WO2019031993A1 - Aéronef sans pilote pour le traitement de plantes - Google Patents

Aéronef sans pilote pour le traitement de plantes Download PDF

Info

Publication number
WO2019031993A1
WO2019031993A1 PCT/RU2018/050095 RU2018050095W WO2019031993A1 WO 2019031993 A1 WO2019031993 A1 WO 2019031993A1 RU 2018050095 W RU2018050095 W RU 2018050095W WO 2019031993 A1 WO2019031993 A1 WO 2019031993A1
Authority
WO
WIPO (PCT)
Prior art keywords
uav
module
computing unit
chemicals
plants
Prior art date
Application number
PCT/RU2018/050095
Other languages
English (en)
Russian (ru)
Inventor
Дмитрий Александрович АНДРЯКОВ
Сергей Геннадьевич КЛАДКО
Дмитрий Трофимович РУБИН
Original Assignee
Общество с ограниченной ответственностью "АгроДронГрупп"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "АгроДронГрупп" filed Critical Общество с ограниченной ответственностью "АгроДронГрупп"
Publication of WO2019031993A1 publication Critical patent/WO2019031993A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/70Constructional aspects of the UAV body
    • B64U20/73Monocoque body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms

Definitions

  • the technical solution relates to the field of robotics and agricultural technology, in particular, the design of unmanned aerial vehicle (UAV) used in agriculture for fertilizer application, spraying plants and monitoring crop yields.
  • UAV unmanned aerial vehicle
  • the claimed solution offers a new UAV design, equipped with means for monitoring and spraying plants in an automated manner.
  • the technical result is the provision of an automated process of spraying plants on the basis of monitoring plant vegetativeness and ensuring the dosed introduction of chemicals through the use of a multi-rotor spraying system.
  • Declared a UAV for processing plants contains a case inside which are installed: a battery, a computing unit, a memory unit containing information about the coordinates of the flight path of the UAV, a navigation system, means for wireless reception and transmission of information; propeller group consisting of brushless motors, stroke regulators and screws located on the beams connected to the housing, installed on the housing a plant treatment system installed on a multi-rotor system, a container with plant processing chemicals, connected to a plant processing system, a processing system control module plants, a narrow-band multispectral photo fixing module, configured to obtain spectral images of plants, a battery charge control sensor - the computing unit is configured to process data from the plant processing area received from the narrow-band multispectral photo fixing module and external sources of information, build a flight route map based on the information received, and transfer data to the processing system control module, which is capable of activating and controlling spraying power plants and the computing unit is connected to a sensor for checking the level of chemicals that is capable of generating a signal for the computing
  • the installation rays of the propeller motor group are removable.
  • the rays are attached to the housing by means of a detachable connection.
  • the plant treatment system is at least one generator of hot or cold mist, or a nozzle sprayer.
  • the chemical container is connected via a hose to a plant treatment system.
  • the tank is installed on the ground and contains a pump adapted to provide access of the chemical to the UAV.
  • the capacity is attached to the body of the UAV.
  • In another private implementation option additionally contains a sensor for checking the level of chemicals installed in the tank and connected to the computing unit, and configured to generate a signal for the computing unit to return the UAV for refueling when the specified level of chemicals is reached.
  • the housing includes dust / moisture protection.
  • the housing is made in the form of a monocoque.
  • the implementation of the computing unit is made in the form of a processor or microcontroller.
  • the implementation of the memory block is made in the form of a flash memory module.
  • the means of wireless data receiving and receiving are a Wi-Fi module, a GSM module or a Bluetooth module.
  • the navigation system is designed as a satellite coordinates receiver in the GPS / rjIOHACC / BeiDou / Galileo system, or combinations thereof.
  • the narrow-band photo-fixing module is designed as a narrow-band multispectral camera for monitoring plant health.
  • the housing and the equipment installed on it contains a hydrophobic coating.
  • FIG. 1 illustrates the general scheme of the elements of the UAV.
  • FIG. 2 illustrates a general view of a UAV.
  • FIG. 3 illustrates the monitoring and spraying of plants.
  • the structure of the UAV (100) includes a number of elements that are interconnected by a common data bus (150) for transmitting signals and control information, in particular: computational unit (101), memory unit (102), navigation system (103), means of reception and transmission (104), plant processing system (106), controlled by the control module (105), narrow-band multispectral photo fixation module (107) , battery charge control sensor (108), liquid chemical container (109) and battery (110).
  • Computing unit (101) may be a processor, microcontroller, FPGA chip, etc.
  • the memory block (102) can be executed in the form of various types of devices for storing information, for example, flash-based media (SD cards), SSD disk, HDD disk, or combinations thereof.
  • SD cards flash-based media
  • SSD disk solid state drive
  • HDD disk hard disk drive
  • the navigation system (103) on board the UAV (100) can be performed on the basis of known chips operating in GPS / rjlOHACC / Galileo / BeiDou systems. Combined modules can be used to work simultaneously in several GNSS / GNSS systems (Global Satellite Navigation System / Global Navigation Satellite Systems) simultaneously realizing the reception of satellite coordinates from these systems.
  • GNSS Global Satellite Navigation System / Global Navigation Satellite Systems
  • Reception-transmission facilities (104) are mainly devices that provide wireless communication and data exchange, in particular, a GSM modem, Wi-Fi transceiver, Bluetooth module, NFC module, RFID, ZeegBee, etc.
  • the spraying system (106) is a multi-rotor system controlled by an appropriate module (105), which is controlled by a computing unit (101).
  • System (106) can be implemented in the form of one or more generators of hot or cold mist, or a nozzle sprayer.
  • System (106) is connected to a liquid chemical tank (109) for performing the spraying procedure.
  • the narrowband multispectral photo fixation module (107) is used to monitor the UAV flyby zone, in particular, to obtain images from which the plant spray area is determined.
  • the module (107) contains a narrow-band multispectral camera for obtaining NDVI data, which are used to determine the lack of moisture and plant soreness.
  • the elements of the UAV (100) are controlled using a rechargeable battery (110), to which the battery charge control sensor (108) is also connected, signaling the battery charge level (110) and generating a signal for the computing unit (101) to return the UAV (100) for recharging or replacing the battery (110).
  • Fig.2 presents a General view of the UAV (100).
  • the movement of the UAV (100) is carried out with the help of a propeller group consisting of brushless motors, travel regulators and screws (111) located on the beams (112) connected to the hull.
  • Rays (112) can be made removable and connected to the UAV case (100) using a detachable connection (113). This principle ensures the prompt replacement of the beam (112) in case of its breakdown or the fall of the UAV (100).
  • the body of the UAV (100) can be of various shapes, the most preferred is the shape of a monocoque.
  • the case has a dust / moisture protection, for example, according to the IP65 standard, and the elements of the UAV (100) can be covered with a hydrophobic coating for the safety of their work.
  • a container (109) containing chemicals can be attached to the body of a UAV (100), for example, by means of a bolt joint, or placed on the ground and connected to a plant processing system (106) by means of a hose.
  • the container (109) contains a pump to provide a spray liquid.
  • a liquid level control sensor can be installed in the tank (109), which signals the number of chemicals and a signal is generated for the computing unit (101) to return the UAV (100) to refuel the tank (109), when the tank is installed on the UAV case ( 100) .
  • the chemical level sensor If the tank (109) is installed on the ground, the chemical level sensor generates a signal to transmit it to the operator’s mobile device, for example, a smartphone, tablet or laptop.
  • the operation of the UAV (100) is as follows.
  • UAV (100) is delivered to the work area and is activated.
  • the activation of the UAV (100) can be performed using the controls installed on the UAV (100) or using a specialized software application.
  • the memory (102) of the UAV (100) contains data for processing the necessary zone with plants, in particular, the flight route, data on the cultivated crop in the fly zone, a map of vegetation. Also, the UAV (100) can synchronize data with a server that contains data of vegetation maps, in particular, information about the cultivated crop.
  • the elements of the declared UAV (100) are fixed between themselves and the supporting elements of the structure, for example, the housing, with the help of a wide range of assembly operations, for example, screwing, articulation, adhesions, riveting, etc., depending on the most suitable method of fastening the elements.
  • the UAV (100) Having processed with the help of the computing unit (101) data on the state of the plants currently synchronized using the navigation system or the GSM module, the UAV (100) builds a flight mission with an autonomous flight and processing route. After processing the plants, the UAV (100) independently returns to a specialized container to replace the power source, or if the charge level becomes critically low during the processing of the plants. After processing the entire area of the UAV (100) returns to the container, closes and signals the end of the work.
  • the UAV (100) is capable of operating in two modes: a continuous monitoring mode with a parameter removal period, for example, 1 sec. / 10 sec. / 30 sec. / 1 minute. / 5 minutes; and the point measurement mode at the moment of triggering the shutter of the narrowband multispectral photo fixing module (107).
  • the obtained information from the module (107) is processed by the computing unit (101) and recorded in the memory (102).
  • the data obtained during the monitoring are available for analysis and are used together with the NDVI graphic data for their refinement and correction for external conditions at the time of the survey.
  • NDVI is one of the most common and used indices for solving problems using quantitative estimates of vegetation cover. This index is used to quantify biomass in agricultural fields, as well as to analyze the condition of plants and identify diseases in plants. When flying at low altitudes, up to 20m. UAV (100) performs a crop survey in high resolution. After that, it carries out a verification of the initially specified parameters of the presence of a disease.
  • NDVI measurement is carried out using the ratio of the intensity of reflected radiation from plants in different ranges of light radiation. For this, it is necessary to use specialized multispectral means of photo fixation (camera).
  • the UAV (100) recognizes its position at the time of launch and via GSM networks synchronizes the data on the fields within the range of the cultures growing on them. Thus, the preparation for monitoring and adjustment of the initial input parameters takes place. UAV (100) has the ability to synchronize with satellite maps, for more information about the territory of the monitoring.
  • the UAV software (100) can count the number of plants. Further, using the coefficients, the useful biomass in a given territory is calculated.
  • the UAV (100) on the basis of the information received in the process of performing the spraying procedure, conducts field surveys and builds plant health cards, on the basis of which chemical maps and flyby routes are constructed.
  • the data obtained when shooting plants are processed using the computing unit (101).
  • the received information can be transmitted using the means (104) to a remote server or the mobile device of the operator.
  • the map and data of the application of chemicals contains information on the required dose of application in different areas of the treated area.
  • the map also contains the optimal flight route of the UAV (100) for the introduction of chemicals.
  • the optimal route is the movement path of the UAV (100) in the plant processing area with the shortest (shortest) distance from one crop to another to be treated with chemicals, which leads to a reduction in the time spent on processing plants, thereby increasing productivity (maximum number of treated foci for the minimum time).
  • the UAV (100) calculates the spray power of the plant treatment system (106), in particular the power of the nozzles / cold mist generators / hot mist generators.
  • the spray power of the plant treatment system (106) in particular the power of the nozzles / cold mist generators / hot mist generators.
  • Elements of the UAV (100) can also be installed on funds for monitoring and introducing chemicals that do not contain a propeller group, for example, a balloon or airship. In this case, such UAVs will perform a similar function.
  • Information presented in these materials discloses preferred embodiments of the claimed device and should not be used as limiting other, private embodiments of the device that do not go beyond the scope of legal protection disclosed in this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Mechanical Engineering (AREA)
  • Catching Or Destruction (AREA)

Abstract

L'aéronef sans pilote pour le traitement de plantes comprend un corps, un groupe moteur à hélices disposé sur des rayons connectés au corps, un système de traitement des plantes disposé sur le système à rotors multiples, un récipient avec des produits chimiques pour le traitement des plantes, un module de commande du système de traitement des plantes, un module de fixation photo multispectral en bande étroite, une batterie, un capteur de commande de charge de batterie, une unité de calcul, une unité mémoire, un système de navigation et des moyens d'émission et de réception de données sans fils. Le résultat consiste en un processus automatisé de surveillance et de pulvérisation de plantes.
PCT/RU2018/050095 2017-08-09 2018-08-09 Aéronef sans pilote pour le traitement de plantes WO2019031993A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2017128369 2017-08-09
RU2017128369 2017-08-09

Publications (1)

Publication Number Publication Date
WO2019031993A1 true WO2019031993A1 (fr) 2019-02-14

Family

ID=65272374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2018/050095 WO2019031993A1 (fr) 2017-08-09 2018-08-09 Aéronef sans pilote pour le traitement de plantes

Country Status (1)

Country Link
WO (1) WO2019031993A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112109894A (zh) * 2019-06-20 2020-12-22 咸宁绿生植保服务有限公司 一种全自动农药喷洒无人机及无人机航线规划方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2471338C2 (ru) * 2010-03-02 2013-01-10 Российская академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) Устройство позиционирования мобильных агрегатов при возделывании агрокультур
CN104859858A (zh) * 2015-06-10 2015-08-26 安静 一种农业施药无人机
CN205045004U (zh) * 2015-10-19 2016-02-24 河北中科遥感信息技术有限公司 一种林业病虫害监测防治的专用无人机
RU2586142C1 (ru) * 2015-04-06 2016-06-10 Аслан Узеирович Заммоев Робототехнический комплекс для автоматизированной авиационной химической обработки растений и способ его применения

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2471338C2 (ru) * 2010-03-02 2013-01-10 Российская академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) Устройство позиционирования мобильных агрегатов при возделывании агрокультур
RU2586142C1 (ru) * 2015-04-06 2016-06-10 Аслан Узеирович Заммоев Робототехнический комплекс для автоматизированной авиационной химической обработки растений и способ его применения
CN104859858A (zh) * 2015-06-10 2015-08-26 安静 一种农业施药无人机
CN205045004U (zh) * 2015-10-19 2016-02-24 河北中科遥感信息技术有限公司 一种林业病虫害监测防治的专用无人机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112109894A (zh) * 2019-06-20 2020-12-22 咸宁绿生植保服务有限公司 一种全自动农药喷洒无人机及无人机航线规划方法

Similar Documents

Publication Publication Date Title
RU179386U1 (ru) Беспилотный летательный аппарат для обработки растений
Radoglou-Grammatikis et al. A compilation of UAV applications for precision agriculture
US20190031346A1 (en) System and method for controlling an unmanned vehicle and releasing a payload from the same
JP2022521806A (ja) 圃場処理及び監視のためのシステム及び方法
US9488981B2 (en) Method and apparatus for dynamic swarming of airborne drones for a reconfigurable array
CN108919821A (zh) 一种面向规模化集中式光伏电站的无人机自动巡检系统及方法
US8639408B2 (en) High integrity coordination system for multiple off-road vehicles
CN105035334A (zh) 一种利用北斗卫星和gps双星控制的农业无人飞机
US11884390B2 (en) Managing a fleet of spraying aerial vehicles
US11656624B2 (en) Horticulture aided by autonomous systems
CN105159319A (zh) 一种无人机的喷药方法及无人机
CN207319070U (zh) 一种植保无人机自主飞行路径优化装置
US11730089B2 (en) Horticulture aided by autonomous systems
Ristorto et al. Monitoring performances and cost estimation of multirotor unmanned aerial systems in precision farming
WO2019031993A1 (fr) Aéronef sans pilote pour le traitement de plantes
RU2648696C1 (ru) Агротехнический комплекс с беспилотным летательным аппаратом
EP4230036A1 (fr) Traitement ciblé d'espèces spécifiques de mauvaises herbes à l'aide de multiples dispositifs de traitement
WO2022269083A1 (fr) Traitement ciblé d'espèces de mauvaises herbes spécifiques avec de multiples dispositifs de traitement
Ganesan et al. Review on the Real-time Implementation of IoT-enabled UAV in Precision Agriculture and the Overview of Collision Avoidance Strategies.
RU2691788C2 (ru) Способ координации наземных подвижных автоматизированных устройств с помощью единой централизованной управляющей системы
RU2436281C2 (ru) Система оперативного информационного обслуживания сельскохозяйственного предприятия, использующего технологии точного земледелия
EP4230037A1 (fr) Traitement de champ agricole à dispositifs multiples
Li et al. Research on Relative Height Detection System of Plant Protection UAV Based on Kalman Filter
Joordens et al. Conceptual design for fully autonomous aerial and ground system for precision agriculture
JP2024524247A (ja) 処理装置の通信プロトコル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18843400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18843400

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.08.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18843400

Country of ref document: EP

Kind code of ref document: A1