく、0.58mm以下、0.56mm以下、0.54mm以下、0.52mm以下であってよい。
 また、平均ピッチP1、及びP2は、各々独立に、0.64mm以上、0.68mm以上、0.72mm以上、0.76mm以上であってよく、0.76mm以下、0.72mm以下、0.68mm以下であってよい。
 一実施態様において、貫通孔2は真円であり、その直径Dは、0.5mmであり、平均ピッチP1=P2=0.7mmである。これらの数値を用いて、X軸に22個、Y軸に18個、合計396の貫通孔2を有するアレイ1は、各貫通孔の中心は、15.58mm×12.82mmの範囲内に密集して配置されることになる。
真核細胞を収納しているアレイ
 本発明の真核細胞を収納しているアレイ(以降、真核細胞アレイ10ということがある)について、図3、図2、及び図4を用いて説明する。図3に示すように、本発明の真核細胞を収納しているアレイ10は、アレイ1をベースにしており、基板5と、基板5上の疎水性被膜6と、核酸3と、を含む。疎水性被膜6には、貫通孔2が複数設けられており、貫通孔2の形状及び配置は、アレイ1と同じである(図2に図示)。そして貫通孔2には、真核細胞領域4が設けられている。
 図4は、貫通孔2の1つを拡大した模式的な平面図であり、疎水性被膜6に対し、貫通孔2A、真核細胞領域4Aが設けられている。そして真核細胞領域4Aの中には、基板5上に搭載された核酸3に重なるように、複数個の真核細胞が設けられている(図4において、模式的に5つの真核細胞4A1~4A5を図示し、核酸3は図示せず)。
 図4において、1つの貫通孔2に対し、真核細胞数を5個として例示したが、2個以上、5個以上、10個以上、50個以上、100個以上、200個以上、300個以上、400個以上、500個以上、600個以上、700個以上、800個以上、1000個以上、2000個以上、であってよい。
 また、10000個以下、9000個以下、8000個以下、7000以下、6000個以下、5000個以下、4000個以下、3000個以下、2000個以下、1000個以下、であってよい。真核細胞は、例えば、動物由来、哺乳類由来、霊長類由来、ヒト由来の真核細胞であってよい。
 一実施態様において、真核細胞はヒト由来の真核細胞であり、400個以上1000個以下である。
 このように貫通孔2内の核酸3が1個に対し、真核細胞を複数個搭載することによって、核酸3を元にした真核細胞内の受容体発現において、発現する、発現しない、といったばらつきがあったとしても、特定の核酸3について、測定できないというリスクを減らすことができる。例えば、一実施態様において、核酸3が嗅覚受容体であり、真核細胞がヒト由来の真核細胞であり、1つの貫通孔2(1つの核酸3)に対して、真核細胞を400個配置した場合、約1割に相当する40個程度の真核細胞が、測定可能な状態で発現する。そして、40個の真核細胞の1つ1つを個別に認識し、情報として扱うことで、ヒトの嗅覚受容体約400種類のすべてについて、被験物質に対する活性化度を測定する測定系を樹立することができる。
 ところで、受容体をデバイス化する場合、細胞における受容体の発現には、細胞の遺伝子を書き換える安定発現(安定トランスフェクション)と、細胞内にプラスミドを導入して行う一過性発現(一過性トランスフェクション)と、の2つの方法がある。
 安定発現の場合には、細胞内遺伝子の情報が書き換わるため、永続的に使用できる一方、遺伝子発現の収率が悪いため、所定の受容体について、細胞培養したものから選別して、デバイスに搭載することとなる。従って、安定発現した受容体、例えば数百個の受容体を、1つのデバイスに搭載することには、膨大な労力とコストがかかる。
 一方、一過性発現は、短期間、典型的には1週間前後しか、発現した細胞は持続して使用できないが、作成は比較的容易であり、1つのデバイスに搭載することは可能である。作成は比較的容易であるものの、発現の程度には、ばらつきがある。
 本発明の真核細胞アレイ10は、こうした一過性発現により受容体を作成する手法との適合性に優れている。すなわち、貫通孔2内の核酸3に対し、一例として真核細胞を400個配置(例えば、貫通孔2A内に真核細胞を400個収納)することができるため、一過性発現による発現のばらつきがあっても、10個程度の真核細胞は、測定可能な受容体を発現する。その約10個の受容体は、活性化度の測定において互いに性能差を有するが、測定系において、10個の真核細胞の1つ1つを個別に認識し、それぞれの細胞について、後述する活性化度の算出方法(A)、または算出方法(B)によって、正規化した活性化度を測定、算出するならば、それぞれの受容体に対して、適切に活性化度の情報を提供することができる。
 哺乳類由来の受容体を発現する真核細胞を入手する方法は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、マウス由来の嗅細胞を含む初代培養細胞を用いることができる。また、後記する本発明の細胞を用いることもできる。
 なお、上記する発現量を確認する手段は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、ウエスタンブロット等の公知の技術に基づく手段を挙げることができる。
 上記する真核細胞にて発現する受容体の種類は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、1つの細胞に対して1種類の嗅覚受容体を発現するものとすることもできるし、複数の種類の嗅覚受容体が発現するものとすることもできる。1つの細胞に1種類の嗅覚受容体を発現することが好ましい。
 例えば、同定されている哺乳類由来の嗅覚受容体がα、β、γ及びδの4種類であった時、αとβとが真核細胞Aに発現し、βとγとが真核細胞Bに発現し、そしてδが真核細胞Cに発現し、且つ真核細胞A、B及びCにて発現するα、β、γ及びδの総量が同一であり、真核細胞A、B及びCが同一系内で発現していることを好ましい態様として挙げることができる。
 真核細胞にて発現する受容体は、後述する本発明の算出方法(A)又は算出方法(B)を実施する前に同定することもでき、実施した後に同定することもできる。実施する前に同定するのであれば、既に同定された哺乳類由来の嗅覚受容体を発現させる遺伝子を、上記する真核細胞に導入すればよく、実施した後に同定するのであれば、後述する活性化度の算出方法(A)又は算出方法(B)によって活性化度を測定した後の細胞に対して、公知の遺伝子解析に関する技術を組み合わせることで、容易に細胞に含まれる嗅覚受容体を同定することができる。
 本発明の真核細胞アレイ10について、真核細胞アレイ10が備える基本的な構成について説明してきたが、様々な応用が可能である。例えば真核細胞アレイ10は、基板5の疎水性被膜6に覆われていない領域、又は疎水性被膜6の貫通孔2以外の領域を利用して、識別番号を記載する領域を設けてもよい。具体的には、1次元バーコード、2次元バーコード(QRコード(登録商標)を含む)のようにあらかじめ定めた英数字を、光学的、磁気的、電子的に読み取ることのできる形態で記載してもよい。
 コードは、真核細胞アレイ10毎に異なるユニークなコードであっても、真核細胞アレイ10毎に同じ固定のコードであってもよい。また、識別番号は、アレイ1における核酸3の配置情報を含んでもよい。例えば、核酸3に関して、核酸3のアレイ1におけるX座標、Y座標、及びその位置に置かれた核酸の構成(配列)に関する情報を、行列の形でコード化して記録したものであってもよい。
 また、識別番号を記載する領域は、手書きやレーザー加工によって描画が可能なブランクな領域(例えば、粗面化した領域、レーザー光を受けて着色する材料を塗布した領域)であってもよい。
 また、真核細胞アレイ10は、安定的に保存するため、ポリエチレン、ポリプロピレン等の合成樹脂のフィルム袋、またはポリスチレン、ガラス等の容器の中に、収納してもよい。収納にあたっては、袋または容器内は、真空、減圧大気、窒素、アルゴン等の不活性ガス封入としてもよい。
真核細胞
 本発明の真核細胞(例えば図4における4A1~4A5)は、所定の受容体が嗅覚受容体であるときに、外来遺伝子として、CNGA2及びGNALを発現する真核細胞である。真核細胞とは、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、酵母細胞、動物細胞、昆虫細胞、哺乳類細胞、霊長類細胞等を挙げることができる。上記する真核細胞の中でも哺乳類細胞が好ましく、特に取り扱いが容易である不死化されたHEK293細胞、CHO細胞、又はHeLa細胞等に代表されるライン細胞が好ましい。また、ラット嗅覚神経細胞由来のRolf Ba. T細胞(Glia 16:247(1996))も用いることができる。
 CNGA2とは、Cyclic Nucleotide Gated Channel Alpha 2と呼ばれる細胞膜に存在するタンパク質をコードする遺伝子であり、これはcAMPに依存してカルシウムイオンチャネルとして働く。
 上記するCNGA2の由来は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、哺乳類由来とすることを例示できる。中でも、マウス由来、ヒト由来を挙げることができる。
 CNGA2がコードするタンパク質のアミノ酸配列は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、配列番号1に示す塩基配列がコードするアミノ酸配列を挙げることができる。
 また、配列番号1に示す塩基配列がコードするアミノ酸配列は、これがカルシウムイオンチャネルとして働き得る限りにおいて、その変異体も上記するCNGA2に包含することができる。例えば、変異前後のアミノ酸の相同性が、80%以上、好ましくは85%以上、好ましくは90%以上、好ましくは91%以上、さらに好ましくは95%以上である。このような変異には、置換、欠失、挿入等の態様が含まれる。よって、上記する変異体にはスプライス変異体も含まれ得る。
 上記するCNGA2がコードするタンパク質の変異体の中でも、カルシウムイオンチャネルとしてより効率的に働くといった観点から、配列番号1に示す塩基配列がコードするヒト由来CNGA2のアミノ酸配列の342番目のグルタミン酸をグリシンに、460番目のシステインをトリプトファンに、そして583番目のグルタミン酸をメチオニンにした変異体が好ましい。
 本発明の細胞にて発現するGNALとは、Guanine nucleotide-binding protein G subunit alpha Lと呼ばれるタンパク質をコードする遺伝子であり、これは嗅神経細胞の中の嗅覚受容体を発現する細胞において、嗅覚受容体への刺激に応じて惹起されるシグナル伝達を担う低分子量Gタンパク質である。
 上記するGNALの由来は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、哺乳類由来とすることを例示できる。中でも、マウス由来、ヒト由来を挙げることができる。
 GNALのアミノ酸配列は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、配列番号2に示す塩基配列がコードするアミノ酸配列を挙げることができる。また、配列番号2に示す塩基配列がコードするアミノ酸配列は、嗅神経細胞の中の嗅覚受容体を発現する細胞において、嗅覚受容体への刺激に応じて惹起されるシグナル伝達を担い得る限りにおいて、その変異体も上記するGNALに包含することができる。例えば、変異前後のアミノ酸の相同性が、80%以上、好ましくは85%以上、好ましくは90%以上、好ましくは91%以上、さらに好ましくは95%以上である。このような変異には、置換、欠失、挿入等の態様が含まれる。よって、上記する変異体にはスプライス変異体も含まれ得る。
 本発明の細胞は、上記する遺伝子がコードするタンパク質以外に、アデニレートシクラーゼと低分子量Gタンパク質のβドメイン及びγドメインを有している。
 上記する本発明の細胞は、更に、外来遺伝子として、CNGA4及び/又はCNGB1bを発現する細胞とすることが好ましい。
 CNGA4とは、Cyclic Nucleotide Gated Channel Alpha 4と呼ばれる細胞膜に存在するタンパク質をコードする遺伝子であり、これも上記するCNGA2がコードするタンパク質と同様に、カルシウムイオンチャネルとして働く。
 上記するCNGA4の由来は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、哺乳類由来とすることを例示できる。中でも、マウス由来、ヒト由来を挙げることができる。
 CNGA4がコードするタンパク質のアミノ酸配列は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、配列番号3に示す塩基配列がコードするアミノ酸配列を挙げることができる。
 また、配列番号3に示す塩基配列がコードするアミノ酸配列は、カルシウムイオンチャネルとして働き得る限りにおいて、その変異体も上記するCNGA4に包含することができる。例えば、変異前後のアミノ酸の相同性が、80%以上、好ましくは85%以上、好ましくは90%以上、好ましくは91%以上、さらに好ましくは95%以上である。このような変異には、置換、欠失、挿入等の態様が含まれる。よって、上記する変異体にはスプライス変異体も含まれ得る。
 CNGB1bとは、Cyclic Nucleotide Gated Channel Beta 1bと呼ばれる細胞膜に存在するタンパク質をコードする遺伝子であり、これも上記するCNGA2及びCNGA4がコードするタンパク質と同様に、カルシウムイオンチャネルとして働く。
 上記するCNGB1bの由来は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、哺乳類由来とすることを例示できる。中でも、マウス由来、ヒト由来を挙げることができる。
 CNGB1bがコードするタンパク質のアミノ酸配列は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、配列番号4に示す塩基配列がコードするアミノ酸配列を挙げることができる。
 また、配列番号4に示す塩基配列がコードするアミノ酸配列は、カルシウムイオンチャネルとして働き得る限りにおいて、その変異体も上記するCNGB1bに包含することができる。例えば、変異前後のアミノ酸の相同性が、80%以上、好ましくは85%以上、好ましくは90%以上、好ましくは91%以上、さらに好ましくは95%以上である。このような変異には、置換、欠失、挿入等の態様が含まれる。よって、上記する変異体にはスプライス変異体も含まれ得る。
 本発明の細胞にてCNGA2、CNGA4及びCNGB1bが発現する時、これらの3者がそれぞれ2:1:1で発現することが、嗅覚受容体に対する刺激によって惹起される細胞内のシグナル伝達にて上昇するcAMPに対する感度が上昇するので好ましい。
 上記する本発明の細胞は、細胞内で発現する嗅覚受容体を小胞体膜から細胞膜に移行させ、該嗅覚受容体の該細胞表面への提示効率を上昇させることができるタンパク質をコードする遺伝子を発現する細胞とすることが好ましい。
 上記する細胞内で発現する嗅覚受容体を小胞体膜から細胞膜に移行させ、該嗅覚受容体の該細胞表面への提示効率を上昇させることができるタンパク質とは、発明の効果を発揮する範囲に限って、特に限定されない。例えば、RTP1、RTP2、REEP1等のタンパク質を挙げることができる。
 RTP1のアミノ酸配列は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、配列番号5に示す塩基配列がコードするアミノ酸配列を挙げることができる。
 また、配列番号5に示す塩基配列がコードするアミノ酸配列は、細胞内で発現する嗅覚受容体を小胞体膜から細胞膜に移行させ、該嗅覚受容体の該細胞表面への提示効率を上昇させることができる限りにおいて、その変異体も上記するRTP1に包含することができる。例えば、変異前後のアミノ酸の相同性が、80%以上、好ましくは85%以上、好ましくは90%以上、好ましくは91%以上、さらに好ましくは95%以上である。このような変異には、置換、欠失、挿入等の態様が含まれる。よって、上記する変異体にはスプライス変異体も含まれ得る。
 上記するRTP1のスプライス変異体は、本発明の効果を発揮する範囲に限って、特に限定されない。例えばRTP1L、RTP1S等を挙げることができる。中でも、RTP1Sであれば、配列番号6に示す塩基配列がコードするアミノ酸配列を挙げることができる。
 RTP2のアミノ酸配列は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、配列番号7に示す塩基配列がコードするアミノ酸配列を挙げることができる。
 また、配列番号7に示す塩基配列がコードするアミノ酸配列は、細胞内で発現する嗅覚受容体を小胞体膜から細胞膜に移行させ、該嗅覚受容体の該細胞表面への提示効率を上昇させることができる限りにおいて、その変異体も上記するRTP2に包含することができる。例えば、変異前後のアミノ酸の相同性が、80%以上、好ましくは85%以上、好ましくは90%以上、好ましくは91%以上、さらに好ましくは95%以上である。このような変異には、置換、欠失、挿入等の態様が含まれる。よって、上記する変異体にはスプライス変異体も含まれ得る。
 REEP1のアミノ酸配列は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、配列番号8に示す塩基配列がコードするアミノ酸配列を挙げることができる。
 また、配列番号8に示す塩基配列がコードするアミノ酸配列は、細胞内で発現する嗅覚受容体を小胞体膜から細胞膜に移行させ、該嗅覚受容体の該細胞表面への提示効率を上昇させることができる限りにおいて、その変異体も上記するREEP1に包含することができる。例えば、変異前後のアミノ酸の相同性が、80%以上、好ましくは85%以上、好ましくは90%以上、好ましくは91%以上、さらに好ましくは95%以上である。このような変異には、置換、欠失、挿入等の態様が含まれる。よって、上記する変異体にはスプライス変異体も含まれ得る。
 上記する細胞内で発現する嗅覚受容体を小胞体膜から細胞膜に移行させ、該嗅覚受容体の該細胞表面への提示効率を上昇させることができるタンパク質をコードする遺伝子の上流には、これらの遺伝子に対してエピジェネティックな影響を及ぼさないようなプロモーターが配置されていることが好ましい。
 このようなプロモーターは、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、Elongation Factor-1α(EF-1α)を挙げることができる。
 前記するエピジェネティックな影響を及ぼさないようなプロモーターの由来は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、マウス由来又はヒト由来を挙げることができる。
 本発明の真核細胞は、CNGA2及びGNALを有するベクター(本明細書において、これを「ベクターA」と呼ぶことがある)を真核細胞に導入することによって製造することができる。また、このようにして製造した細胞に、CNGA4及び/又はCNGB1bを有するベクター(本明細書において、これを「ベクターB」と呼ぶことがある)を導入することができる。そして、細胞内で発現する嗅覚受容体を小胞体膜から細胞膜に移行させ、該嗅覚受容体の該細胞表面への提示効率を上昇させることができるタンパク質をコードする遺伝子を有するベクター(本明細書において、これを「ベクターC」と呼ぶことがある)を導入することができる。
 本発明のベクターは、上記するベクターA、B及びCの何れかである。これらのベクターを導入して、それぞれが有する遺伝子を発現させることができる真核細胞は特に限定されない。例えば、酵母細胞、哺乳類細胞、昆虫細胞を挙げることができる。中でも、哺乳類細胞が好ましい。上記により構築したベクターは、公知のウイルスを用いて、組み換えウイルスを作製することができ、このような組み換えウイルスは、真核細胞に対して、一過性発現を誘導することができる。公知のウイルスとは、例えば、アデノウイルス、レトロウイルス、アデノ随伴ウイルス、バキュロウイルスを挙げることができる。
 なお、上記するベクターA,B,及びCは、条件を整えれば、安定発現を誘導することも可能である。例えば、本発明の細胞の染色体上に、嗅覚受容体をコードする遺伝子が配置される領域を一定個数以上設けることによって、安定発現が達成される。上記する領域は、前記染色体上の所定の位置に設けられたリコンビナーゼに反応する領域である。
 このようなリコンビナーゼは本発明の効果を発揮する範囲に限って、特に限定されない。例えば、Flp、Cre等を挙げることができる。なお、これらのリコンビナーゼに反応する領域としては、それぞれFrt及びLoxPを挙げることができる。
 上記するように、本発明の細胞の染色体に、嗅覚受容体をコードする遺伝子が組み込まれる領域を一定個数以上有していることから、この領域のみに嗅覚受容体をコードする遺伝子を組み込むことができる。例えば、前記の領域の個数に従って嗅覚受容体をコードする遺伝子が組み込まれる個数も調節することができるので、前記細胞にて発現する嗅覚受容体の量を調節することもできる。
 上記する本発明の細胞によると、嗅神経細胞にて実施される嗅覚受容体の刺激によって惹起されるシグナル伝達を実現することができる。よって、本発明の細胞を用いることによって、後述する本発明の活性化度の算出方法(A)、(B)を好適に実施することができる。
 なお、上記する嗅覚受容体には、これらが細胞膜上に正しいトポロジーにて発現するようにするために、Rhodopsin分子N末端20アミノ酸残基である配列番号9に示すアミノ酸(MNGTEGPNFYVPFSNKTGVV)を、これに融合した状態で本発明の細胞に組み込まれて共に発現されることが好ましい。
活性化の程度の算出方法
 本発明の被験物質(本明細書において、これをリガンドと呼ぶことがある)による受容体に対する活性化の程度を算出する方法(以下、明細書において、これを「算出方法」と呼ぶことがある。)は、算出方法(A)と、算出方法(B)とがある。
活性化の程度の算出方法(A)
 活性化の程度の算出方法(A)は、以下の工程1~3を含む方法である。
(工程1)
受容体を発現する真核細胞に対し被験物質を接触させた時に、該細胞内に取り込まれるイオン量を測定する工程。
(工程2)
前記工程1で測定に使用した細胞と同一の細胞を脱分極した時の該細胞内のイオン量を測定する工程。
(工程3)
前記工程1にて測定した数値と前記工程2にて測定した数値との比を算出する工程。
 前記工程1及び工程2は、工程3の前に実施すればよく、前記工程1と工程2を実施する順序は、本発明の算出方法によって得られる効果に影響を及ぼさない範囲において、特に限定されない。本発明の算出方法によって得られる数値の信頼度に鑑みると、工程1の後に工程2を実施することが好ましい。
 上記する被験物質とは、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、一般的にヒト等の動物によって認識されない匂い成分を含有する物質も、本発明の算出方法における被験物質に包含することもできる。
 上記する被験物質のカテゴリーは、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、純物質とすることもでき、混合物とすることもできる。また純物質が、単体であるか、化合物であるかも、特に限定されない。
 上記する被験物質の形状も、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、気体、固体、又は液体の何れの形状であってもよい。
 上記する受容体は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、上述したアレイ1が有する核酸3の属する所定の受容体であってよく、いわゆる膜貫通型受容体を指し、例えば、代謝型受容体、イオンチャネル型受容体を含み得る。
 代謝型受容体の例としては、Gタンパク質共役型受容体、チロシンキナーゼ受容体、グアニル酸シクラーゼ受容体がある。
 Gタンパク質共役型受容体の例としては、嗅覚受容体、ムスカリン性アセチルコリン受容体、アデノシン受容体、アドレナリン受容体、GABA受容体(B型)、アンギオテンシン受容体、カンナビノイド受容体、コレシストキニン受容体、ドーパミン受容体、グルカゴン受容体、ヒスタミン受容体、オピオイド受容体、セクレチン受容体、セロトニン受容体、ガストリン受容体、P2Y受容体、ロドプシンがある。
 チロシンキナーゼ受容体の例としては、インスリン受容体、細胞増殖因子の受容体、サイトカインの受容体がある。
 グアニル酸シクラーゼ受容体の例としては、GC-A、GC-B、GC-Cがある。
 イオンチャネル型受容体の例としては、ニコチン性アセチルコリン受容体、グリシン受容体、GABA受容体(A型、C型)、グルタミン酸受容体、セロトニン受容体3型、イノシトールトリスリン酸(IP3)受容体、リアノジン受容体、P2X受容体がある。
 上記工程1及び工程2における細胞内のイオン量を測定する工程が対象とするイオン種は、上記受容体の種類によって異なる。例えば受容体が嗅覚受容体である場合には、カルシウムイオンを例示することができ、ニコチン性アセチルコリン受容体の場合には、ナトリウムイオンを例示することができ、グリシン受容体の場合には、塩化物イオンを例示することができる。
 受容体が嗅覚受容体であり、被験物質を接触させる方法について、次に説明する。被験物質が固体である場合には、それに含有される匂い成分を溶出することができる公知の溶媒を用いて得られる溶液を、真核細胞に適用することによって、当該被験物質を真核細胞に接触させることができる。また、被験物質が気体である場合も、それに含有される匂い成分を吸収することができる公知の溶媒を用いて得られる溶液を、真核細胞に適用することで、当該被験物質を真核細胞に接触させることができる。
 上記する公知の溶媒とは、本発明の方法によって哺乳類由来の嗅覚受容体に応答しない溶媒である限り、特に限定されない。例えば、水、緩衝液、DMSO、メタノール、エタノール、培地、リンゲル溶液等を挙げることができる。
 以下に、本発明の算出方法における各工程について詳述する。
工程1について
 本発明の算出方法の工程1は、受容体を発現する真核細胞に対し、前記被験物質を接触させた時に、該細胞内に取り込まれるイオン量を測定する工程である。
 以降、受容体を、哺乳類由来の嗅覚受容体とし、細胞内に取り込まれるイオンが、カルシウムイオンである例に代表させて、以下、説明する。
 工程1において、哺乳類由来の嗅覚受容体を発現する真核細胞を維持するための培地、培養条件等は、工程1及び2における真核細胞内に取り込まれるカルシウムイオン量の測定に影響を与えない範囲において、特に限定されない。例えば、通常、哺乳類に由来する細胞を培養することができる培地、温度、二酸化炭素濃度を挙げることができる。
 なお、工程1において哺乳類由来の嗅覚受容体を発現する真核細胞に取り込まれるカルシウムイオン量を測定する場所は、上記する培地、及び培養環境を維持できる範囲に限り、特に限定されない。例えば、ディッシュ上、プレート上、マルチウェルプレート上、チャンバー上、アレイ上等の細胞培養に適した場所を例示することができる。本発明の算出方法をハイスループットに実施する観点から、マルチウェル上、マルチウェルが設けられたチャンバー上、及びアレイ上での測定することが好ましい。この時、各ウェルに格納される細胞が発現する哺乳類由来の嗅覚受容体は、それぞれ異なる嗅覚受容体であることが好ましい。
 工程1における哺乳類由来の嗅覚受容体を発現する真核細胞内に取り込まれるカルシウムイオン量を測定する手段は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、色素を用いる手段、カルシウム結合タンパク質を用いる手段等を挙げることができる。
 上記する手段において用いられる色素は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、Fluo-4、Rhod-3、Fluo-3、Fura-2、Indo-1、Quin-2、Rhod-2、又はFluo-8等に代表される蛍光色素を挙げることができる。これらの蛍光色素は細胞膜透過性を高めるAM誘導体(アセトキシメチル基による保護)である事が好ましい。
 なお、AM体は水中にて顆粒となることがあるため、これを細胞に取り込ませることを目的として、Pluronic F-127、又はCremophor EL等の界面活性剤を用いてもよい。上記の色素の中でも、細胞内に取り込まれるカルシウムイオン量の経時的な測定が可能であること、効率的に測定できること、顕微鏡B励起付近の汎用性が高い、単一波長励起、単一波長蛍光の特性を有すること、Ca錯体解離定数(Kd)が1nmol/ml以下であること等観点から、Fluo-3、Fluo-4、Quin-2等を用いることが好ましい。これらの色素を用いて細胞内に取り込まれるカルシウムイオン量を測定する具体的な方法は、特に限定されない。具体的には、これらの色素とカルシウムイオンとを接触させて、互いが結合した状態に伴って該色素によって発せられる蛍光値を測定する方法を挙げることができる。
 上記する手段において用いられるカルシウム結合タンパク質は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、G-Geco、B-Geco、R-Geco、GEX-Geco、GEM-Geco等のGeco;Case12、CEPIA、Aequorin、Cameleon、Pericam又はGcaMP等に代表されるカルシウムに結合する蛍光タンパク質を挙げることができる。これらのカルシウム結合タンパク質を用いて細胞内に取り込まれるカルシウムイオン量を測定する具体的な方法は、特に限定されない。具体的には、これらのカルシウム結合タンパク質とカルシウムイオンとを接触させて、互いが結合した状態に伴って該カルシウム結合タンパク質によって発せられる蛍光値を測定する方法を挙げることができる。
 工程1においてカルシウムイオン量を測定する方法は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、カルシウムイオン量を測定する手段が色素を用いる手段の場合、細胞を刺激しない状態の数値(蛍光値)を基準にして、細胞に被験物質を接触させた後に得られる数値をそのままカルシウムイオン量として測定すればよい。
 具体的に上記する数値を求める手段は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、上記する色素を用いてカルシウムイオン量を測定するのであれば、細胞を刺激しない状態で測定される蛍光値(本明細書において、これを「バックグラウンド値」と呼ぶことがある)と、刺激後に測定される蛍光値との一次元数値の差を、工程1において求める数値とすればよい。
 また、細胞を刺激しない状態で測定される蛍光値(バックグラウンド値)と、刺激後に測定される蛍光値との二次元数値の差を基に、工程1の数値を求めることもできる。
工程2について
 本発明の算出方法の工程1は、前記工程1で測定に使用した細胞と同一の細胞を脱分極した時のカルシウムイオン量を測定する工程である。
 工程2において、工程1で測定に使用した細胞と同一の細胞を脱分極する手段は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、カリウム化合物、またはイオノフォアを上記する細胞に接触させる手段を挙げることができる。
 上記するカリウム化合物は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、塩化カリウム、臭化カリウム、水酸化カリウム、カリウムアミド、フッ化カリウム、硝酸カリウム、亜硝酸カリウム、硫酸カリウム、亜硫酸カリウム、炭酸カリウム、炭酸水素カリウム、リン酸一カリウム、リン酸二カリウム、リン酸三カリウム、クロム酸カリウム、二クロム酸カリウム、ピロリン酸カリウム、メタリン酸カリウム、塩素酸カリウム、過塩素酸カリウム、マンガン酸カリウム、過マンガン酸カリウム、酸化カリウム、過酸化カリウム、ケイ酸カリウム、臭素酸カリウム、ヨウ素酸カリウム等に代表される無機カリウム化合物;ギ酸カリウム、酢酸カリウム、クエン酸カリウム、シュウ酸カリウム、フマル酸カリウム、酪酸カリウム、乳酸カリウム、酒石酸カリウム、コハク酸カリウム、オレイン酸カリウム、パルミチン酸カリウム、アスパラギン酸カリウム、グルタミン酸カリウム等に代表される有機カリウム化合物を挙げることができる。
 これらのカリウム化合物の中でも、培地中における溶解性と細胞毒性の観点から無機カリウム化合物が好ましく、塩化カリウムが最も好ましい。
 上記するカリウム化合物の使用量は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、使用量するカリウム化合物が塩化カリウムの場合、通常は10~500mM程度であり、好ましくは50~200mM程度の使用量とすることができる。
 上記するイオノフォアは、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、Ionomycin、A23187(Calcimycin)及び4-Bromo-A23187等を挙げることができる。
 上記するイオノフォアの使用量も、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、上記するIonomycinであれば通常は1μM程度とすることができる。
 工程2における哺乳類由来の嗅覚受容体を発現する真核細胞を維持するための培地、培養条件等;哺乳類由来の嗅覚受容体を発現する真核細胞に取り込まれるカルシウムイオン量を測定する場所;及び哺乳類由来の嗅覚受容体を発現する真核細胞内に取り込まれるカルシウムイオン量を測定する手段は、上記する工程1にて説明したものと同様にすることができる。
工程3について
 本発明の算出方法の工程3は、前記工程1にて測定した数値と前記工程2にて測定した数値との比を算出する工程である。工程3にて算出される比(割合)とは、工程1にて測定した数値を工程2にて算出される数値で除して得られる数値とすることができる。
 なお、工程1及び2にて算出する方法が上記する蛍光値を用いる場合において、上程3の前に工程1及び工程2にて算出した系内に所定の濃度のキレート剤(例えば、EDTA又はEGTA等)を用いて得られる蛍光値をバックグラウンド値と補正することによって、工程3にて算出される数値をより精密なものとすることもできる。
 工程2にて得られる数値が嗅覚受容体を発現する細胞にて嗅覚刺激に反応して惹起されるシグナルカスケードの最終イベントに相当する。また、工程2にて細胞を脱分極するという工程は、本発明の算出方法にて測定対象とする嗅覚受容体を発現する細胞の最終イベントのポジティブコントロールとなる工程に相当するので、これによって得られる具体的な数値は実験の条件等に影響され難く、ある程度の絶対的な値を示すと理解される。
 しかし、工程1にて得られる数値は、測定条件等によって得られる数値が一定せず、何らかの基準値に対する相対的な値として得られることが好ましい。
 そこで、工程2にて得られる絶対的な数値を基準として工程1にて得られる数値を算出することによって、特定の被験物質に対する特定の嗅覚受容体を発現する細胞に対する活性化の程度を、ある程度絶対的な数値として算出することが可能となる。
活性化の程度の算出方法(B)
 本発明の被験物質による受容体に対する活性化の程度を算出する第2の方法について、説明する。具体的には、以下の工程1~3を含む方法である。
(工程1)
受容体を発現する真核細胞に対し、被験物質を接触させる前から蛍光測定を開始し、接触前の第1所定時間における蛍光の平均値をFbaseとする工程。
(工程2)
受容体を発現する真核細胞に対し、被験物質を接触させ、被験物質の接触後の第2所定時間における蛍光の最大値をFmaxとする工程。
(工程3)
Fmax/Fbaseを算出し、活性化度とする工程。
 本活性化の程度の算出方法(B)においては、工程1、工程2、工程3の順に実施すればよい。
 繰り返し測定する場合にも、例えば2回目の測定も、工程1、工程2、工程3の順に実施すればよい。
 上記する被験物質とは、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、一般的にヒト等の動物の感覚器官によって認識されない成分を含有する物質も、本発明の算出方法における被験物質に包含することもできる。
 上記する被験物質のカテゴリーは、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、純物質とすることもでき、混合物とすることもできる。また純物質が、単体であるか、化合物であるかも、特に限定されない。
 上記する被験物質の形状も、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、気体、固体、又は液体の何れの形状であってもよい。
 上記する受容体は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、上述したアレイ1が有する核酸3の属する所定の受容体であってよく、いわゆる膜貫通型受容体を指し、例えば、代謝型受容体、イオンチャネル型受容体を含み得る。
 代謝型受容体の例としては、Gタンパク質共役型受容体、チロシンキナーゼ受容体、グアニル酸シクラーゼ受容体がある。
 Gタンパク質共役型受容体の例としては、嗅覚受容体、ムスカリン性アセチルコリン受容体、アデノシン受容体、アドレナリン受容体、GABA受容体(B型)、アンギオテンシン受容体、カンナビノイド受容体、コレシストキニン受容体、ドーパミン受容体、グルカゴン受容体、ヒスタミン受容体、オピオイド受容体、セクレチン受容体、セロトニン受容体、ガストリン受容体、P2Y受容体、ロドプシンがある。
 チロシンキナーゼ受容体の例としては、インスリン受容体、細胞増殖因子の受容体、サイトカインの受容体がある。
 グアニル酸シクラーゼ受容体の例としては、GC-A、GC-B、GC-Cがある。
 イオンチャネル型受容体の例としては、ニコチン性アセチルコリン受容体、グリシン受容体、GABA受容体(A型、C型)、グルタミン酸受容体、セロトニン受容体3型、イノシトールトリスリン酸(IP3)受容体、リアノジン受容体、P2X受容体がある。
 これら受容体の活性化度に応じて、細胞内に取り込まれることが既知の物質について、測定対象とすることができる。例えば受容体が嗅覚受容体である場合には、細胞内の物質として、カルシウムを例示することができる。
 受容体が嗅覚受容体であり、被験物質を接触させる方法について、次に説明する。被験物質が固体である場合には、それに含有される匂い成分を溶出することができる公知の溶媒を用いて得られる溶液を、真核細胞に適用することによって、当該被験物質を真核細胞に接触させることができる。また、被験物質が気体である場合も、それに含有される匂い成分を吸収することができる公知の溶媒を用いて得られる溶液を、真核細胞に適用することで、当該被験物質を真核細胞に接触させることができる。
 上記する公知の溶媒とは、本発明の方法によって哺乳類由来の嗅覚受容体に応答しない溶媒である限り、特に限定されない。例えば、水、緩衝液、DMSO、メタノール、エタノール、培地、リンゲル溶液等を挙げることができる。
工程1について
 本発明の算出方法の工程1は、受容体を発現する真核細胞に対し、前記被験物質を接触させた時に、該細胞内に取り込まれる物質を測定する工程である。以降、受容体を、哺乳類由来の嗅覚受容体とし、細胞内に取り込まれる物質が、カルシウムである系に代表させて、以下、説明する。
 工程1において、哺乳類由来の嗅覚受容体を発現する真核細胞を維持するための培地、培養条件等は、工程1及び2における真核細胞内に取り込まれるカルシウム量の測定に影響を与えない範囲において、特に限定されない。例えば、通常、哺乳類に由来する細胞を培養することができる培地、温度、二酸化炭素濃度を挙げることができる。
 なお、工程1において哺乳類由来の嗅覚受容体を発現する真核細胞に取り込まれるカルシウムを測定する場所は、上記する培地、及び培養環境を維持できる範囲に限り、特に限定されない。例えば、ディッシュ上、プレート上、マルチウェルプレート上、チャンバー上、アレイ上等の細胞培養に適した場所を例示することができる。本発明の算出方法をハイスループットに実施する観点から、マルチウェル上、マルチウェルが設けられたチャンバー上、及びアレイ上での測定することが好ましい。この時、各ウェルに格納される細胞が発現する哺乳類由来の嗅覚受容体は、それぞれ異なる嗅覚受容体であることが好ましい。
 工程1における哺乳類由来の嗅覚受容体を発現する真核細胞内に取り込まれるカルシウムを測定する手段は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、カルシウム用蛍光指示薬を用いる手段等を挙げることができる。カルシウム用蛍光指示薬は、カルシウムの量に応じて、蛍光強度が変化する作用を有している。
 上記する手段において用いられる蛍光指示薬は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、細胞内カルシウムを測定するためのいわゆるカルシウム指示薬を用いることができる。例えば、Calbryte520、Calbryte590、Calbryte630を用い、細胞内のカルシウム濃度の変化を、蛍光として呈色する指示薬を用いることができる。これらの蛍光指示薬は、細胞膜透過性を高めるAM誘導体(アセトキシメチル基による保護)である事が好ましい。
 なお、AM体は水中にて顆粒となることがあるため、これを細胞に取り込ませることを目的として、Pluronic F-127、又はCremophor EL等の界面活性剤を用いてもよい。
 上記の指示薬の中でも、細胞内に取り込まれるカルシウム量の経時的な測定が可能であること、効率的に測定できること、顕微鏡G励起付近の汎用性が高い、単一波長励起、単一波長蛍光の特性を有すること等の観点から、Calbryte520AMを用いることが好ましい。これらの色素を用いて細胞内に取り込まれるカルシウム量を測定する具体的な方法は、特に限定されない。具体的には、指示薬と細胞内カルシウムとを接触させて、互いが結合した状態に伴って該指示薬によって発せられる蛍光値を測定する方法を挙げることができる。
 (工程1)は、受容体を発現した真核細胞に対し、被験物質を接触させる前から蛍光測定を開始し、接触前の第1所定時間における蛍光の平均値をFbaseとする工程である。ここで、接触前の第1所定時間とは、被験物質を接触させる前の、真核細胞アレイ10及び測定系が、熱的安定、化学的安定な状態を計測するための時間である。
 従って、第1所定時間の開始時刻は、真核細胞アレイ10を測定系に設置して、熱的に平衡に達する時間によって設定する。また、第1所定時間の終了時刻は、環境との化学的な平衡状態が崩れるタイミング、すなわち真核細胞アレイ10に被験物質を接触させるタイミングを含まない。真核細胞アレイ10は有限の大きさを持つため、真核細胞アレイ10の両端では被験物質の接触に時間差が生ずることも考慮して、第1所定時間の終了時刻は、被験物質を接触させるタイミングより前に設定するのが望ましい。
 例えば、第1所定時間は、測定開始から被験物質接触前1分前までの時間であり、典型的には、被験物質接触6分前~1分前の5分間の時間である。
 本発明の効果を発揮する範囲に限り、第1所定時間の開始時刻は、被験物質接触の30分前、20分前、10分前、9分前、8分前、7分前、5分前であってもよく、第1所定時間の終了時刻は、3分前、2分30秒前、2分前、1分30秒前、50秒前、40秒前、30秒前、20秒前、10秒前であってもよい。
 (工程2)は、受容体を発現した真核細胞に対し、被験物質を接触させた時付近から蛍光測定を開始し、接触後の第2所定時間における蛍光の最大値をFmaxとする工程である。従って、第2所定時間は、Fmaxを越えて、蛍光が低下する傾向が持続することが確認できる追加時間(経過観察時間)を含んで設定することが必要である。
 ここで、受容体に対する被験物質の応答速度は、極めて速いことから、第2所定時間の開始時刻は、被験物質を接触させた時刻と同一とすることが望ましい。
 一方、蛍光の最大値Fmaxに関しては、受容体の種類、被験物質によって、ピークから低下に転ずる時刻や、下降曲線の形にバラツキがあるため、追加時間(経過観察時間)は比較的長めに必要である。多くの受容体の種類、被験物質を検討した結果、1つの判断基準としては、蛍光強度がピーク値から下降に転じた後、200秒間以上、下降傾向が持続した場合に、ピーク値をFmaxと判断することができる。また、別の判断基準としては、蛍光強度がピーク値から下降に転じた後、第2所定時間の開始時刻からピーク値までの経過時間の0.3倍以上の追加時間に渡り、下降傾向が持続した場合に、ピーク値をFmaxと判断することができる。
 例えば、第2所定時間は、被験物質接触後0~20分後までの時間であり、典型的には、被験物質接触後0~10分後の10分間の時間である。
 本発明の効果を発揮する範囲に限り、第2所定時間の開始時刻は、被験物質接触の3秒後、5秒後、10秒後、20秒後、30秒後であってもよく、第2所定時間の終了時刻は、12分後、15分後、25分後、30分後であってもよい。
 このようにして求めたFbase、Fmaxに基づいて、Fmax/Fbaseを算出することによって、受容体の活性化度を求めることができる。
 図5は、算出方法(B)による蛍光測定の例を示す図である。横軸は時間(秒)であり、縦軸が蛍光強度(任意単位)となっている。横軸の時間は測定開始を0秒としたものであり、測定開始360秒(図5中、T360と表示)において、受容体を発現する真核細胞に被験物質を接触させている。図5の例において、第1所定時間は、T0~T300であり、すなわち被験物質接触6分前~1分前の5分間の時間である。また、第2所定時間は、T360~T900であり、すなわち被験物質接触0分後~10分後の10分間の時間である。
 図5が示すように、第1所定時間における蛍光は安定しており、その平均値はベースラインとしてふさわしい。また第2所定時間における蛍光は、鋭利なピークを有し、最大値の検出は容易に行える。従って、FmaxをFbaseで除することは、活性化度を効果的に表す指標となり得る。
 図5の例においては、Fbase=656であり、Fmax=949であるから、これら数値に基づいて、活性化度は、Fmax/Fbase=1.4と算出される。
 算出方法(B)の利点としては、算出方法(A)と比べて、脱分極の工程、陽性対照物質を接触させる工程を必ずしも必要としない高い測定再現性にある。
 図6は、一過性発現させた各種嗅覚受容体について、被験物質を接触させた際の、蛍光強度の時間応答性を測定したものである(測定開始から360秒において、被験物質を接触させている)。図6[A]は、嗅覚受容体のうち、典型的な5例についての時間応答性を調べた結果である。図6[A]が示すように、測定開始から400~450秒において蛍光強度は最大値を示し、以降減衰している。
 しかしながら、受容体OR8U1(図6[D])については、測定開始から500秒付近において蛍光の最大値を示し、以降減衰している。
 また、受容体OR2G2(図6[B])、受容体OR4C11(図6[C])については、測定開始から600秒付近において蛍光は最大値を示し、600~900秒の、およそフラットと呼べる期間を経過した後、減衰に転じている。
 このように受容体により、時間応答性が異なり、一部の受容体においては、被験物質接触の影響を長く受けるものがある。
 また、測定開始前の時間における蛍光強度についても、受容体ごとに傾向が異なる。
 このことから、第1所定時間より第2所定時間を長く設定することが望ましく、このような時間設定する限りにおいて、測定値Fmax/Fbaseは、活性化度の指標として、高い信頼性を有する。このような測定方法を採用する限り、陽性対照物質を接触させることなく、被験物質を繰り返し接触させて、活性化度を繰り返し測定することができる。
 典型的には、第1所定時間は、被験物質接触6分前~1分前の5分間の時間であり、第2所定時間は、被験物質接触0分後~10分後の10分間の時間である。
 なお、算出方法(B)は、品質管理の手法を併用して、さらに信頼性の向上を図ることもできる。例えば、原因は不明であるが、測定系全体に外乱が混入し、測定信号(蛍光強度)にノイズが重畳されることがある。また測定系全体として、蛍光強度が低くなることがある。このような場合の測定においても、信頼性を確保する方法として、第1所定時間中の蛍光強度の標準偏差(SD)を測定し、活性化度として採用するか否か判定するパラメータとして用いる。具体的には、Fbase+5SDを算出し、上述した測定値Fmaxと比較する。測定値FmaxがFbase+5SD以上であるときには活性化度として採用し、測定値FmaxがFbase+5SD未満であるときには活性化度として採用しない。このように測定値について、統計的な判定を行うことにより、測定値Fmax/Fbaseを活性化度として扱う際の信頼性はさらに向上する。
 例えば、図5の例においては、第1所定時間中の蛍光強度の標準偏差(SD)は、SD=9であり、上述のように、Fbase=656、Fmax=949であるから、Fbase+5SD=701と算出される。このとき、FmaxはFbase+5SD以上であり、活性化度として、充分採用し得る活性化度である。
 上述したように、測定値Fmax/Fbaseは、活性化度の指標として、本来、高い信頼性を有することから、陽性対照物質を接触させることなく、被験物質を繰り返し接触させて、活性化度を繰り返し測定することができる。
 この繰り返し測定において、測定値に高い信頼性を求める場合には、1回目の測定に続く2回めの測定は、2回目の測定におけるFbase(以降、Fbase2と記すことがある)が、上記したFbase+5SDを下回る時間まで放置する(例えばリンゲル液を灌流する)ことによって、2回目の測定は、1回目の測定の影響を受けることなく実施することができる。Fbase2<Fbase+5SDとなる時間(緩和時間)は、受容体や被験物質にもよるが、典型的には20分以上である。同様に、3回目以降の測定も、この方法を用いて行うことができる。
 一方、受容体を複数配置したアレイにおいて、繰り返し測定を行う場合においては、受容体ごとに緩和時間が異なるため、すべての受容体がFbase2<Fbase+5SDの条件を満たす時間まで放置すると多大な時間を要することがある。従って、測定の時間効率を優先させる場合においては、Fbase2≧Fbase+5SDであるタイミングにあっても、2回目の測定を行うことができる。すなわち、2回目の測定の開始前に、Fbase2を求める工程1を行っていることにより、継続的に2回目の測定を行うことができる。同様に、3回目以降の測定も行うことができる。
 以上、本発明の活性化度の算出方法(B)について、被験物質との接触により、真核細胞内に取り込まれる物質を蛍光指示薬によって検出する系に代表させて説明してきたが、算出方法(B)は、これに限らず、幅広い応用が可能である、例えば、被験物質との接触により、真核細胞内に取り込まれるイオンを、イオン測定用の蛍光色素、または蛍光性結合タンパク質によって検出する系についても、同様に適用することができる。
 また、本発明の活性化度の算出方法(A)、及び本発明の活性化度の算出方法(B)は、本発明の真核細胞アレイ10、特に受容体を発現した真核細胞アレイ(本明細書において、受容体アレイ10rということがある)にも適用することができる。
 なお、活性化度は、Fmax/Fbaseを基にした数値計算により、別の数値表現も可能である。例えば、受容体が有する最大活性化度を100%とし、それに対する比率(%)で表現してもよい。具体的には、被験物質の代わりに、例えばカルシウムイオノフェア(細胞内のカルシウム濃度を100%に高める試薬)やdbcAMP(カルシウムチャネルのCNGを100%活性化する試薬)などの陽性対照試薬で処理を行うことによって、受容体が有する最大活性化度を求めることができる。上記の図5の例では、最大活性化度におけるFmax/Fbaseは2.2であることが予め分かっているので、図5のFmax/Fbase=1.4の測定値における被験物質による活性化は、1.4/2.2=0.64、すなわちその受容体が有する最大活性化度に対し、64%が発揮された、と表現することもできる。
受容体アレイの測定方法
 本発明の受容体アレイ10rに対して、各受容体に対する活性化度を測定する方法は、典型的には、以下のとおりである。ここでは、活性化度の算出方法(B)を用いた例を用いて説明する。
 受容体アレイ10rに、測定用蛍光物質、測定用蛍光色素、又は蛍光性結合タンパク質を作用させ、被験物質の接触に基づく活性化度を蛍光に置き換える反応系を樹立する。
 続いて、受容体アレイ10rの貫通孔2の全てを含む領域を、同時に一括して画像データとして取得する測定系を樹立する。ここで、測定系は、受容体アレイ10rの貫通孔2(貫通孔2A等)を個別に認識するのみならず、貫通孔2内部の各真核細胞(真核細胞4A1、4A2、4A3、4A4、4A5等)を個別に認識できるように、受光光学系を設定する。
 続いて、被験物質を、反応系を樹立した受容体アレイ10rに対して接触させる。
 ここで、測定系は、被験物質を接触させる前から動作させ、第1所定時間の間、画像データを取得する。
 また、測定系は、被験物質を接触させる時付近から動作させ、第2所定時間の間、画像データを取得する。
 第2所定時間の経過後、真核細胞各々の蛍光を数値化し、各細胞単位で数値を演算することによって活性化度を算出する。
 この際、各細胞単位の蛍光の数値は、スライスレベル(蛍光強度の固定値)を設定する手法によって、品質管理を行い、所定値以上のデータのみを採用し、各細胞単位で数値を演算することによって活性化度を算出することも許容される。
 また、各細胞単位の活性化度は、Fbase+5SDによる判定によって、品質管理を行い、信頼性の高いデータを採用し、出力することも許容される。
 また、各細胞単位の活性化度は、公知の統計手法によって、品質管理を行い、各受容体毎に、1つのデータを算出し、出力することも許容される。その結果、例えば、400個の受容体に対して、400個の活性化度の数値を出力することが許容される。
 本発明の方法によって算出される数値は、例えば、この数値の算出対象とした受容体、及び該受容体に作用させた被験物質の濃度等と共に、一群の情報として用いることができる。
 よって、受容体が嗅覚受容体である場合には、本発明によって算出される数値を含む一群の情報は、これをデータベースとして用いることによって、後記する本発明の匂いを構成する方法、又は匂いが構成された組成物の製造方法等に有用である。
 本発明の算出方法によって得られる数値は、下記に示す様々な用途に使用することができる。
 例えば、ある物質の匂いを、その他の2つ以上の物質の匂いを組み合わせることによって、再現する方法を提供することができる。これについて、本発明の匂いを構成する方法にて詳細に後述する。そして、ある物質の匂いが構成された組成物を、その他の2つ以上の物質を組み合わせて再現する方法も提供することができる。これについて、匂いが構成された組成物の製造方法にて詳細に後述する。
匂いを構成する方法
 本発明の目標物質の匂いを構成する方法(以下、本明細書において、これを「構成方法」と呼ぶことがある。)は、2つ以上の標準物質による哺乳類由来の各嗅覚受容体に対する活性化の程度を基準に、目標物質による哺乳類由来の各嗅覚受容体に対する活性化の程度が構成されるよう、該2つ以上の標準物質を組み合わせて、該目標物質の匂いを構成する方法である。
 上記する2つ以上の標準物質による哺乳類由来の各嗅覚受容体に対する活性化の程度の入手手段は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、本発明の算出方法(A)及び/又は算出方法(B)によって得られる数値を利用することができる。
 上記する目標物質による哺乳類由来の各嗅覚受容体に対する活性化の程度の入手手段は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、本発明の算出方法(A)及び/又は算出方法(B)によって得られる数値を利用することができる。
 具体的に組み合わせる方法について、図7に示す模式図を基に説明する。図7の模式図にて、目標物質による匂いを構成する、すなわち目的物質による哺乳類由来の嗅覚受容体(例えばα、β、γ、δ及びε)への活性化の程度を示す。
 ここで、標準物質として、例えばa、b、c、d及びeのうちの、a、c及びeを組み合わせることによって、目標物質による哺乳類由来の嗅覚受容体の活性化の程度を構成することができる事を図7の模式図にて示している。すなわち、組み合わせる方法は、パターンマッチング法であり、目標物質に対する嗅覚受容体α、β、γ、δ及びεにおける各々活性化度と、各標準物質の嗅覚受容体α、β、γ、δ及びεにおける各々活性化度を比較し、最も近いものを選抜する方法である。多くの場合、目標物質の構成が、1つの標準物質によって達成されることはないため、このパターンマッチング法は、複数回行われる。例えば図7の場合、最初のパターンマッチング法によって、標準物質aが選抜されたとすると、受容体α、β、及びγについては目標が達成されたことになるので、2回目のパターンマッチング法においては、受容体δ及びεにのみ着目して行われる。その結果、標準物質cが選抜され、同様に3回目のパターンマッチングが受容体εにのみ着目して行われた結果、標準物質eが選抜される。
 なお、上記する標準物質による哺乳類由来の嗅覚受容体の活性化の程度について、標準物質による哺乳類由来の嗅覚受容体に対する刺激濃度(被験物質濃度)と、それによって反応する際に示す哺乳類由来の嗅覚受容体に対する活性化の程度との間に、線形性が認められない場合には、特定の濃度の標準物質による哺乳類由来の嗅覚受容体に対する活性化の程度を基にして、目標物質による哺乳類由来の嗅覚受容体に対する活性化の程度が構成されるように組み合わせることができる。
 なお、嗅覚受容体に対する刺激濃度(被験物質濃度)と、嗅覚受容体の活性化度との間は、非線形であることが多く、また両者の関係を、関数で表せないこともある。このような場合には、複数の濃度の標準物質について、各種嗅覚受容体の活性化度のデータを収集し、この作業を更に複数の標準物質について行って、数値化(データ化)することが考えられる。このようにして得たデータ(以降、第1データということがある)は、標準物質(複数)、濃度(複数)、受容体(複数)の三次元行列で表すことができる。
 また、目標物質について同様な数値化を行って、第2データを得ることができ、一次元行列で表すことができる。
 従って、第1データに対して、第2データを用いて所定の演算することによって、複数の標準物質候補と、複数の濃度候補との組み合わせにおいて、目標物質に最も近い最適解を得ることができる。また、演算の過程において、複数の標準物質を用いて構成した仮想の物質(計算機上のバーチャルな構成物質)について、目標物質との差分を求めて検定する検定工程を設けてもよい。
匂いが構成された組成物の製造方法
 本発明の目標物質の匂いが構成された組成物の製造方法は、2つ以上の標準物質による哺乳類由来の各嗅覚受容体に対する活性化の程度を基準に、目標物質による哺乳類由来の各嗅覚受容体に対する活性化の程度が構成されるよう、該2つ以上の標準物質を組み合わせて、該目標物質の匂いが構成された組成物の製造方法である。
 上記する2つ以上の標準物質による哺乳類由来の各嗅覚受容体に対する活性化の程度の入手手段は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、本発明の算出方法によって得られる数値を利用することができる。
 上記する目標物質による哺乳類由来の各嗅覚受容体に対する活性化の程度の入手手段は、本発明の効果を発揮する範囲に限って、特に限定されない。例えば、本発明の算出方法によって得られる数値を利用することができる。
 具体的に組み合わせる方法については、上記の匂いを構成する方法にて説明する通り、図7に示す模式図を基に説明することができる。すなわち、図7の例においては、標準物質a、c及びeを等量ずつ混合することにより、目標物質を構成することができる。
 本発明の製造方法によって製造される組成物は、目標物質が高価であったとしても、これと同等の匂いを構成する組成物を安価に作成することも可能であるとの効果を奏する。
試料の匂いを、目的の匂いに修正するための物質のスクリーニング方法
 上述した匂いの構成方法を応用して、匂いの修正を行うことができる。
 すなわち、修正しようとする試料の匂いと、目標の匂いの両方について、嗅覚受容体(例えばα、β、γ、δ及びε)への活性化度を測定する。ここで、活性化度の評価は、例えば上述した算出方法(A)及び/又は算出方法(B)を用いることができる。
 ここで、目標とする匂いと修正しようとする試料の匂いの比較を、各受容体ごとに行う。続いて、特定の受容体について(例えば受容体αについて)、標準物質として何を、どのくらい加えれば目標とする受容体αが検知する匂いに近づくかを検討し、加算する候補物質を、複数の標準物質から選抜する。このとき、修正しようとする匂いと選抜した標準物質を加算した匂いについて、受容体の活性化度が、目標とする匂いの受容体αの活性化度に近づいているかどうかを判断基準として、選抜を行う。
 匂いの加算は、実際に標準物質の混合・構成でもよいし、計算機上のバーチャルな構成であってもよい。目標とする匂いに近づいているかどうかの判断は、混合・構成した物質の受容体αにおいて求める活性化度を基準として行う。このような操作を受容体αについて繰り返し行い、最も近づいたときに、候補物質の選選抜を行うことができる。
 以上は、説明の簡単化のために、受容体αについて着目したが、複数の受容体について、このような操作を同時に行うことも可能である。例えば受容体の種類がn種類の場合には、n次元空間におけるユークリッド距離が最小となるように、候補物質を選抜することができる。
 また、標準物質による各受容体の活性化度に関する既知の情報をデータベースに収納しておき、データベースの情報との比較によって、受容体の活性化度が、目標とする匂いの活性化度に近づいているかどうかを判断基準として、選抜を行ってもよい。またデータベースは、代表的な匂いを発する物質のデータベースとして、上記説明を行ったが、これ以外に、代表的な匂いを消去する物質のデータベースとしてもよい。
 試料の匂いを、目的の匂いに修正する方法は、環境(空間)の匂いを快適なものに修正することに応用できるほか、環境(空間)の臭いを消去し(消臭し)、快適なものに修正することにも応用できる。また、本スクリーニング方法の更なる応用として、デオドラント物質を提供することもできる。
 以下に、本発明をより詳細に説明するための実施例を示す。なお、本発明が以下に示す実施例に限定されないのは言うまでもない。
1)マウス嗅覚受容体の単離
 日本エスエルシーより3-5週齢のC57/BL6J(雌)を購入した。3mLのUrethane solution(300mg/mL;U2500、Sigma-Aldrich)で静注麻酔した後、マウスを断頭し、氷上で嗅上皮を摘出した。摘出した嗅上皮は1mMのCysteinを含有するCa2+ringer solution (pH7.2; NaCl140mM、KCl5mM、CaCl1mM、MgCl1mM、HEPES10mM、glucose10mM、及びピルビン酸ナトリウム1mM)に分散させ、1units/mLのpapain、又は0.25mg/mLのtrypsinで処理した。これに、0.1mg/mLのDNase I、0.1mg/mLのBSA、及び500μMのleupeptin(trypsinの場合は0.025mg/mLのtrypsin inhibitor)を含有するCa2+ringer solutionを等量加え、酵素反応を停止させた後、セルストレーナーに2回通し、大きな組織片を除去した。
 除去後のサンプルに対して遠心分離処理を行い、これを1度洗浄して、嗅上皮由来細胞溶液とした。
2)ワンセルシステムの利用およびこれを用いた解析手段
 上記で得られた嗅上皮由来細胞溶液を1000rpm、5分間で遠心分離(2420、KUBOTA Co.)を行って上清を除去した後、これに250μLの5μM Fluo4-AM(F312、 Dojindo)、0.02wt%Pluronic F-127(P6867、Molecular Probes)を含有するCa2+ ringer solutionを加えた。As OneCell Pickingシステム(アズワン;全自動1細胞解析単離装置[温度調節装置、タイムラプス装置、灌流装置付];良元ら、Scientific Reports Vol.3(2013)1191;以下、本明細書にて、これを「ワンセルシステム」と呼ぶ事がある。)用の直径10μmナノチャンバーを約40万個有するポリスチレン製スライドを2%のPVP(ポリビニルピロリドン(ナカライ))に浸した後、ワンセルシステム用の灌流ジグに設置し、上記処理を施した嗅上皮由来細胞溶液を加えて、軽く遠心(7xg、1分間、3回)を行い、ナノチャンバー内に嗅上皮由来細胞を格納した。
 その後、ワンセルシステムの所定位置に設置し、Ca2+ ringer solutionを循環させた状態で維持し、4倍対物レンズを介して、ナノチャンバーに含まれる各嗅上皮由来細胞のFluo-4由来の蛍光像の確認を行い、蛍光強度の時間変化を記録した。
 嗅上皮由来細胞への刺激は次の通りに行った。上記する嗅上皮由来細胞が格納されたスライドに対して、Ca2+ringer solutionを2分間還流(250μL/min)させた後、100μLのhigh Kringer solution(pH7.2;NaCl40mM、KCl100mM、CaCl1mM、MgCl1mM、HEPES10mM、glucose10mM、ピルビン酸ナトリウム1mM)を20秒間還流させて、一過性のFluo-4由来に由来する蛍光の増強により、嗅上皮由来細胞に含まれる嗅神経細胞の位置を確認した。その結果、スライドに格納された嗅上皮由来細胞のうち、嗅神経細胞個数は約1万個であった。
3)嗅覚遺伝子の同定
 上記する条件にて、嗅上皮由来細胞に対して匂い分子である2-ペンタノン(30μM)で10秒間、2-ペンタノン(3mM)で10秒間の刺激を行い、その後high Kringer solutionにより嗅上皮由来細胞に含まれる嗅神経細胞を同定した。その結果、約1万個の嗅神経細胞のうちの約100個が2-ペンタノンに反応したので、これらの嗅神経細胞のうち任意の2細胞(細胞番号としてHI28-03、及びHI25-18とする)を、ワンセルシステムに付属するグラスキャピラリーにより1細胞単位で回収し(容量50nL)、4.5μL Cell lysis solution(Cell Amp Whole Transcriptome Amplification Kit Ver.2; Takara)を含むPCRチューブに移動させた。その後、直ちに同キットの指示に従って、逆転写反応を行った。
 次に、逆転写反応の産物をマウス嗅覚受容体の3番目の膜貫通ドメインに対するフォワードプライマー(配列番号10)と、7番目の膜貫通ドメインに対するリバースプライマーである(配列番号11)又は(配列番号12)によりPCRを行った。
 PCR用の酵素はLA-Taq(Takara)そしてPCRバッファーはGC buffer I(Takara)を使用し、94℃1minの1cycleの反応の後に、94℃0.5min、40℃0.5min、72℃2minの35cyclesの反応を行い、最後に72℃5minの1cycleの反応を行った。このようにして得られたDNA断片をpMD20プラスミド(Takara)にサブクローニングし、2-ペンタノンに反応した細胞(HI28-03及びHI25-18)にて発現する嗅覚受容体の塩基配列を決定した。
 その結果、HI28-03はOlfr168(mOR271-1; GenBank accession number:AY317252)と、そしてHI25-18はOlfr205(mOR182-11P;GenBank accession number:BC150839)と、それぞれ同定された。
 上記の手法にて、嗅上皮由来細胞に含まれる嗅神経細胞の中から、匂い分子としてピリジンに応答する2つの嗅神経細胞(それぞれ、細胞番号IG04-13とHG28-24とする。)を得た。これらの細胞にて発現する嗅覚受容体を、上記する方法にて同定した結果、IG04-13はOlfr45(mOR253-2; GenBank accession number:AY317653)、またHG28-24はOlfr166(mOR270-1; GenBank accession number:AY317250)と同定された。
 そして、上記の手法にて嗅上皮由来細胞に含まれる嗅神経細胞の中から、匂い分子として2-ブタノンに応答する嗅神経細胞(細胞番号HE22-23)を得た。この細胞にて発現する嗅覚受容体を、上記する方法にて同定した結果、嗅覚受容体Olfr1258(mOR232-3;GenBank accession number:AY318460)であることを同定した。
4)同定した嗅覚遺伝子に対する活性化の程度の算出方法(算出方法(A))
 上記する嗅神経細胞のうち、2-ペンタノンによる刺激に応答したHI28-03細胞及びHI25-18細胞に対して、再度2-ペンタノンによる刺激を行い、これらの細胞内に対する刺激後にCa2+イオンが取り込まれた量を、Fluo-4に由来する蛍光強度の上昇量として測定した。
 具体的には、ワンセル装置にセットした嗅上皮由来細胞を格納したスライドガラスに上記するCa2+ ringer solutionを還流させ、2分おきに後記する3mMの2-ペンタノンを含有するCa2+ ringer solution溶液を20秒間加え、それぞれの嗅神経細胞に対する一過性のFluo-4に由来する蛍光強度の増強の程度を5回繰り返して測定した(図8)。
 その結果、HI28-03細胞では蛍光強度が46±12に増強したとの数値を示し、HI25-18細胞では38±10に増強したとの数値を示した。しかし、これらの数値に対するCV値は、共に26%と不安定な測定となってしまった。
 そこで、上記するhigh K ringer solutionによって2-ペンタノンに応答したHI28-03細胞及びHI25-18細胞のCNGチャネルを脱分極させた場合に得られるFluo-4に由来する蛍光強度の上昇値を100%とし、この数値に対する各種濃度の2-ペンタノンによる刺激後の両嗅神経細胞のFluo-4に由来する蛍光強度の上昇値を相対値で表現した場合(5回それぞれ独立で実験を行った)、HI28-03細胞では74±3、そしてHI25-18細胞で67±4となり、そのCV値はそれぞれ4%及び6%と著しく安定した。
 また、上記する嗅神経細胞のうち、ピリジンによる刺激に応答したIG04-13細胞及びHG28-24細胞に対して、再度ピリジンによる刺激を行い、これらの細胞内に対する刺激後にCa2+イオンが取り込まれた量を、Fluo-4に由来する蛍光強度の上昇量として測定した(図9)。
 その結果、IG04-13細胞では蛍光強度が195±70に増強し、そしてHG28-24細胞では153±47に増強したとの数値を示した。しかし、これらの数値に対するCV値は、それぞれ36%及び31%と、非常に不安定な測定となってしまった。
 そこで、上記するhigh K ringer solutionによってピリジンに応答したIG04-13細胞及びHG28-24細胞のCNGチャネルを脱分極させた場合に得られるFluo-4に由来する蛍光強度の上昇値を100%とし、この数値に対する各種濃度のピリジンによる刺激後の両嗅神経細胞のFluo-4に由来する蛍光強度の上昇値を相対値で表現した場合(5回それぞれ独立て実験を行った)、IG04-13細胞では120±6、そしてHG28-24細胞で132±5となり、そのCV値はそれぞれ5%及び4%と著しく安定した。
 なお、上記する測定系の高度な定量性は、Fluo-4に由来する蛍光強度の変化量はそのピークの高さに基づいて測定するだけでなく、ピークの面積に基づいた測定であっても、保たれていることも確認している。そして、嗅覚受容体を発現する嗅神経細胞に存在するCNGチャネルの脱分極を引き起こす薬剤は、high K ringer solutionのみならず、既知のイオノフォアでも同様に使用可能であることを確認している。
5)再構成実験
 上記の3)及び4)にて得られたマウス由来嗅覚受容体が、確かにスクリーニングに使用した匂い分子に応答するか確認するために、HEK293細胞内に、嗅覚受容体から、Gαolfを含むヘテロ三量体Gタンパク質を経て、アデニル酸シクラーゼを活性化させてATPからcAMPを蓄積させ、細胞内cAMP濃度依存的にルシフェラーゼ発現を誘導する系を再構成した。
 具体的には、マウス由来嗅覚受容体遺伝子であるOlfr168、Olfr205、Olfr45及びOlfr166と配列番号9に示すアミノ酸配列をコードするDNAをそれぞれ融合させた遺伝子を、SRαプロモーターの下流に組み込んだpME18Sプラスミド、Gαolfを発現させる配列番号2に示すアミノ酸配列をコードする塩基配列を有するプラスミド、嗅覚受容体をゴルジ体から細胞表層への提示効率を上昇させる因子である配列番号6に記載する塩基配列を有するReceptor-transporting protein 1S(RTP1S)を発現させるプラスミド及びcAMP応答性ルシフェラーゼ発現プラスミドpGlosensor-22(プロメガ)をLipofectamine 2000(Life Technologies)によりHEK293T細胞に導入し、一過性発現させた。
 これによって、マウス由来嗅覚受容体遺伝子であるOlfr168を発現させた場合、段階的に希釈した匂い分子2-ペンタノンで刺激し誘導されたルシフェラーゼ活性を測定したところ、2-ペンタノンに対し濃度依存的にルシフェラーゼ活性が上昇し、EC50値が2.1±0.6mMと算出された。これは、Olfr168を発現する嗅神経細胞(図8)と類似した2-ペンタノンに対する応答性であり、Olfr168を活性化可能な匂い分子の一つは2-ペンタノンであることを示している。また、Olfr205を発現するHEK293細胞のEC50値(約4mM)はOlfr205を発現する嗅神経細胞と類似した2-ペンタノンに対する応答性を示したことから、Olfr205を活性化可能な匂い分子の一つは2-ペンタノンであることを示している。次に、Olfr45またはOlfr166を発現するHEK293細胞のEC50値(約5mM)はOlfr45またはOlfr166を発現する嗅神経細胞と類似したピリジンに対する応答性を示したことから、Olfr45またはOlfr166を活性化可能な匂い分子の一つはピリジンであることを示している。さらに、Olfr1258を発現するHEK293細胞のEC50値(約1.5mM)はOlfr1258を発現する嗅神経細胞と類似した2-ブタノンに対する応答性を示したことから、Olfr1258を活性化可能な匂い分子の一つは2-ブタノンであることを示している。
 以上から、上記の3)に記載する方法によると、任意の匂い分子に対応する嗅覚受容体群を発現する各嗅神経細胞を単離することが可能であることが判明した。
6)ヒト嗅覚受容体発現用プラスミドの作製
 ヒト由来嗅覚受容体遺伝子群から選抜したヒト由来嗅覚受容体遺伝子404種類を、それぞれ発現するプラスミドを合成DNAにより構築する。配列番号X9に示すアミノ酸をコードする遺伝子を、上記する各ヒト由来嗅覚受容体DNAと融合させ、これらをSRαプロモーターにより発現させるようにする。
 さらに、1細胞当たりのヒト由来嗅覚受容体の発現量の一定とするために、HEK293細胞及びCHO細胞の染色体上の決まった位置にのみ遺伝子が挿入されるFlp-In system(Invitrogen社)対応のプラスミド(pcDNA5/FRT)を採用する。
7)ヒト嗅覚受容体発現をサポートする因子群の発現プラスミドの作製
 ヒト由来嗅覚受容体遺伝子を哺乳類細胞で効率よくかつ機能を保ったまま発現させるために、ヒト由来嗅覚受容体をゴルジ体から細胞表層への提示効率を上昇させる因子と考えられているReceptor-transporting protein 1(RTP1)をコードするDNA(配列番号5)又はそのトランスクリプトバリアントであるRTP1S(配列番号6)、Receptor-transporting protein 2(RTP2)をコードするDNA(配列番号7)及びREEP1をコードするDNA(配列番号8)を含む哺乳類細胞発現用プラスミドを作製する。
 具体的には、pUC18プラスミドのマルチクローニングサイトに、エピジェネティックな影響を受けにくいとされるHuman Elongation Factor-1α(EF-1α)promoterとHuman T-Cell Leukemia Virus 1(HTLV1)由来LTRに由来するthe R segment and part of the U5 sequence(R-U5’)とのハイブリッドプロモーター及びSV40由来polyAサイトの間にKozak規則に従って上記する各DNA(RTP1、RTP2、REEP1及び薬剤選択マーカーであるブラストサイジン耐性(Bsr)遺伝子)をタンデムに挿入し、Construct 1と命名する哺乳類細胞発現用プラスミドを作製する。
8)ヒト由来嗅覚受容体発現細胞へのGαolfおよびCNG発現プラスミドの作製
 上記する5)再構成実験で記載した方法では、異所的に細胞で哺乳類由来嗅覚受容体を発現させても、その匂い分子による活性化を測定する際には細胞内cAMP濃度の上昇が指標として使われてきたが、この方法はエンドポイントアッセイであり、ヒト由来嗅覚受容体を発現する細胞群の網羅的かつハイスループットな解析を可能にするリアルタイムアッセイではない。
 現在、cAMP濃度依存的に蛍光強度が変化するFlamindo2等の蛍光タンパク質は幾つか存在するが、その多くが応答可能なcAMP濃度のダイナミックレンジが狭いか、cAMP濃度上昇に伴って蛍光が減衰するため数多くの細胞群からcAMP濃度が上昇した細胞を瞬時に選ぶのには不都合か、迅速な測定に適した1波長励起で1波長の蛍光で観察するものがないため、細胞内cAMPをリアルタイムかつ高感度で測定できる蛍光検出系は存在しない。よって、ヒト由来嗅覚受容体を発現する細胞群のリアルタイム解析を実現するために、cyclic nucleotide gated ion-channel(CNG)を同時に発現する必要がある。
 そこで、CNGを構成する3種類の遺伝子(CNGA2サブユニット、CNGA4サブユニット、CNGB1bサブユニット)の発現を試みる。使用するDNAは、CNGA2サブユニットは配列番号1、CNGA4サブユニットは配列番号3、CNGB1bサブユニットは配列番号4に示す塩基配列を含むDNAである。
 具体的には、ネオマイシン耐性遺伝子を有するpcDNA3.1/C-(K)DYKプラスミドのCMVプロモーターとSV40 polyAサイトの間のマルチクローニングサイトに、Kozak則に従ったCNGA2サブユニット遺伝子、SV40 polyAサイト、hEF1-HTLVプロモーター、Kozak則に従ったGαolf遺伝子から構成される合成DNAをタンデムに挿入してこれをConstruct 2と命名する。
 次に、脱感作しにくいCNGA2サブユニット3アミノ酸残基(配列番号1に示す塩基配列がコードするアミノ酸配列の342番目のグルタミン酸、460番目のシステイン、そして583番目のグルタミン酸)の変異体(E342G/C460W/E583M)を使用すると、細胞内Ca2+濃度の減衰が抑制されているので、エンドポイントアッセイであったとしても、ヒト由来嗅覚受容体の活性化効率が弱い場合に好適である。
 具体的には発現プラスミドはCNGA2サブユニットに上記する変異を施して、Construct 2と同様に作製する(これをConstruct M2と命名する)。
 実際の測定に細胞内Ca2+濃度の上昇を測定するのに、CNGサブユニットに関して言えばCNGA2サブユニットのみでも可能であり、Construct 2及びConstruct M2で十分な感度が得られるが、さらにCNGが有する活性を十分に発揮させるのに、CNGA4サブユニット及びCNGB1bサブユニットも発現させることができる。
 そこで、pUC18プラスミドのマルチクローニングサイトにhEF1-HTLVプロモーターとSV40由来polyAサイトの間にKozak規則に従って各遺伝子(CNGA4サブユニット遺伝子とCNGB1bサブユニット遺伝子及び薬剤選択マーカーであるピューロマイシン耐性(Puro)遺伝子)をタンデムに挿入して、これをConstruct 3と命名する。
9)HEK293細胞及びCHO細胞への組込み
 HEK293細胞またはCHO細胞に、常法に従ってConstruct 1を形質転換し、ブラストサイジン選抜を行い、ブラストサイジン耐性のConstruct 1を安定に保持してRTP1、RTP2、REEP1を発現する細胞を得る。次に、上記に形質転換された細胞に対し、Construct 2を形質転換し、ネオマイシン選抜を行い、ネオマイシン・ブラストサイジン耐性のConstruct 1と2を安定に保持し、RTP1、RTP2、REEP1に加えて、CNGA2サブユニットとGαolfを発現する細胞を得て、それぞれHEK293-C1/2株およびCHO-C1/2株と命名する。
 更に、両株に対し、Construct 3を形質転換し、ピューロマイシン選抜を行い、ネオマイシン、ブラストサイジン、ピューロマイシン耐性のConstruct 1、2及び3を安定に保持するRTP1、RTP2、REEP1、CNGA2サブユニット、Gαolf、CNGA4サブユニット、及びCNGB1bサブユニットを発現する細胞を得て、それぞれHEK293-C1/2/3株及びCHO-C1/2/3株と命名する。
 ここで、ヒト由来嗅覚受容体を発現するベクターが、導入する細胞の染色体上の決まった位置へ組み込まれることを目的として、上記するHEK293細胞またはCHO細胞に代えて、Flp-In-293細胞及びFlp-In-CHO細胞(両細胞ともInvitrogen社)を用いて、上記するConstruct 1と2、及びConstruct 1、2及び3を安定的に保持する発現株の作製も同様に行う。これらを、それぞれF293-C1/2; FCHO-C1/2; F293-C1/2/3; FCHO-C1/2/3と命名する。
10)任意の匂いに応答するヒト嗅覚受容体の単離
 上記のHEK293-C1/2株に対し、上記6)にて作製するヒト由来嗅覚受容体発現プラスミド404種類を形質転換し、2)の方法でワンセルマシンに搭載し、3)の方法で任意の匂い分子(バニリン)10mMで刺激を行うと、幾つかの細胞において蛍光強度の増加が観察されることが期待されるので、これらの細胞回収を行い、pME18Sに挿入されたヒト由来嗅覚受容体遺伝子部分を増幅するPCRを行う。増幅された塩基配列を解析するとOR10G4である可能性があり、既報のものと一致する(Mainland JDら、Nature Neuroscience 17、 114-120(2014))。
 なお、5)の方法で細胞内Ca2+濃度変化に基づく蛍光強度を異なる細胞で繰り返し定量したところ、CV値5%前後と極めて安定することが期待される。
 同様の結果は、他の匂い分子である1mMクマリンと1mMキャラメルフラノンにおいて、それぞれ既報のOR5P3(クマリン応答性ヒト由来嗅覚受容体:Saito Hら、Science Signaling 2,ra9(2009))とOR8D1(キャラメルフラノン応答性ヒト由来嗅覚受容体:Mainland JDら、Nature Neuroscience 17、114-120(2014))として同定されるので、本方法を用いれば、任意の匂い分子に対応するヒト由来嗅覚受容体の単離が可能になることが期待される。
 また、同様に上記6)にて作製するヒト由来嗅覚受容体発現プラスミド404種類とpOF44プラスミド(Invitrogen)をF293-C1/2株に形質転換し、ハイグロマイシン耐性・ゼオシン感受性の細胞を選抜して、上記と同様のアッセイを行うと、バニリンに応答するヒト由来嗅覚受容体としてOR10G4が同じく単離されることが期待される。
11)ヒト嗅覚受容体発現細胞アレイの作成法
 上記6)にて作製する404種類のヒト由来嗅覚受容体発現プラスミドのpcDNA5/FRT-Rhod-KP290534.1 1μL(DNA量:500ng)を、遺伝子導入試薬であるLipofectamine2000(Invitrogen)1μLとを混合し、これを基板上でアレイ状となるように100pLずつドットプリントを行う。用いた基板はスライドグラス(松浪硝子)表層をプラズマ処理装置(ヤマト科学PM100)によりプラズマ処理して親水性を高めたものである。なお、ドットプリントに使用した機械は、MicroJet社のLaboJet-500を用いる。ここで、基板に固着させるプラスミド及び遺伝子導入試薬を含む複合体は、直径50μm程度になるように配置する。
12)ヒト嗅覚受容体発現細胞アレイを用いて任意の匂いに応答するヒト嗅覚受容体の単離
 上記11)の方法で、アレイ用スライドグラスの404箇所にそれぞれ上記するヒト由来嗅覚受容体の発現プラスミドを固定化し、それぞれの固定化された部位の上部からHEK293-C1/2株をそれぞれ等量となるように滴下し、特定の培養条件で静置して2日後に観察したところ、プラスミドを固定化している箇所に、滴下したHEK293-C1/2株が増殖してコロニーを形成することが期待される。
 同時に、EGFP(緑色蛍光タンパク質)発現プラスミドを、同様に固定化したアレイ用スライドグラスも対照として検討したところ、全ての固定化部位にコロニーが形成され、EGFPの発現が確認できることが期待される。
 その後、2)に示す方法で上記するワンセルシステムにコロニーが形成された基板を搭載し、3)に示す方法で任意の匂い分子であるバニリンを用い、これを10mMの濃度で刺激を行ったところ、幾つかの細胞において蛍光強度の増加が観察された。
 その中には、上述のOR10G4発現プラスミドを固定化した場所にコロニー化して生育するHEK293-C1/2株が存在することが期待される。なお、5)に示す方法で細胞内Ca2+濃度変化に基づく蛍光強度を異なる細胞で繰り返し定量したところ、CV値5%前後と極めて安定することが期待される。
 同様に、1mMクマリンと1mMキャラメルフラノンでも実施したところ、それぞれ上述のOR5P3とOR8D1発現プラスミドを固定化した場所にコロニー化して生育するHEK293-C1/2株が存在することが期待される。
 以上から、本方法を用いれば、任意の匂い分子に対応するヒト由来嗅覚受容体の単離が、細胞回収を行わずとも実施できることが期待される。
13)ヒト嗅覚受容体発現細胞アレイの作成、及び算出方法(B)による活性化度の測定
 上記11)、12)のヒト嗅覚受容体発現細胞アレイの作成法を、本発明のアレイ1、受容体アレイ10rに適用した実施例を次に示す。
 用いた基板5は、スライドグラス(松浪硝子)を、プラズマ処理して親水性を高めたものである。また、疎水性被膜6は、フッ素系樹脂であり、スクリーン印刷によって、貫通孔2を複数有した疎水性被膜6を、基板5上に形成している。ここで、疎水性被膜6の23℃における水を用いた接触角は、150°であった。
 上記6)にて作製する404種類のヒト由来嗅覚受容体発現プラスミドのpcDNA5/FRT-Rhod-KP290534.1 1μL(DNA量:500ng)を、遺伝子導入試薬であるLipofectamine2000(Invitrogen)1μLとを混合し、これを各貫通孔2に対し、100pLずつドットプリントを行った。ここで、基板5に固着させるプラスミド及び遺伝子導入試薬を含む複合体は、直径50μm程度になるようにプリントされている。このようにしてアレイ1を完成させた。
 続けて、アレイ1の各貫通孔2に対し、HEK293-C1/2株をそれぞれ等量となるように滴下し、1つの貫通孔2に対して複数の真核細胞が収容され、真核細胞アレイ10を完成させた。
 続けて、特定の培養条件で、2日間インキュベーションした。HEK293-C1/2株は増殖し、各貫通孔2の内部で、複数の細胞に一過性発現が誘導され、複数の受容体が形成された。このようにして受容体アレイ10rを完成させた。
 受容体アレイ10rに対し、被験物質としてラテックス・リンゲル液を接触させ、算出方法(B)による活性化度の測定を行った。ここで、ラテックス・リンゲル液とは、ラテックスを250℃に加熱し、発生したガスをリンゲル液に捕集した溶液である。活性化度の測定に際しては、カルシウム用蛍光指示薬であるCalbryte520AM溶液を用い、細胞内のカルシウム濃度の変化を、蛍光強度として観察した。
 ここで、Calbryte520AM溶液は、Calbryte520AMと、界面活性剤PluronicF-127を含み、リンゲル液を溶媒とする溶液である。
 また、蛍光強度測定の第1所定時間は、被験物質接触6分前~1分前の5分間の時間(T0~T300秒)であり、第2所定時間は、被験物質接触0分後~10分後の10分間の時間(T360~T900秒)である。
 受容体OR5A1について、受容体OR5A1を発現した5つの真核細胞について測定した蛍光強度を、図10に示す。図10は、横軸に時間(秒)、縦軸に蛍光強度を示すものである。5つの曲線が、各々5つの細胞(Cell 1~Cell 5)を示している。各々の細胞は、被験物質に対する応答特性がそれぞれ異なっているものの、傾向はよく似ていることが分かる(なお図10において、Fbaseを0とする原点補正を行っている)。
 これら5つの細胞について、各々活性化度(Fmax/Fbase)を算出し、5個の平均値、標準偏差、変動係数を求めた。平均値は1.5、標準偏差は0.08、CV値(変動係数)は5%と非常に高い再現性で測定できていることが確認できた。
 また、同様な手法で、7つの異なる受容体について、各受容体あたり4以上の細胞数の活性化度の測定を行い、データの検証を行った。結果を表1に示す(表1は、受容体OR5A1の測定値も含む)。いずれの受容体も、CV値(変動係数)は7%以下であり、高い再現性で測定できることが確認できた。
Figure JPOXMLDOC01-appb-T000001
14)画像データ処理
 本発明の活性化度の測定方法は、貫通孔2の全てを含む領域を、同時に画像データとして一括取得し、貫通孔2内の真核細胞を個別に認識し、各真核細胞の各々の蛍光を数値化する工程を含んでいる。このような細胞1つ1つに対する個別認識や、個別データ処理、演算処理は、公知の画像処理ソフトウエアを用いて可能である。
 図11は、受容体アレイ10rに対して、画像データを一括取得し、細胞単位の個別認識を行った例を示す。
 図11[1]は、画像処理の一例として、被験物質を接触させる1分前の画像と、被験物質を接触させた1分後の画像の差分画像である(Step1)。疎水性被膜6の中に設けられた貫通孔2が99個を一括して視認できる。また各貫通孔2の中に、複数の細胞が収容されていることが分かる。
 図11[2]は、個別データ処理の一例として、Step1の画像データに対し、蛍光強度200(スライスレベル)以上の強度を有する細胞を、1細胞単位で認識し、細胞単位でラベル化した画像である。この画像サンプルでは、1つの貫通孔2に対し、最大2つの細胞が蛍光強度200以上を示していることが一括して視認できる。
 図11[3]は、演算処理の一例として、被験物質を接触させる前後の画像から細胞単位で演算を行い、Fmax≧Fbase+5SDStepとなる細胞を、1細胞単位で判定し、細胞単位でラベル化した画像である。この画像サンプルでは、全領域に対し、3つの細胞が判定の結果、採用されている。
 このように、貫通孔2に複数の真核細胞が収容されている場合であっても、細胞1つ1つを個別に認識することは可能であり、細胞単位で所定の演算処理を行うことは充分可能である。
15)匂いの構成(1)
 メロン臭を目標物質とし、標準物質(キュウリ臭、バナナ臭、マヨネーズ臭)から目標物質を構成する。
サンプル調製
 試料(メロン、キュウリ、バナナ、マヨネーズ)各3立方センチメートルを、30mLバイアルの底部に設置し、その上部に試料に接触させることなく、シリカモノリス捕集剤(Mono Trap RGPS TD(GLサイエンス社製))を設置した。室温で24時間経過後、シリカモノリス捕集剤を取り出し、速やかにポータブル・サーマル・ディソーバーHandy TD TD265(GLサイエンス社製)に移し、1秒30℃の勾配で350℃まで昇温し、リンゲル溶液に排出される匂い成分をバブリングにより、トラップした。リンゲル液の組成は、以下のとおりであり、pH7.2の混合液を、4℃で保存したものである:
 NaCl 140mM
 KCl 5mM
 CaCl 1mM
 MgCl 1mM
 HEPES 10mM
 D-グルコース 10mM
 ピルビン酸ナトリウム 1mM
 得られた試料由来の匂い成分を含むリンゲル溶液は、直ちにヒト嗅覚受容体発現細胞アレイ(受容体アレイ10r)を用いる網羅的匂い分析、すなわち匂い成分を含むリンゲル溶液を被験物質として供し、各受容体についての活性化度を測定した。測定方法は、13)に記載の活性化度測定と同じである。
分析:
 各試料由来の匂いによるヒト嗅覚受容体の活性化程度を、匂いマトリックスによって、視覚化した。匂いマトリックスとは、マトリックスの各格子点が、ヒト嗅覚受容体各々に対応する概念である。具体的には、ヒト嗅覚受容体(396種類)、陰性対照受容体(嗅覚受容体ではないGPCRを発現)2種類、受容体を発現していない細胞2種類の合計400種類を、20×20の格子点で表現している。
 目標物質であるメロン臭を図12に示す。また、標準物質Aであるキュウリ臭を図13[A]、標準物質Bであるバナナ臭を図13[B]、標準物質Cであるマヨネーズ臭を図13[C]に示す。これら匂いマトリックスのデータから、目標物質であるメロンを構成するには、キュウリ臭をベースに、バナナ臭とマヨネーズ臭を混合すればよく、具体的には、標準物質A(濃度a%)はa=70%、標準物質B(濃度b%)はb=20%、標準物質C(濃度c%)はc=10%、を混合するのが最適と判断された。これら比率によって計算機的に構成した匂いマトリックスを、図13[D]に示す。目標物質(図12)と、計算上の構成物質(図13[D])は、互いに相似形を示す。
 次に各匂い成分を含むリンゲル溶液を、上記混合比で混合して、構成メロン臭とした。
官能試験:
 上記構成メロン臭の官能試験を、今村美穂「化学と生物」(Vol.50,No.11,2012)に記載されているQDA法(定量的記述分析法)に従って実施した。
 使用したサンプルは、上記の方法で作成した構成メロン臭、キュウリ臭、バナナ臭、マヨネーズ臭、メロン臭をそれぞれ含むリンゲル溶液1mL、さらに類似臭としてスイカ臭、かぼちゃ臭、桃臭、メロンソーダ臭をそれぞれ含むリンゲル溶液1mLを用意した。
 ボランティアの官能試験員20名が、上記サンプル(全9種類)を評価したところ、20名中18名が、構成メロン臭と目標物質であるメロン臭(オリジナルメロン臭)とが、最も共通した特徴的香調を有していると判断した。一方、構成メロン臭と、目標物質であるメロン臭以外のサンプルとが、最も共通した特徴的香調を有している、と判断した者はいなかった。
16)匂いの構成(2)
 15)と同じ方法で、牛乳由来匂い成分を含むリンゲル溶液、たくわん由来匂い成分を含むリンゲル溶液、コーンスープ由来匂い成分を含むリンゲル溶液を用意した。
 コーンスープ臭の匂いマトリックスを構成するには、牛乳臭の匂いマトリックスと、たくわん臭の匂いマトリックスから、牛乳由来匂い成分を含むリンゲル溶液と、たくわん由来匂い成分を含むリンゲル溶液と、を等量混合することが適していると判断された。
 そこで得られた構成コーンスープ臭と、目標物質であるコーンスープ臭(オリジナルコーンスープ臭)、さらに、同様に作製した生クリーム臭、クラムチャウダー臭、コンソメ臭とを、15)と同じ官能試験により評価したところ、構成コーンスープ臭と、目標物質であるコーンスープ臭(オリジナルコーンスープ臭)と、が最も共通した特徴的香調を有していると、ボランティアの官能試験員20名中17名が判断した。一方、構成コーンスープ臭と、目標物質であるコーンスープ臭以外のサンプルと、が最も共通した特徴的香調を有していると判断した者はいなかった。
1:アレイ
2:貫通孔
3:核酸
4:真核細胞領域
4A1:真核細胞
5:基板
6:疎水性被膜
10:真核細胞アレイ

Claims (35)

  1.  基板と、前記基板上の疎水性被膜と、を含み、
     前記疎水性被膜は、複数の貫通孔を有し、
     前記貫通孔の内部に、所定の受容体をコードする遺伝子を含む核酸が、前記基板に接して設けられているアレイ。
  2.  前記貫通孔ごとに、異なる前記所定の受容体をコードする遺伝子を含む核酸が設けられている請求項1に記載のアレイ。
  3.  前記複数の貫通孔の断面積平均値が、0.125mm以上0.283mm以下である請求項1又は2のアレイ。
  4.  前記貫通孔は、前記基板中に200以上設けられるとともに、前記貫通孔同士の平均ピッチが、0.6mm以上0.8mm以下である請求項3記載のアレイ。
  5.  前記疎水性被膜は、23℃における水に対する接触角が、70°以上である請求項1~4に記載のアレイ。
  6.  前記所定の受容体は、Gタンパク質結合受容体を含む請求項1~5に記載のアレイ。
  7.  前記Gタンパク質結合受容体は、嗅覚受容体を含む請求項6に記載のアレイ。
  8.  さらに、前記貫通孔1つあたり複数個の真核細胞が収容されている請求項1~7に記載のアレイ。
  9.  外来遺伝子として、CNGA2及びGNAL又はそれらの変異体を発現する真核細胞。
  10.  外来遺伝子として、更に、CNGA4及び/又はCNGB1b又はそれらの変異体を発現する請求項9記載の細胞。
  11.  更に、前記細胞で発現する嗅覚受容体を小胞体膜から細胞膜に移行させ、該嗅覚受容体の該細胞表面への提示効率を上昇させることができるタンパク質をコードする遺伝子を発現する、請求項9又は10記載の細胞。
  12.  (1)CNGA2及びGNAL又はそれらの変異体をコードする遺伝子を有するベクターA
    (2)CNGA4及び/又はCNGB1b又はそれらの変異体をコードする遺伝子を有するベクターB、及び
    (3)細胞で発現する嗅覚受容体を小胞体膜から細胞膜に移行させ、該嗅覚受容体の該細胞表面への提示効率を上昇させることができるタンパク質をコードする遺伝子を有するベクターCからなる群より選択される少なくとも1つのベクター。
  13.  請求項12に記載する少なくとも1つのベクターが組まれている真核細胞。
  14.  請求項9~11、又は13のいずれかに記載する細胞の染色体上に、一定個数の哺乳類由来の嗅覚受容体をコードする遺伝子を組み込むための領域を有する真核細胞。
  15.  請求項14記載の前記領域に、ヒト由来嗅覚受容体遺伝子が組み込まれている真核細胞。
  16.  前記真核細胞は、請求項9~11、又は13~15に記載の真核細胞である請求項8記載のアレイ。
  17.  被験物質による所定の受容体に対する活性化度を算出する方法であって、;
    (1)前記受容体を発現する複数の真核細胞に前記被験物質を接触させたときに、前記各々の細胞内に取り込まれるイオン量を測定する工程、
    (2)前記工程1で測定に使用した細胞と同一の細胞を脱分極したときの前記各々の細胞内のイオン量を測定する工程、及び
    (3)前記工程1にて測定した数値と前記工程2にて測定した数値との比を算出する工程、を含む、方法。
  18.  前記工程1及び前記工程2において、
    細胞内に取り込まれるイオン量を測定する手段が、色素を用いる手段、又は蛍光性結合タンパク質を用いる手段である、
    請求項17に記載の方法。
  19.  前記工程2に記載する脱分極させる工程が、カリウム化合物、又はイオノフォアを、前記真核細胞に適用する工程である、請求項17又は18に記載の方法。
  20.  被験物質による受容体に対する活性化度を算出する方法であって、;
    前記受容体を発現する複数の真核細胞に前記被験物質を接触させたときに、
    前記各々の細胞内に取り込まれる物質の量を測定する工程を含み、
     前記接触前の第1所定時間における蛍光の平均値をFbase、
     前記接触後の第2所定時間における蛍光の最大値をFmax、とするときに、
     Fmax/Fbaseを算出し、活性化度とする方法。
  21.  前記第1所定時間の蛍光の標準偏差をSDとし、
    前記Fmaxが、Fbase+5SD以上であるときに、活性化度として採用し、
    前記Fmaxが、Fbase+5SD未満であるときには、活性化度として採用しない請求項20記載の方法。
  22.  ある被験物質に関する前記測定する工程の後、陽性対照物質を前記真核細胞に接触させることなく、次の被験物質を真核細胞に接触させる請求項20又は21記載の方法。
  23.  前記次の被験物質の接触は、前記ある被験物質による蛍光値が、Fbase+5SD以上であるタイミングで行う請求項22記載の方法。
  24.  前記真核細胞の受容体発現は、一過性発現である請求項17~23に記載の方法。
  25.  前記受容体は、嗅覚受容体である請求項24記載の方法。
  26.  被験物質による受容体に対する活性化度の測定方法であって、
    請求項16記載のアレイに対して、イオン測定用色素、又は蛍光性結合タンパク質を作用させる工程と、
    前記被験物質を、前記アレイに接触させる工程と、
    前記貫通孔の全てを含む領域を、同時に画像データとして取得する工程と、
    前記真核細胞を個別に認識し、前記真核細胞各々の蛍光を数値化する工程と、
    前記数値を演算処理し、活性化度を算出する工程と、
    を含む方法。
  27.  前記演算処理が、前記接触前の第1所定時間における蛍光の平均値をFbase、
     前記接触後の第2所定時間における蛍光の最大値をFmax、とするときに、
     Fmax/Fbaseを算出し、活性化度とする処理である請求項26記載の方法。
  28.  前記演算処理が、前記接触前の第1所定時間における蛍光の標準偏差をSDとし、
     前記Fmaxが、Fbase+5SD以上であるときに、活性化度として採用し、
     前記Fmaxが、Fbase+5SD未満であるときには、活性化度として採用しない請求項27記載の方法。
  29.  前記受容体が、ヒト由来嗅覚受容体である、請求項26~28記載の方法。
  30.  2つ以上の標準物質について、請求項29の方法を用いて測定した各受容体の活性化度を基準に、
    目標物質について前記測定方法を用いて測定した各受容体の活性化度が構成されるよう、
    前記2つ以上の標準物質を組み合わせて、前記目標物質の匂いを構成する方法。
  31.  2つ以上の標準物質について、請求項29の方法を用いて測定した各受容体の活性化度を基準に、
    目標物質について、前記測定方法を用いて測定した各受容体の活性化度が構成されるよう、
    前記2つ以上の標準物質を組み合わせて、前記目標物質の匂いが構成される組成物の製造方法。
  32.  前記組み合わせの方法は、
    前記各標準物質についての各受容体の活性化度を、第1データとして数値化し、
    前記目標物質についての各受容体の活性化度を、第2データとして数値化し、
    前記第1データと、前記第2データと、の演算である請求項30又は31の方法。
  33.  試料の匂いを、目標の匂い状態に修正するための物質のスクリーニング方法であって、
     前記試料に関する、請求項29記載の測定方法を用いて測定した各受容体の活性化度を、前記目標の匂い状態における、請求項29記載の測定方法を用いて測定される各受容体の活性化度に近づけることを指標として、候補物質を選抜する工程を含む方法。
  34.  前記選抜は、候補物質を前記試料に加えて、前記各受容体の活性化度を測定し、この活性化度が前記目標の匂い状態における前記活性化度に近づいたか否かに基づいて行う請求項33記載の方法。
  35.  前記選抜は、標準物質による前記各受容体の活性化度に関する既知の情報に基づき、前記標準物質の中から選抜することを含む請求項33記載の方法。
PCT/JP2018/030453 2017-08-17 2018-08-16 匂いの定量方法、それに用いる細胞及びその細胞の製造方法 WO2019035476A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP18846527.2A EP3670656A4 (en) 2017-08-17 2018-08-16 ODOR QUANTIFICATION PROCESS, CELLS USED IN THIS PROCESS AND PROCESS FOR THE PRODUCTION OF SUCH CELLS
CN201880060338.2A CN111344406A (zh) 2017-08-17 2018-08-16 气味的定量方法、其所使用的细胞及该细胞的制造方法
KR1020207007709A KR20200037403A (ko) 2017-08-17 2018-08-16 냄새의 정량 방법, 그것에 이용되는 세포 및 그 세포의 제조방법
JP2019536790A JPWO2019035476A1 (ja) 2017-08-17 2018-08-16 匂いの定量方法、それに用いる細胞及びその細胞の製造方法
US16/638,880 US20200240978A1 (en) 2017-08-17 2018-08-16 Method for quantifying odors, cells used in same, and method for producing said cells
KR1020247008641A KR20240042529A (ko) 2017-08-17 2018-08-16 냄새의 정량 방법, 그것에 이용되는 세포 및 그 세포의 제조방법
JP2023029882A JP2023081909A (ja) 2017-08-17 2023-02-28 匂いの定量方法、それに用いる細胞及びその細胞の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-157492 2017-08-17
JP2017157492 2017-08-17

Publications (1)

Publication Number Publication Date
WO2019035476A1 true WO2019035476A1 (ja) 2019-02-21

Family

ID=65362707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030453 WO2019035476A1 (ja) 2017-08-17 2018-08-16 匂いの定量方法、それに用いる細胞及びその細胞の製造方法

Country Status (7)

Country Link
US (1) US20200240978A1 (ja)
EP (1) EP3670656A4 (ja)
JP (2) JPWO2019035476A1 (ja)
KR (2) KR20240042529A (ja)
CN (1) CN111344406A (ja)
TW (1) TW201912794A (ja)
WO (1) WO2019035476A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132370A1 (ja) 2019-12-28 2021-07-01 株式会社ダイセル 1,3-ブチレングリコール製品
WO2022004825A1 (ja) * 2020-06-30 2022-01-06 株式会社香味醗酵 計測装置及びプログラム
WO2022181819A1 (ja) * 2021-02-26 2022-09-01 株式会社香味醗酵 変換装置、予測モデル作製装置、変換情報作製方法、予測モデル作製方法、及びプログラム
WO2023013791A1 (ja) * 2021-08-06 2023-02-09 味の素株式会社 物質に対する嗅覚受容体の応答を測定する方法
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
WO2023163214A1 (ja) * 2022-02-28 2023-08-31 株式会社香味醗酵 情報処理装置、カートリッジ、放出装置、n次元コード、制御方法、コンピュータプログラム
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US12017506B2 (en) 2020-08-20 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114425078A (zh) * 2022-01-27 2022-05-03 湖北优尼泰睿生物科技开发有限公司 2-戊酮及其特异性受体在制备调控细胞功能的产品中的应用
CN116445417B (zh) * 2023-06-09 2023-09-29 汉王科技股份有限公司 嗅觉受体的正向调节剂及含有它的重组细胞或重组细胞系和检测气味化合物的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100057A1 (fr) 2002-05-28 2003-12-04 National Institute Of Advanced Industrial Science And Technology Systeme de detecteur chimique
WO2006123555A1 (ja) * 2005-05-18 2006-11-23 Tohoku University 細胞の形質転換方法及び形質導入方法
WO2015020158A1 (ja) * 2013-08-09 2015-02-12 国立大学法人東京大学 ムスク系香料のスクリーニング方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670113A (en) * 1991-12-20 1997-09-23 Sibia Neurosciences, Inc. Automated analysis equipment and assay method for detecting cell surface protein and/or cytoplasmic receptor function using same
EP1060022A1 (en) * 1998-02-04 2000-12-20 Merck & Co., Inc. Virtual wells for use in high throughput screening assays
US20060134693A1 (en) * 2001-07-06 2006-06-22 Guy Servant Olfactory cyclic nucleotide-gated channel cell-based assays to identify T1R and T2R taste modulators
AU2005248453B2 (en) * 2004-05-25 2011-09-08 2Curex Identification of compounds modifying a cellular response
AU2006222265B2 (en) * 2005-03-03 2012-07-05 Chemcom S.A. Natural ligand of G protein coupled receptor RCC356 and uses thereof
JP5854686B2 (ja) * 2011-07-29 2016-02-09 亮平 神崎 匂いセンサ
WO2016194788A1 (ja) * 2015-05-29 2016-12-08 花王株式会社 匂い抑制物質の選択方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100057A1 (fr) 2002-05-28 2003-12-04 National Institute Of Advanced Industrial Science And Technology Systeme de detecteur chimique
WO2006123555A1 (ja) * 2005-05-18 2006-11-23 Tohoku University 細胞の形質転換方法及び形質導入方法
WO2015020158A1 (ja) * 2013-08-09 2015-02-12 国立大学法人東京大学 ムスク系香料のスクリーニング方法

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
"GenBank", Database accession no. AY318460
GLIA, vol. 16, 1996, pages 247
IMAMURA MIHO, KAGAKU TO SEIBUTSU, vol. 50, no. 11, 2012
MAINLAND JD ET AL., NATURE NEUROSCIENCE, vol. 17, 2014, pages 114 - 120
MIMURA, HIDEYA: "Role of histamine receptor in olfactory nerve", JAPANESE JOURNAL OF RHINOLOGY ( NIHON BIKA GAKKAI KAISHI ), vol. 48, no. 1, 2009, pages 79 - 81, XP055577699 *
NACHE, V. ET AL.: "Deciphering the function of the CNGBlb subunit in olfactory CNG channels", SCIENTIFIC REPORTS, vol. 6, 11 July 2016 (2016-07-11), pages 29378, XP055577701 *
OH, E. H. ET AL.: "Cell -based high-throughput odorant screening system through visualization on a microwell array", BIOSENSORS AND BIOELECTRONICS, vol. 53, no. 1, 15 March 2014 (2014-03-15), pages 18 - 25, XP055577712 *
SAITO H ET AL., SCIENCE SIGNALING, vol. 2, 2009, pages ra9
SATO-AKUHARA, N. ET AL.: "Ligand specificity and evolution of mammalian musk odor receptors: effect of single receptor deletion on odor detection", THE JOURNAL OF NEUROSCIENCE, vol. 36, no. 16, 20 April 2016 (2016-04-20), pages 4482 - 4491, XP009191169 *
SHIRASU, M. ET AL.: "Olfactory rexeptor and neural pathway responsible for highly selective sensing of musk odors", NEURON, vol. 81, 8 January 2014 (2014-01-08), pages 165 - 178, XP028813092, DOI: doi:10.1016/j.neuron.2013.10.021 *
SHIROKOVA, E. ET AL.: "Identification of specific ligands for orphan olfactory receptors", J. BIOL. CHEM., vol. 280, no. 12, 25 March 2005 (2005-03-25), pages 11807 - 11815, XP055577704 *
SUZUKI, M. ET AL.: "Deciphering the receptor repertoire encoding specific odorants by time-lapse single- cell array cytometry", SCIENTIFIC REPORTS, vol. 6, 2016, pages 19934, XP055395721, DOI: doi:10.1038/srep19934 *
TOUHARA, K. ET AL.: "Functional identification and reconstitution of an odorant receptor in single olfactory neurons", PROC. NATL. ACAD. SCI. USA, vol. 96, no. 7, 30 March 1999 (1999-03-30), pages 4040 - 4045, XP002973354, DOI: doi:10.1073/pnas.96.7.4040 *
YOSHIMOTO ET AL., SCIENTIFIC REPORTS, vol. 3, 2013, pages 1191

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132370A1 (ja) 2019-12-28 2021-07-01 株式会社ダイセル 1,3-ブチレングリコール製品
WO2022004825A1 (ja) * 2020-06-30 2022-01-06 株式会社香味醗酵 計測装置及びプログラム
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US12017506B2 (en) 2020-08-20 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
JP7208697B1 (ja) * 2021-02-26 2023-01-19 株式会社香味醗酵 変換装置、予測モデル作製装置、変換情報作製方法、予測モデル作製方法、及びプログラム
WO2022181819A1 (ja) * 2021-02-26 2022-09-01 株式会社香味醗酵 変換装置、予測モデル作製装置、変換情報作製方法、予測モデル作製方法、及びプログラム
WO2023013791A1 (ja) * 2021-08-06 2023-02-09 味の素株式会社 物質に対する嗅覚受容体の応答を測定する方法
WO2023163214A1 (ja) * 2022-02-28 2023-08-31 株式会社香味醗酵 情報処理装置、カートリッジ、放出装置、n次元コード、制御方法、コンピュータプログラム

Also Published As

Publication number Publication date
CN111344406A (zh) 2020-06-26
KR20240042529A (ko) 2024-04-02
JPWO2019035476A1 (ja) 2020-12-03
JP2023081909A (ja) 2023-06-13
EP3670656A4 (en) 2021-10-13
TW201912794A (zh) 2019-04-01
EP3670656A1 (en) 2020-06-24
KR20200037403A (ko) 2020-04-08
US20200240978A1 (en) 2020-07-30

Similar Documents

Publication Publication Date Title
WO2019035476A1 (ja) 匂いの定量方法、それに用いる細胞及びその細胞の製造方法
CA2305810C (en) Methods of assaying receptor activity and constructs useful in such methods
US9714941B2 (en) Bio-sensing nanodevice
EP1730499B1 (en) Method for the detection of intracellular parameters with luminescent protein probes for the screening of molecules capable of altering said parameters
CN113501881B (zh) 融合蛋白
JP5809065B2 (ja) NaVを発現する細胞株とその使用方法
CN101960014B (zh) 细胞系以及制备和使用其的方法
CA2440683A1 (en) Automated methods of detecting receptor activity
WO2022241295A2 (en) Engineered cells for expressing olfactory receptors and methods for their use
Braun et al. High-throughput characterization of photocrosslinker-bearing ion channel variants to map residues critical for function and pharmacology
Fitz et al. Protrusion growth driven by myosin-generated force
US7297503B2 (en) Methods of identifying reduced internalization transmembrane receptor agonists
JP2010115136A (ja) N末端標識膜蛋白質の作製方法、及びn末端標識膜蛋白質を表層に有する細胞
PT1319022E (pt) Processo com um vasto campo de aplicação para identificar moduladores de receptores acoplados a proteínas g
US20200400567A1 (en) Fusion polypeptide
US6472151B1 (en) Method of screening for compounds that modulate the activity of a molecular target
CN114480494B (zh) 蛋白探针以及其在检测bace1活性中的应用
Oakley et al. TRANSFLUOR Provides a Universal Cell-Based Assay for Screening G-Protein-Coupled Receptors
Dong et al. Cell-based system for identification of olfactory receptors
JP2005000132A (ja) Gα蛋白質共発現によるGPCR計測方法
US20230194503A1 (en) Probe and Method for Detecting Membrane-Associated Molecules in Living Cells
US20190120827A1 (en) Methods and compositions for nicotinic receptor assays
Herrick-Davis et al. 5-HT 2C Receptor Dimerization
CN114480494A (zh) 蛋白探针以及其在检测bace1活性中的应用
JP5390221B2 (ja) 被検物質を検出するためのポリヌクレオチド、前記ポリヌクレオチドを含むベクターおよびそれらを用いた検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18846527

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019536790

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207007709

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018846527

Country of ref document: EP

Effective date: 20200317