WO2019035378A1 - Spacecraft and debris removal system - Google Patents
Spacecraft and debris removal system Download PDFInfo
- Publication number
- WO2019035378A1 WO2019035378A1 PCT/JP2018/029350 JP2018029350W WO2019035378A1 WO 2019035378 A1 WO2019035378 A1 WO 2019035378A1 JP 2018029350 W JP2018029350 W JP 2018029350W WO 2019035378 A1 WO2019035378 A1 WO 2019035378A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- debris
- jet
- space
- spacecraft
- flight
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 claims abstract description 39
- 238000002347 injection Methods 0.000 claims description 211
- 239000007924 injection Substances 0.000 claims description 211
- 238000012937 correction Methods 0.000 claims description 62
- 230000005484 gravity Effects 0.000 claims description 25
- 238000004364 calculation method Methods 0.000 claims description 21
- 239000003779 heat-resistant material Substances 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 15
- 239000002131 composite material Substances 0.000 claims description 14
- 238000009751 slip forming Methods 0.000 claims description 13
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 12
- 239000004917 carbon fiber Substances 0.000 claims description 12
- 230000008859 change Effects 0.000 claims description 12
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 11
- 239000007921 spray Substances 0.000 claims 1
- 230000004048 modification Effects 0.000 description 22
- 238000012986 modification Methods 0.000 description 22
- 230000007246 mechanism Effects 0.000 description 14
- 239000003380 propellant Substances 0.000 description 8
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 238000003032 molecular docking Methods 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 230000004308 accommodation Effects 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 235000015842 Hesperis Nutrition 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012210 heat-resistant fiber Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001141 propulsive effect Effects 0.000 description 1
- 239000011226 reinforced ceramic Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/62—Systems for re-entry into the earth's atmosphere; Retarding or landing devices
- B64G1/623—Retarding devices, e.g. retrorockets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C29/00—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
- B64C29/02—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis vertical when grounded
- B64C29/04—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis vertical when grounded characterised by jet-reaction propulsion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D17/00—Parachutes
- B64D17/80—Parachutes in association with aircraft, e.g. for braking thereof
Definitions
- the present invention relates to a spacecraft flying in space and a debris removal system having such spacecraft.
- a projectile that lands vertically by injecting a jet toward the ground at landing is generally called a vertical landing rocket.
- Vertical landing type rockets are attracting attention as a landing technology for extraterrestrial satellites and planets such as the moon because they can be reused.
- Patent Document 1 as an example of a vertical landing type rocket, the engine provided at the base of the airframe has a thrust deflection nozzle, and the orientation of a plurality of engines can be individually adjusted by the gimbal device.
- Vertical take-off and landing aircraft are described.
- the vertical take-off and landing aircraft can change the injection direction of the jet generated by the engine in two directions, and maintain the attitude of the airframe by adjusting the jet direction of the other engine even when one engine fails. While being able to land vertically.
- attitude control occurs not only when landing on the ground, but also when landing on an artificial celestial body such as a space station. Similar problems occur not only in the vertical landing type rocket, but also in various space vehicles such as a spacecraft refueling system in which the reverse thrust device reversely jets and brakes. For this reason, there is a need for a space vehicle landing technology capable of easy and reliable attitude control for various space activities such as future lunar exploration and return to space stations.
- the spacecraft of the present invention includes an airframe main body, and an air brake structure provided on one side in the flight direction relative to the airframe main body and curved in a concave shape toward the airframe main body;
- An injection nozzle provided in the airframe main body and injecting an air jet from the one side in the flight direction toward the air brake structure with respect to the gravity center position of the airframe main body; It is characterized in that by reversing along the concave-shaped air brake structure, a repulsive force of the jet flow is generated on the airframe main body toward the one side in the flight direction.
- the air brake structure is continuously formed around the central convex portion protruding toward the main body of the airframe and around the central convex portion, and the airframe is And a concave portion curved in a concave shape toward the main body.
- a heat-resistant injection guide may be disposed between the injection nozzle and the air brake structure and through which the jet stream passes.
- a control injection nozzle may be provided which jets another jet in at least one direction different from the direction of the jet jetted from the jet nozzle.
- a jet is jetted to an air brake structure such as a parachute provided on one side in the flight direction than the airframe main body, and the direction of the jet is reversed along the concave shape. You can get the reaction. For this reason, reverse injection can be performed on the landing surface by setting the one side in the flight direction behind (that is, above) the injection nozzle with respect to the landing surface. Therefore, the influence of the ground effect can be suppressed in decelerating the airframe main body. Further, at this time, the jet is jetted from the upper side to the air brake structure above the center of gravity of the airframe main body, that is, in the opposite direction to the airframe of the airframe main body.
- an air brake structure such as a parachute provided on one side in the flight direction than the airframe main body
- the airframe main body can be decelerated and landed in a dynamically stable state, and easy and reliable attitude control becomes possible. Further, by applying the present invention, it is possible not only to use it for landing technology, but also to use a space vehicle as space debris (space debris) collection and disposal device by flying the space with the above reaction force as a propulsive force. Can.
- FIG. 11A is a schematic view for explaining a variation of the space vehicle of the fifth embodiment
- FIG. 11B is a schematic view of the open / close lid in the space vehicle of the variation viewed from the side of the jet nozzle.
- a spacecraft 100 of the present embodiment shown in FIG. 1 has an airframe main body 6, an air brake structure (parachute 1) and an injection nozzle 5.
- the air brake structure (parachute 1) is provided on one side in the flight direction relative to the airframe main body 6, and is curved in a concave shape toward the airframe main body 6.
- the air brake structure (parachute 1) when the air brake structure (parachute 1) is curved in a concave shape toward the airframe main body 6, at least a part of the air brake structure (parachute 1) has a concave shape as viewed from the airframe main body 6. That is, it means that the shape is recessed in the direction away from the airframe main body 6.
- the one side is the rear in the flight direction, that is, the upper side with respect to the landing surface 200.
- the spacecraft 100 is used as a landing gear.
- the spacecraft of the present invention (spacecraft 104: see FIG. 10) may be used in a mode in which the air brake structure is disposed in front to fly in space .
- the air brake structure is provided in front of the airframe main body 6 in the flight direction, that is, one side of the above corresponds to the front in the flight direction.
- the injection nozzle 5 is provided in the airframe main body 6, and one side (rearward in the first embodiment) of the center of gravity G of the airframe main body 6 in the flight direction.
- Jet J is injected toward the air brake structure (parachute 1).
- the jet J is directed rearward in the flight direction to the airframe main body 6 by reversing the direction of the jet J being jetted along the concave air brake structure (parachute 1). Produces a reaction force F of
- landing includes landing on a ground or platform built on the ground, such as the ground or the moon, as well as docking to an artificial celestial body such as a space station.
- a ground or platform built on the ground such as the ground or the moon
- docking to an artificial celestial body
- the target to be landed is sometimes referred to as a "landing surface” hereinafter, such a “landing surface” is a flat surface, as well as an uneven surface having unevenness, and a structure such as a docking device of a space station. Meaning that also includes
- the spacecraft 100 may have various structures, and may be separated after being launched on board a launcher such as a rocket or an artificial satellite, and may be dropped toward the landing surface, or may be taken off by its own aircraft It may be a take-off and landing aircraft.
- the spacecraft 100 can be exemplified by a lunar lander or a space shuttle.
- the airframe main body 6 is a main structural portion on which bus equipment and mission equipment are mounted, and is a main mass portion in the spacecraft 100.
- a leg 62 may optionally be provided at the lower part of the machine body 6.
- the lower side is the side on which the space station and the landing surface 200 such as the ground are present, as viewed from the spacecraft 100, and the upper side is the opposite side. Therefore, the upper and lower sides in the present specification do not necessarily coincide with the upper and lower sides of the earth's gravity direction.
- the flight direction of the space vehicle 100 to be landed includes at least a downward component directed to the landing surface 200.
- “rearward in the flight direction” means not only the direction opposite to the direction in which the spacecraft 100 flies in the direction of landing but also a direction including a component in the opposite direction to the flight direction.
- the landing space vehicle 100 may descend straight down towards the landing surface 200 or may fly obliquely downward. Therefore, in the present embodiment, at least a part of the air brake structure is disposed above the body 6 when viewed from the landing surface 200 that the air brake structure is provided behind the body 6 in the flight direction. It says that it is done.
- the shape of the airframe main body 6 may be a rectangular solid (cube) shape, a cylindrical shape, or any other shape.
- One or more injection nozzles 5 are provided in the upper part of the machine body 6.
- a rocket engine (not shown) and a propellant tank (not shown) for supplying a propellant to the rocket engine are provided inside the airframe main body 6.
- the jet J generated by the rocket engine is injected upward from the injection nozzle 5.
- the injection direction of the jet J from the injection nozzle 5 may be variable by a gimbal device (not shown).
- the spacecraft 100 includes an injection control unit 30 that controls a jet J injected from the injection nozzle 5.
- the injection control unit 30 is a unit that controls the reaction force of the jet J by adjusting the velocity and flow rate of the jet J, and can use, for example, a known combustion control unit that controls combustion conditions in the engine.
- the injection control unit 30 may be means for increasing or decreasing the number of engines to be operated.
- the injection control unit 30 can be realized, for example, by an actuator provided in the engine, a valve provided in piping for supplying a propellant, and a computer for controlling these operations.
- the spacecraft 100 includes an altitude calculation unit 20, a prediction calculation unit 40, and an information acquisition unit 50, which will be described later.
- the air brake structure is an atmospheric braking structure that decelerates the space vehicle 100 using aerodynamic force received from the atmosphere when the space vehicle 100 temporarily flies in the atmosphere.
- the deployed parachute 1 receives air resistance and decelerates the spacecraft 100.
- atmospheric braking does not have to act on the air brake structure.
- the parachute 1 formed in the shape of an umbrella with a flexible material can be typically illustrated.
- a rigid plate-like member such as a wing shape may be used as the air brake structure.
- a flexible parachute 1 from the viewpoint of being able to be folded, accommodated in the machine body 6, and be lightweight.
- the parachute 1 exemplified as the air brake structure of the present embodiment it is preferable that at least a part of the ball skin is made of carbon fiber or a composite heat resistant material.
- the composite heat-resistant material is a material obtained by combining one or more heat-resistant materials with a base material.
- the heat-resistant material examples include heat-resistant fiber materials such as organic fibers such as carbon fibers and aramid fibers; and inorganic compound amorphous fibers such as silicon carbide fibers.
- the base material examples include synthetic resins and ceramics. That is, as an example of the composite heat resistant material, a carbon fiber composite material, a ceramic base composite material, a carbon fiber reinforced ceramic composite material and the like can be mentioned.
- the composite heat resistant material has a heat resistance of 200 ° C. or more, preferably 500 ° C. or more. Having heat resistance means that mechanical physical properties do not change significantly at the temperature. And, high relative strength and heat resistance can be obtained by making the parachute 1 of carbon fiber or composite heat resistant material.
- the parachute 1 deployed as shown in FIG. 1 is provided at the rear, ie, above, in the flight direction as viewed from the airframe main body 6.
- the parachute 1 is attached to the machine body 6 by a plurality of support ropes 3. More specifically, at least a part of the parachute 1 (preferably the center of the bottom surface 1a of the parachute 1) is arranged on an extension of a straight line connecting the gravity center position G of the airframe main body 6 and the injection nozzle 5 1 is expanded.
- the gravity center position G of the airframe main body 6 refers to the three-dimensional position of the gravity center of the airframe main body 6 in the space vehicle 100 to fly, and becomes the parachute 1 and the jet J developed from the airframe main body 6 to the outside. It is calculated excluding the mass of propellant already consumed.
- the expression “parachute 1” means the expanded parachute 1 without exception.
- the parachute 1 has an umbrella shape and bulges upward away from the airframe main body 6. That is, the bottom surface 1 a of the parachute 1 is curved in a concave shape toward the airframe main body 6.
- the spacecraft 100 of the present invention jets a jet J from the jet nozzle 5 to the parachute 1 located above the center of gravity G of the airframe main body 6, and this jet J is directed along the curved bottom surface 1 a of the parachute 1 And flip it.
- the parachute 1 can be opened like an umbrella even in an environment substantially free of the atmosphere, such as the moon.
- the jet J injected upward from the injection nozzle 5 changes its direction along the bottom surface 1a of the concave-shaped parachute 1 to become a jet J1, and the jet J1 flows along the parachute 1 and the jet J2 from the periphery of the parachute 1. It is blown out.
- the reaction force F of the jet J 2 has an upward component as shown by the arrow in FIG.
- the spacecraft 100 is decelerated by the reaction force F.
- the airframe main body 6 receives the injection reaction force in the reverse direction (that is, downward) of the jet J.
- the parachute 1 that is, the spacecraft 100
- the downward jet reaction force and the upward push-up force cancel each other.
- the jets J and J1 are directed to the spacecraft 100 until the jet J is jetted from the jet nozzle 5 and reaches the parachute 1 and becomes the jet J1. Act as an internal force against.
- the momentum lost when the jet J changes its direction along the bottom surface 1a of the parachute 1 and becomes the jet J1 is extremely small.
- the jet J1 whose direction is reversed is blown out from the peripheral edge of the parachute 1 as a jet J2.
- the direction of the jet J 2 is an oblique direction in which the radially outward component and the downward component of the parachute 1 are combined. That is, the reaction force F of the jet J 2 has an upward component, and when the reaction force F of the jet J 2 blown out from the peripheral edge of the parachute 1 is synthesized in the circumferential direction of the parachute 1, the reaction force F is upward.
- the reaction force F of the injection is above the gravity center of the airframe main body 6 It is generated and further becomes an upward component opposite to the gravity center position G. Therefore, the reaction force F does not unstably increase the rotational moment about the center of gravity of the airframe main body 6.
- the jet J2 is blown out from the rear (upper side) of the airframe main body 6, the altitude of the spacecraft 100 is lowered and the distance to the landing surface 200 can be largely secured even immediately before the landing. For this reason, the influence of the ground effect can also be suppressed. From the above, according to the space vehicle 100 of the present invention, it is possible to stably realize the landing operation such as the moon landing.
- the spacecraft 100 of the present embodiment may include an altitude calculation unit 20 that calculates the altitude of the airframe main body 6.
- the above-described injection control unit 30 controls the jet J that is injected from the injection nozzle 5 based on the altitude information indicating the altitude of the airframe main body 6 calculated by the altitude calculation unit 20.
- the speed and flow rate of the jet J to be injected that is, the injection amount according to the altitude of the spacecraft 100, the descent speed of the spacecraft 100 before landing can be adjusted as desired.
- the jet control unit 30 stops the jet J or gives priority to the descent of the spacecraft 100.
- the injection amount may be suppressed to less than a predetermined amount.
- the injection control unit 30 starts the injection of the jet J or makes the injection amount of the jet J a predetermined amount or more in order to give priority to the deceleration of the spacecraft 100. It is good to control. As a result, the descent speed of the space vehicle 100 at the time of landing can be extremely reduced, and the load on the airframe main body 6 and the legs 62 can be suppressed.
- the acquisition principle of the altitude information by the altitude calculation unit 20 is not particularly limited, for example, an optical distance measuring sensor 22 which emits light to the landing surface 200 and receives reflected light can be used.
- the altitude of the aircraft body 6 indicated by the altitude information may be any information that can be converted to altitude from the landing surface 200 to any part of the aircraft body 6 (for example, the bottom 6a or the center of gravity G of the aircraft body 6).
- the above-mentioned convertible information may be information indicating the height of a portion such as the lower end of the leg 62 or the upper end of the parachute 1 disposed in a known positional relationship with the airframe main body 6.
- the spacecraft 100 of the present embodiment may include the prediction calculation unit 40 and the information acquisition unit 50.
- the prediction calculation unit 40 is an information processing unit that calculates the landing prediction point LP of the aircraft body 6 based on the altitude and the flight speed of the aircraft body 6, and the information acquisition unit 50 acquires surface information or availability information of the landing prediction point LP.
- the prediction calculation unit 40 and the information acquisition unit 50 are realized by a computer mounted on the machine body 6.
- the prediction calculation unit 40 acquires altitude information from the altitude calculation unit 20, and acquires information on the flight speed and the flight direction of the spacecraft 100 from a speedometer or an accelerometer (not shown).
- the prediction calculation unit 40 calculates the position information (latitude and longitude) of the landing prediction point LP based on these pieces of information.
- the surface information of the landing prediction point LP is information indicating the surface condition of the landing prediction point LP
- the availability information is information indicating whether the space vehicle 100 can land on the landing prediction point LP. .
- the surface information of the predicted landing point LP may be, for example, image information captured by the camera 52 mounted on the airframe main body 6, or information indicating the scattering degree of the reflected light received by the distance measurement sensor 22.
- the information acquisition unit 50 may determine whether the landing expected point LP has a flat enough to land by image processing of the image information. When it is determined that the flatness of the predicted landing point LP is equal to or greater than a predetermined threshold value, the information acquiring unit 50 determines that the predicted landing point LP can be landed, and acquires the determination result as the availability information.
- the availability information can adopt various aspects.
- latitude and longitude range information indicating a possible landing area may be stored in advance in a storage device (not shown) of the spacecraft 100.
- the information acquiring unit 50 collates the range information with the predicted landing point LP to determine whether the space vehicle 100 can land on the predicted landing point LP, and acquires the determination result as the availability information.
- the ground station or host ship may be communicated with the antenna 54 mounted on the airframe main body 6. That is, the information acquisition unit 50 transmits information indicating the predicted landing point LP to the ground station or the mother ship from the antenna 54, and uses the signal as to whether or not the landing prediction point LP may be landed as the ground station or the main ship. May be received and acquired by the antenna 54.
- the injection control unit 30 maintains the injection condition of the jet J as it is.
- the injection control unit 30 changes the injection condition of the jet J, for example, increases the injection amount of the jet J .
- the repulsive force F is increased and the lowering of the altitude of the airframe main body 6 is suppressed, so the airframe main body 6 flies longer in the horizontal direction and then lands. In other words, the predicted landing point LP shifts to the distance.
- the forecasting operation unit 40 updates the landing forecasting point LP over time and calculates it, and the information acquisition unit 50 updates and acquires surface information or availability information of the landing forecasting point LP.
- the injection control unit 30 maintains or reduces the injection amount of the jet J and applies the space flight object 100. Land at the predicted landing point LP.
- the spacecraft 100 can be safely landed by avoiding the location when landing is difficult because the landing surface 200 is uneven.
- the spacecraft 100 jets another jet (auxiliary jet) in at least one direction different from the direction of the jet J injected from the injection nozzle 5 (not shown in FIG. 1). See FIG. 5).
- the control injection nozzle 17 is an auxiliary thruster provided at a position different from the injection nozzle 5 and is attached to the airframe main body 6 directly or indirectly via another attachment member (not shown). .
- the control injection nozzle 17 jets a jet (auxiliary jet) at least in a direction (for example, a horizontal direction or an oblique direction) intersecting the vertical direction to control the position and orientation of the airframe main body 6.
- the control injection nozzles 17 are arranged so that jets can be jetted individually in forward and reverse directions of two orthogonal directions in a horizontal plane orthogonal to the vertical direction, that is, in four directions orthogonal to the vertical direction. Is preferred. Thereby, it is possible to control the translational position of the spacecraft 100 and the direction around the center of gravity. Furthermore, the control injection nozzles 17 may be configured to be capable of individually injecting jets in six orthogonal directions including the vertical direction.
- the propulsion principle in the control injection nozzle 17 is not particularly limited, and may be the same as or different from the injection nozzle 5 which is a main thruster.
- the control injection nozzle 17 is a chemical engine like the injection nozzle 5
- the propellant supplied to the control injection nozzle 17 is shared with the propellant supplied to the injection nozzle 5 and a propellant tank (shown in FIG. May be supplied from Further, weight reduction may be achieved by using an ion engine or a hole thruster as the control injection nozzle 17.
- the direction and the magnitude of the thrust of the jet (auxiliary jet) injected from the control injection nozzle 17 are controlled by the injection control unit 30 or another control unit interlocked with the injection control unit 30. That is, the control injection nozzle 17 and the control unit that drives and controls this constitute a device that determines the target landing point of the spacecraft 100.
- the injection nozzle 5 When the spacecraft 100 lands, the injection nozzle 5 may be stopped and only the control injection nozzle 17 may be driven, or the control injection nozzle 17 may be driven in combination with the injection nozzle 5.
- the control accuracy of the reaction force of the jet (auxiliary jet) jetted from the control injection nozzle 17 is higher than the control accuracy of the reaction force of the jet J of the injection nozzle 5 controlled by the injection control unit 30.
- the airframe main body 6 is accurately made to the target landing point of the spacecraft 100 (for example, the landing prediction point LP calculated by the prediction calculation unit 40).
- the control injection nozzle 17 jets a jet (auxiliary jet) from the control injection nozzle 17 in the horizontal direction, etc. It is good to drive As a result, the airframe main body 6 can move quickly from the non-landing possible landing point LP to avoid this.
- FIG. 2 is a schematic view for explaining a space vehicle 101 according to a second embodiment of the present invention.
- the air brake structure (parachute 1) is continuously formed around the central convex portion 2 projecting toward the airframe main body 6, and the airframe main body 2 to form an airframe main body It differs from the first embodiment in that it includes a concave portion 2 a that curves in a concave shape toward 6.
- the central convex portion 2 of the parachute 1 protrudes in a “pointer hat” shape toward the injection nozzle 5. That is, the tip (lower end) of the central convex portion 2 and the vicinity thereof are convex downward, and the concave portion 2 a is convex upward.
- the central convex portion 2 has an inflection point transitioning downward from the convex shape to the convex shape around the tip.
- the injection pressure by the jet J makes a U-turn from the central convex portion 2 in the shape of a pointed hat to the bottom portion 7 of the parachute 1 and becomes a jet J1 flowing along the concave portion 2a.
- the central convex portion 2 is connected to the support rope 3 of the parachute 1 by a convex portion support rope 4.
- a plurality of convex portion support ropes 4 are circumferentially connected in the vicinity of the tip (lower end) of the central convex portion 2, and each convex portion support rope 4 radially extends to the middle portion of the plurality of support ropes 3 Each is linked.
- the convex portion support rope 4 is branched from the middle portion of the support rope 3 and supports the central convex portion 2 with a predetermined tension.
- the jet J is jetted from the jet nozzle 5 toward the parachute 1 so as to collide with the central convex portion 2.
- the jet stream J is split radially at the central convex portion 2 before decelerating. Invert at the bottom 7. For this reason, it prevents that the jet J becomes a vortex and stagnates and attenuates inside the parachute 1, and the jet J2 is blown out from the periphery of the parachute 1 while maintaining a large momentum to obtain a high reaction force F be able to.
- the jet J split at the central convex portion 2 is reversed in direction at the bottom portion 7 without being disturbed and along the concave portion 2 a Flow.
- the reaction force F of the jet of the jet J is generated above the center-of-gravity position G of the airframe main body 6. Therefore, the falling of the airframe main body 6 can be decelerated and the landing surface 200 can be safely landed without increasing the rotational moment about the center of gravity of the airframe main body 6 unstably.
- Landing surface 200 may be landed on bottom surface 6 a of body 6 without providing legs 62 on body 6.
- the body 62 may be provided with the legs 62.
- FIG. 3 is a schematic view for explaining a state in which the spacecraft 101 of the second embodiment is docked to the space station 202.
- the parachute 1 illustrates an end face cut in a plane passing through the center of the central convex portion 2.
- FIG. 3 shows a state in which the spacecraft 101 lands on the docking unit 204 of the space station 202, not on the ground such as the moon. That is, the docking unit 204 of the space station 202 corresponds to the landing surface 200.
- a connecting portion (not shown) is provided on the bottom surface 6 a of the machine body 6.
- control injection nozzle 17 for finely adjusting the position and the orientation of the airframe main body 6 is provided on the side surface 6b of the airframe main body 6.
- the control injection nozzle 17 is an auxiliary thruster for controlling the position and orientation of the airframe main body 6 with six degrees of freedom.
- the control injection nozzles 17 are provided on at least one pair of opposing side surfaces 6b. In the spacecraft 101 just before landing, the spacecraft 101 can be hovered by injecting a jet J with a sufficient injection amount from the injection nozzle 5 and generating a reaction force F that balances with the weight of the spacecraft 101. .
- control injection nozzle 17 is operated to align the position and orientation of the airframe main body 6 with the docking portion 204 of the space station 202.
- the spacecraft 101 descends by its own weight and lands on the docking unit 204.
- FIG. 4 and FIG. 5 are views schematically showing the spacecraft 102 of the third embodiment of the present invention. Some of the ropes such as the support rope 3 and the convex portion support rope 4 are not shown.
- the spacecraft 102 of the present embodiment is different from the spacecraft 101 of the second embodiment (see FIG. 2) in that the spacecraft 102 has the injection guide 9.
- the injection guide 9 is a heat-resistant member disposed between the injection nozzle 5 and the air brake structure (parachute 1) and through which the jet J passes.
- the space projectile 101 according to the second embodiment shown in FIG. 2 has a large distance from the jet nozzle 5 to the central convex portion 2 in the form of a “hatched hat”, so the jet J ejected from the jet nozzle 5 is central convex It is a part of the jet J that diffuses before reaching 2 and reaches the central convex portion 2. Further, the jet J is diffused, so that the jet J1 after being inverted at the bottom portion 7 becomes low speed, and a large reaction force F can not necessarily be obtained.
- the jet guide J is provided to allow the jet J to pass, and the diffusion of the jet J is suppressed and focused on the central convex portion 2 of the parachute 1 in a converged state. be able to.
- the jet J is concentrated on the central convex portion 2, and a high flow velocity and a large reaction force F of the jet J2 can be obtained.
- the injection guide 9 preferably has heat resistance so as to pass the high temperature jet J generated by combustion or a chemical reaction. Therefore, the injection guide 9 is made of a heat resistant material such as carbon fiber or a composite heat resistant material.
- the injection guide 9 may be provided to the parachute 1 which does not have the central convex portion 2 like the spacecraft 100 of the first embodiment shown in FIG. In that case, diffusion is suppressed by passing the jet guide J injected from the injection nozzle 5 through the injection guide 9, and the jet J is sprayed to a central portion of the bottom surface 1 a of the parachute 1. As a result, the jet J is reliably U-turned to generate the jet J1 and the jet J2, and a large reaction force F can be obtained.
- the injection guide 9 has a hollow tubular shape.
- the opening shape of the injection guide 9 is preferably circular, but is not limited thereto.
- the opening diameter of the injection guide 9 is preferably larger than the opening diameter of the injection nozzle 5 so that substantially the entire amount of the jet J injected from the injection nozzle 5 is guided by the injection guide 9. However, since the jet stream J diffuses inside the injection guide 9 if the opening diameter of the injection guide 9 is too large, the opening diameter of the injection guide 9 is substantially equal to the opening diameter of the injection nozzle 5. Less than twice the opening diameter of is preferable.
- the injection guide 9 is disposed concentrically with the injection nozzle 5. Further, as shown in FIG. 5, the upper end of the injection nozzle 5 is preferably located inside the injection guide 9. With this arrangement, the jet J is prevented from leaking from the lower end of the injection guide 9, substantially all of the jet J is blown from the upper end toward the parachute 1 through the injection guide 9, and the parachute 1 Make a U-turn.
- the opening shape of the injection guide 9 of the present embodiment is circular, and the injection guide 9 is a cylindrical shape having a linear axis.
- the opening cross-sectional area of the injection guide 9 is uniform over the longitudinal direction as shown in FIG.
- the lower end portion of the jet guide 9 is connected to the upper portion of the machine body 6 by a plurality of lower support ropes 13.
- the upper end portion of the injection guide 9 is located below the tip (lower end) of the central projection 2 and is connected to the central projection 2 of the parachute 1 by a plurality of upper support ropes 14.
- the injection guide 9 is suspended between the central projection 2 and the machine body 6, and the straight line connecting the tip of the central projection 2 and the axis of the injection nozzle 5 is the axis of the injection guide 9. Be supported in a manner consistent with your heart. And by supporting the injection guide 9 with each of the plurality of lower support ropes 13 and the upper support rope 14, rotation of the injection guide 9 around the axis is suppressed.
- the shape of the injection guide 9 is not limited to that shown in FIG. Hereinafter, a modification of the injection guide will be described with reference to the cross-sectional views of FIG. 6 and FIG.
- FIG. 6 is a cross-sectional view of a first modified example of the space projectile 102 of the third embodiment.
- the legs 62 are not shown.
- the injection guide 10 of the first modified example at least the end (upper end) on the side closer to the air brake structure (parachute 1) gradually expands in diameter toward the air brake structure (parachute 1) It differs from the form of FIG. 5 in point. Further, as shown in FIG. 6, the height position of the upper end of the injection guide 10 is equivalent to the tip (lower end) of the central convex portion 2.
- the diameter of the upper end of the injection guide 10 By expanding the diameter of the upper end of the injection guide 10 in this way, even if the upper end of the injection guide 10 is brought close to the lower end of the central convex portion 2 and both are arranged at the same height, the flow passage area of the jet J It can be secured enough. As a result, the upper end of the injection guide 10 can be brought close to the parachute 1, and the diffusion of the jet J can be further suppressed.
- the diameter of the upper end of the injection guide 10 increases the flow velocity of the jet J and thus the speed of the jet J 2 after reversal. Can be increased.
- the opening diameter of the injection guide 10 of the first modification shown in FIG. 6 gradually increases over the entire length from the lower end to the upper end. That is, the injection guide 10 has a shape that spreads in a trumpet shape (skirt shape) over the entire length. Thereby, the jet stream J can be gradually widened toward the upper end of the injection guide 10 while the diffusion of the jet stream J is suppressed.
- the opening diameter may be constant from the lower end to the middle portion of the injection guide 10, and the opening diameter may be expanded with only a partial length from the middle portion to the upper end.
- the upper end of the upper support rope 14 for suspending the injection guide 10 may be attached to a position higher than the vicinity of the lower end of the central convex portion 2 in the parachute 1.
- FIG. 7 is a cross-sectional view of a second modification of the space vehicle 102 of the third embodiment.
- the injection guide 11 of the second modification at least the end (upper end) on the side closer to the air brake structure (parachute 1) gradually reduces in diameter toward the air brake structure (parachute 1) .
- the jet guide 11 is narrowed at the upper end portion toward the central convex portion 2, the jet stream J blown out from the jet guide 11 can be more concentrated toward the central convex portion 2.
- FIG. 8 is a cross-sectional view for explaining the space vehicle 103 of the fourth embodiment of the present invention.
- the air brake structure is a parachute 1 as in the first to third embodiments.
- the injection guide 12 of the present embodiment includes a lower cylindrical portion 12 a and a second parachute 12 b disposed above the lower cylindrical portion 12 a and arranged inside the parachute 1.
- the jet J which has been jetted from the jet nozzle 5 and has passed through the lower cylindrical portion 12a flows through the gap V between the parachute 1 and the second parachute 12b, so that the flow direction is reversed.
- the injection guide 12 is provided with the second parachute 12 b to suppress the diffusion of the jet J introduced into the injection guide 12 inside the parachute 1, and the jet J 2 is It can be blown out from the surroundings. Thus, a large reaction force F can be obtained.
- the second parachute 12 b (inner parachute) is made of a heat resistant material such as carbon fiber or a composite heat resistant material.
- the width dimension of the gap V between the parachute 1 and the second parachute 12 b is uniform throughout the parachute 1 in the example shown in FIG. 8.
- the second parachute 12b is attached to the machine body 6 by a support rope 13a.
- the second parachute 12 b (inner parachute) and the upper end of the lower cylindrical portion 12 a are continuously formed without a gap.
- the jet J that has passed through the lower cylindrical portion 12a is introduced into the gap V without being substantially decelerated, and a jet J2 having a high flow velocity can be obtained.
- FIG. 9 is a schematic view for explaining a state in which the space vehicle 104 according to the fifth embodiment of the present invention flies in space to collect space debris (space debris D).
- the traveling direction DR of the space vehicle 104 flying is the upper side of the figure.
- FIG. 10 is a schematic view for explaining the state of launching space debris (space debris D) from the spacecraft 104 of the fifth embodiment.
- the spacecraft 104 of the fifth embodiment can be used as a landing gear to the landing surface 200 as the spacecraft 100 to 103 of the first to fourth embodiments described above.
- the spacecraft 104 is a space debris collection device that flies in space as shown in FIG. 9 to collect space debris D, and as shown in FIG. 10, space debris toward the earth surface (landing surface 200). It is used as a space waste disposal device to launch and drop D.
- the air brake structure (parachute 1) in the space vehicle 104 of this embodiment has a central convex portion projecting toward the airframe main body 6 as in the second embodiment (see FIG. 2). And a concave portion 2a continuously formed around the central convex portion 2 and curved in a concave shape toward the airframe main body 6.
- the spacecraft 104 jets the jet J upward from the jet nozzle 5 and splits the jet J radially at the central convex portion 2 as described in the second and third embodiments (FIGS. 2 to 7).
- the jet force J1 flowing along the lower surface of the concave portion 2a is inverted at the bottom portion 7 and blown back from the peripheral edge of the parachute 1 as a jet jet J2 to obtain a reaction force F. Due to this reaction force F, the spacecraft 104 can obtain thrust in the traveling direction DR in space.
- the peripheral portion of the parachute 1 is connected to the machine body 6 by a plurality of support ropes 3. Since the reaction force F biases the parachute 1 forward and pulls the support rope 3 in the pulling direction, substantially only tension is loaded on the support rope 3. For this reason, even if it is the flexible and flexible support rope 3, there is no fear of buckling etc., and the fuselage body 6 can be pulled and advanced.
- the air brake structure (parachute 1) of the present embodiment has a bowl shape which opens toward the far side on one side (upper side) with the central convex portion 2 as the bottom. If the air brake structure is in a bowl shape, the air brake structure has a concave shape when the space flight object 104 is viewed from the front (upper side in FIG. 9) of the jet direction of the jet J. It refers to a shape in which the width dimension of at least a part of the shape widens continuously or stepwise toward the injection direction (forward) of the jet J.
- the central convex portion 2 is in the form of a straight cylinder having an axial direction with the jet direction of the jet J as the axial direction and a cylindrical shape of uniform diameter, and the concave portion 2a continuously formed on the upper end of the central convex portion 2 It has a frusto-conical shape that increases in diameter as it moves away from the
- the space flight object 104 advanced by the reaction force F can take in the space debris D floating in the space in front of the parachute 1 into the central convex portion 2.
- space debris D in the space swept by the wide opening area of the concave portion 2a is collected along the concave portion 2a by the parachute 1 having a bowl shape expanding in the forward direction of the flight direction, It can be taken into the inside of the convex portion 2.
- the central convex portion 2 includes a debris accommodating portion 70 that accommodates space debris D taken from one side (upper side) along the concave portion 2 a.
- the debris accommodating portion 70 is a region for collecting the space debris D taken into the central convex portion 2, and the side (lower side: lower end) opposite to the inflow side (upper side) of the space debris D in the central convex portion 2 Is closed and configured.
- the central convex portion 2 of the parachute 1 is continuously formed in a hollow shape continuous with the deepest central portion of the bowl-shaped concave portion 2a, and the deepest portion (lower end in FIG. 9) of the central convex portion 2 is closed. There is.
- space debris D relatively approaching from the front of the parachute 1 toward the spacecraft 104 moves along the bowl-shaped concave portion 2a to the inside of the parachute 1, and the debris accommodation portion through the central convex portion 2 It is collected inside 70.
- the mounting portion 72 is connected to the support rope 3 or the airframe main body 6 by a plurality of convex portion support ropes 4 arranged radially. For this reason, even if the space debris D is taken into the debris containing portion 70 and collides with the open / close lid 71, it is possible to suppress the wobbling of the central convex portion 2 and the debris containing portion 70.
- the debris storage unit 70 has an openable lid 71 that can be opened and closed.
- the open / close lid 71 faces the injection nozzle 5 and is disposed forward of the injection direction of the jet stream J when viewed from the injection nozzle 5.
- At least a part of the open / close lid 71 has a spherical shape that bulges in the depth direction of the debris containing portion 70.
- the depth direction of the debris containing portion 70 is the taking-in direction of the space debris D, in other words, the direction from the parachute 1 to the machine body 6.
- the open / close lid 71 of the present embodiment has a pair of partial spherical curved surface shapes.
- the open / close lid 71 is a combination of a pair of quarter spheres.
- An annular mounting portion 72 for reinforcement is attached to the tip (lower end) of the central convex portion 2.
- the mounting portion 72 is made of a material having higher rigidity than the central convex portion 2, and the mounting portion 72 is mounted around the lower end of the central convex portion 2.
- the open / close lid 71 is rotatably attached to the attachment portion 72 via a hinge mechanism 73. As shown in FIG. 9, the pair of open / close lids 71 are put together to form a hemispherical dome shape and close the lower end of the cylindrical central convex portion 2.
- the interior of the dome-shaped lid 71 serves as a debris accommodation space.
- the pair of open / close lids 71 each have a flange-like abutment portion 74.
- the abutting portion 74 is a flange surface formed on the meridian line when the pair of open / close lids 71 are combined to form a hemispherical dome shape.
- the open / close lid 71 has a hemispherical shape which is directly opposed to the injection nozzle 5 and bulges. As a result, the jet J is injected from the front to the open / close lid 71 to split it. As shown in FIG. 10, the pair of open / close lids 71 are opened by being respectively pivoted outward about the hinge mechanism 73, and the tip (upper end in FIG. 10) of the central convex portion 2 is opened.
- the mechanism for opening the open / close lid 71 is not particularly limited.
- the hinge mechanism 73 may urge an elastic force to the open / close lid 71 in the direction in which the open / close lid 71 is opened by a spring or the like. Further, as shown in FIG. 9, with the pair of open / close lids 71 closed, the butting portions 74 are releasably locked by a lock mechanism (not shown).
- the open / close lid 71 can be opened outward as shown in FIG. 10 by operating the lock mechanism with a pyrotechnic product or an electromagnet to release the lock.
- the open / close lid 71 can be maintained in the open state by the elastic force of the hinge mechanism 73.
- the opening / closing operation of the opening / closing lid 71 is not limited to being performed by the hinge mechanism 73 as in the present embodiment.
- the open / close lid 71 may be opened and closed by a shutter mechanism (not shown).
- the space flight object 104 which collected the space debris D in the debris accommodation unit 70 flies toward the earth with the reaction force F obtained by injecting the jet J from the injection nozzle 5 with the open / close lid 71 closed.
- the spacecraft 104 flies the parachute 1 toward the ground surface (landing surface 200) to a predetermined height above the earth (gravity zone), as shown in FIG.
- the open / close lid 71 is opened, and the jet J is injected from the injection nozzle 5 so that the jet stream J is blown into the inside of the central convex portion 2 between the opened pair of open / close lids 71.
- the space debris D collected at the site is pushed directly toward the ground surface.
- the jet force J is not split at the debris containing portion 70 and blown into the central convex portion 2 so that no reaction force F (see FIG. 9) is generated, and the jet reaction force of the jet stream J is directed upward in FIG. Act on.
- part or all of the gravity of the earth acting on the spacecraft 104 is canceled, and the spacecraft 104 maintains a predetermined height.
- the space debris D is ejected from the central convex portion 2 in the direction of the earth by the force of the jet J, and then enters the atmosphere (re-entry) and is burned and removed.
- the space vehicle 104 of the present embodiment even the relatively small space debris D which is difficult to capture with a robot arm or the like can be collected in the debris storage unit 70.
- the space debris D flying in space by its spacecraft D's own orbit as the spacecraft 104 flies further toward the earth with the repulsive force F as a propulsion force. Get off the track and decelerate. Therefore, as described above, the space debris D can be re-entered into the atmosphere and burned.
- the space debris D is collected by the space flight object 104 and then the space debris D is launched toward the earth, but the operation of the space flight object 104 is not limited to this. That is, the space flight object 104 may reenter itself into the atmosphere and burn the space debris D together with the space flight object 104 while collecting the space debris D in the debris storage unit 70.
- jets J are jetted from the jet nozzle 5 with the legs 62 of the airframe main body 6 directed to the side of the landing surface 200 to obtain the reaction force F downward. May be used as a landing gear for decelerating the spacecraft 104. When the spacecraft body 6 of the spacecraft 104 lands on the landing surface 200, the space debris D and the spacecraft 104 can be recovered to the ground.
- the specific structure of the open / close lid 71 is not limited to the present embodiment, and a movable lid that can close at least the rear side of the central convex portion 2 that is the debris containing portion 70 can be widely used.
- the shape of the open / close lid 71 may be flat instead of dome.
- the opening-closing lid 71 which closes only the lower end side (rear side) of the center convex part 2 (the debris accommodating part 70) was illustrated in this embodiment, it is not restricted to this.
- the opening and closing lid may be provided so as to be openable and closable on the front side and the rear side of the debris storage unit 70, respectively. In this case, as shown in FIG.
- the spacecraft 104 may turn as necessary toward the surface of the earth and fly, with both the front and rear open / close lids closed.
- the jet J may be injected from the injection nozzle 5 in a state where both the front and rear open / close lids are open.
- the spacecraft of the present invention is used as a landing gear for landing on artificial earth objects such as the earth surface, the earth surface such as the earth's surface, space stations etc. It can be used as a collection and disposal device for space debris to be removed.
- FIG. 11A is a schematic view for explaining a variation of the spacecraft 104 of the fifth embodiment.
- FIG. 11B is a schematic view of the open / close lid 71 of the space vehicle 104 of the modification viewed from the side of the injection nozzle 5.
- FIG. 12 is a schematic view illustrating a state where the space debris D is launched from the spacecraft 104 according to the modification of the fifth embodiment.
- At least a part of the open / close lid 71 in the present modification has a spherical shape which bulges in the depth direction of the debris containing portion 70 as shown in FIG. 11A.
- the depth direction of the debris containing portion 70 is the capturing direction of the space debris D, which is downward in FIG. 11A.
- the present modification is different from the fifth embodiment shown in FIGS. 9 and 10 in that the shape of the open / close lid 71 and the buffer body 75 are provided on the inner surface of the open / close lid 71. That is, the open / close lid 71 of the space vehicle 104 according to the fifth embodiment is a combination of a pair of quarter spheres, and as shown in FIG. The diameter of the hemisphere is equal to the diameter of the central protrusion 2. On the other hand, as shown in FIGS.
- the open / close lid 71 of the space vehicle 104 of the present modification is configured by combining three lid members of the same shape, and the open / close lid 71 It differs from the fifth embodiment in that it bulges to a diameter larger than the outer diameter of the central convex portion 2 in the closed state.
- the open / close lid 71 has a spherical shape which bulges outward in the radial direction of the debris containing portion 70 in addition to the depth direction of the debris containing portion 70.
- the term "spherical” as used herein includes a partial spherical surface and a substantially spherical surface.
- a part of the outer surface and the inner surface of the open / close lid 71 bulges out and protrudes to the outer side in the radial direction than the outline of the central convex portion 2 tightened by a broken line.
- the space debris D is taken in into the debris accommodating part 70 from one side (upper direction) along the concave part 2a.
- the open / close lid 71 of this modification rolls the taken-in space debris D along the inner surface of the open / close lid 71, and the collision with the other taken-in space debris D and the frictional force with the debris containing portion 70
- the space debris D can be decelerated and collected. That is, in the case of the hemispherical opening and closing lid 71 as in the fifth embodiment, there is a risk that the space debris D taken into the debris containing portion 70 makes a U-turn with the opening and closing lid 71 and is separated forward from the debris containing portion 70 again. is there.
- the spherical inner surface of the open / close lid 71 expands beyond the outline of the central convex portion 2 to the outside in the radial direction, so that it is taken into the debris accommodating portion 70
- the space debris D rolls along the inner surface of the open / close lid 71 and decelerates as it rolls inside the debris storage unit 70. For this reason, the possibility that the space debris D separates from the debris storage unit 70 again is reduced.
- the debris containing portion 70 is preferably a heat resistant debris containing portion made of a heat resistant material such as carbon fiber or a composite heat resistant material. It is preferable that the opening / closing lid 71 to which the jet J is particularly jetted out of the debris containing portion 70 has heat resistance higher than the heating temperature heated by the jet J.
- a material of the opening / closing lid 71 a metal material, a carbon fiber, or a composite heat-resistant material can be exemplified.
- a buffer body 75 made of a softer material than the open / close lid 71 is provided on the inner surface of the open / close lid 71.
- the specific material of the buffer 75 and the open / close lid 71 is not particularly limited, for example, as a material of the buffer 75, a rubber material, a porous resin material, and a gel can be exemplified.
- a material of the buffer 75 a rubber material, a porous resin material, and a gel.
- the thickness dimension of the buffer 75 may be larger than the thickness of the open / close lid 71. Thereby, the repulsive force when the space debris D collides with the open / close lid 71 can be sufficiently reduced.
- the buffer 75 is a member having a thickness sufficient to reduce the collision impact of the space debris D, and is coated and formed sufficiently thinner than the thickness of the open / close lid 71 such as a heat insulating coating or insulating coating. Except for the coated layer.
- FIG. 11A and 11B illustrate an embodiment in which the open / close lid 71 is configured by three lid members disposed around the ring-shaped attachment portion 72 and connected by the hinge mechanism 73, respectively. I can not.
- the lid member constituting the open / close lid 71 may be four or more, or two or less.
- the arrangement, the number, and the shape of the hinge mechanism 73 are also arbitrary, and the open / close lid 71 may be opened and closed by a mechanism other than the hinge mechanism 73.
- the space debris D is pushed toward the ground surface by injecting the jet J from the injection nozzle 5 with the open / close lid 71 open. It is preferable that the open / close lid 71 be expanded sufficiently widely in a state in which the open / close lid 71 is expanded. Specifically, the entire opening of the mounting portion 72 and the central convex portion 2 is an open / close lid as viewed from the injection nozzle 5 It is preferable to completely expose from 71.
- the circular openings of the mounting portion 72 and the central convex portion 2 are arranged along a vector extending from the center of the opening toward the injection nozzle 5 (that is, a vector opposite to the injection direction of the jet J from the injection nozzle 5). It is preferable that the entire open / close lid 71 be disposed outside the projected cylindrical virtual space. As a result, when the jet J ejected from the injection nozzle 5 is blown into the ring-shaped attachment portion 72 and the central convex portion 2 to push out the space debris D, the jet J interferes with the open / close lid 71 and decelerates It is possible to prevent it from
- FIG. 13 is a schematic plan view of a debris removal system 300 having a space vehicle 104 provided with the debris storage unit 70 described above as the fifth embodiment of the present invention or the modification thereof.
- This figure is a view of the debris removal system 300 viewed from the front of the traveling direction DR (see FIG. 14) of the spacecraft 104.
- FIG. 14 is a side view of the debris removal system 300 of the present embodiment as viewed from the side of the traveling direction DR of the spacecraft 104. As shown in FIG.
- the debris removal system 300 is more efficient than collecting space debris D with the space vehicle 104 alone by changing the flight trajectory of the space debris D using the orbiting flight object 320 that forms a line with the space vehicle 104. Space debris D is removed.
- the debris removal system 300 may be composed of only space vehicles 104 and orbiting vehicles 320 flying in space, or may be configured including a terrestrial system on the earth.
- the debris removal system 300 includes the spacecraft 104 and one or a plurality of orbiting aircraft 320 (320a, 320b) that form a line with the spacecraft 104 in front of the traveling direction DR of the spacecraft 104. And is configured.
- the orbiting flying object 320 flies along the traveling direction DR of the space flying object 104 while turning and flying around the central axis about the traveling direction DR of the space flying object 104 as a central axis.
- the orbiting flying object 320 includes a debris trajectory correction nozzle 330 which jets the jet J3 toward the flying space debris D to change the flying trajectory of the space debris D. That the space debris D flies to the orbiting flight object 320 means that the space debris D approaches the orbiting flight object 320 relatively.
- the orbiting projectile 320 has a housing 321, an advancing nozzle 332 (see FIG. 13) for obtaining an acceleration for flying along the traveling direction DR of the spacecraft 104, and an angular velocity for pivoting around the central axis AX. And an orbiting nozzle 334 for obtaining the electric field.
- the jet J4 is injected from the forward nozzle 332 in the opposite direction (downward in FIG. 14) to the forward direction DR, and the orbiting flying object 320 obtains a velocity component parallel to the forward direction DR.
- the jet J5 is injected from the turning nozzle 334 in a tangential direction of an arc centered on the central axis AX, and the turning flying object 320 obtains a velocity component to turn around the central axis AX.
- FIG. 13 exemplifies turning of the orbiting flight object 320 counterclockwise around the central axis AX.
- a jet J5 is made tangentially to the circle having a clockwise component with respect to a circle (not shown) centered on the central axis AX (the position of the debris storage portion 70 of the space vehicle 104 in FIG. Is injected.
- the turning direction of the turning projectile 320 may be opposite to the above.
- a plurality of orbiting flying objects 320 are arranged in a plurality of stages in a ring shape to fly in a row.
- the plurality of orbiting projectiles 320 constituting each stage pivot in the same direction.
- the orbiting projectiles 320 constituting different stages may pivot in the same direction around the central axis AX, or may pivot in the opposite direction.
- the propulsion principles of the forward nozzle 332, the swirl nozzle 334, and the debris trajectory correction nozzle 330 are not particularly limited, and may be common or different.
- the propellants used for the jet J 4 jetted from the forward nozzle 332, the jet J 5 jetted from the swirl nozzle 334, and the jet J 3 jetted from the debris trajectory correction nozzle 330 may be shared.
- the debris trajectory correction nozzle 330, the cancel nozzle 331, the forward nozzle 332, the reverse nozzle 333, the swivel nozzle 334, and the deceleration nozzle 335 are mounted on the housing 321.
- the casing 321 is mounted with an injection control unit that controls the injection timing and injection amount of the jet flow injected from each of the nozzles, and various control devices (not shown) for posture control.
- the orbiting projectile 320 has a receding nozzle 333 located on the opposite side of the advancing nozzle 332 with respect to the housing 321.
- illustration of the backward nozzle 333 appearing on the upper surface of the housing 321 is omitted.
- the backward nozzle 333 jets a jet in a direction opposite to the jet J 4 jetted from the forward nozzle 332.
- the orbiting projectile 320 has a decelerating nozzle 335 installed on the opposite side of the orbiting nozzle 334 with respect to the housing 321.
- the decelerating nozzle 335 jets a jet in a direction opposite to the jet J5 jetted from the swirling nozzle 334.
- the angular velocity around the central axis AX obtained by the jet J5 injected from the swirling nozzle 334 is excessive, the angular velocity can be reduced and finely adjusted by injecting a jet (not shown) from the deceleration nozzle 335 .
- the debris trajectory correction nozzle 330 jets a jet J3 toward the space debris D to change the flight trajectory of the space debris D.
- the orbiting projectile 320 has a canceling nozzle 331 installed on the opposite side of the debris trajectory correcting nozzle 330 with respect to the housing 321.
- the canceling nozzle 331 jets a jet (not shown) at the same velocity and flow rate as the jet J3 in the opposite direction to the jet J3 at the same timing as jetting the jet J3 from the debris trajectory correction nozzle 330.
- the reaction of the momentum of the jet J3 ejected from the debris trajectory correction nozzle 330 can cancel the deviation of the orbiting flight object 320 from the flight trajectory.
- the debris storage unit 70 of the space vehicle 104 is injected by injecting the jet J3 from the debris trajectory correction nozzle 330 toward the space debris D to change the flying trajectory of the space debris D.
- space debris D located outside the swept volume of the spacecraft 104 can be moved to the inside of the swept volume.
- the direction of the jet J3 ejected from the debris trajectory correction nozzle 330 toward the space debris D is not limited to the above.
- the jet J3 may be injected from the debris trajectory correction nozzle 330 toward the space debris D located between the orbiting flight object 320 and the earth.
- the space debris D can be dropped toward the earth and burned in the atmosphere to remove the space debris D.
- the space debris D is decelerated by applying the reverse acceleration of the flight direction to the space debris D flying on the orbit such as the geostationary orbit by the jet J3, and gradually from the orbit to the earth It will fall. Thereby, the space debris D can be burned and removed in the atmosphere.
- the debris removal system 300 further comprises a trajectory correction computing unit 340.
- the trajectory correction operation unit 340 determines at least one of the injection timing and the injection amount of the jet J3 ejected from the debris trajectory correction nozzle 330 based on the debris condition of the flying space debris D. More specifically, the debris condition at least includes the position of the flying space debris D, the flying direction and the flying speed.
- the trajectory correction computing unit 340 passes through the air brake structure (parachute 1) of the space vehicle 104 at the time of flight arrival of the space debris D after the flight trajectory has been changed by the injection of the jet J 3 and the flight position and flight time of the space debris D The injection timing or injection amount of the jet J3 is determined to coincide with the position.
- the injection amount of the jet J3 is the flow velocity of the jet J3 or the flow rate of the jet J3 per unit time. That is, the orbiting flying object 320 jets the space debris D so that the space debris D just reaches the space area and time zone through which the air brake structure (parachute 1) of the spacecraft 104 flying behind it passes. J3 is injected.
- the trajectory correction operation unit 340 is realized by a computer.
- the orbit correction computing unit 340 may be provided in the spacecraft 104, may be provided in the orbiting vehicle 320, may be provided in a terrestrial system on the earth, or may be provided separately from these. May be FIG. 14 illustrates the case where the trajectory correction arithmetic unit 340 is mounted inside the airframe main body 6 of the spacecraft 104.
- the debris removal system 300 optically or electromagnetically measures the position, the flying direction, and the flying velocity of the space debris D flying in front of the orbiting flight object 320 using an observation device (not shown).
- an observation device may be provided on the ground system, or may be provided on the spacecraft 104 or the orbiting vehicle 320.
- the observation device may further measure the size of the space debris D.
- the trajectory correction operation unit 340 estimates the mass of the space debris D from the size of the space debris D and the average density value of the space debris D. Furthermore, when the jet J3 is ejected from the debris trajectory correction nozzle 330 to the space debris D, the trajectory correction operation unit 340 estimates an average projected area in which the space debris D receives a biasing force.
- the orbit correction operation unit 340 Estimate the impulse that the debris D will receive.
- the trajectory correction operation unit 340 calculates the trajectory of the space debris D after the flight trajectory has been changed by receiving the impulse based on the estimated value of the mass of the space debris D, the position, the flying direction and the flying velocity.
- the trajectory correction operation unit 340 sets the trajectory of the space debris D to the space region through which the parachute 1 of the space vehicle 104 passes, with at least one of the injection timing and the injection amount of the jet J3 as a variable.
- the solution of the variable is determined so as to pass slightly ahead of the flying object 104 and be collected by the debris storage unit 70.
- the above orbit specified by the determined variable is called a "collection orbit”.
- the trajectory correction operation unit 340 is configured to continuously or intermittently inject jets J3 from the debris trajectory correction nozzle 330.
- the injection timing (timing) is a variable.
- the trajectory correction computing unit 340 is wirelessly connected to the injection control unit of the turning projectile 320.
- the trajectory correction operation unit 340 transmits a command signal to the injection control unit of the debris trajectory correction nozzle 330 so that the jet J3 is ejected from the debris trajectory correction nozzle 330 at the determined injection timing and injection amount.
- the jet J3 is ejected from the debris trajectory correction nozzle 330 in the determined orbiting vehicle 320 at a predetermined timing and injection amount.
- the debris removal system 300 includes one or more orbiting projectiles 320. Although one orbiting flight object 320 may be caused to orbit forward of the space flight object 104 to jet the jet J 3 to the space debris D, it is preferable to orbit the plurality of orbiting flight objects 320. As a result, even if the flying speed of the space debris D is high, the space debris D may pass the debris removal system 300 without passing near the swing flying object 320 in relation to the swing cycle of the swing flying object 320 The probability can be reduced.
- the debris removal system 300 of the present embodiment has a plurality of orbiting flying objects 320 that orbit and fly around the central axis AX.
- the trajectory correction computing unit 340 determines, among the plurality of machines, the orbiting flying object 320 that jets the jet J3 from the debris trajectory correction nozzle 330 based on the various debris conditions. That is, the trajectory correction computing unit 340 jets the jet J 3 at the moment when the flying space debris D passes the circular region drawn by the circular turning trajectory of the turning flying object 320 and which is closest to the space debris D. Is determined as the turning projectile 320 to be jetted.
- the trajectory correction computing unit 340 may determine to jet jets J3 from the orbiting flight members 320 of a plurality of machines (for example, a plurality of machines adjacent to each other) for one space debris D.
- FIGS. 13 and 14 illustrate a debris removal system 300 having a total of 12 orbiting vehicles 320.
- FIG. However, the number of orbiting aircraft 320 is not limited to this.
- a plurality of orbiting flying objects 320 are arranged in a plurality of stages in a ring shape in a forward direction of the traveling direction DR of the spacecraft 104 to form a row flight.
- six orbiting flying objects 320 a are distributed at equal intervals from one another on the first stage annular turning orbit near the space flying object 104.
- six orbiting flying bodies 320b are distributed at equal intervals to each other on the second stage annular orbit located forward of the first stage in the traveling direction DR.
- the flying orbit of the space debris D is changed onto the passing area of the space flight object 104 only by the jet J3 which the second stage swirling body 320b distant from the space flight object 104 injects to the space debris D.
- the space debris D can be more reliably assured by the fact that the orbiting flight object 320b not only jets the jet stream J3 but also the orbiting flight body 320a following the rear of the orbiting flight body 320b further jets the jet stream J3.
- Flight trajectory of the spacecraft can be changed onto the passage area of the spacecraft 104.
- the number of orbiting projectiles 320 constituting each stage may be equal to or different from one another.
- a plurality of orbiting flying objects 320 are arranged in a plurality of stages in a ring shape to fly in a row, but instead of the plurality of orbiting flying objects 320 being the traveling direction DR of the space flight object 104 It may be arranged in a spiral in front of the column to fly in a row.
- the spiral axis on which the orbiting flying object 320 is disposed coincides with the central axis AX, and each aircraft of the orbiting flying object 320 is disposed on a three-dimensional helix and pivots in the same direction around the central axis AX.
- the distances in the direction along the central axis AX between the plurality of orbiting flying objects 320 and the space flying object 104 are different from each other. Therefore, the possibility that one of the orbiting flying objects 320 approaches the flying space debris D and jets the jet J 3 to change the flying trajectory of the space debris D toward the space flying object 104 is enhanced.
- a plurality of turning projectiles 320 are connected to each other by a cable 350.
- the casings 321 of the aircraft adjacent to each other are connected by the cable 350 in the six orbiting flying objects 320a of the six aircraft that draw the orbit of the first stage.
- the casings 321 of the aircraft bodies adjacent to each other are also connected by another cable 350 in the six orbiting flying objects 320b that draw the orbit of the second stage.
- the plurality of swing projectiles 320 rotating in the same direction by the injection reaction force of the jet stream J5 have circular orbits.
- each aircraft of the orbiting projectile 320 has equal velocity components with respect to the traveling direction DR by, for example, injecting the jet J 4 from the forward nozzle 332 at the same speed.
- the spacecraft 104 reverses the jet J1 injected from the injection nozzle 5 with the parachute 1 as described above in the fifth embodiment, and blows it backward from the periphery of the parachute 1 as the jet J2 so that the speed in the traveling direction DR Fly with the ingredients.
- the orbiting flying object 320 and the space flying object 104 in each stage can translate at the same speed along the traveling direction DR (central axis AX) without breaking the squadron.
- the number of units of the turning projectiles 320 in each stage connected by the cables 350 is not limited, by being three or more, three or more cables 350 draw a polygon. Specifically, as shown in FIG. 13, there may be six, five or four, three or seven or more. As a result, the cable 350 is stretched on the side of the polygon, and the cable 350 is not disposed at the center of the polygon. For this reason, the space debris D flying toward the spacecraft 104 from the distance toward the spacecraft 104 does not interfere with the cable 350, and the space debris D can be used as a debris storage portion of the spacecraft 104. 70 does not prevent collection.
- the length of the cable 350 is not particularly limited, but can be, for example, several kilometers to several tens of kilometers. As shown in FIG. 13, when six orbiting flying objects 320 are arranged on the apex of a regular hexagon to draw a circular orbit, the diameter of the orbit is twice the length of the cable 350, that is, several tens of kilometers It can be in the order of On the other hand, the diameter of the parachute 1 of the spacecraft 104 can be about several tens of meters to 100 meters. Therefore, the space debris D is moved toward the spacecraft 104 by the debris removal system 300 of the present embodiment, as compared with the case where the spacecraft 104 flies alone and collects the space debris D with the parachute 1. When this is collected, the area where the space debris D can be removed can be as large as 1000 times in diameter ratio and 1 million times in area ratio.
- the turning radius of the first turning projectile 320a constituting the first step is the second turning projectile constituting the second step of turning and flying ahead of the space projectile 104 relative to the first turning projectile 320a. It is smaller than the turning radius of 320b.
- the space in which the debris removal system 300 is disposed is reduced in diameter from the orbit of the second stage of the orbiting flying object 320b toward the orbit of the first stage of the orbiting flying object 320a.
- the diameter decreases toward the parachute 1 of the spacecraft 104.
- the space in which the debris removal system 300 is disposed has a bowl shape that decreases in diameter from the front to the rear in the traveling direction DR.
- the flight trajectory of the space debris D flying toward the debris removal system 300 is changed (first stage change) in the direction toward the central axis AX by the second swing flight object 320b that draws a large swing trajectory, First, it is moved to the inside of the small orbit of the first orbiting flight object 320a. Next, the flying orbit of the space debris D is further changed with high accuracy to a position above the passing area of the parachute 1 of the space flying object 104 by the subsequent first orbiting flight object 320a that draws a small orbit. Can change the stage).
- the debris can be collected efficiently by the debris storage unit 70 of the spacecraft 104.
- the debris removal system of the present embodiment may be configured with only the orbiting vehicle without being combined with the space vehicle.
- a debris removal system has a plurality of orbiting flying vehicles in a row, and the above-mentioned flying vehicles fly along the central axis while flying around the predetermined central axis, and the space debris which flies It can be configured as a debris removal system including a debris trajectory correction nozzle that jets a jet to change the flying trajectory of space debris. Space debris may be dropped toward the surface by jets ejected from the debris trajectory correction nozzle. As a result, even if space debris is not collected by space vehicles, it can be removed by re-entering the atmosphere debris and burning it.
- FIG. 15 is a schematic plan view of a debris removal system 310 according to a modification. This figure is a view of the debris removal system 310 viewed from the front of the traveling direction of the spacecraft 104.
- FIG. 16 is a side view of the debris removal system 310 viewed from the side of the traveling direction DR of the spacecraft 104. As shown in FIG.
- the debris removal system 310 is configured to include the spacecraft 104, and the spacecraft 104 and a plurality of orbiting flight vehicles 320 that form a line in front of the traveling direction DR of the spacecraft 104.
- a plurality of turning projectiles 320 respectively fly around the central axis AX extending through the spacecraft 104 and along the traveling direction DR.
- the debris removal system 310 of the present embodiment differs from the debris removal system 300 of the sixth embodiment in that a plurality of orbiting projectiles 320 are connected to the spacecraft 104 by a cable 352, respectively.
- the cable 352 connects the casing 321 of the orbiting flight object 320 to, for example, the outer peripheral edge of the parachute 1 of the space flight object 104.
- a plurality of turning projectiles 320 draw a turning trajectory around the central axis AX of the space projectile 104 by injecting the jet J 5 from the turning nozzle 334.
- the space flying object 104 is pulled forward by the cable 352 and makes an advancing flight in the traveling direction DR while rotating about the central axis AX. Since the orbiting projectiles 320 are evenly distributed around the central axis AX, the forces by which the orbiting projectiles 320 of each aircraft pull the space projectile 104 via the cables 352 cancel each other.
- Collection operation of the space debris D by the debris removal system 310 is the same as that of the sixth embodiment.
- the length of the cable 352 can be, for example, several kilometers to several tens of kilometers.
- the jets J4 are injected from the forward nozzle 332 in the direction opposite to the traveling direction DR to obtain equal velocity components advancing along the traveling direction DR.
- the orbiting vehicle 320 and the space vehicle 104 fly in a formation while maintaining a predetermined distance in the traveling direction DR.
- the orbiting projectile unit 320 closest to the orbit is determined by the trajectory correction computing unit 340, and the jet J3 is ejected from the debris trajectory correction nozzle 330.
- the flying orbit of the space debris D is changed to a collecting orbit.
- the space debris D can be collected by the debris storage unit 70 of the spacecraft 104.
- the debris trajectory correction nozzle 330 fixedly installed in the housing 321 is directed to the central axis AX with respect to the space debris D.
- the debris trajectory correction nozzle 330 may be movably attached to the housing 321 so that the injection direction of the jet J 3 can be changed.
- the jet J3 is jetted from the debris trajectory correction nozzle 330 so as to have not only the inward directional component of the orbit but also a directional component opposite to the traveling direction DR (that is, the direction toward the spacecraft 104). It is also good. Thereby, the space debris D flying in various orbits can be more reliably changed to the collection orbits.
- the present invention is not limited to the above-described embodiment, and also includes various modifications, improvements and the like as long as the object of the present invention is achieved.
- a foldable parachute 1 may be mounted at the rear of a spacecraft having both wings like an aircraft, and the parachute 1 may be deployable on an extension of a jet J injected rearward from the rocket engine of the spacecraft.
- the various components of the spacecraft 100 to 104 of the present invention do not have to be independent entities individually, but a plurality of components are formed as one member, one component is a plurality of members , A certain component is a part of another component, a part of a certain component overlaps with a part of another component, and the like.
- a machine body an air brake structure provided behind the machine body in the flight direction and curving in a concave shape toward the machine body, and a body body provided in the machine body than the center of gravity of the machine body
- an injection nozzle for injecting a jet stream toward the air brake structure from the rear in the flight direction, and the direction of the jet stream jetted is reversed along the concave air brake structure.
- a landing gear characterized in that a repulsive force of the jet is generated on a body of the vehicle rearward in the flight direction.
- the air brake structure is a parachute made at least in part of carbon fiber.
- the air brake structure includes a central convex portion projecting toward the main body, and a concave portion continuously formed around the central convex portion and curved in a concave shape toward the main body.
- the landing gear as described in said (1) or (2) provided with.
- the landing gear as described in said (4) whose opening cross-sectional area of the said injection guide is uniform over the longitudinal direction.
- the landing gear according to (4) wherein at least an end of the injection guide on the side closer to the air brake structure gradually expands toward the air brake structure.
- the landing gear according to (4) wherein at least an end of the injection guide on the side closer to the air brake structure gradually reduces in diameter toward the air brake structure.
- the air brake structure is a parachute, and the injection guide is disposed at a lower side cylindrical portion and a second parachute arranged above the lower side cylindrical portion and arranged inside the parachute. And the jet flow passing through the lower cylindrical portion flows through the gap between the parachute and the second parachute, and the direction of the jet is reversed in any one of the above (4) to (7).
- the landing gear as described in. (9)
- the landing gear according to (8), wherein the second parachute and the lower cylindrical portion are continuously formed without a gap.
- a height calculation unit that calculates the height of the machine body, and a jet control unit that controls the jet jetted from the jet nozzle based on the height information indicating the height calculated by the height calculation unit; And a control injection nozzle for injecting another jet in at least one direction different from the direction of the jet injected from the injection nozzle, the landing according to any one of the above (1) to (9) apparatus.
- (11) It is possible to land on the surface information indicating the surface condition of the landing forecast point or the landing forecast point, which calculates the landing forecast point of the airframe body based on the altitude and the flight speed of the airframe body, And an injection control unit for controlling the jet jetted from the injection nozzle based on the surface information acquired by the information acquisition unit or the availability information.
- the landing gear as described in any one of said (1) to (10) provided with these.
- a space flight object characterized by causing repulsion of the jet flow toward the one side in the flight direction on the main body of the spacecraft.
- the air brake structure is a parachute made at least in part of a carbon fiber or a composite heat resistant material.
- the air brake structure includes a central convex portion projecting toward the machine body, and a concave portion continuously formed around the central convex portion and curving in a concave shape toward the machine body.
- the debris storage unit has an openable and closable lid, and the lid is disposed opposite to the jet nozzle and disposed forward in the jet direction of the jet stream as viewed from the jet nozzle.
- Spacecraft described in. (27) The space vehicle according to the above (26), wherein at least a part of the open / close lid has a spherical shape which bulges in the depth direction of the debris containing portion.
- At least a part of the open / close lid is further spherical shaped so as to further bulge outward in the radial direction of the debris containing portion, and in a state where the open / close lid is closed
- the air brake structure is a parachute, and the injection guide is disposed at a lower side cylinder portion and a second parachute arranged above the lower side cylinder portion and arranged inside the parachute.
- a prediction computing unit that calculates a landing forecast point of the airframe body based on the altitude and flight speed of the airframe body, surface information indicating the surface condition of the air forecasting point, or landing possible at the landing forecast point
- an injection control unit for controlling the jet jetted from the injection nozzle based on the surface information acquired by the information acquisition unit or the availability information.
- the debris removal system provided with the nozzle for debris trajectory correction
- the trajectory correction operation unit is further provided, wherein the trajectory correction operation unit determines the space after the change of the flight trajectory based on a debris condition including the position, flight direction, and flight velocity of the flying space debris.
- the injection timing or injection amount of the jet injected from the debris trajectory correction nozzle so that the arrival position and arrival time of debris coincide with the passing position of the air brake structure of the space vehicle at the arrival time.
- the debris removal system as described in said (39) which determines at least one.
- the debris removal system having a plurality of the orbiting flying objects of the plurality of machines that fly around the central axis, wherein the trajectory correction computing unit is configured to select the plurality of the plurality of machines among the plurality based on the debris condition.
- the debris removal system according to the above (40), wherein the orbiting projectile for injecting the jet from the debris trajectory correction nozzle is determined.
- a debris removal system having a plurality of the orbiting flying objects of the plurality of aircraft which orbit around the central axis, wherein the orbiting flying objects of the plurality of aircraft are mutually connected by a cable (38) 41.
- the debris removal system according to any one of 41).
- a debris removal system having a plurality of the orbiting flying objects of the plurality of aircraft that orbit around the central axis, wherein the plurality of orbiting aircrafts are respectively connected to the space vehicle by a cable 38)
- the debris removal system according to any one of (41) to (41).
- a debris removal system having a plurality of the orbiting flying objects of the plurality of planes which fly around the central axis, wherein the plurality of orbiting flying bodies are spirally formed forward of the traveling direction of the space vehicle. Or the debris removal system as described in any one of said (38) to (43) arrange
- the turning radius of the first turning vehicle is smaller than the turning radius of the second turning vehicle that makes a turn more forward of the space flight vehicle than the first turning vehicle.
- the debris removal system according to the above (44) characterized by the above. (46)
- a rotating flight vehicle having a plurality of formations, the jet flying toward the space debris flying and flying along the central axis while flying around the predetermined central axis.
- the debris removal system provided with the nozzle for debris trajectory correction
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Remote Sensing (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Toys (AREA)
Abstract
A spacecraft (100) includes a principal airframe (6), a parachute (1), which is an air brake structure, and a jetting nozzle (5). The air brake structure is provided farther on one side in a traveling direction with respect to the principal airframe and is curved in a concave shape facing the principal airframe. The jetting nozzle is provided in the principal airframe and jets a jet stream (J) toward the air brake structure from farther on the one side in the traveling direction with respect to a center-of-gravity position (G) of the principal airframe. The spacecraft is characterized in that, by reversing the direction of the jetted jet stream along the concavely shaped air brake structure, a reaction force (F) of the jet stream is generated to act on the principal airframe toward the one side in the traveling direction.
Description
本発明は、宇宙空間を飛行する宇宙飛翔体およびかかる宇宙飛翔体を有するデブリ除去システムに関する。
The present invention relates to a spacecraft flying in space and a debris removal system having such spacecraft.
従来、各種の宇宙飛翔技術および着陸技術が提案されてきた。着陸時に地面に向けて噴流を噴射することにより垂直に着陸する飛翔体を一般に垂直着陸型ロケットと呼ぶ。垂直着陸型ロケットは機体の再利用が可能であることから、特に月など地球外の衛星や惑星への着陸技術として注目されている。
Conventionally, various space flight techniques and landing techniques have been proposed. A projectile that lands vertically by injecting a jet toward the ground at landing is generally called a vertical landing rocket. Vertical landing type rockets are attracting attention as a landing technology for extraterrestrial satellites and planets such as the moon because they can be reused.
垂直着陸型ロケットの例として下記の特許文献1には、機体のベース部に設けられたエンジンが推力偏向ノズルを有し、ジンバル装置によって複数個のエンジンの向きを個別に調整することが可能な垂直離着陸機が記載されている。この垂直離着陸機は、エンジンで生成された噴流の噴射方向を2つの方向に変化可能であり、あるエンジンが故障したときでも他のエンジンの噴流の向きを調整することにより機体の姿勢を維持しながら垂直着陸することができるとされている。
In Patent Document 1 below as an example of a vertical landing type rocket, the engine provided at the base of the airframe has a thrust deflection nozzle, and the orientation of a plurality of engines can be individually adjusted by the gimbal device. Vertical take-off and landing aircraft are described. The vertical take-off and landing aircraft can change the injection direction of the jet generated by the engine in two directions, and maintain the attitude of the airframe by adjusting the jet direction of the other engine even when one engine fails. While being able to land vertically.
しかしながら、特許文献1に記載されているような垂直離着陸ロケットで垂直着陸を試みる場合、地面に向けられたノズルの噴射口が最も下に位置し、その上方に重い機体本体が位置することとなる。このため、ノズルから噴射される噴流の反動力は、ノズルから機体本体の重心を通る上向きに発生する。ここで、噴流に横方向の揺らぎが生じるなどして噴流の反動力の向きが機体本体の重心からずれると、この反動力は機体本体に対して重心まわりの回転モーメントを発生させる。そして噴流が概略重心に向かって噴射されることで、ひとたび発生した回転モーメントは不安定に増大していく。玉乗りの玉の頂上に載ることが不安定であることと同様である。これにより機体の姿勢を制御することが困難になる。特に、着陸する機体の高度が下がって地面に近づくと、ノズルから噴射される非定常の噴流が機体底面と地面との間で複雑な渦流を形成し、この渦流が機体底面に対して地面効果と呼ばれる複雑な空気力を及ぼす。このため、機体には複雑な空気力が作用して姿勢制御が困難となるばかりでなく、機体が受ける噴流の反動力の向きも複雑に時間変化するため上述した回転モーメントが発生しやすく機体の姿勢が益々不安定になる。
However, when attempting vertical landing with a vertical take-off and landing rocket as described in Patent Document 1, the jet nozzle of the nozzle directed to the ground is located at the lowest position, and the heavy airframe main body is located above it. . Therefore, the reaction force of the jet jetted from the nozzle is generated upward from the nozzle through the center of gravity of the airframe main body. Here, when the direction of reaction force of the jet flow deviates from the center of gravity of the airframe main body due to the occurrence of lateral fluctuation in the jet flow or the like, this reaction force generates a rotational moment around the gravity center with respect to the airframe main body. Then, as the jet is injected toward the approximate center of gravity, the generated rotational moment increases unstably. It is the same as being unstable on the top of the ball on the ball. This makes it difficult to control the attitude of the vehicle. In particular, as the landing aircraft descends and approaches the ground, unsteady jets ejected from the nozzles form complex vortices between the bottom of the aircraft and the ground, and the vortex effects the ground effect on the bottom of the aircraft. Exerts a complex aerodynamic force called For this reason, not only the complex aerodynamic force acts on the airframe to make attitude control difficult, but also the direction of the reaction force of the jet stream to which the airframe receives is complicatedly time-varying, so the above-mentioned rotational moment is easily generated. The attitude becomes more and more unstable.
このような姿勢制御の困難さは、垂直着陸型ロケットが地面に着陸する際に発生するばかりでなく、宇宙ステーションなどの人工天体に着陸する場合にも発生する。また、垂直着陸型ロケットに限らず、逆推力装置で逆噴射して制動する方式の宇宙往還機等の各種の宇宙飛翔体においても類似の課題が発生する。このため、将来の月面探査や宇宙ステーションとの往還等の種々の宇宙活動に向けて、容易で確実な姿勢制御が可能な宇宙飛翔体の着陸技術が求められている。
Such difficulty in attitude control occurs not only when landing on the ground, but also when landing on an artificial celestial body such as a space station. Similar problems occur not only in the vertical landing type rocket, but also in various space vehicles such as a spacecraft refueling system in which the reverse thrust device reversely jets and brakes. For this reason, there is a need for a space vehicle landing technology capable of easy and reliable attitude control for various space activities such as future lunar exploration and return to space stations.
上記の目的を達成するため、本発明の宇宙飛翔体は、機体本体と、前記機体本体よりも飛行方向の一方側に設けられ前記機体本体に向かって凹形状に湾曲するエアブレーキ構造体と、前記機体本体に設けられ前記機体本体の重心位置よりも前記飛行方向の前記一方側から前記エアブレーキ構造体に向けて噴流を噴射する噴射ノズルと、を有し、噴射された前記噴流の向きが凹形状の前記エアブレーキ構造体に沿って反転することにより前記機体本体に前記飛行方向の前記一方側に向けて前記噴流の反動力を生じさせることを特徴とする。
In order to achieve the above object, the spacecraft of the present invention includes an airframe main body, and an air brake structure provided on one side in the flight direction relative to the airframe main body and curved in a concave shape toward the airframe main body; An injection nozzle provided in the airframe main body and injecting an air jet from the one side in the flight direction toward the air brake structure with respect to the gravity center position of the airframe main body; It is characterized in that by reversing along the concave-shaped air brake structure, a repulsive force of the jet flow is generated on the airframe main body toward the one side in the flight direction.
また本発明の着陸装置においては、より具体的な態様として、前記エアブレーキ構造体が、前記機体本体に向けて突出する中央凸部と、前記中央凸部の周囲に連続形成されていて前記機体本体に向かって凹形状に湾曲する凹面部と、を備えてもよい。また前記噴射ノズルと前記エアブレーキ構造体との間に配置されて前記噴流が通過する耐熱性の噴射ガイドを有してもよい。更に、前記噴射ノズルから噴射される前記噴流の向きとは異なる少なくとも一の方向に他の噴流を噴射する制御用噴射ノズルを備えてもよい。
Further, in the landing gear according to the present invention, as a more specific aspect, the air brake structure is continuously formed around the central convex portion protruding toward the main body of the airframe and around the central convex portion, and the airframe is And a concave portion curved in a concave shape toward the main body. Furthermore, a heat-resistant injection guide may be disposed between the injection nozzle and the air brake structure and through which the jet stream passes. Furthermore, a control injection nozzle may be provided which jets another jet in at least one direction different from the direction of the jet jetted from the jet nozzle.
本発明の宇宙飛翔体によれば、機体本体よりも飛行方向の一方側に設けられたパラシュートなどのエアブレーキ構造体に対して噴流を噴射し、この噴流の向きを凹形状に沿って反転させて反動力を得ることができる。このため、飛行方向の上記一方側を着陸面に対して噴射ノズルよりも後方(すなわち上方)とすることにより、着陸面に対して逆噴射を行うことができる。このため機体本体を減速させるにあたり地面効果の影響を抑制することができる。更にこのとき、機体本体の重心位置よりも上方から更に上方のエアブレーキ構造体に向かって、すなわち機体本体の重心位置とは反対の向きに噴流を噴射することとなる。このため、仮に機体本体の重心まわりに回転モーメントが発生したとしても当該回転モーメントが不安定に増大することがない。これにより本発明によれば機体本体を力学的に安定の状態で減速および着陸させることができ、容易で確実な姿勢制御が可能になる。また本発明を応用することにより、着陸技術に用いるだけでなく、上記の反動力を推進力として宇宙空間を飛行させることで宇宙飛翔体を宇宙ゴミ(スペースデブリ)の回収および廃棄装置として用いることができる。
According to the space projectile of the present invention, a jet is jetted to an air brake structure such as a parachute provided on one side in the flight direction than the airframe main body, and the direction of the jet is reversed along the concave shape. You can get the reaction. For this reason, reverse injection can be performed on the landing surface by setting the one side in the flight direction behind (that is, above) the injection nozzle with respect to the landing surface. Therefore, the influence of the ground effect can be suppressed in decelerating the airframe main body. Further, at this time, the jet is jetted from the upper side to the air brake structure above the center of gravity of the airframe main body, that is, in the opposite direction to the airframe of the airframe main body. Therefore, even if a rotational moment occurs around the center of gravity of the airframe main body, the rotational moment does not increase unstably. As a result, according to the present invention, the airframe main body can be decelerated and landed in a dynamically stable state, and easy and reliable attitude control becomes possible. Further, by applying the present invention, it is possible not only to use it for landing technology, but also to use a space vehicle as space debris (space debris) collection and disposal device by flying the space with the above reaction force as a propulsive force. Can.
上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
The objects described above, and other objects, features and advantages will become more apparent from the preferred embodiments described below and the following drawings associated therewith.
以下、本発明の実施形態を図面に基づいて説明する。尚、各図面において、対応する構成要素には共通の符号を付し、重複する説明は適宜省略する。
Hereinafter, embodiments of the present invention will be described based on the drawings. In the drawings, the corresponding components are denoted by the same reference numerals, and redundant description will be omitted as appropriate.
<第一実施形態>
はじめに本実施形態の宇宙飛翔体100の概要について説明する。
図1に示す本実施形態の宇宙飛翔体100は、機体本体6、エアブレーキ構造体(パラシュート1)および噴射ノズル5を有している。エアブレーキ構造体(パラシュート1)は機体本体6よりも飛行方向の一方側に設けられており、機体本体6に向かって凹形状に湾曲している。本明細書においてエアブレーキ構造体(パラシュート1)が機体本体6に向かって凹形状に湾曲するとは、エアブレーキ構造体(パラシュート1)の少なくとも一部が、機体本体6から視て凹形状であること、すなわち機体本体6から遠ざかる方向に窪んだ形状であることを意味する。本実施形態では上記一方側を飛行方向の後方、すなわち着陸面200に対して上方とする。これにより宇宙飛翔体100は着陸装置として用いられる。ただし第五実施形態にて後述するように、本発明の宇宙飛翔体(宇宙飛翔体104:図10参照)はエアブレーキ構造体を前方に配置して宇宙空間を飛行する態様で用いてもよい。この場合、エアブレーキ構造体は機体本体6に対して飛行方向の前方に設けられることになり、すなわち上記の一方側は飛行方向の前方にあたる。
図1に示す第一実施形態の宇宙飛翔体100において、噴射ノズル5は機体本体6に設けられており、機体本体6の重心位置Gよりも飛行方向の一方側(第一実施形態では後方)からエアブレーキ構造体(パラシュート1)に向けて噴流Jを噴射する。
本実施形態の宇宙飛翔体100は、噴射された噴流Jの向きが凹形状のエアブレーキ構造体(パラシュート1)に沿って反転することにより、機体本体6に飛行方向の後方に向けて噴流Jの反動力Fを生じさせる。 First Embodiment
First, the outline of thespacecraft 100 of the present embodiment will be described.
Aspacecraft 100 of the present embodiment shown in FIG. 1 has an airframe main body 6, an air brake structure (parachute 1) and an injection nozzle 5. The air brake structure (parachute 1) is provided on one side in the flight direction relative to the airframe main body 6, and is curved in a concave shape toward the airframe main body 6. In this specification, when the air brake structure (parachute 1) is curved in a concave shape toward the airframe main body 6, at least a part of the air brake structure (parachute 1) has a concave shape as viewed from the airframe main body 6. That is, it means that the shape is recessed in the direction away from the airframe main body 6. In the present embodiment, the one side is the rear in the flight direction, that is, the upper side with respect to the landing surface 200. Thus, the spacecraft 100 is used as a landing gear. However, as will be described later in the fifth embodiment, the spacecraft of the present invention (spacecraft 104: see FIG. 10) may be used in a mode in which the air brake structure is disposed in front to fly in space . In this case, the air brake structure is provided in front of the airframe main body 6 in the flight direction, that is, one side of the above corresponds to the front in the flight direction.
In thespacecraft 100 of the first embodiment shown in FIG. 1, the injection nozzle 5 is provided in the airframe main body 6, and one side (rearward in the first embodiment) of the center of gravity G of the airframe main body 6 in the flight direction. Jet J is injected toward the air brake structure (parachute 1).
In thespace projectile 100 of the present embodiment, the jet J is directed rearward in the flight direction to the airframe main body 6 by reversing the direction of the jet J being jetted along the concave air brake structure (parachute 1). Produces a reaction force F of
はじめに本実施形態の宇宙飛翔体100の概要について説明する。
図1に示す本実施形態の宇宙飛翔体100は、機体本体6、エアブレーキ構造体(パラシュート1)および噴射ノズル5を有している。エアブレーキ構造体(パラシュート1)は機体本体6よりも飛行方向の一方側に設けられており、機体本体6に向かって凹形状に湾曲している。本明細書においてエアブレーキ構造体(パラシュート1)が機体本体6に向かって凹形状に湾曲するとは、エアブレーキ構造体(パラシュート1)の少なくとも一部が、機体本体6から視て凹形状であること、すなわち機体本体6から遠ざかる方向に窪んだ形状であることを意味する。本実施形態では上記一方側を飛行方向の後方、すなわち着陸面200に対して上方とする。これにより宇宙飛翔体100は着陸装置として用いられる。ただし第五実施形態にて後述するように、本発明の宇宙飛翔体(宇宙飛翔体104:図10参照)はエアブレーキ構造体を前方に配置して宇宙空間を飛行する態様で用いてもよい。この場合、エアブレーキ構造体は機体本体6に対して飛行方向の前方に設けられることになり、すなわち上記の一方側は飛行方向の前方にあたる。
図1に示す第一実施形態の宇宙飛翔体100において、噴射ノズル5は機体本体6に設けられており、機体本体6の重心位置Gよりも飛行方向の一方側(第一実施形態では後方)からエアブレーキ構造体(パラシュート1)に向けて噴流Jを噴射する。
本実施形態の宇宙飛翔体100は、噴射された噴流Jの向きが凹形状のエアブレーキ構造体(パラシュート1)に沿って反転することにより、機体本体6に飛行方向の後方に向けて噴流Jの反動力Fを生じさせる。 First Embodiment
First, the outline of the
A
In the
In the
以下、本実施形態についてより詳細に説明する。
本明細書において着陸とは地表や月面などの地面または地面に建造されたプラットフォームに下りることのほか、宇宙ステーションなどの人工天体にドッキングすることを含む。以下、着陸する対象を「着陸面」と呼称する場合があるが、かかる「着陸面」は、平坦面である場合のほか、凹凸のある凹凸面や、宇宙ステーションのドッキング装置のような構造体をも含む意味である。 Hereinafter, the present embodiment will be described in more detail.
As used herein, landing includes landing on a ground or platform built on the ground, such as the ground or the moon, as well as docking to an artificial celestial body such as a space station. Although the target to be landed is sometimes referred to as a "landing surface" hereinafter, such a "landing surface" is a flat surface, as well as an uneven surface having unevenness, and a structure such as a docking device of a space station. Meaning that also includes
本明細書において着陸とは地表や月面などの地面または地面に建造されたプラットフォームに下りることのほか、宇宙ステーションなどの人工天体にドッキングすることを含む。以下、着陸する対象を「着陸面」と呼称する場合があるが、かかる「着陸面」は、平坦面である場合のほか、凹凸のある凹凸面や、宇宙ステーションのドッキング装置のような構造体をも含む意味である。 Hereinafter, the present embodiment will be described in more detail.
As used herein, landing includes landing on a ground or platform built on the ground, such as the ground or the moon, as well as docking to an artificial celestial body such as a space station. Although the target to be landed is sometimes referred to as a "landing surface" hereinafter, such a "landing surface" is a flat surface, as well as an uneven surface having unevenness, and a structure such as a docking device of a space station. Meaning that also includes
宇宙飛翔体100は種々の構造をとることができ、ロケットなどのローンチャーまたは人工衛星に搭載されて打ち上げられた後に切り離されて着陸面に向けて落下するものでもよく、または自機により離陸可能な離着陸機でもよい。宇宙飛翔体100としては、月着陸船や宇宙往還機を例示することができる。
The spacecraft 100 may have various structures, and may be separated after being launched on board a launcher such as a rocket or an artificial satellite, and may be dropped toward the landing surface, or may be taken off by its own aircraft It may be a take-off and landing aircraft. The spacecraft 100 can be exemplified by a lunar lander or a space shuttle.
機体本体6は、バス機器およびミッション機器が搭載された主要構造部であり、宇宙飛翔体100における主たる質量部である。機体本体6の下部には脚62を任意で備えていてもよい。本明細書において下方とは宇宙飛翔体100からみて宇宙ステーションや地面などの着陸面200が存在する側であり、上方とはその反対側である。したがって本明細書でいう上下は、地球の重力方向の上下とは必ずしも一致しない。
The airframe main body 6 is a main structural portion on which bus equipment and mission equipment are mounted, and is a main mass portion in the spacecraft 100. A leg 62 may optionally be provided at the lower part of the machine body 6. In the present specification, the lower side is the side on which the space station and the landing surface 200 such as the ground are present, as viewed from the spacecraft 100, and the upper side is the opposite side. Therefore, the upper and lower sides in the present specification do not necessarily coincide with the upper and lower sides of the earth's gravity direction.
ここで、着陸する宇宙飛翔体100の飛行方向は、着陸面200に向かう下向き成分を少なくとも含む。そして本実施形態において飛行方向の後方とは、着陸に向けて宇宙飛翔体100が飛行する方向の正反対の向きに限らず、飛行方向に対して反対向きの成分を含む方向を意味する。着陸する宇宙飛翔体100は、着陸面200に向けて真っ直ぐ下方に降下してもよく、または斜め下方に飛行してもよい。したがって本実施形態においてエアブレーキ構造体が機体本体6よりも飛行方向の後方に設けられているとは、エアブレーキ構造体の少なくとも一部が着陸面200から視て機体本体6よりも上方に配置されていることをいう。
Here, the flight direction of the space vehicle 100 to be landed includes at least a downward component directed to the landing surface 200. Further, in the present embodiment, “rearward in the flight direction” means not only the direction opposite to the direction in which the spacecraft 100 flies in the direction of landing but also a direction including a component in the opposite direction to the flight direction. The landing space vehicle 100 may descend straight down towards the landing surface 200 or may fly obliquely downward. Therefore, in the present embodiment, at least a part of the air brake structure is disposed above the body 6 when viewed from the landing surface 200 that the air brake structure is provided behind the body 6 in the flight direction. It says that it is done.
機体本体6の形状は、直方体(立方体)状でもよく、円筒状でもよく、または他の形状でもよい。機体本体6の上部には1基または複数基の噴射ノズル5が設けられている。機体本体6の内部にはロケットエンジン(図示せず)と、このロケットエンジンに推進剤を供給する推進剤タンク(図示せず)とが設けられている。ロケットエンジンで生成された噴流Jは噴射ノズル5から上方に向けて噴射される。噴射ノズル5からの噴流Jの噴射方向はジンバル装置(図示せず)により可変としてもよい。エンジンおよび噴射ノズル5が複数基設置されている場合、複数個の噴射ノズル5からそれぞれ噴射される噴流を合流したものを噴流Jと呼称する。
The shape of the airframe main body 6 may be a rectangular solid (cube) shape, a cylindrical shape, or any other shape. One or more injection nozzles 5 are provided in the upper part of the machine body 6. A rocket engine (not shown) and a propellant tank (not shown) for supplying a propellant to the rocket engine are provided inside the airframe main body 6. The jet J generated by the rocket engine is injected upward from the injection nozzle 5. The injection direction of the jet J from the injection nozzle 5 may be variable by a gimbal device (not shown). When a plurality of engines and injection nozzles 5 are installed, a combination of jets jetted from the plurality of injection nozzles 5 is referred to as a jet J.
宇宙飛翔体100は、噴射ノズル5から噴射される噴流Jを制御する噴射制御部30を備えている。噴射制御部30は、噴流Jの速度や流量を調整して噴流Jの反動力を制御する手段であり、例えばエンジンにおける燃焼条件を制御する公知の燃焼制御手段を用いることができる。このほか、複数基のエンジンおよび噴射ノズル5を有する宇宙飛翔体100の場合、噴射制御部30は運転させるエンジンの基数を増減設定する手段でもよい。噴射制御部30は一例として、エンジンに設けられたアクチュエータ、推進剤を供給する配管類に設けられたバルブ、およびこれらの動作を制御するコンピュータにより実現することができる。このほか宇宙飛翔体100は、後述する高度算出部20、予想演算部40、情報取得部50を備えている。
The spacecraft 100 includes an injection control unit 30 that controls a jet J injected from the injection nozzle 5. The injection control unit 30 is a unit that controls the reaction force of the jet J by adjusting the velocity and flow rate of the jet J, and can use, for example, a known combustion control unit that controls combustion conditions in the engine. In addition, in the case of the spacecraft 100 having a plurality of engines and the injection nozzles 5, the injection control unit 30 may be means for increasing or decreasing the number of engines to be operated. The injection control unit 30 can be realized, for example, by an actuator provided in the engine, a valve provided in piping for supplying a propellant, and a computer for controlling these operations. In addition, the spacecraft 100 includes an altitude calculation unit 20, a prediction calculation unit 40, and an information acquisition unit 50, which will be described later.
エアブレーキ構造体は、宇宙飛翔体100が仮に大気中を飛行する場合に大気から受ける空気力学的な力を利用して宇宙飛翔体100を減速させる大気制動構造である。地球大気中を宇宙飛翔体100が落下飛行する場合には、展開されたパラシュート1が空気抵抗を受けて宇宙飛翔体100を減速させる。ただし、月面着陸に用いられる場合など実質的に大気が無い環境で宇宙飛翔体100が飛行する場合は、エアブレーキ構造体には大気制動が作用しなくてよい。
The air brake structure is an atmospheric braking structure that decelerates the space vehicle 100 using aerodynamic force received from the atmosphere when the space vehicle 100 temporarily flies in the atmosphere. When the spacecraft 100 flies in the earth atmosphere, the deployed parachute 1 receives air resistance and decelerates the spacecraft 100. However, when the spacecraft 100 flies in an environment substantially free of air, such as when used for landing on the moon, atmospheric braking does not have to act on the air brake structure.
エアブレーキ構造体としては、可撓性の材料で傘状に形成されたパラシュート1を代表的には例示することができる。このほかエアブレーキ構造体として翼形状などの剛直な板状部材を用いてもよい。ただし、折り畳んで機体本体6に収容可能であってかつ軽量であるという観点から、柔軟なパラシュート1を用いることが好ましい。本実施形態のエアブレーキ構造体として例示されるパラシュート1は、球皮の少なくとも一部が炭素繊維または複合耐熱材料で作成されていることが好ましい。複合耐熱材料は、一種または複数種の耐熱性材料を母材と複合した材料である。耐熱性材料としては、耐熱性の繊維材料、例えば炭素繊維やアラミド繊維などの有機繊維;炭化ケイ素繊維などの無機化合物非晶質繊維;を挙げることができる。母材としては、合成樹脂やセラミックスを挙げることができる。すなわち複合耐熱材料の例としては、炭素繊維複合材料、セラミックス基複合材料、炭素繊維強化セラミックス複合材料などを挙げることができる。複合耐熱材料は、200℃以上、好ましくは500℃以上の耐熱性を有する。耐熱性を有するとは当該温度において機械的な物性が有意に変化しないことを意味する。そしてパラシュート1を炭素繊維または複合耐熱材料で作成することで高い比強度と耐熱性を得ることができる。
As an air brake structure, the parachute 1 formed in the shape of an umbrella with a flexible material can be typically illustrated. Besides, a rigid plate-like member such as a wing shape may be used as the air brake structure. However, it is preferable to use a flexible parachute 1 from the viewpoint of being able to be folded, accommodated in the machine body 6, and be lightweight. In the parachute 1 exemplified as the air brake structure of the present embodiment, it is preferable that at least a part of the ball skin is made of carbon fiber or a composite heat resistant material. The composite heat-resistant material is a material obtained by combining one or more heat-resistant materials with a base material. Examples of the heat-resistant material include heat-resistant fiber materials such as organic fibers such as carbon fibers and aramid fibers; and inorganic compound amorphous fibers such as silicon carbide fibers. Examples of the base material include synthetic resins and ceramics. That is, as an example of the composite heat resistant material, a carbon fiber composite material, a ceramic base composite material, a carbon fiber reinforced ceramic composite material and the like can be mentioned. The composite heat resistant material has a heat resistance of 200 ° C. or more, preferably 500 ° C. or more. Having heat resistance means that mechanical physical properties do not change significantly at the temperature. And, high relative strength and heat resistance can be obtained by making the parachute 1 of carbon fiber or composite heat resistant material.
図1に示すように展開されたパラシュート1は、機体本体6からみて飛行方向の後方、すなわち上方に設けられている。パラシュート1は複数本の支持ロープ3により機体本体6に取り付けられている。より具体的には、機体本体6の重心位置Gと噴射ノズル5とを結ぶ直線の延長線上に、パラシュート1の少なくとも一部(好ましくはパラシュート1の底面1aの中心)が配置されるようにパラシュート1は展開される。
ここで機体本体6の重心位置Gとは、飛行する宇宙飛翔体100における機体本体6の重心の三次元的な位置をいい、機体本体6から外部に展開されたパラシュート1や、噴流Jとなって既に消費された推進剤の質量を除いて算出される。本明細書において断りなくパラシュート1と表現した場合は、展開されたパラシュート1を意味する。 Theparachute 1 deployed as shown in FIG. 1 is provided at the rear, ie, above, in the flight direction as viewed from the airframe main body 6. The parachute 1 is attached to the machine body 6 by a plurality of support ropes 3. More specifically, at least a part of the parachute 1 (preferably the center of the bottom surface 1a of the parachute 1) is arranged on an extension of a straight line connecting the gravity center position G of the airframe main body 6 and the injection nozzle 5 1 is expanded.
Here, the gravity center position G of the airframemain body 6 refers to the three-dimensional position of the gravity center of the airframe main body 6 in the space vehicle 100 to fly, and becomes the parachute 1 and the jet J developed from the airframe main body 6 to the outside. It is calculated excluding the mass of propellant already consumed. In the present specification, the expression “parachute 1” means the expanded parachute 1 without exception.
ここで機体本体6の重心位置Gとは、飛行する宇宙飛翔体100における機体本体6の重心の三次元的な位置をいい、機体本体6から外部に展開されたパラシュート1や、噴流Jとなって既に消費された推進剤の質量を除いて算出される。本明細書において断りなくパラシュート1と表現した場合は、展開されたパラシュート1を意味する。 The
Here, the gravity center position G of the airframe
パラシュート1は傘状をなし、機体本体6から離間する上方に向かって膨出している。すなわちパラシュート1の底面1aは機体本体6に向かう凹形状に湾曲している。
The parachute 1 has an umbrella shape and bulges upward away from the airframe main body 6. That is, the bottom surface 1 a of the parachute 1 is curved in a concave shape toward the airframe main body 6.
本発明の宇宙飛翔体100は、機体本体6の重心位置Gよりも上方に位置するパラシュート1に対して噴射ノズル5から噴流Jを噴射し、この噴流Jをパラシュート1の湾曲した底面1aに沿って反転させる。パラシュート1に向かって噴流Jを噴射することで、月面など実質的に大気が無い環境でも、パラシュート1を傘状に開かせることができる。噴射ノズル5から上向きに噴射された噴流Jは、凹形状のパラシュート1の底面1aに沿って向きを変えて噴流J1となり、更に噴流J1はパラシュート1に沿って流れ、パラシュート1の周縁から噴流J2となって吹き出される。このことで、噴流J2の反動力Fは図1に矢印で示すように上向きの成分を有することとなる。この反動力Fにより宇宙飛翔体100は減速される。
The spacecraft 100 of the present invention jets a jet J from the jet nozzle 5 to the parachute 1 located above the center of gravity G of the airframe main body 6, and this jet J is directed along the curved bottom surface 1 a of the parachute 1 And flip it. By injecting the jet J toward the parachute 1, the parachute 1 can be opened like an umbrella even in an environment substantially free of the atmosphere, such as the moon. The jet J injected upward from the injection nozzle 5 changes its direction along the bottom surface 1a of the concave-shaped parachute 1 to become a jet J1, and the jet J1 flows along the parachute 1 and the jet J2 from the periphery of the parachute 1. It is blown out. As a result, the reaction force F of the jet J 2 has an upward component as shown by the arrow in FIG. The spacecraft 100 is decelerated by the reaction force F.
この原理を補足説明する。初めに、噴射ノズル5から噴流Jを上向きに噴射することで機体本体6は噴流Jの逆向き(すなわち下向き)に噴射反力を受ける。そして噴射された噴流Jがパラシュート1の底面1aに当たることでパラシュート1(すなわち宇宙飛翔体100)は上向きの押し上げ力を受ける。この下向きの噴射反力と上向きの押し上げ力とは相殺され、言い換えると噴流Jが噴射ノズル5から噴射されてからパラシュート1に至って噴流J1になるまでは、噴流J,J1は宇宙飛翔体100に対して内力として作用する。そしてパラシュート1の底面1aが滑らかな凹形状に湾曲していることで、パラシュート1の底面1aに沿って噴流Jが向きを変えて噴流J1になる際に失う運動量は極めて小さい。そして向きが反転した噴流J1がパラシュート1の周縁から噴流J2となって吹き出される。噴流J2の向きは、パラシュート1の径方向外向き成分と下向き成分とを合成した斜め方向となる。すなわち噴流J2の反動力Fは上向きの成分を有し、パラシュート1の周縁から吹き出される噴流J2の反動力Fをパラシュート1の周回方向に合成すると反動力Fは上向きとなる。噴射ノズル5は機体本体6の重心位置Gよりも後方(上方)にあり、パラシュート1は更にその後方(上方)にあるため、噴射の反動力Fは機体本体6の重心位置Gよりも上方において発生し、更に重心位置Gとは反対の上向きの成分となる。このため、かかる反動力Fは機体本体6の重心まわりの回転モーメントを不安定に増大させることがない。また、機体本体6よりも後方(上方)から噴流J2が吹き出されるため、宇宙飛翔体100の高度が下がり着陸の直前であっても着陸面200までの距離を大きく確保することができる。このため地面効果の影響を抑制することもできる。以上より本発明の宇宙飛翔体100によれば、例えば月着陸などの着陸動作を安定して実現することができる。
A supplementary explanation of this principle is given. First, by injecting the jet J upward from the injection nozzle 5, the airframe main body 6 receives the injection reaction force in the reverse direction (that is, downward) of the jet J. When the jet J that has been jetted hits the bottom surface 1 a of the parachute 1, the parachute 1 (that is, the spacecraft 100) receives an upward pushing force. The downward jet reaction force and the upward push-up force cancel each other. In other words, the jets J and J1 are directed to the spacecraft 100 until the jet J is jetted from the jet nozzle 5 and reaches the parachute 1 and becomes the jet J1. Act as an internal force against. When the bottom surface 1a of the parachute 1 is curved in a smooth concave shape, the momentum lost when the jet J changes its direction along the bottom surface 1a of the parachute 1 and becomes the jet J1 is extremely small. Then, the jet J1 whose direction is reversed is blown out from the peripheral edge of the parachute 1 as a jet J2. The direction of the jet J 2 is an oblique direction in which the radially outward component and the downward component of the parachute 1 are combined. That is, the reaction force F of the jet J 2 has an upward component, and when the reaction force F of the jet J 2 blown out from the peripheral edge of the parachute 1 is synthesized in the circumferential direction of the parachute 1, the reaction force F is upward. Since the injection nozzle 5 is behind (above) the center of gravity G of the airframe main body 6 and the parachute 1 is further behind (above), the reaction force F of the injection is above the gravity center of the airframe main body 6 It is generated and further becomes an upward component opposite to the gravity center position G. Therefore, the reaction force F does not unstably increase the rotational moment about the center of gravity of the airframe main body 6. In addition, since the jet J2 is blown out from the rear (upper side) of the airframe main body 6, the altitude of the spacecraft 100 is lowered and the distance to the landing surface 200 can be largely secured even immediately before the landing. For this reason, the influence of the ground effect can also be suppressed. From the above, according to the space vehicle 100 of the present invention, it is possible to stably realize the landing operation such as the moon landing.
以下、宇宙飛翔体100が着陸するまでの制御についてより具体的に説明する。本実施形態の宇宙飛翔体100は、機体本体6の高度を算出する高度算出部20を備えていてもよい。上述した噴射制御部30は、高度算出部20が算出した機体本体6の高度を示す高度情報に基づいて、噴射ノズル5から噴射される噴流Jを制御する。噴射される噴流Jの速度や流量すなわち噴射量を宇宙飛翔体100の高度に応じて制御することで、着陸するまでの宇宙飛翔体100の降下速度を所望に調整することができる。具体的には、高度算出部20が算出した高度情報が示す機体本体6の高度が所定の閾値以上である場合は宇宙飛翔体100の降下を優先するため噴射制御部30は噴流Jを停止または噴射量を所定未満に抑制するとよい。そして機体本体6の高度が所定の閾値未満になった場合は、宇宙飛翔体100の減速を優先するため噴射制御部30は噴流Jの噴射を始動させるかまたは噴流Jの噴射量を所定以上に制御するとよい。これにより、着陸時の宇宙飛翔体100の降下速度を極めて低減することが可能であり、機体本体6や脚62への負荷を抑えることができる。
Hereinafter, control until the spacecraft 100 lands will be described more specifically. The spacecraft 100 of the present embodiment may include an altitude calculation unit 20 that calculates the altitude of the airframe main body 6. The above-described injection control unit 30 controls the jet J that is injected from the injection nozzle 5 based on the altitude information indicating the altitude of the airframe main body 6 calculated by the altitude calculation unit 20. By controlling the speed and flow rate of the jet J to be injected, that is, the injection amount according to the altitude of the spacecraft 100, the descent speed of the spacecraft 100 before landing can be adjusted as desired. Specifically, when the altitude of the airframe main body 6 indicated by the altitude information calculated by the altitude calculation unit 20 is equal to or greater than a predetermined threshold, the jet control unit 30 stops the jet J or gives priority to the descent of the spacecraft 100. The injection amount may be suppressed to less than a predetermined amount. When the height of the airframe main body 6 falls below a predetermined threshold, the injection control unit 30 starts the injection of the jet J or makes the injection amount of the jet J a predetermined amount or more in order to give priority to the deceleration of the spacecraft 100. It is good to control. As a result, the descent speed of the space vehicle 100 at the time of landing can be extremely reduced, and the load on the airframe main body 6 and the legs 62 can be suppressed.
高度算出部20による高度情報の取得原理は特に限定されないが、例えば着陸面200に対して光を照射して反射光を受光する光学式の測距センサ22を用いることができる。高度情報が示す機体本体6の高度とは、着陸面200から機体本体6のいずれかの部位(例えば機体本体6の底面6aまたは重心位置G)までの高度に換算可能な情報であればよい。上記の換算可能な情報としては、脚62の下端やパラシュート1の上端など、機体本体6に対して既知の位置関係に配置された部位の高度を示す情報でもよい。
Although the acquisition principle of the altitude information by the altitude calculation unit 20 is not particularly limited, for example, an optical distance measuring sensor 22 which emits light to the landing surface 200 and receives reflected light can be used. The altitude of the aircraft body 6 indicated by the altitude information may be any information that can be converted to altitude from the landing surface 200 to any part of the aircraft body 6 (for example, the bottom 6a or the center of gravity G of the aircraft body 6). The above-mentioned convertible information may be information indicating the height of a portion such as the lower end of the leg 62 or the upper end of the parachute 1 disposed in a known positional relationship with the airframe main body 6.
更に本実施形態の宇宙飛翔体100は、予想演算部40および情報取得部50を備えていてもよい。予想演算部40は機体本体6の高度および飛行速度に基づいて機体本体6の着陸予想地点LPを算出する情報処理部であり、情報取得部50は着陸予想地点LPの表面情報または可否情報を取得する情報処理部である。予想演算部40および情報取得部50は、機体本体6に搭載されたコンピュータにより実現される。
予想演算部40は、高度情報を高度算出部20から取得し、速度計や加速度計(図示せず)から宇宙飛翔体100の飛行速度および飛行方向に関する情報を取得する。予想演算部40はこれらの情報に基づいて着陸予想地点LPの位置情報(緯度および経度)を算出する。
着陸予想地点LPの表面情報とは着陸予想地点LPの表面状態を示す情報であり、可否情報とは着陸予想地点LPに対して宇宙飛翔体100が着陸可能であるか否かを示す情報である。 Furthermore, thespacecraft 100 of the present embodiment may include the prediction calculation unit 40 and the information acquisition unit 50. The prediction calculation unit 40 is an information processing unit that calculates the landing prediction point LP of the aircraft body 6 based on the altitude and the flight speed of the aircraft body 6, and the information acquisition unit 50 acquires surface information or availability information of the landing prediction point LP. Information processing unit. The prediction calculation unit 40 and the information acquisition unit 50 are realized by a computer mounted on the machine body 6.
Theprediction calculation unit 40 acquires altitude information from the altitude calculation unit 20, and acquires information on the flight speed and the flight direction of the spacecraft 100 from a speedometer or an accelerometer (not shown). The prediction calculation unit 40 calculates the position information (latitude and longitude) of the landing prediction point LP based on these pieces of information.
The surface information of the landing prediction point LP is information indicating the surface condition of the landing prediction point LP, and the availability information is information indicating whether thespace vehicle 100 can land on the landing prediction point LP. .
予想演算部40は、高度情報を高度算出部20から取得し、速度計や加速度計(図示せず)から宇宙飛翔体100の飛行速度および飛行方向に関する情報を取得する。予想演算部40はこれらの情報に基づいて着陸予想地点LPの位置情報(緯度および経度)を算出する。
着陸予想地点LPの表面情報とは着陸予想地点LPの表面状態を示す情報であり、可否情報とは着陸予想地点LPに対して宇宙飛翔体100が着陸可能であるか否かを示す情報である。 Furthermore, the
The
The surface information of the landing prediction point LP is information indicating the surface condition of the landing prediction point LP, and the availability information is information indicating whether the
着陸予想地点LPの表面情報としては、例えば、機体本体6に搭載されたカメラ52が撮影した画像情報でもよく、または測距センサ22が受光した反射光の散乱度合いを示す情報でもよい。例えば表面情報が画像情報である場合、情報取得部50は当該画像情報の画像処理により着陸予想地点LPが着陸可能な平坦さを有しているか否かを判定するとよい。そして着陸予想地点LPの平坦さが所定の閾値以上であると判定された場合には、情報取得部50は着陸予想地点LPに着陸可能と判定し、かかる判定結果を可否情報として取得する。このほか、可否情報は種々の態様を採用することができる。例えば、宇宙飛翔体100が有する記憶装置(図示せず)に、着陸可能な領域を示す緯度および経度の範囲情報を予め格納しておいてもよい。情報取得部50は、この範囲情報と着陸予想地点LPとを照合して宇宙飛翔体100が着陸予想地点LPに着陸することが可能か否かを判定し、この判定結果を可否情報として取得してもよい。このほか、機体本体6に搭載されたアンテナ54で地上局または母船と交信してもよい。すなわち、情報取得部50は着陸予想地点LPを示す情報をアンテナ54から地上局または母船に送信し、着陸予想地点LPに対して着陸して良いか否かの信号を可否情報として地上局または母船からアンテナ54で受信して取得してもよい。
The surface information of the predicted landing point LP may be, for example, image information captured by the camera 52 mounted on the airframe main body 6, or information indicating the scattering degree of the reflected light received by the distance measurement sensor 22. For example, when the surface information is image information, the information acquisition unit 50 may determine whether the landing expected point LP has a flat enough to land by image processing of the image information. When it is determined that the flatness of the predicted landing point LP is equal to or greater than a predetermined threshold value, the information acquiring unit 50 determines that the predicted landing point LP can be landed, and acquires the determination result as the availability information. Besides, the availability information can adopt various aspects. For example, latitude and longitude range information indicating a possible landing area may be stored in advance in a storage device (not shown) of the spacecraft 100. The information acquiring unit 50 collates the range information with the predicted landing point LP to determine whether the space vehicle 100 can land on the predicted landing point LP, and acquires the determination result as the availability information. May be Alternatively, the ground station or host ship may be communicated with the antenna 54 mounted on the airframe main body 6. That is, the information acquisition unit 50 transmits information indicating the predicted landing point LP to the ground station or the mother ship from the antenna 54, and uses the signal as to whether or not the landing prediction point LP may be landed as the ground station or the main ship. May be received and acquired by the antenna 54.
着陸予想地点LPに宇宙飛翔体100が着陸可能であると情報取得部50が判定した場合、噴射制御部30は噴流Jの噴射条件をそのまま維持する。一方、着陸予想地点LPに宇宙飛翔体100が着陸不可能であると情報取得部50が判定した場合、噴射制御部30は噴流Jの噴射条件を変更し、例えば噴流Jの噴射量を増大させる。これにより反動力Fが増大して機体本体6の高度低下が抑えられるため、機体本体6は水平方向により長く飛行してから着陸することになる。言い換えると着陸予想地点LPが遠方にシフトする。予想演算部40は着陸予想地点LPを経時的に更新して算出し、情報取得部50は着陸予想地点LPの表面情報または可否情報を更新して取得する。そして更新された着陸予想地点LPに宇宙飛翔体100が着陸可能であると情報取得部50が判定した場合、噴射制御部30は噴流Jの噴射量を維持または低減させて宇宙飛翔体100を当該着陸予想地点LPに着陸させる。
If the information acquisition unit 50 determines that the spacecraft 100 can land at the predicted landing point LP, the injection control unit 30 maintains the injection condition of the jet J as it is. On the other hand, when the information acquisition unit 50 determines that the space vehicle 100 can not land at the predicted landing point LP, the injection control unit 30 changes the injection condition of the jet J, for example, increases the injection amount of the jet J . As a result, the repulsive force F is increased and the lowering of the altitude of the airframe main body 6 is suppressed, so the airframe main body 6 flies longer in the horizontal direction and then lands. In other words, the predicted landing point LP shifts to the distance. The forecasting operation unit 40 updates the landing forecasting point LP over time and calculates it, and the information acquisition unit 50 updates and acquires surface information or availability information of the landing forecasting point LP. When the information acquisition unit 50 determines that the space vehicle 100 can be landed at the updated predicted landing point LP, the injection control unit 30 maintains or reduces the injection amount of the jet J and applies the space flight object 100. Land at the predicted landing point LP.
以上説明した本実施形態の宇宙飛翔体100によれば、着陸面200に起伏があるなど着陸が困難である場合に、その場所を避けて宇宙飛翔体100を安全に着陸させることができる。
According to the spacecraft 100 of the present embodiment described above, the spacecraft 100 can be safely landed by avoiding the location when landing is difficult because the landing surface 200 is uneven.
宇宙飛翔体100は、噴射ノズル5から噴射される噴流Jの向きとは異なる少なくとも一の方向に他の噴流(補助ジェット)を噴射する制御用噴射ノズル17(図1では図示省略。図3から図5を参照。)を備えてもよい。制御用噴射ノズル17は、噴射ノズル5とは異なる位置に設けられた補助スラスターであり、機体本体6に対して直接にまたは他の取付部材(図示せず)を介して間接に取り付けられている。制御用噴射ノズル17は、少なくとも上下方向に対して交差する方向(例えば水平方向または斜め方向)に対して噴流(補助ジェット)を噴射して機体本体6の位置および向きを制御する。制御用噴射ノズル17は、上下方向に対して直交する水平面内における直交2方向の正逆両方向、すなわち上下方向に対して直交する4方向に向けて個別に噴流を噴射可能に配置されていることが好ましい。これにより宇宙飛翔体100の並進位置および重心まわりの向きを制御することが可能である。更に、制御用噴射ノズル17は上下方向を含む直交6方向に向けて個別に噴流を噴射可能に構成されてもよい。
The spacecraft 100 jets another jet (auxiliary jet) in at least one direction different from the direction of the jet J injected from the injection nozzle 5 (not shown in FIG. 1). See FIG. 5). The control injection nozzle 17 is an auxiliary thruster provided at a position different from the injection nozzle 5 and is attached to the airframe main body 6 directly or indirectly via another attachment member (not shown). . The control injection nozzle 17 jets a jet (auxiliary jet) at least in a direction (for example, a horizontal direction or an oblique direction) intersecting the vertical direction to control the position and orientation of the airframe main body 6. The control injection nozzles 17 are arranged so that jets can be jetted individually in forward and reverse directions of two orthogonal directions in a horizontal plane orthogonal to the vertical direction, that is, in four directions orthogonal to the vertical direction. Is preferred. Thereby, it is possible to control the translational position of the spacecraft 100 and the direction around the center of gravity. Furthermore, the control injection nozzles 17 may be configured to be capable of individually injecting jets in six orthogonal directions including the vertical direction.
制御用噴射ノズル17における推進原理は特に限定されず、メインスラスターである噴射ノズル5と同じでもよいし、異なってもよい。例えば制御用噴射ノズル17を噴射ノズル5と同じく化学エンジンとする場合は、制御用噴射ノズル17に供給される推進剤を噴射ノズル5に供給される推進剤と共用して推進剤タンク(図示せず)から供給してもよい。また、制御用噴射ノズル17としてイオンエンジンやホールスラスタを用いて軽量化を図ってもよい。
The propulsion principle in the control injection nozzle 17 is not particularly limited, and may be the same as or different from the injection nozzle 5 which is a main thruster. For example, when the control injection nozzle 17 is a chemical engine like the injection nozzle 5, the propellant supplied to the control injection nozzle 17 is shared with the propellant supplied to the injection nozzle 5 and a propellant tank (shown in FIG. May be supplied from Further, weight reduction may be achieved by using an ion engine or a hole thruster as the control injection nozzle 17.
制御用噴射ノズル17から噴射される噴流(補助ジェット)による推力の向きおよび大きさは、噴射制御部30、または噴射制御部30と連動する他の制御部により制御される。すなわち、制御用噴射ノズル17およびこれを駆動制御する制御部は、宇宙飛翔体100の目標着陸地点を定める装置を構成する。
The direction and the magnitude of the thrust of the jet (auxiliary jet) injected from the control injection nozzle 17 are controlled by the injection control unit 30 or another control unit interlocked with the injection control unit 30. That is, the control injection nozzle 17 and the control unit that drives and controls this constitute a device that determines the target landing point of the spacecraft 100.
宇宙飛翔体100の着陸にあたり、噴射ノズル5を停止して制御用噴射ノズル17のみを駆動してもよく、または噴射ノズル5と併用して制御用噴射ノズル17を駆動してもよい。制御用噴射ノズル17から噴射される噴流(補助ジェット)の反動力の制御精度は、噴射制御部30により制御される噴射ノズル5の噴流Jの反動力の制御精度よりも高精度である。これにより、宇宙飛翔体100の着陸時に制御用噴射ノズル17を駆動することで、宇宙飛翔体100の目標着陸地点(例えば、予想演算部40が算出した着陸予想地点LP)に機体本体6を正確に着陸させることができる。また、着陸予想地点LPに宇宙飛翔体100が着陸不可能であると情報取得部50が判定した場合も、制御用噴射ノズル17から噴流(補助ジェット)を水平方向などに噴射して機体本体6を駆動するとよい。これにより、機体本体6は当該着陸不可能な着陸予想地点LPから素早く移動してこれを回避することができる。
When the spacecraft 100 lands, the injection nozzle 5 may be stopped and only the control injection nozzle 17 may be driven, or the control injection nozzle 17 may be driven in combination with the injection nozzle 5. The control accuracy of the reaction force of the jet (auxiliary jet) jetted from the control injection nozzle 17 is higher than the control accuracy of the reaction force of the jet J of the injection nozzle 5 controlled by the injection control unit 30. As a result, by driving the control injection nozzle 17 at the time of landing of the spacecraft 100, the airframe main body 6 is accurately made to the target landing point of the spacecraft 100 (for example, the landing prediction point LP calculated by the prediction calculation unit 40). You can land it on Also, even when the information acquiring unit 50 determines that the spacecraft 100 can not land at the predicted landing point LP, the control injection nozzle 17 jets a jet (auxiliary jet) from the control injection nozzle 17 in the horizontal direction, etc. It is good to drive As a result, the airframe main body 6 can move quickly from the non-landing possible landing point LP to avoid this.
以下、本発明の宇宙飛翔体の他の実施形態について図面を用いて説明する。第一実施形態と重複する説明は適宜省略する。
Hereinafter, other embodiments of the space vehicle of the present invention will be described using the drawings. The description overlapping with the first embodiment will be omitted as appropriate.
<第二実施形態>
図2は本発明の第二実施形態の宇宙飛翔体101を説明する概観図である。 Second Embodiment
FIG. 2 is a schematic view for explaining aspace vehicle 101 according to a second embodiment of the present invention.
図2は本発明の第二実施形態の宇宙飛翔体101を説明する概観図である。 Second Embodiment
FIG. 2 is a schematic view for explaining a
第二実施形態の宇宙飛翔体101は、エアブレーキ構造体(パラシュート1)が、機体本体6に向けて突出する中央凸部2と、この中央凸部2の周囲に連続形成されていて機体本体6に向かって凹形状に湾曲する凹面部2aと、を備えている点で第一実施形態と相違する。図2に示すようにパラシュート1の中央凸部2は噴射ノズル5に向かって「とんがり帽子」状に突出している。すなわち、中央凸部2の先端(下端)およびその近傍は下に凸形状をなし、凹面部2aは上に凸形状をなしている。中央凸部2は、先端部の周囲に、下に凸形状から上に凸形状に遷移する変曲点を有している。噴流Jによる噴射圧力は、とんがり帽子状の中央凸部2からパラシュート1の底部7でUターンし、凹面部2aに沿って流れる噴流J1となる。中央凸部2は凸部支持ロープ4によってパラシュート1の支持ロープ3に連結されている。複数本の凸部支持ロープ4が中央凸部2の先端(下端)の近傍に周回状に接続され、各凸部支持ロープ4は放射状に延びて複数本の支持ロープ3の中間部に対してそれぞれ連結されている。すなわち凸部支持ロープ4は支持ロープ3の中間部から分岐しており、所定の張力をもって中央凸部2を支持している。このように放射状に配置された複数本の凸部支持ロープ4で中央凸部2を引っ張りながら支持することで、可撓性の材料で作成された中央凸部2の変形を抑制し、噴流Jが中央凸部2に吹き付けられても中央凸部2をパラシュート1の中央に維持することができる。
In the space vehicle 101 of the second embodiment, the air brake structure (parachute 1) is continuously formed around the central convex portion 2 projecting toward the airframe main body 6, and the airframe main body 2 to form an airframe main body It differs from the first embodiment in that it includes a concave portion 2 a that curves in a concave shape toward 6. As shown in FIG. 2, the central convex portion 2 of the parachute 1 protrudes in a “pointer hat” shape toward the injection nozzle 5. That is, the tip (lower end) of the central convex portion 2 and the vicinity thereof are convex downward, and the concave portion 2 a is convex upward. The central convex portion 2 has an inflection point transitioning downward from the convex shape to the convex shape around the tip. The injection pressure by the jet J makes a U-turn from the central convex portion 2 in the shape of a pointed hat to the bottom portion 7 of the parachute 1 and becomes a jet J1 flowing along the concave portion 2a. The central convex portion 2 is connected to the support rope 3 of the parachute 1 by a convex portion support rope 4. A plurality of convex portion support ropes 4 are circumferentially connected in the vicinity of the tip (lower end) of the central convex portion 2, and each convex portion support rope 4 radially extends to the middle portion of the plurality of support ropes 3 Each is linked. That is, the convex portion support rope 4 is branched from the middle portion of the support rope 3 and supports the central convex portion 2 with a predetermined tension. By supporting the central convex portion 2 while pulling the central convex portion 2 with the plurality of convex portion support ropes 4 radially arranged in this manner, deformation of the central convex portion 2 made of a flexible material is suppressed, and the jet J Can be maintained at the center of the parachute 1 even if it is sprayed on the center projection 2.
噴流Jは中央凸部2に衝突するように噴射ノズル5からパラシュート1に向けて噴射される。本実施形態の宇宙飛翔体101によれば、噴射ノズル5に向かって近づくように中央凸部2がパラシュート1から突き出ているため、噴流Jは減速する前に中央凸部2で放射状にスプリットされて底部7で反転する。このためパラシュート1の内部で噴流Jが渦流となって滞留して減衰してしまうことを回避し、噴流J2が多くの運動量を維持したままパラシュート1の周縁から吹き出されて高い反動力Fを得ることができる。
The jet J is jetted from the jet nozzle 5 toward the parachute 1 so as to collide with the central convex portion 2. According to the space projectile 101 of this embodiment, since the central convex portion 2 protrudes from the parachute 1 so as to approach the injection nozzle 5, the jet stream J is split radially at the central convex portion 2 before decelerating. Invert at the bottom 7. For this reason, it prevents that the jet J becomes a vortex and stagnates and attenuates inside the parachute 1, and the jet J2 is blown out from the periphery of the parachute 1 while maintaining a large momentum to obtain a high reaction force F be able to.
中央凸部2と凹面部2aとは底部7を介して連続形成されているため、中央凸部2でスプリットされた噴流Jが乱れることなく底部7で向きを反転させて凹面部2aに沿って流れる。そして本実施形態の宇宙飛翔体101でも、第一実施形態の宇宙飛翔体100と同様に、噴流Jの噴射の反動力Fが機体本体6の重心位置Gよりも上方で発生する。このため、機体本体6の重心まわりの回転モーメントを不安定に増大させることなく機体本体6の落下を減速させて安全に着陸面200に着陸させることができる。
Since the central convex portion 2 and the concave portion 2 a are continuously formed through the bottom portion 7, the jet J split at the central convex portion 2 is reversed in direction at the bottom portion 7 without being disturbed and along the concave portion 2 a Flow. Also in the space vehicle 101 of the present embodiment, as in the space vehicle 100 of the first embodiment, the reaction force F of the jet of the jet J is generated above the center-of-gravity position G of the airframe main body 6. Therefore, the falling of the airframe main body 6 can be decelerated and the landing surface 200 can be safely landed without increasing the rotational moment about the center of gravity of the airframe main body 6 unstably.
図2では脚62を図示していない。機体本体6に脚62を設けず機体本体6の底面6aで着陸面200に着陸してもよい。ただしこれに代えて、本実施形態においても第一実施形態の宇宙飛翔体100のように機体本体6に脚62を設けてもよい。
The legs 62 are not shown in FIG. Landing surface 200 may be landed on bottom surface 6 a of body 6 without providing legs 62 on body 6. However, instead of this, in the present embodiment as well as the spacecraft 100 of the first embodiment, the body 62 may be provided with the legs 62.
図3は第二実施形態の宇宙飛翔体101が宇宙ステーション202にドッキングした状態を説明する概観図である。パラシュート1は、中央凸部2の中心を通る面で切断面した端面を図示している。図3は、月面などの地面ではなく宇宙ステーション202のドッキング部204に宇宙飛翔体101が着陸した状態を示す。すなわち宇宙ステーション202のドッキング部204が着陸面200にあたる。機体本体6の底面6aには連結部(図示せず)が設けられている。また機体本体6の側面6bには、上述の第一実施形態でも説明したように、機体本体6の位置および向きを微調整するための制御用噴射ノズル17が設けられている。制御用噴射ノズル17は機体本体6の位置および向きを6自由度で制御するための補助スラスターである。制御用噴射ノズル17は、対向する少なくとも1対の側面6bにそれぞれ設けられている。着陸直前の宇宙飛翔体101において、噴射ノズル5から十分な噴射量で噴流Jを噴射し、宇宙飛翔体101の自重と釣り合う反動力Fを発生させることで宇宙飛翔体101をホバリングさせることができる。この状態で制御用噴射ノズル17を作動させ、機体本体6の位置および向きを宇宙ステーション202のドッキング部204に合わせる。その状態を維持して噴流Jの噴射量を僅かに低減することで宇宙飛翔体101は自重により降下してドッキング部204に着陸する。
FIG. 3 is a schematic view for explaining a state in which the spacecraft 101 of the second embodiment is docked to the space station 202. As shown in FIG. The parachute 1 illustrates an end face cut in a plane passing through the center of the central convex portion 2. FIG. 3 shows a state in which the spacecraft 101 lands on the docking unit 204 of the space station 202, not on the ground such as the moon. That is, the docking unit 204 of the space station 202 corresponds to the landing surface 200. A connecting portion (not shown) is provided on the bottom surface 6 a of the machine body 6. Further, as described in the above-described first embodiment, the control injection nozzle 17 for finely adjusting the position and the orientation of the airframe main body 6 is provided on the side surface 6b of the airframe main body 6. The control injection nozzle 17 is an auxiliary thruster for controlling the position and orientation of the airframe main body 6 with six degrees of freedom. The control injection nozzles 17 are provided on at least one pair of opposing side surfaces 6b. In the spacecraft 101 just before landing, the spacecraft 101 can be hovered by injecting a jet J with a sufficient injection amount from the injection nozzle 5 and generating a reaction force F that balances with the weight of the spacecraft 101. . In this state, the control injection nozzle 17 is operated to align the position and orientation of the airframe main body 6 with the docking portion 204 of the space station 202. By maintaining the state and slightly reducing the injection amount of the jet J, the spacecraft 101 descends by its own weight and lands on the docking unit 204.
<第三実施形態>
図4および図5は本発明の第三実施形態の宇宙飛翔体102を模式的に示す図である。支持ロープ3や凸部支持ロープ4などのロープ類は一部本数を適宜図示省略している。
本実施形態の宇宙飛翔体102は噴射ガイド9を有する点で第二実施形態の宇宙飛翔体101(図2参照)と相違する。噴射ガイド9は、噴射ノズル5とエアブレーキ構造体(パラシュート1)との間に配置されて噴流Jが通過する耐熱性の部材である。 Third Embodiment
FIG. 4 and FIG. 5 are views schematically showing thespacecraft 102 of the third embodiment of the present invention. Some of the ropes such as the support rope 3 and the convex portion support rope 4 are not shown.
Thespacecraft 102 of the present embodiment is different from the spacecraft 101 of the second embodiment (see FIG. 2) in that the spacecraft 102 has the injection guide 9. The injection guide 9 is a heat-resistant member disposed between the injection nozzle 5 and the air brake structure (parachute 1) and through which the jet J passes.
図4および図5は本発明の第三実施形態の宇宙飛翔体102を模式的に示す図である。支持ロープ3や凸部支持ロープ4などのロープ類は一部本数を適宜図示省略している。
本実施形態の宇宙飛翔体102は噴射ガイド9を有する点で第二実施形態の宇宙飛翔体101(図2参照)と相違する。噴射ガイド9は、噴射ノズル5とエアブレーキ構造体(パラシュート1)との間に配置されて噴流Jが通過する耐熱性の部材である。 Third Embodiment
FIG. 4 and FIG. 5 are views schematically showing the
The
図2に示した第二実施形態の宇宙飛翔体101は、噴射ノズル5から「とんがり帽子」状の中央凸部2までの距離が大きいため、噴射ノズル5から噴射された噴流Jが中央凸部2に到達するまでに拡散してしまい、中央凸部2に到達するのは噴流Jの一部である。また噴流Jが拡散してしまうことで、底部7で反転した後の噴流J1が低速となり、必ずしも大きな反動力Fを得ることができない。そこで、第三実施形態の宇宙飛翔体102のように噴流Jを通過させる噴射ガイド9を設けることで噴流Jの拡散を抑制して集束させた状態でパラシュート1の中央凸部2に対して吹き付けることができる。これにより中央凸部2に対して噴流Jを集中せしめ、噴流J2の高い流速と大きな反動力Fが得られる。
The space projectile 101 according to the second embodiment shown in FIG. 2 has a large distance from the jet nozzle 5 to the central convex portion 2 in the form of a “hatched hat”, so the jet J ejected from the jet nozzle 5 is central convex It is a part of the jet J that diffuses before reaching 2 and reaches the central convex portion 2. Further, the jet J is diffused, so that the jet J1 after being inverted at the bottom portion 7 becomes low speed, and a large reaction force F can not necessarily be obtained. Therefore, as in the space projectile 102 of the third embodiment, the jet guide J is provided to allow the jet J to pass, and the diffusion of the jet J is suppressed and focused on the central convex portion 2 of the parachute 1 in a converged state. be able to. As a result, the jet J is concentrated on the central convex portion 2, and a high flow velocity and a large reaction force F of the jet J2 can be obtained.
噴射ガイド9は、燃焼または化学反応により生成された高温の噴流Jを通過させるため耐熱性を有することが好ましい。このため噴射ガイド9は炭素繊維や複合耐熱材料などの耐熱性材料で作成されている。
The injection guide 9 preferably has heat resistance so as to pass the high temperature jet J generated by combustion or a chemical reaction. Therefore, the injection guide 9 is made of a heat resistant material such as carbon fiber or a composite heat resistant material.
図4および図5に示す第三実施形態の宇宙飛翔体102では、第二実施形態と同様にパラシュート1が中央凸部2および凹面部2aを有する態様を図示している。これに換えて、図1に示した第一実施形態の宇宙飛翔体100のように中央凸部2を具備しないパラシュート1に対して噴射ガイド9を設けてもよい。その場合、噴射ノズル5から噴射された噴流Jが噴射ガイド9を通過することで拡散が抑制され、パラシュート1の底面1aの中央部に集中して噴流Jが吹き付けられる。これにより噴流Jを確実にUターンさせて噴流J1および噴流J2が生成され、大きな反動力Fを得ることができる。
In the space vehicle 102 of the third embodiment shown in FIGS. 4 and 5, an aspect in which the parachute 1 has the central convex portion 2 and the concave portion 2 a as in the second embodiment is illustrated. Instead of this, the injection guide 9 may be provided to the parachute 1 which does not have the central convex portion 2 like the spacecraft 100 of the first embodiment shown in FIG. In that case, diffusion is suppressed by passing the jet guide J injected from the injection nozzle 5 through the injection guide 9, and the jet J is sprayed to a central portion of the bottom surface 1 a of the parachute 1. As a result, the jet J is reliably U-turned to generate the jet J1 and the jet J2, and a large reaction force F can be obtained.
噴射ガイド9は中空の管状をなしている。噴射ガイド9の開口形状は円形が好ましいがこれに限られない。噴射ノズル5から噴射された噴流Jの実質的に全量が噴射ガイド9でガイドされるように、噴射ガイド9の開口径は噴射ノズル5の開口径よりも大きいことが好ましい。ただし、噴射ガイド9の開口径が過大であると噴流Jが噴射ガイド9の内部で拡散するため、噴射ガイド9の開口径は噴射ノズル5の開口径と略同等、具体的には噴射ノズル5の開口径の2倍未満が好ましい。
The injection guide 9 has a hollow tubular shape. The opening shape of the injection guide 9 is preferably circular, but is not limited thereto. The opening diameter of the injection guide 9 is preferably larger than the opening diameter of the injection nozzle 5 so that substantially the entire amount of the jet J injected from the injection nozzle 5 is guided by the injection guide 9. However, since the jet stream J diffuses inside the injection guide 9 if the opening diameter of the injection guide 9 is too large, the opening diameter of the injection guide 9 is substantially equal to the opening diameter of the injection nozzle 5. Less than twice the opening diameter of is preferable.
噴射ガイド9は噴射ノズル5と同心軸上に配置されている。また、図5に示すように噴射ノズル5の上端は噴射ガイド9の内部に位置していることが好ましい。かかる配置により、噴射された噴流Jが噴射ガイド9の下端から漏出することが防止され、実質的に噴流Jの全量が噴射ガイド9を通じてその上端からパラシュート1に向けて吹き出され、そしてパラシュート1によってUターンする。
The injection guide 9 is disposed concentrically with the injection nozzle 5. Further, as shown in FIG. 5, the upper end of the injection nozzle 5 is preferably located inside the injection guide 9. With this arrangement, the jet J is prevented from leaking from the lower end of the injection guide 9, substantially all of the jet J is blown from the upper end toward the parachute 1 through the injection guide 9, and the parachute 1 Make a U-turn.
本実施形態の噴射ガイド9の開口形状は円形であり、噴射ガイド9は軸心が直線形状の円筒形である。噴射ガイド9の開口断面積は、図5に示すように長手方向に亘って均一である。噴射ガイド9の下端部は複数本の下支持ロープ13により機体本体6の上部と連結されている。噴射ガイド9の上端部は中央凸部2の先端(下端)よりも下方に位置しており、複数本の上支持ロープ14によりパラシュート1における中央凸部2と連結されている。これにより、噴射ガイド9は中央凸部2と機体本体6との間に吊り下げられた状態で、かつ中央凸部2の先端と噴射ノズル5の軸心とを結ぶ直線が噴射ガイド9の軸心と一致するようにして支持される。そして各複数本の下支持ロープ13および上支持ロープ14で噴射ガイド9を支持することで、噴射ガイド9が軸心まわりに回転することが抑制される。
The opening shape of the injection guide 9 of the present embodiment is circular, and the injection guide 9 is a cylindrical shape having a linear axis. The opening cross-sectional area of the injection guide 9 is uniform over the longitudinal direction as shown in FIG. The lower end portion of the jet guide 9 is connected to the upper portion of the machine body 6 by a plurality of lower support ropes 13. The upper end portion of the injection guide 9 is located below the tip (lower end) of the central projection 2 and is connected to the central projection 2 of the parachute 1 by a plurality of upper support ropes 14. As a result, the injection guide 9 is suspended between the central projection 2 and the machine body 6, and the straight line connecting the tip of the central projection 2 and the axis of the injection nozzle 5 is the axis of the injection guide 9. Be supported in a manner consistent with your heart. And by supporting the injection guide 9 with each of the plurality of lower support ropes 13 and the upper support rope 14, rotation of the injection guide 9 around the axis is suppressed.
噴射ガイド9の形状は図5に示すものに限られない。以下、図6および図7の断面図を参照して噴射ガイドの変形例について説明する。
The shape of the injection guide 9 is not limited to that shown in FIG. Hereinafter, a modification of the injection guide will be described with reference to the cross-sectional views of FIG. 6 and FIG.
図6は第三実施形態の宇宙飛翔体102にかかる第1変形例の断面図である。脚62は図示を省略している。第1変形例の噴射ガイド10は、少なくともエアブレーキ構造体(パラシュート1)に近接する側の端部(上端部)が、エアブレーキ構造体(パラシュート1)に向かって徐々に拡径している点で図5の形態と相違する。また、図6に示すように、噴射ガイド10の上端の高さ位置は中央凸部2の先端(下端)と同等である。このように噴射ガイド10の上端部を拡径することで、噴射ガイド10の上端を中央凸部2の下端に近づけて両者を同等の高さに配置しても、噴流Jの流路面積を十分に確保することができる。この結果、噴射ガイド10の上端をパラシュート1に近づけることができ、噴流Jの拡散を更に抑制することができる。また、噴射ノズル5から噴射される噴流Jが超音速流である場合は、噴射ガイド10の上端部が拡径していることで噴流Jの流速が増加し、ひいては反転後の噴流J2の速度を増加させることができる。
FIG. 6 is a cross-sectional view of a first modified example of the space projectile 102 of the third embodiment. The legs 62 are not shown. In the injection guide 10 of the first modified example, at least the end (upper end) on the side closer to the air brake structure (parachute 1) gradually expands in diameter toward the air brake structure (parachute 1) It differs from the form of FIG. 5 in point. Further, as shown in FIG. 6, the height position of the upper end of the injection guide 10 is equivalent to the tip (lower end) of the central convex portion 2. By expanding the diameter of the upper end of the injection guide 10 in this way, even if the upper end of the injection guide 10 is brought close to the lower end of the central convex portion 2 and both are arranged at the same height, the flow passage area of the jet J It can be secured enough. As a result, the upper end of the injection guide 10 can be brought close to the parachute 1, and the diffusion of the jet J can be further suppressed. When the jet J injected from the injection nozzle 5 is a supersonic flow, the diameter of the upper end of the injection guide 10 increases the flow velocity of the jet J and thus the speed of the jet J 2 after reversal. Can be increased.
図6に示す第1変形例の噴射ガイド10は、下端から上端までその全長に亘って開口径が徐々に拡大している。すなわち噴射ガイド10は全長に亘ってラッパ状(スカート状)に広がる形状をなしている。これにより、噴流Jの拡散を抑制しつつも噴射ガイド10の上端に向かって噴流Jを徐々に拡幅することができる。ただし、噴射ガイド10の下端から中間部までは開口径を一定とし、中間部から上端に亘る一部長さのみで開口径が拡大する形状としてもよい。図6に示す第1変形例の場合、噴射ガイド10を吊り下げる上支持ロープ14の上端は、パラシュート1のうち中央凸部2の下端近傍より高い位置に取り付けるとよい。
The opening diameter of the injection guide 10 of the first modification shown in FIG. 6 gradually increases over the entire length from the lower end to the upper end. That is, the injection guide 10 has a shape that spreads in a trumpet shape (skirt shape) over the entire length. Thereby, the jet stream J can be gradually widened toward the upper end of the injection guide 10 while the diffusion of the jet stream J is suppressed. However, the opening diameter may be constant from the lower end to the middle portion of the injection guide 10, and the opening diameter may be expanded with only a partial length from the middle portion to the upper end. In the case of the first modification shown in FIG. 6, the upper end of the upper support rope 14 for suspending the injection guide 10 may be attached to a position higher than the vicinity of the lower end of the central convex portion 2 in the parachute 1.
図7は第三実施形態の宇宙飛翔体102にかかる第2変形例の断面図である。第2変形例の噴射ガイド11は、少なくともエアブレーキ構造体(パラシュート1)に近接する側の端部(上端部)が、エアブレーキ構造体(パラシュート1)に向かって徐々に縮径している。このように噴射ガイド11が中央凸部2に向かう上端部で窄んでいることで、噴射ガイド11から吹き出す噴流Jを中央凸部2に向けてより集中させることができる。
FIG. 7 is a cross-sectional view of a second modification of the space vehicle 102 of the third embodiment. In the injection guide 11 of the second modification, at least the end (upper end) on the side closer to the air brake structure (parachute 1) gradually reduces in diameter toward the air brake structure (parachute 1) . As described above, since the jet guide 11 is narrowed at the upper end portion toward the central convex portion 2, the jet stream J blown out from the jet guide 11 can be more concentrated toward the central convex portion 2.
<第四実施形態>
図8は本発明の第四実施形態の宇宙飛翔体103を説明する断面図である。
エアブレーキ構造体は第一から第三実施形態と同様にパラシュート1である。本実施形態の噴射ガイド12は、下側筒部12aと、この下側筒部12aの上方に配置されてパラシュート1の内側に並んで配置される第2パラシュート12bと、を有している点で上述した実施形態および変形例と相違する。噴射ノズル5より噴射されて下側筒部12aを通過した噴流Jは、パラシュート1と第2パラシュート12bとの間隙部Vを流れることによりその流れの向きが反転する。本実施形態のように噴射ガイド12が第2パラシュート12bを備えることで、噴射ガイド12に導入された噴流Jがパラシュート1の内部で拡散することを抑制し、高い流速で噴流J2をパラシュート1の周囲から吹き出させることができる。これにより大きな反動力Fを得ることができる。 Fourth Embodiment
FIG. 8 is a cross-sectional view for explaining thespace vehicle 103 of the fourth embodiment of the present invention.
The air brake structure is aparachute 1 as in the first to third embodiments. The injection guide 12 of the present embodiment includes a lower cylindrical portion 12 a and a second parachute 12 b disposed above the lower cylindrical portion 12 a and arranged inside the parachute 1. Are different from the embodiment and the modification described above. The jet J which has been jetted from the jet nozzle 5 and has passed through the lower cylindrical portion 12a flows through the gap V between the parachute 1 and the second parachute 12b, so that the flow direction is reversed. As in the present embodiment, the injection guide 12 is provided with the second parachute 12 b to suppress the diffusion of the jet J introduced into the injection guide 12 inside the parachute 1, and the jet J 2 is It can be blown out from the surroundings. Thus, a large reaction force F can be obtained.
図8は本発明の第四実施形態の宇宙飛翔体103を説明する断面図である。
エアブレーキ構造体は第一から第三実施形態と同様にパラシュート1である。本実施形態の噴射ガイド12は、下側筒部12aと、この下側筒部12aの上方に配置されてパラシュート1の内側に並んで配置される第2パラシュート12bと、を有している点で上述した実施形態および変形例と相違する。噴射ノズル5より噴射されて下側筒部12aを通過した噴流Jは、パラシュート1と第2パラシュート12bとの間隙部Vを流れることによりその流れの向きが反転する。本実施形態のように噴射ガイド12が第2パラシュート12bを備えることで、噴射ガイド12に導入された噴流Jがパラシュート1の内部で拡散することを抑制し、高い流速で噴流J2をパラシュート1の周囲から吹き出させることができる。これにより大きな反動力Fを得ることができる。 Fourth Embodiment
FIG. 8 is a cross-sectional view for explaining the
The air brake structure is a
第2パラシュート12b(インナーパラシュート)は炭素繊維や複合耐熱材料などの耐熱性材料で作成されている。パラシュート1と第2パラシュート12bとの間の間隙部Vの幅寸法は、図8に示す例ではパラシュート1の全体において均一である。第2パラシュート12bは支持ロープ13aにより機体本体6に取り付けられている。
The second parachute 12 b (inner parachute) is made of a heat resistant material such as carbon fiber or a composite heat resistant material. The width dimension of the gap V between the parachute 1 and the second parachute 12 b is uniform throughout the parachute 1 in the example shown in FIG. 8. The second parachute 12b is attached to the machine body 6 by a support rope 13a.
第2パラシュート12b(インナーパラシュート)と下側筒部12aの上端部とは隙間なく連続形成されている。これにより、下側筒部12aを通過した噴流Jが実質的に減速されずに間隙部Vに導入され、高い流速の噴流J2を得ることができる。
The second parachute 12 b (inner parachute) and the upper end of the lower cylindrical portion 12 a are continuously formed without a gap. As a result, the jet J that has passed through the lower cylindrical portion 12a is introduced into the gap V without being substantially decelerated, and a jet J2 having a high flow velocity can be obtained.
<第五実施形態>
図9は本発明の第五実施形態の宇宙飛翔体104が宇宙空間を飛行して宇宙ゴミ(スペースデブリD)を回収する状態を説明する概観図である。同図において、飛行する宇宙飛翔体104の進行方向DRは同図の上方である。図10は第五実施形態の宇宙飛翔体104から宇宙ゴミ(スペースデブリD)を打ち出す状態を説明する概観図である。 Fifth Embodiment
FIG. 9 is a schematic view for explaining a state in which thespace vehicle 104 according to the fifth embodiment of the present invention flies in space to collect space debris (space debris D). In the figure, the traveling direction DR of the space vehicle 104 flying is the upper side of the figure. FIG. 10 is a schematic view for explaining the state of launching space debris (space debris D) from the spacecraft 104 of the fifth embodiment.
図9は本発明の第五実施形態の宇宙飛翔体104が宇宙空間を飛行して宇宙ゴミ(スペースデブリD)を回収する状態を説明する概観図である。同図において、飛行する宇宙飛翔体104の進行方向DRは同図の上方である。図10は第五実施形態の宇宙飛翔体104から宇宙ゴミ(スペースデブリD)を打ち出す状態を説明する概観図である。 Fifth Embodiment
FIG. 9 is a schematic view for explaining a state in which the
第五実施形態の宇宙飛翔体104は、上述した第一から第四実施形態の宇宙飛翔体100~103のように着陸面200への着陸装置として用いることができる。そのほか宇宙飛翔体104は、図9に示すように宇宙空間を飛行してスペースデブリDを捕集する宇宙ゴミ回収装置、および図10に示すように地球表面(着陸面200)に向けてスペースデブリDを打ち出して投下する宇宙ゴミ廃棄装置として用いられる。
The spacecraft 104 of the fifth embodiment can be used as a landing gear to the landing surface 200 as the spacecraft 100 to 103 of the first to fourth embodiments described above. In addition, the spacecraft 104 is a space debris collection device that flies in space as shown in FIG. 9 to collect space debris D, and as shown in FIG. 10, space debris toward the earth surface (landing surface 200). It is used as a space waste disposal device to launch and drop D.
図9に示すように、本実施形態の宇宙飛翔体104におけるエアブレーキ構造体(パラシュート1)は、第二実施形態(図2参照)と同様に、機体本体6に向けて突出する中央凸部2と、この中央凸部2の周囲に連続形成されていて機体本体6に向かって凹形状に湾曲する凹面部2aと、を備えている。宇宙飛翔体104は噴射ノズル5から上向きに噴流Jを噴射し、第二および第三実施形態(図2~図7)で説明したとおり、この噴流Jを中央凸部2で放射状にスプリットする。そして凹面部2aの下面に沿って流れる噴流J1を底部7で反転させて噴流J2としてパラシュート1の周縁から後方に吹き出すことで反動力Fを得る。この反動力Fにより、宇宙飛翔体104は宇宙空間において進行方向DRへの推進力を得ることができる。
As shown in FIG. 9, the air brake structure (parachute 1) in the space vehicle 104 of this embodiment has a central convex portion projecting toward the airframe main body 6 as in the second embodiment (see FIG. 2). And a concave portion 2a continuously formed around the central convex portion 2 and curved in a concave shape toward the airframe main body 6. The spacecraft 104 jets the jet J upward from the jet nozzle 5 and splits the jet J radially at the central convex portion 2 as described in the second and third embodiments (FIGS. 2 to 7). Then, the jet force J1 flowing along the lower surface of the concave portion 2a is inverted at the bottom portion 7 and blown back from the peripheral edge of the parachute 1 as a jet jet J2 to obtain a reaction force F. Due to this reaction force F, the spacecraft 104 can obtain thrust in the traveling direction DR in space.
パラシュート1の周縁部は複数本の支持ロープ3によって機体本体6と連結されている。反動力Fはパラシュート1を前方に付勢し、支持ロープ3を引っ張り方向に牽引するため、支持ロープ3には実質的に張力のみが負荷される。このため、柔軟で可撓性を有する支持ロープ3であっても座屈等のおそれがなく、機体本体6を牽引して前進させることができる。
The peripheral portion of the parachute 1 is connected to the machine body 6 by a plurality of support ropes 3. Since the reaction force F biases the parachute 1 forward and pulls the support rope 3 in the pulling direction, substantially only tension is loaded on the support rope 3. For this reason, even if it is the flexible and flexible support rope 3, there is no fear of buckling etc., and the fuselage body 6 can be pulled and advanced.
本実施形態のエアブレーキ構造体(パラシュート1)は、中央凸部2を底部として一方側(上方)の遠方に向かって開口する擂り鉢状をなしている。エアブレーキ構造体が擂り鉢状であるとは、噴流Jの噴射方向の前方(図9における上方)から宇宙飛翔体104を見たときにエアブレーキ構造体が凹形状をなし、かつ、かかる凹形状の少なくとも一部における幅寸法が噴流Jの噴射方向(前方)に向かって連続的または段階的に幅広に拡大している形状をいう。本実施形態では、中央凸部2は噴流Jの噴射方向を軸心方向とする直筒状かつ均一径の円筒状をなし、中央凸部2の上端に連続形成された凹面部2aは機体本体6から遠ざかるに従って拡径する円錐台形状をなしている。
The air brake structure (parachute 1) of the present embodiment has a bowl shape which opens toward the far side on one side (upper side) with the central convex portion 2 as the bottom. If the air brake structure is in a bowl shape, the air brake structure has a concave shape when the space flight object 104 is viewed from the front (upper side in FIG. 9) of the jet direction of the jet J. It refers to a shape in which the width dimension of at least a part of the shape widens continuously or stepwise toward the injection direction (forward) of the jet J. In the present embodiment, the central convex portion 2 is in the form of a straight cylinder having an axial direction with the jet direction of the jet J as the axial direction and a cylindrical shape of uniform diameter, and the concave portion 2a continuously formed on the upper end of the central convex portion 2 It has a frusto-conical shape that increases in diameter as it moves away from the
反動力Fによって前進する宇宙飛翔体104は、パラシュート1の前方の空間に漂うスペースデブリDを中央凸部2に取り込むことができる。特に、パラシュート1が飛行方向の前方に向かって拡径する擂り鉢状であることで、凹面部2aの広い開口面積で掃引される空間内のスペースデブリDを凹面部2aに沿って集めて中央凸部2の内部に取り込むことができる。
The space flight object 104 advanced by the reaction force F can take in the space debris D floating in the space in front of the parachute 1 into the central convex portion 2. In particular, space debris D in the space swept by the wide opening area of the concave portion 2a is collected along the concave portion 2a by the parachute 1 having a bowl shape expanding in the forward direction of the flight direction, It can be taken into the inside of the convex portion 2.
中央凸部2は、凹面部2aに沿って一方側(上方)から取り込まれるスペースデブリDを収容するデブリ収容部70を備えている。デブリ収容部70は、中央凸部2に取り込まれたスペースデブリDを捕集する領域であり、中央凸部2のうちスペースデブリDの流入側(上方)とは反対側(下方:すなわち下端)が閉塞されて構成されている。パラシュート1の中央凸部2は、擂り鉢状の凹面部2aの最も深い中央部に連なる窪み状に連続形成されており、中央凸部2の最奥部(図9における下端)が閉塞されている。このため、パラシュート1の前方から宇宙飛翔体104に向かって相対的に近づくスペースデブリDは擂り鉢状の凹面部2aに沿ってパラシュート1の内側に移動し、そして中央凸部2を通じてデブリ収容部70の内部に捕集される。取付部72は、放射状に配置された複数本の凸部支持ロープ4によって支持ロープ3または機体本体6に連結されている。このため、スペースデブリDがデブリ収容部70に取り込まれて開閉蓋71に衝突しても、中央凸部2やデブリ収容部70のぐらつくことが抑制される。
The central convex portion 2 includes a debris accommodating portion 70 that accommodates space debris D taken from one side (upper side) along the concave portion 2 a. The debris accommodating portion 70 is a region for collecting the space debris D taken into the central convex portion 2, and the side (lower side: lower end) opposite to the inflow side (upper side) of the space debris D in the central convex portion 2 Is closed and configured. The central convex portion 2 of the parachute 1 is continuously formed in a hollow shape continuous with the deepest central portion of the bowl-shaped concave portion 2a, and the deepest portion (lower end in FIG. 9) of the central convex portion 2 is closed. There is. For this reason, space debris D relatively approaching from the front of the parachute 1 toward the spacecraft 104 moves along the bowl-shaped concave portion 2a to the inside of the parachute 1, and the debris accommodation portion through the central convex portion 2 It is collected inside 70. The mounting portion 72 is connected to the support rope 3 or the airframe main body 6 by a plurality of convex portion support ropes 4 arranged radially. For this reason, even if the space debris D is taken into the debris containing portion 70 and collides with the open / close lid 71, it is possible to suppress the wobbling of the central convex portion 2 and the debris containing portion 70.
デブリ収容部70は開閉可能な開閉蓋71を有している。開閉蓋71は、噴射ノズル5に対向し、かつ噴射ノズル5からみて噴流Jの噴射方向の前方に配置されている。開閉蓋71の少なくとも一部は、デブリ収容部70の深さ方向に膨出する球面状をなしている。本実施形態においてデブリ収容部70の深さ方向とはスペースデブリDの取り込み方向であり、換言するとパラシュート1から機体本体6に向かう方向である。具体的には、本実施形態の開閉蓋71は一対の部分球面状の曲面形状をなしている。より具体的には、開閉蓋71は一対の四分の一球面を組み合わせたものである。中央凸部2の先端(下端)には補強用の環状の取付部72が装着されている。取付部72は中央凸部2よりも高剛性の材料で作成されており、中央凸部2の下端の周囲に取付部72が装着されている。開閉蓋71はヒンジ機構73を介してこの取付部72に回転可能に取り付けられている。図9に示すように、一対の開閉蓋71が互いに合わさることで半球のドーム状をなし、筒状の中央凸部2の下端を閉塞する。ドーム状の開閉蓋71の内部がデブリの収容空間となる。一対の開閉蓋71はフランジ状の突き当て部74をそれぞれ有している。突き当て部74は、一対の開閉蓋71が合わさって半球のドーム状を形成した際の子午線上に形成されたフランジ面である。
The debris storage unit 70 has an openable lid 71 that can be opened and closed. The open / close lid 71 faces the injection nozzle 5 and is disposed forward of the injection direction of the jet stream J when viewed from the injection nozzle 5. At least a part of the open / close lid 71 has a spherical shape that bulges in the depth direction of the debris containing portion 70. In the present embodiment, the depth direction of the debris containing portion 70 is the taking-in direction of the space debris D, in other words, the direction from the parachute 1 to the machine body 6. Specifically, the open / close lid 71 of the present embodiment has a pair of partial spherical curved surface shapes. More specifically, the open / close lid 71 is a combination of a pair of quarter spheres. An annular mounting portion 72 for reinforcement is attached to the tip (lower end) of the central convex portion 2. The mounting portion 72 is made of a material having higher rigidity than the central convex portion 2, and the mounting portion 72 is mounted around the lower end of the central convex portion 2. The open / close lid 71 is rotatably attached to the attachment portion 72 via a hinge mechanism 73. As shown in FIG. 9, the pair of open / close lids 71 are put together to form a hemispherical dome shape and close the lower end of the cylindrical central convex portion 2. The interior of the dome-shaped lid 71 serves as a debris accommodation space. The pair of open / close lids 71 each have a flange-like abutment portion 74. The abutting portion 74 is a flange surface formed on the meridian line when the pair of open / close lids 71 are combined to form a hemispherical dome shape.
図9に示すように一対の開閉蓋71が閉じることで、開閉蓋71は噴射ノズル5に向かって正対して膨出する半球状をなす。これにより開閉蓋71には噴流Jが正面から噴射されてこれをスプリットする。図10に示すように、一対の開閉蓋71は、ヒンジ機構73を中心にそれぞれ外向きに回動することで開き、中央凸部2の先端(図10では上端)は開放される。開閉蓋71を開放する機構は特に限定されない。例えばヒンジ機構73は開閉蓋71に対して、当該開閉蓋71が開く方向にバネなどにより弾性力を付勢しておくとよい。また図9に示すように一対の開閉蓋71が閉じた状態で突き当て部74同士をロック機構(図示せず)により解除可能にロックしておく。開閉蓋71を開く場合は、ロック機構を火工品または電磁石などで作動させてロックを解除することにより、図10に示すように開閉蓋71同士を外向きに開くことができる。開いた開閉蓋71はヒンジ機構73の弾性力により開放状態を維持することができる。なお、開閉蓋71の開閉動作は本実施形態のようにヒンジ機構73によって行われることに限られない。例えばシャッター機構(図示せず)により開閉蓋71を開閉可能としてもよい。
As shown in FIG. 9, when the pair of open / close lids 71 is closed, the open / close lid 71 has a hemispherical shape which is directly opposed to the injection nozzle 5 and bulges. As a result, the jet J is injected from the front to the open / close lid 71 to split it. As shown in FIG. 10, the pair of open / close lids 71 are opened by being respectively pivoted outward about the hinge mechanism 73, and the tip (upper end in FIG. 10) of the central convex portion 2 is opened. The mechanism for opening the open / close lid 71 is not particularly limited. For example, the hinge mechanism 73 may urge an elastic force to the open / close lid 71 in the direction in which the open / close lid 71 is opened by a spring or the like. Further, as shown in FIG. 9, with the pair of open / close lids 71 closed, the butting portions 74 are releasably locked by a lock mechanism (not shown). When the open / close lid 71 is opened, the open / close lid 71 can be opened outward as shown in FIG. 10 by operating the lock mechanism with a pyrotechnic product or an electromagnet to release the lock. The open / close lid 71 can be maintained in the open state by the elastic force of the hinge mechanism 73. The opening / closing operation of the opening / closing lid 71 is not limited to being performed by the hinge mechanism 73 as in the present embodiment. For example, the open / close lid 71 may be opened and closed by a shutter mechanism (not shown).
スペースデブリDをデブリ収容部70に捕集した宇宙飛翔体104は、開閉蓋71を閉じた状態で噴流Jを噴射ノズル5から噴射して得られる反動力Fを推進力として地球に向けて飛行する。宇宙飛翔体104は、図10に示すようにパラシュート1を地表面(着陸面200)に向けて地球の上空(重力圏)の所定高さまで飛行する。この状態で開閉蓋71を開き、そして噴射ノズル5から噴流Jを噴射することで、噴流Jは開いた一対の開閉蓋71同士の間を通じて中央凸部2の内部に吹き込まれ、デブリ収容部70に捕集されていたスペースデブリDを地表面に向けて直接に押し出す。噴流Jがデブリ収容部70でスプリットされず中央凸部2に吹き込まれることで反動力F(図9参照)は発生せず、噴流Jの噴射反力は機体本体6に対して図10の上向きに作用する。これにより、宇宙飛翔体104に作用する地球の重力の一部または全部がキャンセルされ、宇宙飛翔体104は所定の高度を維持する。一方、スペースデブリDは噴流Jに押し出された勢いで中央凸部2から地球方向に打ち出され、その後、大気圏に突入(再突入)し、燃焼して除去される。
The space flight object 104 which collected the space debris D in the debris accommodation unit 70 flies toward the earth with the reaction force F obtained by injecting the jet J from the injection nozzle 5 with the open / close lid 71 closed. Do. The spacecraft 104 flies the parachute 1 toward the ground surface (landing surface 200) to a predetermined height above the earth (gravity zone), as shown in FIG. In this state, the open / close lid 71 is opened, and the jet J is injected from the injection nozzle 5 so that the jet stream J is blown into the inside of the central convex portion 2 between the opened pair of open / close lids 71. The space debris D collected at the site is pushed directly toward the ground surface. The jet force J is not split at the debris containing portion 70 and blown into the central convex portion 2 so that no reaction force F (see FIG. 9) is generated, and the jet reaction force of the jet stream J is directed upward in FIG. Act on. As a result, part or all of the gravity of the earth acting on the spacecraft 104 is canceled, and the spacecraft 104 maintains a predetermined height. On the other hand, the space debris D is ejected from the central convex portion 2 in the direction of the earth by the force of the jet J, and then enters the atmosphere (re-entry) and is burned and removed.
本実施形態の宇宙飛翔体104によれば、ロボットアームなどで捕獲することが困難な比較的小型のスペースデブリDであってもデブリ収容部70に回収することができる。デブリ収容部70にスペースデブリDを回収した後に宇宙飛翔体104が反動力Fを推進力として更に地球に向かって所定の方向に飛行することで、宇宙空間を飛行するスペースデブリDは自身の周回軌道から離脱して減速する。このため、上述したようにスペースデブリDを大気圏再突入させて燃焼させることができる。
According to the space vehicle 104 of the present embodiment, even the relatively small space debris D which is difficult to capture with a robot arm or the like can be collected in the debris storage unit 70. After the space debris D is collected in the debris storage unit 70, the space debris D flying in space by its spacecraft D's own orbit as the spacecraft 104 flies further toward the earth with the repulsive force F as a propulsion force. Get off the track and decelerate. Therefore, as described above, the space debris D can be re-entered into the atmosphere and burned.
第五実施形態では宇宙飛翔体104でスペースデブリDを捕集した後、このスペースデブリDを地球に向かって打ち出す態様を例示したが、宇宙飛翔体104の動作はこれに限られない。すなわち、宇宙飛翔体104はデブリ収容部70にスペースデブリDを捕集した状態で自ら大気圏再突入して宇宙飛翔体104ごとスペースデブリDを燃焼させてもよい。または、第一から第四実施形態で説明したように、機体本体6の脚62を着陸面200の側に向けた状態で噴射ノズル5から噴流Jを噴射して反動力Fを下向きに得ることで、宇宙飛翔体104を減速させる着陸装置として用いてもよい。宇宙飛翔体104の機体本体6が着陸面200に着陸することで、スペースデブリDごと宇宙飛翔体104を地上に回収することができる。
In the fifth embodiment, the space debris D is collected by the space flight object 104 and then the space debris D is launched toward the earth, but the operation of the space flight object 104 is not limited to this. That is, the space flight object 104 may reenter itself into the atmosphere and burn the space debris D together with the space flight object 104 while collecting the space debris D in the debris storage unit 70. Alternatively, as described in the first to fourth embodiments, jets J are jetted from the jet nozzle 5 with the legs 62 of the airframe main body 6 directed to the side of the landing surface 200 to obtain the reaction force F downward. May be used as a landing gear for decelerating the spacecraft 104. When the spacecraft body 6 of the spacecraft 104 lands on the landing surface 200, the space debris D and the spacecraft 104 can be recovered to the ground.
なお、開閉蓋71の具体的な構造は本実施形態に限られず、デブリ収容部70である中央凸部2の少なくとも後方側を開放可能に閉塞する可動の蓋体を広く用いることができる。開閉蓋71の形状は、ドーム状に代えて平板状でもよい。また、本実施形態では中央凸部2(デブリ収容部70)の下端側(後方側)のみを閉鎖する開閉蓋71を例示したが、これに限られない。例えば、開閉蓋をデブリ収容部70の前方側および後方側にそれぞれ開閉可能に設けてもよい。この場合、図9に示すようにスペースデブリDを捕集する際はデブリ収容部70の前方側の開閉蓋を開放し、後方側の開閉蓋を閉鎖しておくとよい。スペースデブリDを捕集した後は、前方側および後方側の開閉蓋の双方を閉鎖した状態で宇宙飛翔体104は地球表面に向かって必要により向きを変え、そして飛行してもよい。図10に示すようにスペースデブリDを地球に向けて打ち出す際は、前方側および後方側の開閉蓋の双方を開放した状態で噴射ノズル5から噴流Jを噴射するとよい。
Note that the specific structure of the open / close lid 71 is not limited to the present embodiment, and a movable lid that can close at least the rear side of the central convex portion 2 that is the debris containing portion 70 can be widely used. The shape of the open / close lid 71 may be flat instead of dome. Moreover, although the opening-closing lid 71 which closes only the lower end side (rear side) of the center convex part 2 (the debris accommodating part 70) was illustrated in this embodiment, it is not restricted to this. For example, the opening and closing lid may be provided so as to be openable and closable on the front side and the rear side of the debris storage unit 70, respectively. In this case, as shown in FIG. 9, when collecting the space debris D, it is preferable to open the open / close lid on the front side of the debris storage unit 70 and close the open / close lid on the rear side. After the space debris D has been collected, the spacecraft 104 may turn as necessary toward the surface of the earth and fly, with both the front and rear open / close lids closed. As shown in FIG. 10, when the space debris D is ejected toward the earth, the jet J may be injected from the injection nozzle 5 in a state where both the front and rear open / close lids are open.
以上説明したように本発明の宇宙飛翔体は、地球表面や月面等の地面や宇宙ステーション等の人工天体に対して着陸する着陸装置として用いられるほか、スペースデブリDを回収して周回軌道から除去する宇宙ゴミの回収および廃棄装置として用いることができる。
As described above, the spacecraft of the present invention is used as a landing gear for landing on artificial earth objects such as the earth surface, the earth surface such as the earth's surface, space stations etc. It can be used as a collection and disposal device for space debris to be removed.
図11Aは第五実施形態の宇宙飛翔体104の変形例を説明する概観図である。図11Bは当該変形例の宇宙飛翔体104における開閉蓋71を噴射ノズル5の側から視た模式図である。
図12は、第五実施形態の変形例にかかる宇宙飛翔体104からスペースデブリDを打ち出す状態を説明する概観図である。 FIG. 11A is a schematic view for explaining a variation of thespacecraft 104 of the fifth embodiment. FIG. 11B is a schematic view of the open / close lid 71 of the space vehicle 104 of the modification viewed from the side of the injection nozzle 5.
FIG. 12 is a schematic view illustrating a state where the space debris D is launched from thespacecraft 104 according to the modification of the fifth embodiment.
図12は、第五実施形態の変形例にかかる宇宙飛翔体104からスペースデブリDを打ち出す状態を説明する概観図である。 FIG. 11A is a schematic view for explaining a variation of the
FIG. 12 is a schematic view illustrating a state where the space debris D is launched from the
第五実施形態(図9参照)と同様に、本変形例における開閉蓋71の少なくとも一部は、図11Aに示すようにデブリ収容部70の深さ方向に膨出する球面状をなしている。デブリ収容部70の深さ方向はスペースデブリDの取り込み方向であり、図11Aにおける下向きである。
As in the fifth embodiment (see FIG. 9), at least a part of the open / close lid 71 in the present modification has a spherical shape which bulges in the depth direction of the debris containing portion 70 as shown in FIG. 11A. . The depth direction of the debris containing portion 70 is the capturing direction of the space debris D, which is downward in FIG. 11A.
一方、本変形例は、開閉蓋71の形状および開閉蓋71の内表面に緩衝体75を有する点で、図9および図10に示した第五実施形態と相違する。すなわち、第五実施形態の宇宙飛翔体104における開閉蓋71は、一対の四分の一球面を組み合わせたものであり、図9に示すように閉じた状態で全体として半球状を為し、当該半球の直径は中央凸部2の直径と同等である。これに対し、本変形例の宇宙飛翔体104における開閉蓋71は、図11Aおよび図11Bに示すように、同一形状の3個の蓋部材を組み合わせて構成されている点、および、開閉蓋71が閉じた状態において、中央凸部2の外径よりも大径に膨出している点で第五実施形態と相違する。
On the other hand, the present modification is different from the fifth embodiment shown in FIGS. 9 and 10 in that the shape of the open / close lid 71 and the buffer body 75 are provided on the inner surface of the open / close lid 71. That is, the open / close lid 71 of the space vehicle 104 according to the fifth embodiment is a combination of a pair of quarter spheres, and as shown in FIG. The diameter of the hemisphere is equal to the diameter of the central protrusion 2. On the other hand, as shown in FIGS. 11A and 11B, the open / close lid 71 of the space vehicle 104 of the present modification is configured by combining three lid members of the same shape, and the open / close lid 71 It differs from the fifth embodiment in that it bulges to a diameter larger than the outer diameter of the central convex portion 2 in the closed state.
すなわち、開閉蓋71の少なくとも一部は、デブリ収容部70の深さ方向に加えて更にデブリ収容部70の径方向の外向きにも膨出する球面状である。ここでいう球面状とは部分球面や略球面を含む。開閉蓋71が閉じた状態で、開閉蓋71の球面状の外表面の一部が中央凸部2よりも径方向の外側まで突き出ている。それのみならず、開閉蓋71の球面状の内表面の一部も、中央凸部2の外形線を超えて径方向の外側に位置している。図11Bに示すように、破線でしめされる中央凸部2の外形線よりも径方向の外側まで、開閉蓋71の外表面および内表面の一部が膨出して突き出ている。
That is, at least a part of the open / close lid 71 has a spherical shape which bulges outward in the radial direction of the debris containing portion 70 in addition to the depth direction of the debris containing portion 70. The term "spherical" as used herein includes a partial spherical surface and a substantially spherical surface. With the open / close lid 71 closed, a part of the spherical outer surface of the open / close lid 71 protrudes to the outside in the radial direction more than the central convex portion 2. Not only that, a part of the spherical inner surface of the open / close lid 71 is also located radially outward beyond the outline of the central convex portion 2. As shown in FIG. 11B, a part of the outer surface and the inner surface of the open / close lid 71 bulges out and protrudes to the outer side in the radial direction than the outline of the central convex portion 2 tightened by a broken line.
図11Aに示すように、デブリ収容部70には凹面部2aに沿って一方側(上方)からスペースデブリDが取り込まれる。本変形例の開閉蓋71は、取り込まれたスペースデブリDを開閉蓋71の内表面に沿って転動させ、そして他の取り込まれたスペースデブリDとの衝突やデブリ収容部70との摩擦力によりスペースデブリDを減速させて捕集することができる。すなわち、第五実施形態のように半球状の開閉蓋71の場合はデブリ収容部70に取り込まれたスペースデブリDが開閉蓋71でUターンして再びデブリ収容部70から前方に離脱するおそれもある。これに対し、本変形例のように開閉蓋71の球面状の内表面が中央凸部2の外形線を超えて径方向の外側まで膨出していることで、デブリ収容部70に取り込まれたスペースデブリDは、開閉蓋71の内表面に沿ってデブリ収容部70の内部でくるくると転動して減速される。このためスペースデブリDがデブリ収容部70から再び離脱するおそれが低減される。
As shown to FIG. 11A, the space debris D is taken in into the debris accommodating part 70 from one side (upper direction) along the concave part 2a. The open / close lid 71 of this modification rolls the taken-in space debris D along the inner surface of the open / close lid 71, and the collision with the other taken-in space debris D and the frictional force with the debris containing portion 70 Thus, the space debris D can be decelerated and collected. That is, in the case of the hemispherical opening and closing lid 71 as in the fifth embodiment, there is a risk that the space debris D taken into the debris containing portion 70 makes a U-turn with the opening and closing lid 71 and is separated forward from the debris containing portion 70 again. is there. On the other hand, as in the present modification, the spherical inner surface of the open / close lid 71 expands beyond the outline of the central convex portion 2 to the outside in the radial direction, so that it is taken into the debris accommodating portion 70 The space debris D rolls along the inner surface of the open / close lid 71 and decelerates as it rolls inside the debris storage unit 70. For this reason, the possibility that the space debris D separates from the debris storage unit 70 again is reduced.
デブリ収容部70は、炭素繊維または複合耐熱材料などの耐熱性材料で作成された耐熱性デブリ収容部であることが好ましい。デブリ収容部70のうち、特に噴流Jが噴射される開閉蓋71は、噴流Jにより加熱される加熱温度よりも高い耐熱性を有していることが好ましい。開閉蓋71の材料としては、金属材料、炭素繊維または複合耐熱材料を例示することができる。
開閉蓋71の内表面には、当該開閉蓋71よりも軟質の材料で作成された緩衝体75が設けられている。緩衝体75や開閉蓋71の具体的な材料は特に限定されないが、例えば緩衝体75の材料としてはゴム材料、多孔質樹脂材料、ゲルを例示することができる。開閉蓋71の内表面に軟質の緩衝体75を設けることで、デブリ収容部70に取り込まれたスペースデブリDが開閉蓋71に衝突する際の弾性的な反発が抑制される。これにより、スペースデブリDが開閉蓋71の内表面(言い換えると緩衝体75の内表面)に沿ってくるくると転動することが促進される。また、スペースデブリDが開閉蓋71に衝突した際の反発力を低減することで開閉蓋71やヒンジ機構73の機械的な損傷を防止することができる。 Thedebris containing portion 70 is preferably a heat resistant debris containing portion made of a heat resistant material such as carbon fiber or a composite heat resistant material. It is preferable that the opening / closing lid 71 to which the jet J is particularly jetted out of the debris containing portion 70 has heat resistance higher than the heating temperature heated by the jet J. As a material of the opening / closing lid 71, a metal material, a carbon fiber, or a composite heat-resistant material can be exemplified.
Abuffer body 75 made of a softer material than the open / close lid 71 is provided on the inner surface of the open / close lid 71. Although the specific material of the buffer 75 and the open / close lid 71 is not particularly limited, for example, as a material of the buffer 75, a rubber material, a porous resin material, and a gel can be exemplified. By providing the soft buffer 75 on the inner surface of the open / close lid 71, elastic repulsion when the space debris D taken into the debris storage unit 70 collides with the open / close lid 71 is suppressed. Thereby, the space debris D is promoted to roll when coming along the inner surface of the open / close lid 71 (in other words, the inner surface of the buffer 75). Further, by reducing the repulsive force when the space debris D collides with the open / close lid 71, mechanical damage to the open / close lid 71 and the hinge mechanism 73 can be prevented.
開閉蓋71の内表面には、当該開閉蓋71よりも軟質の材料で作成された緩衝体75が設けられている。緩衝体75や開閉蓋71の具体的な材料は特に限定されないが、例えば緩衝体75の材料としてはゴム材料、多孔質樹脂材料、ゲルを例示することができる。開閉蓋71の内表面に軟質の緩衝体75を設けることで、デブリ収容部70に取り込まれたスペースデブリDが開閉蓋71に衝突する際の弾性的な反発が抑制される。これにより、スペースデブリDが開閉蓋71の内表面(言い換えると緩衝体75の内表面)に沿ってくるくると転動することが促進される。また、スペースデブリDが開閉蓋71に衝突した際の反発力を低減することで開閉蓋71やヒンジ機構73の機械的な損傷を防止することができる。 The
A
緩衝体75の厚み寸法は、開閉蓋71の肉厚よりも大きくてもよい。これによりスペースデブリDが開閉蓋71に衝突する際の反発力を十分に低減することができる。なお、本明細書において緩衝体75とは、スペースデブリDの衝突衝撃を十分に低減できるだけの厚みを有する部材であり、断熱コーティングや絶縁コーティングなど開閉蓋71の肉厚よりも十分に薄く塗布形成される塗布層を除くものである。
The thickness dimension of the buffer 75 may be larger than the thickness of the open / close lid 71. Thereby, the repulsive force when the space debris D collides with the open / close lid 71 can be sufficiently reduced. In the present specification, the buffer 75 is a member having a thickness sufficient to reduce the collision impact of the space debris D, and is coated and formed sufficiently thinner than the thickness of the open / close lid 71 such as a heat insulating coating or insulating coating. Except for the coated layer.
図11Aおよび図11Bでは、リング状の取付部72の周囲に配置されてヒンジ機構73でそれぞれ連結された3個の蓋部材で開閉蓋71を構成する態様を例示しているが、これに限られない。開閉蓋71を構成する蓋部材は4個以上でもよく2個以下でもよい。ヒンジ機構73の配置、個数、形状も任意であり、ヒンジ機構73以外の機構によって開閉蓋71を開閉可能としてもよい。
11A and 11B illustrate an embodiment in which the open / close lid 71 is configured by three lid members disposed around the ring-shaped attachment portion 72 and connected by the hinge mechanism 73, respectively. I can not. The lid member constituting the open / close lid 71 may be four or more, or two or less. The arrangement, the number, and the shape of the hinge mechanism 73 are also arbitrary, and the open / close lid 71 may be opened and closed by a mechanism other than the hinge mechanism 73.
図12に示すように、開閉蓋71が開いた状態で噴流Jを噴射ノズル5から噴射してスペースデブリDを地表面に向けて押し出すことは第五実施形態と共通である。開閉蓋71が展開した状態で、開閉蓋71が十分に広く展開していることが好ましく、具体的には取付部72および中央凸部2の開口の全体が、噴射ノズル5から視て開閉蓋71から完全に露出していることが好ましい。言い換えると、取付部72および中央凸部2の円形の開口を、当該開口の中心から噴射ノズル5に向けて延びるベクトル(すなわち噴射ノズル5からの噴流Jの噴射方向と逆向きのベクトル)に沿って投影した円柱形の仮想空間の外部に、開放状態の開閉蓋71の全体が配置されているとよい。これにより、噴射ノズル5から噴射された噴流Jがリング状の取付部72および中央凸部2の内部に吹き込まれてスペースデブリDを押し出すにあたり、噴流Jが開閉蓋71と干渉して減速してしまうことを防止できる。
As shown in FIG. 12, it is common to the fifth embodiment that the space debris D is pushed toward the ground surface by injecting the jet J from the injection nozzle 5 with the open / close lid 71 open. It is preferable that the open / close lid 71 be expanded sufficiently widely in a state in which the open / close lid 71 is expanded. Specifically, the entire opening of the mounting portion 72 and the central convex portion 2 is an open / close lid as viewed from the injection nozzle 5 It is preferable to completely expose from 71. In other words, the circular openings of the mounting portion 72 and the central convex portion 2 are arranged along a vector extending from the center of the opening toward the injection nozzle 5 (that is, a vector opposite to the injection direction of the jet J from the injection nozzle 5). It is preferable that the entire open / close lid 71 be disposed outside the projected cylindrical virtual space. As a result, when the jet J ejected from the injection nozzle 5 is blown into the ring-shaped attachment portion 72 and the central convex portion 2 to push out the space debris D, the jet J interferes with the open / close lid 71 and decelerates It is possible to prevent it from
<第六実施形態>
図13は本発明の第五実施形態またはその変形例として上述したデブリ収容部70を備える宇宙飛翔体104を有するデブリ除去システム300の平面模式図である。同図はデブリ除去システム300を宇宙飛翔体104の進行方向DR(図14参照)の前方から視た図である。図14は本実施形態のデブリ除去システム300を宇宙飛翔体104の進行方向DRの側方から視た側面図である。 Sixth Embodiment
FIG. 13 is a schematic plan view of adebris removal system 300 having a space vehicle 104 provided with the debris storage unit 70 described above as the fifth embodiment of the present invention or the modification thereof. This figure is a view of the debris removal system 300 viewed from the front of the traveling direction DR (see FIG. 14) of the spacecraft 104. FIG. 14 is a side view of the debris removal system 300 of the present embodiment as viewed from the side of the traveling direction DR of the spacecraft 104. As shown in FIG.
図13は本発明の第五実施形態またはその変形例として上述したデブリ収容部70を備える宇宙飛翔体104を有するデブリ除去システム300の平面模式図である。同図はデブリ除去システム300を宇宙飛翔体104の進行方向DR(図14参照)の前方から視た図である。図14は本実施形態のデブリ除去システム300を宇宙飛翔体104の進行方向DRの側方から視た側面図である。 Sixth Embodiment
FIG. 13 is a schematic plan view of a
デブリ除去システム300は、宇宙飛翔体104と隊列飛行する旋回飛翔体320を用いてスペースデブリDの飛来軌道を変化させることにより、宇宙飛翔体104単体でスペースデブリDを捕集する場合よりも効率的にスペースデブリDを除去するものである。デブリ除去システム300は、宇宙空間を飛翔する宇宙飛翔体104および旋回飛翔体320のみで構成されてもよく、または地球上の地上システムを含めて構成されてもよい。
The debris removal system 300 is more efficient than collecting space debris D with the space vehicle 104 alone by changing the flight trajectory of the space debris D using the orbiting flight object 320 that forms a line with the space vehicle 104. Space debris D is removed. The debris removal system 300 may be composed of only space vehicles 104 and orbiting vehicles 320 flying in space, or may be configured including a terrestrial system on the earth.
本実施形態のデブリ除去システム300は、宇宙飛翔体104と、当該宇宙飛翔体104の進行方向DRの前方を宇宙飛翔体104と隊列飛行する一機または複数機の旋回飛翔体320(320a,320b)と、を有して構成される。旋回飛翔体320は、宇宙飛翔体104の進行方向DRを中心軸として当該中心軸まわりに旋回飛行しながら宇宙飛翔体104の進行方向DRに沿って飛行する。旋回飛翔体320は、飛来するスペースデブリDに向けて噴流J3を噴射してスペースデブリDの飛来軌道を変化させるデブリ軌道修正用ノズル330を備えている。スペースデブリDが旋回飛翔体320に飛来するとは、スペースデブリDが旋回飛翔体320に対して相対的に接近することをいう。
The debris removal system 300 according to the present embodiment includes the spacecraft 104 and one or a plurality of orbiting aircraft 320 (320a, 320b) that form a line with the spacecraft 104 in front of the traveling direction DR of the spacecraft 104. And is configured. The orbiting flying object 320 flies along the traveling direction DR of the space flying object 104 while turning and flying around the central axis about the traveling direction DR of the space flying object 104 as a central axis. The orbiting flying object 320 includes a debris trajectory correction nozzle 330 which jets the jet J3 toward the flying space debris D to change the flying trajectory of the space debris D. That the space debris D flies to the orbiting flight object 320 means that the space debris D approaches the orbiting flight object 320 relatively.
旋回飛翔体320は、筐体321と、宇宙飛翔体104の進行方向DRに沿って飛行するための加速度を得る前進ノズル332(図13参照)と、中心軸AXまわりに旋回するための角速度を得る旋回ノズル334と、を更に備えている。前進ノズル332からは進行方向DRと逆向き(図14における下方)に噴流J4が噴射され、旋回飛翔体320は進行方向DRと平行な速度成分を得る。また旋回ノズル334からは中心軸AXを中心とする円弧の接線方向に噴流J5が噴射され、旋回飛翔体320は中心軸AXまわりに旋回する速度成分を得る。図13では中心軸AXを中心に反時計回りに旋回飛翔体320が旋回することを例示している。このため旋回飛翔体320から中心軸AX(図13では宇宙飛翔体104のデブリ収容部70の位置)を中心とする円(図示せず)に対して時計回りの成分を有する接線方向に噴流J5は噴射される。ただし、旋回飛翔体320の旋回方向は上記と逆向きでもよい。また、後述するように本実施形態のデブリ除去システム300は複数機の旋回飛翔体320が複数段の環状に配置されて隊列飛行する。各段を構成する複数機の旋回飛翔体320は互いに同じ向きに旋回する。異なる段を構成する旋回飛翔体320は、中心軸AXまわりに同じ向きに旋回してもよく、または逆向きに旋回してもよい。
The orbiting projectile 320 has a housing 321, an advancing nozzle 332 (see FIG. 13) for obtaining an acceleration for flying along the traveling direction DR of the spacecraft 104, and an angular velocity for pivoting around the central axis AX. And an orbiting nozzle 334 for obtaining the electric field. The jet J4 is injected from the forward nozzle 332 in the opposite direction (downward in FIG. 14) to the forward direction DR, and the orbiting flying object 320 obtains a velocity component parallel to the forward direction DR. Further, the jet J5 is injected from the turning nozzle 334 in a tangential direction of an arc centered on the central axis AX, and the turning flying object 320 obtains a velocity component to turn around the central axis AX. FIG. 13 exemplifies turning of the orbiting flight object 320 counterclockwise around the central axis AX. For this reason, a jet J5 is made tangentially to the circle having a clockwise component with respect to a circle (not shown) centered on the central axis AX (the position of the debris storage portion 70 of the space vehicle 104 in FIG. Is injected. However, the turning direction of the turning projectile 320 may be opposite to the above. Further, as described later, in the debris removal system 300 according to the present embodiment, a plurality of orbiting flying objects 320 are arranged in a plurality of stages in a ring shape to fly in a row. The plurality of orbiting projectiles 320 constituting each stage pivot in the same direction. The orbiting projectiles 320 constituting different stages may pivot in the same direction around the central axis AX, or may pivot in the opposite direction.
前進ノズル332、旋回ノズル334およびデブリ軌道修正用ノズル330における推進原理は特に限定されず、互いに共通でもよく、または異なるものでもよい。前進ノズル332から噴射される噴流J4、旋回ノズル334から噴射される噴流J5およびデブリ軌道修正用ノズル330から噴射される噴流J3にそれぞれ用いられる推進剤は共用してもよい。デブリ軌道修正用ノズル330、キャンセル用ノズル331、前進ノズル332、後退ノズル333、旋回ノズル334および減速ノズル335は筐体321に搭載されている。筐体321には、上記各ノズルから噴射される噴流の噴射時期や噴射量を制御する噴射制御部や姿勢制御用の各種制御機器(図示せず)が搭載されている。
The propulsion principles of the forward nozzle 332, the swirl nozzle 334, and the debris trajectory correction nozzle 330 are not particularly limited, and may be common or different. The propellants used for the jet J 4 jetted from the forward nozzle 332, the jet J 5 jetted from the swirl nozzle 334, and the jet J 3 jetted from the debris trajectory correction nozzle 330 may be shared. The debris trajectory correction nozzle 330, the cancel nozzle 331, the forward nozzle 332, the reverse nozzle 333, the swivel nozzle 334, and the deceleration nozzle 335 are mounted on the housing 321. The casing 321 is mounted with an injection control unit that controls the injection timing and injection amount of the jet flow injected from each of the nozzles, and various control devices (not shown) for posture control.
旋回飛翔体320は、筐体321に関して前進ノズル332の反対側に設置された後退ノズル333を有する。図13においては、筐体321の上面に現れる後退ノズル333の図示を省略している。後退ノズル333は、前進ノズル332から噴射される噴流J4と逆向きに噴流を噴射する。これにより宇宙飛翔体104の進行方向DRと同方向に前進飛行する旋回飛翔体320の速度を微調整することができる。また旋回飛翔体320は、筐体321に関して旋回ノズル334の反対側に設置された減速ノズル335を有する。減速ノズル335は、旋回ノズル334から噴射される噴流J5と逆向きに噴流を噴射する。旋回ノズル334から噴射される噴流J5により得られる中心軸AXまわりの角速度が過大となる場合に、減速ノズル335から噴流(図示せず)を噴射して角速度を減少させて微調整することができる。
The orbiting projectile 320 has a receding nozzle 333 located on the opposite side of the advancing nozzle 332 with respect to the housing 321. In FIG. 13, illustration of the backward nozzle 333 appearing on the upper surface of the housing 321 is omitted. The backward nozzle 333 jets a jet in a direction opposite to the jet J 4 jetted from the forward nozzle 332. Thus, it is possible to finely adjust the speed of the orbiting flight object 320 forward-propelled in the same direction as the traveling direction DR of the spacecraft 104. In addition, the orbiting projectile 320 has a decelerating nozzle 335 installed on the opposite side of the orbiting nozzle 334 with respect to the housing 321. The decelerating nozzle 335 jets a jet in a direction opposite to the jet J5 jetted from the swirling nozzle 334. When the angular velocity around the central axis AX obtained by the jet J5 injected from the swirling nozzle 334 is excessive, the angular velocity can be reduced and finely adjusted by injecting a jet (not shown) from the deceleration nozzle 335 .
デブリ軌道修正用ノズル330はスペースデブリDに向けて噴流J3を噴射してスペースデブリDの飛来軌道を変化させる。旋回飛翔体320は、筐体321に関してデブリ軌道修正用ノズル330の反対側に設置されたキャンセル用ノズル331を有する。キャンセル用ノズル331は、デブリ軌道修正用ノズル330から噴流J3を噴射するのと同じタイミングで、噴流J3と反対向きに、噴流J3と同速度かつ同流量で噴流(図示せず)を噴射する。これにより、デブリ軌道修正用ノズル330から噴射される噴流J3の運動量の反作用により旋回飛翔体320が飛行軌道から外れることをキャンセルすることができる。
The debris trajectory correction nozzle 330 jets a jet J3 toward the space debris D to change the flight trajectory of the space debris D. The orbiting projectile 320 has a canceling nozzle 331 installed on the opposite side of the debris trajectory correcting nozzle 330 with respect to the housing 321. The canceling nozzle 331 jets a jet (not shown) at the same velocity and flow rate as the jet J3 in the opposite direction to the jet J3 at the same timing as jetting the jet J3 from the debris trajectory correction nozzle 330. Thus, the reaction of the momentum of the jet J3 ejected from the debris trajectory correction nozzle 330 can cancel the deviation of the orbiting flight object 320 from the flight trajectory.
本実施形態のデブリ除去システム300においては、デブリ軌道修正用ノズル330からスペースデブリDに向けて噴流J3を噴射してスペースデブリDの飛来軌道を変化させることにより宇宙飛翔体104のデブリ収容部70でスペースデブリDを捕集する。すなわち本実施形態の旋回飛翔体320は、宇宙飛翔体104の進行方向DRである中心軸AXに向けてデブリ軌道修正用ノズル330から噴流J3を噴射する。これにより、宇宙飛翔体104の掃引体積の外部に位置するスペースデブリDを、掃引体積の内部に移動させることができる。
In the debris removal system 300 of the present embodiment, the debris storage unit 70 of the space vehicle 104 is injected by injecting the jet J3 from the debris trajectory correction nozzle 330 toward the space debris D to change the flying trajectory of the space debris D. Collect space debris D at. That is, the orbiting projectile body 320 of the present embodiment jets the jet J3 from the debris trajectory correction nozzle 330 toward the central axis AX which is the traveling direction DR of the spacecraft 104. Thus, space debris D located outside the swept volume of the spacecraft 104 can be moved to the inside of the swept volume.
ただし、デブリ軌道修正用ノズル330からスペースデブリDに向けて噴射される噴流J3の向きは上記に限定されない。例えば本実施形態に代えて、旋回飛翔体320と地球との間に位置するスペースデブリDに向けてデブリ軌道修正用ノズル330から噴流J3を噴射してもよい。これにより、スペースデブリDを地球に向けて落下させ、大気圏で燃焼させて当該スペースデブリDを除去することができる。このほか、静止軌道などの周回軌道上を飛行するスペースデブリDに対して飛行方向の逆向きの加速度を噴流J3によって付与することでスペースデブリDは減速され、徐々に周回軌道から地球に向かって落下していく。これによりスペースデブリDを大気圏で燃焼させて除去することもできる。
However, the direction of the jet J3 ejected from the debris trajectory correction nozzle 330 toward the space debris D is not limited to the above. For example, instead of the present embodiment, the jet J3 may be injected from the debris trajectory correction nozzle 330 toward the space debris D located between the orbiting flight object 320 and the earth. Thus, the space debris D can be dropped toward the earth and burned in the atmosphere to remove the space debris D. In addition, the space debris D is decelerated by applying the reverse acceleration of the flight direction to the space debris D flying on the orbit such as the geostationary orbit by the jet J3, and gradually from the orbit to the earth It will fall. Thereby, the space debris D can be burned and removed in the atmosphere.
デブリ除去システム300は軌道修正用演算部340を更に備えている。軌道修正用演算部340は、飛来するスペースデブリDのデブリ条件に基づいて、デブリ軌道修正用ノズル330から噴射する噴流J3の噴射時期または噴射量の少なくとも一方を決定する。より詳細には、デブリ条件は、飛来するスペースデブリDの位置、飛来方向および飛来速度を少なくとも含む。軌道修正用演算部340は、噴流J3の噴射により飛来軌道が変化した後のスペースデブリDの飛来位置および飛来時刻が、当該飛来時刻における宇宙飛翔体104のエアブレーキ構造体(パラシュート1)の通過位置と一致するように、噴流J3の噴射時期または噴射量を決定する。ここで、噴流J3の噴射量とは、噴流J3の流速または単位時間あたりの噴流J3の流量である。すなわち旋回飛翔体320は、その後方を飛行する宇宙飛翔体104のエアブレーキ構造体(パラシュート1)が通過する空間領域および時間帯にスペースデブリDがちょうど到達するように、当該スペースデブリDに噴流J3を噴射する。
The debris removal system 300 further comprises a trajectory correction computing unit 340. The trajectory correction operation unit 340 determines at least one of the injection timing and the injection amount of the jet J3 ejected from the debris trajectory correction nozzle 330 based on the debris condition of the flying space debris D. More specifically, the debris condition at least includes the position of the flying space debris D, the flying direction and the flying speed. The trajectory correction computing unit 340 passes through the air brake structure (parachute 1) of the space vehicle 104 at the time of flight arrival of the space debris D after the flight trajectory has been changed by the injection of the jet J 3 and the flight position and flight time of the space debris D The injection timing or injection amount of the jet J3 is determined to coincide with the position. Here, the injection amount of the jet J3 is the flow velocity of the jet J3 or the flow rate of the jet J3 per unit time. That is, the orbiting flying object 320 jets the space debris D so that the space debris D just reaches the space area and time zone through which the air brake structure (parachute 1) of the spacecraft 104 flying behind it passes. J3 is injected.
軌道修正用演算部340はコンピュータにより実現される。軌道修正用演算部340は宇宙飛翔体104に設けられてもよく、旋回飛翔体320に設けられてもよく、もしくは地球上の地上システムに設けられてもよく、またはこれらに分散して設けられてもよい。図14では宇宙飛翔体104の機体本体6の内部に軌道修正用演算部340が搭載されている場合を図示している。
The trajectory correction operation unit 340 is realized by a computer. The orbit correction computing unit 340 may be provided in the spacecraft 104, may be provided in the orbiting vehicle 320, may be provided in a terrestrial system on the earth, or may be provided separately from these. May be FIG. 14 illustrates the case where the trajectory correction arithmetic unit 340 is mounted inside the airframe main body 6 of the spacecraft 104.
デブリ除去システム300は、旋回飛翔体320の前方に飛来するスペースデブリDの位置、飛来方向および飛来速度を、観測機器(図示せず)を用いて光学的または電磁的に計測する。かかる観測機器は地上システムに設けられてもよく、または宇宙飛翔体104もしくは旋回飛翔体320に設けられてもよい。観測機器は、更にスペースデブリDの大きさを計測するとよい。軌道修正用演算部340は、スペースデブリDの大きさおよびスペースデブリDの平均的な密度値からスペースデブリDの質量を推算する。更に軌道修正用演算部340は、スペースデブリDに対してデブリ軌道修正用ノズル330から噴流J3を噴射した際にスペースデブリDが付勢力を受ける平均的な投影面積を推算する。軌道修正用演算部340は、スペースデブリDと旋回飛翔体320との距離および位置関係に基づき、当該旋回飛翔体320のデブリ軌道修正用ノズル330から噴流J3を単位出力で噴射した場合に当該スペースデブリDが受ける力積を推算する。軌道修正用演算部340は、スペースデブリDの質量を推算値、位置、飛来方向および飛来速度に基づき、かかる力積を受けて飛来軌道が変化した後の当該スペースデブリDの軌道を算出する。軌道修正用演算部340は、噴流J3の噴射時期または噴射量の少なくとも一方を変数として、スペースデブリDの軌道が宇宙飛翔体104のパラシュート1が通過する空間領域と重なり、かつスペースデブリDが宇宙飛翔体104の僅かに前方を通過してデブリ収容部70で捕集されるように、当該変数の解を求める。求められた変数により特定される上記の軌道を「捕集軌道」と呼称する。デブリ軌道修正用ノズル330から噴射される噴流J3の噴射量が常に一定である場合には、軌道修正用演算部340はデブリ軌道修正用ノズル330から連続的または間欠的に噴射すべき噴流J3の噴射時期(タイミング)が変数となる。
The debris removal system 300 optically or electromagnetically measures the position, the flying direction, and the flying velocity of the space debris D flying in front of the orbiting flight object 320 using an observation device (not shown). Such an observation device may be provided on the ground system, or may be provided on the spacecraft 104 or the orbiting vehicle 320. The observation device may further measure the size of the space debris D. The trajectory correction operation unit 340 estimates the mass of the space debris D from the size of the space debris D and the average density value of the space debris D. Furthermore, when the jet J3 is ejected from the debris trajectory correction nozzle 330 to the space debris D, the trajectory correction operation unit 340 estimates an average projected area in which the space debris D receives a biasing force. When the jet J3 is ejected as a unit output from the debris trajectory correction nozzle 330 of the orbiting flight object 320 based on the distance and positional relationship between the space debris D and the orbiting flight object 320, the orbit correction operation unit 340 Estimate the impulse that the debris D will receive. The trajectory correction operation unit 340 calculates the trajectory of the space debris D after the flight trajectory has been changed by receiving the impulse based on the estimated value of the mass of the space debris D, the position, the flying direction and the flying velocity. The trajectory correction operation unit 340 sets the trajectory of the space debris D to the space region through which the parachute 1 of the space vehicle 104 passes, with at least one of the injection timing and the injection amount of the jet J3 as a variable. The solution of the variable is determined so as to pass slightly ahead of the flying object 104 and be collected by the debris storage unit 70. The above orbit specified by the determined variable is called a "collection orbit". When the injection amount of the jet J3 injected from the debris trajectory correction nozzle 330 is always constant, the trajectory correction operation unit 340 is configured to continuously or intermittently inject jets J3 from the debris trajectory correction nozzle 330. The injection timing (timing) is a variable.
軌道修正用演算部340によりスペースデブリDの変化後の飛来軌道(捕集軌道)が決定されると、当該捕集軌道を実現するための噴流J3の噴射時期および噴射量が決定される。軌道修正用演算部340は、旋回飛翔体320の噴射制御部と無線接続されている。軌道修正用演算部340は、決定された噴射時期および噴射量でデブリ軌道修正用ノズル330から噴流J3が噴射されるように、デブリ軌道修正用ノズル330の噴射制御部にコマンド信号を送信する。かかるコマンド信号に基づいて、決定された旋回飛翔体320におけるデブリ軌道修正用ノズル330から所定のタイミングおよび噴射量にて噴流J3が噴射される。これにより、旋回飛翔体320の円形の旋回軌道の内部に飛来するスペースデブリDの飛来軌道を捕集軌道に変更し、当該スペースデブリDを宇宙飛翔体104のデブリ収容部70で捕集することが可能になる。
When the flying trajectory (collection trajectory) after the change of the space debris D is determined by the trajectory correction calculation unit 340, the injection timing and the injection amount of the jet J3 for realizing the collection trajectory are determined. The trajectory correction computing unit 340 is wirelessly connected to the injection control unit of the turning projectile 320. The trajectory correction operation unit 340 transmits a command signal to the injection control unit of the debris trajectory correction nozzle 330 so that the jet J3 is ejected from the debris trajectory correction nozzle 330 at the determined injection timing and injection amount. Based on the command signal, the jet J3 is ejected from the debris trajectory correction nozzle 330 in the determined orbiting vehicle 320 at a predetermined timing and injection amount. As a result, the flying trajectory of the space debris D flying within the circular turning trajectory of the turning flying object 320 is changed to a collection trajectory, and the space debris D is collected by the debris storage unit 70 of the space flying object 104. Becomes possible.
デブリ除去システム300は、一機または複数機の旋回飛翔体320を有している。一機の旋回飛翔体320を宇宙飛翔体104の前方で旋回飛行させてスペースデブリDに噴流J3を噴射してもよいが、複数機の旋回飛翔体320を旋回飛行させることが好ましい。これにより、スペースデブリDの飛来速度が速い場合でも、旋回飛翔体320の旋回周期との関係で旋回飛翔体320の近傍を通過せずにスペースデブリDがデブリ除去システム300を空過してしまう確率が低減できる。
The debris removal system 300 includes one or more orbiting projectiles 320. Although one orbiting flight object 320 may be caused to orbit forward of the space flight object 104 to jet the jet J 3 to the space debris D, it is preferable to orbit the plurality of orbiting flight objects 320. As a result, even if the flying speed of the space debris D is high, the space debris D may pass the debris removal system 300 without passing near the swing flying object 320 in relation to the swing cycle of the swing flying object 320 The probability can be reduced.
すなわち本実施形態のデブリ除去システム300は、中心軸AXまわりにそれぞれ旋回飛行する複数機の旋回飛翔体320を有している。軌道修正用演算部340は、上記種々のデブリ条件に基づいて、複数機のうち、デブリ軌道修正用ノズル330から噴流J3を噴射する旋回飛翔体320を決定する。すなわち軌道修正用演算部340は、飛来するスペースデブリDが旋回飛翔体320の円形の旋回軌道により描かれる円領域を通過する瞬間に当該スペースデブリDに最も近接する旋回飛翔体320を、噴流J3を噴射すべき旋回飛翔体320として決定する。軌道修正用演算部340は、1個のスペースデブリDに対して、複数機(例えば互いに隣接する複数機)の旋回飛翔体320から噴流J3を噴射するように決定してもよい。
That is, the debris removal system 300 of the present embodiment has a plurality of orbiting flying objects 320 that orbit and fly around the central axis AX. The trajectory correction computing unit 340 determines, among the plurality of machines, the orbiting flying object 320 that jets the jet J3 from the debris trajectory correction nozzle 330 based on the various debris conditions. That is, the trajectory correction computing unit 340 jets the jet J 3 at the moment when the flying space debris D passes the circular region drawn by the circular turning trajectory of the turning flying object 320 and which is closest to the space debris D. Is determined as the turning projectile 320 to be jetted. The trajectory correction computing unit 340 may determine to jet jets J3 from the orbiting flight members 320 of a plurality of machines (for example, a plurality of machines adjacent to each other) for one space debris D.
図13および図14では合計12機の旋回飛翔体320を有するデブリ除去システム300を例示している。ただし旋回飛翔体320の機数はこれに限られるものではない。
FIGS. 13 and 14 illustrate a debris removal system 300 having a total of 12 orbiting vehicles 320. FIG. However, the number of orbiting aircraft 320 is not limited to this.
本実施形態のデブリ除去システム300において、複数機の旋回飛翔体320は宇宙飛翔体104の進行方向DRの前方に複数段の環状に配置されて隊列飛行する。本実施形態の例では、宇宙飛翔体104に近い一段目の環状の旋回軌道上に6機の旋回飛翔体320aが互いに等間隔に分散配置されている。そして一段目よりも更に進行方向DRの前方に位置する二段目の環状の旋回軌道上に6機の旋回飛翔体320bが互いに等間隔に分散配置されている。このように旋回飛翔体320の旋回軌道を複数段に構成することで、宇宙飛翔体104の通過領域にスペースデブリDの飛来軌道をより確実に変化させることができる。ここで、宇宙飛翔体104よりも遠方の二段目の旋回飛翔体320bがスペースデブリDに噴射する噴流J3のみによっては当該スペースデブリDの飛来軌道を宇宙飛翔体104の通過領域上に変化させることができない場合が存在する。しかしながらそのような場合でも、旋回飛翔体320bが噴流J3を噴射するのみならず、旋回飛翔体320bの後方に続く旋回飛翔体320aが更に噴流J3を噴射することで、より確実に当該スペースデブリDの飛来軌道を宇宙飛翔体104の通過領域上に変化させることができる。各段を構成する旋回飛翔体320の機数は互いに等しくてもよく、または異なってもよい。
In the debris removal system 300 of the present embodiment, a plurality of orbiting flying objects 320 are arranged in a plurality of stages in a ring shape in a forward direction of the traveling direction DR of the spacecraft 104 to form a row flight. In the example of the present embodiment, six orbiting flying objects 320 a are distributed at equal intervals from one another on the first stage annular turning orbit near the space flying object 104. Then, six orbiting flying bodies 320b are distributed at equal intervals to each other on the second stage annular orbit located forward of the first stage in the traveling direction DR. Thus, the flight trajectory of the space debris D can be more reliably changed in the passage region of the space flight object 104 by configuring the orbit of the rotation flight object 320 in a plurality of stages. Here, the flying orbit of the space debris D is changed onto the passing area of the space flight object 104 only by the jet J3 which the second stage swirling body 320b distant from the space flight object 104 injects to the space debris D. There are cases where you can not do it. However, even in such a case, the space debris D can be more reliably assured by the fact that the orbiting flight object 320b not only jets the jet stream J3 but also the orbiting flight body 320a following the rear of the orbiting flight body 320b further jets the jet stream J3. Flight trajectory of the spacecraft can be changed onto the passage area of the spacecraft 104. The number of orbiting projectiles 320 constituting each stage may be equal to or different from one another.
本実施形態では複数機の旋回飛翔体320が複数段の環状に配置されて隊列飛行することを例示したが、これに代えて、複数機の旋回飛翔体320が宇宙飛翔体104の進行方向DRの前方において螺旋状に配置されて隊列飛行してもよい。旋回飛翔体320が配置される螺旋軸は中心軸AXと一致させ、旋回飛翔体320の各機は三次元螺旋上に配置されて中心軸AXまわりに同方向に旋回飛行する。これにより、複数機の旋回飛翔体320と宇宙飛翔体104との間の中心軸AXに沿う方向の距離が互いに異なることになる。このため、飛来するスペースデブリDに対していずれかの旋回飛翔体320が接近して噴流J3を噴射し、宇宙飛翔体104に向けてスペースデブリDの飛来軌道を変更できる可能性が高められる。
In the present embodiment, it has been exemplified that a plurality of orbiting flying objects 320 are arranged in a plurality of stages in a ring shape to fly in a row, but instead of the plurality of orbiting flying objects 320 being the traveling direction DR of the space flight object 104 It may be arranged in a spiral in front of the column to fly in a row. The spiral axis on which the orbiting flying object 320 is disposed coincides with the central axis AX, and each aircraft of the orbiting flying object 320 is disposed on a three-dimensional helix and pivots in the same direction around the central axis AX. As a result, the distances in the direction along the central axis AX between the plurality of orbiting flying objects 320 and the space flying object 104 are different from each other. Therefore, the possibility that one of the orbiting flying objects 320 approaches the flying space debris D and jets the jet J 3 to change the flying trajectory of the space debris D toward the space flying object 104 is enhanced.
複数機の旋回飛翔体320同士はケーブル350で互いに連結されている。具体的には、一段目の旋回軌道を描く6機の旋回飛翔体320aは、互いに隣接する機体の筐体321同士がケーブル350で連結されている。そして二段目の旋回軌道を描く6機の旋回飛翔体320bも、互いに隣接する機体の筐体321同士が他のケーブル350で連結されている。このように各段の旋回軌道を描く旋回飛翔体320同士がケーブル350で連結されていることで、噴流J5の噴射反力で同方向に回転する複数機の旋回飛翔体320は円形の旋回軌道を描く。また、複数機の旋回飛翔体320が中心軸AXまわりの旋回軌道上に等間隔で配置されていることで、旋回飛翔体320の各機に個別に発生する遠心力同士が相殺される。一方、旋回飛翔体320の各機は、前進ノズル332から噴流J4を同速で噴射するなどして進行方向DRに関しては等しい速度成分を有している。宇宙飛翔体104は、第五実施形態にて上述したように噴射ノズル5から噴射された噴流J1をパラシュート1で反転させ、噴流J2としてパラシュート1の周縁から後方に吹き出すことで進行方向DRの速度成分をもって飛行する。以上により、各段の旋回飛翔体320および宇宙飛翔体104は、戦隊を崩すことなく進行方向DR(中心軸AX)に沿って同速度で並進移動することができる。
A plurality of turning projectiles 320 are connected to each other by a cable 350. Specifically, the casings 321 of the aircraft adjacent to each other are connected by the cable 350 in the six orbiting flying objects 320a of the six aircraft that draw the orbit of the first stage. The casings 321 of the aircraft bodies adjacent to each other are also connected by another cable 350 in the six orbiting flying objects 320b that draw the orbit of the second stage. In this manner, by connecting the swing projectiles 320 describing the swing trajectories of each stage by the cable 350, the plurality of swing projectiles 320 rotating in the same direction by the injection reaction force of the jet stream J5 have circular orbits. Draw. Moreover, the centrifugal force which generate | occur | produces separately in each machine | part of the turning flying object 320 is offset | eliminated by arrange | positioning the turning flying object 320 of several machines at equal intervals on the turning orbit around the central axis AX. On the other hand, each aircraft of the orbiting projectile 320 has equal velocity components with respect to the traveling direction DR by, for example, injecting the jet J 4 from the forward nozzle 332 at the same speed. The spacecraft 104 reverses the jet J1 injected from the injection nozzle 5 with the parachute 1 as described above in the fifth embodiment, and blows it backward from the periphery of the parachute 1 as the jet J2 so that the speed in the traveling direction DR Fly with the ingredients. As described above, the orbiting flying object 320 and the space flying object 104 in each stage can translate at the same speed along the traveling direction DR (central axis AX) without breaking the squadron.
ケーブル350で連結される各段の旋回飛翔体320の機数は限定されないが、3機以上であることで、3本以上のケーブル350が多角形を描く。具体的には図13に示すように6機でもよく、5機でも4機でもよく、3機または7機以上でもよい。これにより、ケーブル350は当該多角形の辺上に張られることになり、当該多角形の中心にはケーブル350が配置されない。このため、旋回飛翔体320の旋回軌道の中心を宇宙飛翔体104に向かって遠方から飛来するスペースデブリDがケーブル350と干渉することがなく、当該スペースデブリDを宇宙飛翔体104のデブリ収容部70が捕集することを妨げない。
Although the number of units of the turning projectiles 320 in each stage connected by the cables 350 is not limited, by being three or more, three or more cables 350 draw a polygon. Specifically, as shown in FIG. 13, there may be six, five or four, three or seven or more. As a result, the cable 350 is stretched on the side of the polygon, and the cable 350 is not disposed at the center of the polygon. For this reason, the space debris D flying toward the spacecraft 104 from the distance toward the spacecraft 104 does not interfere with the cable 350, and the space debris D can be used as a debris storage portion of the spacecraft 104. 70 does not prevent collection.
ケーブル350の長さは特に限定されないが、例えば数キロメートルから数十キロメートルとすることができる。図13に示すように正六角形の頂点上に6機の旋回飛翔体320が配置されて円形の旋回軌道を描く場合、当該旋回軌道の直径はケーブル350の2倍の長さ、すなわち数十キロメートルのオーダーとすることができる。一方、宇宙飛翔体104のパラシュート1の直径は数十メートルから100メートル程度とすることができる。したがって、宇宙飛翔体104が単独で飛行してパラシュート1でスペースデブリDを捕集する場合に比べて、本実施形態のデブリ除去システム300によってスペースデブリDを宇宙飛翔体104に向けて移動させてこれを捕集する場合、スペースデブリDを除去可能な領域は、直径比で1000倍、面積比で100万倍もの大きさとすることができる。
The length of the cable 350 is not particularly limited, but can be, for example, several kilometers to several tens of kilometers. As shown in FIG. 13, when six orbiting flying objects 320 are arranged on the apex of a regular hexagon to draw a circular orbit, the diameter of the orbit is twice the length of the cable 350, that is, several tens of kilometers It can be in the order of On the other hand, the diameter of the parachute 1 of the spacecraft 104 can be about several tens of meters to 100 meters. Therefore, the space debris D is moved toward the spacecraft 104 by the debris removal system 300 of the present embodiment, as compared with the case where the spacecraft 104 flies alone and collects the space debris D with the parachute 1. When this is collected, the area where the space debris D can be removed can be as large as 1000 times in diameter ratio and 1 million times in area ratio.
一段目を構成する第一の旋回飛翔体320aの旋回半径は、当該第一の旋回飛翔体320aよりも宇宙飛翔体104のより前方を旋回飛行する二段目を構成する第二の旋回飛翔体320bの旋回半径よりも小さい。これにより、デブリ除去システム300が配置される空間は、図14に示すように二段目の旋回飛翔体320bの旋回軌道から一段目の旋回飛翔体320aの旋回軌道に向かって縮径し、更に宇宙飛翔体104のパラシュート1に向かって縮径する。言い換えると、デブリ除去システム300が配置される空間は、進行方向DRの前方から後方に向かって縮径する擂り鉢形状をなしている。これにより、デブリ除去システム300に向かって飛来するスペースデブリDの飛来軌道を、大きな旋回軌道を描く第二の旋回飛翔体320bによって中心軸AXに向かう方向に変更(第一段変更)させて、第一の旋回飛翔体320aの小さな旋回軌道の内側まで、まずは移動させる。次に、小さな旋回軌道を描く後続の第一の旋回飛翔体320aによって、当該スペースデブリDの飛来軌道を、更に宇宙飛翔体104のパラシュート1の通過領域上まで、高い精度で更に変更(第二段変更)させることができる。
The turning radius of the first turning projectile 320a constituting the first step is the second turning projectile constituting the second step of turning and flying ahead of the space projectile 104 relative to the first turning projectile 320a. It is smaller than the turning radius of 320b. As a result, as shown in FIG. 14, the space in which the debris removal system 300 is disposed is reduced in diameter from the orbit of the second stage of the orbiting flying object 320b toward the orbit of the first stage of the orbiting flying object 320a. The diameter decreases toward the parachute 1 of the spacecraft 104. In other words, the space in which the debris removal system 300 is disposed has a bowl shape that decreases in diameter from the front to the rear in the traveling direction DR. Thereby, the flight trajectory of the space debris D flying toward the debris removal system 300 is changed (first stage change) in the direction toward the central axis AX by the second swing flight object 320b that draws a large swing trajectory, First, it is moved to the inside of the small orbit of the first orbiting flight object 320a. Next, the flying orbit of the space debris D is further changed with high accuracy to a position above the passing area of the parachute 1 of the space flying object 104 by the subsequent first orbiting flight object 320a that draws a small orbit. Can change the stage).
以上説明したように、本実施形態のデブリ除去システム300によれば、飛行する宇宙飛翔体104が単独で掃引する体積よりも遙かに広い空間内に任意の向きで飛来するスペースデブリDを、宇宙飛翔体104のデブリ収容部70で効率的に捕集することができる。
As described above, according to the debris removal system 300 of the present embodiment, the space debris D that flies in any direction in a space much wider than the volume that the flying space vehicle 104 independently sweeps, The debris can be collected efficiently by the debris storage unit 70 of the spacecraft 104.
本実施形態では宇宙飛翔体104と組み合わせて用いることを説明したがこれに限られない。すなわち本実施形態のデブリ除去システムは、宇宙飛翔体と組み合わせずに旋回飛翔体のみで構成してもよい。かかるデブリ除去システムは、複数機の隊列飛行する旋回飛翔体を有し、上記旋回飛翔体が、所定の中心軸まわりに旋回飛行しながら当該中心軸に沿って飛行し、かつ飛来するスペースデブリに向けて噴流を噴射してスペースデブリの飛来軌道を変化させるデブリ軌道修正用ノズルを備えるデブリ除去システムとして構成することができる。
デブリ軌道修正用ノズルから噴射される噴流により、スペースデブリを地表に向けて落下させてもよい。これにより、宇宙飛翔体によってスペースデブリを捕集しなくても、スペースデブリを大気圏再突入させて燃焼させることによりこれを除去することができる。 In the present embodiment, the use in combination with thespace vehicle 104 has been described, but the present invention is not limited to this. That is, the debris removal system of the present embodiment may be configured with only the orbiting vehicle without being combined with the space vehicle. Such a debris removal system has a plurality of orbiting flying vehicles in a row, and the above-mentioned flying vehicles fly along the central axis while flying around the predetermined central axis, and the space debris which flies It can be configured as a debris removal system including a debris trajectory correction nozzle that jets a jet to change the flying trajectory of space debris.
Space debris may be dropped toward the surface by jets ejected from the debris trajectory correction nozzle. As a result, even if space debris is not collected by space vehicles, it can be removed by re-entering the atmosphere debris and burning it.
デブリ軌道修正用ノズルから噴射される噴流により、スペースデブリを地表に向けて落下させてもよい。これにより、宇宙飛翔体によってスペースデブリを捕集しなくても、スペースデブリを大気圏再突入させて燃焼させることによりこれを除去することができる。 In the present embodiment, the use in combination with the
Space debris may be dropped toward the surface by jets ejected from the debris trajectory correction nozzle. As a result, even if space debris is not collected by space vehicles, it can be removed by re-entering the atmosphere debris and burning it.
図15は、変形例にかかるデブリ除去システム310の平面模式図である。同図はデブリ除去システム310を宇宙飛翔体104の進行方向の前方から視た図である。図16はデブリ除去システム310を宇宙飛翔体104の進行方向DRの側方から視た側面図である。
FIG. 15 is a schematic plan view of a debris removal system 310 according to a modification. This figure is a view of the debris removal system 310 viewed from the front of the traveling direction of the spacecraft 104. FIG. 16 is a side view of the debris removal system 310 viewed from the side of the traveling direction DR of the spacecraft 104. As shown in FIG.
デブリ除去システム310は、宇宙飛翔体104と、当該宇宙飛翔体104の進行方向DRの前方を宇宙飛翔体104と隊列飛行する複数機の旋回飛翔体320と、を有して構成されている点で第六実施形態と共通する。複数機の旋回飛翔体320は、宇宙飛翔体104を通り進行方向DRに沿って延在する中心軸AXまわりにそれぞれ旋回飛行する。
本実施形態のデブリ除去システム310は、複数機の旋回飛翔体320が、それぞれ宇宙飛翔体104とケーブル352で連結されている点で第六実施形態のデブリ除去システム300と相違する。 Thedebris removal system 310 is configured to include the spacecraft 104, and the spacecraft 104 and a plurality of orbiting flight vehicles 320 that form a line in front of the traveling direction DR of the spacecraft 104. Are common to the sixth embodiment. A plurality of turning projectiles 320 respectively fly around the central axis AX extending through the spacecraft 104 and along the traveling direction DR.
Thedebris removal system 310 of the present embodiment differs from the debris removal system 300 of the sixth embodiment in that a plurality of orbiting projectiles 320 are connected to the spacecraft 104 by a cable 352, respectively.
本実施形態のデブリ除去システム310は、複数機の旋回飛翔体320が、それぞれ宇宙飛翔体104とケーブル352で連結されている点で第六実施形態のデブリ除去システム300と相違する。 The
The
ケーブル352は、旋回飛翔体320の筐体321と、例えば宇宙飛翔体104のパラシュート1の外周縁部とを連結している。複数機の旋回飛翔体320は、旋回ノズル334から噴流J5を噴射することにより、宇宙飛翔体104の中心軸AXまわりに旋回軌道を描く。旋回飛翔体320が旋回飛行することで、ケーブル352に牽引されて宇宙飛翔体104は中心軸AXまわりに軸回転しながら進行方向DRに前進飛行する。旋回飛翔体320は中心軸AXまわりに均等に分散配置されているため、各機の旋回飛翔体320がケーブル352を介して宇宙飛翔体104を牽引する力は互いに相殺される。
The cable 352 connects the casing 321 of the orbiting flight object 320 to, for example, the outer peripheral edge of the parachute 1 of the space flight object 104. A plurality of turning projectiles 320 draw a turning trajectory around the central axis AX of the space projectile 104 by injecting the jet J 5 from the turning nozzle 334. As the orbiting flying object 320 makes a turning flight, the space flying object 104 is pulled forward by the cable 352 and makes an advancing flight in the traveling direction DR while rotating about the central axis AX. Since the orbiting projectiles 320 are evenly distributed around the central axis AX, the forces by which the orbiting projectiles 320 of each aircraft pull the space projectile 104 via the cables 352 cancel each other.
デブリ除去システム310によるスペースデブリDの捕集動作は第六実施形態と同様である。ケーブル352の長さは、例えば数キロメートルから数十キロメートルとすることができる。旋回飛翔体320の各機は前進ノズル332から進行方向DRと反対向きに噴流J4を噴射することにより、進行方向DRに沿って前進する等しい速度成分を得る。これにより、旋回飛翔体320と宇宙飛翔体104とは進行方向DRに所定の距離を保ったまま隊列飛行する。そしてデブリ除去システム310に対して相対的に飛来するスペースデブリDに対して、最も近接する旋回飛翔体320を軌道修正用演算部340で特定し、デブリ軌道修正用ノズル330から噴流J3を噴射することでスペースデブリDの飛来軌道を捕集軌道に変化させる。これによりスペースデブリDを宇宙飛翔体104のデブリ収容部70で捕集することが可能となる。
Collection operation of the space debris D by the debris removal system 310 is the same as that of the sixth embodiment. The length of the cable 352 can be, for example, several kilometers to several tens of kilometers. The jets J4 are injected from the forward nozzle 332 in the direction opposite to the traveling direction DR to obtain equal velocity components advancing along the traveling direction DR. As a result, the orbiting vehicle 320 and the space vehicle 104 fly in a formation while maintaining a predetermined distance in the traveling direction DR. Then, with respect to the space debris D flying relative to the debris removal system 310, the orbiting projectile unit 320 closest to the orbit is determined by the trajectory correction computing unit 340, and the jet J3 is ejected from the debris trajectory correction nozzle 330. Thus, the flying orbit of the space debris D is changed to a collecting orbit. Thus, the space debris D can be collected by the debris storage unit 70 of the spacecraft 104.
第六実施形態のデブリ除去システム300およびその変形例のデブリ除去システム310においては、筐体321に固定的に設置されたデブリ軌道修正用ノズル330からスペースデブリDに対して中心軸AXに向けて噴流Jを噴射することを説明したが、これに限られない。デブリ軌道修正用ノズル330は筐体321に対して可動に取り付けられ、噴流J3の噴射方向を変更可能としてもよい。特に、旋回軌道の内向きの方向成分のみならず、進行方向DRと逆向き(すなわち宇宙飛翔体104に向かう方向)の方向成分を持つようにデブリ軌道修正用ノズル330から噴流J3を噴射してもよい。これにより、様々な軌道で飛来するスペースデブリDを、より確実に捕集軌道に変化させることができる。
In the debris removal system 300 of the sixth embodiment and the debris removal system 310 of the modification, the debris trajectory correction nozzle 330 fixedly installed in the housing 321 is directed to the central axis AX with respect to the space debris D. Although the injection of the jet J has been described, the invention is not limited thereto. The debris trajectory correction nozzle 330 may be movably attached to the housing 321 so that the injection direction of the jet J 3 can be changed. In particular, the jet J3 is jetted from the debris trajectory correction nozzle 330 so as to have not only the inward directional component of the orbit but also a directional component opposite to the traveling direction DR (that is, the direction toward the spacecraft 104). It is also good. Thereby, the space debris D flying in various orbits can be more reliably changed to the collection orbits.
なお、本発明は上述の実施形態に限定されるものではなく、本発明の目的が達成される限りにおける種々の変形、改良等の態様も含む。
たとえば上記実施形態においては直方体または円柱状の機体本体6の上部にパラシュート1が取り付けられる態様を例示したが、本発明はこれに限られない。航空機のように両翼を有する宇宙往還機の後部に、折り畳み可能なパラシュート1を搭載し、宇宙往還機のロケットエンジンから後方に噴射される噴流Jの延長線上にパラシュート1を展開可能としてもよい。
また、上記実施形態では支持ロープ3および13a、凸部支持ロープ4、下支持ロープ13、上支持ロープ14など各種のロープ類を説明したが、これらが連結される部位は上記実施形態に限られず変更が可能である。またこれらのロープ類は、各1本のロープで実現されてもよく、または連結具を介して互いに連結された複数本のロープによりそれぞれ実現されてもよい。 The present invention is not limited to the above-described embodiment, and also includes various modifications, improvements and the like as long as the object of the present invention is achieved.
For example, although the aspect which theparachute 1 is attached to the upper part of the rectangular parallelepiped or column-shaped body main body 6 was illustrated in the said embodiment, this invention is not limited to this. A foldable parachute 1 may be mounted at the rear of a spacecraft having both wings like an aircraft, and the parachute 1 may be deployable on an extension of a jet J injected rearward from the rocket engine of the spacecraft.
Moreover, although various ropes, such as the support ropes 3 and 13a, the convex part support rope 4, the lower support rope 13, the upper support rope 14, were demonstrated in the said embodiment, the site | part to which these are connected is not restricted to the said embodiment Changes are possible. Also, these ropes may be realized by one rope each, or may be realized respectively by a plurality of ropes connected to each other via a connector.
たとえば上記実施形態においては直方体または円柱状の機体本体6の上部にパラシュート1が取り付けられる態様を例示したが、本発明はこれに限られない。航空機のように両翼を有する宇宙往還機の後部に、折り畳み可能なパラシュート1を搭載し、宇宙往還機のロケットエンジンから後方に噴射される噴流Jの延長線上にパラシュート1を展開可能としてもよい。
また、上記実施形態では支持ロープ3および13a、凸部支持ロープ4、下支持ロープ13、上支持ロープ14など各種のロープ類を説明したが、これらが連結される部位は上記実施形態に限られず変更が可能である。またこれらのロープ類は、各1本のロープで実現されてもよく、または連結具を介して互いに連結された複数本のロープによりそれぞれ実現されてもよい。 The present invention is not limited to the above-described embodiment, and also includes various modifications, improvements and the like as long as the object of the present invention is achieved.
For example, although the aspect which the
Moreover, although various ropes, such as the
本発明の宇宙飛翔体100~104の各種の構成要素は、個々に独立した存在である必要はなく、複数の構成要素が一個の部材として形成されていること、一つの構成要素が複数の部材で形成されていること、ある構成要素が他の構成要素の一部であること、ある構成要素の一部と他の構成要素の一部とが重複していること、等を許容する。
The various components of the spacecraft 100 to 104 of the present invention do not have to be independent entities individually, but a plurality of components are formed as one member, one component is a plurality of members , A certain component is a part of another component, a part of a certain component overlaps with a part of another component, and the like.
上記実施形態は、以下の技術思想を包含するものである。
(1)機体本体と、前記機体本体よりも飛行方向の後方に設けられ前記機体本体に向かって凹形状に湾曲するエアブレーキ構造体と、前記機体本体に設けられ前記機体本体の重心位置よりも前記飛行方向の後方から前記エアブレーキ構造体に向けて噴流を噴射する噴射ノズルと、を有し、噴射された前記噴流の向きが凹形状の前記エアブレーキ構造体に沿って反転することにより前記機体本体に前記飛行方向の後方に向けて前記噴流の反動力を生じさせることを特徴とする着陸装置。
(2)前記エアブレーキ構造体が、少なくとも一部が炭素繊維で作成されたパラシュートである上記(1)に記載の着陸装置。
(3)前記エアブレーキ構造体が、前記機体本体に向けて突出する中央凸部と、前記中央凸部の周囲に連続形成されていて前記機体本体に向かって凹形状に湾曲する凹面部と、を備える上記(1)または(2)に記載の着陸装置。
(4)前記噴射ノズルと前記エアブレーキ構造体との間に配置されて前記噴流が通過する耐熱性の噴射ガイドを有する上記(1)から(3)のいずれか一つに記載の着陸装置。
(5)前記噴射ガイドの開口断面積が長手方向に亘って均一である上記(4)に記載の着陸装置。
(6)前記噴射ガイドのうち少なくとも前記エアブレーキ構造体に近接する側の端部が、前記エアブレーキ構造体に向かって徐々に拡径している上記(4)に記載の着陸装置。
(7)前記噴射ガイドのうち少なくとも前記エアブレーキ構造体に近接する側の端部が、前記エアブレーキ構造体に向かって徐々に縮径している上記(4)に記載の着陸装置。
(8)前記エアブレーキ構造体がパラシュートであり、前記噴射ガイドが、下側筒部と、前記下側筒部の上方に配置されて前記パラシュートの内側に並んで配置される第2パラシュートと、を有し、前記下側筒部を通過した前記噴流が前記パラシュートと前記第2パラシュートとの間隙部を流れることにより該噴流の向きが反転する上記(4)から(7)のいずれか一つに記載の着陸装置。
(9)前記第2パラシュートと下側筒部とが隙間なく連続形成されている上記(8)に記載の着陸装置。
(10)前記機体本体の高度を算出する高度算出部と、前記高度算出部が算出した前記高度を示す高度情報に基づいて、前記噴射ノズルから噴射される前記噴流を制御する噴射制御部と、前記噴射ノズルから噴射される前記噴流の向きとは異なる少なくとも一の方向に他の噴流を噴射する制御用噴射ノズルと、を備える上記(1)から(9)のいずれか一つに記載の着陸装置。
(11)前記機体本体の高度および飛行速度に基づいて前記機体本体の着陸予想地点を算出する予想演算部と、前記着陸予想地点の表面状態を示す表面情報または前記着陸予想地点に着陸可能であるか否かを示す可否情報を取得する情報取得部と、前記情報取得部が取得した前記表面情報または前記可否情報に基づいて、前記噴射ノズルから噴射される前記噴流を制御する噴射制御部と、を備える上記(1)から(10)のいずれか一つに記載の着陸装置。 The above embodiment includes the following technical ideas.
(1) A machine body, an air brake structure provided behind the machine body in the flight direction and curving in a concave shape toward the machine body, and a body body provided in the machine body than the center of gravity of the machine body And an injection nozzle for injecting a jet stream toward the air brake structure from the rear in the flight direction, and the direction of the jet stream jetted is reversed along the concave air brake structure. A landing gear characterized in that a repulsive force of the jet is generated on a body of the vehicle rearward in the flight direction.
(2) The landing gear according to (1), wherein the air brake structure is a parachute made at least in part of carbon fiber.
(3) The air brake structure includes a central convex portion projecting toward the main body, and a concave portion continuously formed around the central convex portion and curved in a concave shape toward the main body. The landing gear as described in said (1) or (2) provided with.
(4) The landing gear according to any one of (1) to (3), further comprising: a heat-resistant injection guide disposed between the injection nozzle and the air brake structure and through which the jet passes.
(5) The landing gear as described in said (4) whose opening cross-sectional area of the said injection guide is uniform over the longitudinal direction.
(6) The landing gear according to (4), wherein at least an end of the injection guide on the side closer to the air brake structure gradually expands toward the air brake structure.
(7) The landing gear according to (4), wherein at least an end of the injection guide on the side closer to the air brake structure gradually reduces in diameter toward the air brake structure.
(8) The air brake structure is a parachute, and the injection guide is disposed at a lower side cylindrical portion and a second parachute arranged above the lower side cylindrical portion and arranged inside the parachute. And the jet flow passing through the lower cylindrical portion flows through the gap between the parachute and the second parachute, and the direction of the jet is reversed in any one of the above (4) to (7). The landing gear as described in.
(9) The landing gear according to (8), wherein the second parachute and the lower cylindrical portion are continuously formed without a gap.
(10) A height calculation unit that calculates the height of the machine body, and a jet control unit that controls the jet jetted from the jet nozzle based on the height information indicating the height calculated by the height calculation unit; And a control injection nozzle for injecting another jet in at least one direction different from the direction of the jet injected from the injection nozzle, the landing according to any one of the above (1) to (9) apparatus.
(11) It is possible to land on the surface information indicating the surface condition of the landing forecast point or the landing forecast point, which calculates the landing forecast point of the airframe body based on the altitude and the flight speed of the airframe body, And an injection control unit for controlling the jet jetted from the injection nozzle based on the surface information acquired by the information acquisition unit or the availability information. The landing gear as described in any one of said (1) to (10) provided with these.
(1)機体本体と、前記機体本体よりも飛行方向の後方に設けられ前記機体本体に向かって凹形状に湾曲するエアブレーキ構造体と、前記機体本体に設けられ前記機体本体の重心位置よりも前記飛行方向の後方から前記エアブレーキ構造体に向けて噴流を噴射する噴射ノズルと、を有し、噴射された前記噴流の向きが凹形状の前記エアブレーキ構造体に沿って反転することにより前記機体本体に前記飛行方向の後方に向けて前記噴流の反動力を生じさせることを特徴とする着陸装置。
(2)前記エアブレーキ構造体が、少なくとも一部が炭素繊維で作成されたパラシュートである上記(1)に記載の着陸装置。
(3)前記エアブレーキ構造体が、前記機体本体に向けて突出する中央凸部と、前記中央凸部の周囲に連続形成されていて前記機体本体に向かって凹形状に湾曲する凹面部と、を備える上記(1)または(2)に記載の着陸装置。
(4)前記噴射ノズルと前記エアブレーキ構造体との間に配置されて前記噴流が通過する耐熱性の噴射ガイドを有する上記(1)から(3)のいずれか一つに記載の着陸装置。
(5)前記噴射ガイドの開口断面積が長手方向に亘って均一である上記(4)に記載の着陸装置。
(6)前記噴射ガイドのうち少なくとも前記エアブレーキ構造体に近接する側の端部が、前記エアブレーキ構造体に向かって徐々に拡径している上記(4)に記載の着陸装置。
(7)前記噴射ガイドのうち少なくとも前記エアブレーキ構造体に近接する側の端部が、前記エアブレーキ構造体に向かって徐々に縮径している上記(4)に記載の着陸装置。
(8)前記エアブレーキ構造体がパラシュートであり、前記噴射ガイドが、下側筒部と、前記下側筒部の上方に配置されて前記パラシュートの内側に並んで配置される第2パラシュートと、を有し、前記下側筒部を通過した前記噴流が前記パラシュートと前記第2パラシュートとの間隙部を流れることにより該噴流の向きが反転する上記(4)から(7)のいずれか一つに記載の着陸装置。
(9)前記第2パラシュートと下側筒部とが隙間なく連続形成されている上記(8)に記載の着陸装置。
(10)前記機体本体の高度を算出する高度算出部と、前記高度算出部が算出した前記高度を示す高度情報に基づいて、前記噴射ノズルから噴射される前記噴流を制御する噴射制御部と、前記噴射ノズルから噴射される前記噴流の向きとは異なる少なくとも一の方向に他の噴流を噴射する制御用噴射ノズルと、を備える上記(1)から(9)のいずれか一つに記載の着陸装置。
(11)前記機体本体の高度および飛行速度に基づいて前記機体本体の着陸予想地点を算出する予想演算部と、前記着陸予想地点の表面状態を示す表面情報または前記着陸予想地点に着陸可能であるか否かを示す可否情報を取得する情報取得部と、前記情報取得部が取得した前記表面情報または前記可否情報に基づいて、前記噴射ノズルから噴射される前記噴流を制御する噴射制御部と、を備える上記(1)から(10)のいずれか一つに記載の着陸装置。 The above embodiment includes the following technical ideas.
(1) A machine body, an air brake structure provided behind the machine body in the flight direction and curving in a concave shape toward the machine body, and a body body provided in the machine body than the center of gravity of the machine body And an injection nozzle for injecting a jet stream toward the air brake structure from the rear in the flight direction, and the direction of the jet stream jetted is reversed along the concave air brake structure. A landing gear characterized in that a repulsive force of the jet is generated on a body of the vehicle rearward in the flight direction.
(2) The landing gear according to (1), wherein the air brake structure is a parachute made at least in part of carbon fiber.
(3) The air brake structure includes a central convex portion projecting toward the main body, and a concave portion continuously formed around the central convex portion and curved in a concave shape toward the main body. The landing gear as described in said (1) or (2) provided with.
(4) The landing gear according to any one of (1) to (3), further comprising: a heat-resistant injection guide disposed between the injection nozzle and the air brake structure and through which the jet passes.
(5) The landing gear as described in said (4) whose opening cross-sectional area of the said injection guide is uniform over the longitudinal direction.
(6) The landing gear according to (4), wherein at least an end of the injection guide on the side closer to the air brake structure gradually expands toward the air brake structure.
(7) The landing gear according to (4), wherein at least an end of the injection guide on the side closer to the air brake structure gradually reduces in diameter toward the air brake structure.
(8) The air brake structure is a parachute, and the injection guide is disposed at a lower side cylindrical portion and a second parachute arranged above the lower side cylindrical portion and arranged inside the parachute. And the jet flow passing through the lower cylindrical portion flows through the gap between the parachute and the second parachute, and the direction of the jet is reversed in any one of the above (4) to (7). The landing gear as described in.
(9) The landing gear according to (8), wherein the second parachute and the lower cylindrical portion are continuously formed without a gap.
(10) A height calculation unit that calculates the height of the machine body, and a jet control unit that controls the jet jetted from the jet nozzle based on the height information indicating the height calculated by the height calculation unit; And a control injection nozzle for injecting another jet in at least one direction different from the direction of the jet injected from the injection nozzle, the landing according to any one of the above (1) to (9) apparatus.
(11) It is possible to land on the surface information indicating the surface condition of the landing forecast point or the landing forecast point, which calculates the landing forecast point of the airframe body based on the altitude and the flight speed of the airframe body, And an injection control unit for controlling the jet jetted from the injection nozzle based on the surface information acquired by the information acquisition unit or the availability information. The landing gear as described in any one of said (1) to (10) provided with these.
(21)機体本体と、前記機体本体よりも飛行方向の一方側に設けられ前記機体本体に向かって凹形状に湾曲するエアブレーキ構造体と、前記機体本体に設けられ前記機体本体の重心位置よりも前記飛行方向の前記一方側から前記エアブレーキ構造体に向けて噴流を噴射する噴射ノズルと、を有し、噴射された前記噴流の向きが凹形状の前記エアブレーキ構造体に沿って反転することにより前記機体本体に前記飛行方向の前記一方側に向けて前記噴流の反動力を生じさせることを特徴とする宇宙飛翔体。
(22)前記エアブレーキ構造体が、少なくとも一部が炭素繊維または複合耐熱材料で作成されたパラシュートである上記(21)に記載の宇宙飛翔体。
(23)前記エアブレーキ構造体が、前記機体本体に向けて突出する中央凸部と、前記中央凸部の周囲に連続形成されていて前記機体本体に向かって凹形状に湾曲する凹面部と、を備える上記(21)または(22)に記載の宇宙飛翔体。
(24)前記凹面部が、前記一方側の遠方に向かって開口する擂り鉢状をなしている上記(23)に記載の宇宙飛翔体。
(25)前記中央凸部が、前記凹面部に沿って前記一方側から取り込まれるスペースデブリを収容するデブリ収容部を備える上記(23)または(24)に記載の宇宙飛翔体。
(26)前記デブリ収容部は開閉可能な開閉蓋を有し、前記開閉蓋は前記噴射ノズルに対向し、かつ前記噴射ノズルからみて前記噴流の噴射方向の前方に配置されている上記(25)に記載の宇宙飛翔体。
(27)前記開閉蓋の少なくとも一部が、前記デブリ収容部の深さ方向に膨出する球面状をなしている上記(26)に記載の宇宙飛翔体。
(28)前記開閉蓋の少なくとも一部が、更に前記デブリ収容部の径方向の外向きにも膨出する球面状であり、前記開閉蓋が閉じた状態で、前記開閉蓋の球面状の内表面の一部が、前記中央凸部の外形線を超えて径方向の外側に位置している上記(27)に記載の宇宙飛翔体。
(29)前記開閉蓋の内表面に、前記開閉蓋よりも軟質の材料で作成された緩衝体が設けられている上記(26)から(28)のいずれか一つに記載の宇宙飛翔体。
(30)前記噴射ノズルと前記エアブレーキ構造体との間に配置されて前記噴流が通過する耐熱性の噴射ガイドを有する上記(21)から(29)のいずれか一つに記載の宇宙飛翔体。
(31)前記噴射ガイドの開口断面積が長手方向に亘って均一である上記(30)に記載の宇宙飛翔体。
(32)前記噴射ガイドのうち少なくとも前記エアブレーキ構造体に近接する側の端部が、前記エアブレーキ構造体に向かって徐々に拡径している上記(30)に記載の宇宙飛翔体。
(33)前記噴射ガイドのうち少なくとも前記エアブレーキ構造体に近接する側の端部が、前記エアブレーキ構造体に向かって徐々に縮径している上記(30)に記載の宇宙飛翔体。
(34)前記エアブレーキ構造体がパラシュートであり、前記噴射ガイドが、下側筒部と、前記下側筒部の上方に配置されて前記パラシュートの内側に並んで配置される第2パラシュートと、を有し、前記下側筒部を通過した前記噴流が前記パラシュートと前記第2パラシュートとの間隙部を流れることにより該噴流の向きが反転する上記(30)から(33)のいずれか一つに記載の宇宙飛翔体。
(35)前記第2パラシュートと下側筒部とが隙間なく連続形成されている上記(34)に記載の宇宙飛翔体。
(36)前記機体本体の高度を算出する高度算出部と、前記高度算出部が算出した前記高度を示す高度情報に基づいて、前記噴射ノズルから噴射される前記噴流を制御する噴射制御部と、前記噴射ノズルから噴射される前記噴流の向きとは異なる少なくとも一の方向に他の噴流を噴射する制御用噴射ノズルと、を備える上記(21)から(35)のいずれか一つに記載の宇宙飛翔体。
(37)前記機体本体の高度および飛行速度に基づいて前記機体本体の着陸予想地点を算出する予想演算部と、前記着陸予想地点の表面状態を示す表面情報または前記着陸予想地点に着陸可能であるか否かを示す可否情報を取得する情報取得部と、前記情報取得部が取得した前記表面情報または前記可否情報に基づいて、前記噴射ノズルから噴射される前記噴流を制御する噴射制御部と、を備える上記(21)から(36)のいずれか一つに記載の宇宙飛翔体。
(38)上記(25)から(29)のいずれか一つに記載の宇宙飛翔体と、前記宇宙飛翔体の進行方向の前方を前記宇宙飛翔体と隊列飛行する一機または複数機の旋回飛翔体と、を有し、前記旋回飛翔体が、前記宇宙飛翔体の前記進行方向を中心軸として前記中心軸まわりに旋回飛行しながら前記進行方向に飛行し、かつ飛来するスペースデブリに向けて噴流を噴射して前記スペースデブリの飛来軌道を変化させるデブリ軌道修正用ノズルを備えるデブリ除去システム。
(39)前記旋回飛翔体が、前記中心軸に向けてデブリ軌道修正用ノズルから前記噴流を噴射する上記(38)に記載のデブリ除去システム。
(40)軌道修正用演算部を更に備え、前記軌道修正用演算部は、飛来する前記スペースデブリの位置、飛来方向および飛来速度を含むデブリ条件に基づいて、前記飛来軌道の変化後の前記スペースデブリの飛来位置および飛来時刻が、当該飛来時刻における前記宇宙飛翔体の前記エアブレーキ構造体の通過位置と一致するように、前記デブリ軌道修正用ノズルから噴射する前記噴流の噴射時期または噴射量の少なくとも一方を決定する上記(39)に記載のデブリ除去システム。
(41)前記中心軸まわりにそれぞれ旋回飛行する複数機の前記旋回飛翔体を有するデブリ除去システムであって、前記軌道修正用演算部は、前記デブリ条件に基づいて、前記複数機のうち、前記デブリ軌道修正用ノズルから前記噴流を噴射する前記旋回飛翔体を決定する上記(40)に記載のデブリ除去システム。
(42)前記中心軸まわりにそれぞれ旋回飛行する複数機の前記旋回飛翔体を有するデブリ除去システムであって、複数機の前記旋回飛翔体同士がケーブルで互いに連結されている上記(38)から(41)のいずれか一つに記載のデブリ除去システム。
(43)前記中心軸まわりにそれぞれ旋回飛行する複数機の前記旋回飛翔体を有するデブリ除去システムであって、複数機の前記旋回飛翔体がそれぞれ前記宇宙飛翔体とケーブルで連結されている上記(38)から(41)のいずれか一つに記載のデブリ除去システム。
(44)前記中心軸まわりにそれぞれ旋回飛行する複数機の前記旋回飛翔体を有するデブリ除去システムであって、複数機の前記旋回飛翔体が、前記宇宙飛翔体の前記進行方向の前方に螺旋状または複数段の環状に配置されて隊列飛行する上記(38)から(43)のいずれか一つに記載のデブリ除去システム。
(45)第一の前記旋回飛翔体の旋回半径が、第一の前記旋回飛翔体よりも前記宇宙飛翔体のより前方を旋回飛行する第二の前記旋回飛翔体の旋回半径よりも小さいことを特徴とする上記(44)に記載のデブリ除去システム。
(46)複数機の隊列飛行する旋回飛翔体を有し、前記旋回飛翔体が、所定の中心軸まわりに旋回飛行しながら前記中心軸に沿って飛行し、かつ飛来するスペースデブリに向けて噴流を噴射して前記スペースデブリの飛来軌道を変化させるデブリ軌道修正用ノズルを備えるデブリ除去システム。
(47)前記デブリ軌道修正用ノズルが、地球と当該デブリ軌道修正用ノズルとの間に位置する前記スペースデブリに対して、地球に向けて前記噴流を噴射する上記(46)に記載のデブリ除去システム。 (21) An airframe main body, an air brake structure provided on one side in the flight direction from the airframe main body and curved in a concave shape toward the airframe main body, and an air brake structure provided on the airframe main body from the center of gravity of the airframe main body And an injection nozzle for injecting a jet from the one side in the flight direction toward the air brake structure, and the direction of the jet jetted is reversed along the concave air brake structure. A space flight object characterized by causing repulsion of the jet flow toward the one side in the flight direction on the main body of the spacecraft.
(22) The space vehicle according to the above (21), wherein the air brake structure is a parachute made at least in part of a carbon fiber or a composite heat resistant material.
(23) The air brake structure includes a central convex portion projecting toward the machine body, and a concave portion continuously formed around the central convex portion and curving in a concave shape toward the machine body. The space vehicle according to the above (21) or (22), comprising:
(24) The space vehicle according to the above (23), wherein the concave portion has a bowl shape that opens toward the far side of the one side.
(25) The space flight vehicle according to (23) or (24), wherein the central convex portion includes a debris accommodating portion for accommodating space debris taken from the one side along the concave portion.
(26) The debris storage unit has an openable and closable lid, and the lid is disposed opposite to the jet nozzle and disposed forward in the jet direction of the jet stream as viewed from the jet nozzle. Spacecraft described in.
(27) The space vehicle according to the above (26), wherein at least a part of the open / close lid has a spherical shape which bulges in the depth direction of the debris containing portion.
(28) At least a part of the open / close lid is further spherical shaped so as to further bulge outward in the radial direction of the debris containing portion, and in a state where the open / close lid is closed The space vehicle according to the above (27), wherein a part of the surface is located radially outward beyond the outline of the central convex portion.
(29) The space flight vehicle according to any one of (26) to (28), wherein a buffer made of a material softer than the open / close lid is provided on the inner surface of the open / close lid.
(30) The spacecraft according to any one of (21) to (29), further comprising: a heat-resistant injection guide disposed between the injection nozzle and the air brake structure and through which the jet passes. .
(31) The space vehicle according to the above (30), wherein the opening cross-sectional area of the jet guide is uniform in the longitudinal direction.
(32) The spacecraft according to the above (30), wherein at least the end of the injection guide on the side closer to the air brake structure gradually expands in diameter toward the air brake structure.
(33) The spacecraft according to the above (30), wherein at least the end of the injection guide on the side closer to the air brake structure gradually reduces in diameter toward the air brake structure.
(34) The air brake structure is a parachute, and the injection guide is disposed at a lower side cylinder portion and a second parachute arranged above the lower side cylinder portion and arranged inside the parachute. And the direction of the jet stream is reversed when the jet stream having passed through the lower cylindrical portion flows through the gap between the parachute and the second parachute; any one of the above (30) to (33) Spacecraft described in.
(35) The space vehicle according to (34), wherein the second parachute and the lower cylindrical portion are continuously formed without a gap.
(36) A height calculation unit that calculates the height of the machine body, and a jet control unit that controls the jet jetted from the jet nozzle based on the height information indicating the height calculated by the height calculation unit; (21) The space according to any one of (21) to (35), further comprising: a control injection nozzle for injecting another jet in at least one direction different from the direction of the jet injected from the injection nozzle. Flying body.
(37) A prediction computing unit that calculates a landing forecast point of the airframe body based on the altitude and flight speed of the airframe body, surface information indicating the surface condition of the air forecasting point, or landing possible at the landing forecast point And an injection control unit for controlling the jet jetted from the injection nozzle based on the surface information acquired by the information acquisition unit or the availability information. The space vehicle according to any one of the above (21) to (36), comprising:
(38) The space flight vehicle according to any one of the above (25) to (29), and one or more orbits of one or more aircraft traveling in tandem with the space flight vehicle ahead of the direction of travel of the space flight vehicle. A body, and the jet flying toward a space debris which flies in the traveling direction while flying around the central axis while orbiting around the central axis with the traveling direction of the space flight vehicle as a central axis. The debris removal system provided with the nozzle for debris trajectory correction | amendment which injects and changes the flight trajectory of the said space debris.
(39) The debris removal system according to (38), wherein the orbiting projectile jets the jet from the debris trajectory correction nozzle toward the central axis.
(40) The trajectory correction operation unit is further provided, wherein the trajectory correction operation unit determines the space after the change of the flight trajectory based on a debris condition including the position, flight direction, and flight velocity of the flying space debris. The injection timing or injection amount of the jet injected from the debris trajectory correction nozzle so that the arrival position and arrival time of debris coincide with the passing position of the air brake structure of the space vehicle at the arrival time. The debris removal system as described in said (39) which determines at least one.
(41) The debris removal system having a plurality of the orbiting flying objects of the plurality of machines that fly around the central axis, wherein the trajectory correction computing unit is configured to select the plurality of the plurality of machines among the plurality based on the debris condition. The debris removal system according to the above (40), wherein the orbiting projectile for injecting the jet from the debris trajectory correction nozzle is determined.
(42) A debris removal system having a plurality of the orbiting flying objects of the plurality of aircraft which orbit around the central axis, wherein the orbiting flying objects of the plurality of aircraft are mutually connected by a cable (38) 41. The debris removal system according to any one of 41).
(43) A debris removal system having a plurality of the orbiting flying objects of the plurality of aircraft that orbit around the central axis, wherein the plurality of orbiting aircrafts are respectively connected to the space vehicle by a cable 38) The debris removal system according to any one of (41) to (41).
(44) A debris removal system having a plurality of the orbiting flying objects of the plurality of planes which fly around the central axis, wherein the plurality of orbiting flying bodies are spirally formed forward of the traveling direction of the space vehicle. Or the debris removal system as described in any one of said (38) to (43) arrange | positioned in multiple steps | paragraphs cyclically | annularly.
(45) The turning radius of the first turning vehicle is smaller than the turning radius of the second turning vehicle that makes a turn more forward of the space flight vehicle than the first turning vehicle. The debris removal system according to the above (44) characterized by the above.
(46) A rotating flight vehicle having a plurality of formations, the jet flying toward the space debris flying and flying along the central axis while flying around the predetermined central axis. The debris removal system provided with the nozzle for debris trajectory correction | amendment which injects and changes the flight trajectory of the said space debris.
(47) The debris removal according to (46), wherein the debris trajectory correction nozzle jets the jet toward the earth with respect to the space debris positioned between the earth and the debris trajectory correction nozzle system.
(22)前記エアブレーキ構造体が、少なくとも一部が炭素繊維または複合耐熱材料で作成されたパラシュートである上記(21)に記載の宇宙飛翔体。
(23)前記エアブレーキ構造体が、前記機体本体に向けて突出する中央凸部と、前記中央凸部の周囲に連続形成されていて前記機体本体に向かって凹形状に湾曲する凹面部と、を備える上記(21)または(22)に記載の宇宙飛翔体。
(24)前記凹面部が、前記一方側の遠方に向かって開口する擂り鉢状をなしている上記(23)に記載の宇宙飛翔体。
(25)前記中央凸部が、前記凹面部に沿って前記一方側から取り込まれるスペースデブリを収容するデブリ収容部を備える上記(23)または(24)に記載の宇宙飛翔体。
(26)前記デブリ収容部は開閉可能な開閉蓋を有し、前記開閉蓋は前記噴射ノズルに対向し、かつ前記噴射ノズルからみて前記噴流の噴射方向の前方に配置されている上記(25)に記載の宇宙飛翔体。
(27)前記開閉蓋の少なくとも一部が、前記デブリ収容部の深さ方向に膨出する球面状をなしている上記(26)に記載の宇宙飛翔体。
(28)前記開閉蓋の少なくとも一部が、更に前記デブリ収容部の径方向の外向きにも膨出する球面状であり、前記開閉蓋が閉じた状態で、前記開閉蓋の球面状の内表面の一部が、前記中央凸部の外形線を超えて径方向の外側に位置している上記(27)に記載の宇宙飛翔体。
(29)前記開閉蓋の内表面に、前記開閉蓋よりも軟質の材料で作成された緩衝体が設けられている上記(26)から(28)のいずれか一つに記載の宇宙飛翔体。
(30)前記噴射ノズルと前記エアブレーキ構造体との間に配置されて前記噴流が通過する耐熱性の噴射ガイドを有する上記(21)から(29)のいずれか一つに記載の宇宙飛翔体。
(31)前記噴射ガイドの開口断面積が長手方向に亘って均一である上記(30)に記載の宇宙飛翔体。
(32)前記噴射ガイドのうち少なくとも前記エアブレーキ構造体に近接する側の端部が、前記エアブレーキ構造体に向かって徐々に拡径している上記(30)に記載の宇宙飛翔体。
(33)前記噴射ガイドのうち少なくとも前記エアブレーキ構造体に近接する側の端部が、前記エアブレーキ構造体に向かって徐々に縮径している上記(30)に記載の宇宙飛翔体。
(34)前記エアブレーキ構造体がパラシュートであり、前記噴射ガイドが、下側筒部と、前記下側筒部の上方に配置されて前記パラシュートの内側に並んで配置される第2パラシュートと、を有し、前記下側筒部を通過した前記噴流が前記パラシュートと前記第2パラシュートとの間隙部を流れることにより該噴流の向きが反転する上記(30)から(33)のいずれか一つに記載の宇宙飛翔体。
(35)前記第2パラシュートと下側筒部とが隙間なく連続形成されている上記(34)に記載の宇宙飛翔体。
(36)前記機体本体の高度を算出する高度算出部と、前記高度算出部が算出した前記高度を示す高度情報に基づいて、前記噴射ノズルから噴射される前記噴流を制御する噴射制御部と、前記噴射ノズルから噴射される前記噴流の向きとは異なる少なくとも一の方向に他の噴流を噴射する制御用噴射ノズルと、を備える上記(21)から(35)のいずれか一つに記載の宇宙飛翔体。
(37)前記機体本体の高度および飛行速度に基づいて前記機体本体の着陸予想地点を算出する予想演算部と、前記着陸予想地点の表面状態を示す表面情報または前記着陸予想地点に着陸可能であるか否かを示す可否情報を取得する情報取得部と、前記情報取得部が取得した前記表面情報または前記可否情報に基づいて、前記噴射ノズルから噴射される前記噴流を制御する噴射制御部と、を備える上記(21)から(36)のいずれか一つに記載の宇宙飛翔体。
(38)上記(25)から(29)のいずれか一つに記載の宇宙飛翔体と、前記宇宙飛翔体の進行方向の前方を前記宇宙飛翔体と隊列飛行する一機または複数機の旋回飛翔体と、を有し、前記旋回飛翔体が、前記宇宙飛翔体の前記進行方向を中心軸として前記中心軸まわりに旋回飛行しながら前記進行方向に飛行し、かつ飛来するスペースデブリに向けて噴流を噴射して前記スペースデブリの飛来軌道を変化させるデブリ軌道修正用ノズルを備えるデブリ除去システム。
(39)前記旋回飛翔体が、前記中心軸に向けてデブリ軌道修正用ノズルから前記噴流を噴射する上記(38)に記載のデブリ除去システム。
(40)軌道修正用演算部を更に備え、前記軌道修正用演算部は、飛来する前記スペースデブリの位置、飛来方向および飛来速度を含むデブリ条件に基づいて、前記飛来軌道の変化後の前記スペースデブリの飛来位置および飛来時刻が、当該飛来時刻における前記宇宙飛翔体の前記エアブレーキ構造体の通過位置と一致するように、前記デブリ軌道修正用ノズルから噴射する前記噴流の噴射時期または噴射量の少なくとも一方を決定する上記(39)に記載のデブリ除去システム。
(41)前記中心軸まわりにそれぞれ旋回飛行する複数機の前記旋回飛翔体を有するデブリ除去システムであって、前記軌道修正用演算部は、前記デブリ条件に基づいて、前記複数機のうち、前記デブリ軌道修正用ノズルから前記噴流を噴射する前記旋回飛翔体を決定する上記(40)に記載のデブリ除去システム。
(42)前記中心軸まわりにそれぞれ旋回飛行する複数機の前記旋回飛翔体を有するデブリ除去システムであって、複数機の前記旋回飛翔体同士がケーブルで互いに連結されている上記(38)から(41)のいずれか一つに記載のデブリ除去システム。
(43)前記中心軸まわりにそれぞれ旋回飛行する複数機の前記旋回飛翔体を有するデブリ除去システムであって、複数機の前記旋回飛翔体がそれぞれ前記宇宙飛翔体とケーブルで連結されている上記(38)から(41)のいずれか一つに記載のデブリ除去システム。
(44)前記中心軸まわりにそれぞれ旋回飛行する複数機の前記旋回飛翔体を有するデブリ除去システムであって、複数機の前記旋回飛翔体が、前記宇宙飛翔体の前記進行方向の前方に螺旋状または複数段の環状に配置されて隊列飛行する上記(38)から(43)のいずれか一つに記載のデブリ除去システム。
(45)第一の前記旋回飛翔体の旋回半径が、第一の前記旋回飛翔体よりも前記宇宙飛翔体のより前方を旋回飛行する第二の前記旋回飛翔体の旋回半径よりも小さいことを特徴とする上記(44)に記載のデブリ除去システム。
(46)複数機の隊列飛行する旋回飛翔体を有し、前記旋回飛翔体が、所定の中心軸まわりに旋回飛行しながら前記中心軸に沿って飛行し、かつ飛来するスペースデブリに向けて噴流を噴射して前記スペースデブリの飛来軌道を変化させるデブリ軌道修正用ノズルを備えるデブリ除去システム。
(47)前記デブリ軌道修正用ノズルが、地球と当該デブリ軌道修正用ノズルとの間に位置する前記スペースデブリに対して、地球に向けて前記噴流を噴射する上記(46)に記載のデブリ除去システム。 (21) An airframe main body, an air brake structure provided on one side in the flight direction from the airframe main body and curved in a concave shape toward the airframe main body, and an air brake structure provided on the airframe main body from the center of gravity of the airframe main body And an injection nozzle for injecting a jet from the one side in the flight direction toward the air brake structure, and the direction of the jet jetted is reversed along the concave air brake structure. A space flight object characterized by causing repulsion of the jet flow toward the one side in the flight direction on the main body of the spacecraft.
(22) The space vehicle according to the above (21), wherein the air brake structure is a parachute made at least in part of a carbon fiber or a composite heat resistant material.
(23) The air brake structure includes a central convex portion projecting toward the machine body, and a concave portion continuously formed around the central convex portion and curving in a concave shape toward the machine body. The space vehicle according to the above (21) or (22), comprising:
(24) The space vehicle according to the above (23), wherein the concave portion has a bowl shape that opens toward the far side of the one side.
(25) The space flight vehicle according to (23) or (24), wherein the central convex portion includes a debris accommodating portion for accommodating space debris taken from the one side along the concave portion.
(26) The debris storage unit has an openable and closable lid, and the lid is disposed opposite to the jet nozzle and disposed forward in the jet direction of the jet stream as viewed from the jet nozzle. Spacecraft described in.
(27) The space vehicle according to the above (26), wherein at least a part of the open / close lid has a spherical shape which bulges in the depth direction of the debris containing portion.
(28) At least a part of the open / close lid is further spherical shaped so as to further bulge outward in the radial direction of the debris containing portion, and in a state where the open / close lid is closed The space vehicle according to the above (27), wherein a part of the surface is located radially outward beyond the outline of the central convex portion.
(29) The space flight vehicle according to any one of (26) to (28), wherein a buffer made of a material softer than the open / close lid is provided on the inner surface of the open / close lid.
(30) The spacecraft according to any one of (21) to (29), further comprising: a heat-resistant injection guide disposed between the injection nozzle and the air brake structure and through which the jet passes. .
(31) The space vehicle according to the above (30), wherein the opening cross-sectional area of the jet guide is uniform in the longitudinal direction.
(32) The spacecraft according to the above (30), wherein at least the end of the injection guide on the side closer to the air brake structure gradually expands in diameter toward the air brake structure.
(33) The spacecraft according to the above (30), wherein at least the end of the injection guide on the side closer to the air brake structure gradually reduces in diameter toward the air brake structure.
(34) The air brake structure is a parachute, and the injection guide is disposed at a lower side cylinder portion and a second parachute arranged above the lower side cylinder portion and arranged inside the parachute. And the direction of the jet stream is reversed when the jet stream having passed through the lower cylindrical portion flows through the gap between the parachute and the second parachute; any one of the above (30) to (33) Spacecraft described in.
(35) The space vehicle according to (34), wherein the second parachute and the lower cylindrical portion are continuously formed without a gap.
(36) A height calculation unit that calculates the height of the machine body, and a jet control unit that controls the jet jetted from the jet nozzle based on the height information indicating the height calculated by the height calculation unit; (21) The space according to any one of (21) to (35), further comprising: a control injection nozzle for injecting another jet in at least one direction different from the direction of the jet injected from the injection nozzle. Flying body.
(37) A prediction computing unit that calculates a landing forecast point of the airframe body based on the altitude and flight speed of the airframe body, surface information indicating the surface condition of the air forecasting point, or landing possible at the landing forecast point And an injection control unit for controlling the jet jetted from the injection nozzle based on the surface information acquired by the information acquisition unit or the availability information. The space vehicle according to any one of the above (21) to (36), comprising:
(38) The space flight vehicle according to any one of the above (25) to (29), and one or more orbits of one or more aircraft traveling in tandem with the space flight vehicle ahead of the direction of travel of the space flight vehicle. A body, and the jet flying toward a space debris which flies in the traveling direction while flying around the central axis while orbiting around the central axis with the traveling direction of the space flight vehicle as a central axis. The debris removal system provided with the nozzle for debris trajectory correction | amendment which injects and changes the flight trajectory of the said space debris.
(39) The debris removal system according to (38), wherein the orbiting projectile jets the jet from the debris trajectory correction nozzle toward the central axis.
(40) The trajectory correction operation unit is further provided, wherein the trajectory correction operation unit determines the space after the change of the flight trajectory based on a debris condition including the position, flight direction, and flight velocity of the flying space debris. The injection timing or injection amount of the jet injected from the debris trajectory correction nozzle so that the arrival position and arrival time of debris coincide with the passing position of the air brake structure of the space vehicle at the arrival time. The debris removal system as described in said (39) which determines at least one.
(41) The debris removal system having a plurality of the orbiting flying objects of the plurality of machines that fly around the central axis, wherein the trajectory correction computing unit is configured to select the plurality of the plurality of machines among the plurality based on the debris condition. The debris removal system according to the above (40), wherein the orbiting projectile for injecting the jet from the debris trajectory correction nozzle is determined.
(42) A debris removal system having a plurality of the orbiting flying objects of the plurality of aircraft which orbit around the central axis, wherein the orbiting flying objects of the plurality of aircraft are mutually connected by a cable (38) 41. The debris removal system according to any one of 41).
(43) A debris removal system having a plurality of the orbiting flying objects of the plurality of aircraft that orbit around the central axis, wherein the plurality of orbiting aircrafts are respectively connected to the space vehicle by a cable 38) The debris removal system according to any one of (41) to (41).
(44) A debris removal system having a plurality of the orbiting flying objects of the plurality of planes which fly around the central axis, wherein the plurality of orbiting flying bodies are spirally formed forward of the traveling direction of the space vehicle. Or the debris removal system as described in any one of said (38) to (43) arrange | positioned in multiple steps | paragraphs cyclically | annularly.
(45) The turning radius of the first turning vehicle is smaller than the turning radius of the second turning vehicle that makes a turn more forward of the space flight vehicle than the first turning vehicle. The debris removal system according to the above (44) characterized by the above.
(46) A rotating flight vehicle having a plurality of formations, the jet flying toward the space debris flying and flying along the central axis while flying around the predetermined central axis. The debris removal system provided with the nozzle for debris trajectory correction | amendment which injects and changes the flight trajectory of the said space debris.
(47) The debris removal according to (46), wherein the debris trajectory correction nozzle jets the jet toward the earth with respect to the space debris positioned between the earth and the debris trajectory correction nozzle system.
この出願は、2017年8月17日に出願された日本出願特願2017-184145号、2017年8月25日に出願された日本出願特願2017-194669号、2017年10月25日に出願された日本出願特願2017-206524号および2018年4月27日に出願された日本出願特願2018-086226号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
Japanese Patent Application No. 2017-184145 filed on Aug. 17, 2017, Japanese Patent Application No. 2017-194669 filed on Aug. 25, 2017, filed Oct. 25, 2017 Priority is claimed on the basis of Japanese Patent Application No. 2017-206524 and Japanese Patent Application No. 2018-086226, filed April 27, 2018, the entire disclosure of which is incorporated herein.
Claims (25)
- 機体本体と、
前記機体本体よりも飛行方向の一方側に設けられ前記機体本体に向かって凹形状に湾曲するエアブレーキ構造体と、
前記機体本体に設けられ前記機体本体の重心位置よりも前記飛行方向の前記一方側から前記エアブレーキ構造体に向けて噴流を噴射する噴射ノズルと、を有し、
噴射された前記噴流の向きが凹形状の前記エアブレーキ構造体に沿って反転することにより前記機体本体に前記飛行方向の前記一方側に向けて前記噴流の反動力を生じさせることを特徴とする宇宙飛翔体。 The machine body,
An air brake structure provided on one side in the flight direction relative to the airframe main body and curved in a concave shape toward the airframe main body;
And an injection nozzle provided in the airframe main body and injecting a jet stream toward the air brake structure from the one side in the flight direction with respect to the gravity center position of the airframe main body,
The direction of the jet jetted is reversed along the concave-shaped air brake structure, thereby causing the airframe main body to generate a reaction force of the jet jet toward the one side in the flight direction. Spacecraft. - 前記エアブレーキ構造体が、少なくとも一部が炭素繊維または複合耐熱材料で作成されたパラシュートである請求項1に記載の宇宙飛翔体。 The space vehicle according to claim 1, wherein the air brake structure is a parachute made at least in part of carbon fiber or a composite heat resistant material.
- 前記エアブレーキ構造体が、前記機体本体に向けて突出する中央凸部と、前記中央凸部の周囲に連続形成されていて前記機体本体に向かって凹形状に湾曲する凹面部と、を備える請求項1または2に記載の宇宙飛翔体。 The air brake structure includes a central convex portion projecting toward the body main body, and a concave portion continuously formed around the central convex portion and curved in a concave shape toward the main body. The space vehicle according to item 1 or 2.
- 前記凹面部が、前記一方側の遠方に向かって開口する擂り鉢状をなしている請求項3に記載の宇宙飛翔体。 The spacecraft according to claim 3, wherein the concave portion has a bowl shape which opens toward the far side of the one side.
- 前記中央凸部が、前記凹面部に沿って前記一方側から取り込まれるスペースデブリを収容するデブリ収容部を備える請求項3または4に記載の宇宙飛翔体。 The spacecraft according to claim 3 or 4, wherein the central convex portion includes a debris accommodating portion for accommodating space debris taken from the one side along the concave portion.
- 前記デブリ収容部は開閉可能な開閉蓋を有し、前記開閉蓋は前記噴射ノズルに対向し、かつ前記噴射ノズルからみて前記噴流の噴射方向の前方に配置されている請求項5に記載の宇宙飛翔体。 The space according to claim 5, wherein the debris containing portion has an openable and closable lid, and the lid is opposed to the injection nozzle and disposed forward in the injection direction of the jet stream as viewed from the injection nozzle. Flying body.
- 前記開閉蓋の少なくとも一部が、前記デブリ収容部の深さ方向に膨出する球面状をなしている請求項6に記載の宇宙飛翔体。 The space vehicle according to claim 6, wherein at least a part of the open / close lid has a spherical shape which bulges in a depth direction of the debris containing portion.
- 前記開閉蓋の少なくとも一部が、更に前記デブリ収容部の径方向の外向きにも膨出する球面状であり、
前記開閉蓋が閉じた状態で、前記開閉蓋の球面状の内表面の一部が、前記中央凸部の外形線を超えて径方向の外側に位置している請求項7に記載の宇宙飛翔体。 At least a part of the open / close lid is also spherical so as to expand also radially outward of the debris containing portion,
The space flight according to claim 7, wherein when the open / close lid is closed, a part of the spherical inner surface of the open / close lid is located radially outward beyond the outline of the central convex portion. body. - 前記開閉蓋の内表面に、前記開閉蓋よりも軟質の材料で作成された緩衝体が設けられている請求項6から8のいずれか一項に記載の宇宙飛翔体。 The spacecraft according to any one of claims 6 to 8, wherein a buffer made of a material softer than the open / close lid is provided on the inner surface of the open / close lid.
- 前記噴射ノズルと前記エアブレーキ構造体との間に配置されて前記噴流が通過する耐熱性の噴射ガイドを有する請求項1から9のいずれか一項に記載の宇宙飛翔体。 The spacecraft according to any one of claims 1 to 9, further comprising a heat-resistant injection guide disposed between the injection nozzle and the air brake structure and through which the jet passes.
- 前記噴射ガイドの開口断面積が長手方向に亘って均一である請求項10に記載の宇宙飛翔体。 The spacecraft according to claim 10, wherein the opening cross-sectional area of the injection guide is uniform over the longitudinal direction.
- 前記噴射ガイドのうち少なくとも前記エアブレーキ構造体に近接する側の端部が、前記エアブレーキ構造体に向かって徐々に拡径している請求項10に記載の宇宙飛翔体。 The spacecraft according to claim 10, wherein at least an end of the injection guide on the side closer to the air brake structure gradually expands toward the air brake structure.
- 前記噴射ガイドのうち少なくとも前記エアブレーキ構造体に近接する側の端部が、前記エアブレーキ構造体に向かって徐々に縮径している請求項10に記載の宇宙飛翔体。 The spacecraft according to claim 10, wherein at least an end of the injection guide on the side closer to the air brake structure gradually reduces in diameter toward the air brake structure.
- 前記エアブレーキ構造体がパラシュートであり、
前記噴射ガイドが、下側筒部と、前記下側筒部の上方に配置されて前記パラシュートの内側に並んで配置される第2パラシュートと、を有し、
前記下側筒部を通過した前記噴流が前記パラシュートと前記第2パラシュートとの間隙部を流れることにより該噴流の向きが反転する請求項10から13のいずれか一項に記載の宇宙飛翔体。 The air brake structure is a parachute,
The injection guide includes a lower cylindrical portion, and a second parachute disposed above the lower cylindrical portion and juxtaposed inside the parachute;
The spacecraft according to any one of claims 10 to 13, wherein the jet flow passing through the lower cylindrical portion reverses the direction of the jet by flowing through the gap between the parachute and the second parachute. - 前記第2パラシュートと下側筒部とが隙間なく連続形成されている請求項14に記載の宇宙飛翔体。 The space vehicle according to claim 14, wherein the second parachute and the lower cylindrical portion are continuously formed without a gap.
- 前記機体本体の高度を算出する高度算出部と、
前記高度算出部が算出した前記高度を示す高度情報に基づいて、前記噴射ノズルから噴射される前記噴流を制御する噴射制御部と、
前記噴射ノズルから噴射される前記噴流の向きとは異なる少なくとも一の方向に他の噴流を噴射する制御用噴射ノズルと、を備える請求項1から15のいずれか一項に記載の宇宙飛翔体。 An altitude calculation unit for calculating an altitude of the airframe main body;
An injection control unit configured to control the jet flow injected from the injection nozzle based on the height information indicating the height calculated by the height calculation unit;
The space projectile according to any one of claims 1 to 15, further comprising: a control injection nozzle that jets another jet in at least one direction different from the direction of the jet jetted from the jet nozzle. - 前記機体本体の高度および飛行速度に基づいて前記機体本体の着陸予想地点を算出する予想演算部と、
前記着陸予想地点の表面状態を示す表面情報または前記着陸予想地点に着陸可能であるか否かを示す可否情報を取得する情報取得部と、
前記情報取得部が取得した前記表面情報または前記可否情報に基づいて、前記噴射ノズルから噴射される前記噴流を制御する噴射制御部と、を備える請求項1から16のいずれか一項に記載の宇宙飛翔体。 A prediction calculation unit that calculates a predicted landing point of the airframe main body based on the altitude and flight speed of the airframe main body;
An information acquisition unit that acquires surface information indicating a surface condition of the predicted landing point or availability information indicating whether or not landing at the predicted landing point is possible;
The injection control part which controls the said jet stream injected from the said injection | spray nozzle based on the said surface information acquired by the said information acquisition part, or the said availability information, It is described in any one of Claim 1 to 16 Spacecraft. - 請求項5から9のいずれか一項に記載の宇宙飛翔体と、前記宇宙飛翔体の進行方向の前方を前記宇宙飛翔体と隊列飛行する一機または複数機の旋回飛翔体と、を有し、
前記旋回飛翔体が、前記宇宙飛翔体の前記進行方向を中心軸として前記中心軸まわりに旋回飛行しながら前記進行方向に飛行し、かつ飛来するスペースデブリに向けて噴流を噴射して前記スペースデブリの飛来軌道を変化させるデブリ軌道修正用ノズルを備えるデブリ除去システム。 A space flight object according to any one of claims 5 to 9, and one or a plurality of orbiting flight bodies arranged in line with said space flight object in front of the traveling direction of said space flight object. ,
The orbiting flying object flies in the advancing direction while orbiting around the central axis about the central axis with the advancing direction of the space projectile as a central axis, and jets jetted toward the flying space debris to thereby carry out the space debris Debris removal system with a nozzle for debris trajectory correction that changes the flight trajectory of the. - 前記旋回飛翔体が、前記中心軸に向けてデブリ軌道修正用ノズルから前記噴流を噴射する請求項18に記載のデブリ除去システム。 The debris removal system according to claim 18, wherein the orbiting projectile jets the jet from the debris trajectory correction nozzle toward the central axis.
- 軌道修正用演算部を更に備え、
前記軌道修正用演算部は、飛来する前記スペースデブリの位置、飛来方向および飛来速度を含むデブリ条件に基づいて、前記飛来軌道の変化後の前記スペースデブリの飛来位置および飛来時刻が、当該飛来時刻における前記宇宙飛翔体の前記エアブレーキ構造体の通過位置と一致するように、前記デブリ軌道修正用ノズルから噴射する前記噴流の噴射時期または噴射量の少なくとも一方を決定する請求項19に記載のデブリ除去システム。 It further comprises a trajectory correction operation unit,
The trajectory correction computing unit determines the flight position and flight time of the space debris after the change of the flight trajectory based on debris conditions including the position, flight direction, and flight velocity of the space debris flying. The debris according to claim 19, wherein at least one of the injection timing and the injection amount of the jet injected from the debris trajectory correction nozzle is determined so as to coincide with the passing position of the air brake structure of the spacecraft in space. Removal system. - 前記中心軸まわりにそれぞれ旋回飛行する複数機の前記旋回飛翔体を有するデブリ除去システムであって、
前記軌道修正用演算部は、前記デブリ条件に基づいて、前記複数機のうち、前記デブリ軌道修正用ノズルから前記噴流を噴射する前記旋回飛翔体を決定する請求項20に記載のデブリ除去システム。 A debris removal system comprising a plurality of the orbiting projectiles, each orbiting around the central axis, comprising:
The debris removal system according to claim 20, wherein the trajectory correction computing unit determines, among the plurality of machines, the orbiting projectile for jetting the jet flow from the debris trajectory correction nozzle based on the debris condition. - 前記中心軸まわりにそれぞれ旋回飛行する複数機の前記旋回飛翔体を有するデブリ除去システムであって、
複数機の前記旋回飛翔体同士がケーブルで互いに連結されている請求項18から21のいずれか一項に記載のデブリ除去システム。 A debris removal system comprising a plurality of the orbiting projectiles, each orbiting around the central axis, comprising:
The debris removal system according to any one of claims 18 to 21, wherein the plurality of orbiting projectiles are connected to each other by a cable. - 前記中心軸まわりにそれぞれ旋回飛行する複数機の前記旋回飛翔体を有するデブリ除去システムであって、
複数機の前記旋回飛翔体がそれぞれ前記宇宙飛翔体とケーブルで連結されている請求項18から21のいずれか一項に記載のデブリ除去システム。 A debris removal system comprising a plurality of the orbiting projectiles, each orbiting around the central axis, comprising:
22. The debris removal system according to any one of claims 18 to 21, wherein a plurality of the orbiting projectiles are respectively connected to the space projectile by a cable. - 前記中心軸まわりにそれぞれ旋回飛行する複数機の前記旋回飛翔体を有するデブリ除去システムであって、
複数機の前記旋回飛翔体が、前記宇宙飛翔体の前記進行方向の前方に螺旋状または複数段の環状に配置されて隊列飛行する請求項18から23のいずれか一項に記載のデブリ除去システム。 A debris removal system comprising a plurality of the orbiting projectiles, each orbiting around the central axis, comprising:
The debris removal system according to any one of claims 18 to 23, wherein a plurality of the orbiting projectiles are spirally or annularly arranged in a loop in a plurality of stages in front of the traveling direction of the space projectile. . - 第一の前記旋回飛翔体の旋回半径が、第一の前記旋回飛翔体よりも前記宇宙飛翔体のより前方を旋回飛行する第二の前記旋回飛翔体の旋回半径よりも小さいことを特徴とする請求項24に記載のデブリ除去システム。 A turning radius of the first turning vehicle is smaller than a turning radius of a second turning flight which is made to fly forward of the space projectile than the first turning flight. The debris removal system according to claim 24.
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017184145 | 2017-08-17 | ||
JP2017-184145 | 2017-08-17 | ||
JP2017194669 | 2017-08-25 | ||
JP2017-194669 | 2017-08-25 | ||
JP2017206524 | 2017-10-25 | ||
JP2017-206524 | 2017-10-25 | ||
JP2018086226A JP6557835B2 (en) | 2017-08-17 | 2018-04-27 | Spacecraft and debris removal system |
JP2018-086226 | 2018-04-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019035378A1 true WO2019035378A1 (en) | 2019-02-21 |
Family
ID=65362424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/029350 WO2019035378A1 (en) | 2017-08-17 | 2018-08-06 | Spacecraft and debris removal system |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019035378A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111846246A (en) * | 2020-07-08 | 2020-10-30 | 中北大学 | Portable single reverse-spraying soft landing safety protection device and using method thereof |
CN112678207A (en) * | 2021-01-12 | 2021-04-20 | 中国工程物理研究院总体工程研究所 | Reentry attitude adjusting device of small aircraft |
CN112697075A (en) * | 2020-12-03 | 2021-04-23 | 中国科学院光电技术研究所 | Projection area analysis method for rendezvous and docking laser radar cooperative target |
EP3950513A1 (en) * | 2020-08-04 | 2022-02-09 | Ale Co., Ltd. | Spacecraft, artificial shooting star generation method, and service provision method |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2479746A (en) * | 1947-03-06 | 1949-08-23 | Anson Charles F I | Forced draft parachute equipped passenger escape for airplanes |
US3508724A (en) * | 1968-11-14 | 1970-04-28 | Nasa | Hot air balloon deceleration and recovery system |
US4832288A (en) * | 1987-07-23 | 1989-05-23 | Aerospace Recovery System, Inc. | Recovery system |
US4903918A (en) * | 1987-05-28 | 1990-02-27 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Raked circular-cone aerobraking orbital transfer vehicle |
US5620153A (en) * | 1995-03-20 | 1997-04-15 | Ginsberg; Harold M. | Light aircraft with inflatable parachute wing propelled by a ducted propeller |
US5722231A (en) * | 1995-07-26 | 1998-03-03 | Aerospatiale Societe Nationale Industrielle | Turbofan with thrust reversal doors not submitted to bypass air in their inactive position |
US20060219846A1 (en) * | 2005-04-01 | 2006-10-05 | Spacehab, Incorporated | Multipurpose modular spacecraft |
US20070285304A1 (en) * | 2006-03-16 | 2007-12-13 | Guy Cooper | Target orbit modification via gas-blast |
JP2012513330A (en) * | 2008-12-22 | 2012-06-14 | アストリウム・エス・エー・エス | Reusable module for launcher |
WO2017034174A1 (en) * | 2015-08-27 | 2017-03-02 | 한국항공우주연구원 | Safety device and crash preventing drone comprising same |
US20180134417A1 (en) * | 2016-11-16 | 2018-05-17 | Jerome Drexler | Spacecraft landing and site-to-site transpsort for a planet, moon or other space body |
GB2559044A (en) * | 2017-12-12 | 2018-07-25 | Stephen Bell Ian | A vertical take-off vehicle |
-
2018
- 2018-08-06 WO PCT/JP2018/029350 patent/WO2019035378A1/en active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2479746A (en) * | 1947-03-06 | 1949-08-23 | Anson Charles F I | Forced draft parachute equipped passenger escape for airplanes |
US3508724A (en) * | 1968-11-14 | 1970-04-28 | Nasa | Hot air balloon deceleration and recovery system |
US4903918A (en) * | 1987-05-28 | 1990-02-27 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Raked circular-cone aerobraking orbital transfer vehicle |
US4832288A (en) * | 1987-07-23 | 1989-05-23 | Aerospace Recovery System, Inc. | Recovery system |
US5620153A (en) * | 1995-03-20 | 1997-04-15 | Ginsberg; Harold M. | Light aircraft with inflatable parachute wing propelled by a ducted propeller |
US5722231A (en) * | 1995-07-26 | 1998-03-03 | Aerospatiale Societe Nationale Industrielle | Turbofan with thrust reversal doors not submitted to bypass air in their inactive position |
US20060219846A1 (en) * | 2005-04-01 | 2006-10-05 | Spacehab, Incorporated | Multipurpose modular spacecraft |
US20070285304A1 (en) * | 2006-03-16 | 2007-12-13 | Guy Cooper | Target orbit modification via gas-blast |
JP2012513330A (en) * | 2008-12-22 | 2012-06-14 | アストリウム・エス・エー・エス | Reusable module for launcher |
WO2017034174A1 (en) * | 2015-08-27 | 2017-03-02 | 한국항공우주연구원 | Safety device and crash preventing drone comprising same |
US20180134417A1 (en) * | 2016-11-16 | 2018-05-17 | Jerome Drexler | Spacecraft landing and site-to-site transpsort for a planet, moon or other space body |
GB2559044A (en) * | 2017-12-12 | 2018-07-25 | Stephen Bell Ian | A vertical take-off vehicle |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111846246A (en) * | 2020-07-08 | 2020-10-30 | 中北大学 | Portable single reverse-spraying soft landing safety protection device and using method thereof |
CN111846246B (en) * | 2020-07-08 | 2021-11-09 | 中北大学 | Portable single reverse-spraying soft landing safety protection device and using method thereof |
EP3950513A1 (en) * | 2020-08-04 | 2022-02-09 | Ale Co., Ltd. | Spacecraft, artificial shooting star generation method, and service provision method |
CN112697075A (en) * | 2020-12-03 | 2021-04-23 | 中国科学院光电技术研究所 | Projection area analysis method for rendezvous and docking laser radar cooperative target |
CN112697075B (en) * | 2020-12-03 | 2022-08-02 | 中国科学院光电技术研究所 | Projection area analysis method for rendezvous and docking laser radar cooperative target |
CN112678207A (en) * | 2021-01-12 | 2021-04-20 | 中国工程物理研究院总体工程研究所 | Reentry attitude adjusting device of small aircraft |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019035378A1 (en) | Spacecraft and debris removal system | |
JP6557835B2 (en) | Spacecraft and debris removal system | |
JP2647220B2 (en) | Booster vehicles for orbital flight, superorbital flight and low-orbital flight, rocket-propelled, aerial deployed and boosted lift | |
US5667167A (en) | Methods and apparatus for reusable launch platform and reusable spacecraft | |
US8498756B1 (en) | Movable ground based recovery system for reuseable space flight hardware | |
JP6019044B2 (en) | Collecting / braking device for objects flying freely in outer space | |
ES2911402T3 (en) | Multistage rocket with a recoverable rocket stage and method for launching a multistage rocket and returning a recoverable rocket stage to Earth | |
US20130206915A1 (en) | Vertical take-off and landing multimodal, multienvironment, gyropendular craft with compensatory propulsion and fluidic gradient collimation | |
US6913224B2 (en) | Method and system for accelerating an object | |
US20070012820A1 (en) | Reusable upper stage | |
US20100252673A1 (en) | Aerial device | |
WO1998030449A1 (en) | Space launch vehicles configured as gliders and towed to launch altitude by conventional aircraft | |
JP2003512254A (en) | First stage reusable booster for rocket | |
CN111959824B (en) | Heavy reusable aerospace vehicle system with space-based emission | |
US20200262590A1 (en) | Atmospheric thrust stages, multi-stage launch systems including the same, and related methods | |
RU2706295C2 (en) | Anti-ship missile system with flying rockets robot-carrier and method for use thereof | |
Sivolella | The space shuttle program: Technologies and accomplishments | |
JP2023550569A (en) | reusable space transportation system | |
US10669047B2 (en) | System and method for hypersonic payload separation | |
US10029807B2 (en) | Spacecraft and orbital plane change method therefor | |
RU2213682C2 (en) | Spacecraft for descent in atmosphere of planet and method of its descent (variants) | |
RU186186U1 (en) | Aircraft - reusable flight demonstrator | |
RU2288136C1 (en) | Aerospace complex, aircraft and multi-stage rocket and method of launching spacecraft | |
US11472576B2 (en) | Center of gravity propulsion space launch vehicles | |
RU2818383C1 (en) | Reusable reentry vehicle and method of its descent in the earth atmosphere |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18846619 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/08/2020) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18846619 Country of ref document: EP Kind code of ref document: A1 |