WO2019033354A1 - 光电传感装置及电子设备 - Google Patents

光电传感装置及电子设备 Download PDF

Info

Publication number
WO2019033354A1
WO2019033354A1 PCT/CN2017/097914 CN2017097914W WO2019033354A1 WO 2019033354 A1 WO2019033354 A1 WO 2019033354A1 CN 2017097914 W CN2017097914 W CN 2017097914W WO 2019033354 A1 WO2019033354 A1 WO 2019033354A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive
semiconductor substrate
sensing device
photoelectric
photoelectric sensing
Prior art date
Application number
PCT/CN2017/097914
Other languages
English (en)
French (fr)
Inventor
李问杰
Original Assignee
深圳信炜科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳信炜科技有限公司 filed Critical 深圳信炜科技有限公司
Priority to CN201790000160.3U priority Critical patent/CN209803815U/zh
Priority to PCT/CN2017/097914 priority patent/WO2019033354A1/zh
Publication of WO2019033354A1 publication Critical patent/WO2019033354A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition

Definitions

  • the utility model relates to the field of photoelectric sensing, in particular to a photoelectric sensing device and an electronic device.
  • the optical fingerprint recognition module includes an optical fingerprint sensor 400 and a light source 402.
  • the optical fingerprint sensor 400 is disposed under the protective cover 401 of the mobile terminal.
  • the light source 402 is disposed adjacent to one side of the optical fingerprint sensor 400.
  • the light signal emitted by the light source 402 passes through the protective cover 401 and reaches the finger F, is reflected by the valleys and ridges of the finger F, and is received by the optical fingerprint sensor 400, and A fingerprint image of the finger F is formed.
  • optical fingerprint recognition module 400 cannot obtain a clear image and needs to be improved.
  • the embodiments of the present invention aim to at least solve one of the technical problems existing in the prior art. To this end, the embodiments of the present invention need to provide a photoelectric sensing device and an electronic device.
  • the photoelectric sensing device of the embodiment of the present invention includes a photosensitive die and a semiconductor substrate disposed on the photosensitive die; the photosensitive die includes a plurality of photosensitive pixels, and the photosensitive substrate corresponds to the photosensitive A through hole penetrating the semiconductor substrate is formed at a position of the pixel.
  • a semiconductor substrate is disposed on the photosensitive die, and a through hole penetrating through the semiconductor substrate is formed at a position of the semiconductor substrate corresponding to the photosensitive pixel. Due to the light absorption characteristic of the semiconductor substrate, only a predetermined range of optical signals pass through. The holes are absorbed by the photosensitive pixels, so that the optical signals received between the adjacent photosensitive pixels are not aliased, and the images obtained by the photosensitive pixels after performing the light sensing are relatively clear, thereby improving the sensing accuracy of the photoelectric sensing device. .
  • the semiconductor substrate is a silicon wafer of a predetermined thickness.
  • the semiconductor substrate is formed by thinning a silicon wafer to a predetermined thickness.
  • the vias are formed by etching on a semiconductor substrate.
  • the vias are formed using gas etching or ion beam etching.
  • the anti-aliasing effect is achieved by forming through-vias on the semiconductor substrate, which not only makes the processing process relatively simple, but also ensures an anti-aliasing effect.
  • the through holes are evenly distributed.
  • the through holes are evenly distributed.
  • the through holes are filled with a transparent material. Filling the transparent material through the through hole not only increases the strength of the semiconductor substrate, but also prevents impurities from entering the through hole and affecting the light transmission effect.
  • the photosensitive pixel includes at least one photosensitive device, and the through hole is disposed corresponding to the photosensitive device.
  • the photosensitive device is disposed corresponding to the through hole to ensure that the optical signal passing through the through hole is completely received by the photosensitive device, thereby improving the sensing accuracy of the photoelectric sensing device.
  • each of the photosensitive devices corresponds to a plurality of the through holes. Through the corresponding plurality of through holes on the photosensitive device, the photosensitive device can sense sufficient light signals, thereby ensuring the sensing effect of the photoelectric sensing device.
  • a filter film is disposed on the semiconductor substrate or between the photosensitive die and the semiconductor substrate, and the filter film is used to filter an optical signal other than a preset wavelength band.
  • the predetermined band is a band corresponding to a blue, green light signal.
  • the interference signal in the ambient light can be effectively filtered, thereby improving the sensing accuracy.
  • the photosensitive die includes a substrate, and the photosensitive pixels are distributed in an array on the substrate.
  • the optoelectronic sensing device further includes a package housing for encapsulating the photosensitive die and the semiconductor substrate over the photosensitive die.
  • the optoelectronic sensing device is a fingerprint sensing device.
  • the photosensor device is a sensor chip for sensing biometric information.
  • An electronic device includes the photoelectric sensor device of any of the above embodiments.
  • the electronic device has the photoelectric sensing device of any of the above embodiments, it has all the advantageous effects of the photoelectric sensing device.
  • FIG. 1 is a schematic diagram of an optical sensing structure applied to an electronic device in the prior art
  • FIG. 2 is a schematic view showing the front structure of a photoelectric sensing device applied to an electronic device according to an embodiment of the present invention
  • FIG. 3 is a cross-sectional structural view of the electronic device of FIG. 2 taken along line I-I, in which only a partial structure of the electronic device is shown;
  • FIG. 4 is a partial structural schematic view of a photoelectric sensing device according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of ambient light interference when an electronic device performs light sensing according to an embodiment of the present invention
  • FIG. 6 is a partial structural schematic view of a photoelectric sensing device according to another embodiment of the present invention.
  • FIG. 7 is a partial structural schematic view of a photoelectric sensing device according to still another embodiment of the present invention.
  • FIG. 8 is a partial structural schematic view of a photosensitive die according to an embodiment of the present invention.
  • FIG. 9 is a block diagram showing the structure of a photoelectric sensing device according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing the circuit structure of a photosensitive pixel according to an embodiment of the present invention.
  • FIG. 11 is a schematic circuit diagram of a photosensitive pixel according to another embodiment of the present invention.
  • Figure 12 is a partially enlarged schematic view of the display screen and the photoelectric sensing device shown in Figure 3 at the A area;
  • FIG. 13 is a schematic diagram showing relative positions of a display pixel and a photosensitive device in an electronic device according to an embodiment of the present invention
  • FIG. 14 is a cross-sectional structural view of an electronic device according to another embodiment of the present invention, in which only a partial structure of the electronic device is shown.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated. .
  • features defining “first” or “second” may include one or more of the described features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more, unless specifically defined otherwise.
  • Contact or “touch” includes direct or indirect contact.
  • the photoelectric sensing device disclosed hereinafter is disposed inside the electronic device, such as under the display screen, and the user's finger indirectly contacts the photoelectric sensing device through the protective cover and the display screen.
  • connection is to be understood broadly, and may be, for example, a fixed connection or a Disassembling the connection, or connecting integrally; may be mechanical connection, electrical connection or communication with each other; may be directly connected, or may be indirectly connected through an intermediate medium, may be internal communication of two elements or mutual interaction of two elements Role relationship.
  • installation is to be understood broadly, and may be, for example, a fixed connection or a Disassembling the connection, or connecting integrally; may be mechanical connection, electrical connection or communication with each other; may be directly connected, or may be indirectly connected through an intermediate medium, may be internal communication of two elements or mutual interaction of two elements Role relationship.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • Embodiments of the present invention provide a photoelectric sensing device disposed in an electronic device, such as, but not limited to, an OLED display panel or the like having a display device that emits an optical signal.
  • the display screen When the electronic device is working, the display screen emits an optical signal to achieve the corresponding display effect.
  • the target object touches the electronic device, the light signal emitted by the display screen reaches the target object and then reflects, and the reflected light signal passes through the display screen and is received by the photoelectric sensing device, and the photoelectric sensing device receives the received signal.
  • the optical signal is converted into an electrical signal corresponding to the optical signal. Based on the electrical signals generated by the photoelectric sensing device, predetermined biometric information of the target object can be obtained.
  • the above electronic device is, for example, but not limited to, a suitable type of electronic product such as a consumer electronic product, a home electronic product, a vehicle-mounted electronic product, or a financial terminal product.
  • consumer electronic products such as mobile phones, tablets, notebook computers, desktop monitors, computer integrated machines.
  • Home-based electronic products such as smart door locks, TVs, refrigerators, wearable devices, etc.
  • Vehicle-mounted electronic products such as car navigation systems, car DVDs, etc.
  • Financial terminal products such as ATM Machines, terminals for self-service business, etc.
  • the following embodiments are described by taking a mobile terminal of the mobile phone as an example. However, as described above, the following embodiments are also applicable to other suitable electronic products, and are not limited to mobile terminals.
  • the predetermined biometric information (or image information) of the target object is, for example but not limited to, skin texture information such as fingerprints, palm prints, ear prints, and soles, and other suitable biometric information such as heart rate, blood oxygen concentration, veins, and arteries. .
  • the predetermined biometric information may be any one or more of the aforementioned enumerated information.
  • the target object may be, for example but not limited to, a human body, and may be other suitable types of organisms.
  • FIG. 2 shows a front structure of an embodiment of an electronic device to which the photoelectric sensor device of the present invention is applied
  • FIG. 3 shows a partial cross-sectional structure of the electronic device of FIG. 2 along the line I-I.
  • the photoelectric sensor device 20 of the embodiment of the present invention is applied to a mobile terminal 100.
  • the front surface of the mobile terminal 100 is provided with a display screen 10, and a protective cover 30 is disposed above the display screen 10.
  • the screen of the display screen 10 is relatively high, for example, 80% or more.
  • the screen ratio refers to the ratio of the display area S1 of the display screen 10 to the front area of the mobile terminal 100.
  • the photoelectric sensing device 20 is disposed correspondingly below the display screen 10 and is disposed corresponding to a partial region of the display region S1 of the display screen 10.
  • the area defining the front side of the mobile terminal 100 corresponding to or facing the photoelectric sensing device 20 is the sensing area S2.
  • the photoelectric sensing device 20 is configured to sense predetermined biometric information contacting or approaching a target object above the sensing region S2. It can be understood that the photoelectric sensing device 20 can also be disposed under the protective cover 30 and located in the front non-display area of the mobile terminal.
  • the sensing area S2 can be any position on the display area.
  • the sensing area S is disposed at a mid-lower position corresponding to the display area of the display screen 10. It can be understood that the sensing area S2 is disposed at a middle-lower position corresponding to the display screen 10 for the convenience of the user. For example, when the user holds the mobile terminal 100, the thumb of the user can conveniently touch the location of the sensing area S2.
  • the sensing area S2 can also be placed at other suitable locations that are convenient for the user to touch.
  • the display screen 10 When the mobile terminal 100 is in a bright screen state and is in the biometric information sensing mode, the display screen 10 emits an optical signal.
  • the photoelectric sensing device 20 receives the light reflected by the object, converts the received light into a corresponding electrical signal, and acquires a predetermined creature of the object according to the electrical signal.
  • Feature information for example, fingerprint image information.
  • the photoelectric sensing device 20 can sense a target object that contacts or approaches a local area above the display area.
  • FIG. 4 shows a partial structure of a photoelectric sensing device 20 according to an embodiment of the present invention.
  • the photo sensing device 20 includes a photosensitive die 24, and the photosensitive die 24 includes a plurality of photosensitive pixels 22 for receiving optical signals passing through the display screen and converting the received optical signals into corresponding Electrical signal.
  • a semiconductor substrate 28 having through holes 282 is disposed on the photosensitive die 24 for preventing aliasing of optical signals received by adjacent photosensitive pixels 22.
  • the reflection of the light signal is different between different parts of the target object, and the surface of the target object is uneven, some parts of the target object are in contact with the protective cover 30 (see FIG. 3), and some parts are not in contact with the protective cover 30, thereby causing contact.
  • a diffuse reflection occurs at a position where specular reflection occurs at an uncontacted position, and an optical signal sensed between adjacent photosensitive pixels 22 may be aliased, thereby causing blurring of the obtained sensing image. Therefore, by providing the semiconductor substrate 28 having the through holes 282 on the photosensitive dies 24, the optical signals received by the adjacent photosensitive pixels 22 can be prevented from being aliased, so that the obtained sensing images are clear. The sensing accuracy of the photoelectric sensing device 20 is improved.
  • the semiconductor substrate 28 has light absorbing characteristics. Of the optical signals that are incident on the semiconductor substrate 28, only optical signals that are approximately perpendicular to the photosensitive die 24 can pass through the semiconductor substrate 28 and be received by the photosensitive pixels 22. The remaining optical signals are all absorbed by the semiconductor substrate 28. In this way, it is possible to prevent aliasing of optical signals received between adjacent photosensitive pixels 22. It should be noted that the optical signal that is approximately perpendicular to the photosensitive die 24 includes an optical signal that is perpendicular to the photosensitive die 24, and is offset from the vertical direction of the photosensitive die 24 by a predetermined range of optical signals. The preset angle range is within ⁇ 20°.
  • the photoelectric sensing device 20 of the embodiment of the present invention can effectively prevent the optical signals received by the adjacent photosensitive pixels 22 from being aliased by providing the semiconductor substrate 28 on the photosensitive die 24, thereby improving the photoelectric sensing device 20. Sensing accuracy.
  • a through hole 282 penetrating the semiconductor substrate 28 is formed on the semiconductor substrate 28 at a position corresponding to the photosensitive pixel 22. Since the semiconductor material has light absorbing characteristics, the optical signal irradiated onto the semiconductor substrate 28 will be absorbed, and only the optical signal within the predetermined range can pass through the through hole 282 and be received by the photosensitive pixel 22.
  • a small aperture through hole 282 can be provided on the semiconductor substrate, and the through hole 282 is disposed corresponding to the photosensitive pixel 22, so that the anti-aliasing effect can be improved.
  • the plurality of through holes 282 on the semiconductor substrate 28 are evenly distributed, so that the preparation process of the semiconductor substrate 28 is relatively simple, and each of the photosensitive pixels 22 will correspond to the plurality of through holes 282, so that the photosensitive pixels 22 can sense sufficient.
  • the light signal ensures the sensing effect of the photoelectric sensing device 20.
  • the semiconductor substrate 28 is a silicon wafer having a predetermined thickness, and by a predetermined thickness setting, it is possible to effectively prevent aliasing of optical signals received between adjacent photosensitive pixels 22. If the thickness of the silicon wafer is larger than the predetermined thickness, the silicon wafer may be first thinned to achieve a predetermined thickness.
  • vias 282 are formed by etching on semiconductor substrate 28. Since the silicon wafer has a certain hardness, the process of forming a via hole on the silicon wafer is relatively simple and easier to implement. specifically, The etching method can be performed by a dry etching method such as gas etching or ion beam etching, so that the effective formation of the via hole 282 can be ensured, and the anti-aliasing effect is ensured.
  • a dry etching method such as gas etching or ion beam etching
  • the through holes 282 can be filled with a transparent material to increase the strength of the semiconductor substrate 28, and impurities can be prevented from entering the through holes 282 to affect the light transmission effect.
  • a transparent material may be used as the transparent material, such as glass, PMMA (acrylic), PC (polycarbonate) or the like.
  • FIG. 5 illustrates the influence of ambient light when the electronic device performs sensing.
  • the target object F as a finger
  • the finger when the finger is located on the protective cover 30, if ambient light is irradiated on the finger, and the finger has many tissue structures, such as epidermis, bones, meat, blood vessels, etc., the part in the ambient light
  • the light signal will penetrate the finger and some of the light signal will be absorbed by the finger.
  • the light signal penetrating the finger will be transmitted to the protective cover 30 under the finger and reach the photoelectric sensing device 20.
  • the photoelectric sensing device 20 not only senses the light signal reflected by the target object F, but also senses the environment.
  • FIG. 6 shows the structure of the photoelectric sensing device 20 of another embodiment of the present invention.
  • a filter film 23 is disposed on the photosensitive die 24, that is, the filter film 23 is disposed between the photosensitive die 24 and the semiconductor substrate 28.
  • the filter film 23 is for filtering optical signals other than the predetermined wavelength band.
  • the optical signal other than the preset wavelength band is an interference signal formed by ambient light, that is, an optical signal that can penetrate the finger in the ambient light.
  • the filter film 23 filters out the interference signal in the reflected light signal, thereby improving the sensing accuracy of the photoelectric sensor device 20.
  • the filter film 23 may be disposed on the semiconductor substrate 28, that is, the filter film 23 is disposed at one end of the semiconductor substrate 28 away from the photosensitive die 24.
  • the optical signal other than the optical signal of the preset wavelength band is the optical signal of the longer wavelength band in the ambient light, because the optical signal of the longer wavelength band can penetrate the target object, and the optical signal of the shorter wavelength band is The target object is absorbed. Therefore, by filtering out the optical signal of the longer wavelength band in the ambient light, the optical signal penetrating the finger in the ambient light can be filtered out, thereby achieving the purpose of eliminating the interference signal of the ambient light.
  • the predetermined wavelength band is a wavelength band corresponding to the blue light signal, that is, the filter film 23 filters out optical signals other than the blue light signal.
  • the predetermined band is a band corresponding to the green light signal, that is, the filter film 23 filters out the light signals other than the green light signal.
  • the target object F such as a finger absorbs the weakest red light signal, and the green light signal, and the blue light signal absorbs the strongest. That is, ambient light illuminates the finger, and a large amount of blue light signal is absorbed by the finger, and only a small amount or even no blue light signal penetrates the finger. Therefore, selecting the optical signal of the band other than the blue light signal or the green light signal for filtering can greatly eliminate the ambient light. The interference improves the sensing accuracy of the photoelectric sensing device 20.
  • the photosensor device 20 is a sensor chip for sensing biometric information.
  • FIG. 7 shows the structure of a photoelectric sensing device 20 according to still another embodiment of the present invention.
  • the photosensor device 20 further includes a package 30 for packaging the photosensitive die 24 and all devices above the photosensitive die 24, such as a semiconductor.
  • the substrate 28 and the filter film 23 are packaged.
  • the package body 30 can fill the through holes 282 together.
  • FIG. 8 shows the structure of a photosensitive die of an embodiment.
  • the photosensitive die (Die) 24 is a semiconductor integrated circuit device further comprising a substrate 26 on which the plurality of photosensitive pixels 22 are formed.
  • a scan line group and a data line group electrically connected to the photosensitive pixel 22 are formed on the substrate 26, and the scan line group is configured to transmit a scan driving signal to the photosensitive pixel 22 to activate the photosensitive pixel 22 to perform light sensing.
  • the data line group is used to output an electrical signal generated by the photosensitive pixel performing light sensing.
  • the substrate 26 is, for example but not limited to, a silicon substrate or the like.
  • FIG. 9 shows the structure of an optoelectronic sensing device of an embodiment.
  • the photosensitive pixels 22 are distributed in an array, such as a matrix distribution. Of course, it can also be distributed in other rule manners or in an irregular manner.
  • the scan line group includes a plurality of scan lines 201.
  • the data line group includes a plurality of data lines 202.
  • the plurality of scan lines 201 and the plurality of data lines 202 are disposed to cross each other and disposed between adjacent photosensitive pixels 22.
  • a plurality of scanning lines G1, G2, ..., Gm are arranged at intervals in the Y direction, and a plurality of data lines S1, S2, ..., Sn are arranged at intervals in the X direction.
  • the plurality of scanning lines 201 and the plurality of data lines 202 are not limited to the vertical arrangement shown in FIG. 9, and may be disposed at an angle, for example, 30°, 60°, or the like.
  • the scan lines 201 and the data lines 202 at the intersections are separated by an insulating material.
  • the distribution and the number of the scan lines 201 and the data lines 202 are not limited to the above-exemplified embodiments, and the corresponding scan line groups and data line groups may be correspondingly set according to the structure of the photosensitive pixels. .
  • a plurality of scan lines 201 are connected to a driving circuit 25, and a plurality of data lines 202 are connected to a signal processing circuit 27.
  • the driving circuit 25 is configured to provide a corresponding scan driving signal and transmit it to the corresponding photosensitive pixel 22 through the corresponding scanning line 201 to activate the photosensitive pixel 22 to perform light sensing.
  • the driving circuit 25 is formed on the substrate 26, and of course, it can also be electrically connected to the photosensitive pixels 22 through a flexible circuit board, that is, a plurality of scanning lines 201 are connected.
  • the signal processing circuit 27 receives an electrical signal generated by the corresponding photosensitive pixel 22 performing light sensing through the data line 202, and acquires biometric information of the target object based on the electrical signal.
  • the photoelectric sensing device 20 further includes a controller 29 for controlling the drive
  • the dynamic circuit outputs a corresponding scan drive signal, such as, but not limited to, progressively activating the photosensitive pixel 22 to perform light sensing.
  • the controller 29 is further configured to control the signal processing circuit 27 to receive the electrical signal output by the photosensitive pixel 22, and after receiving the electrical signal output by all the photosensitive pixels 22 performing the light sensing, generate biometric information of the target object based on the electrical signal. .
  • the signal processing circuit 27 and the controller 29 may be formed on the substrate 26 or may be electrically connected to the photosensitive die 24 through a flexible circuit board.
  • the circuit structure of the photosensitive pixel 22 of one embodiment is shown.
  • the photosensitive pixel 22 includes a photosensitive device 220 and a switching device 222.
  • the switching device 222 has a control terminal C and two signal terminals, such as a first signal terminal Sn1 and a second signal terminal Sn2.
  • the control terminal C of the switching device 222 is connected to the scan line 201.
  • the first signal terminal Sn1 of the switching device 222 is connected to a reference signal L via the photosensitive device 220, and the second signal terminal Sn2 of the switching device 222 is connected to the data line 202.
  • the photosensitive pixel 22 illustrated in FIG. 10 is for illustrative purposes only and is not limited to other constituent structures of the photosensitive pixel 22.
  • the above-mentioned photosensitive device 220 is, for example but not limited to, any one or several of a photodiode, a phototransistor, a photodiode, a photo resistor, and a thin film transistor.
  • a photodiode as an example, a negative voltage is applied across the photodiode.
  • the photodiode receives the optical signal, a photocurrent is generated in a proportional relationship with the optical signal, and the received optical signal is more intense. Larger, the larger the photocurrent generated, the faster the voltage drop on the negative pole of the photodiode.
  • the intensity of the optical signal reflected from different parts of the target object is obtained, and the target is obtained. Biometric information of the object. It can be understood that in order to increase the photosensitive effect of the photosensitive device 220, a plurality of photosensitive devices 220 may be disposed.
  • the switching device 222 is, for example but not limited to, any one or several of a triode, a MOS transistor, and a thin film transistor.
  • the switching device 222 can also include other types of devices, and the number can also be two, three, and the like.
  • the photosensitive device 220 having high sensitivity to the blue light signal may also be selected.
  • the light sensing is performed by selecting the photosensitive device 220 having high sensitivity to the blue light signal and the green light signal, so that the photosensitive device 220 is more sensitive to the light of the blue light signal and the green light signal, and thus the ambient light is also avoided to some extent.
  • the interference caused by the red light signal improves the sensing accuracy of the photoelectric sensing device 20.
  • the gate of the thin film transistor TFT serves as the control terminal C of the switching device 222, and the source and the drain of the thin film transistor TFT correspond to the first signal terminal Sn1 of the switching device 222 and The second signal terminal Sn2.
  • the gate of the thin film transistor TFT is connected to the scanning line 201, the source of the thin film transistor TFT is connected to the negative electrode of the photodiode D1, and the drain of the thin film transistor TFT is connected to the data line 202.
  • Photodiode The anode of D1 is connected to a reference signal L, which is, for example, a ground signal or a negative voltage signal.
  • a driving signal is applied to the gate of the thin film transistor TFT through the scanning line 201 to drive the thin film transistor TFT to be turned on.
  • the data line 202 is connected to a positive voltage signal.
  • the positive voltage signal on the data line 202 is applied to the negative electrode of the photodiode D1 via the thin film transistor TFT. Since the positive electrode of the photodiode D1 is grounded, the photoelectric A reverse voltage is applied across diode D1 such that photodiode D1 is reverse biased, i.e., in operation.
  • the reverse current of the photodiode D1 rapidly increases, thereby causing a change in current on the photodiode D1, which can be obtained from the data line 202. Since the intensity of the optical signal is larger, the reverse current generated is larger. Therefore, according to the current signal acquired on the data line 202, the intensity of the optical signal can be obtained, thereby obtaining the biometric information of the target object.
  • the reference signal L may be a positive voltage signal, a negative voltage signal, a ground signal, or the like. As long as the electrical signal provided on the data line 202 and the reference signal L are applied across the photodiode D1 such that a reverse voltage is formed across the photodiode D1 to perform photo sensing, it is within the scope of protection defined by the present invention.
  • connection manner of the thin film transistor TFT and the photodiode D1 in the photosensitive pixel 22 is not limited to the connection mode shown in FIG. 10, and may be other connection methods.
  • FIG. 11 shows a circuit configuration of a photosensitive pixel of another embodiment.
  • the gate G of the thin film transistor TFT is connected to the scanning line 201
  • the drain D of the thin film transistor TFT is connected to the anode of the photodiode D1
  • the source S of the thin film transistor TFT is connected to the data line 202.
  • the negative terminal of the photodiode D1 is connected to a positive voltage signal.
  • the above-mentioned photosensitive device 220 is disposed corresponding to the through hole 282 to ensure that the optical signals passing through the through hole 282 are all received by the photosensitive device 220, thereby improving the sensing accuracy of the photoelectric sensing device 20.
  • FIG. 12 shows a partially enlarged structure of the photoelectric sensing device 20 and the display screen 10 shown in FIG. 3 at a region A.
  • Display screen 10 includes a plurality of display pixels 12.
  • the photosensitive pixels 22 are disposed corresponding to the display pixels 12.
  • the photosensitive pixels 22 located under the display screen 10 are not limited to the corresponding setting of the display pixels 12, and may be other setting manners.
  • FIG. 13 shows a relative position of a display pixel and a photosensitive device in an electronic device according to an embodiment.
  • a gap H is provided between adjacent display pixels 12, and the gap H has a light-transmitting region.
  • the photosensitive device 220 in the photosensitive pixel 22 is disposed below the gap H between adjacent display pixels.
  • the lower part here is, for example but not limited to, directly below, and it is possible to ensure that sufficient light signals are received at the position. It can be understood that the more the optical signal passes through the gap H, the higher the sensing accuracy of the photoelectric sensing device 20.
  • the display pixels shown in FIG. 13 are not limited to the structure of the display screen 10.
  • the display pixels of the display screen 10 may also include other types, and the display pixels 12 in the display screen 10 are not limited to the arrangement shown in FIG. There are other arrangements, such as the pentiel arrangement.
  • the display screen 10 Since the photosensitive pixel 22 receives the light signal passing through the display screen 10, the display screen 10 has a corresponding light-transmitting area, and as long as the photosensitive surface of the photosensitive pixel 22 is disposed in the light-transmitting area, sufficient optical signal can be ensured.
  • the photosensitive pixel 22 is sensed to perform light sensing efficiently.
  • the display screen 10 further includes a driving circuit for driving the display pixels 12 to emit light and a corresponding driving circuit (not shown), and the driving circuit and the corresponding driving circuit can be disposed between the display pixels 12, It can be disposed below each display pixel 12.
  • the area where the display pixel, the driving circuit and the corresponding driving line are set is the opaque area, and the remaining area is the light transmitting area.
  • Photosensitive device 220 is located below the light transmissive region for better light sensing. It can be understood that the light transmissive area and the opaque area in the display screen 10 are not strictly limited, and whether the light transmission is determined by the composition of the display screen 10 and the distribution of the constituent structures. For example, when the structure in which the display pixels 12 are formed adopts a transparent structure, the area in which the display pixels are disposed will become a light-transmitting area.
  • FIG. 14 shows a partial structure of an electronic device according to another embodiment of the present invention.
  • the electronic device includes a protective cover 30, a display screen 10, and a photoelectric sensing device 20.
  • the protective cover 30 is located above the display screen 10, and the photoelectric sensing device 20 is located below the display screen 10.
  • the photoelectric sensing device 20 is a photosensitive panel, and the photosensitive panel is adapted to fit the display screen 10.
  • the fitting fit here means that the shape of the photosensitive panel is substantially the same as the shape of the display panel, and the size of the photosensitive panel is substantially equal to the size of the display screen 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种光电传感装置(20)及电子设备,该光电传感装置(20)包括一感光裸片(24)以及设置于所述感光裸片(24)上的半导体基板(28);所述感光裸片(24)包括多个感光像素(22),且所述半导体基板(28)上对应所述感光像素(22)的位置处形成贯穿所述半导体基板(28)的通孔(282)。电子设备包括该光电传感装置(20)。

Description

光电传感装置及电子设备 技术领域
本实用新型涉及光电传感领域,尤其涉及一种光电传感装置及电子设备。
背景技术
目前,生物信息传感器,尤其是指纹识别传感器,已逐渐成为移动终端等电子产品的标配组件。由于光学式指纹识别传感器比电容式指纹识别传感器具有更强的穿透能力,因此有人提出一种应用于移动终端的光学式指纹识别模组。如图1所示,该光学式指纹识别模组包括光学式指纹传感器400和光源402。其中,该光学式指纹传感器400设置于移动终端的保护盖板401下方。该光源402临近该光学式指纹识别传感器400的一侧设置。当用户的手指F接触保护盖板401时,光源402发出的光信号穿过保护盖板401并到达手指F,经过手指F的谷和脊的反射后,被光学式指纹识别传感器400接收,并形成手指F的指纹图像。
然,上述光学式指纹识别模组400无法获得清晰的图像,仍有待改进。
实用新型内容
本实用新型实施方式旨在至少解决现有技术中存在的技术问题之一。为此,本实用新型实施方式需要提供一种光电传感装置及电子设备。
本实用新型实施方式的一种光电传感装置,包括一感光裸片以及设置于所述感光裸片上的半导体基板;所述感光裸片包括多个感光像素,所述半导体基板上对应所述感光像素的位置处形成贯穿所述半导体基板的通孔。
本实用新型实施方式通过感光裸片上设置半导体基板,且半导体基板对应感光像素的位置处形成贯穿所述半导体基板的通孔,由于半导体基板的吸光特性,因此只有预定范围内的光信号穿过通孔并被感光像素吸收,从而使得相邻的感光像素之间接收到的光信号不会发生混叠,感光像素执行光感测后获得的图像较清晰,从而提高了光电传感装置感测精度。
在某些实施方式中,所述半导体基板为预定厚度的硅片。
在某些实施方式中,所述半导体基板由硅片经过减薄处理至预定厚度而形成。
在某些实施方式中,所述通孔通过在半导体基板上刻蚀形成。
在某些实施方式中,所述通孔采用气体刻蚀或离子束刻蚀形成。
通过在半导体基板上形成贯通通孔来实现抗混叠效果,不但加工工艺相对简单,而且还保证了抗混叠效果。
在某些实施方式中,所述通孔均匀分布。通过设置小孔径的通孔且通孔均匀分布,不但保证感光像素对应有通孔,而且使得半导体基板的制备工艺较简单。另外,小孔径的通孔使得半导体基板的抗混叠效果更好,从而提高了光电传感装置的感测精度。
在某些实施方式中,所述通孔内填充透明材料。通过通孔内填充透明材料,不但增加半导体基板的强度,也可避免杂质进入通孔内而影响透光效果。
在某些实施方式中,所述感光像素包括至少一感光器件,所述通孔与所述感光器件对应设置。
通过感光器件与通孔对应设置,以保证穿过通孔的光信号全部被感光器件接收,从而提高光电传感装置的感测精度。
在某些实施方式中,每一感光器件对应多个所述通孔。通过感光器件上对应多个通孔,使得感光器件能感测到足够的光信号,从而保证了光电传感装置的感测效果。
在某些实施方式中,所述半导体基板上或者所述感光裸片与所述半导体基板之间设有滤光膜,所述滤光膜用于将预设波段以外的光信号过滤。
在某些实施方式中,所述预设波段为蓝色、绿色光信号对应的波段。
通过滤光膜的设置,使得环境光中的干扰信号能有效地滤除,从而提高了感测精度。
在某些实施方式中,所述感光裸片包括一衬底,所述感光像素呈阵列分布于所述衬底上。
在某些实施方式中,所述光电传感装置还包括一封装壳体,所述封装壳体用于将所述感光裸片以及所述感光裸片上方的半导体基板进行封装。
在某些实施方式中,所述光电传感装置为指纹传感装置。
在某些实施方式中,所述光电传感装置为感光芯片,用于感测生物特征信息。
本实用新型实施方式的一种电子设备,包括上述任一实施方式的光电传感装置。
由于该电子设备具有上述任一实施方式的光电传感装置,因此具有该光电传感装置具有的所有有益效果。
本实用新型实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面 的描述中变得明显,或通过本实用新型实施方式的实践了解到。
附图说明
本实用新型实施方式的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是现有技术的一种应用于电子设备的光学感测结构的示意图;
图2是本实用新型一实施方式的光电传感装置应用于电子设备的正面结构示意图;
图3是图2中的电子设备沿I-I线的剖面结构示意图,其中仅示出了电子设备的部分结构;
图4是本实用新型一实施方式的光电传感装置的局部结构示意图;
图5是本实用新型一实施方式的电子设备执行光感测时受环境光干扰的示意图;
图6是本实用新型另一实施方式的光电传感装置的局部结构示意图;
图7是本实用新型又一实施方式的光电传感装置的局部结构示意图;
图8是本实用新型一实施方式的感光裸片的局部结构示意图;
图9是本实用新型一实施方式的光电传感装置的结构框图;
图10是本实用新型一实施方式的感光像素的电路结构示意图;
图11是本实用新型另一实施方式的感光像素的电路结构示意图;
图12是图3示出的显示屏和光电传感装置在A区域处的局部放大示意图;
图13是本实用新型一实施方式的电子设备中,显示像素与感光器件的相对位置示意图;
图14是本实用新型另一实施方式的电子设备的剖面结构示意图,其中仅示出了电子设备的部分结构。
具体实施方式
下面详细描述本实用新型的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本实用新型,而不能理解为对本实用新型的限制。
在本实用新型的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本实用 新型的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。“接触”或“触摸”包括直接接触或间接接触。例如,下文中揭示的光电传感装置,其被设置在电子设备的内部,例如显示屏的下方,则用户手指通过保护盖板以及显示屏间接接触该光电传感装置。
在本实用新型的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本实用新型中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本实用新型的不同结构。为了简化本实用新型的公开,下文中对特定例子的部件和设定进行描述。当然,它们仅仅为示例,并且目的不在于限制本实用新型。此外,本实用新型可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设定之间的关系。此外,本实用新型提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
进一步地,所描述的特征、结构可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本实用新型的实施方式的充分理解。然而,本领域技术人员应意识到,没有所述特定细节中的一个或更多,或者采用其它的结构、组元等,也可以实践本实用新型的技术方案。在其它情况下,不详细示出或描述公知结构或者操作以避免模糊本实用新型。
本实用新型实施方式提出一种设置于电子设备内的光电传感装置,该显示屏例如但不限于OLED显示面板等具有发出光信号的显示装置。电子设备工作时,显示屏发出光信号,以实现相应的显示效果。此时,若有目标物体触摸该电子设备,显示屏发出的光信号到达目标物体后发生反射,反射回来的光信号穿过显示屏后被光电传感装置接收,光电传感装置将接收到的光信号转换为与光信号对应的电信号。根据该光电传感装置产生的电信号,可获得目标物体的预定生物特征信息。
上述电子设备例如但不局限为消费性电子产品、家居式电子产品、车载式电子产品、金融终端产品等合适类型的电子产品。其中,消费性电子产品如为手机、平板电脑、笔记本电脑、桌面显示器、电脑一体机等。家居式电子产品如为智能门锁、电视、冰箱、穿戴式设备等。车载式电子产品如为车载导航仪、车载DVD等。金融终端产品如为ATM 机、自助办理业务的终端等。以下实施例是以手机类的移动终端为例进行描述,但如前所述,以下各实施例也可适用于其它合适的电子产品,并不局限于手机类的移动终端。
上述目标物体的预定生物特征信息(或为:图像信息)例如但不限于指纹、掌纹、耳纹、脚掌等皮肤纹路信息,以及心率、血氧浓度、静脉、动脉等其它合适的生物特征信息。该预定生物特征信息可为前述列举的信息中的任意一种或几种。该目标物体例如但不限于人体,也可以为其它合适类型的生物体。
请参照图2以及图3,图2示出了应用本实用新型光电传感装置的电子设备一实施方式的正面结构,图3示出了图2中的电子设备沿I-I线的局部剖面结构。本实用新型实施方式的光电传感装置20应用于一移动终端100,该移动终端100的正面设有一显示屏10,该显示屏10上方设有保护盖板30。可选地,该显示屏10的屏占比较高,例如80%以上。屏占比是指显示屏10的显示区域S1占移动终端100的正面区域的比例。该光电传感装置20对应设置在该显示屏10的下方,对应该显示屏10的显示区域S1的局部区域设置。定义该移动终端100的正面对应或正对该光电传感装置20的区域为感测区S2。该光电传感装置20用于感测接触或接近该感测区S2上方的目标物体的预定生物特征信息。可以理解的是,该光电传感装置20也可以设置于保护盖板30下方,且位于移动终端的正面非显示区。
该感测区S2可为显示区上的任一位置。例如,该感测区S对应该显示屏10的显示区的中下位置处设置。可以理解地是,该感测区S2对应该显示屏10的中下位置处设置是为了方便用户进行操作。例如,当用户手持移动终端100时,用户的大拇指可方便触摸该感测区S2的位置。当然,该感测区S2也可以放置于用户方便触摸的其它合适位置。
当移动终端100处于亮屏状态、且处于生物特征信息感测模式时,该显示屏10发出光信号。当一物体接触或接近该感测区S2时,该光电传感装置20接收由该物体反射回来的光线,转换接收到的光线为相应的电信号,并根据该电信号获取该物体的预定生物特征信息,例如,指纹图像信息。从而,该光电传感装置20可实现对接触或接近显示区上方的局部区域的目标物体进行感测。
请参照图4,图4示出了本实用新型一实施方式的光电传感装置20的局部结构。该光电传感装置20包括一感光裸片24,该感光裸片24包括多个感光像素22,该感光像素22用于接收穿过显示屏的光信号,并将接收到的光信号转换为相应的电信号。该感光裸片24上设置一具有通孔282的半导体基板28,以用来防止相邻的感光像素22接收的光信号产生混叠。
由于目标物体不同部位对光信号的反射存在差异,而且目标物体表面的不平整,目标物体有些部位与保护盖板30(见图3)接触,有些部位与保护盖板30未接触,从而造成接触的位置发生漫反射,未接触的位置发生镜面反射,则相邻的感光像素22之间感测到的光信号会存在混叠,从而造成获得的感测图像模糊。因此,本实用新型实施方式通过在感光裸片24上设置具有通孔282的半导体基板28,能防止相邻的感光像素22接收到的光信号产生混叠,从而使得获得的感测图像清晰,提高了光电传感装置20的感测精度。
在某些实施方式中,半导体基板28具有吸光特性,照射到半导体基板28上的光信号中,只有与所述感光裸片24近似垂直的光信号才能穿过半导体基板28并被感光像素22接收,其余的光信号则均被半导体基板28吸收。如此,可以防止相邻的感光像素22之间接收的光信号产生混叠。需要说明的是,与感光裸片24近似垂直的光信号包括垂直于所述感光裸片24的光信号,以及相对所述感光裸片24的垂直方向偏移预设角度范围内的光信号。该预设角度范围为±20°内。
本实用新型实施方式的光电传感装置20通过在感光裸片24上设置半导体基板28,可以有效防止相邻的感光像素22所接收的光信号产生混叠,从而提高了光电传感装置20的感测精度。
具体地,请继续参照图4,该半导体基板28上对应感光像素22的位置处形成贯穿半导体基板28的通孔282。由于半导体材料具有吸光特性,因此照射到半导体基板28上的光信号将被吸收,只有预设范围内的光信号能穿过通孔282,并被感光像素22接收。
在某些实施方式中,通孔282的孔径越小,抗混叠效果越好。如此可以在半导体基板上设置小孔径的通孔282,且该通孔282对应感光像素22设置,从而可以提高了抗混叠效果。
进一步地,半导体基板28上多个通孔282均匀分布,从而使得半导体基板28的制备工艺较简单,而且每一感光像素22将对应多个通孔282,使得感光像素22能感测到足够的光信号,从而保证了光电传感装置20的感测效果。
在某些实施方式中,上述半导体基板28为预定厚度的硅片,通过预定厚度的设置,可以有效防止相邻的感光像素22之间接收到的光信号发生混叠。若硅片的厚度比预定厚度大,则可以先将硅片进行减薄处理,以达到预定厚度。
在某些实施方式中,通孔282通过在半导体基板28上刻蚀形成。由于硅片具有一定的硬度,因此在硅片上进行刻蚀形成通孔的工艺相对较简单,更易于实现。具体地, 该刻蚀方法可以采用气体刻蚀或离子束刻蚀等干刻蚀方法,如此可以保证通孔282的有效形成,保证了抗混叠效果。
在某些实施方式中,上述通孔282内均可以填充透明材料,以增加半导体基板28的强度,也可避免杂质进入通孔282内而影响透光效果。为了保证通孔282的透光效果,透明材料可以选用透光率较大的材料,例如玻璃、PMMA(亚克力)、PC(聚碳酸酯)等等。
在某些实施方式中,请参照图5,图5示出了电子设备执行感测时受环境光的影响情况。以目标物体F为手指为例,当手指位于保护盖板30时,若有环境光照射于手指上,而手指具有很多组织结构,例如表皮、骨头、肉、血管等,因此环境光中的部分光信号会穿透手指,部分光信号则被手指吸收。穿透手指的光信号将向手指下方的保护盖板30传输并到达光电传感装置20,此时光电传感装置20不但感测到经目标物体F反射回来的光信号,还感测到环境光穿透手指的光信号,如此无法进行准确地感测。因此,为了避免环境光影响光电传感装置20对目标物体F的感测,如图6所示,图6示出了本实用新型另一实施方式的光电传感装置20的结构。该感光裸片24上设有滤光膜23,即滤光膜23设置于感光裸片24与半导体基板28之间。该滤光膜23用于将预设波段以外的光信号进行过滤。本实施方式中,该预设波段以外的光信号为环境光形成的干扰信号,即环境光中能穿透手指的光信号。通过该滤光膜23,将反射回来的光信号中的干扰信号滤除,从而提高了光电传感装置20的感测精度。然,可变更地,该滤光膜23还可以设置于半导体基板28上,即滤光膜23设于半导体基板28远离感光裸片24的一端。
在某些实施方式中,预设波段的光信号以外的光信号为环境光中较长波段的光信号,因为较长波段的光信号可以穿透目标物体,而较短波段的光信号则被目标物体吸收。因此通过对环境光中较长波段的光信号进行滤除,就能滤除环境光中穿透手指的光信号,达到消除环境光的干扰信号的目的。
在某些实施方式中,预设波段为蓝色光信号对应的波段,即滤光膜23将蓝色光信号以外的光信号滤除。
在某些实施方式中,预设波段为绿色光信号对应的波段,即滤光膜23将绿色光信号以外的光信号滤除。
在环境光的红色光信号、蓝色光信号以及绿色光信号中,手指等目标物体F对红色光信号的吸收最弱,其次是绿色光信号,对蓝色光信号的吸收最强。即环境光照射于手指上,大量的蓝色光信号被手指吸收,只有少量的,甚至没有蓝色光信号穿透手指。因此,选择蓝色光信号或绿色光信号以外波段的光信号进行过滤,可以大大消除环境光的 干扰,提高光电传感装置20的感测精度。
在某些实施方式中,所述光电传感装置20为一感光芯片,用于感测生物特征信息。
在某些实施方式中,请参照图7,图7示出了本实用新型又一实施方式的光电传感装置20的结构。在某些实施方式中,所述光电传感装置20进一步包括一封装体30,所述封装体用于将所述感光裸片24以及所述感光裸片24上方的所有器件进行封装,例如半导体基板28以及滤光膜23。尤其地,当半导体基板28位于该滤光膜23上方时,该封装体30可以一并填充通孔282。
请参照图8,图8示出了一实施方式的感光裸片的结构。该感光裸片(Die)24为一半导体集成电路器件,其进一步包括一衬底26,该多个感光像素22形成在该衬底26上。另外,该衬底26上例如还形成有与感光像素22电性连接的扫描线组和数据线组,扫描线组用于传输扫描驱动信号给感光像素22,以激活感光像素22执行光感测,数据线组用于将感光像素执行光感测而产生的电信号输出。该衬底26例如但不限于硅基板等。
具体地,在某些实施方式中,请参照图9,图9示出了一实施方式的光电传感装置的结构。感光像素22呈阵列分布,例如矩阵分布。当然,也可以为其他规则方式分布或非规则方式分布。扫描线组包括多条扫描线201,数据线组包括多条数据线202,多条扫描线201与多条数据线202相互交叉设置,且设置在相邻的感光像素22之间。例如,多条扫描线G1、G2…Gm沿Y方向间隔布设,多条数据线S1、S2…Sn沿X方向间隔布设。然,可变更地,该多条扫描线201与多条数据线202不限定图9中示出的垂直设置,也可以呈一定角度的设置,例如30°、60°等。另外,由于扫描线201和数据线202的导电性,因此处于交叉位置的扫描线201和数据线202之间通过绝缘材料进行隔离。
需要说明的是,上述扫描线201和数据线202的分布以及数量的设置并不局限于上述例举的实施方式,可以根据感光像素的结构的不同而对应设置相应的扫描线组和数据线组。
进一步地,请继续参照图9,多条扫描线201均连接一驱动电路25,多条数据线202均连接一信号处理电路27。驱动电路25用于提供相应的扫描驱动信号,并通过对应的扫描线201传输给相应的感光像素22,以激活该感光像素22执行光感测。该驱动电路25形成在衬底26上,当然也可以通过柔性电路板与感光像素22电性连接,即连接多条扫描线201。信号处理电路27通过数据线202接收相应的感光像素22执行光感测而产生的电信号,并根据该电信号来获取目标物体的生物特征信息。
在某些实施方式中,光电传感装置20还包括一控制器29,该控制器29用于控制驱 动电路输出相应的扫描驱动信号,例如但不局限于逐行激活感光像素22执行光感测。该控制器29还用于控制信号处理电路27接收感光像素22输出的电信号,并在接收执行光感测的所有感光像素22输出的电信号后,根据该电信号生成目标物体的生物特征信息。
进一步地,上述信号处理电路27以及控制器29可形成在衬底26上,也可通过柔性电路板与感光裸片24电性连接。
在某些实施方式中,如图10所示,示出了一实施方式的感光像素22的电路结构。该感光像素22包括一感光器件220和一开关器件222。该开关器件222具有一控制端C以及两信号端,例如第一信号端Sn1和第二信号端Sn2。其中,开关器件222的控制端C与扫描线201连接,开关器件222的第一信号端Sn1经感光器件220连接一参考信号L,开关器件222的第二信号端Sn2与数据线202连接。需要说明的是,图10示出的感光像素22仅用于举例说明,并不限于感光像素22的其他组成结构。
具体地,上述感光器件220例如但不限于光敏二极管、光敏三极管、光电二极管、光电阻、薄膜晶体管的任意一个或几个。以光电二极管为例,通过在光电二极管的两端施加负向电压,此时,若光电二极管接收到光信号时,将产生与光信号成一定比例关系的光电流,接收到的光信号强度越大,产生的光电流则越大,光电二极管负极上的电压下降的速度也就越快,因此通过采集光电二极管负极上的电压信号,从而获得目标物体不同部位反射的光信号强度,进而获得目标物体的生物特征信息。可以理解的是,为了增大感光器件220的感光效果,可以设置多个感光器件220。
进一步地,开关器件222例如但不限于三极管、MOS管、薄膜晶体管中的任意一个或几个。当然,该开关器件222也可以包括其他类型的器件,数量也可以为2个、3个等。
在某些实施方式中,为了进一步提高光电传感装置20的感测精度,也可以选择对蓝色光信号的感光灵敏度高的感光器件220。通过选择对蓝色光信号和绿色光信号的感光灵敏度高的感光器件220执行光感测,使得该感光器件220对蓝色光信号和绿色光信号的感光更灵敏,因此一定程度上也避免了环境光中红色光信号造成的干扰,从而提高了光电传感装置20的感测精度。
以图10示出的感光像素22结构为例,该薄膜晶体管TFT的栅极作为开关器件222的控制端C,薄膜晶体管TFT的源极和漏极对应作为开关器件222的第一信号端Sn1和第二信号端Sn2。薄膜晶体管TFT的栅极与扫描线201连接,薄膜晶体管TFT的源极与光电二极管D1的负极连接,薄膜晶体管TFT的漏极与数据线202连接。光电二极管 D1的正极连接参考信号L,该参考信号L例如为地信号或负电压信号。
在上述感光像素22执行光感测时,通过扫描线201给薄膜晶体管TFT的栅极施加一驱动信号,以驱动薄膜晶体管TFT导通。此时,数据线202连接一正电压信号,当薄膜晶体管TFT导通后,数据线202上的正电压信号经薄膜晶体管TFT施加至光电二极管D1的负极,由于光电二极管D1的正极接地,因此光电二极管D1两端将施加一反向电压,使得光电二极管D1处于反向偏置,即处于工作状态。此时,当有光信号照射到该光电二极管D1时,光电二极管D1的反向电流迅速增大,从而引起光电二极管D1上的电流变化,该变化的电流可以从数据线202上获取。由于光信号的强度越大,产生的反向电流也越大,因此根据数据线202上获取到的电流信号,可以获得光信号的强度,进而获得目标物体的生物特征信息。
在某些实施方式中,上述参考信号L可以为正电压信号、负电压信号、地信号等。只要数据线202上提供的电信号与该参考信号L施加在光电二极管D1两端,使得光电二极管D1两端形成反向电压,以执行光感测,均在本实用新型限定的保护范围内。
可以理解的是,上述感光像素22中薄膜晶体管TFT和光电二极管D1的连接方式并不局限于图10示出的连接方式,也可以为其他连接方式。例如,如图11所示,图11示出了另一实施方式的感光像素的电路结构。薄膜晶体管TFT的栅极G与扫描线201连接,薄膜晶体管TFT的漏极D与光电二极管D1的正极连接,薄膜晶体管TFT的源极S与数据线202连接。光电二极管D1的负极连接正电压信号。
进一步地,上述感光器件220与通孔282对应设置,以保证穿过通孔282的光信号全部被感光器件220接收,从而提高光电传感装置20的感测精度。
请参照图12,图12示出了图3所示的光电传感装置20和显示屏10在区域A处的局部放大结构。显示屏10包括多个显示像素12。可选地,在一实施方式中,感光像素22与显示像素12对应设置。当然,位于显示屏10下方的感光像素22不局限与显示像素12对应设置,也可以为其他设置方式。例如,请参照图13,图13示出了一实施方式的电子设备中,显示像素与感光器件的相对位置。相邻的显示像素12之间设有间隙H,且该间隙H内具有透光区域。感光像素22中的感光器件220对应设置于相邻的显示像素之间的间隙H的下方。这里的下方例如但不限于正下方,能保证足够的光信号被接收到的位置均可。可以理解的是,若穿过该间隙H的光信号越多,则光电传感装置20的感测精度越高。图13示出的显示像素并不局限于显示屏10的结构,显示屏10的显示像素也可以包括其他种类,而且显示屏10中的显示像素12并不局限于图13示出的排列方式,还可以有其他的排列方式,例如pentiel排列方式等。
由于感光像素22接收穿过显示屏10的光信号,因此,该显示屏10具有相应的透光区域,只要感光像素22的感光面对应该透光区域设置,就可以保证足够的光信号能被感光像素22感测到,从而进行有效地执行光感测。
进一步地,显示屏10还包括驱动各显示像素12发光的驱动电路和相应的驱动线路(图中未示出),而且该驱动电路和相应的驱动线路可以设置于各显示像素12之间,也可以设置于各显示像素12下方。为了更好的显示效果,设置显示像素、驱动电路和相应的驱动线路的区域为不透光区域,其余的区域则为透光区域。而感光器件220则位于该透光区域下方,以便进行更好地光感测。可以理解的是,显示屏10中的透光区域和不透光区域并没有严格的限制,是否透光由显示屏10的组成结构以及组成结构的分布来决定。例如,当形成显示像素12的结构采用透明结构时,设置显示像素的区域将变为透光区域。
在某实施方式中,请参照图14,图14示出了本实用新型另一实施方式的电子设备的部分结构。该电子设备包括保护盖板30、显示屏10、光电传感装置20,保护盖板30位于显示屏10上方,光电传感装置20位于显示屏10下方。该光电传感装置20为一感光面板,而且该感光面板与显示屏10适配贴合。这里的适配贴合是指感光面板的形状与显示面板的形状基本一致,感光面板的大小与显示屏10的大小也基本相等。通过该感光面板的设置,可以实现电子设备屏内任意位置的感测。另外,该光电传感装置20的组成结构以及感测原理参照前面实施例描述,在此不再赘述。
在本说明书的描述中,参考术语“一个实施方式”、“某些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本实用新型的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管上面已经示出和描述了本实用新型的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本实用新型的限制,本领域的普通技术人员在本实用新型的范围内可以对上述实施方式进行变化、修改、替换和变型。

Claims (16)

  1. 一种光电传感装置,其特征在于:包括一感光裸片以及设置于所述感光裸片上的半导体基板;所述感光裸片包括多个感光像素,且所述半导体基板上对应所述感光像素的位置处形成贯穿所述半导体基板的通孔。
  2. 如权利要求1所述的光电传感装置,其特征在于:所述半导体基板为预定厚度的硅片。
  3. 如权利要求2所述的光电传感装置,其特征在于:所述半导体基板由硅片经过减薄处理至预定厚度而形成。
  4. 如权利要求1所述的光电传感装置,其特征在于:所述通孔通过在半导体基板上刻蚀形成。
  5. 如权利要求4所述的光电传感装置,其特征在于:所述通孔采用气体刻蚀或离子束刻蚀形成。
  6. 如权利要求1所述的光电传感装置,其特征在于:所述通孔均匀分布。
  7. 如权利要求1所述的光电传感装置,其特征在于:所述通孔内填充透明材料。
  8. 如权利要求1所述的光电传感装置,其特征在于:所述感光像素包括至少一感光器件,所述通孔与所述感光器件对应设置。
  9. 如权利要求8所述的光电传感装置,其特征在于:每一感光器件对应多个所述通孔。
  10. 如权利要求1-9任一项所述的光电传感装置,其特征在于:所述半导体基板上或者所述感光裸片与所述半导体基板之间设有滤光膜,所述滤光膜用于将预设波段以外的光信号过滤。
  11. 如权利要求10所述的光电传感装置,其特征在于:所述预设波段为蓝色、绿色光信号对应的波段。
  12. 如权利要求1所述的光电传感装置,其特征在于:所述感光裸片包括一衬底,所述感光像素呈阵列分布于所述衬底上。
  13. 如权利要求1所述的光电传感装置,其特征在于:所述光电传感装置还包括一封装壳体,所述封装壳体用于将所述感光裸片以及所述感光裸片上方的半导体基板进行封装。
  14. 如权利要求1所述的光电传感装置,其特征在于:所述光电传感装置为指纹传感装置。
  15. 如权利要求1所述的光电传感装置,其特征在于:所述光电传感装置为感光芯片,用于感测生物特征信息。
  16. 一种电子设备,其特征在于:包括如权利要求1-15任一项所述的光电传感装置。
PCT/CN2017/097914 2017-08-17 2017-08-17 光电传感装置及电子设备 WO2019033354A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201790000160.3U CN209803815U (zh) 2017-08-17 2017-08-17 光电传感装置及电子设备
PCT/CN2017/097914 WO2019033354A1 (zh) 2017-08-17 2017-08-17 光电传感装置及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/097914 WO2019033354A1 (zh) 2017-08-17 2017-08-17 光电传感装置及电子设备

Publications (1)

Publication Number Publication Date
WO2019033354A1 true WO2019033354A1 (zh) 2019-02-21

Family

ID=65362607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097914 WO2019033354A1 (zh) 2017-08-17 2017-08-17 光电传感装置及电子设备

Country Status (2)

Country Link
CN (1) CN209803815U (zh)
WO (1) WO2019033354A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107958184A (zh) * 2017-08-17 2018-04-24 深圳信炜科技有限公司 光电传感装置及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103839952A (zh) * 2012-11-20 2014-06-04 采钰科技股份有限公司 影像感测装置
CN204463158U (zh) * 2015-01-29 2015-07-08 张明方 蜂窝结构的指纹掌纹图像采集器及终端设备
CN104992158A (zh) * 2015-07-13 2015-10-21 格科微电子(上海)有限公司 提高光学指纹识别性能的方法
WO2016119492A1 (zh) * 2015-01-29 2016-08-04 深圳印象认知技术有限公司 蜂窝结构的指纹掌纹图像采集器及终端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103839952A (zh) * 2012-11-20 2014-06-04 采钰科技股份有限公司 影像感测装置
CN204463158U (zh) * 2015-01-29 2015-07-08 张明方 蜂窝结构的指纹掌纹图像采集器及终端设备
WO2016119492A1 (zh) * 2015-01-29 2016-08-04 深圳印象认知技术有限公司 蜂窝结构的指纹掌纹图像采集器及终端设备
CN104992158A (zh) * 2015-07-13 2015-10-21 格科微电子(上海)有限公司 提高光学指纹识别性能的方法

Also Published As

Publication number Publication date
CN209803815U (zh) 2019-12-17

Similar Documents

Publication Publication Date Title
US9589170B2 (en) Information detection and display apparatus, and detecting method and displaying method thereof
US10936840B2 (en) Optical sensor with angled reflectors
KR101924916B1 (ko) 온-스크린 지문 감지를 위한 언더-스크린 광학 센서 모듈
US10410036B2 (en) Under-screen optical sensor module for on-screen fingerprint sensing
US20200293740A1 (en) Optical image capturing unit, optical image capturing system and electronic device
US9946386B2 (en) Display panel for detecting biometric information and driving method thereof
US10789450B2 (en) Optical biometric sensor with automatic gain and exposure control
WO2017206547A1 (zh) 触控显示面板、柔性显示面板以及显示装置
US11175177B2 (en) Systems and methods for detecting ambient light or proximity with an optical sensor
WO2019033348A1 (zh) 显示模组及电子设备
CN108664854A (zh) 指纹成像模组和电子设备
CN111312793B (zh) 一种电子设备
CN107958650B (zh) 生物感测模组及其驱动电路、电子设备
CN107958194B (zh) 光电传感装置及电子设备
CN106873832B (zh) 一种光学感应式触控屏、触控显示装置及触控检测方法
WO2019033350A1 (zh) 显示模组及电子设备
WO2019033354A1 (zh) 光电传感装置及电子设备
WO2019033353A1 (zh) 光电传感装置及电子设备
CN108334763B (zh) 生物特征信息感测装置、电子设备
WO2019033363A1 (zh) 光电传感装置及电子设备
WO2019033344A1 (zh) 电子设备
WO2019033358A1 (zh) 感光芯片及电子设备
WO2019033355A1 (zh) 生物感测模组及其驱动电路、电子设备
CN108629249A (zh) 指纹成像模组和电子设备
WO2019033357A1 (zh) 电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17921821

Country of ref document: EP

Kind code of ref document: A1