WO2019033460A1 - 以激光冲击功形成注入力实现连续激光冲击熔注微细颗粒的方法 - Google Patents

以激光冲击功形成注入力实现连续激光冲击熔注微细颗粒的方法 Download PDF

Info

Publication number
WO2019033460A1
WO2019033460A1 PCT/CN2017/099224 CN2017099224W WO2019033460A1 WO 2019033460 A1 WO2019033460 A1 WO 2019033460A1 CN 2017099224 W CN2017099224 W CN 2017099224W WO 2019033460 A1 WO2019033460 A1 WO 2019033460A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
modified
fine particles
layer
binder
Prior art date
Application number
PCT/CN2017/099224
Other languages
English (en)
French (fr)
Inventor
王宏宇
赵前
袁晓明
汪涵
张祥
吴勃
胥保文
刘桂玲
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Publication of WO2019033460A1 publication Critical patent/WO2019033460A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer

Definitions

  • the invention belongs to the technical field of laser surface treatment, and relates to a method for laser melting enhanced particles, in particular to a method for forming continuous injection of fine particles by laser impact energy to form an injection force.
  • Laser melting particle enhancement technology is an advanced laser surface treatment technology.
  • the basic principle is: during the laser melting process, the high power density laser beam forms a molten pool on the metal surface, and the reinforcing particles are directly injected into the molten pool. In the rapid cooling process of the molten pool, the injected particles are not melted and are " Freeze" to form a particle-reinforced metal matrix composite layer in situ on the metal surface.
  • the laser melting process and the powder feeding laser cladding are very similar in process. The biggest difference between the two is that the heating object is different.
  • the main heating object of the laser cladding is the coating powder, and the main heating object of the laser melting is The surface of the substrate.
  • the chemical composition of the composite layer prepared by the laser melting and the substrate has a gentle gradient transition, which solves the laser cladding due to the chemical composition between the cladding layer and the substrate.
  • a large gradient causes the cladding layer to always have problems such as poor bonding strength.
  • the fine powder having a particle diameter of less than 10 ⁇ m is easily agglomerated, and when the fine powder is agglomerated, many excellent modification characteristics are eliminated, and at the same time, the powder is inferior in fluidity due to poor fluidity of the fine powder.
  • the melted particle reinforcement technique is limited to the injection of particles having a larger particle size, and the particle size ranges generally from 70 to 150 ⁇ m.
  • the reinforcing particles are fine particles, they not only have a particle strengthening effect in a conventional sense such as second phase strengthening and dispersion strengthening, but also introduce fine grain strengthening and small size effects of fine particles, so that they are fine.
  • the research of laser surface treatment technology with particles as reinforcing particles has been a hot research issue.
  • Zhong Minlin of Tsinghua University proposed a laser impact micro-nanoparticle injection strengthening method for light alloy surface (publication number CN101736214A), which uses high-energy short-pulse laser to form a high-pressure shock wave on an absorbing layer such as black lacquer, and then presets.
  • the micro-nanoparticles on the surface of the light alloy are injected into the surface of the material, where the particle injection is essentially a particle implantation, which belongs to a non-melting particle enhancement method; this method has a small particle coverage on the surface of the implant material and a depth of implantation.
  • the shallower and the implanted particles and the matrix are a mechanical bond that is easily detached from the surface layer, and is mainly adapted to light plastic materials with good plasticity.
  • Cui Chengyun et al. disclose a method for preparing a nano-particle reinforced composite film by laser thermal force composite.
  • the core point of the technical solution is to firstly irradiate the surface of the metal substrate immersed with nano-ceramic particles to a molten state by laser irradiation.
  • the ceramic particles are present on the surface of the substrate in a semi-embedded state, and then laser shock is induced by a nanosecond pulsed laser to cause the nanoparticles to completely embed the surface (public)
  • the opening number is CN103103523A); this method combines the thermal effects of the laser to make the material suitable for modification no longer limited to light alloys, but the nano-ceramic particles embedded in the surface of the substrate still exist in a mechanical bond.
  • the depth of the modified layer is very shallow. It can be seen that there is currently no method for laser melting fine particles, which greatly restricts the application of fine particles, which have excellent modification characteristics, in the field of laser melting particle reinforcement technology.
  • the present invention provides a A laser impact energy is used to form an injection force to achieve continuous laser impact melting of fine particles.
  • a method for forming continuous injection of fine particles by laser impact energy to form an injection force characterized in that:
  • a composite pre-set layer composed of a binder having an induced laser shock wave effect and a fine particle to be melted is preset on the surface of the material to be modified; the binder in the composite pre-layer is to be melted into the fine particles.
  • the materials to be modified satisfy the following conditions: melting point of the binder ⁇ melting point of the material to be modified ⁇ melting point of the fine particles to be melted, and the boiling point of the binder is not greater than the melting point of the material to be modified;
  • a continuous laser beam is used to scan the composite pre-preset layer preset on the surface of the material to be modified by the constraining layer.
  • the binder in the composite pre-layer is melted first.
  • the surface of the material to be modified and the temperature of the fine particles to be melted in the laser beam application region are increased, and then the binder in the composite pre-layer is vaporized, and then the surface of the material to be modified in the laser beam-applying region forms a molten pool.
  • the binder after gasification forms a plasma under the action of laser induction, and the plasma absorbs the laser energy and explodes to form a laser shock wave.
  • the solid particles to be melted remain injected under the action of the laser shock wave to be modified.
  • the surface of the material is fused to form a fine particle reinforced composite layer in situ on the surface of the material to be modified.
  • the binder having an effect of inducing a laser shock wave is an inorganic binder or an organic binder; and the fine particles to be melted have a particle diameter of less than 10 ⁇ m.
  • the fine particles to be melted have a particle diameter of 100 nm to 5 ⁇ m.
  • the continuous laser beam generator is one of a fiber laser, a solid laser, and a CO 2 gas laser; the constraining layer is quartz glass, K9 glass or coated quartz glass.
  • the material to be modified is a metal material
  • the binder is an inorganic salt binder.
  • the continuous laser beam should be in a composite preset layer or at an interface between the composite preset layer and the material to be modified.
  • the method for preparing the composite pre-layer includes the following steps: first, dissolving or mixing the binder in a mixed solution of water and ethanol; then, adding the fine particles to be melted and making the dispersion uniform Fine particle slurry; Next, the prepared fine particle slurry is coated on the surface of the material to be modified; finally, the material to be modified which has been coated with the fine particle slurry is subjected to a drying treatment.
  • the prepared preset layer has a thickness of less than 1 mm.
  • the prepared preset layer has a thickness of 0.3 mm to 0.7 mm.
  • the method of the invention organically combines three laser advanced manufacturing technologies, such as laser melting, laser cladding and laser shock, by reasonably matching the binder, the material to be modified and the melting point and boiling point of the fine particles to be melted.
  • the physical property parameters, laser injection work to form the injection force to achieve laser melting of fine particles, breaking the technical barrier of the prior art difficult to melt fine particles.
  • the threshold value of the fine particle injection force of the method of the invention is only the surface tension of the molten pool to be modified, which not only enables the injection of fine particles by the continuous laser induced impact work, but also the deep injection depth of the fine particles is adopted.
  • the fine particles injected under suitable laser process parameters are uniformly distributed in the composite layer obtained on the surface of the material to be modified.
  • the fine particles in the composite layer obtained on the surface of the material to be modified by the method of the invention are metallurgically combined with the material to be modified, and the current laser impact injection of fine particles or implantation of fine particles is mechanically combined.
  • problems such as the fact that the fine particles are liable to fall off, and the stress concentration caused by the microcracks is induced.
  • the method of the invention has strong adaptability to the modified material, and breaks through the limitation of the current laser impact injection or implantation of the fine particles mainly for the plasticity of the light alloy material, which is not only suitable for the plastic alloy with good plasticity, but also suitable for For harder steel materials, it is also possible to modify the surface of the hard and brittle coating to prepare a composite multi-functional surface in situ.
  • FIG. 1 is a schematic view showing the basic principle of a method of continuous laser impact melting of fine particles according to the present invention.
  • FIG. 2 is a SEM top view of a cross-section of an aluminum-silicon coating after laser shock melting modification according to an embodiment of the present invention.
  • FIG 3 is a SEM top view of a cross-section of an aluminum-silicon coating after laser surface modification of the laser of the present invention.
  • Figure 5 is a high-resolution SEM topographical view of the laser surface remelting modified layer of the aluminum-silicon coating of the present invention.
  • FIG. 6 is an EDS spectrum of particles on a grain boundary in an aluminum-silicon coated laser impact melting modified layer according to an embodiment of the present invention.
  • Figure 7 is a graph showing the EDS energy of the particles on the grain boundary in the laser surface remelting modified layer of the aluminum-silicon coating of the present invention Spectrum.
  • the method for forming a continuous laser shock-molding fine particle by using laser impact energy to form an injection force uses a continuous laser beam to penetrate a constrained layer to scan a surface of a material to be modified and has induced A composite pre-layer composed of a binder of a laser shock wave effect and a fine particle to be melted.
  • the binder and the fine particles to be melted and the material to be modified in the composite presetting layer satisfy the following two conditions: one condition is that the melting point of the binder is the lowest, the melting point of the material to be modified is second, and the material to be melted is to be melted.
  • the fine particles have the highest melting point, and the other condition is that the boiling point of the binder is not more than the melting point of the material to be modified.
  • the binder in the composite pre-layer is first melted, and at this time, the surface of the material to be modified and the temperature of the micro-particle to be melted in the laser beam-applying region are increased, and then the composite pre-compositing
  • the binder in the layer is vaporized, and then the surface of the material to be modified in the laser beam application region forms a molten pool, and at the same time, the binder after gasification forms a plasma under the action of laser induction, and the plasma absorbs the laser energy.
  • the explosion forms a laser shock wave, and the fine particles to be melted which remain solid under the action of the laser shock wave are injected into the molten pool of the surface of the material to be modified, thereby forming a fine particle-reinforced composite material layer in situ on the surface of the material to be modified.
  • the binder having the effect of inducing laser shock wave may be selected from an inorganic binder or an organic binder.
  • the binder is preferably selected to have an inorganic laser wave-inducing effect. Salt binder.
  • the particle diameter of the fine particles to be melted is less than 10 ⁇ m, and the particle diameter thereof is preferably in the range of 100 nm to 5 ⁇ m.
  • the constraining layer is quartz glass or K9 glass, and preferably the treated quartz glass is used to ensure laser transmittance.
  • the continuous laser beam generator is a fiber laser, a solid laser or a CO 2 gas laser. In the process of melting the fine particles, the focus position of the continuous laser beam should be in the composite pre-layer, and preferably located at the interface between the composite pre-layer and the material to be modified.
  • the preparation method of the composite pre-layer includes the following steps: first, dissolving or mixing the binder in a mixed solution of water and ethanol; then, adding the fine particles to be melted and preparing the fine particle slurry; It is good to disperse a uniform fine particle suspension. Next, the prepared fine particle slurry is coated on the surface of the material to be modified; finally, The material to be modified which has been coated with the fine particle slurry may be dried.
  • the prepared prepreg layer has a thickness of less than 1 mm and an optimum range of thickness of 0.3 mm to 0.7 mm.
  • the material to be modified is an aluminum-silicon coating on the surface of a nickel-based superalloy (its melting point is about 1420 ° C), the binder is sodium chloride (the melting point is 891 ° C, the boiling point is 1413 ° C), and the fine particles to be melted are average Cerium oxide having a particle diameter of 1 ⁇ m (having a melting point of 2397 ° C, when the particle diameter exceeds 100 nm, its melting point does not decrease substantially as the particle diameter decreases), the thickness of the composite pre-layer is 0.5 mm; a fiber laser is used in the melting process, The laser process parameter is 450W power, the scanning speed is 1250mm/min, the spot diameter is 0.8mm, zero defocusing; the constrained layer of the quartz glass after the constraining layer is coated on the composite pre-layer is covered.
  • 2 and 3 are low-SEM SEM profiles of aluminum silicon coatings of the products of the examples and the comparative examples, respectively, and the embodiment forms a 144 ⁇ m thick fine yttria particle reinforced composite layer on the surface of the aluminum-silicon coating.
  • the comparative example formed a 217 ⁇ m thick laser surface modification layer on the surface of the aluminum silicon coating.
  • the penetration depth of the surface of the material to be modified in the examples is relatively shallow.
  • the surface of the fine cerium oxide particle reinforced composite material layer obtained in the embodiment exhibits a concave shallow arc-like characteristic, and has exhibited a laser shock effect under the action of a continuous laser beam.
  • the laser energy is converted into impact energy; and in the comparative example, since there is no constraining layer, the laser energy is mainly used to form the molten pool, so the fine cerium oxide particle reinforced composite layer obtained in the embodiment The thickness is relatively small.
  • FIG. 4 and FIG. 5 are high-dimensional SEM topographical views of the cross-section of the aluminum-silicon coating of the products of the examples and the comparative examples, respectively, and the microstructure of the fine yttria particle-reinforced composite material layer obtained in the example is a uniform equiaxed crystal. A large number of particles are clearly visible on the grain boundary; the microstructure of the laser surface modification layer formed on the surface of the aluminum-silicon coating is a typical dendrite with few particles on the grain boundary.
  • Figure 6 and Figure 7 are the EDS spectra of the particles on the grain boundary in the modified layer of the product of the examples and the comparative examples, respectively.
  • the fine yttria particle reinforced composite layer obtained in the example contains a large amount of Cr, Si, Ce, visible. These particles are a mixture of a chromium silicon compound and cerium oxide, at which point the mass fraction of Ce is as high as 8.03%.
  • the comparative example contains only a very small amount of Ce in the laser surface modification layer formed on the surface of the aluminum-silicon coating. It can be seen that the particles on the grain boundary are only chromium silicon compounds, that is, the fine cerium oxide is not effectively injected into the surface of the material to be modified.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

一种以激光冲击功形成注入力实现连续激光冲击熔注微细颗粒的方法,其特征是采用连续激光束透过约束层扫描预置在待改性材料表面的由具有诱发激光冲击波效应的粘结剂和待熔注微细颗粒混合组成的复合预置层,通过合理匹配粘结剂、待改性材料和待熔注微细颗粒的熔点和沸点等参数,实现了在连续激光作用诱导下粘结剂气化形成激光冲击波将待熔注微细颗粒注入待改性材料表面熔池中,从而原位形成微细颗粒增强的复合材料层。采用方法在待改性材料表面所获得复合材料层中微细颗粒与待改性材料实现了冶金结合,打破了现有技术难以熔注微细颗粒的技术壁垒;同时,其注入深度较深、组织细小、增强颗粒分布均匀且不受待改性材料塑性限制。

Description

以激光冲击功形成注入力实现连续激光冲击熔注微细颗粒的方法 技术领域
本发明属于激光表面处理技术领域,涉及一种激光熔注增强颗粒方法,具体地说是一种以激光冲击功形成注入力实现连续激光冲击熔注微细颗粒的方法。
背景技术
激光熔注颗粒增强技术,是一种先进的激光表面处理技术。其基本原理是:激光熔注过程中,高功率密度的激光束在金属表面形成熔池,同时将增强颗粒直接注入到熔池中,在熔池快速冷却过程中,注入颗粒来不及熔化而被“冻结”,从而在金属表面原位形成颗粒增强的金属基复合材料层。激光熔注过程与送粉式激光熔覆在工艺上极为相似,两者之间最大的区别在于加热对象不同,激光熔覆的主要加热对象是涂层粉末,而激光熔注的主要加热对象是基体表面。由于将增强颗粒直接注入到基体表面产生的熔池中,激光熔注制备的复合材料层与基体之间化学成分呈平缓梯度过渡,解决了激光熔覆由于熔覆层与基体之间化学成分存在较大梯度而导致熔覆层始终存在结合强度较差等问题。然而,粒径小于10μm的微细粉体极易团聚,当微细粉体发生团聚后使得其很多优异的改性特性消失,同时受微细粉体流动性较差导致粉体难以输送的限制,目前激光熔注颗粒增强技术仅限于熔注粒径较大的颗粒,其粒径范围一般为70-150μm。
众所周知,若增强颗粒为微细颗粒时,其不仅具有第二相强化、弥散强化等常规意义上的颗粒增强效果,而且还会引入细晶强化以及微细颗粒所具有的小尺寸效应等,故以微细颗粒作为增强颗粒的激光表面处理技术的研究一直是一个热点研究问题。例如,清华大学钟敏霖等提出了一种轻合金表面激光冲击微纳米颗粒注入强化方法(公开号为CN101736214A),其利用高能短脉冲激光作用在吸收层如黑漆上形成高压冲击波,进而将预置在轻合金表面的微纳米颗粒注入材料表面,这里的颗粒注入其实质是颗粒植入,属于一种非熔化颗粒增强方法;这一方法存在着植入材料表面的颗粒覆盖率较小、注入深度较浅且所植入的颗粒与基体间的结合是一种机械结合,极易从表层脱落等不足,而且其主要适应于塑性较好的轻合金材料。再如,崔承云等公开了一种激光热力复合诱导纳米颗粒增强复合薄膜的制备方法,其技术方案的核心要点是:首先利用激光辐照浸涂有纳米陶瓷颗粒的金属基体表面至熔化状态使纳米陶瓷颗粒以半嵌入状态存在于基体表面,然后再通过纳秒脉冲激光诱导冲击波进行激光冲击从而使纳米颗粒完全嵌入表面(公 开号为CN103103523A);这一方法中结合了激光的热力两方面作用使得适于改性的材料不再局限于轻合金,然而其所嵌入基体表面的纳米陶瓷颗粒仍以机械结合的方式存在,同时从其名称就可以看出其改性层深度很浅。可见,目前尚未有一种激光熔注微细颗粒的方法可供使用,极大地制约了微细颗粒这一具有优良改性特点的增强材料在激光熔注颗粒增强技术领域中的应用。
发明内容
针对现有激光熔注颗粒增强技术难以实现微细颗粒熔注,进而制约了微细颗粒这一具有优良改性特点的增强材料在激光熔注颗粒增强技术领域中应用的问题,本发明提供了一种以激光冲击功形成注入力实现连续激光冲击熔注微细颗粒的方法。
本发明的技术方案是:
一种以激光冲击功形成注入力实现连续激光冲击熔注微细颗粒的方法,其特征在于:
首先,在待改性材料表面预置由具有诱发激光冲击波效应的粘结剂和待熔注微细颗粒混合组成的复合预置层;所述复合预置层中粘结剂、待熔注微细颗粒及待改性材料三者满足以下条件:粘结剂的熔点<待改性材料的熔点<待熔注微细颗粒的熔点,且粘结剂的沸点不大于待改性材料的熔点;
然后,采用连续激光束透过约束层扫描预置在待改性材料表面的复合预置层,当激光束透过约束层扫描复合预置层时,复合预置层中的粘结剂先熔化,此时激光束作用区域待改性材料表面和待熔注微细颗粒温度升高,接着复合预置层中的粘结剂气化,随后激光束作用区域的待改性材料表面形成熔池,与此同时气化后的粘结剂在激光诱导作用下形成等离子体,等离子体吸收激光能量后爆炸形成激光冲击波,在激光冲击波的作用下仍保持固态的待熔注微细颗粒被注入待改性材料表面熔池中,从而在待改性材料表面原位形成微细颗粒增强的复合材料层。
进一步地,所述具有诱发激光冲击波效应的粘结剂是无机粘结剂或有机粘结剂;所述待熔注微细颗粒的粒径小于10μm。
进一步地,待熔注微细颗粒的粒径100nm-5μm。
进一步地,所述连续激光束发生器为光纤激光器、固体激光器、CO2气体激光器中的一种;所述约束层为石英玻璃、K9玻璃或经镀膜处理后的石英玻璃。
进一步地,待改性材料为金属材料,粘结剂为无机盐类粘结剂。
进一步地,所述连续激光束在熔注微细颗粒的过程中,其焦点位置应处于复合预置层中或位于复合预置层与待改性材料交界面上。
进一步地,所述复合预置层的制备方法包括如下步骤:首先,将粘结剂溶解或混合在水和乙醇的混合溶液中;然后,加入待熔注微细颗粒并将其制成分散均匀的微细颗粒浆料;接着,将制备成的微细颗粒浆料涂覆在待改性材料表面上;最后,将已涂覆微细颗粒浆料的待改性材料进行烘干处理。
进一步地,所制备预置层厚度小于1mm。
进一步地,所制备预置层厚度为0.3mm-0.7mm。
本发明的有益效果:
本发明所述方法将激光熔注、激光熔覆和激光冲击三种激光先进制造技术有机融合在一起,通过合理匹配粘结剂、待改性材料和待熔注微细颗粒的熔点和沸点等热物性参数,以激光冲击功形成注入力实现了激光熔注微细颗粒,打破了现有技术难以熔注微细颗粒的技术壁垒。
本发明所述方法微细颗粒注入力的阈值仅为待改性材料熔池表面张力,不仅使得采用连续激光诱发的冲击功即可实现微细颗粒的注入,而且微细颗粒的注入深度较深,且采用合适的激光工艺参数下注入的微细颗粒在待改性材料表面所获得复合材料层中分布均匀。
采用本发明所述方法在待改性材料表面所获得复合材料层中的微细颗粒与待改性材料实现了冶金结合,较好地避免了目前激光冲击注入微细颗粒或植入微细颗粒以机械结合方式存在所导致微细颗粒容易脱落、诱发微裂纹造成应力集中等问题。
本发明所述方法对待改性材料适应性强,突破了目前激光冲击注入或植入微细颗粒主要适应于塑性好的轻合金材料的局限性,其不仅适合于塑性好的轻合金材料,也适合于硬度较高的钢铁材料,还可以对硬脆涂层实现表面改性进而原位制备复合多功能表面。
附图说明
图1是本发明所述连续激光冲击熔注微细颗粒的方法的基本原理示意图。
图2是本发明实施例所述激光冲击熔注改性后铝硅涂层横截面低倍SEM形貌图。
图3是本发明对比例所述激光表面改性后铝硅涂层横截面低倍SEM形貌图。
图4是本发明实施例所述铝硅涂层激光冲击熔注改性层高倍SEM形貌图。
图5是本发明对比例所述铝硅涂层激光表面重熔改性层高倍SEM形貌图。
图6是本发明实施例所述铝硅涂层激光冲击熔注改性层中晶界上颗粒物的EDS能谱。
图7是本发明对比例所述铝硅涂层激光表面重熔改性层中晶界上颗粒物的EDS能 谱。
图中:
1-激光头,2-激光束,3-约束层,4-复合预置层,5-待改性材料,6-粘结剂,7-待熔注微细颗粒。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
如图1所示,本发明所述的以激光冲击功形成注入力实现连续激光冲击熔注微细颗粒的方法,采用连续激光束透过约束层扫描预置在待改性材料表面且由具有诱发激光冲击波效应的粘结剂和待熔注微细颗粒混合组成的复合预置层。所述复合预置层中粘结剂和待熔注微细颗粒及待改性材料三者满足以下两个条件:一个条件是粘结剂的熔点最低、待改性材料的熔点次之、待熔注微细颗粒的熔点最高,另一个条件是粘结剂的沸点不大于待改性材料的熔点。
当激光束透过约束层扫描复合预置层时,复合预置层中的粘结剂先熔化,此时激光束作用区域待改性材料表面和待熔注微细颗粒温度升高,接着复合预置层中的粘结剂气化,随后激光束作用区域的待改性材料表面形成熔池,与此同时气化后的粘结剂在激光诱导作用下形成等离子体,等离子体吸收激光能量后爆炸形成激光冲击波,在激光冲击波的作用下仍保持固态的待熔注微细颗粒被注入待改性材料表面熔池中,从而在待改性材料表面原位形成微细颗粒增强的复合材料层。
所述具有诱发激光冲击波效应的粘结剂,既可以选用无机粘结剂也可以选用有机粘结剂,当待改性材料为金属材料时,粘结剂最好选用具有诱发激光冲击波效应的无机盐类粘结剂。
所述待熔注微细颗粒的粒径小于10μm,且其粒径的最佳范围为100nm-5μm。所述约束层为石英玻璃或K9玻璃,最好采用经镀膜处理后的石英玻璃以保证激光透过率。所述连续激光束发生器为光纤激光器、固体激光器或CO2气体激光器。在熔注微细颗粒的过程中,连续激光束的焦点位置应处于复合预置层中,且最好位于复合预置层与待改性材料交界面上。
所述复合预置层的制备方法包括如下步骤:首先,将粘结剂溶解或混合在水和乙醇的混合溶液中;然后,加入待熔注微细颗粒并将其制成微细颗粒浆料;最好为分散均匀的微细颗粒悬浮液。接着,将制备成的微细颗粒浆料涂覆在待改性材料表面上;最后, 将已涂覆微细颗粒浆料的待改性材料进行烘干处理即可。所制备预置层厚度小于1mm,且其厚度的最佳范围为0.3mm-0.7mm。
实施例:
待改性材料为镍基高温合金表面铝硅涂层(其熔点约为1420℃),粘结剂为氯化钠(其熔点为891℃、沸点为1413℃),待熔注微细颗粒为平均粒径为1μm的氧化铈(其熔点为2397℃,当颗粒粒径超过100nm时其熔点基本不随粒径减小而降低),复合预置层厚度为0.5mm;熔注过程中采用光纤激光器,激光工艺参数为450W的功率、扫描速度为1250mm/min,光斑直径为0.8mm、零离焦;在复合预置层上覆盖约束层经镀膜处理后的石英玻璃的约束层。
对比例:除复合预置层上没有约束层外,其他条件均与实施例相同。
图2、图3分别为实施例与对比例的产物的铝硅涂层横截面低倍SEM形貌图,实施例在在铝硅涂层表面形成144μm厚的微细氧化铈颗粒增强复合材料层,对比例在铝硅涂层表面形成217μm厚的激光表面改性层。实施例中待改性材料表面的熔深相对较浅。并且,实施例所得微细氧化铈颗粒增强复合材料层的表面呈现下凹浅弧状特征,在连续激光束作用下已呈现出激光冲击效应。在实施例中由于约束层的存在,激光能量一部分转化为冲击功;而对比例中,因没有约束层,激光能量主要用于形成熔池,因此实施例获得的微细氧化铈颗粒增强复合材料层厚度相对较小。
图4、图5分别为实施例与对比例的产物的铝硅涂层横截面的高倍SEM形貌图,实施例所得微细氧化铈颗粒增强复合材料层微观组织为均匀的等轴晶,在其晶界上明显可见众多的颗粒物;对比例在铝硅涂层表面形成的激光表面改性层的微观组织为典型的树枝晶,其晶界上颗粒物很少。
图6、图7分别为实施例与对比例的产物的改性层中晶界上颗粒物的EDS能谱,实施例所得微细氧化铈颗粒增强复合材料层中含有大量的Cr、Si、Ce,可见这些颗粒物为铬硅化合物和氧化铈的混合物,此时Ce的质量分数高达8.03%。对比例在铝硅涂层表面形成的激光表面改性层中仅含有极少量的Ce,可见其晶界上的颗粒物仅为铬硅化合物,即微细氧化铈并未有效注入待改性材料表面。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (9)

  1. 一种以激光冲击功形成注入力实现连续激光冲击熔注微细颗粒的方法,其特征在于:
    首先,在待改性材料表面预置由具有诱发激光冲击波效应的粘结剂和待熔注微细颗粒混合组成的复合预置层;所述复合预置层中粘结剂、待熔注微细颗粒及待改性材料三者满足以下条件:粘结剂的熔点<待改性材料的熔点<待熔注微细颗粒的熔点,且粘结剂的沸点不大于待改性材料的熔点;
    然后,采用连续激光束透过约束层扫描预置在待改性材料表面的复合预置层,当激光束透过约束层扫描复合预置层时,复合预置层中的粘结剂先熔化,此时激光束作用区域待改性材料表面和待熔注微细颗粒温度升高,接着复合预置层中的粘结剂气化,随后激光束作用区域的待改性材料表面形成熔池,与此同时气化后的粘结剂在激光诱导作用下形成等离子体,等离子体吸收激光能量后爆炸形成激光冲击波,在激光冲击波的作用下仍保持固态的待熔注微细颗粒被注入待改性材料表面熔池中,从而在待改性材料表面原位形成微细颗粒增强的复合材料层。
  2. 根据权利要求1所述的连续激光冲击熔注微细颗粒方法,其特征在于:所述具有诱发激光冲击波效应的粘结剂是无机粘结剂或有机粘结剂;所述待熔注微细颗粒的粒径小于10μm。
  3. 根据权利要求1所述的连续激光冲击熔注微细颗粒方法,其特征在于:待熔注微细颗粒的粒径100nm-5μm。
  4. 根据权利要求1所述的连续激光冲击熔注微细颗粒方法,其特征在于:所述连续激光束发生器为光纤激光器、固体激光器、CO2气体激光器中的一种;所述约束层为石英玻璃、K9玻璃或经镀膜处理后的石英玻璃。
  5. 根据权利要求1所述的连续激光冲击熔注微细颗粒方法,其特征在于:待改性材料为金属材料,粘结剂为无机盐类粘结剂。
  6. 根据权利要求1所述的连续激光冲击熔注微细颗粒方法,其特征在于:所述连续激光束在熔注微细颗粒的过程中,其焦点位置应处于复合预置层中或位于复合预置层与待改性材料交界面上。
  7. 根据权利要求1所述的连续激光冲击熔注微细颗粒方法,其特征在于:所述复合预置层的制备方法包括如下步骤:首先,将粘结剂溶解或混合在水和乙醇的混合溶液中;然后,加入待熔注微细颗粒并将其制成分散均匀的微细颗粒浆料;接着,将制备成的微细 颗粒浆料涂覆在待改性材料表面上;最后,将已涂覆微细颗粒浆料的待改性材料进行烘干处理。
  8. 根据权利要求7所述的连续激光冲击熔注微细颗粒方法,其特征在于:所制备预置层厚度小于1mm。
  9. 根据权利要求7所述的连续激光冲击熔注微细颗粒方法,其特征在于:所制备预置层厚度为0.3mm-0.7mm。
PCT/CN2017/099224 2017-08-18 2017-08-28 以激光冲击功形成注入力实现连续激光冲击熔注微细颗粒的方法 WO2019033460A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710713879.8A CN107675166B (zh) 2017-08-18 2017-08-18 以激光冲击功形成注入力实现连续激光冲击熔注微细颗粒的方法
CN201710713879.8 2017-08-18

Publications (1)

Publication Number Publication Date
WO2019033460A1 true WO2019033460A1 (zh) 2019-02-21

Family

ID=61134317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099224 WO2019033460A1 (zh) 2017-08-18 2017-08-28 以激光冲击功形成注入力实现连续激光冲击熔注微细颗粒的方法

Country Status (2)

Country Link
CN (1) CN107675166B (zh)
WO (1) WO2019033460A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111058039B (zh) * 2020-01-13 2021-09-28 南昌航空大学 一种基于火花放电的陶瓷颗粒种植工艺
CN111560613B (zh) * 2020-05-19 2021-12-21 江苏万力机械股份有限公司 一种汽车曲轴表面半消失型补强处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981716A (en) * 1988-05-06 1991-01-01 International Business Machines Corporation Method and device for providing an impact resistant surface on a metal substrate
CN101717912A (zh) * 2009-12-15 2010-06-02 江苏大学 一种激光冲击波辅助离子渗入金属基体的方法
CN102191497A (zh) * 2011-04-26 2011-09-21 江苏大学 一种在合金基体表面制备纳米碳基薄膜的方法和装置
CN103103523A (zh) * 2013-03-01 2013-05-15 江苏大学 激光热力复合诱导纳米颗粒增强复合薄膜的制备方法
CN104308361A (zh) * 2014-09-01 2015-01-28 江苏大学 一种激光冲击制造表面微凸起形貌的装置和方法
CN105734554A (zh) * 2016-01-29 2016-07-06 江苏大学 高分散稳定悬浮的微细氧化铈含胶浆料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5455009B2 (ja) * 2009-03-09 2014-03-26 地方独立行政法人 大阪市立工業研究所 工具鋼の表面処理方法および該方法によって表面処理された工具鋼
CN105002492B (zh) * 2015-07-27 2017-10-20 西安交通大学 一种利用异步送粉法进行激光熔覆制备陶瓷颗粒增强金属基复合涂层的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981716A (en) * 1988-05-06 1991-01-01 International Business Machines Corporation Method and device for providing an impact resistant surface on a metal substrate
CN101717912A (zh) * 2009-12-15 2010-06-02 江苏大学 一种激光冲击波辅助离子渗入金属基体的方法
CN102191497A (zh) * 2011-04-26 2011-09-21 江苏大学 一种在合金基体表面制备纳米碳基薄膜的方法和装置
CN103103523A (zh) * 2013-03-01 2013-05-15 江苏大学 激光热力复合诱导纳米颗粒增强复合薄膜的制备方法
CN104308361A (zh) * 2014-09-01 2015-01-28 江苏大学 一种激光冲击制造表面微凸起形貌的装置和方法
CN105734554A (zh) * 2016-01-29 2016-07-06 江苏大学 高分散稳定悬浮的微细氧化铈含胶浆料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI PENGFEI ET AL.: "Process Optimization and Microstructure of Cerium Oxide Modified Al-Si Coatings by Laser Melt Injection", TRANSACTIONS OF MATERIALS AND HEAT TREATMENT, vol. 38, no. 7, 31 July 2017 (2017-07-31), pages 145 - 150 *

Also Published As

Publication number Publication date
CN107675166A (zh) 2018-02-09
CN107675166B (zh) 2019-08-27

Similar Documents

Publication Publication Date Title
CN106834974A (zh) 铁基合金涂层与其形成方法
Liu et al. Effect of scanning speed on the solidification process of Al2O3/GdAlO3/ZrO2 eutectic ceramics in a single track by selective laser melting
CN107267976A (zh) 一种获得耐磨耐蚀钛合金工件的激光组合加工工艺
WO2019033460A1 (zh) 以激光冲击功形成注入力实现连续激光冲击熔注微细颗粒的方法
CN110306184B (zh) 一种兼顾激光熔注效率、复合层深和冶金质量的方法
US10131969B2 (en) Method to form oxide dispersion strengthended (ODS) alloys
Tian et al. Toughening and strengthening mechanism of plasma sprayed nanostructured Al2O3–13 wt.% TiO2 coatings
CN111485235B (zh) 激光冲击熔注过程中促进微细颗粒实现晶内分布的方法
CN108588708A (zh) 复合纳米涂层的超声波及感应加热辅助的激光熔覆方法
CN106794551A (zh) 活性金属的激光沉积和修复
US10293434B2 (en) Method to form dispersion strengthened alloys
Jianing et al. Effect of nano-CeO 2 on microstructure properties of TiC/TiN+ n Ti (CN) reinforced composite coating
CN108796498A (zh) 一种激光熔覆铝合金表面自反应生成陶瓷相的方法
CN104513979A (zh) 一种具有自生纳米颗粒增强的钛合金激光强化涂层
Wu et al. Study on microstructure and properties of laser cladding Al–Ti–C coating on aluminum alloy surface
CN114481122A (zh) 增材制造表面涂层制备方法及装置
Wang Influences of laser remelting on microstructure and thermal shock resistance of Al2O3-13wt.% TiO2 coatings deposited by plasma spraying
Surzhikov et al. The effect of a low-energy high-current pulsed electron beam on surface layers of porous zirconium ceramics
CN106555126B (zh) 1Cr15Ni4Mo3N钢用激光熔覆粉末及制备方法
CN104611693B (zh) 一种纳米颗粒增强的热障涂层的制备方法
CN110255968A (zh) 用于激光表面改性工艺中的纳米复合涂料及其制备方法
Stepanova et al. Modification of the structure of powder coatings on nickel and chromium-nickel bases by introducing nanoparticles of titanium diboride during electron-beam welding
Guan et al. Surface modification of AZ91D magnesium alloy using millisecond, nanosecond and femtosecond Lasers
JP7099473B2 (ja) 樹脂組成物、およびこれを用いた立体造形物の製造方法
Fan et al. Advances and Challenges in Direct Additive Manufacturing of Dense Ceramic Oxides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17921921

Country of ref document: EP

Kind code of ref document: A1