WO2019035354A1 - Vane motor - Google Patents

Vane motor Download PDF

Info

Publication number
WO2019035354A1
WO2019035354A1 PCT/JP2018/028696 JP2018028696W WO2019035354A1 WO 2019035354 A1 WO2019035354 A1 WO 2019035354A1 JP 2018028696 W JP2018028696 W JP 2018028696W WO 2019035354 A1 WO2019035354 A1 WO 2019035354A1
Authority
WO
WIPO (PCT)
Prior art keywords
vane
slit
motor
vane motor
vanes
Prior art date
Application number
PCT/JP2018/028696
Other languages
French (fr)
Japanese (ja)
Inventor
竜乃介 石川
太田 晶久
野口 恵伸
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Publication of WO2019035354A1 publication Critical patent/WO2019035354A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C2/00Rotary-piston engines
    • F03C2/30Rotary-piston engines having the characteristics covered by two or more of groups F03C2/02, F03C2/08, F03C2/22, F03C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member

Definitions

  • the present invention relates to a vane motor.
  • JP2012-2136A describes a vane motor including a rotor in which a plurality of slits are formed in the radial direction, and a plurality of vanes slidably housed in each slit and having a tip surface in sliding contact with the cam surface of the cam ring.
  • the vane motor further includes a spring provided between the bottom of the slit and the vane, and the biasing force of the spring acts to press the vane against the cam surface of the cam ring to ensure startability of the vane motor. ing.
  • An object of the present invention is to improve the assemblability of a vane motor.
  • a vane motor rotationally driven by a working fluid supplied from a fluid pressure supply source is connected to an output shaft, and a rotor having a plurality of slits formed radially on the outer peripheral surface;
  • a plurality of vanes slidably accommodated in respective slits, a cam ring having a cam surface formed on an inner circumferential surface in sliding contact with the tip end of the vanes, and provided in the slits, the vanes And a biasing member that biases the vane and the vane and the biasing member are integrally formed.
  • FIG. 1 is a cross-sectional view of a vane motor according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing the main part of the vane motor in a state in which the cover side plate of the vane motor according to the embodiment of the present invention is removed.
  • FIG. 3 is a cross-sectional view of a vane of a vane motor according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a first modified example of the vane of the vane motor according to the embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a second modified example of the vane of the vane motor according to the embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a third modification of the vane of the vane motor according to the embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a fourth modification of the vane of the vane motor according to the embodiment of the present invention.
  • the vane motor 100 is a hydraulic motor that converts pressure energy of the working fluid supplied from a fluid pressure supply source 50 such as a pump or an accumulator into rotational energy.
  • a fluid pressure supply source 50 such as a pump or an accumulator
  • As the working fluid oil or other water-soluble alternative fluid is used.
  • the vane motor 100 includes a motor body 10 in which a motor receiving recess 10a is formed, a motor cover 20 which covers the motor receiving recess 10a and is fixed to the motor body 10, a motor body 10 and a motor
  • the output shaft 1 rotatably supported by the cover 20 via the bearings 11 and 12, the rotor 2 connected to the output shaft 1 and accommodated in the motor housing recess 10a, and the opening 2b opened in the outer peripheral surface of the rotor 2
  • a cam ring 4 having a cam surface 4a formed on the inner circumferential surface, and a leaf spring 8 as an urging member for urging the vane 3 so that the tip 3a of the vane 3 is pressed against the cam surface 4a
  • the rotor 2 is a cylindrical member connected to the output shaft 1 by spline connection.
  • a plurality of slits 2 a which are notched in the radial direction are radially formed at predetermined intervals in the circumferential direction.
  • the vanes 3 are slidably accommodated in the radial direction in the respective slits 2a.
  • the vane 3 is a plate-like member having a distal end 3a protruding radially outward from the opening 2b of the slit 2a and a proximal end 3b which is an end opposite to the distal end 3a.
  • a back pressure chamber 5 partitioned by the base end 3b of the vane 3 is formed.
  • the cam ring 4 is an annular member having a cam surface 4 a which is an inner peripheral surface having a substantially oval shape, and a pin hole 4 b through which the positioning pin 7 is inserted.
  • the cam ring 4 is internally provided with the outer peripheral surface of the rotor 2, the cam surface 4a of the cam ring 4 and the adjacent vane 3 An oil chamber 6 is defined.
  • the cam surface 4a of the cam ring 4 has a substantially oval shape, the length of the vane 3 protruding from the outer peripheral surface of the rotor 3 in sliding contact with the cam surface 4a changes as the rotor 2 rotates. The volume of 6 repeats expansion and contraction. Then, the hydraulic oil is supplied in the supply area where the oil chamber 6 expands, and the hydraulic oil is discharged in the discharge area where the oil chamber 6 contracts.
  • the vane 3 reciprocates in the first supply area and the discharge area, and reciprocates in the second supply area and the discharge area. For this reason, the oil chamber 6 expands in the first supply area while the rotor 2 makes one rotation, contracts in the first discharge area, and expands in the second supply area. It will contract in the discharge area.
  • the vane motor 100 has two supply areas and discharge areas, but is not limited to this, and may have one or more supply areas and discharge areas.
  • the vane motor 100 is provided on one end side of the rotor 2 in the axial direction, and is provided on an annular body-side side plate 30 that abuts one side of the rotor 2 and the cam ring 4, and on the other end side of the rotor 2 in the axial direction. And an annular cover side plate 40 abutting on the other side surface of the cam ring 4.
  • the body side plate 30 is provided between the bottom of the motor housing recess 10 a and the rotor 2, and the cover side plate 40 is provided between the rotor 2 and the motor cover 20. That is, the body-side side plate 30 and the cover-side side plate 40 are disposed to face each other with the rotor 2 and the cam ring 4 interposed therebetween.
  • the motor-side recess 30a of the motor body 10 receives the body-side side plate 30, the cam ring 4 in which the rotor 2 and the vane 3 are housed, and the cover-side side plate 40 in a stacked state. In this state, the motor cover 20 is attached to the motor body 10, whereby the motor housing recess 10a is sealed.
  • An annular high pressure chamber 14 partitioned by the motor body 10 and the body side plate 30 is formed on the bottom side of the motor housing recess 10 a.
  • the high pressure chamber 14 is connected to a fluid pressure supply source 50 provided outside the vane motor 100 through the supply passage 51. Further, on the inner peripheral surface of the motor housing recess 10a, two bypass passages 13 opened on the motor cover 20 side are provided at positions facing each other with the cam ring 4 interposed therebetween.
  • an annular low pressure chamber 21 communicating with the bypass passage 13 is formed on the surface facing the motor body 10.
  • the low pressure chamber 21 is connected to a tank 60 provided outside the vane motor 100 through the discharge passage 61.
  • the body side plate 30 is provided with a supply port 31 for supplying hydraulic oil supplied from the fluid pressure supply source 50 to the high pressure chamber 14 to the oil chamber 6, and discharges the hydraulic oil in the oil chamber 6 to the low pressure chamber 21. And a discharge recess 33 for forming the opening.
  • the supply ports 31 are arc-shaped through holes formed through the body side plate 30 in the axial direction, and are provided at two locations corresponding to the first and second supply regions. Therefore, each oil chamber 6 communicates with the high pressure chamber 14 through each supply port 31 according to the rotation of the rotor 2.
  • the discharge recess 33 is an arc-shaped recess formed on the sliding contact surface 30 a of the body side plate 30 in sliding contact with the side surface of the rotor 2.
  • the discharge recesses 33 are provided at two locations corresponding to each of the first and second discharge regions, and the outer peripheral end of each discharge recess 33 reaches the outer peripheral surface of the body side plate 30 and is detoured. It is connected to the passage 13. Therefore, each oil chamber 6 communicates with the low pressure chamber 21 through each discharge recess 33 and the bypass passage 13 according to the rotation of the rotor 2.
  • an arc-shaped back pressure port 34 formed on the sliding contact surface 30a and communicating the plurality of back pressure chambers 5, and a communication hole 38 communicating the back pressure port 34 and the high pressure chamber 14 And are provided. Hydraulic fluid is introduced from the high pressure chamber 14 into the respective back pressure chambers 5 through the back pressure ports 34 and the communication holes 38. For this reason, the vane 3 is pressed by the pressure of the hydraulic fluid introduced into the back pressure chamber 5 so as to be pushed radially outward from the slit 2a, and the tip 3a of the vane 3 is pressed against the cam surface 4a. It becomes.
  • a discharge port 41 for guiding the hydraulic oil in the oil chamber 6 to the low pressure chamber 21 is formed so as to cut out a part of the outer edge.
  • the discharge port 41 is provided in two places corresponding to each of the first and second discharge areas. Therefore, each oil chamber 6 communicates with the low pressure chamber 21 through each discharge port 41 according to the rotation of the rotor 2.
  • the vane motor 100 further includes a leaf spring 8 as a biasing member that biases the vane 3 so as to press the tip 3a of the vane 3 against the cam surface 4a.
  • the plate spring 8 is disposed in the back pressure chamber 5 in a state of being compressed between the bottom of the slit 2 a and the base end 3 b of the vane 3. Therefore, the vane 3 is pressed by the biasing force of the plate spring 8 so as to be pushed outward from the slit 2a in the radial direction, and the tip 3a of the vane 3 is pressed against the cam surface 4a.
  • the biasing force of the leaf spring 8 acts on the vane 3 even when the hydraulic fluid is not introduced to the back pressure chamber 5, so when the vane motor 100 is started, the tip 3a of the vane 3 and the cam Hydraulic fluid is prevented from leaking to the adjacent oil chamber 6 from the gap between the surface 4a and the other.
  • FIG. 3 is a cross-sectional view showing a cross section when the vane 3 is cut by a plane along the radial direction of the rotor 2.
  • a pair of leaf springs 8 is provided for each of the vanes 3 and arranged symmetrically across the central portion of the vane 3 in the axial direction of the output shaft 1.
  • Each leaf spring 8 has a joint 8 b coupled to the base end 3 b of the vane 3 and a body 8 a extending in an arc from the joint 8 b.
  • this restoring force is an urging force that acts to push the vanes 3 radially outward from the slit 2a.
  • the main body 8a is formed in an arc shape so as to be convex with respect to the bottom of the slit 2a, so the bottom of the slit 2a is a convex curved surface of the main body 8a.
  • a certain contact surface 8c comes into contact. For this reason, when the plate spring 8 abuts on the bottom of the slit 2a, the slit 2a is prevented from being scratched or partially worn.
  • the plate spring 8 and the vane 3 are integrally formed by injection molding using a resin such as polyetheretherketone (PEEK). Therefore, only by inserting the vanes 3 into the slits 2 a of the rotor 2, the leaf springs 8 are also assembled together in the rotor 2. As a result, the number of assembling steps of the vane motor 100 is reduced, and the assembly of the members for biasing the vanes 3 is not forgotten. Moreover, since the leaf spring 8 and the vane 3 are formed of the same material, the manufacturing cost of the vane motor 100 can be reduced.
  • PEEK polyetheretherketone
  • the plate springs 8 are provided at both ends of the vane 3 respectively. As described above, by arranging the leaf springs 8 symmetrically with respect to the central portion of the vane 3, biasing forces acting on the vane 3 become substantially even in the axial direction of the output shaft 1. Therefore, it becomes possible to contact the tip 3a of the vane 3 uniformly and stably against the cam surface 4a, and it is prevented that the tip 3a of the vane 3 comes into partial contact with the cam surface 4a to cause uneven wear. can do. Note that "symmetrical" does not mean that the symmetry is strictly precise in terms of dimensions.
  • the plate springs 8 may be disposed substantially symmetrically near different end portions across the central portion of the vane 3, and thus the plate springs 8 may be disposed substantially symmetrically,
  • the biasing forces acting on the vanes 3 may be substantially uniform in the axial direction of the output shaft 1.
  • not only a pair of plate springs 8 but also a plurality of plate springs 8 may be provided. By providing a plurality of plate springs 8, the biasing force acting on the vanes 3 can be made more uniform in the axial direction of the output shaft 1.
  • the hydraulic fluid When hydraulic fluid is supplied to the vane motor 100 from the fluid pressure supply source 50, the hydraulic fluid flows into the oil chamber 6 located in the first and second supply regions through the high pressure chamber 14 and the supply port 31.
  • the area of the vane 3 located closer to the first and second discharge areas is larger than the area exposed from the rotor 2. It becomes a force to press the vane 3 toward the first discharge area.
  • the pressure of the hydraulic fluid is the force pressing the vanes 3 from the second supply area to the second discharge area.
  • the hydraulic oil whose pressure is reduced by pressing the vanes 3 is led to the low pressure chamber 21 through the discharge recess 33 and the discharge port 41, Furthermore, it is discharged to the tank 60 through the discharge passage 61.
  • the rotor 2 is rotationally driven counterclockwise as shown by the arrow in FIG. 2 with the vane 3 pressed by the pressure of the hydraulic fluid.
  • an output and a torque according to the pressure and the flow rate of the hydraulic oil supplied from the fluid pressure supply source 50 can be obtained.
  • part of the hydraulic oil supplied to the high pressure chamber 14 is supplied to the back pressure chamber 5 through the communication hole 38 and the back pressure port 34. Therefore, when the vane motor 100 is rotating, the vane 3 has a diameter from the slit 2 a by the pressure of the hydraulic fluid of the back pressure chamber 5 that presses the base end 3 b and the centrifugal force that works as the rotor 2 rotates. The direction is biased outward. Therefore, since the tip 3a of the vane 3 rotates in sliding contact with the cam surface 4a of the cam ring 4, the hydraulic oil in the oil chamber 6 is from between the tip 3a of the vane 3 and the cam surface 4a of the cam ring 4 There is almost no leak. As a result, the pressure of the hydraulic oil is efficiently expended to press the vanes 3 and the motor efficiency is improved.
  • the vane motor 100 includes the leaf spring 8 that biases the vane 3 so as to press the tip 3a of the vane 3 against the cam surface 4a. Even when the hydraulic oil is not supplied to the vane 5, the vanes 3 are pressed against the cam surface 4a. Accordingly, the hydraulic oil is supplied to the oil chamber 6 and at the same time a driving force for rotating the rotor 2 is generated, so that the startability of the vane motor 100 is secured.
  • a leaf spring 8 provided in the slit 2a is integrally formed with the vane 3 in order to ensure startability. Therefore, simply by inserting the vanes 3 into the slits 2 a of the rotor 2, the leaf springs 8 can be easily assembled together in the rotor 2. Thus, the work of assembling the vane 3 and the leaf spring 8 in the slit 2a does not require any skill, and the vane 3 and the leaf spring 8 are assembled in the slit 2a in the same step, not in separate steps. Be As a result, the number of assembling steps of the vane motor 100 is reduced, and the assembly of the biasing member for biasing the vanes 3 is not forgotten, so that the assembling property of the vane motor 100 can be improved. In addition, by reducing the number of parts managed in the manufacture of the vane motor 100, the manufacturing cost of the vane motor 100 can be reduced.
  • FIGS. 4 to 7 are cross sectional views showing the cross section of the vane 3 similarly to FIG. 3.
  • the modification described below is also within the scope of the present invention, and the configuration shown in the modification and the configuration described in the above embodiment are combined, or the configurations described in the following different modifications are combined. It is also possible.
  • a leaf spring 8 is integrally formed only at one end of the vane 3 in the axial direction of the output shaft 1.
  • the biasing force acting on the vane 3 can be easily adjusted by changing the shape of the main body 8a.
  • the biasing force acting on the vane 3 can be changed according to the amount of protrusion of the vane 3 from the rotor 2 by gradually changing the thickness and the width of the main body portion 8a toward the coupling portion 8b.
  • the vane 3 shown in FIG. 4 has only one plate spring 8
  • its shape is simplified as compared with the vane 3 shown in FIG. 3 in which a plurality of plate springs 8 are provided, It can be easily formed.
  • the main body 8a of the leaf spring 8 is formed in an arc shape so as to be convex with respect to the bottom of the slit 2a, a contact surface which is a convex curved surface of the main body 8a is formed at the bottom of the slit 2a. 8c will be in contact. For this reason, when the plate spring 8 abuts on the bottom of the slit 2a, the slit 2a is prevented from being scratched or partially worn.
  • the biasing member integrally formed on the vane 3 of the second modification shown in FIG. 5 is a metal plate spring 18.
  • the leaf spring 18 has a buried portion 18b buried in the resin vane 3 and a main portion 18a extending in an arc shape from both ends of the buried portion 18b.
  • the vanes 3 and the plate spring 18 are integrally formed by insert molding. In this case, since the leaf spring 18 as the biasing member is made of metal, the durability of the biasing member is improved and the biasing force acting on the vane 3 is improved as compared to the case where the biasing member is formed of resin. It is possible to increase
  • the main body 18a of the leaf spring 18 is formed in an arc shape so as to be convex with respect to the bottom of the slit 2a, a contact surface which is a convex curved surface of the main body 18a is formed at the bottom of the slit 2a. 18c will be in contact. For this reason, when the plate spring 18 abuts on the bottom of the slit 2a, the slit 2a is prevented from being scratched or partially worn.
  • the main body portion 18a does not have to be provided at both ends of the buried portion 18b, and may be provided only at one end of the buried portion 18b. Further, a plurality of substantially V-shaped members in which the main body portion 18a is provided only at one end of the buried portion 18b may be buried in the vane 3.
  • the biasing member integrally formed on the vane 3 of the third modification shown in FIG. 6 is a metal coil spring 19.
  • the coil spring 19 has a buried portion 19b buried in the resin vane 3 and a coiled main portion 19a extending from the buried portion 19b.
  • the vanes 3 and the coil spring 19 are integrally formed by insert molding. Also in this case, since the coil spring 19 as the biasing member is made of metal, the durability of the biasing member is improved as compared with the case where the biasing member is formed of resin, and It is possible to increase the power. Further, by changing the number of coil springs 19 and the characteristics of the coil springs 19, the biasing force acting on the vanes 3 can be easily adjusted.
  • the biasing member integrally formed on the vane 3 of the fourth modification shown in FIG. 7 is a metal coil spring 19 as in the third modification.
  • the vane 3 and the coil spring 19 are integrally formed by insert molding by embedding one end side of the coil spring 19 in the resin vane 3 over a predetermined length.
  • the same effects as in the third modification are obtained, and it is not necessary to form a portion like the embedded portion 19b of the third modification with respect to the coil spring 19.
  • a commercially available coil spring 19 may be used. Since it can be used as it is, the manufacturing cost of the vane motor 100 can be reduced.
  • the coil spring 19 is placed in a stable state with respect to the vane 3 by sufficiently securing the length in which the coil spring 19 is embedded in the vane 3, and the coil spring 19 from the vane 3 It can be reliably prevented from coming off.
  • the vane 3 and the biasing member are integrally formed also in the modification as shown in FIGS. 4 to 7, so that the vane 3 can be attached simply by inserting it into the slit 2 a of the rotor 2.
  • the biasing members are also assembled together in the rotor 2. As a result, the number of assembling steps of the vane motor 100 is reduced, and the assembly of the biasing member for biasing the vanes 3 is not forgotten, so that the assembling property of the vane motor 100 can be improved.
  • the vane motor 100 includes a rotor 2 in which a plurality of slits 2a connected to the output shaft 1 and opened in an outer peripheral surface are radially formed, a plurality of vanes 3 slidably housed in the slits 2a, and a vane 3 A cam ring 4 having a cam surface 4a formed on the inner peripheral surface, and a biasing member 8, 18, 19 provided in the slit 2a and urging the vane 3 to press the cam 3 against the cam surface 4a. , And the vane 3 and the biasing members 8, 18, 19 are integrally formed.
  • the biasing members 8, 18, 19 provided in the slit 2 a in order to secure the startability are integrally formed with the vane 3. Therefore, only by inserting the vanes 3 into the slits 2 a of the rotor 2, the biasing members 8, 18, 19 can be easily assembled together in the rotor 2.
  • the work of assembling the vane 3 and the biasing members 8, 18, 19 in the slit 2a does not require any skill, and the vane 3 and the biasing members 8, 18, 19 are separate processes. Instead, they are assembled in the slit 2a in the same process.
  • the number of assembling steps of the vane motor 100 is reduced, and the assembly of the biasing member for biasing the vanes 3 is not forgotten, so that the assembling property of the vane motor 100 can be improved.
  • the manufacturing cost of the vane motor 100 can be reduced.
  • biasing members 8, 18 and 19 are provided, and arranged symmetrically with respect to the central portion of the vane 3 in the axial direction of the output shaft 1.
  • each biasing member 8, 18, 19 is arranged symmetrically with respect to the central portion of the vane 3. For this reason, the biasing force acting on the vane 3 becomes substantially even in the axial direction of the output shaft 1, and it becomes possible to contact the tip 3a of the vane 3 uniformly and stably against the cam surface 4a. . As a result, it is possible to prevent the occurrence of uneven wear due to the tip 3a of the vane 3 coming into contact with the cam surface 4a.
  • the biasing members 8 and 18 are plate springs extending in an arc shape from the vane 3 toward the bottom of the slit 2 a so as to be convex with respect to the bottom of the slit 2 a.
  • the biasing members 8 and 18 are formed in an arc shape so as to be convex with respect to the bottom of the slit 2a. For this reason, contact surfaces 8c and 18c which are convex curved surfaces of the main body portions 8a and 18a are in contact with the bottom of the slit 2a. As a result, when the urging members 8 and 18 abut on the bottom of the slit 2a, it is possible to suppress the slit 2a from being scratched or partially worn.
  • the vane 3 and the biasing member 8 are integrally molded articles integrally formed of resin.
  • the vanes 3 and the biasing member 8 are integrally formed of resin.
  • the biasing member 8 and the vane 3 are easily integrally formed of the same material, the manufacturing cost of the vane motor 100 can be reduced.
  • vanes 3 are made of resin
  • the biasing members 18 and 19 are made of metal
  • the vane 3 and the biasing members 18 and 19 are integrally formed products integrally formed by insert molding.
  • the biasing members 18, 19 are formed of metal. For this reason, compared with the case where a biasing member is formed with resin, while durability of a biasing member is improved, the biasing force which acts on the vane 3 can be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Hydraulic Motors (AREA)
  • Rotary Pumps (AREA)

Abstract

A vane motor (100) comprising: a rotor (2) having a plurality of slits (2a) formed radially therein that connect to an output shaft (1) and open to an outer circumferential surface; a plurality of vanes (3) each slidably attached to the slits (2a); a cam ring (4) having a cam surface (4a) to which a tip section (3a) of the vanes (3) is in sliding contact, formed on the inner circumferential surface thereof; and impelling members (8, 18, 19) that are provided inside the slits (2a) and impel so as to press the vanes (3) on to the cam surface (4a). The vanes (3) and the impelling members (8, 18, 19) are integrally formed.

Description

ベーンモータVane motor
 本発明は、ベーンモータに関するものである。 The present invention relates to a vane motor.
 JP2012-2136Aには、複数のスリットが放射方向に形成されたロータと、各スリットに摺動可能に収納され先端面がカムリングのカム面に摺接する複数のベーンと、を備えたベーンモータが記載されている。このベーンモータは、スリットの底部とベーンとの間に設けられるバネをさらに備えており、このバネの付勢力がベーンをカムリングのカム面に押し付けるように作用することで、ベーンモータの始動性が確保されている。 JP2012-2136A describes a vane motor including a rotor in which a plurality of slits are formed in the radial direction, and a plurality of vanes slidably housed in each slit and having a tip surface in sliding contact with the cam surface of the cam ring. ing. The vane motor further includes a spring provided between the bottom of the slit and the vane, and the biasing force of the spring acts to press the vane against the cam surface of the cam ring to ensure startability of the vane motor. ing.
 JP2012-2136Aに記載のベーンモータを組み立てる際には、まず、各スリット内にバネを組み付け、続いて、スリット内に組み付けられたバネとベーンとが所定の位置で係合するようにベーンを各スリット内に慎重に挿入する必要がある。このように熟練を要する組立工程があることでベーンモータの製造コストが上昇するおそれがあるとともに、バネの組み付け忘れやバネとベーンとの係合不良といった組立ミスを招くおそれがある。 When assembling the vane motor described in JP2012-2136A, first, the spring is assembled in each slit, and then, the vane is assembled in each slit so that the spring assembled in the slit and the vane are engaged at a predetermined position. You need to insert it carefully. There is a possibility that the manufacturing cost of the vane motor may increase due to the presence of the assembly process requiring the skill as described above, and there is also a possibility of an assembly error such as an assembly failure of the spring or poor engagement between the spring and the vane.
 本発明は、ベーンモータの組立性を向上させることを目的とする。 An object of the present invention is to improve the assemblability of a vane motor.
 本発明のある態様によれば、流体圧供給源から供給される作動流体により回転駆動するベーンモータは、出力軸に連結され、外周面に開口する複数のスリットが放射状に形成されたロータと、前記スリットにそれぞれ摺動自在に収装される複数のベーンと、前記ベーンの先端部が摺接するカム面が内周面に形成されたカムリングと、前記スリット内に設けられ、前記カム面に前記ベーンを押し付けるように付勢する付勢部材と、を備え、前記ベーンと前記付勢部材とは、一体的に形成される。 According to an aspect of the present invention, a vane motor rotationally driven by a working fluid supplied from a fluid pressure supply source is connected to an output shaft, and a rotor having a plurality of slits formed radially on the outer peripheral surface; A plurality of vanes slidably accommodated in respective slits, a cam ring having a cam surface formed on an inner circumferential surface in sliding contact with the tip end of the vanes, and provided in the slits, the vanes And a biasing member that biases the vane and the vane and the biasing member are integrally formed.
図1は、本発明の実施形態に係るベーンモータの断面図である。FIG. 1 is a cross-sectional view of a vane motor according to an embodiment of the present invention. 図2は、本発明の実施形態に係るベーンモータのカバー側サイドプレートを取り外した状態におけるベーンモータの主要部を示す平面図である。FIG. 2 is a plan view showing the main part of the vane motor in a state in which the cover side plate of the vane motor according to the embodiment of the present invention is removed. 図3は、本発明の実施形態に係るベーンモータのベーンの断面図である。FIG. 3 is a cross-sectional view of a vane of a vane motor according to an embodiment of the present invention. 図4は、本発明の実施形態に係るベーンモータのベーンの第1変形例の断面図である。FIG. 4 is a cross-sectional view of a first modified example of the vane of the vane motor according to the embodiment of the present invention. 図5は、本発明の実施形態に係るベーンモータのベーンの第2変形例の断面図である。FIG. 5 is a cross-sectional view of a second modified example of the vane of the vane motor according to the embodiment of the present invention. 図6は、本発明の実施形態に係るベーンモータのベーンの第3変形例の断面図である。FIG. 6 is a cross-sectional view of a third modification of the vane of the vane motor according to the embodiment of the present invention. 図7は、本発明の実施形態に係るベーンモータのベーンの第4変形例の断面図である。FIG. 7 is a cross-sectional view of a fourth modification of the vane of the vane motor according to the embodiment of the present invention.
 以下、図面を参照して、本発明の実施形態に係るベーンモータ100について説明する。 Hereinafter, a vane motor 100 according to an embodiment of the present invention will be described with reference to the drawings.
 ベーンモータ100は、ポンプやアキュムレータ等の流体圧供給源50から供給される作動流体の圧力エネルギーを回転エネルギーに変換する液圧モータである。作動流体としては、オイルやその他の水溶性代替液等が用いられる。 The vane motor 100 is a hydraulic motor that converts pressure energy of the working fluid supplied from a fluid pressure supply source 50 such as a pump or an accumulator into rotational energy. As the working fluid, oil or other water-soluble alternative fluid is used.
 図1及び図2に示すように、ベーンモータ100は、モータ収容凹部10aが形成されたモータボディ10と、モータ収容凹部10aを覆いモータボディ10に固定されるモータカバー20と、モータボディ10及びモータカバー20に軸受11、12を介して回転自在に支持される出力軸1と、出力軸1に連結されモータ収容凹部10aに収容されるロータ2と、ロータ2の外周面に開口する開口部2bを有しロータ2に放射状に形成される複数のスリット2aと、各スリット2aに摺動自在に収装されるベーン3と、ロータ2及びベーン3を収容しベーン3の先端部3aが摺接するカム面4aが内周面に形成されたカムリング4と、カム面4aにベーン3の先端部3aを押し付けるようにベーン3を付勢する付勢部材としての板バネ8と、を備える。 As shown in FIGS. 1 and 2, the vane motor 100 includes a motor body 10 in which a motor receiving recess 10a is formed, a motor cover 20 which covers the motor receiving recess 10a and is fixed to the motor body 10, a motor body 10 and a motor The output shaft 1 rotatably supported by the cover 20 via the bearings 11 and 12, the rotor 2 connected to the output shaft 1 and accommodated in the motor housing recess 10a, and the opening 2b opened in the outer peripheral surface of the rotor 2 A plurality of slits 2a radially formed in the rotor 2, the vanes 3 slidably housed in the respective slits 2a, the rotor 2 and the vanes 3 and the tip portions 3a of the vanes 3 slidingly contacting A cam ring 4 having a cam surface 4a formed on the inner circumferential surface, and a leaf spring 8 as an urging member for urging the vane 3 so that the tip 3a of the vane 3 is pressed against the cam surface 4a , Comprising a.
 ロータ2は、スプライン結合によって出力軸1に連結される円筒状部材である。ロータ2には、径方向に切り欠かれたスリット2aが、周方向に所定の間隔をあけて放射状に複数形成される。各スリット2aには、ベーン3が径方向に摺動自在に収容される。 The rotor 2 is a cylindrical member connected to the output shaft 1 by spline connection. In the rotor 2, a plurality of slits 2 a which are notched in the radial direction are radially formed at predetermined intervals in the circumferential direction. The vanes 3 are slidably accommodated in the radial direction in the respective slits 2a.
 ベーン3は、スリット2aの開口部2bから径方向外側に突出する先端部3aと、先端部3aとは反対側の端部である基端部3bと、を有する板状部材である。スリット2aの底部側には、ベーン3の基端部3bによって区画される背圧室5が形成される。 The vane 3 is a plate-like member having a distal end 3a protruding radially outward from the opening 2b of the slit 2a and a proximal end 3b which is an end opposite to the distal end 3a. On the bottom side of the slit 2a, a back pressure chamber 5 partitioned by the base end 3b of the vane 3 is formed.
 カムリング4は、略長円形状をした内周面であるカム面4aと、位置決めピン7が挿通するピン孔4bと、を有する環状部材である。スリット2aから突出するベーン3の先端部3aがカム面4aに摺接することによって、カムリング4の内部には、ロータ2の外周面と、カムリング4のカム面4aと、隣り合うベーン3と、により油室6が画成される。 The cam ring 4 is an annular member having a cam surface 4 a which is an inner peripheral surface having a substantially oval shape, and a pin hole 4 b through which the positioning pin 7 is inserted. When the tip 3a of the vane 3 protruding from the slit 2a is in sliding contact with the cam surface 4a, the cam ring 4 is internally provided with the outer peripheral surface of the rotor 2, the cam surface 4a of the cam ring 4 and the adjacent vane 3 An oil chamber 6 is defined.
 カムリング4のカム面4aが略長円形状であるため、ロータ2の回転に伴ってカム面4aに摺接する各ベーン3のロータ2の外周面から突出する長さが変化することによって、油室6の容積は、拡張と収縮とを繰り返す。そして、油室6が拡張する供給領域では作動油が供給され、油室6が収縮する排出領域では作動油が排出される。 Since the cam surface 4a of the cam ring 4 has a substantially oval shape, the length of the vane 3 protruding from the outer peripheral surface of the rotor 3 in sliding contact with the cam surface 4a changes as the rotor 2 rotates. The volume of 6 repeats expansion and contraction. Then, the hydraulic oil is supplied in the supply area where the oil chamber 6 expands, and the hydraulic oil is discharged in the discharge area where the oil chamber 6 contracts.
 図2に示すように、ベーンモータ100では、ベーン3が、第一の供給領域及び排出領域において往復動し、第二の供給領域及び排出領域において往復動する。このため、油室6は、ロータ2が1回転する間に、第一の供給領域にて拡張し、第一の排出領域にて収縮し、第二の供給領域にて拡張し、第二の排出領域にて収縮することになる。ベーンモータ100は、2つの供給領域及び排出領域を有するが、これに限らず、1つまたは3つ以上の供給領域及び排出領域を有していてもよい。 As shown in FIG. 2, in the vane motor 100, the vane 3 reciprocates in the first supply area and the discharge area, and reciprocates in the second supply area and the discharge area. For this reason, the oil chamber 6 expands in the first supply area while the rotor 2 makes one rotation, contracts in the first discharge area, and expands in the second supply area. It will contract in the discharge area. The vane motor 100 has two supply areas and discharge areas, but is not limited to this, and may have one or more supply areas and discharge areas.
 ベーンモータ100は、ロータ2の軸方向一端側に設けられ、ロータ2及びカムリング4の一方の側面に当接する環状のボディ側サイドプレート30と、ロータ2の軸方向他端側に設けられ、ロータ2及びカムリング4の他方の側面に当接する環状のカバー側サイドプレート40と、をさらに備える。 The vane motor 100 is provided on one end side of the rotor 2 in the axial direction, and is provided on an annular body-side side plate 30 that abuts one side of the rotor 2 and the cam ring 4, and on the other end side of the rotor 2 in the axial direction. And an annular cover side plate 40 abutting on the other side surface of the cam ring 4.
 ボディ側サイドプレート30は、モータ収容凹部10aの底面とロータ2との間に設けられ、カバー側サイドプレート40は、ロータ2とモータカバー20との間に設けられる。つまり、ボディ側サイドプレート30とカバー側サイドプレート40とは、ロータ2及びカムリング4を挟んで、互いに対向した状態で配置される。 The body side plate 30 is provided between the bottom of the motor housing recess 10 a and the rotor 2, and the cover side plate 40 is provided between the rotor 2 and the motor cover 20. That is, the body-side side plate 30 and the cover-side side plate 40 are disposed to face each other with the rotor 2 and the cam ring 4 interposed therebetween.
 モータボディ10のモータ収容凹部10aには、ボディ側サイドプレート30と、ロータ2及びベーン3が収装されたカムリング4と、カバー側サイドプレート40と、が積み重ねられた状態で収容される。この状態で、モータボディ10にモータカバー20が取付けられることで、モータ収容凹部10aは封止される。 The motor-side recess 30a of the motor body 10 receives the body-side side plate 30, the cam ring 4 in which the rotor 2 and the vane 3 are housed, and the cover-side side plate 40 in a stacked state. In this state, the motor cover 20 is attached to the motor body 10, whereby the motor housing recess 10a is sealed.
 モータ収容凹部10aの底面側には、モータボディ10とボディ側サイドプレート30によって区画された環状の高圧室14が形成される。高圧室14は、供給通路51を通じてベーンモータ100の外部に設けられる流体圧供給源50に接続される。また、モータ収容凹部10aの内周面には、モータカバー20側において開口する二つの迂回通路13がカムリング4を挟んで対向する位置に設けられる。 An annular high pressure chamber 14 partitioned by the motor body 10 and the body side plate 30 is formed on the bottom side of the motor housing recess 10 a. The high pressure chamber 14 is connected to a fluid pressure supply source 50 provided outside the vane motor 100 through the supply passage 51. Further, on the inner peripheral surface of the motor housing recess 10a, two bypass passages 13 opened on the motor cover 20 side are provided at positions facing each other with the cam ring 4 interposed therebetween.
 一方、モータカバー20には、迂回通路13が連通する環状の低圧室21がモータボディ10と対向する面に形成される。低圧室21は、排出通路61を通じてベーンモータ100の外部に設けられるタンク60に接続される。 On the other hand, in the motor cover 20, an annular low pressure chamber 21 communicating with the bypass passage 13 is formed on the surface facing the motor body 10. The low pressure chamber 21 is connected to a tank 60 provided outside the vane motor 100 through the discharge passage 61.
 ボディ側サイドプレート30には、流体圧供給源50から高圧室14に供給された作動油を油室6に供給するための供給ポート31と、油室6内の作動油を低圧室21に排出するための排出用凹部33と、が形成される。 The body side plate 30 is provided with a supply port 31 for supplying hydraulic oil supplied from the fluid pressure supply source 50 to the high pressure chamber 14 to the oil chamber 6, and discharges the hydraulic oil in the oil chamber 6 to the low pressure chamber 21. And a discharge recess 33 for forming the opening.
 供給ポート31は、ボディ側サイドプレート30を軸方向に貫通して形成された円弧状の貫通孔であり、第一及び第二の供給領域のそれぞれに対応して二カ所に設けられる。このため、各油室6は、ロータ2の回転に応じて、各供給ポート31を通じて高圧室14と連通する。 The supply ports 31 are arc-shaped through holes formed through the body side plate 30 in the axial direction, and are provided at two locations corresponding to the first and second supply regions. Therefore, each oil chamber 6 communicates with the high pressure chamber 14 through each supply port 31 according to the rotation of the rotor 2.
 排出用凹部33は、ロータ2の側面が摺接するボディ側サイドプレート30の摺接面30aに形成された円弧状の凹部である。排出用凹部33は、第一及び第二の排出領域のそれぞれに対応して二カ所に設けられており、各排出用凹部33の外周端は、ボディ側サイドプレート30の外周面に達し、迂回通路13に接続される。このため、各油室6は、ロータ2の回転に応じて、各排出用凹部33及び迂回通路13を通じて低圧室21と連通する。 The discharge recess 33 is an arc-shaped recess formed on the sliding contact surface 30 a of the body side plate 30 in sliding contact with the side surface of the rotor 2. The discharge recesses 33 are provided at two locations corresponding to each of the first and second discharge regions, and the outer peripheral end of each discharge recess 33 reaches the outer peripheral surface of the body side plate 30 and is detoured. It is connected to the passage 13. Therefore, each oil chamber 6 communicates with the low pressure chamber 21 through each discharge recess 33 and the bypass passage 13 according to the rotation of the rotor 2.
 また、ボディ側サイドプレート30には、摺接面30aに形成され複数の背圧室5を連通する円弧状の背圧ポート34と、背圧ポート34と高圧室14とを連通する連通孔38と、が設けられる。これら背圧ポート34及び連通孔38を通じて各背圧室5内には、高圧室14から作動油が導かれる。このため、ベーン3は、背圧室5に導かれた作動油の圧力によって、スリット2aから径方向外側へ押し出されるように押圧され、ベーン3の先端部3aがカム面4aに押し付けられた状態となる。 Further, in the body side plate 30, an arc-shaped back pressure port 34 formed on the sliding contact surface 30a and communicating the plurality of back pressure chambers 5, and a communication hole 38 communicating the back pressure port 34 and the high pressure chamber 14 And are provided. Hydraulic fluid is introduced from the high pressure chamber 14 into the respective back pressure chambers 5 through the back pressure ports 34 and the communication holes 38. For this reason, the vane 3 is pressed by the pressure of the hydraulic fluid introduced into the back pressure chamber 5 so as to be pushed radially outward from the slit 2a, and the tip 3a of the vane 3 is pressed against the cam surface 4a. It becomes.
 カバー側サイドプレート40には、油室6内の作動油を低圧室21に導く排出ポート41が外縁部の一部を切り欠くようにして形成される。排出ポート41は、第一及び第二の排出領域のそれぞれに対応して二カ所に設けられている。このため、各油室6は、ロータ2の回転に応じて、各排出ポート41を通じて低圧室21と連通する。 In the cover side plate 40, a discharge port 41 for guiding the hydraulic oil in the oil chamber 6 to the low pressure chamber 21 is formed so as to cut out a part of the outer edge. The discharge port 41 is provided in two places corresponding to each of the first and second discharge areas. Therefore, each oil chamber 6 communicates with the low pressure chamber 21 through each discharge port 41 according to the rotation of the rotor 2.
 ベーンモータ100は、カム面4aにベーン3の先端部3aを押し付けるようにベーン3を付勢する付勢部材としての板バネ8をさらに備える。板バネ8は、スリット2aの底部とベーン3の基端部3bとの間に圧縮された状態で背圧室5内に配置される。このため、ベーン3は、板バネ8の付勢力によって、スリット2aから径方向外側へ押し出されるように押圧され、ベーン3の先端部3aがカム面4aに押し付けられた状態となる。板バネ8の付勢力は、背圧室5に作動油が導かれていないときであってもベーン3に対して作用するため、ベーンモータ100を始動させる際に、ベーン3の先端部3aとカム面4aとの間の隙間から作動油が隣の油室6に漏れることが防止される。 The vane motor 100 further includes a leaf spring 8 as a biasing member that biases the vane 3 so as to press the tip 3a of the vane 3 against the cam surface 4a. The plate spring 8 is disposed in the back pressure chamber 5 in a state of being compressed between the bottom of the slit 2 a and the base end 3 b of the vane 3. Therefore, the vane 3 is pressed by the biasing force of the plate spring 8 so as to be pushed outward from the slit 2a in the radial direction, and the tip 3a of the vane 3 is pressed against the cam surface 4a. The biasing force of the leaf spring 8 acts on the vane 3 even when the hydraulic fluid is not introduced to the back pressure chamber 5, so when the vane motor 100 is started, the tip 3a of the vane 3 and the cam Hydraulic fluid is prevented from leaking to the adjacent oil chamber 6 from the gap between the surface 4a and the other.
 ここで、図3を参照して、板バネ8の具体的な形状について説明する。図3は、ロータ2の径方向に沿った平面によってベーン3を切断した場合の断面を示す断面図である。 Here, with reference to FIG. 3, the specific shape of the plate spring 8 will be described. FIG. 3 is a cross-sectional view showing a cross section when the vane 3 is cut by a plane along the radial direction of the rotor 2.
 板バネ8は、ベーン3毎に一対設けられており、出力軸1の軸方向においてベーン3の中央部分を挟んで対称的に配置される。各板バネ8は、ベーン3の基端部3bに結合された結合部8bと、結合部8bから弧状に反って延びる本体部8aと、を有する。 A pair of leaf springs 8 is provided for each of the vanes 3 and arranged symmetrically across the central portion of the vane 3 in the axial direction of the output shaft 1. Each leaf spring 8 has a joint 8 b coupled to the base end 3 b of the vane 3 and a body 8 a extending in an arc from the joint 8 b.
 このような形状の板バネ8がベーン3とともにスリット2a内に挿入されると、板バネ8の本体部8aがスリット2aの底部に当接して撓むことにより復元力が生じる。そして、この復元力は、ベーン3をスリット2aから径方向外側へ押し出すように作用する付勢力となる。 When the leaf spring 8 having such a shape is inserted into the slit 2 a together with the vane 3, the main body 8 a of the leaf spring 8 abuts on the bottom of the slit 2 a and bends to generate a restoring force. Then, this restoring force is an urging force that acts to push the vanes 3 radially outward from the slit 2a.
 また、図3に示すように、本体部8aは、スリット2aの底部に対して凸状となるように、弧状に形成されているため、スリット2aの底部には、本体部8aの凸曲面である接触面8cが接触することになる。このため、板バネ8がスリット2aの底部に当接することによってスリット2aに傷がついたり偏摩耗したりすることが抑制される。 Further, as shown in FIG. 3, the main body 8a is formed in an arc shape so as to be convex with respect to the bottom of the slit 2a, so the bottom of the slit 2a is a convex curved surface of the main body 8a. A certain contact surface 8c comes into contact. For this reason, when the plate spring 8 abuts on the bottom of the slit 2a, the slit 2a is prevented from being scratched or partially worn.
 また、板バネ8とベーン3とは、ポリエーテルエーテルケトン(PEEK)等の樹脂を用いて射出成形によって一体的に形成される。このため、ベーン3を、ロータ2のスリット2aに挿入するだけで、板バネ8も一緒にロータ2内に組み付けられる。この結果、ベーンモータ100の組立工数が減少されるとともに、ベーン3を付勢する部材の組み付けを忘れてしまうことがなくなる。また、板バネ8とベーン3とが同じ材料で形成されるため、ベーンモータ100の製造コストを低減させることができる。 The plate spring 8 and the vane 3 are integrally formed by injection molding using a resin such as polyetheretherketone (PEEK). Therefore, only by inserting the vanes 3 into the slits 2 a of the rotor 2, the leaf springs 8 are also assembled together in the rotor 2. As a result, the number of assembling steps of the vane motor 100 is reduced, and the assembly of the members for biasing the vanes 3 is not forgotten. Moreover, since the leaf spring 8 and the vane 3 are formed of the same material, the manufacturing cost of the vane motor 100 can be reduced.
 また、板バネ8は、ベーン3の両端部にそれぞれ設けられている。このように板バネ8がベーン3の中央部分を挟んで対称的に配置されることによって、ベーン3に作用する付勢力は、出力軸1の軸方向においてほぼ均等になる。したがって、カム面4aに対してベーン3の先端部3aを均一に安定して当接させることが可能となり、ベーン3の先端部3aがカム面4aに片当たりして偏摩耗が生じることを防止することができる。なお、「対称的」とは、寸法的に厳密に対称であることを意味するものではない。例えば、各板バネ8がベーン3の中央部分を挟んでそれぞれ異なる端部寄りにほぼ対称的に配置されていればよく、このように各板バネ8がほぼ対称的に配置されることで、ベーン3に作用する付勢力が出力軸1の軸方向においてほぼ均等になればよい。また、板バネ8は一対のみではなく、さらに複数設けられていてもよい。板バネ8を複数設けることによって、ベーン3に作用する付勢力を、出力軸1の軸方向においてより均等にすることができる。 The plate springs 8 are provided at both ends of the vane 3 respectively. As described above, by arranging the leaf springs 8 symmetrically with respect to the central portion of the vane 3, biasing forces acting on the vane 3 become substantially even in the axial direction of the output shaft 1. Therefore, it becomes possible to contact the tip 3a of the vane 3 uniformly and stably against the cam surface 4a, and it is prevented that the tip 3a of the vane 3 comes into partial contact with the cam surface 4a to cause uneven wear. can do. Note that "symmetrical" does not mean that the symmetry is strictly precise in terms of dimensions. For example, the plate springs 8 may be disposed substantially symmetrically near different end portions across the central portion of the vane 3, and thus the plate springs 8 may be disposed substantially symmetrically, The biasing forces acting on the vanes 3 may be substantially uniform in the axial direction of the output shaft 1. Further, not only a pair of plate springs 8 but also a plurality of plate springs 8 may be provided. By providing a plurality of plate springs 8, the biasing force acting on the vanes 3 can be made more uniform in the axial direction of the output shaft 1.
 次に、上記構成のベーンモータ100の作動について説明する。 Next, the operation of the vane motor 100 configured as described above will be described.
 ベーンモータ100に対して流体圧供給源50から作動油が供給されると、作動油は、高圧室14及び供給ポート31を通じて第一及び第二の供給領域に位置する油室6内に流入する。油室6を区画するベーン3のうち、第一及び第二の排出領域寄りに位置するベーン3の方がロータ2から露出する面積が大きいため、作動油の圧力は、第一の供給領域から第一の排出領域に向けてベーン3を押圧する力になる。同様に作動油の圧力は、第二の供給領域から第二の排出領域に向けてベーン3を押圧する力となる。 When hydraulic fluid is supplied to the vane motor 100 from the fluid pressure supply source 50, the hydraulic fluid flows into the oil chamber 6 located in the first and second supply regions through the high pressure chamber 14 and the supply port 31. Among the vanes 3 that define the oil chamber 6, the area of the vane 3 located closer to the first and second discharge areas is larger than the area exposed from the rotor 2. It becomes a force to press the vane 3 toward the first discharge area. Similarly, the pressure of the hydraulic fluid is the force pressing the vanes 3 from the second supply area to the second discharge area.
 そして、第一及び第二の排出領域に位置する油室6からは、ベーン3を押圧することで圧力が低下した作動油が、排出用凹部33及び排出ポート41を通じて低圧室21に導かれ、さらに、排出通路61を通じてタンク60に排出される。 Then, from the oil chamber 6 located in the first and second discharge regions, the hydraulic oil whose pressure is reduced by pressing the vanes 3 is led to the low pressure chamber 21 through the discharge recess 33 and the discharge port 41, Furthermore, it is discharged to the tank 60 through the discharge passage 61.
 このようにして、ロータ2は、作動油の圧力によって押圧されるベーン3とともに、図2の矢印で示すように反時計回りに回転駆動される。この結果、出力軸1では、流体圧供給源50から供給される作動油の圧力や流量に応じた出力及びトルクが得られる。 Thus, the rotor 2 is rotationally driven counterclockwise as shown by the arrow in FIG. 2 with the vane 3 pressed by the pressure of the hydraulic fluid. As a result, on the output shaft 1, an output and a torque according to the pressure and the flow rate of the hydraulic oil supplied from the fluid pressure supply source 50 can be obtained.
 また、高圧室14に供給された作動油の一部は、連通孔38及び背圧ポート34を通じて背圧室5に供給される。したがって、ベーンモータ100が回転しているときには、ベーン3は、基端部3bを押圧する背圧室5の作動油の圧力と、ロータ2の回転に伴って働く遠心力と、によってスリット2aから径方向外側に向かう方向に付勢される。このため、ベーン3の先端部3aがカムリング4のカム面4aに摺接しながら回転するので、油室6内の作動油は、ベーン3の先端部3aとカムリング4のカム面4aとの間からほとんど漏れることがない。この結果、作動油の圧力は、ベーン3を押圧するために効率的に費やされることとなり、モータ効率が向上する。 Further, part of the hydraulic oil supplied to the high pressure chamber 14 is supplied to the back pressure chamber 5 through the communication hole 38 and the back pressure port 34. Therefore, when the vane motor 100 is rotating, the vane 3 has a diameter from the slit 2 a by the pressure of the hydraulic fluid of the back pressure chamber 5 that presses the base end 3 b and the centrifugal force that works as the rotor 2 rotates. The direction is biased outward. Therefore, since the tip 3a of the vane 3 rotates in sliding contact with the cam surface 4a of the cam ring 4, the hydraulic oil in the oil chamber 6 is from between the tip 3a of the vane 3 and the cam surface 4a of the cam ring 4 There is almost no leak. As a result, the pressure of the hydraulic oil is efficiently expended to press the vanes 3 and the motor efficiency is improved.
 一方で、ベーンモータ100を始動させる際には、当然にベーン3に遠心力が作用することがなく、また、背圧室5に作動油が供給されていないため、特に鉛直上方に位置するベーン3は重力によってスリット2a内に進入し、ベーン3の先端部3aとカム面4aとの間に隙間が形成される。このような隙間が生じると、油室6に作動油が供給されても隙間から漏れてしまい、結果としてロータ2が回転せず、ベーンモータ100の始動性が悪化してしまう。 On the other hand, when the vane motor 100 is started, naturally the centrifugal force does not act on the vanes 3 and since the hydraulic fluid is not supplied to the back pressure chamber 5, the vanes 3 located especially vertically upward Is moved into the slit 2a by gravity, and a gap is formed between the tip 3a of the vane 3 and the cam surface 4a. If such a gap is generated, even if the working oil is supplied to the oil chamber 6, it leaks from the gap, and as a result, the rotor 2 does not rotate and the startability of the vane motor 100 is deteriorated.
 これに対して、本実施形態のベーンモータ100は、上述のように、カム面4aにベーン3の先端部3aを押し付けるようにベーン3を付勢する板バネ8を備えているため、背圧室5に作動油が供給されていない場合であっても、ベーン3はカム面4aに押し付けられた状態となる。したがって、油室6に作動油が供給されると同時にロータ2を回転させる駆動力が生じるため、ベーンモータ100の始動性が確保される。 On the other hand, as described above, the vane motor 100 according to the present embodiment includes the leaf spring 8 that biases the vane 3 so as to press the tip 3a of the vane 3 against the cam surface 4a. Even when the hydraulic oil is not supplied to the vane 5, the vanes 3 are pressed against the cam surface 4a. Accordingly, the hydraulic oil is supplied to the oil chamber 6 and at the same time a driving force for rotating the rotor 2 is generated, so that the startability of the vane motor 100 is secured.
 以上の実施形態によれば、以下に示す効果を奏する。 According to the above embodiment, the following effects can be obtained.
 ベーンモータ100では、始動性を確保するためにスリット2a内に設けられる板バネ8がベーン3と一体的に形成される。このため、ベーン3を、ロータ2のスリット2aに挿入するだけで、板バネ8も一緒にロータ2内に容易に組み付けられる。このように、ベーン3と板バネ8とをスリット2a内に組み付ける作業において熟練を要することがなくなり、また、ベーン3と板バネ8とは、別工程ではなく同一の工程においてスリット2a内に組み付けられる。この結果、ベーンモータ100の組立工数が減少するとともに、ベーン3を付勢する付勢部材の組み付け忘れがなくなることで、ベーンモータ100の組立性を向上させることができる。また、ベーンモータ100の製造において管理される部品の点数が減少することによって、ベーンモータ100の製造コストを低減させることができる。 In the vane motor 100, a leaf spring 8 provided in the slit 2a is integrally formed with the vane 3 in order to ensure startability. Therefore, simply by inserting the vanes 3 into the slits 2 a of the rotor 2, the leaf springs 8 can be easily assembled together in the rotor 2. Thus, the work of assembling the vane 3 and the leaf spring 8 in the slit 2a does not require any skill, and the vane 3 and the leaf spring 8 are assembled in the slit 2a in the same step, not in separate steps. Be As a result, the number of assembling steps of the vane motor 100 is reduced, and the assembly of the biasing member for biasing the vanes 3 is not forgotten, so that the assembling property of the vane motor 100 can be improved. In addition, by reducing the number of parts managed in the manufacture of the vane motor 100, the manufacturing cost of the vane motor 100 can be reduced.
 次に、図4から図7を参照し、付勢部材が一体化されたベーン3の変形例について説明する。図4から図7は、図3と同様にベーン3の断面を示す断面図である。なお、以下に説明される変形例も本発明の範囲内であり、変形例に示す構成と上述の実施形態で説明した構成を組み合わせたり、以下の異なる変形例で説明する構成同士を組み合わせたりすることも可能である。 Next, with reference to FIGS. 4 to 7, a modification of the vane 3 in which the biasing member is integrated will be described. FIGS. 4 to 7 are cross sectional views showing the cross section of the vane 3 similarly to FIG. 3. In addition, the modification described below is also within the scope of the present invention, and the configuration shown in the modification and the configuration described in the above embodiment are combined, or the configurations described in the following different modifications are combined. It is also possible.
 図4に示す第1変形例のベーン3には、出力軸1の軸方向において、ベーン3の一端部のみに板バネ8が一体的に形成されている。この場合、板バネ8の本体部8aが比較的長く形成されるため、ベーン3に作用する付勢力を本体部8aの形状を変更することによって容易に調整することが可能となる。例えば、本体部8aの厚さや幅を結合部8bに向かって徐々に変化させることでベーン3に作用する付勢力をロータ2からのベーン3の突出量に応じて変化させることができる。 In the vane 3 of the first modification shown in FIG. 4, a leaf spring 8 is integrally formed only at one end of the vane 3 in the axial direction of the output shaft 1. In this case, since the main body 8a of the plate spring 8 is formed to be relatively long, the biasing force acting on the vane 3 can be easily adjusted by changing the shape of the main body 8a. For example, the biasing force acting on the vane 3 can be changed according to the amount of protrusion of the vane 3 from the rotor 2 by gradually changing the thickness and the width of the main body portion 8a toward the coupling portion 8b.
 また、図4に示すベーン3は、板バネ8が1つのみであるため、図3に示すベーン3のように板バネ8が複数設けられるものと比較し、形状が簡素化されるため、容易に形成することができる。また、板バネ8の本体部8aは、スリット2aの底部に対して凸状となるように、弧状に形成されているため、スリット2aの底部には、本体部8aの凸曲面である接触面8cが接触することになる。このため、板バネ8がスリット2aの底部に当接することによってスリット2aに傷がついたり偏摩耗したりすることが抑制される。 Further, since the vane 3 shown in FIG. 4 has only one plate spring 8, its shape is simplified as compared with the vane 3 shown in FIG. 3 in which a plurality of plate springs 8 are provided, It can be easily formed. Further, since the main body 8a of the leaf spring 8 is formed in an arc shape so as to be convex with respect to the bottom of the slit 2a, a contact surface which is a convex curved surface of the main body 8a is formed at the bottom of the slit 2a. 8c will be in contact. For this reason, when the plate spring 8 abuts on the bottom of the slit 2a, the slit 2a is prevented from being scratched or partially worn.
 図5に示す第2変形例のベーン3に一体的に形成される付勢部材は、金属製の板バネ18である。板バネ18は、樹脂製のベーン3内に埋設される埋設部18bと、埋設部18bの両端から弧状に延びる本体部18aと、を有する。ベーン3と板バネ18とはインサート成形によって一体的に形成される。この場合、付勢部材としての板バネ18が金属製であるため、付勢部材を樹脂で形成する場合と比較し、付勢部材の耐久性が向上されるとともに、ベーン3に作用する付勢力を増大させることが可能である。 The biasing member integrally formed on the vane 3 of the second modification shown in FIG. 5 is a metal plate spring 18. The leaf spring 18 has a buried portion 18b buried in the resin vane 3 and a main portion 18a extending in an arc shape from both ends of the buried portion 18b. The vanes 3 and the plate spring 18 are integrally formed by insert molding. In this case, since the leaf spring 18 as the biasing member is made of metal, the durability of the biasing member is improved and the biasing force acting on the vane 3 is improved as compared to the case where the biasing member is formed of resin. It is possible to increase
 また、板バネ18の本体部18aは、スリット2aの底部に対して凸状となるように、弧状に形成されているため、スリット2aの底部には、本体部18aの凸曲面である接触面18cが接触することになる。このため、板バネ18がスリット2aの底部に当接することによってスリット2aに傷がついたり偏摩耗したりすることが抑制される。なお、本体部18aは、埋設部18bの両端に設けられている必要はなく、埋設部18bの一端のみに設けられていてもよい。また、埋設部18bの一端のみに本体部18aが設けられた略V字状の部材をベーン3に複数埋設した構成としてもよい。 Further, since the main body 18a of the leaf spring 18 is formed in an arc shape so as to be convex with respect to the bottom of the slit 2a, a contact surface which is a convex curved surface of the main body 18a is formed at the bottom of the slit 2a. 18c will be in contact. For this reason, when the plate spring 18 abuts on the bottom of the slit 2a, the slit 2a is prevented from being scratched or partially worn. The main body portion 18a does not have to be provided at both ends of the buried portion 18b, and may be provided only at one end of the buried portion 18b. Further, a plurality of substantially V-shaped members in which the main body portion 18a is provided only at one end of the buried portion 18b may be buried in the vane 3.
 図6に示す第3変形例のベーン3に一体的に形成される付勢部材は、金属製のコイルスプリング19である。コイルスプリング19は、樹脂製のベーン3内に埋設される埋設部19bと、埋設部19bから延びるコイル状の本体部19aと、を有する。ベーン3とコイルスプリング19とはインサート成形によって一体的に形成される。この場合も、付勢部材としてのコイルスプリング19が金属製であるため、付勢部材を樹脂で形成する場合と比較し、付勢部材の耐久性が向上されるとともに、ベーン3に作用する付勢力を増大させることが可能である。また、コイルスプリング19の数やコイルスプリング19の特性を変更することでベーン3に作用する付勢力を容易に調整することができる。 The biasing member integrally formed on the vane 3 of the third modification shown in FIG. 6 is a metal coil spring 19. The coil spring 19 has a buried portion 19b buried in the resin vane 3 and a coiled main portion 19a extending from the buried portion 19b. The vanes 3 and the coil spring 19 are integrally formed by insert molding. Also in this case, since the coil spring 19 as the biasing member is made of metal, the durability of the biasing member is improved as compared with the case where the biasing member is formed of resin, and It is possible to increase the power. Further, by changing the number of coil springs 19 and the characteristics of the coil springs 19, the biasing force acting on the vanes 3 can be easily adjusted.
 図7に示す第4変形例のベーン3に一体的に形成される付勢部材は、第3変形例と同様に、金属製のコイルスプリング19である。第4変形例では、ベーン3とコイルスプリング19とは、コイルスプリング19の一端側が所定の長さにわたって樹脂製のベーン3内に埋設されることでインサート成形により一体的に形成される。第4変形例では、第3変形例と同様の効果を奏するとともに、コイルスプリング19に対して第3変形例の埋設部19bのような部分を形成する必要がなく、例えば市販のコイルスプリング19をそのまま使用できるため、ベーンモータ100の製造コストを低減させることができる。また、コイルスプリング19がベーン3内に埋設される長さを十分に確保することにより、コイルスプリング19がベーン3に対して安定して配置された状態になるとともに、コイルスプリング19がベーン3から抜け出てしまうことを確実に防止することができる。 The biasing member integrally formed on the vane 3 of the fourth modification shown in FIG. 7 is a metal coil spring 19 as in the third modification. In the fourth modification, the vane 3 and the coil spring 19 are integrally formed by insert molding by embedding one end side of the coil spring 19 in the resin vane 3 over a predetermined length. In the fourth modification, the same effects as in the third modification are obtained, and it is not necessary to form a portion like the embedded portion 19b of the third modification with respect to the coil spring 19. For example, a commercially available coil spring 19 may be used. Since it can be used as it is, the manufacturing cost of the vane motor 100 can be reduced. In addition, the coil spring 19 is placed in a stable state with respect to the vane 3 by sufficiently securing the length in which the coil spring 19 is embedded in the vane 3, and the coil spring 19 from the vane 3 It can be reliably prevented from coming off.
 このように、図4から図7に示されるような変形例においてもベーン3と付勢部材とが一体的に形成されるため、ベーン3を、ロータ2のスリット2aに挿入するだけで、付勢部材も一緒にロータ2内に組み付けられる。この結果、ベーンモータ100の組立工数が減少するとともに、ベーン3を付勢する付勢部材の組み付け忘れがなくなることで、ベーンモータ100の組立性を向上させることができる。 As described above, the vane 3 and the biasing member are integrally formed also in the modification as shown in FIGS. 4 to 7, so that the vane 3 can be attached simply by inserting it into the slit 2 a of the rotor 2. The biasing members are also assembled together in the rotor 2. As a result, the number of assembling steps of the vane motor 100 is reduced, and the assembly of the biasing member for biasing the vanes 3 is not forgotten, so that the assembling property of the vane motor 100 can be improved.
 以上のように構成された本発明の実施形態の構成、作用、及び効果をまとめて説明する。 The configuration, operation, and effects of the embodiment of the present invention configured as described above will be collectively described.
 ベーンモータ100は、出力軸1に連結され外周面に開口する複数のスリット2aが放射状に形成されたロータ2と、スリット2aにそれぞれ摺動自在に収装される複数のベーン3と、ベーン3の先端部3aが摺接するカム面4aが内周面に形成されたカムリング4と、スリット2a内に設けられ、カム面4aにベーン3を押し付けるように付勢する付勢部材8,18,19と、を備え、ベーン3と付勢部材8,18,19とは、一体的に形成される。 The vane motor 100 includes a rotor 2 in which a plurality of slits 2a connected to the output shaft 1 and opened in an outer peripheral surface are radially formed, a plurality of vanes 3 slidably housed in the slits 2a, and a vane 3 A cam ring 4 having a cam surface 4a formed on the inner peripheral surface, and a biasing member 8, 18, 19 provided in the slit 2a and urging the vane 3 to press the cam 3 against the cam surface 4a. , And the vane 3 and the biasing members 8, 18, 19 are integrally formed.
 この構成によれば、始動性を確保するためにスリット2a内に設けられる付勢部材8,18,19がベーン3と一体的に形成される。このため、ベーン3を、ロータ2のスリット2aに挿入するだけで、付勢部材8,18,19も一緒にロータ2内に容易に組み付けられる。このように、ベーン3と付勢部材8,18,19とをスリット2a内に組み付ける作業において熟練を要することがなくなり、また、ベーン3と付勢部材8,18,19とは、別工程ではなく同一の工程においてスリット2a内に組み付けられる。この結果、ベーンモータ100の組立工数が減少するとともに、ベーン3を付勢する付勢部材の組み付け忘れがなくなることで、ベーンモータ100の組立性を向上させることができる。また、ベーンモータ100の製造において管理される部品の点数が減少することによって、ベーンモータ100の製造コストを低減させることができる。 According to this configuration, the biasing members 8, 18, 19 provided in the slit 2 a in order to secure the startability are integrally formed with the vane 3. Therefore, only by inserting the vanes 3 into the slits 2 a of the rotor 2, the biasing members 8, 18, 19 can be easily assembled together in the rotor 2. As described above, the work of assembling the vane 3 and the biasing members 8, 18, 19 in the slit 2a does not require any skill, and the vane 3 and the biasing members 8, 18, 19 are separate processes. Instead, they are assembled in the slit 2a in the same process. As a result, the number of assembling steps of the vane motor 100 is reduced, and the assembly of the biasing member for biasing the vanes 3 is not forgotten, so that the assembling property of the vane motor 100 can be improved. In addition, by reducing the number of parts managed in the manufacture of the vane motor 100, the manufacturing cost of the vane motor 100 can be reduced.
 また、付勢部材8,18,19は、少なくとも一対設けられ、出力軸1の軸方向においてベーン3の中央部分に対して対称的に配置される。 Further, at least a pair of biasing members 8, 18 and 19 are provided, and arranged symmetrically with respect to the central portion of the vane 3 in the axial direction of the output shaft 1.
 この構成では、各付勢部材8,18,19は、ベーン3の中央部分に対して対称的に配置される。このため、ベーン3に作用する付勢力は、出力軸1の軸方向においてほぼ均等になり、カム面4aに対してベーン3の先端部3aを均一に安定して当接させることが可能となる。この結果、ベーン3の先端部3aがカム面4aに片当たりして偏摩耗が生じることを防止することができる。 In this configuration, each biasing member 8, 18, 19 is arranged symmetrically with respect to the central portion of the vane 3. For this reason, the biasing force acting on the vane 3 becomes substantially even in the axial direction of the output shaft 1, and it becomes possible to contact the tip 3a of the vane 3 uniformly and stably against the cam surface 4a. . As a result, it is possible to prevent the occurrence of uneven wear due to the tip 3a of the vane 3 coming into contact with the cam surface 4a.
 また、付勢部材8,18は、スリット2aの底部に対して凸状となるように、ベーン3からスリット2aの底部に向かって弧状に延びて形成される板バネである。 The biasing members 8 and 18 are plate springs extending in an arc shape from the vane 3 toward the bottom of the slit 2 a so as to be convex with respect to the bottom of the slit 2 a.
 この構成では、付勢部材8,18は、スリット2aの底部に対して凸状となるように、弧状に形成される。このため、スリット2aの底部には、本体部8a,18aの凸曲面である接触面8c,18cが接触することになる。この結果、付勢部材8,18がスリット2aの底部に当接することによってスリット2aに傷がついたり偏摩耗したりすることを抑制することができる。 In this configuration, the biasing members 8 and 18 are formed in an arc shape so as to be convex with respect to the bottom of the slit 2a. For this reason, contact surfaces 8c and 18c which are convex curved surfaces of the main body portions 8a and 18a are in contact with the bottom of the slit 2a. As a result, when the urging members 8 and 18 abut on the bottom of the slit 2a, it is possible to suppress the slit 2a from being scratched or partially worn.
 また、ベーン3と付勢部材8とは、樹脂によって一体的に形成された一体成形品である。 Moreover, the vane 3 and the biasing member 8 are integrally molded articles integrally formed of resin.
 この構成では、ベーン3と付勢部材8とは、樹脂によって一体的に形成される。このように、付勢部材8とベーン3とは同じ材料によって容易に一体的に形成されるため、ベーンモータ100の製造コストを低減させることができる。 In this configuration, the vanes 3 and the biasing member 8 are integrally formed of resin. Thus, since the biasing member 8 and the vane 3 are easily integrally formed of the same material, the manufacturing cost of the vane motor 100 can be reduced.
 また、ベーン3は樹脂製であり、付勢部材18,19は金属製であり、ベーン3と付勢部材18,19とは、インサート成形によって一体的に形成された一体成形品である。 Further, the vanes 3 are made of resin, the biasing members 18 and 19 are made of metal, and the vane 3 and the biasing members 18 and 19 are integrally formed products integrally formed by insert molding.
 この構成では、付勢部材18,19が金属により形成される。このため、付勢部材を樹脂で形成する場合と比較し、付勢部材の耐久性が向上されるとともに、ベーン3に作用する付勢力を増大させることができる。 In this configuration, the biasing members 18, 19 are formed of metal. For this reason, compared with the case where a biasing member is formed with resin, while durability of a biasing member is improved, the biasing force which acts on the vane 3 can be increased.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 As mentioned above, although the embodiment of the present invention was described, the above-mentioned embodiment showed only a part of application example of the present invention, and in the meaning of limiting the technical scope of the present invention to the concrete composition of the above-mentioned embodiment. Absent.
 本願は2017年8月14日に日本国特許庁に出願された特願2017-156600に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 The present application claims priority based on Japanese Patent Application No. 2017-156600 filed on Aug. 14, 2017 to the Japan Patent Office, and the entire contents of this application are incorporated herein by reference.

Claims (5)

  1.  流体圧供給源から供給される作動流体により回転駆動するベーンモータであって、
     出力軸に連結され、外周面に開口する複数のスリットが放射状に形成されたロータと、
     前記スリットにそれぞれ摺動自在に収装される複数のベーンと、
     前記ベーンの先端部が摺接するカム面が内周面に形成されたカムリングと、
     前記スリット内に設けられ、前記カム面に前記ベーンを押し付けるように付勢する付勢部材と、を備え、
     前記ベーンと前記付勢部材とは、一体的に形成されるベーンモータ。
    A vane motor rotationally driven by a working fluid supplied from a fluid pressure supply source, comprising:
    A rotor connected to the output shaft and radially formed with a plurality of slits opening on the outer peripheral surface;
    A plurality of vanes slidably accommodated in the slits, respectively;
    A cam ring having a cam surface formed on an inner circumferential surface in sliding contact with the tip of the vane;
    An urging member provided in the slit and urging the vane against the cam surface;
    The vane motor integrally formed with the vane and the biasing member.
  2.  請求項1に記載のベーンモータであって、
     前記付勢部材は、少なくとも一対設けられ、前記出力軸の軸方向において前記ベーンの中央部分に対して対称的に配置されるベーンモータ。
    The vane motor according to claim 1, wherein
    The vane motor is provided with at least one pair of biasing members, and arranged symmetrically with respect to a central portion of the vane in the axial direction of the output shaft.
  3.  請求項1に記載のベーンモータであって、
     前記付勢部材は、前記スリットの底部に対して凸状となるように、前記ベーンから前記スリットの底部に向かって弧状に延びて形成される板バネであるベーンモータ。
    The vane motor according to claim 1, wherein
    The vane motor according to claim 1, wherein the biasing member is a leaf spring that is formed to extend in an arc toward the bottom of the slit from the vane so as to be convex with respect to the bottom of the slit.
  4.  請求項1に記載のベーンモータであって、
     前記ベーンと前記付勢部材とは、樹脂によって一体的に形成された一体成形品であるベーンモータ。
    The vane motor according to claim 1, wherein
    The vane motor, wherein the vane and the biasing member are integrally formed products integrally formed of resin.
  5.  請求項1に記載のベーンモータであって、
     前記ベーンは樹脂製であり、前記付勢部材は金属製であり、
     前記ベーンと前記付勢部材とは、インサート成形によって一体的に形成された一体成形品であるベーンモータ。
    The vane motor according to claim 1, wherein
    The vane is made of resin, the biasing member is made of metal,
    The vane motor, wherein the vane and the biasing member are an integrally formed product integrally formed by insert molding.
PCT/JP2018/028696 2017-08-14 2018-07-31 Vane motor WO2019035354A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-156600 2017-08-14
JP2017156600A JP2019035361A (en) 2017-08-14 2017-08-14 Vane motor

Publications (1)

Publication Number Publication Date
WO2019035354A1 true WO2019035354A1 (en) 2019-02-21

Family

ID=65362799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028696 WO2019035354A1 (en) 2017-08-14 2018-07-31 Vane motor

Country Status (2)

Country Link
JP (1) JP2019035361A (en)
WO (1) WO2019035354A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832193U (en) * 1981-08-28 1983-03-02 三菱重工業株式会社 rotary compressor
JPS61183402U (en) * 1985-05-08 1986-11-15
JP2004011514A (en) * 2002-06-06 2004-01-15 Sumitomo Electric Ind Ltd Micropump, method for manufacturing the same, and method for using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832193U (en) * 1981-08-28 1983-03-02 三菱重工業株式会社 rotary compressor
JPS61183402U (en) * 1985-05-08 1986-11-15
JP2004011514A (en) * 2002-06-06 2004-01-15 Sumitomo Electric Ind Ltd Micropump, method for manufacturing the same, and method for using the same

Also Published As

Publication number Publication date
JP2019035361A (en) 2019-03-07

Similar Documents

Publication Publication Date Title
WO2013051448A1 (en) Vane pump
US20100119396A1 (en) Variable displacement dual vane pump
US10451063B2 (en) Vane pump including back pressure grooves
US7628594B2 (en) Vane pump having a labyrinth seal and gap between a top surface of a rotor and a ceiling surface of a rotor chamber that is formed between upper and lower cases
JP6616129B2 (en) Variable displacement pump
WO2019035354A1 (en) Vane motor
JP6817891B2 (en) Cartridge type vane pump and pump device
JP4852153B2 (en) Side channel pump
WO2017051797A1 (en) Vane pump
JP2016121608A (en) Variable capacity pump
US20140255235A1 (en) Self adjusting gear pump
WO2013058078A1 (en) Vane pump
WO2017056850A1 (en) Vane pump
WO2020203025A1 (en) Cartridge-type vane pump and pump device
JP4890601B2 (en) Vane pump
JP7421601B2 (en) vane pump
WO2024195481A1 (en) Vane pump
CN111373150B (en) Vane pump
JP6192449B2 (en) Vane pump
JP6025206B2 (en) Variable displacement vane pump
JP4811243B2 (en) Vane pump
JP4802996B2 (en) Vane pump
JP2007120436A (en) Vane pump
JP4484817B2 (en) Vane pump
KR20160145251A (en) Vane pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18845567

Country of ref document: EP

Kind code of ref document: A1