WO2019035322A1 - Method for producing lithium vanadium phosphate - Google Patents

Method for producing lithium vanadium phosphate Download PDF

Info

Publication number
WO2019035322A1
WO2019035322A1 PCT/JP2018/027703 JP2018027703W WO2019035322A1 WO 2019035322 A1 WO2019035322 A1 WO 2019035322A1 JP 2018027703 W JP2018027703 W JP 2018027703W WO 2019035322 A1 WO2019035322 A1 WO 2019035322A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanadium phosphate
solution
lithium vanadium
lithium
reaction
Prior art date
Application number
PCT/JP2018/027703
Other languages
French (fr)
Japanese (ja)
Inventor
純也 深沢
畠 透
Original Assignee
日本化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018111111A external-priority patent/JP7144785B2/en
Application filed by 日本化学工業株式会社 filed Critical 日本化学工業株式会社
Priority to ATA9262/2018A priority Critical patent/AT522061B1/en
Publication of WO2019035322A1 publication Critical patent/WO2019035322A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing lithium vanadium phosphate which is particularly useful as a positive electrode active material of a lithium secondary battery.
  • Lithium ion batteries are used as batteries for portable devices, notebook computers, electric vehicles, and hybrid vehicles. Lithium-ion batteries are generally considered to be excellent in capacity and energy density.
  • LiCoO 2 is mainly used for the positive electrode, but development of LiMnO 2 , LiNiO 2 and the like is also actively carried out due to resource problems of Co. ing.
  • LiFePO 4 As a further alternative material, and research and development is progressing in each organization. Fe is excellent in resources, and although LiFePO 4 using this has a somewhat low energy density, it is expected as a positive electrode material for lithium ion batteries for electric vehicles because of its excellent high temperature characteristics.
  • LiFePO 4 has a slightly lower operating voltage, and attention is focused on lithium vanadium phosphate (Li 3 V 2 (PO 4 ) 3 ) having a NASICON (Na Super Ionic Conductor) structure using V instead of Fe. There is.
  • the applicant of the present invention has previously made a mixture of a lithium source, a pentavalent or tetravalent vanadium compound, a phosphorus source and a conductive carbon material source from which carbon is generated by thermal decomposition in an aqueous solvent.
  • a first step of preparing a raw material mixture, a second step of heating the raw material mixture to cause a precipitation reaction, and obtaining a reaction liquid containing the precipitation product, and a media mill for the reaction liquid containing the precipitation product Wet grinding treatment to obtain a slurry containing the ground product, spray drying treatment of the slurry containing the ground material to obtain a reaction precursor, and the reaction precursor.
  • a vanadium compound, a phosphorus source, and a conductive carbon material source from which carbon is generated by thermal decomposition are reacted by heat treatment in an aqueous solvent, preferably at 60 to 100 ° C.
  • an aqueous solvent preferably at 60 to 100 ° C.
  • the solution after heat treatment is further reacted by adding a lithium source, and the resulting reaction solution is spray-dried to obtain a reaction precursor, and the reaction precursor is subjected to an inert gas atmosphere or a reducing atmosphere It is disclosed to produce lithium vanadium phosphate by calcining in situ.
  • Li 3 V 2 (PO 4 ) 3 is known to have a theoretical capacity as high as 197 mAh g ⁇ 1 .
  • the lithium secondary battery using the conventional Li 3 V 2 (PO 4 ) 3 as the positive electrode active material has a low discharge capacity, and according to the method of producing lithium vanadium phosphate described in Patent Document 4, the discharge capacity is
  • Patent Document 5 does not show any specific reaction conditions, and after cooling to room temperature, the reaction is carried out by simply adding a lithium source to the solution after the heat treatment. Even if a solution obtained by spray drying is used as a reaction precursor, it is difficult to obtain a solution having a high discharge capacity.
  • an object of the present invention is to provide lithium vanadium phosphate single phase in an industrially advantageous manner in an X-ray diffraction manner, which is particularly useful as a positive electrode active material of a lithium secondary battery.
  • the present inventors conducted a heat treatment of an acidic mixed slurry containing vanadium pentoxide, phosphoric acid and reducing sugar, thereby causing a reduction reaction of vanadium pentoxide and causing a solution.
  • a solution containing lithium hydroxide is added while maintaining the reduction reaction solution obtained by heat-treating an acidic mixed slurry containing vanadium pentoxide, phosphoric acid and reducing sugar at a certain temperature or lower, Being capable of maintaining the solution state for a while even after the addition while suppressing the reaction between the components of the present invention and lithium hydroxide.
  • the reaction precursor obtained by spray-drying the solution after the addition of the solution containing lithium hydroxide is excellent in reactivity, and single-phase highly crystalline lithium vanadium phosphate can be obtained even at a low temperature of about 600 ° C. about.
  • a lithium secondary battery using lithium vanadium phosphate obtained by using the reaction precursor as a positive electrode active material has excellent battery performance, and completes the present invention.
  • the present invention is a method for producing lithium vanadium phosphate having a NASICON structure, A first step of mixing vanadium pentoxide, phosphoric acid and reducing sugar in an aqueous solvent to prepare an acidic mixed slurry, and then heating the mixed slurry to form a solution to obtain a reduced reaction solution Then, while maintaining the reduction reaction solution at 35 ° C. or less, a third step of preparing a raw material mixed solution by adding a solution containing lithium hydroxide to the reduction reaction solution, and then spray drying the raw material mixed solution It has a fourth step of processing to obtain a reaction precursor, and then a fifth step of calcining the reaction precursor at 500 to 1300 ° C. in an inert gas atmosphere or a reducing atmosphere to obtain lithium vanadium phosphate.
  • the present invention provides a process for producing lithium vanadium phosphate.
  • a lithium secondary battery using lithium vanadium oxide as a positive electrode active material has excellent battery performance.
  • FIG. 2 is an X-ray diffraction diagram of a lithium vanadium phosphate sample obtained in Example 1 and Comparative Example 1.
  • the method for producing lithium vanadium phosphate of the present invention is a method for producing lithium vanadium phosphate having a NASICON structure (hereinafter, simply referred to as "lithium vanadium phosphate").
  • the lithium vanadium phosphate obtained by the method for producing lithium vanadium phosphate according to the present invention has the following general formula (1): Li x V y (PO 4 ) 3 (1) (In the formula, x is 2.5 or more and 3.5 or less, y is 1.8 or more and 2.2 or less.)
  • the Me element (Me represents a metal element or transition metal element having an atomic number of 11 or more other than V). It is lithium vanadium phosphate which is doped and contained.
  • X in the general formula (1) is preferably 2.5 or more and 3.5 or less, and particularly preferably 2.8 or more and 3.2 or less.
  • y is preferably 1.8 or more and 2.2 or less, and particularly preferably 1.9 or more and 2.1 or less.
  • the Me element to be doped is Sr, Ba, Sc, Y, Hf, Ta, W, Ru, Os, Ag, Zn, Si, Ga, Ge, Sn, Bi , S, Se, Te, Cl, Br, I, Na, K, Mg, Ca, Al, Mn, Co, Ni, Fe, Ti, Zr, Bi, Cr, Nb, Mo, and Cu 2 or more types are mentioned.
  • Me element is preferably one or more selected from Mg, Ca, Al, Mn, Co, Ni, Fe, Ti, Zr, Bi, Cr, Nb, Mo and Cu. .
  • the process for producing lithium vanadium phosphate according to the present invention comprises the first step of mixing vanadium pentoxide, phosphoric acid and reducing sugar in an aqueous solvent to prepare an acidic mixed slurry, and then heating the mixed slurry A second step to obtain a reduction reaction solution, and then adding a solution containing lithium hydroxide to the reduction reaction solution while maintaining the reduction reaction solution at 35 ° C. or less to prepare a raw material mixed solution Three steps, and then a fourth step of spray-drying the raw material mixture solution to obtain a reaction precursor, and then calcining the reaction precursor at 500 to 1300 ° C. in an inert gas atmosphere or a reducing atmosphere to obtain phosphoric acid It has the 5th process of obtaining vanadium lithium.
  • the first step of the method for producing lithium vanadium phosphate according to the present invention is a step of mixing vanadium pentoxide, phosphoric acid and reducing sugar in an aqueous solvent to obtain an acidic mixed slurry in which each raw material is mixed.
  • the mixing amount of vanadium pentoxide and phosphoric acid is preferably 0.50 to 0.80, preferably 0.5 to 0.80, as the molar ratio (V / P) of V atom in vanadium pentoxide to P atom in phosphoric acid. It is preferable that the ratio is 0.60 to 0.73, from the viewpoint of easily obtaining a single phase lithium vanadium phosphate as a final product.
  • the reducing sugar in the first step is thermally decomposed in an inert gas atmosphere or a reducing atmosphere at least in the fifth step, and carbon which is isolated, that is, converted into carbon, is used.
  • the reducing sugar accelerates the reduction reaction of vanadium pentoxide in the second step, and, in addition to the reaction solution having the good viscosity that can be stirred in the second step, the fifth step It becomes a component necessary for preventing the oxidation of vanadium in the process.
  • the excess reducing sugar is converted to conductive carbon by the baking of the fifth step, so in the method for producing lithium vanadium phosphate of the present invention, the reducing sugar is added in excess to impart conductivity to lithium vanadium phosphate It can also function as a component of a conductive carbon source.
  • Examples of the reducing sugar according to the first step include glucose, fructose, lactose, maltose, sucrose and the like, among which lactose and sucrose are preferable from the viewpoint of obtaining a reactive precursor having excellent reactivity.
  • the mixing amount of reducing sugars is 0.3 to 40 parts by mass in terms of C atom with respect to 100 parts by mass of lithium vanadium phosphate to be produced.
  • the amount of C atoms contained in the reducing sugar tends to decrease after firing as compared to before firing. Therefore, in the first step, the reducing sugar is converted from the reducing sugar to a mixing amount of 0.3 to 40 parts by mass in terms of C atom with respect to 100 parts by mass of lithium vanadium phosphate to be produced.
  • the content of the conductive carbon is likely to be 0 to 20 parts by mass in terms of C atom with respect to 100 parts by mass of lithium vanadium phosphate to be produced.
  • the mixing amount of reducing sugar with respect to 100 parts by mass of lithium vanadium phosphate to be formed is in the above range, lithium vanadium phosphate is excellent for a lithium secondary battery when it is used as a positive electrode active material of a lithium secondary battery Performance can be provided.
  • the mixing amount of reducing sugar is 0.5 to 40 parts by mass, preferably 5 to 30 parts by mass, in terms of C atom, with respect to 100 parts by mass of lithium vanadium phosphate to be produced.
  • the content of conductive carbon converted from reducing sugar is 0.1 to 20 parts by weight, preferably 0.5 to 15 parts by weight with respect to 100 parts by weight of lithium vanadium phosphate to be produced.
  • the internal resistance of the lithium secondary battery can be lowered, and the discharge capacity per mass or volume can be increased.
  • the mixing amount of the reducing sugar with respect to 100 parts by mass of lithium vanadium phosphate to be produced is less than the above range, it tends to be difficult to obtain single phase lithium vanadium phosphate, and if it exceeds the above range The discharge capacity per mass or volume tends to be low.
  • the amount of lithium vanadium phosphate to be produced is calculated from the amounts of vanadium pentoxide and phosphoric acid added as raw materials.
  • the production history of vanadium pentoxide, phosphoric acid and reducing sugar in the first step does not matter, in order to produce lithium vanadium phosphate having high purity, it is preferable that the content of impurities be as low as possible. .
  • Examples of the water solvent used in the first step include water and a mixed solvent of water and a hydrophilic organic solvent.
  • the order in which vanadium oxide, phosphoric acid and reducing sugar are added to the water solvent, and the mixing means are not particularly limited, and the lines are mixed so as to form an acidic mixed slurry in which the above respective materials are uniformly dispersed. It will be.
  • the acidic mixed slurry obtained in the first step is heat-treated to perform at least a reduction reaction of vanadium pentoxide, and each component is mixed It is a step of converting into a dissolved solution to obtain a reduction reaction solution.
  • the temperature of the heat treatment in the second step is 60 to 100 ° C., preferably 80 to 100 ° C. The reason for this is that the temperature of the heat treatment is lower than 60 ° C., which is industrially disadvantageous because the reaction time is prolonged, and a pressure vessel must be used to raise the temperature of the heat treatment to more than 100 ° C. It is not industrially advantageous.
  • the second step can be carried out under atmospheric pressure.
  • the time of the heat treatment in the second step is not particularly limited, and generally, heat treatment is performed for 0.2 hours or more, preferably 0.5 to 4 hours, particularly preferably 0.5 to 2 hours to obtain a reduction reaction solution. be able to.
  • the temperature of the reduction reaction solution be rapidly cooled to 35 ° C. or less after the completion of the second step.
  • the reduction reaction solution is cooled to 35 ° C. or less, preferably 5 to 35 ° C., particularly preferably 10 to 25 ° C. within 4 hours. More preferably, after completion of the second step, the reduction reaction solution is cooled to 35 ° C. or less, preferably 5 to 35 ° C., particularly preferably 10 to 25 ° C. within 3 hours.
  • the third step of the method for producing lithium vanadium phosphate of the present invention is a step of adding a solution containing lithium hydroxide to the reduction reaction solution capable of obtaining the second step to obtain a raw material mixed solution.
  • the solution containing lithium hydroxide is a solution in which lithium hydroxide is dissolved in water.
  • the concentration of lithium hydroxide in the solution containing lithium hydroxide is 5 to 20% by mass, preferably 10 to 15% by mass.
  • concentration of lithium hydroxide in the solution containing lithium hydroxide is in the above range, it is preferable from the viewpoint of controlling the heat generation associated with the preparation of the uniform raw material mixed solution and the addition of the solution containing lithium hydroxide to improve the production efficiency.
  • the addition amount of the solution containing lithium hydroxide is 0.70 to 1.30, preferably 0.83 to 1., as the molar ratio of Li atoms in the lithium source to P atoms in the phosphorus source (Li / P).
  • the addition amount is 17.
  • the addition amount of the solution containing lithium hydroxide is in the above-mentioned range, it is preferable from the viewpoint that single phase lithium vanadium phosphate is easily obtained as a final product.
  • the production history of lithium hydroxide is not limited, the content of impurities is as small as possible in order to produce lithium vanadium phosphate having high purity. It is preferred that
  • the solution containing lithium hydroxide is added to the reduction reaction solution while maintaining the reduction reaction solution obtained by the second step at 35 ° C. or lower.
  • a solution containing lithium hydroxide is added to the reduction reaction solution while maintaining the reduction reaction solution at 35 ° C. or less, whereby a reaction precursor having uniform composition distribution and excellent reactivity is obtained. It becomes easy to obtain.
  • the addition temperature of the solution containing lithium hydroxide in the third step is preferably 5 to 35 ° C., and more preferably 10 to 25 ° C., from the viewpoint of obtaining a reaction precursor which is particularly uniform and excellent in reactivity.
  • the third step when the addition temperature of the solution containing lithium hydroxide exceeds 35 ° C., the components in the reduction reaction solution react with lithium hydroxide to form a precipitate, which is spray-dried as it is It is not preferable from the viewpoint of becoming a reaction precursor in which each component is unevenly distributed.
  • addition of a solution containing lithium hydroxide is preferably performed at a constant rate from the viewpoint of obtaining stable quality.
  • the reaction between the components in the reduction reaction solution and lithium hydroxide proceeds extremely slowly at 35 ° C. or lower, for example, the raw material mixed solution is At a temperature of 35 ° C., a dark blue solution is maintained without precipitate for about 200 minutes, but a precipitate is gradually observed after 200 minutes, and the color of the solution is also from dark blue to light blue to green. Change.
  • the raw material mixed solution obtained by performing the third step is a dark blue solution, and in the fourth step to be described later, it is possible to spray dry the raw raw material mixed solution as it is, having a uniform composition distribution. It is preferable from the viewpoint of obtaining a reaction precursor excellent in reactivity.
  • the 4th process concerning the manufacturing method of lithium vanadium phosphate of the present invention is a process of carrying out spray drying of the materials mixed solution obtained by performing the 3rd process, and obtaining a reaction precursor.
  • the reaction precursor is obtained by atomizing the liquid by a predetermined means and drying the fine droplets generated thereby.
  • a predetermined means for example, a method using a rotary disk and a method using a pressure nozzle for atomizing the liquid. Any method can be used in the fifth step.
  • the size of droplets of the atomized liquid affects the stable drying and the properties of the resulting dried powder. From this point of view, the size of the atomized droplets is preferably 5 to 100 ⁇ m, particularly preferably 10 to 50 ⁇ m. In spray drying, it is desirable to determine the amount of liquid feed to the spray dryer taking this aspect into consideration.
  • the reaction precursor obtained by the spray drying method is subjected to calcination in the fifth step, but the powder characteristics such as the average particle diameter of secondary particles of lithium vanadium phosphate obtained by the fifth step are the reaction precursor You will generally take over your body. For this reason, spray drying is performed such that the secondary particles of the reaction precursor are 5 to 100 ⁇ m, in particular 10 to 50 ⁇ m, in terms of the particle size determined by scanning electron microscope (SEM) observation. It is preferable from the point of control of the particle size of lithium vanadium oxide.
  • the hot air inlet temperature is adjusted to 180 to 250 ° C., preferably 200 to 240 ° C.
  • the powder temperature is 90 to 150 ° C., preferably 100 to 130 ° C. Adjustment is preferable because it prevents moisture absorption of the powder and facilitates recovery of the powder.
  • the reaction precursor used in Patent Document 4 contains a crystalline substance
  • the reaction precursor obtained by performing the fourth step of the method for producing lithium vanadium phosphate of the present invention is amorphous. It is quality. Since the reaction precursor is amorphous, the present inventors speculate that the reaction precursor is excellent in reactivity, sintered at a low temperature, and further the crystallinity is higher than that of the reaction precursor of Patent Document 4 There is. In addition, it is confirmed by X-ray diffraction analysis that the reaction precursor is amorphous.
  • the reaction precursor obtained in the fourth step is calcined at 500 to 1300 ° C. to obtain single phase lithium vanadium phosphate in X-ray diffraction manner. It is a process.
  • the calcination temperature in the fifth step is 500 to 1300 ° C., preferably 600 to 1000 ° C.
  • the reason for this is that when the firing temperature is lower than 500 ° C., the firing time until the single phase is prolonged, while when the firing temperature is higher than 1300 ° C., lithium vanadium phosphate melts.
  • the firing atmosphere in the fifth step is an inert gas atmosphere or a reducing atmosphere because it prevents the oxidation of vanadium and the melting thereof.
  • an inert gas which can be used at a 5th process For example, nitrogen gas, helium gas, argon gas etc. are mentioned.
  • the baking time is not particularly limited, and generally, when baked for 2 hours or more, particularly 3 to 24 hours, it is possible to obtain single phase lithium vanadium phosphate in X-ray diffraction.
  • lithium vanadium phosphate obtained by firing may be subjected to firing several times, if necessary.
  • a Me source (Me is other than V, if necessary, for the purpose of stabilizing the crystal structure of lithium vanadium phosphate and further improving the battery performance such as cycle characteristics.
  • Metal element or transition metal element having an atomic number of 11 or more is mixed with the acidic mixed slurry in the first step of the method for producing lithium vanadium phosphate of the present invention, and subsequently, the vanadium phosphate of the present invention
  • lithium vanadium phosphate represented by the general formula (1) can be obtained by doping it with Me element.
  • the Me element is present as being substituted at the Li site and / or V site of lithium vanadium phosphate represented by the above general formula (1).
  • Me in the Me source is a metal element or transition metal element having an atomic number of 11 or more other than V
  • preferable Me elements include Sr, Ba, Sc, Y, Hf, Ta, W, Ru, Os, Ag, Zn, Si, Ga, Ge, Sn, Bi, S, Se, Te, Cl, Br, I, Na, K, Mg, Ca, Al, Mn, Co, Ni, Fe, Ti, Zr, Bi, Cr, Nb, Mo, Cu, etc. may be mentioned, and these may be used alone or in combination of two or more.
  • the Me source examples include oxides having a Me element, hydroxides, halides, carbonates, nitrates, carbonates, organic acid salts and the like.
  • the Me source may be dissolved and present in the mixed slurry, or may be present as a solid.
  • a source of Me is present as a solid in the mixed slurry, using one having an average particle diameter of 100 ⁇ m or less, preferably 0.1 to 50 ⁇ m is preferable from the viewpoint of obtaining a reaction precursor having excellent reactivity. preferable.
  • the mixing amount of the Me source depends on the kind of Me element to be doped, but in many cases, the V atom of the vanadium compound relative to P atom in the phosphorus source
  • the lithium vanadium phosphate obtained in the fifth step is further subjected to a heat treatment to adjust the amount of conductive carbon contained in lithium vanadium phosphate.
  • Step 6 can be performed.
  • a specific operation of the sixth step is performed by subjecting lithium vanadium phosphate containing conductive carbon obtained in the fifth step to a heat treatment to oxidize the conductive carbon.
  • the heat treatment according to the sixth step is preferably performed in an oxygen-containing atmosphere.
  • the oxygen concentration in the atmosphere of the heat treatment in the sixth step is preferably 5 vol% or more, particularly preferably 10 to 30 vol%, from the viewpoint of oxidizing the conductive carbon with high efficiency.
  • the temperature of the heat treatment according to the sixth step is preferably 250 to 450 ° C., preferably 300 to 400 ° C. from the viewpoint of oxidizing the conductive carbon with high efficiency.
  • the time of the heat treatment according to the sixth step is not particularly limited, and the content of conductive carbon contained in lithium vanadium phosphate decreases as the heat treatment time increases. In the heat treatment according to the sixth step, it is preferable to carry out by appropriately setting suitable conditions in advance so as to obtain a desired content of conductive carbon.
  • the lithium vanadium phosphate obtained by the method for producing lithium vanadium phosphate of the present invention is single phase lithium vanadium phosphate in X-ray diffraction, and the average primary particle diameter is preferably 10 ⁇ m or less, preferably It is preferable to use lithium vanadium phosphate in the form of agglomerates in which a large number of primary particles of 0.01 to 5 ⁇ m gather to form secondary particles having an average particle diameter of 5 to 100 ⁇ m, preferably 10 to 50 ⁇ m.
  • the obtained lithium vanadium phosphate may be further subjected to crushing treatment or grinding treatment as required, and further classification.
  • the lithium vanadium phosphate obtained by the method for producing lithium vanadium phosphate of the present invention may be a lithium vanadium phosphate carbon composite in which particles are coated with conductive carbon derived from reducing sugar.
  • the lithium secondary battery of higher discharge capacity can be obtained by using the lithium vanadium phosphate complex obtained by the method of the present invention for producing lithium vanadium phosphate as the positive electrode active material. Further, lithium vanadium phosphate obtained by the method for manufacturing lithium vanadium phosphate of the present invention is also used for applications in a solid electrolyte.
  • Example 1 First step> Add 2 L of ion-exchanged water to a 5 L beaker, add 605 g of 85% phosphoric acid, 320 g of vanadium pentoxide and 170 g of sucrose (sucrose) to this, and stir at room temperature (25 ° C) to mix the yellowish acid mixed slurry Obtained (pH 0.9). Second step The obtained mixed slurry was heated at 95 ° C. for 1 hour under stirring to conduct a reduction reaction to obtain a dark blue reduction reaction solution (pH 1.7).
  • ⁇ Third step> The reduction reaction solution was cooled to room temperature (25 ° C.) for 2 hours.
  • a lithium hydroxide solution was prepared by dissolving 220 g of lithium hydroxide monohydrate in 1.5 L of ion-exchanged water.
  • the jacketed reaction vessel was cooled by a cooler, and while maintaining the reaction solution in a temperature range of 22 ° C., a lithium hydroxide solution was added to the reaction solution at a constant rate in 60 minutes to obtain a dark blue raw material mixed solution (PH 4.6).
  • PH 4.6 dark blue raw material mixed solution
  • the dark blue raw material mixed solution was supplied to a spray dryer whose outlet temperature was set to 120 ° C. to obtain a reaction precursor.
  • the average secondary particle size determined by SEM observation of the reaction precursor was 12 ⁇ m.
  • the obtained reaction precursor was subjected to X-ray diffraction measurement using CuK ⁇ radiation as a radiation source, it could be confirmed that the reaction precursor was amorphous.
  • an X-ray diffraction diagram of the reaction precursor is shown in FIG.
  • the electron micrograph (SEM image) of the reaction precursor is shown in FIG. ⁇ Fifth step>
  • the obtained reaction precursor was placed in a mullite-made mortar and fired at 600 ° C. for 10 hours under a nitrogen atmosphere.
  • As a result of X-ray diffraction analysis of the obtained lithium vanadium phosphate sample it was confirmed to be single-phase lithium vanadium phosphate.
  • the X-ray diffraction pattern of the obtained lithium vanadium phosphate sample is shown in FIG. Moreover, the electron micrograph (SEM image) of the obtained lithium vanadium phosphate sample is shown in FIG. Further, the residual carbon content of the obtained lithium vanadium phosphate sample was determined as a content of C atom by measuring with a TOC total organic carbon meter (TOC-5000A manufactured by Shimadzu Corporation).
  • Examples 2 to 4 In the fifth step, a reaction was performed in the same manner as in Example 1 except that the firing temperature was set to 700 to 900 ° C., to obtain a lithium vanadium phosphate sample. Further, as a result of X-ray diffraction analysis of the obtained lithium vanadium phosphate sample, it was confirmed that all were single phase lithium vanadium phosphate. Further, the amount of residual carbon was determined in the same manner as in Example 1.
  • the “V / P molar ratio” in the first step indicates the molar ratio of V atom in vanadium pentoxide to P atom in the added phosphoric acid.
  • the “molar ratio of Li / P” in the third step indicates the molar ratio of Li atoms in lithium hydroxide added in the third step to P atoms in phosphoric acid added in the first step.
  • the “pH after addition” in the third step indicates the pH of the reaction solution after the addition of the solution containing lithium hydroxide.
  • the obtained reaction precursor was placed in a mullite-made mortar and fired at 600 ° C. for 10 hours under a nitrogen atmosphere to obtain a lithium vanadium phosphate sample.
  • the X-ray diffraction analysis of the obtained lithium vanadium phosphate sample is also shown in FIG.
  • the amount of remaining carbon was determined in the same manner as in Example 1. As a result, the amount of remaining carbon was 1.9% by mass.
  • the obtained reaction precursor was placed in a mullite-made mortar and fired at 900 ° C. for 12 hours under a nitrogen atmosphere.
  • the fired product was crushed by a jet mill to obtain a lithium vanadium phosphate sample.
  • As a result of X-ray diffraction analysis of the obtained lithium vanadium phosphate sample it was confirmed to be single phase lithium vanadium phosphate. Further, when the amount of remaining carbon was determined in the same manner as in Example 1, the amount of remaining carbon was 0.1% by mass.
  • Example 5 ⁇ First step> Put 2.5L of ion-exchanged water in a 5L beaker, and add 864.7g of 85% phosphoric acid, 457.7g of vanadium pentoxide and 156.6g of lactose monohydrate to this and stir at room temperature (25 ° C) As a result, an ocher colored acidic mixed slurry was obtained (pH 0.9). Second step The obtained mixed slurry was heated at 95 ° C. for 1 hour under stirring to conduct a reduction reaction to obtain a dark blue reduction reaction solution (pH 1.7). ⁇ Third step> The reduction reaction solution was cooled to room temperature (25 ° C.) for 2 hours.
  • a lithium hydroxide solution was prepared by dissolving 314.7 g of lithium hydroxide monohydrate in 1.5 L of ion-exchanged water.
  • the jacketed reaction vessel was cooled by a cooler, and while maintaining the reaction solution in a temperature range of 22 ° C., a lithium hydroxide solution was added to the reaction solution at a constant rate in 60 minutes to obtain a dark blue raw material mixed solution (PH 4.6).
  • PH 4.6 dark blue raw material mixed solution
  • the dark blue raw material mixed solution was supplied to a spray dryer whose outlet temperature was set to 120 ° C. to obtain a reaction precursor.
  • the reaction precursor When the obtained reaction precursor was subjected to X-ray diffraction measurement using CuK ⁇ radiation as a radiation source, it could be confirmed that the reaction precursor was amorphous. Moreover, the electron micrograph (SEM image) of the reaction precursor is shown in FIG. ⁇ Fifth step> The obtained reaction precursor was placed in a mullite-made mortar and fired at 800 ° C. for 10 hours under a nitrogen atmosphere. As a result of X-ray diffraction analysis of the obtained lithium vanadium phosphate sample, it was confirmed to be single-phase lithium vanadium phosphate. Also, an X-ray diffraction diagram of a lithium vanadium phosphate sample is shown in FIG.
  • the electron micrograph (SEM image) of the obtained lithium vanadium phosphate sample is shown in FIG.
  • the amount of remaining carbon of the obtained lithium vanadium phosphate sample was measured with a TOC total organic carbon meter (TOC-5000A manufactured by Shimadzu Corp.) and found to be 1.5% by mass. Further, the BET specific surface area was 9.8 m 2 / g.
  • the reaction solution was cooled to room temperature (25 ° C.) for 2 hours, and in the third step, the lithium hydroxide solution was added as it was at a constant rate for 15 minutes without cooling the reaction vessel with a cooler.
  • the reaction was carried out in the same manner as in Example 1 except for using a lithium vanadium phosphate sample.
  • the temperature of the reaction solution during the addition of the lithium hydroxide solution rose from 25 ° C. to 40 ° C.
  • the raw material mixed solution after the 3rd process was a blue slurry (pH 4.7).
  • the blue slurry was supplied to a spray drying apparatus whose outlet temperature was set to 120 ° C. to obtain a reaction precursor.
  • the obtained reaction precursor was subjected to X-ray diffraction measurement, a clear diffraction peak could be confirmed for the reaction precursor. Moreover, the X-ray diffraction pattern of the reaction precursor is shown in FIG. Next, the obtained reaction precursor was placed in a mullite-made mortar and fired at 600 ° C. for 10 hours under a nitrogen atmosphere to obtain a lithium vanadium phosphate sample. The X-ray diffraction analysis of the obtained lithium vanadium phosphate sample is shown in FIG. As a result of X-ray diffraction analysis, the presence of a heterophase other than lithium vanadium phosphate was confirmed. Further, the amount of remaining carbon was determined in the same manner as in Example 1. As a result, the amount of remaining carbon was 1.8% by mass.
  • a lithium secondary battery was manufactured using each member such as a separator, a negative electrode, a positive electrode, a current collecting plate, a mounting bracket, an external terminal, and an electrolytic solution.
  • a metal lithium foil was used for the negative electrode, and an electrolyte was prepared by dissolving 1 mol of LiPF 6 in 1 liter of a 1: 1 mixed solution of ethylene carbonate and methyl ethyl carbonate.
  • Capacity retention rate (%) ((20th cycle discharge capacity) / (1st cycle discharge capacity)) ⁇ 100
  • Example 6 The lithium vanadium phosphate sample (residue carbon content: 1.6% by mass) obtained in Example 3 was subjected to heat treatment at 350 ° C. for 15 hours in an air atmosphere (oxygen concentration: 20 Vol%) in an electric furnace. As a result of X-ray diffraction analysis of the obtained lithium vanadium phosphate sample, it was confirmed to be single-phase lithium vanadium phosphate. In addition, the amount of remaining carbon of the obtained lithium vanadium phosphate sample was measured with a TOC total organic carbon meter (TOC-5000A manufactured by Shimadzu Corp.) and found to be 0.1 mass%. Moreover, the BET specific surface area was 7.1 m ⁇ 2 > / g.

Abstract

Provided is a method for producing a lithium vanadium phosphate having a NASICON structure, the method comprising: a first step for mixing vanadium pentoxide, phosphoric acid, and a reducing sugar in an aqueous solvent to prepare an acidic mixed slurry; a second step for heating the mixed slurry into a solution to obtain a reduction reaction solution; a third step for adding a lithium hydroxide-containing solution to the reduction reaction solution while maintaining the reduction reaction solution at 35°C or lower to prepare a raw mixed solution; a fourth step for spray-drying the raw mixed solution to obtain a reaction precursor; and a fifth step for baking the reaction precursor at 500-1300°C in an inert gas atmosphere or reducing atmosphere to obtain the lithium vanadium phosphate. According to the present invention, a lithium vanadium phosphate, which is a single phase as analyzed by X-ray diffraction and useful especially as a positive electrode active material for lithium secondary batteries, can be provided in an industrially advantageous manner.

Description

リン酸バナジウムリチウムの製造方法Method for producing lithium vanadium phosphate
 本発明は、特にリチウム二次電池の正極活物質として有用なリン酸バナジウムリチウムの製造方法に関するものである。 The present invention relates to a method for producing lithium vanadium phosphate which is particularly useful as a positive electrode active material of a lithium secondary battery.
 携帯機器、ノート型パソコン、電気自動車、ハイブリッド自動車向けの電池としてリチウムイオン電池が活用されている。リチウムイオン電池は一般に容量、エネルギー密度に優れているとされ、現在その正極にはLiCoO2が主に使用されているが、Coの資源問題からLiMnO2、LiNiO2などの開発も盛んに行われている。
 現在、さらなる代替材料としてLiFePO4が着目され各機関で研究開発が進んでいる。Feは資源的に優れ、これを用いたLiFePO4はエネルギー密度がやや低いものの、高温特性に優れていることから電動車両向けのリチウムイオン電池用正極材料として期待されている。
Lithium ion batteries are used as batteries for portable devices, notebook computers, electric vehicles, and hybrid vehicles. Lithium-ion batteries are generally considered to be excellent in capacity and energy density. Currently, LiCoO 2 is mainly used for the positive electrode, but development of LiMnO 2 , LiNiO 2 and the like is also actively carried out due to resource problems of Co. ing.
At present, attention is focused on LiFePO 4 as a further alternative material, and research and development is progressing in each organization. Fe is excellent in resources, and although LiFePO 4 using this has a somewhat low energy density, it is expected as a positive electrode material for lithium ion batteries for electric vehicles because of its excellent high temperature characteristics.
 しかし,LiFePO4は動作電圧がやや低く,Feの代わりにVを用いたナシコン(NASICON;Na Super Ionic Conductor)構造を有するリン酸バナジウムリチウム(Li32(PO43)が着目されている。 However, LiFePO 4 has a slightly lower operating voltage, and attention is focused on lithium vanadium phosphate (Li 3 V 2 (PO 4 ) 3 ) having a NASICON (Na Super Ionic Conductor) structure using V instead of Fe. There is.
 リン酸バナジウムリチウムの製造方法としては、例えば、リチウム源、バナジウム化合物及びリン源を粉砕混合し、得られる均一混合物をピレット状に成形し、次いでこの成形品を焼成する方法が提案されている(例えば、特許文献1及び2参照)。また、下記特許文献3には酸化バナジウム(V)を、水酸化リチウムを含む水溶液に溶解し、さらにリン源と炭素及び/又は不揮発性有機化合物を添加し、得られる原料混合溶液を乾燥して前駆体を得、この前駆体を不活性雰囲気にて熱処理してLi32(PO43と導電性炭素材料との複合体を得る方法が提案されている。 As a method for producing lithium vanadium phosphate, for example, there has been proposed a method in which a lithium source, a vanadium compound and a phosphorus source are ground and mixed, the resulting uniform mixture is formed into a pile and then this molded product is fired ( See, for example, Patent Documents 1 and 2). Further, according to Patent Document 3 below, vanadium oxide (V) is dissolved in an aqueous solution containing lithium hydroxide, a phosphorus source and carbon and / or a non-volatile organic compound are further added, and a raw material mixed solution obtained is dried. It has been proposed to obtain a precursor and heat-treat the precursor in an inert atmosphere to obtain a complex of Li 3 V 2 (PO 4 ) 3 and a conductive carbon material.
 また、本出願人も先に、下記特許文献4で、リチウム源、5価又は4価のバナジウム化合物、リン源及び加熱分解により炭素が生じる導電性炭素材料源とを水溶媒中で混合して原料混合液を調製する第1工程と、該原料混合液を加熱して沈殿生成反応を行い、沈殿生成物を含む反応液を得る第2工程と、該沈殿生成物を含む反応液をメディアミルにより湿式粉砕処理して、粉砕処理物を含むスラリーを得る第3工程と、該粉砕処理物を含むスラリーを噴霧乾燥処理して、反応前駆体を得る第4工程と、該反応前駆体を不活性ガス雰囲気中又は還元雰囲気中で600~1300℃で焼成するリン酸バナジウムリチウム炭素複合体の製造方法を提案した。 Also, the applicant of the present invention has previously made a mixture of a lithium source, a pentavalent or tetravalent vanadium compound, a phosphorus source and a conductive carbon material source from which carbon is generated by thermal decomposition in an aqueous solvent. A first step of preparing a raw material mixture, a second step of heating the raw material mixture to cause a precipitation reaction, and obtaining a reaction liquid containing the precipitation product, and a media mill for the reaction liquid containing the precipitation product Wet grinding treatment to obtain a slurry containing the ground product, spray drying treatment of the slurry containing the ground material to obtain a reaction precursor, and the reaction precursor A method for producing a lithium vanadium phosphate carbon composite, which is fired at 600 to 1300 ° C. in an active gas atmosphere or in a reducing atmosphere, has been proposed.
 また、下記特許文献5には、バナジウム化合物、リン源及び加熱分解により炭素が生じる導電性炭素材料源を水溶媒中で、好ましくは60~100℃で加熱処理して反応を行った後、室温まで冷却後、加熱処理後の液に、更にリチウム源を添加して反応を行い、得られる反応液を噴霧乾燥して反応前駆体を得、該反応前駆体を不活性ガス雰囲気中又は還元雰囲気中で焼成してリン酸リチウムバナジウムを製造することが開示されている。 Further, in Patent Document 5 below, a vanadium compound, a phosphorus source, and a conductive carbon material source from which carbon is generated by thermal decomposition are reacted by heat treatment in an aqueous solvent, preferably at 60 to 100 ° C. After cooling down, the solution after heat treatment is further reacted by adding a lithium source, and the resulting reaction solution is spray-dried to obtain a reaction precursor, and the reaction precursor is subjected to an inert gas atmosphere or a reducing atmosphere It is disclosed to produce lithium vanadium phosphate by calcining in situ.
特表2001-500665号公報Japanese Patent Publication No. 2001-500665 特表2002-530835号公報Japanese Patent Publication No. 2002-530835 特開2008-052970号公報JP, 2008-052970, A 国際公開第2012/043367号パンフレットInternational Publication No. 2012/043367 pamphlet 国際公開第2014/006948号パンフレットInternational Publication No. 2014/006948 brochure
 Li32(PO43は、理論容量が197mAhg-1という高いものであることが知られている。
 しかしながら、従来のLi32(PO43を正極活物質に用いたリチウム二次電池は、放電容量が低く、また、特許文献4のリン酸バナジウムリチウムの製造方法によれば、放電容量が高いものが得られるが、反応性に優れた反応前駆体を得るのに、沈殿生成反応やメディアミルによる粉砕処理を必要とし、製造工程が複雑となり、工業的に有利でない。
 また、特許文献5には、何ら具体的な反応条件が示されておらず、また、室温まで冷却後、加熱処理後の液に、単にリチウム源を添加して反応を行い、得られた反応液を噴霧乾燥したものを反応前駆体としても用いても、放電容量が高いものが得られ難い。
Li 3 V 2 (PO 4 ) 3 is known to have a theoretical capacity as high as 197 mAh g −1 .
However, the lithium secondary battery using the conventional Li 3 V 2 (PO 4 ) 3 as the positive electrode active material has a low discharge capacity, and according to the method of producing lithium vanadium phosphate described in Patent Document 4, the discharge capacity is However, in order to obtain a reactive precursor excellent in reactivity, a precipitation reaction and a grinding treatment with a media mill are required, and the production process becomes complicated, which is not industrially advantageous.
In addition, Patent Document 5 does not show any specific reaction conditions, and after cooling to room temperature, the reaction is carried out by simply adding a lithium source to the solution after the heat treatment. Even if a solution obtained by spray drying is used as a reaction precursor, it is difficult to obtain a solution having a high discharge capacity.
 従って、本発明の目的は、特にリチウム二次電池の正極活物質等として有用なX線回折的に単相のリン酸バナジウムリチウムを工業的に有利な方法で提供することにある。 Accordingly, an object of the present invention is to provide lithium vanadium phosphate single phase in an industrially advantageous manner in an X-ray diffraction manner, which is particularly useful as a positive electrode active material of a lithium secondary battery.
 本発明者らは、上記課題に鑑みて鋭意研究を重ねた結果、五酸化バナジウム、リン酸及び還元糖を含む酸性の混合スラリーを加熱処理することにより、五酸化バナジウムの還元反応が起こると共に溶液化することができること。また、五酸化バナジウム、リン酸及び還元糖を含む酸性の混合スラリーを加熱処理することにより得られる還元反応溶液を一定温度以下に保持しながら水酸化リチウムを含む溶液を添加すると、還元反応溶液中の成分と水酸化リチウムとの反応を抑制した状態で、添加後も溶液化した状態をしばらく保持することができること。また、水酸化リチウムを含む溶液の添加後の溶液を噴霧乾燥して得られる反応前駆体は、反応性に優れ、600℃程度の低温でも単相の高結晶性のリン酸バナジウムリチウムが得られること。また、該反応前駆体を用いて得られるリン酸バナジウムリチウムを正極活物質とするリチウム二次電池は、優れた電池性能を有したものになることを知見し、本発明を完成するに到った。 As a result of intensive studies conducted in view of the above problems, the present inventors conducted a heat treatment of an acidic mixed slurry containing vanadium pentoxide, phosphoric acid and reducing sugar, thereby causing a reduction reaction of vanadium pentoxide and causing a solution. Be able to In addition, when a solution containing lithium hydroxide is added while maintaining the reduction reaction solution obtained by heat-treating an acidic mixed slurry containing vanadium pentoxide, phosphoric acid and reducing sugar at a certain temperature or lower, Being capable of maintaining the solution state for a while even after the addition while suppressing the reaction between the components of the present invention and lithium hydroxide. Moreover, the reaction precursor obtained by spray-drying the solution after the addition of the solution containing lithium hydroxide is excellent in reactivity, and single-phase highly crystalline lithium vanadium phosphate can be obtained even at a low temperature of about 600 ° C. about. In addition, it has been found that a lithium secondary battery using lithium vanadium phosphate obtained by using the reaction precursor as a positive electrode active material has excellent battery performance, and completes the present invention. The
 即ち、本発明は、ナシコン(NASICON)構造を有するリン酸バナジウムリチウムの製造方法であって、
 五酸化バナジウム、リン酸及び還元糖を水溶媒中で混合して酸性の混合スラリーを調製する第1工程、次に該混合スラリーを加温処理して溶液化し、還元反応溶液を得る第2工程、次に該還元反応溶液を35℃以下に保持しながら、該還元反応溶液に水酸化リチウムを含む溶液を添加して原料混合溶液を調製する第3工程、次に該原料混合溶液を噴霧乾燥処理して反応前駆体を得る第4工程、次に該反応前駆体を不活性ガス雰囲気又は還元雰囲気で500~1300℃で焼成して、リン酸バナジウムリチウムを得る第5工程を有することを特徴とするリン酸バナジウムリチウムの製造方法を提供するものである。
That is, the present invention is a method for producing lithium vanadium phosphate having a NASICON structure,
A first step of mixing vanadium pentoxide, phosphoric acid and reducing sugar in an aqueous solvent to prepare an acidic mixed slurry, and then heating the mixed slurry to form a solution to obtain a reduced reaction solution Then, while maintaining the reduction reaction solution at 35 ° C. or less, a third step of preparing a raw material mixed solution by adding a solution containing lithium hydroxide to the reduction reaction solution, and then spray drying the raw material mixed solution It has a fourth step of processing to obtain a reaction precursor, and then a fifth step of calcining the reaction precursor at 500 to 1300 ° C. in an inert gas atmosphere or a reducing atmosphere to obtain lithium vanadium phosphate. The present invention provides a process for producing lithium vanadium phosphate.
 本発明によれば、工業的に有利な方法で、特にリチウム二次電池の正極活物質等として有用なX線回折的に単相のリン酸バナジウムリチウムを提供することができ、また、該リン酸バナジウムリチウムを正極活物質とするリチウム二次電池は、優れた電池性能を有したものになる。 According to the present invention, it is possible to provide, in an industrially advantageous manner, an X-ray diffraction single phase lithium vanadium phosphate useful as a positive electrode active material of a lithium secondary battery, etc. A lithium secondary battery using lithium vanadium oxide as a positive electrode active material has excellent battery performance.
実施例1、比較例1及び比較例2で得られた反応前駆体のX線回折図。The X-ray-diffraction diagram of the reaction precursor obtained by Example 1, the comparative example 1, and the comparative example 2. FIG. 実施例1で得られた反応前駆体のSEM写真。The SEM photograph of the reaction precursor obtained in Example 1. FIG. 実施例1及び比較例1で得られたリン酸バナジウムリチウム試料のX線回折図。2 is an X-ray diffraction diagram of a lithium vanadium phosphate sample obtained in Example 1 and Comparative Example 1. FIG. 実施例1で得られたリン酸バナジウムリチウムのSEM写真。SEM photograph of lithium vanadium phosphate obtained in Example 1. 実施例5で得られた反応前駆体のSEM写真。SEM photograph of the reaction precursor obtained in Example 5. 実施例5で得られたリン酸バナジウムリチウム試料のX線回折図。X-ray diffraction diagram of lithium vanadium phosphate sample obtained in Example 5. FIG. 実施例5で得られたリン酸バナジウムリチウム試料のSEM写真。SEM photograph of lithium vanadium phosphate sample obtained in Example 5. 比較例3で得られた反応前駆体のX線回折図。The X-ray-diffraction figure of the reaction precursor obtained by the comparative example 3. FIG. 比較例3で得られたリン酸バナジウムリチウム試料のX線回折図。X-ray diffraction pattern of lithium vanadium phosphate sample obtained in Comparative Example 3.
 以下、本発明をその好ましい実施形態に基づき説明する。
 本発明のリン酸バナジウムリチウムの製造方法は、ナシコン(NASICON)構造を有するリン酸バナジウムリチウム(以下、単に「リン酸バナジウムリチウム」と呼ぶ。)の製造方法である。
Hereinafter, the present invention will be described based on its preferred embodiments.
The method for producing lithium vanadium phosphate of the present invention is a method for producing lithium vanadium phosphate having a NASICON structure (hereinafter, simply referred to as "lithium vanadium phosphate").
 本発明のリン酸バナジウムリチウムの製造方法を行い得られるリン酸バナジウムリチウムは、下記一般式(1):
   Lixy(PO43   (1)
(式中、xは2.5以上3.5以下、yは1.8以上2.2以下を示す。)
で表わされるリン酸バナジウムリチウム、あるいは、一般式(1)で表わされるリン酸バナジウムリチウムに、必要により、Me元素(Meは、V以外の原子番号11以上の金属元素又は遷移金属元素を示す。)がドープされて含有されているリン酸バナジウムリチウムである。
The lithium vanadium phosphate obtained by the method for producing lithium vanadium phosphate according to the present invention has the following general formula (1):
Li x V y (PO 4 ) 3 (1)
(In the formula, x is 2.5 or more and 3.5 or less, y is 1.8 or more and 2.2 or less.)
In the lithium vanadium phosphate represented by the general formula (1) or the lithium vanadium phosphate represented by the general formula (1), the Me element (Me represents a metal element or transition metal element having an atomic number of 11 or more other than V). It is lithium vanadium phosphate which is doped and contained.
 一般式(1)中のxは、好ましくは2.5以上3.5以下、特に好ましくは2.8以上3.2以下である。yは、好ましくは1.8以上2.2以下、特に好ましくは1.9以上2.1以下である。 X in the general formula (1) is preferably 2.5 or more and 3.5 or less, and particularly preferably 2.8 or more and 3.2 or less. y is preferably 1.8 or more and 2.2 or less, and particularly preferably 1.9 or more and 2.1 or less.
 リン酸バナジウムリチウムがMe元素を含有する場合、ドープされるMe元素は、Sr、Ba、Sc、Y、Hf、Ta、W、Ru、Os、Ag、Zn、Si、Ga、Ge、Sn、Bi、S、Se、Te、Cl、Br、I、Na、K、Mg、Ca、Al、Mn、Co、Ni、Fe、Ti、Zr、Bi、Cr、Nb、Mo及びCuから選ばれる1種又は2種以上が挙げられる。これらのうち、Me元素としては、Mg、Ca、Al、Mn、Co、Ni、Fe、Ti、Zr、Bi、Cr、Nb、Mo及びCuから選ばれる1種又は2種以上であることが好ましい。 When lithium vanadium phosphate contains a Me element, the Me element to be doped is Sr, Ba, Sc, Y, Hf, Ta, W, Ru, Os, Ag, Zn, Si, Ga, Ge, Sn, Bi , S, Se, Te, Cl, Br, I, Na, K, Mg, Ca, Al, Mn, Co, Ni, Fe, Ti, Zr, Bi, Cr, Nb, Mo, and Cu 2 or more types are mentioned. Among them, Me element is preferably one or more selected from Mg, Ca, Al, Mn, Co, Ni, Fe, Ti, Zr, Bi, Cr, Nb, Mo and Cu. .
 本発明のリン酸バナジウムリチウムの製造方法は、五酸化バナジウム、リン酸及び還元糖を水溶媒中で混合して酸性の混合スラリーを調製する第1工程、次に該混合スラリーを加温処理して溶液化し、還元反応溶液を得る第2工程、次に該還元反応溶液を35℃以下に保持しながら、該還元反応溶液に水酸化リチウムを含む溶液を添加して原料混合溶液を調製する第3工程、次に該原料混合溶液を噴霧乾燥処理して反応前駆体を得る第4工程、次に該反応前駆体を不活性ガス雰囲気又は還元雰囲気で500~1300℃で焼成して、リン酸バナジウムリチウムを得る第5工程を有する。 The process for producing lithium vanadium phosphate according to the present invention comprises the first step of mixing vanadium pentoxide, phosphoric acid and reducing sugar in an aqueous solvent to prepare an acidic mixed slurry, and then heating the mixed slurry A second step to obtain a reduction reaction solution, and then adding a solution containing lithium hydroxide to the reduction reaction solution while maintaining the reduction reaction solution at 35 ° C. or less to prepare a raw material mixed solution Three steps, and then a fourth step of spray-drying the raw material mixture solution to obtain a reaction precursor, and then calcining the reaction precursor at 500 to 1300 ° C. in an inert gas atmosphere or a reducing atmosphere to obtain phosphoric acid It has the 5th process of obtaining vanadium lithium.
 本発明のリン酸バナジウムリチウムの製造方法に係る第1工程は、五酸化バナジウム、リン酸及び還元糖を水溶媒中で混合して、各原料が混在した酸性の混合スラリーを得る工程である。 The first step of the method for producing lithium vanadium phosphate according to the present invention is a step of mixing vanadium pentoxide, phosphoric acid and reducing sugar in an aqueous solvent to obtain an acidic mixed slurry in which each raw material is mixed.
 第1工程において、五酸化バナジウム及びリン酸の混合量は、リン酸中のP原子に対する五酸化バナジウム中のV原子のモル比(V/P)で、0.50~0.80、好ましくは0.60~0.73であることが、最終生成物として単相のリン酸バナジウムリチウムが得られ易くなる観点から好ましい。 In the first step, the mixing amount of vanadium pentoxide and phosphoric acid is preferably 0.50 to 0.80, preferably 0.5 to 0.80, as the molar ratio (V / P) of V atom in vanadium pentoxide to P atom in phosphoric acid. It is preferable that the ratio is 0.60 to 0.73, from the viewpoint of easily obtaining a single phase lithium vanadium phosphate as a final product.
 第1工程に係る還元糖は、少なくとも第5工程の焼成の際に不活性ガス雰囲気又は還元雰囲気で加熱分解し、炭素が単離する、すなわち、炭素に変換されるものが用いられる。還元糖は、第2工程において五酸化バナジウムの還元反応を促進し、また、第2工程を行い得られる還元反応溶液が撹拌可能な良好な粘度を有する反応溶液とすることに加えて、第5工程においてバナジウムの酸化の防止に必要な成分となる。余剰の還元糖は、第5工程の焼成により導電性炭素に転換するため、本発明のリン酸バナジウムリチウムの製造方法において、還元糖を過剰に添加し、リン酸バナジウムリチウムに導電性を付与する導電性炭素源の成分としても機能させることもできる。 The reducing sugar in the first step is thermally decomposed in an inert gas atmosphere or a reducing atmosphere at least in the fifth step, and carbon which is isolated, that is, converted into carbon, is used. The reducing sugar accelerates the reduction reaction of vanadium pentoxide in the second step, and, in addition to the reaction solution having the good viscosity that can be stirred in the second step, the fifth step It becomes a component necessary for preventing the oxidation of vanadium in the process. The excess reducing sugar is converted to conductive carbon by the baking of the fifth step, so in the method for producing lithium vanadium phosphate of the present invention, the reducing sugar is added in excess to impart conductivity to lithium vanadium phosphate It can also function as a component of a conductive carbon source.
 第1工程に係る還元糖としては、例えば、グルコース、フルクトース、ラクトース、マルトース、スクロース等が挙げられ、このうち、ラクトース、スクロースが優れた反応性を有する反応前駆体が得られる観点から好ましい。 Examples of the reducing sugar according to the first step include glucose, fructose, lactose, maltose, sucrose and the like, among which lactose and sucrose are preferable from the viewpoint of obtaining a reactive precursor having excellent reactivity.
 第1工程において、還元糖の混合量が、生成するリン酸バナジウムリチウム100質量部に対し、C原子換算で0.3~40質量部となる混合量であることが好ましい。第5工程での焼成において、焼成する前に比べて焼成後では還元糖に含まれるC原子の量が減少する傾向がある。そのため、第1工程において、還元糖の混合量が、生成されるリン酸バナジウムリチウム100質量部に対し、C原子換算で0.3~40質量部となる混合量であると、還元糖から転換する導電性炭素の含有量が、生成するリン酸バナジウムリチウム100質量部に対し、C原子換算で0~20質量部となり易い。生成するリン酸バナジウムリチウム100質量部に対する還元糖の混合量が、上記範囲内にあることにより、リン酸バナジウムリチウムをリチウム二次電池の正極活物質として用いる場合に、リチウム二次電池に優れた性能を付与することが出来る。特に、第1工程において、還元糖の混合量を、生成するリン酸バナジウムリチウム100質量部に対し、C原子換算で0.5~40質量部、好ましくは5~30質量部となる混合量とすることにより、生成するリン酸バナジウムリチウム100質量部に対し、還元糖から転換する導電性炭素の含有量が、0.1~20重量部、好ましくは0.5~15質量部になり、導電性炭素により十分な導電性を付与することができるため、リチウム二次電池の内部抵抗を低くすることができ、且つ、質量或いは体積当たりの放電容量が高くなる。一方、生成されるリン酸バナジウムリチウム100質量部に対する還元糖の混合量が、上記範囲未満だと、単相のリン酸バナジウムリチウムが得られ難くなる傾向があり、また、上記範囲を超えると、質量或いは体積当たりの放電容量が低くなり易い。なお、第1工程では、原料として添加する五酸化バナジウム及びリン酸の添加量から、生成するリン酸バナジウムリチウムの量を計算する。 In the first step, it is preferable that the mixing amount of reducing sugars is 0.3 to 40 parts by mass in terms of C atom with respect to 100 parts by mass of lithium vanadium phosphate to be produced. In the firing in the fifth step, the amount of C atoms contained in the reducing sugar tends to decrease after firing as compared to before firing. Therefore, in the first step, the reducing sugar is converted from the reducing sugar to a mixing amount of 0.3 to 40 parts by mass in terms of C atom with respect to 100 parts by mass of lithium vanadium phosphate to be produced. The content of the conductive carbon is likely to be 0 to 20 parts by mass in terms of C atom with respect to 100 parts by mass of lithium vanadium phosphate to be produced. When the mixing amount of reducing sugar with respect to 100 parts by mass of lithium vanadium phosphate to be formed is in the above range, lithium vanadium phosphate is excellent for a lithium secondary battery when it is used as a positive electrode active material of a lithium secondary battery Performance can be provided. In particular, in the first step, the mixing amount of reducing sugar is 0.5 to 40 parts by mass, preferably 5 to 30 parts by mass, in terms of C atom, with respect to 100 parts by mass of lithium vanadium phosphate to be produced. The content of conductive carbon converted from reducing sugar is 0.1 to 20 parts by weight, preferably 0.5 to 15 parts by weight with respect to 100 parts by weight of lithium vanadium phosphate to be produced. Since sufficient conductivity can be imparted by carbon carbon, the internal resistance of the lithium secondary battery can be lowered, and the discharge capacity per mass or volume can be increased. On the other hand, if the mixing amount of the reducing sugar with respect to 100 parts by mass of lithium vanadium phosphate to be produced is less than the above range, it tends to be difficult to obtain single phase lithium vanadium phosphate, and if it exceeds the above range The discharge capacity per mass or volume tends to be low. In the first step, the amount of lithium vanadium phosphate to be produced is calculated from the amounts of vanadium pentoxide and phosphoric acid added as raw materials.
 第1工程における、五酸化バナジウム、リン酸及び還元糖の製造履歴は問わないが、高純度のリン酸バナジウムリチウムを製造するために、可及的に不純物含有量が少ないものであることが好ましい。 Although the production history of vanadium pentoxide, phosphoric acid and reducing sugar in the first step does not matter, in order to produce lithium vanadium phosphate having high purity, it is preferable that the content of impurities be as low as possible. .
 第1工程で用いる水溶媒としては、水、水と親水性の有機溶媒との混合溶媒が挙げられる。 Examples of the water solvent used in the first step include water and a mixed solvent of water and a hydrophilic organic solvent.
 第1工程において、酸化バナジウム、リン酸及び還元糖を水溶媒へ添加する順序、混合手段は、特に制限されるものではなく、上記各原料が均一に分散した酸性の混合スラリーとなるように行われる。 In the first step, the order in which vanadium oxide, phosphoric acid and reducing sugar are added to the water solvent, and the mixing means are not particularly limited, and the lines are mixed so as to form an acidic mixed slurry in which the above respective materials are uniformly dispersed. It will be.
 本発明のリン酸バナジウムリチウムの製造方法に係る第2工程は、第1工程で得られる酸性の混合スラリーを加熱処理して、少なくとも五酸化バナジウムの還元反応を行って、混合スラリーを各成分が溶解した溶液に転換し、還元反応溶液を得る工程である。第2工程における加熱処理の温度は、60~100℃、好ましくは80~100℃である。この理由は、加熱処理の温度が60℃より低いと反応時間が長くなるため工業的に不利であり、また、加熱処理の温度を100℃より高くするには加圧容器を使用しなければならず、工業的に有利でない。従って、第2工程を、大気圧下に実施することが出来る。 In the second step of the method for producing lithium vanadium phosphate according to the present invention, the acidic mixed slurry obtained in the first step is heat-treated to perform at least a reduction reaction of vanadium pentoxide, and each component is mixed It is a step of converting into a dissolved solution to obtain a reduction reaction solution. The temperature of the heat treatment in the second step is 60 to 100 ° C., preferably 80 to 100 ° C. The reason for this is that the temperature of the heat treatment is lower than 60 ° C., which is industrially disadvantageous because the reaction time is prolonged, and a pressure vessel must be used to raise the temperature of the heat treatment to more than 100 ° C. It is not industrially advantageous. Thus, the second step can be carried out under atmospheric pressure.
 第2工程における加熱処理の時間は、特に制限されず、一般に0.2時間以上、好ましくは0.5~4時間、特に好ましくは0.5~2時間加熱処理すれば、還元反応溶液を得ることができる。 The time of the heat treatment in the second step is not particularly limited, and generally, heat treatment is performed for 0.2 hours or more, preferably 0.5 to 4 hours, particularly preferably 0.5 to 2 hours to obtain a reduction reaction solution. be able to.
 第2工程終了後に、還元反応溶液が、35℃を超える温度で4時間以上保持されていると反応が進行し、(VO)(HPO)(HO)等の析出物が生じ易いので、第2工程終了後は、速やかに還元反応溶液の温度を35℃以下に冷却することが、均一な原料混合溶液の調製の観点から好ましい。通常は第2工程終了後、還元反応溶液を、4時間以内で、35℃以下、好ましくは5~35℃、特に好ましくは10~25℃に冷却する。より好ましくは、第2工程終了後、還元反応溶液を、3時間以内で、35℃以下、好ましくは5~35℃、特に好ましくは10~25℃に冷却する。 After completion of the second step, if the reduction reaction solution is kept at a temperature exceeding 35 ° C. for 4 hours or more, the reaction proceeds, and precipitates such as (VO) (HPO 4 ) (H 2 O) 4 are easily generated Therefore, it is preferable from the viewpoint of preparation of a uniform raw material mixed solution that the temperature of the reduction reaction solution be rapidly cooled to 35 ° C. or less after the completion of the second step. Usually, after completion of the second step, the reduction reaction solution is cooled to 35 ° C. or less, preferably 5 to 35 ° C., particularly preferably 10 to 25 ° C. within 4 hours. More preferably, after completion of the second step, the reduction reaction solution is cooled to 35 ° C. or less, preferably 5 to 35 ° C., particularly preferably 10 to 25 ° C. within 3 hours.
 本発明のリン酸バナジウムリチウムの製造方法に係る第3工程は、第2工程を得られる還元反応溶液に水酸化リチウムを含む溶液を添加して原料混合溶液を得る工程である。 The third step of the method for producing lithium vanadium phosphate of the present invention is a step of adding a solution containing lithium hydroxide to the reduction reaction solution capable of obtaining the second step to obtain a raw material mixed solution.
 水酸化リチウムを含む溶液は、水酸化リチウムを水に溶解した溶液である。 The solution containing lithium hydroxide is a solution in which lithium hydroxide is dissolved in water.
 水酸化リチウムを含む溶液中の水酸化リチウム濃度は、5~20質量%、好ましくは10~15質量%である。水酸化リチウムを含む溶液中の水酸化リチウム濃度が上記範囲にあることにより、均一な原料混合溶液の調製と水酸化リチウムを含む溶液の添加に伴う発熱を制御し製造効率を高める観点から好ましい。 The concentration of lithium hydroxide in the solution containing lithium hydroxide is 5 to 20% by mass, preferably 10 to 15% by mass. When the concentration of lithium hydroxide in the solution containing lithium hydroxide is in the above range, it is preferable from the viewpoint of controlling the heat generation associated with the preparation of the uniform raw material mixed solution and the addition of the solution containing lithium hydroxide to improve the production efficiency.
 水酸化リチウムを含む溶液の添加量は、リン源中のP原子に対するリチウム源中のLi原子のモル比(Li/P)で、0.70~1.30、好ましくは0.83~1.17となる添加量である。水酸化リチウムを含む溶液の添加量が上記範囲にあることにより、最終生成物として単相のリン酸バナジウムリチウムが得られ易くなる観点から好ましい。また、第3工程においては、原料混合溶液のpHが、3~7、好ましくは4~6、特に好ましくは4~5となるように、水酸化リチウムを含む溶液を添加することが、均一な原料混合溶液の調製の観点から特に好ましい。 The addition amount of the solution containing lithium hydroxide is 0.70 to 1.30, preferably 0.83 to 1., as the molar ratio of Li atoms in the lithium source to P atoms in the phosphorus source (Li / P). The addition amount is 17. When the addition amount of the solution containing lithium hydroxide is in the above-mentioned range, it is preferable from the viewpoint that single phase lithium vanadium phosphate is easily obtained as a final product. In the third step, it is uniform to add a solution containing lithium hydroxide so that the pH of the raw material mixed solution is 3 to 7, preferably 4 to 6, particularly preferably 4 to 5. It is particularly preferable from the viewpoint of preparation of the raw material mixed solution.
 本発明のリン酸バナジウムリチウムの製造方法に係る第3工程において、水酸化リチウムの製造履歴は問わないが、高純度のリン酸バナジウムリチウムを製造するために、可及的に不純物含有量が少ないものであることが好ましい。 In the third step of the method for producing lithium vanadium phosphate according to the present invention, although the production history of lithium hydroxide is not limited, the content of impurities is as small as possible in order to produce lithium vanadium phosphate having high purity. It is preferred that
 第2工程を行い得られる還元反応溶液に、水酸化リチウムを含む溶液を添加すると発熱を伴う。そこで、第3工程では、第2工程を行い得られる還元反応溶液を35℃以下に保持しながら、水酸化リチウムを含む溶液を還元反応溶液に添加する。第3工程において、還元反応溶液を35℃以下に保持しながら、水酸化リチウムを含む溶液を還元反応溶液に添加することにより、均一な組成分布を有し、反応性に優れた反応前駆体が得られ易くなる。また、第3工程における水酸化リチウムを含む溶液の添加温度は、特により均一で反応性に優れた反応前駆体を得る観点から、5~35℃であることが好ましく、10~25℃であることが特に好ましい。一方、第3工程において、水酸化リチウムを含む溶液の添加温度が35℃を超えると、還元反応溶液中の成分と、水酸化リチウムとが反応して沈殿物が生じ、これをそのまま噴霧乾燥すると各成分が不均一に分布した反応前駆体となる観点から好ましくない。 When a solution containing lithium hydroxide is added to the reduction reaction solution obtained by performing the second step, heat is generated. Therefore, in the third step, the solution containing lithium hydroxide is added to the reduction reaction solution while maintaining the reduction reaction solution obtained by the second step at 35 ° C. or lower. In the third step, a solution containing lithium hydroxide is added to the reduction reaction solution while maintaining the reduction reaction solution at 35 ° C. or less, whereby a reaction precursor having uniform composition distribution and excellent reactivity is obtained. It becomes easy to obtain. Further, the addition temperature of the solution containing lithium hydroxide in the third step is preferably 5 to 35 ° C., and more preferably 10 to 25 ° C., from the viewpoint of obtaining a reaction precursor which is particularly uniform and excellent in reactivity. Is particularly preferred. On the other hand, in the third step, when the addition temperature of the solution containing lithium hydroxide exceeds 35 ° C., the components in the reduction reaction solution react with lithium hydroxide to form a precipitate, which is spray-dried as it is It is not preferable from the viewpoint of becoming a reaction precursor in which each component is unevenly distributed.
 また、第3工程において、水酸化リチウムを含む溶液の添加は、安定した品質のものを得る観点から一定速度で添加することが好ましい。 In the third step, addition of a solution containing lithium hydroxide is preferably performed at a constant rate from the viewpoint of obtaining stable quality.
 また、第3工程において、水酸化リチウムを含む溶液の添加後、還元反応溶液中の成分と、水酸化リチウムとの反応は、35℃以下では、極めてゆっくり進行し、例えば、原料混合溶液は、温度35℃では、200分程度は、析出物もなく濃青色の溶液状態を保持するが、200分を超えると徐々に析出物が観察され、溶液の色も濃青色から水色、更に緑色へと変化する。第3工程を行い得られる原料混合溶液は、濃青色の溶液であり、後述する第4工程において、濃青色の原料混合溶液をそのまま噴霧乾燥処理に付することが、均一な組成分布を有し、反応性に優れた反応前駆体を得る観点から好ましい。 Further, in the third step, after the addition of the solution containing lithium hydroxide, the reaction between the components in the reduction reaction solution and lithium hydroxide proceeds extremely slowly at 35 ° C. or lower, for example, the raw material mixed solution is At a temperature of 35 ° C., a dark blue solution is maintained without precipitate for about 200 minutes, but a precipitate is gradually observed after 200 minutes, and the color of the solution is also from dark blue to light blue to green. Change. The raw material mixed solution obtained by performing the third step is a dark blue solution, and in the fourth step to be described later, it is possible to spray dry the raw raw material mixed solution as it is, having a uniform composition distribution. It is preferable from the viewpoint of obtaining a reaction precursor excellent in reactivity.
 本発明のリン酸バナジウムリチウムの製造方法に係る第4工程は、第3工程を行い得られる原料混合溶液を噴霧乾燥して反応前駆体を得る工程である。 The 4th process concerning the manufacturing method of lithium vanadium phosphate of the present invention is a process of carrying out spray drying of the materials mixed solution obtained by performing the 3rd process, and obtaining a reaction precursor.
 液の乾燥方法には噴霧乾燥法以外の方法も知られているが、本発明においては噴霧乾燥法を選択することが有利であるとの知見に基づき、この乾燥方法を採用している。詳細には、噴霧乾燥法を用いると各成分が均一に分散し密に詰まった粒状物が得られることから、この粒状物を本発明のリン酸バナジウムリチウムの製造方法では反応前駆体とし、この反応前駆体を後述する第5工程において焼成することにより、X線回折的に単相のリン酸バナジウムリチウムを得ることができる。 Although methods other than spray drying are also known as methods for drying a liquid, in the present invention, this drying method is adopted based on the finding that it is advantageous to select the spray drying method. In detail, since the spray drying method uniformly disperses the respective components and tightly packed particles are obtained, the particles are used as a reaction precursor in the method of producing lithium vanadium phosphate of the present invention. By firing the reaction precursor in the fifth step described later, it is possible to obtain lithium vanadium phosphate single phase in an X-ray diffraction manner.
 噴霧乾燥法においては、所定手段によって液を霧化し、それによって生じた微細な液滴を乾燥させることで反応前駆体を得る。液の霧化には、例えば、回転円盤を用いる方法と、圧力ノズルを用いる方法がある。第5工程においてはいずれの方法を用いることもできる。 In the spray drying method, the reaction precursor is obtained by atomizing the liquid by a predetermined means and drying the fine droplets generated thereby. There are, for example, a method using a rotary disk and a method using a pressure nozzle for atomizing the liquid. Any method can be used in the fifth step.
 噴霧乾燥法においては、霧化された液の液滴の大きさが、安定した乾燥や、得られる乾燥粉の性状に影響を与える。この観点から、霧化された液滴の大きさは、好ましくは5~100μm、特に好ましくは10~50μmである。噴霧乾燥では、噴霧乾燥装置への液の供給量を、この観点を考慮して決定することが望ましい。 In the spray drying method, the size of droplets of the atomized liquid affects the stable drying and the properties of the resulting dried powder. From this point of view, the size of the atomized droplets is preferably 5 to 100 μm, particularly preferably 10 to 50 μm. In spray drying, it is desirable to determine the amount of liquid feed to the spray dryer taking this aspect into consideration.
 噴霧乾燥法により得られる反応前駆体は、第5工程において焼成に付されるが、第5工程を行い得られるリン酸バナジウムリチウムの二次粒子の平均粒子径等の粉体特性は、反応前駆体を概ね引き継ぐようになる。このため、噴霧乾燥は、反応前駆体の二次粒子が走査型電子顕微鏡(SEM)観察により求められる粒子径で5~100μm、特に10~50μmとなるように行われることが、目的とするリン酸バナジウムリチウムの粒子径の制御の点から好ましい。なお、噴霧乾燥装置における乾燥温度については、熱風入口温度を180~250℃、好ましくは200~240℃に調整し、粉体の温度を90~150℃、好ましくは100~130℃となるように調整することが、粉体の吸湿を防ぎ粉体の回収が容易になることから好ましい。 The reaction precursor obtained by the spray drying method is subjected to calcination in the fifth step, but the powder characteristics such as the average particle diameter of secondary particles of lithium vanadium phosphate obtained by the fifth step are the reaction precursor You will generally take over your body. For this reason, spray drying is performed such that the secondary particles of the reaction precursor are 5 to 100 μm, in particular 10 to 50 μm, in terms of the particle size determined by scanning electron microscope (SEM) observation. It is preferable from the point of control of the particle size of lithium vanadium oxide. As for the drying temperature in the spray dryer, the hot air inlet temperature is adjusted to 180 to 250 ° C., preferably 200 to 240 ° C., and the powder temperature is 90 to 150 ° C., preferably 100 to 130 ° C. Adjustment is preferable because it prevents moisture absorption of the powder and facilitates recovery of the powder.
 特許文献4で使用する反応前駆体は、結晶性の物質が含まれているのに対して、本発明のリン酸バナジウムリチウムの製造方法に係る第4工程を行い得られる反応前駆体は非晶質である。本発明者らは、反応前駆体が非晶質となっているため、特許文献4の反応前駆体と比べて、反応性に優れ、低温で焼結し、更に結晶性も高くなると推測している。なお、反応前駆体が非晶質であることは、X線回折分析により確認される。  While the reaction precursor used in Patent Document 4 contains a crystalline substance, the reaction precursor obtained by performing the fourth step of the method for producing lithium vanadium phosphate of the present invention is amorphous. It is quality. Since the reaction precursor is amorphous, the present inventors speculate that the reaction precursor is excellent in reactivity, sintered at a low temperature, and further the crystallinity is higher than that of the reaction precursor of Patent Document 4 There is. In addition, it is confirmed by X-ray diffraction analysis that the reaction precursor is amorphous.
 本発明のリン酸バナジウムリチウムの製造方法に係る第5工程は、第4工程を行い得られる反応前駆体を500~1300℃で焼成し、X線回折的に単相のリン酸バナジウムリチウムを得る工程である。 In the fifth step of the method for producing lithium vanadium phosphate according to the present invention, the reaction precursor obtained in the fourth step is calcined at 500 to 1300 ° C. to obtain single phase lithium vanadium phosphate in X-ray diffraction manner. It is a process.
 第5工程における焼成温度は、500~1300℃、好ましくは600~1000℃である。この理由は、焼成温度が500℃より低くなると単相になるまでの焼成時間が長くなり、一方、焼成温度が1300℃より高くなるとリン酸バナジウムリチウムが融解するためである。 The calcination temperature in the fifth step is 500 to 1300 ° C., preferably 600 to 1000 ° C. The reason for this is that when the firing temperature is lower than 500 ° C., the firing time until the single phase is prolonged, while when the firing temperature is higher than 1300 ° C., lithium vanadium phosphate melts.
 第5工程における焼成雰囲気は、バナジウムの酸化を防ぎ、かつ溶融を防ぐという理由から不活性ガス雰囲気又は還元雰囲気である。第5工程で用いることが出来る不活性ガスとしては、特に制限はなく、例えば窒素ガス、ヘリウムガス、アルゴンガス等が挙げられる。 The firing atmosphere in the fifth step is an inert gas atmosphere or a reducing atmosphere because it prevents the oxidation of vanadium and the melting thereof. There is no restriction | limiting in particular as an inert gas which can be used at a 5th process, For example, nitrogen gas, helium gas, argon gas etc. are mentioned.
 第5工程において、焼成時間は特に制限されず、一般に2時間以上、特に3~24時間焼成すれば、X線回折的に単相のリン酸バナジウムリチウムを得ることができる。 In the fifth step, the baking time is not particularly limited, and generally, when baked for 2 hours or more, particularly 3 to 24 hours, it is possible to obtain single phase lithium vanadium phosphate in X-ray diffraction.
 第5工程では、焼成を行い得られるリン酸バナジウムリチウムを、必要に応じて、複数回の焼成に付してもよい。 In the fifth step, lithium vanadium phosphate obtained by firing may be subjected to firing several times, if necessary.
 本発明のリン酸バナジウムリチウムの製造方法において、リン酸バナジウムリチウムの結晶構造を安定化し、サイクル特性等の電池性能をいっそう向上させることを目的として、必要により、Me源(Meは、V以外の原子番号11以上の金属元素又は遷移金属元素を示す。)を、本発明のリン酸バナジウムリチウムの製造方法に係る第1工程において、酸性の混合スラリーに混合し、引き続き、本発明のリン酸バナジウムリチウムの製造方法に係る第2工程~第5工程を行うことにより、前記一般式(1)で示されるリン酸バナジウムリチウムにMe元素がドープされて含有されたものが得られる。なお、本発明において、Me元素は、前記一般式(1)で示されるリン酸バナジウムリチウムのLiサイト又は/及びVサイトに置換されて存在する。 In the method of producing lithium vanadium phosphate according to the present invention, a Me source (Me is other than V, if necessary, for the purpose of stabilizing the crystal structure of lithium vanadium phosphate and further improving the battery performance such as cycle characteristics. Metal element or transition metal element having an atomic number of 11 or more) is mixed with the acidic mixed slurry in the first step of the method for producing lithium vanadium phosphate of the present invention, and subsequently, the vanadium phosphate of the present invention By performing the second to fifth steps according to the method for producing lithium, lithium vanadium phosphate represented by the general formula (1) can be obtained by doping it with Me element. In the present invention, the Me element is present as being substituted at the Li site and / or V site of lithium vanadium phosphate represented by the above general formula (1).
 Me源中のMeは、V以外の原子番号11以上の金属元素又は遷移金属元素であり、好ましいMe元素としては、Sr、Ba、Sc、Y、Hf、Ta、W、Ru、Os、Ag、Zn、Si、Ga、Ge、Sn、Bi、S、Se、Te、Cl、Br、I、Na、K、Mg、Ca、Al、Mn、Co、Ni、Fe、Ti、Zr、Bi、Cr、Nb、Mo、Cu等が挙げられ、これらは1種単独又は2種以上の組み合わせであってもよい。 Me in the Me source is a metal element or transition metal element having an atomic number of 11 or more other than V, and preferable Me elements include Sr, Ba, Sc, Y, Hf, Ta, W, Ru, Os, Ag, Zn, Si, Ga, Ge, Sn, Bi, S, Se, Te, Cl, Br, I, Na, K, Mg, Ca, Al, Mn, Co, Ni, Fe, Ti, Zr, Bi, Cr, Nb, Mo, Cu, etc. may be mentioned, and these may be used alone or in combination of two or more.
 Me源としては、Me元素を有する酸化物、水酸化物、ハロゲン化物、炭酸塩、硝酸塩、炭酸塩、有機酸塩等が挙げられる。なお、第1工程において、Me源を混合する場合、Me源を混合スラリー中に溶解させて存在させてもよく、固形物として存在させてもよい。混合スラリー中に固形物としてMe源を存在させる場合には、平均粒子径が100μm以下、好ましくは0.1~50μmのものを用いることが、優れた反応性を有する反応前駆体を得る観点から好ましい。また、第1工程において、Me源を混合する場合には、Me源の混合量は、ドープさせるMe元素の種類にもよるが、多くの場合、リン源中のP原子に対するバナジウム化合物のV原子とMe源中のMe原子の合計(V+Me=M)のモル比(M/P)で、0.50~0.80、好ましくは0.60~0.73となり、Me/Vのモル比が0より大きく0.45以下、好ましくは0より大きく0.1以下となる混合量が好ましい。 Examples of the Me source include oxides having a Me element, hydroxides, halides, carbonates, nitrates, carbonates, organic acid salts and the like. In the first step, when the Me source is mixed, the Me source may be dissolved and present in the mixed slurry, or may be present as a solid. When a source of Me is present as a solid in the mixed slurry, using one having an average particle diameter of 100 μm or less, preferably 0.1 to 50 μm is preferable from the viewpoint of obtaining a reaction precursor having excellent reactivity. preferable. Also, in the first step, when mixing the Me source, the mixing amount of the Me source depends on the kind of Me element to be doped, but in many cases, the V atom of the vanadium compound relative to P atom in the phosphorus source The molar ratio (M / P) of the total (V + Me = M) of Me atoms in the source and the Me source is 0.50 to 0.80, preferably 0.60 to 0.73, and the molar ratio of Me / V is A mixing amount of more than 0 and 0.45 or less, preferably more than 0 and 0.1 or less is preferable.
 また、本発明のリン酸バナジウムリチウムの製造方法では、第5工程を行い得られるリン酸バナジウムリチウムに対して、更に加熱処理を施して、リン酸バナジウムリチウムに含有される導電性炭素量を調整する第6工程を施すことができる。具体的な第6工程の操作は、第5工程を行い得られる導電性炭素を含有するリン酸バナジウムリチウムに加熱処理を施して導電性炭素を酸化処理することにより行う。 Moreover, in the method for producing lithium vanadium phosphate according to the present invention, the lithium vanadium phosphate obtained in the fifth step is further subjected to a heat treatment to adjust the amount of conductive carbon contained in lithium vanadium phosphate. Step 6 can be performed. A specific operation of the sixth step is performed by subjecting lithium vanadium phosphate containing conductive carbon obtained in the fifth step to a heat treatment to oxidize the conductive carbon.
 第6工程に係る加熱処理は、酸素含有雰囲気下に行うことが好ましい。第6工程における加熱処理の雰囲気中の酸素濃度は、5Vol%以上、特に好ましくは10~30Vol%であることが、導電性炭素を高効率で酸化処理するという観点から好ましい。第6工程に係る加熱処理の温度は、250~450℃、好ましくは300~400℃であることが、導電性炭素を高効率で酸化処理するという観点から好ましい。第6工程に係る加熱処理の時間は、特に制限されず、加熱処理の時間が長くなるほどリン酸バナジウムリチウムに含有される導電性炭素の含有量が低くなる。第6工程に係る加熱処理では、所望の導電性炭素の含有量となるよう予め適宜好適な条件を設定して行うことが好ましい。 The heat treatment according to the sixth step is preferably performed in an oxygen-containing atmosphere. The oxygen concentration in the atmosphere of the heat treatment in the sixth step is preferably 5 vol% or more, particularly preferably 10 to 30 vol%, from the viewpoint of oxidizing the conductive carbon with high efficiency. The temperature of the heat treatment according to the sixth step is preferably 250 to 450 ° C., preferably 300 to 400 ° C. from the viewpoint of oxidizing the conductive carbon with high efficiency. The time of the heat treatment according to the sixth step is not particularly limited, and the content of conductive carbon contained in lithium vanadium phosphate decreases as the heat treatment time increases. In the heat treatment according to the sixth step, it is preferable to carry out by appropriately setting suitable conditions in advance so as to obtain a desired content of conductive carbon.
 このようにして、本発明のリン酸バナジウムリチウムの製造方法を行い得られるリン酸バナジウムリチウムは、X線回折的に単相のリン酸バナジウムリチウムであり、平均一次粒子径が10μm以下、好ましくは0.01~5μmの一次粒子が多数集合して、平均粒子径が5~100μm、好ましくは10~50μmの二次粒子を形成する凝集状のリン酸バナジウムリチウムであることが好ましい。 Thus, the lithium vanadium phosphate obtained by the method for producing lithium vanadium phosphate of the present invention is single phase lithium vanadium phosphate in X-ray diffraction, and the average primary particle diameter is preferably 10 μm or less, preferably It is preferable to use lithium vanadium phosphate in the form of agglomerates in which a large number of primary particles of 0.01 to 5 μm gather to form secondary particles having an average particle diameter of 5 to 100 μm, preferably 10 to 50 μm.
 本発明のリン酸バナジウムリチウムの製造方法では、得られるリン酸バナジウムリチウムに対して、更に必要に応じて解砕処理、又は粉砕処理し、更に分級を行ってもよい。 In the method for producing lithium vanadium phosphate of the present invention, the obtained lithium vanadium phosphate may be further subjected to crushing treatment or grinding treatment as required, and further classification.
 また、本発明のリン酸バナジウムリチウムの製造方法を行い得られるリン酸バナジウムリチウムは、粒子が還元糖に起因する導電性炭素でコーティングされたリン酸バナジウムリチウム炭素複合体であってもよい。本発明のリン酸バナジウムリチウムの製造方法を行い得られるリン酸バナジウムリチウム炭素複合体を、正極活物質として用いることにより、いっそう高い放電容量のリチウム二次電池を得ることができる。
 また、本発明のリン酸バナジウムリチウムの製造方法を行い得られるリン酸バナジウムリチウムは、固体電解質での用途にも用いられる。
The lithium vanadium phosphate obtained by the method for producing lithium vanadium phosphate of the present invention may be a lithium vanadium phosphate carbon composite in which particles are coated with conductive carbon derived from reducing sugar. The lithium secondary battery of higher discharge capacity can be obtained by using the lithium vanadium phosphate complex obtained by the method of the present invention for producing lithium vanadium phosphate as the positive electrode active material.
Further, lithium vanadium phosphate obtained by the method for manufacturing lithium vanadium phosphate of the present invention is also used for applications in a solid electrolyte.
 以下、本発明を実施例により詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
<第1工程>
 5Lビーカーにイオン交換水2Lを入れ、これに85%リン酸605gと五酸化バナジウム320gとスクロース(ショ糖)170gを投入し室温(25℃)で攪拌することにより黄土色の酸性の混合スラリーを得た(pH0.9)。
<第2工程>
 得られた混合スラリーを95℃で1時間、攪拌下に加熱し還元反応を行い、濃青色の還元反応溶液を得た(pH1.7)。
<第3工程>
 還元反応溶液を室温(25℃)まで2時間で冷却した。次いで水酸化リチウム・1水塩220gをイオン交換水1.5Lに溶解させた水酸化リチウム溶液を調製した。ジャケット付反応容器を冷却機で冷却し、反応溶液を22℃の温度範囲に保持しながら、水酸化リチウム溶液を60分で一定速度で反応溶液に添加し、濃青色の原料混合溶液を得た(pH4.6)。
<第4工程>
 次いで、濃青色の原料混合溶液を、出口温度を120℃に設定した噴霧乾燥装置に供給し、反応前駆体を得た。反応前駆体のSEM観察法により求められる平均二次粒子径は12μmであった。
 得られた反応前駆体を、線源としてCuKα線を用いてX線回折測定を行ったところ、該反応前駆体は、非晶質であることが確認できた。また、反応前駆体のX線回折図を図1に示す。また、反応前駆体の電子顕微鏡写真(SEM像)を図2に示す。
<第5工程>
 得られた反応前駆体をムライト製匣鉢に入れ、窒素雰囲気下600℃で10時間焼成した。得られたリン酸バナジウムリチウム試料をX線回折分析した結果、単相のリン酸バナジウムリチウムであることを確認した。得られたリン酸バナジウムリチウム試料のX線回折図を図3に示す。また、得られたリン酸バナジウムリチウム試料の電子顕微鏡写真(SEM像)を図4に示す。
 また、得られたリン酸バナジウムリチウム試料の残存炭素量を、TOC全有機炭素計(島津製作所製TOC-5000A)にて測定することによりC原子の含有量として求めた。
Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited to these examples.
Example 1
<First step>
Add 2 L of ion-exchanged water to a 5 L beaker, add 605 g of 85% phosphoric acid, 320 g of vanadium pentoxide and 170 g of sucrose (sucrose) to this, and stir at room temperature (25 ° C) to mix the yellowish acid mixed slurry Obtained (pH 0.9).
Second step
The obtained mixed slurry was heated at 95 ° C. for 1 hour under stirring to conduct a reduction reaction to obtain a dark blue reduction reaction solution (pH 1.7).
<Third step>
The reduction reaction solution was cooled to room temperature (25 ° C.) for 2 hours. Next, a lithium hydroxide solution was prepared by dissolving 220 g of lithium hydroxide monohydrate in 1.5 L of ion-exchanged water. The jacketed reaction vessel was cooled by a cooler, and while maintaining the reaction solution in a temperature range of 22 ° C., a lithium hydroxide solution was added to the reaction solution at a constant rate in 60 minutes to obtain a dark blue raw material mixed solution (PH 4.6).
<The 4th process>
Then, the dark blue raw material mixed solution was supplied to a spray dryer whose outlet temperature was set to 120 ° C. to obtain a reaction precursor. The average secondary particle size determined by SEM observation of the reaction precursor was 12 μm.
When the obtained reaction precursor was subjected to X-ray diffraction measurement using CuKα radiation as a radiation source, it could be confirmed that the reaction precursor was amorphous. Also, an X-ray diffraction diagram of the reaction precursor is shown in FIG. Moreover, the electron micrograph (SEM image) of the reaction precursor is shown in FIG.
<Fifth step>
The obtained reaction precursor was placed in a mullite-made mortar and fired at 600 ° C. for 10 hours under a nitrogen atmosphere. As a result of X-ray diffraction analysis of the obtained lithium vanadium phosphate sample, it was confirmed to be single-phase lithium vanadium phosphate. The X-ray diffraction pattern of the obtained lithium vanadium phosphate sample is shown in FIG. Moreover, the electron micrograph (SEM image) of the obtained lithium vanadium phosphate sample is shown in FIG.
Further, the residual carbon content of the obtained lithium vanadium phosphate sample was determined as a content of C atom by measuring with a TOC total organic carbon meter (TOC-5000A manufactured by Shimadzu Corporation).
(実施例2~4)
 第5工程において、焼成温度を700~900℃とする以外は、実施例1と同様に反応を行ってリン酸バナジウムリチウム試料を得た。
 また、得られたリン酸バナジウムリチウム試料のX線回折分析した結果、何れも単相のリン酸バナジウムリチウムであることを確認した。また、実施例1と同様にして残存炭素量を求めた。 
(Examples 2 to 4)
In the fifth step, a reaction was performed in the same manner as in Example 1 except that the firing temperature was set to 700 to 900 ° C., to obtain a lithium vanadium phosphate sample.
Further, as a result of X-ray diffraction analysis of the obtained lithium vanadium phosphate sample, it was confirmed that all were single phase lithium vanadium phosphate. Further, the amount of residual carbon was determined in the same manner as in Example 1.
Figure JPOXMLDOC01-appb-T000001
注)1)第1工程の「V/Pのモル比」は添加したリン酸中のP原子に対する五酸化バナジウム中のV原子のモル比を示す。
2)第3工程の「Li/Pのモル比」は、第1工程で添加したリン酸中のP原子に対する第3工程で添加した水酸化リチウム中のLi原子のモル比を示す。
3)第3工程の「添加後のpH」は、水酸化リチウムを含む溶液を添加した後の反応液のpHを示す。
Figure JPOXMLDOC01-appb-T000001
Note) 1) The “V / P molar ratio” in the first step indicates the molar ratio of V atom in vanadium pentoxide to P atom in the added phosphoric acid.
2) The “molar ratio of Li / P” in the third step indicates the molar ratio of Li atoms in lithium hydroxide added in the third step to P atoms in phosphoric acid added in the first step.
3) The “pH after addition” in the third step indicates the pH of the reaction solution after the addition of the solution containing lithium hydroxide.
(比較例1)
 5Lビーカーにイオン交換水3.5Lを入れ、これに水酸化リチウム・1水塩220gと五酸化バナジウム320gと85%リン酸605gとスクロース170gを加えた後、95℃で1時間、攪拌下に加熱して緑色のスラリーを得た。次いで、出口温度を120℃に設定した噴霧乾燥装置に、該スラリーを供給し、反応前駆体を得た。得られた反応前駆体をX線回折分析を行ったところ、該反応前駆体は、明確な回折ピークが確認できた。また、反応前駆体のX線回折図を図1に併記した。
 得られた反応前駆体をムライト製匣鉢に入れ、窒素雰囲気下600℃で10時間焼成して、リン酸バナジウムリチウム試料を得た。
 得られたリン酸バナジウムリチウム試料のX線回折分析図を図3に併記した。X線回折分析の結果、リン酸バナジウムリチウム以外の異相の存在が確認できた。また、実施例1と同様にして残存炭素量を求めたところ、残存炭素量は1.9質量%であった。
(Comparative example 1)
In a 5 L beaker, put 3.5 L of ion-exchanged water, add 220 g of lithium hydroxide monohydrate, 320 g of vanadium pentoxide, 605 g of 85% phosphoric acid and 170 g of sucrose, and stir at 95 ° C. for 1 hour Heating gave a green slurry. Then, the slurry was supplied to a spray dryer whose outlet temperature was set to 120 ° C. to obtain a reaction precursor. When the obtained reaction precursor was subjected to X-ray diffraction analysis, a clear diffraction peak could be confirmed for the reaction precursor. Also, the X-ray diffraction pattern of the reaction precursor is shown in FIG.
The obtained reaction precursor was placed in a mullite-made mortar and fired at 600 ° C. for 10 hours under a nitrogen atmosphere to obtain a lithium vanadium phosphate sample.
The X-ray diffraction analysis of the obtained lithium vanadium phosphate sample is also shown in FIG. As a result of X-ray diffraction analysis, the presence of a heterophase other than lithium vanadium phosphate was confirmed. Further, the amount of remaining carbon was determined in the same manner as in Example 1. As a result, the amount of remaining carbon was 1.9% by mass.
(比較例2)
 5Lビーカーにイオン交換水2Lを入れ、これに水酸化リチウム・1水塩252gを加えて溶解した。この溶液に五酸化バナジウム364gを加えて1h攪拌した。この液にグルコース(ブドウ糖)72gと85%リン酸692gを加えて1時間攪拌して原料混合液を得た。次いで、出口温度を120℃に設定した噴霧乾燥装置に、原料混合液を供給し、反応前駆体を得た。また、反応前駆体のX線回折図を図1に併記した。
 得られた反応前駆体をムライト製匣鉢に入れ、窒素雰囲気下900℃で12時間焼成した。焼成物をジェットミルにより解砕してリン酸バナジウムリチウム試料を得た。得られたリン酸バナジウムリチウム試料のX線回折分析した結果、単相のリン酸バナジウムリチウムであることを確認した。また、実施例1と同様にして残存炭素量を求めたところ、残存炭素量は0.1質量%であった。
(Comparative example 2)
In a 5 L beaker, 2 L of ion exchanged water was placed, and 252 g of lithium hydroxide monohydrate was added and dissolved therein. To this solution was added 364 g of vanadium pentoxide and stirred for 1 h. To this solution were added 72 g of glucose (dextrose) and 692 g of 85% phosphoric acid, and the mixture was stirred for 1 hour to obtain a raw material mixed solution. Next, the raw material mixture was supplied to a spray drying apparatus in which the outlet temperature was set to 120 ° C. to obtain a reaction precursor. Also, the X-ray diffraction pattern of the reaction precursor is shown in FIG.
The obtained reaction precursor was placed in a mullite-made mortar and fired at 900 ° C. for 12 hours under a nitrogen atmosphere. The fired product was crushed by a jet mill to obtain a lithium vanadium phosphate sample. As a result of X-ray diffraction analysis of the obtained lithium vanadium phosphate sample, it was confirmed to be single phase lithium vanadium phosphate. Further, when the amount of remaining carbon was determined in the same manner as in Example 1, the amount of remaining carbon was 0.1% by mass.
(実施例5)
<第1工程>
 5Lビーカーにイオン交換水2.5Lを入れ、これに85%リン酸864.7gと五酸化バナジウム457.7gとラクトース・1水和物156.6gを投入し室温(25℃)で攪拌することにより黄土色の酸性の混合スラリーを得た(pH0.9)。
<第2工程>
 得られた混合スラリーを95℃で1時間、攪拌下に加熱し還元反応を行い、濃青色の還元反応溶液を得た(pH1.7)。
<第3工程>
 還元反応溶液を室温(25℃)まで2時間で冷却した。次いで水酸化リチウム・1水塩314.7gをイオン交換水1.5Lに溶解させた水酸化リチウム溶液を調製した。ジャケット付反応容器を冷却機で冷却し、反応溶液を22℃の温度範囲に保持しながら、水酸化リチウム溶液を一定速度で60分で反応溶液に添加し、濃青色の原料混合溶液を得た(pH4.6)。
<第4工程>
 次いで、濃青色の原料混合溶液を、出口温度を120℃に設定した噴霧乾燥装置に供給し、反応前駆体を得た。得られた反応前駆体を、線源としてCuKα線を用いてX線回折測定を行ったところ、該反応前駆体は、非晶質であることが確認できた。また、反応前駆体の電子顕微鏡写真(SEM像)を図5に示す。
<第5工程>
 得られた反応前駆体をムライト製匣鉢に入れ,窒素雰囲気下800℃で10時間焼成した。得られたリン酸バナジウムリチウム試料をX線回折分析した結果、単相のリン酸バナジウムリチウムであることを確認した。また、リン酸バナジウムリチウム試料のX線回折図を図6に示す。得られたリン酸バナジウムリチウム試料の電子顕微鏡写真(SEM像)を図7に示す。
 また、得られたリン酸バナジウムリチウム試料の残存炭素量を、TOC全有機炭素計(島津製作所製TOC-5000A)にて測定したところ、1.5質量%であった。また、BET比表面積は9.8m2/gであった。
(Example 5)
<First step>
Put 2.5L of ion-exchanged water in a 5L beaker, and add 864.7g of 85% phosphoric acid, 457.7g of vanadium pentoxide and 156.6g of lactose monohydrate to this and stir at room temperature (25 ° C) As a result, an ocher colored acidic mixed slurry was obtained (pH 0.9).
Second step
The obtained mixed slurry was heated at 95 ° C. for 1 hour under stirring to conduct a reduction reaction to obtain a dark blue reduction reaction solution (pH 1.7).
<Third step>
The reduction reaction solution was cooled to room temperature (25 ° C.) for 2 hours. Next, a lithium hydroxide solution was prepared by dissolving 314.7 g of lithium hydroxide monohydrate in 1.5 L of ion-exchanged water. The jacketed reaction vessel was cooled by a cooler, and while maintaining the reaction solution in a temperature range of 22 ° C., a lithium hydroxide solution was added to the reaction solution at a constant rate in 60 minutes to obtain a dark blue raw material mixed solution (PH 4.6).
<The 4th process>
Then, the dark blue raw material mixed solution was supplied to a spray dryer whose outlet temperature was set to 120 ° C. to obtain a reaction precursor. When the obtained reaction precursor was subjected to X-ray diffraction measurement using CuKα radiation as a radiation source, it could be confirmed that the reaction precursor was amorphous. Moreover, the electron micrograph (SEM image) of the reaction precursor is shown in FIG.
<Fifth step>
The obtained reaction precursor was placed in a mullite-made mortar and fired at 800 ° C. for 10 hours under a nitrogen atmosphere. As a result of X-ray diffraction analysis of the obtained lithium vanadium phosphate sample, it was confirmed to be single-phase lithium vanadium phosphate. Also, an X-ray diffraction diagram of a lithium vanadium phosphate sample is shown in FIG. The electron micrograph (SEM image) of the obtained lithium vanadium phosphate sample is shown in FIG.
In addition, the amount of remaining carbon of the obtained lithium vanadium phosphate sample was measured with a TOC total organic carbon meter (TOC-5000A manufactured by Shimadzu Corp.) and found to be 1.5% by mass. Further, the BET specific surface area was 9.8 m 2 / g.
(比較例3)
 第2工程終了後、反応溶液を室温(25℃)まで2時間で冷却し、第3工程において、反応容器を冷却機で冷却せずにそのまま水酸化リチウム溶液を一定速度で15分で添加した以外は実施例1と同様に反応を行って、リン酸バナジウムリチウム試料を得た。なお、水酸化リチウム溶液の添加中の反応溶液の温度は25℃から40℃に上昇した。また、第3工程後の原料混合溶液は青色のスラリー(pH4.7)であった。
 次いで、第4工程にて青色のスラリーを、出口温度を120℃に設定した噴霧乾燥装置に供給し、反応前駆体を得た。得られた反応前駆体をX線回折測定を行ったところ、該反応前駆体は、明確な回折ピークが確認できた。また、反応前駆体のX線回折図を図8に示した。
 次いで、得られた反応前駆体をムライト製匣鉢に入れ、窒素雰囲気下600℃で10時間焼成して、リン酸バナジウムリチウム試料を得た。
 得られたリン酸バナジウムリチウム試料のX線回折分析図を図9に示した。X線回折分析の結果、リン酸バナジウムリチウム以外の異相の存在が確認できた。また、実施例1と同様にして残存炭素量を求めたところ、残存炭素量は1.8質量%であった。
(Comparative example 3)
After completion of the second step, the reaction solution was cooled to room temperature (25 ° C.) for 2 hours, and in the third step, the lithium hydroxide solution was added as it was at a constant rate for 15 minutes without cooling the reaction vessel with a cooler. The reaction was carried out in the same manner as in Example 1 except for using a lithium vanadium phosphate sample. The temperature of the reaction solution during the addition of the lithium hydroxide solution rose from 25 ° C. to 40 ° C. Moreover, the raw material mixed solution after the 3rd process was a blue slurry (pH 4.7).
Next, in the fourth step, the blue slurry was supplied to a spray drying apparatus whose outlet temperature was set to 120 ° C. to obtain a reaction precursor. When the obtained reaction precursor was subjected to X-ray diffraction measurement, a clear diffraction peak could be confirmed for the reaction precursor. Moreover, the X-ray diffraction pattern of the reaction precursor is shown in FIG.
Next, the obtained reaction precursor was placed in a mullite-made mortar and fired at 600 ° C. for 10 hours under a nitrogen atmosphere to obtain a lithium vanadium phosphate sample.
The X-ray diffraction analysis of the obtained lithium vanadium phosphate sample is shown in FIG. As a result of X-ray diffraction analysis, the presence of a heterophase other than lithium vanadium phosphate was confirmed. Further, the amount of remaining carbon was determined in the same manner as in Example 1. As a result, the amount of remaining carbon was 1.8% by mass.
<電池性能の評価>
<電池性能試験>
(I)リチウム二次電池の作製;
 上記のように製造した、実施例1、実施例4、実施例5、比較例2及び比較例3のリン酸バナジウムリチウムの各試料91質量%、黒鉛粉末6質量%、ポリフッ化ビニリデン3質量%を混合して正極剤とし、これをN-メチル-2-ピロリジノンに分散させて混練ペーストを調製した。得られた混練ペーストをアルミ箔に塗布したのち乾燥、プレスして直径15mmの円盤に打ち抜いて正極板を得た。
 この正極板を用いて、セパレーター、負極、正極、集電板、取り付け金具、外部端子、電解液等の各部材を使用してリチウム二次電池を製作した。このうち、負極は金属リチウム箔を用い、電解液にはエチレンカーボネートとメチルエチルカーボネートの1:1混練液1リットルにLiPF61モルを溶解したものを使用した。
<Evaluation of battery performance>
<Battery performance test>
(I) Preparation of lithium secondary battery;
91% by mass of each sample of lithium vanadium phosphate of Example 1, Example 4, Example 5, Comparative Example 2 and Comparative Example 3 manufactured as described above, 6% by mass of graphite powder, 3% by mass of polyvinylidene fluoride The mixture was mixed to form a positive electrode agent, and this was dispersed in N-methyl-2-pyrrolidinone to prepare a kneading paste. The obtained kneaded paste was applied onto an aluminum foil, dried, pressed and punched out into a disk having a diameter of 15 mm to obtain a positive electrode plate.
Using this positive electrode plate, a lithium secondary battery was manufactured using each member such as a separator, a negative electrode, a positive electrode, a current collecting plate, a mounting bracket, an external terminal, and an electrolytic solution. Among them, a metal lithium foil was used for the negative electrode, and an electrolyte was prepared by dissolving 1 mol of LiPF 6 in 1 liter of a 1: 1 mixed solution of ethylene carbonate and methyl ethyl carbonate.
(2)電池の性能評価
 作製したリチウム二次電池を下記条件で作動させ、電池性能を評価した。
<サイクル特性の評価>
 0.5Cで4.2Vまで充電させ、引き続いて4.2Vで保持させる全充電時間5時間の定電流定電圧(CCCV)充電により充電させた後、0.1Cで2.0Vまで放電させる定電流(CC)放電を行い、これらの操作を1サイクルとして1サイクル毎に放電容量を測定した。このサイクルを20サイクル繰り返し、1サイクル目と20サイクル目のそれぞれの放電容量から、下記式により容量維持率を算出した。なお、1サイクル目の放電容量を初期放電容量とした。
(2) Performance Evaluation of Battery The prepared lithium secondary battery was operated under the following conditions to evaluate the battery performance.
<Evaluation of cycle characteristics>
Charge by constant current constant voltage (CCCV) charge for 5 hours with full charge time to charge to 4.2V at 0.5C, and then hold to 4.2V constant to discharge to 2.0V at 0.1C Current (CC) discharge was performed, and the discharge capacity was measured every cycle with these operations as one cycle. This cycle was repeated 20 cycles, and the capacity retention rate was calculated from the discharge capacity of each of the first cycle and the 20th cycle according to the following equation. The discharge capacity at the first cycle was taken as the initial discharge capacity.
   容量維持率(%)=((20サイクル目の放電容量)/(1サイクル目の放電容量))×100 Capacity retention rate (%) = ((20th cycle discharge capacity) / (1st cycle discharge capacity)) × 100
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例6)
<第6工程>
 実施例3で得られたリン酸バナジウムリチウム試料(残存炭素量1.6質量%)を、電気炉で大気雰囲気下(酸素濃度20Vol%)、350℃で15時間加熱処理を行った。
 得られたリン酸バナジウムリチウム試料をX線回折分析した結果、単相のリン酸バナジウムリチウムであることを確認した。また、得られたリン酸バナジウムリチウム試料の残存炭素量を、TOC全有機炭素計(島津製作所製TOC-5000A)にて測定したところ、0.1質量%であった。また、BET比表面積は7.1m/gであった。
(Example 6)
<Step 6>
The lithium vanadium phosphate sample (residue carbon content: 1.6% by mass) obtained in Example 3 was subjected to heat treatment at 350 ° C. for 15 hours in an air atmosphere (oxygen concentration: 20 Vol%) in an electric furnace.
As a result of X-ray diffraction analysis of the obtained lithium vanadium phosphate sample, it was confirmed to be single-phase lithium vanadium phosphate. In addition, the amount of remaining carbon of the obtained lithium vanadium phosphate sample was measured with a TOC total organic carbon meter (TOC-5000A manufactured by Shimadzu Corp.) and found to be 0.1 mass%. Moreover, the BET specific surface area was 7.1 m < 2 > / g.

Claims (10)

  1.  ナシコン(NASICON)構造を有するリン酸バナジウムリチウムの製造方法であって、
     五酸化バナジウム、リン酸及び還元糖を水溶媒中で混合して酸性の混合スラリーを調製する第1工程、次に該混合スラリーを加温処理して溶液化し、還元反応溶液を得る第2工程、次に該還元反応溶液を35℃以下に保持しながら、該還元反応溶液に水酸化リチウムを含む溶液を添加して原料混合溶液を調製する第3工程、次に該原料混合溶液を噴霧乾燥処理して反応前駆体を得る第4工程、次に該反応前駆体を不活性ガス雰囲気又は還元雰囲気で500~1300℃で焼成して、リン酸バナジウムリチウムを得る第5工程を有することを特徴とするリン酸バナジウムリチウムの製造方法。
    A method for producing lithium vanadium phosphate having a NASICON structure, comprising:
    A first step of mixing vanadium pentoxide, phosphoric acid and reducing sugar in an aqueous solvent to prepare an acidic mixed slurry, and then heating the mixed slurry to form a solution to obtain a reduced reaction solution Then, while maintaining the reduction reaction solution at 35 ° C. or less, a third step of preparing a raw material mixed solution by adding a solution containing lithium hydroxide to the reduction reaction solution, and then spray drying the raw material mixed solution It has a fourth step of processing to obtain a reaction precursor, and then a fifth step of calcining the reaction precursor at 500 to 1300 ° C. in an inert gas atmosphere or a reducing atmosphere to obtain lithium vanadium phosphate. And a method of producing lithium vanadium phosphate.
  2.  第2工程における加温処理の温度が、60~100℃であることを特徴とする請求項1記載のリン酸バナジウムリチウムの製造方法。 The method for producing lithium vanadium phosphate according to claim 1, wherein the temperature of the heating treatment in the second step is 60 to 100 ° C.
  3.  前記還元糖が、スクロース及びラクトースから選ばれる1種又は2種であることを特徴とする請求項1又は2いずれか1項記載のリン酸バナジウムリチウムの製造方法。 The method for producing lithium vanadium phosphate according to any one of claims 1 and 2, wherein the reducing sugar is one or two selected from sucrose and lactose.
  4.  前記水酸化リチウムを含む溶液中の水酸化リチウムの濃度が、5~20質量%であることを特徴とする請求項1~3いずれか1項記載のリン酸バナジウムリチウムの製造方法。 The method for producing lithium vanadium phosphate according to any one of claims 1 to 3, wherein the concentration of lithium hydroxide in the solution containing lithium hydroxide is 5 to 20% by mass.
  5.  前記第3工程を行い得られる原料混合溶液が、濃青色の溶液であり、該濃青色の溶液を第4工程で噴霧乾燥処理することを特徴とする請求項1~4いずれか1項記載のリン酸バナジウムリチウムの製造方法。 The raw material mixed solution obtained by performing the third step is a dark blue solution, and the deep blue solution is spray-dried in the fourth step. Method for producing lithium vanadium phosphate.
  6.  前記第3工程において、前記原料混合溶液のpHが3~7となるように、前記水酸化リチウム含む溶液を添加することを特徴とする請求項1~5いずれか1項記載のリン酸バナジウムリチウムの製造方法。 The lithium vanadium phosphate according to any one of claims 1 to 5, wherein the lithium hydroxide solution is added such that the pH of the raw material mixed solution is 3 to 7 in the third step. Manufacturing method.
  7.  前記第1工程において、更に、Me源(MeはV以外の原子番号11以上の金属元素又は遷移金属元素を示す。)を前記酸性の混合スラリーに混合することを特徴とする請求項1~6いずれか1項記載のリン酸バナジウムリチウムの製造方法。 7. The method according to claim 1, wherein in the first step, a Me source (Me represents a metal element having an atomic number of 11 or more other than V or a transition metal element other than V) is further mixed into the acidic mixed slurry. The manufacturing method of vanadium vanadium phosphate of any one statement.
  8.  更に、第5工程を行い得られるリン酸バナジウムリチウムを加熱処理する第6工程を設けることを特徴とする請求項1~7いずれか1項記載のリン酸バナジウムリチウムの製造方法。 The method for producing lithium vanadium phosphate according to any one of claims 1 to 7, further comprising a sixth step of heat-treating lithium vanadium phosphate obtained in the fifth step.
  9.  前記第6工程において、加熱処理を酸素含有雰囲気中で行うことを特徴とする請求項8記載のリン酸バナジウムリチウムの製造方法。 9. The method according to claim 8, wherein the heat treatment is performed in an oxygen-containing atmosphere in the sixth step.
  10.  前記第6工程における加熱処理温度が、250~450℃であることを特徴とする請求項8又は9いずれか1項記載のリン酸バナジウムリチウムの製造方法。 The method for producing lithium vanadium phosphate according to any one of claims 8 or 9, wherein the heat treatment temperature in the sixth step is 250 to 450 属 C.
PCT/JP2018/027703 2017-08-17 2018-07-24 Method for producing lithium vanadium phosphate WO2019035322A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ATA9262/2018A AT522061B1 (en) 2017-08-17 2018-07-24 Manufacturing process for lithium vanadium phosphate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017157417 2017-08-17
JP2017-157417 2017-08-17
JP2018111111A JP7144785B2 (en) 2017-08-17 2018-06-11 Method for producing lithium vanadium phosphate
JP2018-111111 2018-06-11

Publications (1)

Publication Number Publication Date
WO2019035322A1 true WO2019035322A1 (en) 2019-02-21

Family

ID=65362781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027703 WO2019035322A1 (en) 2017-08-17 2018-07-24 Method for producing lithium vanadium phosphate

Country Status (2)

Country Link
AT (1) AT522061B1 (en)
WO (1) WO2019035322A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010535402A (en) * 2007-08-01 2010-11-18 ヴァレンス テクノロジー インコーポレーテッド Synthesis of cathode active material
WO2011102358A1 (en) * 2010-02-17 2011-08-25 株式会社Gsユアサ Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2011198657A (en) * 2010-03-19 2011-10-06 Gs Yuasa Corp Electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2012256591A (en) * 2011-05-18 2012-12-27 Fuji Heavy Ind Ltd Electricity storage device and positive electrode for electricity storage device
WO2014006948A1 (en) * 2012-07-04 2014-01-09 富士重工業株式会社 Nonaqueous-solvent type electricity storage device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8734539B2 (en) * 2009-09-29 2014-05-27 Tdk Corporation Method of manufacturing active material containing vanadium and method of manufacturing lithium-ion secondary battery containing such active material
CN106865519A (en) * 2015-12-12 2017-06-20 中国科学院大连化学物理研究所 A kind of preparation method of lithium vanadium phosphate material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010535402A (en) * 2007-08-01 2010-11-18 ヴァレンス テクノロジー インコーポレーテッド Synthesis of cathode active material
WO2011102358A1 (en) * 2010-02-17 2011-08-25 株式会社Gsユアサ Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2011198657A (en) * 2010-03-19 2011-10-06 Gs Yuasa Corp Electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2012256591A (en) * 2011-05-18 2012-12-27 Fuji Heavy Ind Ltd Electricity storage device and positive electrode for electricity storage device
WO2014006948A1 (en) * 2012-07-04 2014-01-09 富士重工業株式会社 Nonaqueous-solvent type electricity storage device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANPING TANG ET AL.: "Electrochemical Performance of alpha-LiVOPO4/Carbon Composite Material Synthesized by Sol-Gel Method", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 161, no. 1, 2014, pages A10 - A13, XP055421629 *

Also Published As

Publication number Publication date
AT522061A2 (en) 2020-08-15
AT522061B1 (en) 2022-10-15
AT522061A5 (en) 2022-10-15

Similar Documents

Publication Publication Date Title
KR102402147B1 (en) Manganese spinel doped with magnesium, cathode material comprising said manganese spinel, method for preparing the same, and lithium ion battery comprising said spinel
JP4894969B1 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
KR101710729B1 (en) Titanium oxide-based compound for electrode and lithium secondary battery using the same
KR101358516B1 (en) Method for producing positive electrode active material and nonaqueous electrolyte battery using same
WO2012029697A1 (en) Lithium titanate particulate powder and production method for same, mg-containing lithium titanate particulate powder and production method for same, negative electrode active material particulate powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6519202B2 (en) Lithium titanate powder, active material, and storage device using the same
JP5835334B2 (en) Ammonium manganese iron phosphate, method for producing the same, and method for producing positive electrode active material for lithium secondary battery using the ammonium manganese iron phosphate
CN107408689B (en) Positive electrode active material for nonaqueous electrolyte secondary battery and secondary battery
JPWO2016017783A1 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
CN114930570A (en) Li/Na ion battery anode material
TWI575801B (en) Lithium composite oxide
JP2018500722A (en) Manufacture of spinel materials
JP5505868B2 (en) Precursor of positive electrode active material for lithium secondary battery and method for producing the same
JP6345227B2 (en) Method for producing lithium vanadium phosphate
JP6243932B2 (en) Method for producing titanium niobium oxide, and method for producing titanium niobium oxide negative electrode active material using titanium niobium oxide obtained therefrom
JP7187896B2 (en) Lithium-nickel composite oxide precursor mixture and method for producing lithium-nickel composite oxide
JP5810752B2 (en) Lithium titanate particle powder, negative electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR102533325B1 (en) Lithium transition metal composite oxide and manufacturing method
JP5708939B2 (en) Lithium titanate particle powder and method for producing the same, negative electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2006012616A (en) Positive electrode material for lithium secondary battery and its manufacturing method
JP7144785B2 (en) Method for producing lithium vanadium phosphate
JP5769140B2 (en) Method for producing positive electrode active material for lithium secondary battery
WO2019035322A1 (en) Method for producing lithium vanadium phosphate
CN108400295B (en) Silver-coated spinel-type LiMn2O4Material and method for the production thereof
JP5830842B2 (en) Method for producing lithium titanate particle powder and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18845565

Country of ref document: EP

Kind code of ref document: A1