WO2019031753A1 - Electrolytic electrode and manufacturing method therefor - Google Patents

Electrolytic electrode and manufacturing method therefor Download PDF

Info

Publication number
WO2019031753A1
WO2019031753A1 PCT/KR2018/008645 KR2018008645W WO2019031753A1 WO 2019031753 A1 WO2019031753 A1 WO 2019031753A1 KR 2018008645 W KR2018008645 W KR 2018008645W WO 2019031753 A1 WO2019031753 A1 WO 2019031753A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
catalyst layer
amine
solvent
electrolytic
Prior art date
Application number
PCT/KR2018/008645
Other languages
French (fr)
Korean (ko)
Inventor
정종욱
황교현
방정업
방용주
이동철
김연이
엄희준
김명훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180087750A external-priority patent/KR101950465B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2019510866A priority Critical patent/JP6790241B2/en
Priority to CN201880003679.6A priority patent/CN109790634B/en
Priority to US16/328,224 priority patent/US11396709B2/en
Priority to EP18843984.8A priority patent/EP3492631B1/en
Publication of WO2019031753A1 publication Critical patent/WO2019031753A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide

Definitions

  • the present invention relates to an electrolytic electrode and a method of manufacturing the same. More particularly, the present invention relates to an electrolytic electrode capable of stabilizing an overvoltage value of an electrolytic electrode and enhancing a durability by increasing a needle-like structure, and a method for manufacturing the electrode.
  • the chlor-alkali process is the process of producing chlorine (Cl 2 ) and caustic soda (NaOH) by the electrolysis of brine. It mass-produces two materials widely used as basic materials in petrochemical industry. Is an industrially useful process.
  • the chlor-alkali process consists of a chlor-alkali film or diaphragm electrolytic sal with an electrolytic electrode containing an electrolytic catalyst.
  • overvoltage must be applied to overcome various intrinsic resistances in the cell in addition to the theoretically required voltage. It is desirable to develop a method that minimizes the overvoltage requirement, since this overvoltage reduction will save energy costs associated with the sal function significantly.
  • Japanese Unexamined Patent Application Publication No. 11- 140680 discloses an electrode material layer made mainly of ruthenium oxide on a metal substrate and a protective layer having low porosity and low activity is further formed on the surface thereof to improve the durability of the electrode .
  • Japanese Unexamined Patent Publication (Kokai) No. 11-229170 discloses a nickel electrodeposition layer in which ruthenium oxide is dispersed, and its surface is coated with a conductive oxide made of titanium oxide to improve poisoning resistance by mercury.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-140680
  • Patent Document 2 JP-A-11-229170
  • the present invention has been made to solve the above problems, and it is an object of the present invention to provide an electrolytic electrode having low overvoltage and excellent durability and capable of producing an electrode exhibiting the above- The purpose is to provide.
  • the catalyst layer contains nitrogen, a platinum group metal and a recirculating metal, and the content of nitrogen in the catalyst layer is 20 to 60 mol% based on the platinum group metal.
  • the catalyst layer may include a needle-like structure of rare-earth metals, and the needle-like structure may include two or more needle-shaped structures having a thickness of 50 to 300 nm and a length of 0.5 to 10 ⁇ .
  • the present invention also provides a method for producing an electrode, comprising: preparing a coating solution for electrode production comprising a platinum group metal precursor, a rare earth metal precursor, an organic solvent, and an amine-based solvent;
  • the platinum group metal precursor is ruthenium chloride hydrate (RuCl 3 * nH 2 0) , tetraamine platinum ( ⁇ ) chloride hydrate (Pt (N3 ⁇ 4) 4 Cl 2 - 0), chloride, rhodium (RhCl 3), rhodium nitrate hydrate ( Rh (NO 3 ) 3 ⁇ n3 ⁇ 4 0), iridium chloride hydrate (IrCl 3 ⁇ n 0) and palladium nitrate (Pd (NO 3 ) 2 ).
  • the rare earth metal precursor is cerium nitrate (HI) (Ce (N0 3 ) 3), cerium carbonate (m) (Ce 2 (C0 3) 3), cerium chloride (HI) (CeCl 3), yttrium oxide (Y 2 0 3 ) and yttrium carbonate (Y 2 (C0 3 ) 3 ).
  • the organic solvent may be a solvent for C1 to C6 alcohol and a C4 to C8 glycol ether, and the flame ratio of the C1 to C6 alcohol and the C4 to C8 glycol ether may be 10: 1 to 1: 2 .
  • the amine-based solvent may be a C6 to C30 saturated or unsaturated aliphatic amine, and specifically includes at least one member selected from the group consisting of octylamine, decylamine, dodecylamine, oleylamine, laurylamine, and hexadecylamine .
  • the amine-based solvent may be contained in an amount of 3 to 40% by volume based on 100% by volume of the coating liquid for electrode production.
  • the platinum group metal precursor and the cyclic metal precursor may be contained in a molar ratio of 1: 1 to 10: 1.
  • the concentration of the coating liquid for electrode preparation may be 50 to 150 g / L.
  • the temperature of the drying step may range from 70 to 200 ° C, and the temperature of the heat treatment step may range from 300 to 600 ° C. Further, the present invention provides an electrolytic electrode produced by the above-mentioned production method.
  • the electrolytic electrode of the present invention has an improved needle-like structure of rare earth metals compared with conventional electrodes, so that the deterioration of the catalytic material is suppressed, and thus the durability is excellent, which shows stable performance even in reverse current flow. Further, since the electrolytic electrode of the present invention has a low overvoltage value, the overvoltage requirement of the electrolytic cell can be remarkably reduced. Further, according to the method for producing an electrolytic electrode of the present invention, an electrolytic electrode having the above effect can be produced without introducing an additional precursor or changing the manufacturing equipment.
  • Fig. 1 shows the durability evaluation results of the electrolytic electrode and the commercial electrode of Example 1.
  • Fig. Fig. 2 is a SEM image of the surface of the electrolytic electrode of Examples 1 and 2 and Comparative Example 1 after the operation of the sal.
  • the present invention relates to a metal substrate, And a catalyst layer formed on the metal substrate,
  • the catalyst layer contains nitrogen, a platinum group metal and a rare earth metal, and the content of nitrogen in the catalyst layer is in the range of 20 to 60 moles of the platinum group metal.
  • the catalyst layer may be prepared by including an amine-based solvent, and thus nitrogen is included in the catalyst layer.
  • the electrolytic electrode of the present invention having the needle-shaped structure developed by using the amine-based solvent exhibits excellent durability and thus has the advantage that stable performance can be realized even in reverse current flow.
  • the above-mentioned electrode has an effect of improving the overvoltage value as compared with the conventional commercial electrode.
  • the content of nitrogen in the catalyst layer is preferably 35 mol% or 40 mol% or more, 55 mol% or 50 mol% or less based on the platinum group metal. If the content of nitrogen with respect to the platinum group metal is less than 20 mol% or 60 mol% or more, it may be difficult to secure the durability improvement effect of the electrode.
  • the metal substrate can be used as a metal substrate having electrical conductivity, without limitation, those conventionally used in the technical field of the present invention.
  • the shape of the metal substrate is not particularly limited, and for example, a porous substrate made of a mesh, a nonwoven fabric, a foam, a zigzag porous plate, a braid metal, an expanded metal or the like may be used.
  • the metal substrate may be made of nickel, nickel alloy, stainless steel, copper, cobalt, iron, steel, or an alloy thereof. Nickel or a nickel alloy is preferable in terms of electrical conductivity and durability.
  • Platinum group metals are ruthenium (R U), platinum (Pt), rhodium (Rh), iridium (Ir), osmium (Os), and palladium transition metal of Group 8 to Group 10, a similar platinum and properties, including (Pd) .
  • the platinum group metal has a catalytic activity and can be included in the electrolytic electrode to lower the overvoltage and improve the life characteristics.
  • the platinum group metal may be ruthenium.
  • the rare earth metal may be cerium (Ce), yttrium (Y), lanthanum (La), scandium (Sc) or the like. According to an embodiment of the present invention, the rare earth metal may be cerium.
  • the catalyst layer may include a needle-lie structure of a rare-earth metal.
  • the needle-like structure means a structure including two or more needle-like structures (needle-shaped structures).
  • the thickness of the acicular structure may be 50 nm to 300 nm, or may be 50 to 200 nm, and the length may range from 0.5 to 10 ⁇ , or 0.5 to 5 u rn.
  • the electrolytic electrode of the present invention includes an amine-based solvent, and the needle-like structure of the rare earth metal is developed in the catalyst layer. As a result, Characteristics and durability.
  • an electrode comprising a platinum group metal precursor, a rare earth metal precursor, an organic solvent, and an amine-based solvent;
  • the electrolytic electrode manufactured according to the present invention has an excellent effect of improving the overvoltage and shows an effect of increasing the needle-shaped structure of the rare earth metal on the electrode surface in the case of the sal operation. Accordingly, the durability of the electrode is remarkably improved, and stable overvoltage efficiency can be ensured even after a reverse current phenomenon occurs.
  • the coating liquid for electrode production contains at least one platinum group metal precursor and at least one rare earth metal precursor respectively.
  • the platinum group metal precursor may be a salt or an oxide of the platinum group metal.
  • the salt or oxide may be in the form of a hydrate.
  • Non-limiting examples of the platinum group metal precursor is ruthenium chloride hydrate (RuCl 3 * nH 2 0) , tetraamine platinum ( ⁇ ) chloride hydrate (Pt (N3 ⁇ 4) 4 Cl 2 '3 ⁇ 40), chloride, rhodium (RhCl 3), nitric acid Rhodium hydrate (Rh (NO 3 ) 3 'n3 ⁇ 4 0), Iridium chloride hydrate (IrCl 3 i 1 ⁇ 4 0), and palladium nitrate (Pd (NO 3 ) 2 ).
  • the platinum group metal precursor is calcined by a heat treatment step and is converted to catalytically active particles, that is, metal or compound particles that are catalytically active for the reduction of water.
  • catalytically active particles that is, metal or compound particles that are catalytically active for the reduction of water.
  • the rare earth metal precursor is a salt or oxide containing the above rare earth metal and specifically includes cerium nitrate (m) (Ce (NO 3 ) 3 ), cerium carbonate (m) (Ce 2 (CO 3 ) 3 ) (m) (CeCl 3 ), yttrium oxide (Y 2 O 3 ) and yttrium carbonate (Y 2 (CO 3 ) 3 ) may be used, but the present invention is not limited thereto.
  • the salt or oxide may be in the form of a hydrate.
  • cerium nitrate hexahydrate, cerium carbonate 5, 8, or 9 hydrate, cerium chloride 1, 3, 6, or 7 hydrate, and yttrium carbonate trihydrate may be used.
  • the rare earth metal precursor is calcined in the heat treatment step and converted to a rare earth metal oxide.
  • the rare earth metal oxide has a hydrogen generating activity which is insufficient, but changes from a granular form to an acicular form under an environment in which hydrogen is generated.
  • Such an acicular form plays a role of supporting a catalyst layer of a platinum group compound and has an effect of suppressing the drop of the catalyst layer.
  • the rare earth metal precursor comprises at least one cerium (Ce) salt or oxide.
  • cerium nitrate hexahydrate (Ce (NO 3 ) 3 ⁇ 63 ⁇ 4O) may be used as the rare earth metal precursor, and ruthenium chloride hydrate (RuClrn 1 ⁇ 4 0) may be used as the platinum group metal precursor have.
  • the mixing ratio of the platinum group metal precursor and the rare earth metal precursor is not particularly limited and can be appropriately adjusted according to the kind of the precursor used. However, in order to optimize the catalytic activity of the finally prepared electrolytic electrode, To 10: 1, or from 3: 1 to 10: 1.
  • the solvent used in the coating solution for electrode production is an organic solvent capable of dissolving the platinum group metal precursor and the recrystallized metal precursor, and is preferably a solvent capable of volatilizing at least 95% in the drying and heat treatment steps.
  • the organic solvent may be an organic polar solvent such as an alcohol solvent, a glycol ether solvent, an ester solvent or a ketone solvent, and one or more of them may be used in common.
  • the organic solvent may be an alcohol-based solvent, a glycol ether-based solvent, or a combination thereof.
  • the alcohol solvent is preferably a C1 to C6 alcohol, and specifically, one kind selected from the group consisting of methanol, ethanol, propanol, isopropyl alcohol, butane, ethylene glycol, and propylene glycol may be used, but is not limited thereto .
  • the glycol ether solvent is preferably a C4 to C8 glycol ether, and specifically 2-ethoxyethane, 2-propoxyethanol, 2-isopropoxyethanol, 2- Ethoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated ethylenes.
  • the organic solvent may be a C1 to C6 alcohol and a C4 to C8 glycol ether.
  • a co-solvent When such a co-solvent is used, there is an effect of significantly reducing the peeling and cracking of the prepared electrode compared to an electrode using only a single alcohol solvent, and a coating capable of more uniform coating due to a longer drying time .
  • the flame ratio of the C1 to C6 alcohol and the C4 to C8 glycol ether is preferably in the range of 10: 1 to 1: 2, more preferably in the range of 4: 1 to 1:
  • 1: 1 coalescing solvent of isopropyl alcohol and 2-peculiar ethanol or 1: 1 coalescing solvent of ethanol and 2-annex ethanol was used as the organic solvent, But is not limited thereto.
  • the coating liquid for electrode production further contains an amine-based solvent as a stabilizer in addition to the organic solvent.
  • the amine-based solvent is included in the coating solution, the electrode formed in the final step increases the needle-like structure of the rare-earth metal on the surface of the cell during driving, Accordingly, the durability of the electrode is improved and the effect of reducing the overvoltage of the electrode is further improved.
  • the amine-based solvent may be a C6 to C30 saturated or unsaturated aliphatic amine.
  • the amine type solvent may be, for example, octylamine, decylamine, dodecylamine, oleylamine, laurylamine, Decylamine, and the like.
  • the amine-based solvent may be octylamine, oleylamine, and combinations thereof.
  • the amine-based solvent is contained in an amount of 3 to 40% by volume, or 5 to 30% by volume based on 100% by volume of the coating liquid for electrode production. If the content of the amine-based solvent is less than 3 vol%, the durability improvement effect and the overvoltage reduction effect of the electrode can not be ensured. If it exceeds 40 vol%, it is difficult to dissolve the metal precursors, There is a problem that a coating liquid can not be obtained.
  • a method for producing a coating liquid for electrode production is not particularly limited.
  • the coating solution may be prepared by completely dissolving the metal precursors in an organic solvent, and then adding an amine-based solvent to the solution.
  • the final concentration of the nasal solution for electrode preparation may be 50 to 150 g / L, or 80 to 120 g / L.
  • the concentration range is satisfied, the content of the metal precursor in the coating liquid becomes sufficient to ensure electrode performance and durability, and the coating solution can be coated on the substrate with an appropriate thickness, thereby maximizing the process efficiency.
  • the coating solution for electrode production is coated on a metal substrate to form a catalyst layer, which is then dried and heat-treated to produce an electrode for electrolysis.
  • the "metal substrate is degreased prior to forming the catalyst layer, by a cleaning treatment or surface roughening treatment such as blasting, it may be to further improve the adhesion of the catalyst layer.
  • the application, drying and heat treatment steps of the coating liquid may be repeated several times.
  • the method of applying the coating liquid for electrode production is not particularly limited, and coating methods known in the art can be used such as spray coating, paint brushing, doctor blade, dip-pulling, and spin coating.
  • the drying step is carried out to remove the solvent contained in the catalyst layer, and the drying conditions are not particularly limited and can be appropriately adjusted according to the thickness of the solvent and the catalyst layer used.
  • the drying step may be carried out using a 70-
  • pyrolysis of the platinum group metal precursor and the fly ash metal precursor in the catalyst layer takes place, thereby converting into a platinum group metal having the catalytic activity, a compound thereof, and a rare earth metal oxide.
  • the heat treatment conditions may vary depending on the type of the metal precursor used, but specifically, the heat treatment temperature may be 300 to 600 ° C or 400 to 550 ° C, and the heat treatment time may be 10 minutes to 2 hours.
  • the heat treatment step performed after each coating and drying step is performed for about 5 to 15 minutes, and after the last drying step May be carried out for a period of 30 minutes or more, or for a period of 1 hour to 2 hours.
  • the last heat treatment step is performed for a long time, the metal precursor can be completely pyrolyzed and the interface of each catalyst layer can be minimized, thereby improving the electrode performance.
  • the thickness of the catalyst layer in the electrolytic electrode manufactured by the above method is not particularly limited, but may be in the range of 0.5 to 5 ⁇ ,
  • the electrolytic electrode manufactured according to the production method of the present invention can be applied to electrolytic cells of various industrial electrolytic processes and can be suitably used as a cathode of a chlor-alkali electrolyte in particular . It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the present invention. Such changes and modifications are intended to be within the scope of the appended claims. [Example]
  • the metal precursors fused in a 6: 1 molar ratio of RuCl 3 'n 0 and Ce (NO 3 ) 2 .6H 2 O to 1: 1 of isopropyl alcohol (IPA) and 2-butoxy ethanol (Volume ratio) to prepare a precursor solution.
  • the precursor solution and the amine-based solvent (Oleylamine) were mixed at a ratio of 2: 1 (volume ratio) to prepare a coating solution for electrode preparation at a concentration of 100 g / L.
  • the coating solution was brush-coated on a nickel mesh, dried at 200 ° C for 10 minutes, and heat-treated at 500 ° C for 10 minutes, and then heat-treated at 500 ° C for 1 hour to obtain an electrolytic electrode.
  • Example 2
  • An electrolytic electrode was prepared in the same manner as in Example 1, except that octylamine was used instead of oleylamine as an amine-based solvent. Comparative Example 1
  • a half cell having an electrolytic electrode (10 mm ⁇ 10 mm) of each of the above Examples and Comparative Examples as a negative electrode was prepared by the following method.
  • As the electrolyte solution a half cell was prepared by using the 32 wt% NaOH aqueous solution, the counter electrode as a Pt wire, and the reference electrode as a saturated calomel electrode (SCE).
  • SCE saturated calomel electrode
  • the voltage of each electrolytic electrode at a current density of 4.4 kA / m 2 was measured by a linear sweep voltammetry using the half cell of the above production example.
  • the average value of the measured voltage was determined as an average overvoltage improvement value by repeating the above-mentioned experiment ten times, and the degree of improvement of the overvoltage was calculated by comparing with the voltage of the commercial electrode (Asahi Kasei commercial cathode electrode: ncz-2).
  • Electrode size 10 ⁇ X10 Sleep, temperature: 90 ° C, electrolyte: 32 wt% NaOH aqueous solution sample (electrolytic electrode) Pretreatment: electrolysis to generate hydrogen for 1 hour at current density -6 A / cm 2 .
  • Example 1 which was prepared by adding valylamine as an amine-based solvent, had the average degree of over-voltage improvement of -51 mV as compared with the commercial electrode, Comparative Example 1 prepared without adding an amine-based solvent, which is superior to Comparative Example 2 prepared by adding oxalic acid instead of an amine-based solvent. It was also found that the electrode over-voltage of Example 2 prepared by adding octylamine as an amine-based solvent was improved by -55 mV.
  • Example 1 electrode and commercial electrode (same as Experimental Example 1) was evaluated by performing a reverse current test under the following test conditions under the following conditions. The results are shown in Table 2 below. And Fig.
  • Electrode s ize 10 ⁇ x 10, Temperature: 90 ° C, Electrolyte: 32 wt% NaOH aqueous solution
  • Sample Pretreatment Current density -0. 1 A / cn for 20 minutes, -0.2 A / cn and -0.3 A / cm 2 for 3 minutes, and -0.4 for 30 minutes.
  • Test Example 1 The battery completed in Test Example 1 was disassembled, and the surface states of the electrodes of Examples 1 and 2 and Comparative Example 1 were confirmed at 1000 times and 10000 times through SEM (FIG. 2). The thickness and length of the acicular structure were measured by measuring the length of the SEM.
  • Examples 1 and 2 in which an amine-based solvent was added to the precursor solution for electrode production showed that the structure of the cerium needle was clearly observed on the surface of the electrode after cell driving as compared with Comparative Example 1 in which no amine- Can be confirmed.
  • each needle bed was formed to have a thickness of 50 to 200 nm and a length of 0.5 to 5 ⁇ , whereas in Comparative Example 1, the thickness was 20 to 50 nm and the length was 0.2 to 0.5 ii m. That is, it can be confirmed that the needle-like structure of cerium increased by 2 to 4 times in the electrode to which amine was added.
  • Electrodes prepared in Examples 1 and 2 and Comparative Example 1 were measured by EDX (Energy Diverts ive Spectrometer). Three measurements were made for each point on one electrode, and the molar ratios of Ru and N in the electrode are shown in Table 3 below.
  • the molar ratio of nitrogen to ruthenium was as high as 35 to 50% in the case of Example 1 and 2 electrode containing an amine-based solvent in the production of electrolytic electrode, whereas in Comparative Example 1 in which amine was not used, And the molar ratio of nitrogen was as low as 13 to 19%.
  • the electrode prepared according to the method of the present invention has a higher content of nitrogen, which is an amine component, than the electrode not containing an amine-based solvent at the time of the heat treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

The present invention relates to an electrolytic electrode and a manufacturing method therefor. The electrolytic electrode of the present invention has a needle-shaped structure of a rare-earth metal developed than that of a conventional electrode such that a detachment of a catalytic material is suppressed, thereby having excellent durability such as exhibiting stable performance even in a reverse current. In addition, the electrolytic electrode of the present invention can remarkably reduce overvoltage requirements of an electrolytic cell by having a low overvoltage numerical value. In addition, according to the method for manufacturing the electrolytic electrode of the present invention, an electrolytic electrode having the effect above can be manufactured even without introducing an additional precursor or changing manufacturing equipment.

Description

【발명의 명칭】  Title of the Invention
전해용 전극 및 이의 제조방법  Electrolytic electrode and its manufacturing method
【기술분야】  TECHNICAL FIELD
관련 출원 (들)과의 상호 인용  Cross-reference with related application (s)
본 출원은 2017년 8월 11일자 한국 특허 출원 제 10-2017-0102524호 및 This application is related to Korean Patent Application No. 10-2017-0102524 dated August 11, 2017,
2018년 7월 27일자 한국 특허 출원 제 10-2018-0087750호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다. Claims the benefit of priority based on Korean Patent Application No. 10-2018-0087750, filed on July 27, 2018, which is incorporated herein by reference in its entirety.
본 발명은 전해용 전극 및 이의 제조방법에 관한 것이다. 보다 구체적으로 본 발명은 전해용 전극의 과전압 수치를 안정화시키고, 침상구조를 증대시켜 내구성을 향상시킬 수 있는 전해용 전극 및 이의 제조방법에 관한 것이다.  The present invention relates to an electrolytic electrode and a method of manufacturing the same. More particularly, the present invention relates to an electrolytic electrode capable of stabilizing an overvoltage value of an electrolytic electrode and enhancing a durability by increasing a needle-like structure, and a method for manufacturing the electrode.
【배경기술】 BACKGROUND ART [0002]
클로르-알칼리 공정 (Chlor-alkal i process)는 염수의 전기분해로 염소 (Cl2) 및 가성소다 (NaOH)를 제조하는 공정으로서, 석유화학 분야에서 기초 소재로 널리 사용되는 두 가지 물질을 대량 생산할 수 있는 산업적으로 유용한 공정이다. The chlor-alkali process is the process of producing chlorine (Cl 2 ) and caustic soda (NaOH) by the electrolysis of brine. It mass-produces two materials widely used as basic materials in petrochemical industry. Is an industrially useful process.
클로르-알칼리 공정은 전해 촉매를 포함하는 전해용 전극을 구비하는 클로르—알칼리 막 또는 다이아프램 (diaphragm) 전해 샐에서 이루어진다. 클로르-알칼리 공정에서는 이론적으로 필요한 전압 외에 셀 내의 각종 고유 저항을 극복하기 위하여 과전압이 적용되어야 한다. 이러한 과전압이 감소하면 샐 작용과 관련된 에너지 비용이 상당히 절약되므로, 과전압 요구량을 최소화하는 방법을 개발하는 것이 바람직하다.  The chlor-alkali process consists of a chlor-alkali film or diaphragm electrolytic sal with an electrolytic electrode containing an electrolytic catalyst. In the chlor-alkali process, overvoltage must be applied to overcome various intrinsic resistances in the cell in addition to the theoretically required voltage. It is desirable to develop a method that minimizes the overvoltage requirement, since this overvoltage reduction will save energy costs associated with the sal function significantly.
전해 셀의 과전압 요구량을 감소시키는 방법 증 하나로서 전극의 과전압을 감소시키는 방안이 다수 제안되어 왔다. 음극 (cathode)의 경우, 종래 사용되던 연강이나 니켈 또는 스테인리스 스틸이 300 ~ 400 mV의 과전압올 가지고 있어, 이의 표면을 활성화하여 과전압을 감소시키는 방법이 제안되었다. 그러나 전해 전압을 감소시키기 위해서는 전극의 과전압을 더욱 감소시키는 것이 필수이다. 또한, 사고나 정전으로 인하여 전해 셀의 작동이 갑자기 정지하는 경우, 정류기를 통해서 전기적으로 음극 양극이 접속되어 있기 때문에 전해 생성물의 역분해에 의한 역전류가 흐르는데, 이에 의하여 음극 성분 금속의 부분 용출이 일어나는 등으로 인해 음극 활성이 열화되고 과전압 효율이 감소하는 문제가 있으므로, 역전류에 의한 영향을 최소화 할 수 있는 방안도 요구된다. As a method for reducing the overvoltage requirement of the electrolytic cell, many methods for reducing the overvoltage of the electrode have been proposed. In the case of a cathode, there has been proposed a method in which conventionally used mild steel, nickel or stainless steel has an overvoltage of 300 to 400 mV to activate its surface to reduce overvoltage. However, in order to reduce the electrolytic voltage, it is necessary to further reduce the overvoltage of the electrode. In addition, when the operation of the electrolytic cell abruptly stops due to an accident or a power failure, the cathode anode is electrically connected through the rectifier There is a problem that the negative electrode activity deteriorates and the overvoltage efficiency decreases due to the partial elution of the negative electrode component metal and the like. Therefore, the influence due to the reverse current can be minimized There is also a request.
상기 문제점을 해결하기 위하여 다양한 구성의 전극이 개시되었다.  In order to solve the above problems, electrodes having various structures have been disclosed.
일본 특허 공개 (평) 11— 140680호 공보에서는 금속 기재 상에 산화 루테늄을 주체로 하는 전극 물질층을 형성하고, 그 표면에 다공질이면서 활성이 낮은 보호층을 더 형성하여 전극의 내구성을 향상시키고 있다.  Japanese Unexamined Patent Application Publication No. 11- 140680 discloses an electrode material layer made mainly of ruthenium oxide on a metal substrate and a protective layer having low porosity and low activity is further formed on the surface thereof to improve the durability of the electrode .
일본 특허 공개 (평) 11-229170호 공보에서는 산화 루테늄을 분산시킨 니켈의 전착층을 가지며, 그 표면을 산화티탄으로 이루어지는 도전성 산화물로 피복하여 수은에 의한 피독 내성을 향상시키고 있다.  Japanese Unexamined Patent Publication (Kokai) No. 11-229170 discloses a nickel electrodeposition layer in which ruthenium oxide is dispersed, and its surface is coated with a conductive oxide made of titanium oxide to improve poisoning resistance by mercury.
그러나 이러한 방법들은 추가 원료를 필요로 하거나, 조건 설정이 어렵고 제조 공정이 복잡하게 되는 단점이 있으며, 전극의 내구성이 충분히 확보되지 않는 문제가 있다.  However, these methods have disadvantages in that additional raw materials are required, conditions are difficult to set, and the manufacturing process becomes complicated, and the durability of the electrode is not ensured sufficiently.
[선행기술문헌] [Prior Art Literature]
특허문헌 1 : 일본 특허 공개 (평) 11-140680호  Patent Document 1: Japanese Patent Application Laid-Open No. 11-140680
특허문헌 2 : 일본 특허 공개 (평) 11-229170호  Patent Document 2: JP-A-11-229170
【발명의 상세한 설명】 DETAILED DESCRIPTION OF THE INVENTION
【기술적 과제】  [Technical Problem]
본 발명은 상기 문제점을 해결하기 위한 것으로서, 과전압이 낮고 우수한 내구성을 가지는 전해용 전극을 제공하고, 추가적인 전구체 도입이나 제조 설비 변경 없이 상기 효과를 나타내는 전극을 제조할 수 있는 전해용 전극의 제조방법을 제공하는 것을 목적으로 한다.  Disclosure of Invention Technical Problem [8] The present invention has been made to solve the above problems, and it is an object of the present invention to provide an electrolytic electrode having low overvoltage and excellent durability and capable of producing an electrode exhibiting the above- The purpose is to provide.
【기술적 해결방법】 [Technical Solution]
상기와 같은 과제를 해결하기 위하여 본 발명은, 금속 기판; 및 상기 금속 기판상에 형성된 촉매층;을 포함하는 전해용 전극으로서,  According to an aspect of the present invention, And a catalyst layer formed on the metal substrate,
상기 촉매층은 질소, 백금족 금속 및 회토류 금속을 포함하고, 상기 촉매층 중 질소의 함량은 백금족 금속에 대하여 20 내지 60 몰%인, 전해용 전극을 제공한다. 이때 상기 촉매층은 희토류 금속의 침상 구조를 포함할 수 있고, 상기 침상 구조는 50 내지 300 nm의 두께 및 0.5내지 10 μηι의 길이를 갖는 침상의 구조체를 2 이상 포함하는 것일 수 있다. Wherein the catalyst layer contains nitrogen, a platinum group metal and a recirculating metal, and the content of nitrogen in the catalyst layer is 20 to 60 mol% based on the platinum group metal. The catalyst layer may include a needle-like structure of rare-earth metals, and the needle-like structure may include two or more needle-shaped structures having a thickness of 50 to 300 nm and a length of 0.5 to 10 μηι.
또한, 본 발명은, 백금족 금속 전구체, 희토류 금속 전구체, 유기 용매 및 아민계 용매를 포함하는 전극 제조용 코팅액을 제조하는 단계;  The present invention also provides a method for producing an electrode, comprising: preparing a coating solution for electrode production comprising a platinum group metal precursor, a rare earth metal precursor, an organic solvent, and an amine-based solvent;
상기 전극 제조용 코팅액을 금속 기판 상에 도포하여 촉매층을 형성하는 단계 ;  Coating the coating solution for electrode production on a metal substrate to form a catalyst layer;
상기 촉매층을 건조시키는 단계 ; 및  Drying the catalyst layer; And
상기 촉매층을 열처리하는 단계를 포함하는, 전해용 전극의 제조 방법을 제공한다.  And a step of heat treating the catalyst layer.
이때, 상기 백금족 금속 전구체는 염화루테늄 수화물 (RuCl3* nH20), 테트라아민플래티늄 (Π) 클로라이드 수화물 (Pt(N¾)4Cl2 - 0), 염화로듐 (RhCl3), 질산로듐 수화물 (Rh(N03)3 · n¾0), 염화이리듐 수화물 (IrCl3 · n 0), 질산팔라듐 (Pd(N03)2)으로 이루어지는 군에서 선택되는 1종 이상일 수 있다. In this case, the platinum group metal precursor is ruthenium chloride hydrate (RuCl 3 * nH 2 0) , tetraamine platinum (Π) chloride hydrate (Pt (N¾) 4 Cl 2 - 0), chloride, rhodium (RhCl 3), rhodium nitrate hydrate ( Rh (NO 3 ) 3 · n¾ 0), iridium chloride hydrate (IrCl 3 · n 0) and palladium nitrate (Pd (NO 3 ) 2 ).
또한, 상기 희토류 금속 전구체는 질산세륨 (HI)(Ce(N03)3), 탄산세륨 (m)(Ce2(C03)3), 염화세륨 (HI)(CeCl3), 산화이트륨 (Y203) 및 탄산이트륨 (Y2(C03)3)으로 이루어지는 군에서 선택되는 1종 이상일 수 있다. 상기 유기 용매는 C1 내지 C6의 알코올 및 C4 내지 C8의 글리콜 에테르의 흔합 용매일 수 있고, 상기 C1 내지 C6의 알코을 및 C4 내지 C8의 글리콜 에테르의 흔합비는 10: 1내지 1:2일 수 있다. Further, the rare earth metal precursor is cerium nitrate (HI) (Ce (N0 3 ) 3), cerium carbonate (m) (Ce 2 (C0 3) 3), cerium chloride (HI) (CeCl 3), yttrium oxide (Y 2 0 3 ) and yttrium carbonate (Y 2 (C0 3 ) 3 ). The organic solvent may be a solvent for C1 to C6 alcohol and a C4 to C8 glycol ether, and the flame ratio of the C1 to C6 alcohol and the C4 to C8 glycol ether may be 10: 1 to 1: 2 .
상기 아민계 용매는 C6 내지 C30의 포화 또는 불포화 지방족 아민일 수 있으며, 구체적으로 옥틸아민, 데실아민, 도데실아민, 올레일아민, 라우릴아민 및 핵사데실아민으로 이루어지는 군에서 선택되는 1종 이상일 수 있다. 상기 아민계 용매는 전극 제조용 코팅액 100 부피 %에 대하여 3 내지 40 부피 %로 포함될 수 있다.  The amine-based solvent may be a C6 to C30 saturated or unsaturated aliphatic amine, and specifically includes at least one member selected from the group consisting of octylamine, decylamine, dodecylamine, oleylamine, laurylamine, and hexadecylamine . The amine-based solvent may be contained in an amount of 3 to 40% by volume based on 100% by volume of the coating liquid for electrode production.
상기 백금족 금속 전구체 및 회토류 금속 전구체는 1:1 내지 10:1의 몰 비율로 포함될 수 있다.  The platinum group metal precursor and the cyclic metal precursor may be contained in a molar ratio of 1: 1 to 10: 1.
상기 전극 제조용 코팅액의 농도는 50내지 150 g/L일 수 있다.  The concentration of the coating liquid for electrode preparation may be 50 to 150 g / L.
상기 건조 단계의 온도는 70 내지 200 °C범위, 상기 열처리 단계의 온도는 300 내지 600 °C 범위일 수 있다. 또한, 본 발명은 상기 제조방법에 의하여 제조된 전해용 전극을 제공한다. The temperature of the drying step may range from 70 to 200 ° C, and the temperature of the heat treatment step may range from 300 to 600 ° C. Further, the present invention provides an electrolytic electrode produced by the above-mentioned production method.
【발명의 효과】 【Effects of the Invention】
본 발명의 전해용 전극은 기존 전극에 비하여 희토류 금속의 침상 구조가 발달되어 있어 촉매 물질의 탈락이 억제되며, 이에 따라 역전류 시에도 안정된 성능을 나타내는 등 내구성이 우수하다. 또한 본 발명의 전해용 전극은 과전압 수치가 낮아 전해 셀의 과전압 요구량을 현저히 감소시킬 수 있다. 또한, 본 발명의 전해용 전극의 제조방법에 따르면 추가 전구체의 도입이나 제조 설비의 변경 없이도 상기 효과를 갖는 전해용 전극을 제조할 수 있다.  The electrolytic electrode of the present invention has an improved needle-like structure of rare earth metals compared with conventional electrodes, so that the deterioration of the catalytic material is suppressed, and thus the durability is excellent, which shows stable performance even in reverse current flow. Further, since the electrolytic electrode of the present invention has a low overvoltage value, the overvoltage requirement of the electrolytic cell can be remarkably reduced. Further, according to the method for producing an electrolytic electrode of the present invention, an electrolytic electrode having the above effect can be produced without introducing an additional precursor or changing the manufacturing equipment.
【도면의 간단한 설명】 BRIEF DESCRIPTION OF THE DRAWINGS
도 1은 실시예 1의 전해용 전극과 상용전극의 내구성 평가 결과이다. 도 2는 실시예 1 , 2 및 비교예 1의 전해용 전극의 샐 구동 후의 표면 SEM 이미지이다.  Fig. 1 shows the durability evaluation results of the electrolytic electrode and the commercial electrode of Example 1. Fig. Fig. 2 is a SEM image of the surface of the electrolytic electrode of Examples 1 and 2 and Comparative Example 1 after the operation of the sal.
【발명의 실시를 위한 최선의 형태】 BEST MODE FOR CARRYING OUT THE INVENTION
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" , "구비하다" 또는 "가지다'' 등의 용어는 실시된 특징, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.  The terminology used herein is for the purpose of describing exemplary embodiments only and is not intended to be limiting of the invention. The singular expressions include plural expressions unless the context clearly dictates otherwise. As used herein, the terms "comprises", "having", or "having" or the like are intended to specify that there are performed features, steps, components, or combinations thereof, , &Quot; or " means ", " an ", " an ", "
본 발명은 다양한 변경을 가'할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. The invention will be described in to the various changes, and illustrates the bar, specific embodiments which may have a different form and detail below. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed, but includes all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
이하, 본 발명을 상세히 설명한다. 본 발명은 금속 기판; 및 상기 금속 기판상에 형성된 촉매층;을 포함하는 전해용 전극으로서, Hereinafter, the present invention will be described in detail. The present invention relates to a metal substrate, And a catalyst layer formed on the metal substrate,
상기 촉매층은 질소, 백금족 금속 및 희토류 금속을 포함하고, 상기 촉매층 중 질소의 함량은 백금족 금속에 대하여 20 내지 60 몰¾>인, 전해용 전극을 제공한다.  Wherein the catalyst layer contains nitrogen, a platinum group metal and a rare earth metal, and the content of nitrogen in the catalyst layer is in the range of 20 to 60 moles of the platinum group metal.
본 발명의 전해용 전극에서 촉매층은 아민계 용매를 포함하여 제조될 수 있으며, 이에 따라 촉매층에는 질소가 포함된다. 이와 같이 아민계 용매를 사용함으로써 발달된 침상구조를 가진 본 발명의 전해용 전극은 우수한 내구성을 나타내며, 이에 따라 역전류 시에도 안정적인 성능 구현이 가능한 장점을 나타낸다. 또한, 상기와 같은 전극은 기존 상용전극에 비하여 과전압 수치가 개선되는 효과를 나타낸다.  In the electrolytic electrode of the present invention, the catalyst layer may be prepared by including an amine-based solvent, and thus nitrogen is included in the catalyst layer. The electrolytic electrode of the present invention having the needle-shaped structure developed by using the amine-based solvent exhibits excellent durability and thus has the advantage that stable performance can be realized even in reverse current flow. In addition, the above-mentioned electrode has an effect of improving the overvoltage value as compared with the conventional commercial electrode.
이때, 상기 촉매층 중 질소의 함량은 바람직하기로 백금족 금속에 대하여 35 몰%, 또는 40 몰% 이상일 수 있고, 55 몰% 이하, 또는 50 몰% 이하일 수 있다. 만일, 백금족 금속에 대한 질소의 함량이 20 몰% 미만이거나, 60 몰% 이상이면 전극의 내구성 향상 효과가 확보되기 어려울 수 있다.  At this time, the content of nitrogen in the catalyst layer is preferably 35 mol% or 40 mol% or more, 55 mol% or 50 mol% or less based on the platinum group metal. If the content of nitrogen with respect to the platinum group metal is less than 20 mol% or 60 mol% or more, it may be difficult to secure the durability improvement effect of the electrode.
본 발명에서, 금속 기판은 전기 전도성을 갖는 금속 기재로서 본 발명의 기술분야에서 통상사용되는 것이 제한 없이 사용될 수 있다.  In the present invention, the metal substrate can be used as a metal substrate having electrical conductivity, without limitation, those conventionally used in the technical field of the present invention.
상기 금속 기판의 형태는 특별히 제한되지 않으나 예를 들어 메쉬, 부직포, 발포체, 편칭 다공판, 브레이드 (braid) 금속, 익스팬디드 (expanded) 금속 또는 이와유사한 형상의 다공성 기재가사용될 수 있다.  The shape of the metal substrate is not particularly limited, and for example, a porous substrate made of a mesh, a nonwoven fabric, a foam, a zigzag porous plate, a braid metal, an expanded metal or the like may be used.
또한, 상기 금속 기판의 재질은 니켈, 니켈 합금, 스테인리스 강, 구리, 코발트, 철, 강철, 또는 이들의 합금이 가능하며, 전기 전도성 및 내구성 측면에서 니켈 또는 니켈 합금이 바람직하다.  The metal substrate may be made of nickel, nickel alloy, stainless steel, copper, cobalt, iron, steel, or an alloy thereof. Nickel or a nickel alloy is preferable in terms of electrical conductivity and durability.
백금족 금속은 루테늄 (RU) , 백금 (Pt ) , 로듐 (Rh) , 이리듐 ( Ir ) , 오스뮴 (Os) 및 팔라듐 (Pd)을 포함하는, 백금과 성질이 비슷한 8족 내지 10족의 전이금속을 의미한다. 상기 백금족 금속은 촉매 활성을 가지며, 전해용 전극에 포함되어 과전압을 저하시키고, 수명 특성을 향상시킬 수 있다. 제한하는 것은 아니나, 본 발명의 일 실시예에 따르면 상기 백금족 금속은 루테늄일 수 있다. 또한, 상기 희토류 금속은 세륨 (Ce) , 이트륨 (Y) , 란탄 (La) , 스칸듐 (Sc) 등을 의미하며 본 발명의 일 실시예에 따르면 상기 회토류 금속은 세륨일 수 있다. 한편, 상기 촉매층은 희토류 금속의 침상 (needdle-l ike) 구조를 포함할 수 있다. 상기 침상 구조는 바늘형의 구조체 (침상 구조체)를 2 이상 포함하는 구조를 의미한다. 촉매층에 회토류 금속의 침상 구조가 발달한 경우, 전극 촉매 물질인 백금족 금속을 지지하는 역할을 할 수 있으며, 이에 따라 백금족 금속의 탈락이 억제되어 역전류 조건 하에서도 전극 성능의 저하가 일어나지 않고 우수한 내구성을 나타낸다. Platinum group metals are ruthenium (R U), platinum (Pt), rhodium (Rh), iridium (Ir), osmium (Os), and palladium transition metal of Group 8 to Group 10, a similar platinum and properties, including (Pd) . The platinum group metal has a catalytic activity and can be included in the electrolytic electrode to lower the overvoltage and improve the life characteristics. According to one embodiment of the present invention, the platinum group metal may be ruthenium. The rare earth metal may be cerium (Ce), yttrium (Y), lanthanum (La), scandium (Sc) or the like. According to an embodiment of the present invention, the rare earth metal may be cerium. On the other hand, the catalyst layer may include a needle-lie structure of a rare-earth metal. The needle-like structure means a structure including two or more needle-like structures (needle-shaped structures). When the needle bed structure of the recycled metal is developed in the catalyst layer, it can play a role of supporting the platinum group metal, which is the electrode catalyst material. Accordingly, deterioration of the platinum group metal is suppressed and the electrode performance is not deteriorated even under the reverse current condition Durability.
구체적으로, 상기 침상 구조를 이루는 구조체의 두께는 50 nm 내지 300 nm 일 수 있고, 또는 50 내지 200 nm 일 수 있으며, 길이는 0.5 내지 10 μ ιη, 또는 0.5 내지 5 u rn 범위일 수 있다. 후술하는 실험예에서 구체화되는 바와 같이, 본 발명의 전해용 전극은 아민계 용매를 포함하여 제조되어, 촉매층에 상기와 같은 희토류 금속의 침상 구조가 발달하는 바, 기존의 전해용 전극에 비해 안정된 전극 특성 및 내구성을 나타낸다.  Specifically, the thickness of the acicular structure may be 50 nm to 300 nm, or may be 50 to 200 nm, and the length may range from 0.5 to 10 μηη, or 0.5 to 5 u rn. As described in Experimental Examples to be described later, the electrolytic electrode of the present invention includes an amine-based solvent, and the needle-like structure of the rare earth metal is developed in the catalyst layer. As a result, Characteristics and durability.
한편, 본 발명은 백금족 금속 전구체, 희토류 금속 전구체, 유기 용매 및 아민계 용매를 포함하는 전극 제조용 코팅액을 제조하는 단계;  According to another aspect of the present invention, there is provided a process for preparing an electrode comprising a platinum group metal precursor, a rare earth metal precursor, an organic solvent, and an amine-based solvent;
상기 전극 제조용 코팅액을 금속 기판 상에 도포하여 코팅층을 형성하는 단계 ;  Forming a coating layer by coating the coating solution for electrode production on a metal substrate;
상기 코팅층을 건조시키는 단계; 및  Drying the coating layer; And
상기 코팅층을 열처리하여 촉매층을 제조하는 단계를 포함하는, 전해용 전극의 제조 방법을 제공한다.  And a step of heat treating the coating layer to produce a catalyst layer.
본 발명에 따라 제조된 전해용 전극은 과전압 개선 정도가 우수하며, 샐 구동 시 전극 표면에 희토류 금속의 침상 구조가 증가되는 효과를 나타낸다. 이에 따라 상기 전극은 내구성이 현저히 향상되어 역전류 현상이 일어난 후에도 안정적인 과전압 효율을 확보할 수 있다.  The electrolytic electrode manufactured according to the present invention has an excellent effect of improving the overvoltage and shows an effect of increasing the needle-shaped structure of the rare earth metal on the electrode surface in the case of the sal operation. Accordingly, the durability of the electrode is remarkably improved, and stable overvoltage efficiency can be ensured even after a reverse current phenomenon occurs.
본 발명에서 전극 제조용 코팅액은 백금족 금속 전구체와 희토류 금속 전구체를 각각 1종 이상 포함한다.  In the present invention, the coating liquid for electrode production contains at least one platinum group metal precursor and at least one rare earth metal precursor respectively.
본 발명에서 백금족 금속 전구체는 상기 백금족 금속의 염 또는 산화물일 수 있다. 이때, 상기 염 또는 산화물은 수화물 형태인 것이 사용될 수도 있다.  In the present invention, the platinum group metal precursor may be a salt or an oxide of the platinum group metal. At this time, the salt or oxide may be in the form of a hydrate.
상기 백금족 금속 전구체의 비제한적인 예로는 염화루테늄 수화물 (RuCl3 * nH20) , 테트라아민플래티늄 ( Π ) 클로라이드 수화물 (Pt (N¾)4Cl2 ' ¾0) , 염화로듐 (RhCl3) , 질산로듐 수화물 (Rh(N03)3 ' n¾0) , 염화이리듐 수화물 ( IrCl3 i¾0) , 질산팔라듐 (Pd(N03)2)으로 이루어지는 군에서 선택되는 1종 이상을 들 수 있다. Non-limiting examples of the platinum group metal precursor is ruthenium chloride hydrate (RuCl 3 * nH 2 0) , tetraamine platinum (Π) chloride hydrate (Pt (N¾) 4 Cl 2 '¾0), chloride, rhodium (RhCl 3), nitric acid Rhodium hydrate (Rh (NO 3 ) 3 'n¾ 0), Iridium chloride hydrate (IrCl 3 i ¼ 0), and palladium nitrate (Pd (NO 3 ) 2 ).
상기 백금족 금속 전구체는 열처리 단계에 의하여 소성되어, 촉매 활성 입자, 즉, 물의 전기환원에 대하여 촉매성인 금속 또는 화합물 입자로 전환된다. 이러한 백금속 금속 또는 화합물이 전극 내에 포함될 경우, 전극 과전압이 개선되는 효과를 얻을 수 있다.  The platinum group metal precursor is calcined by a heat treatment step and is converted to catalytically active particles, that is, metal or compound particles that are catalytically active for the reduction of water. When such a white metal or compound is contained in the electrode, an effect of improving the electrode overvoltage can be obtained.
상기 희토류 금속 전구체는 상술한 희토류 금속을 포함하는 염 또는 산화물로서, 구체적으로 질산세륨 (m) (Ce(N03)3) , 탄산세륨 (m) (Ce2(C03)3) , 염화세륨 (m) (CeCl3) , 산화이트륨 (Y203) 및 탄산이트륨 (Y2(C03)3)으로 이루어지는 군에서 선택되는 1종 이상이 사용될 수 있으나 이에 제한되는 것은 아니다. The rare earth metal precursor is a salt or oxide containing the above rare earth metal and specifically includes cerium nitrate (m) (Ce (NO 3 ) 3 ), cerium carbonate (m) (Ce 2 (CO 3 ) 3 ) (m) (CeCl 3 ), yttrium oxide (Y 2 O 3 ) and yttrium carbonate (Y 2 (CO 3 ) 3 ) may be used, but the present invention is not limited thereto.
또한, 상기 염 또는 산화물은 수화물 (Hydrate) 형태인 것을 사용할 수 있다. 일례로, 질산세륨 6 수화물, 탄산세륨 5, 8, 또는 9 수화물, 염화세륨 1, 3, 6, 또는 7수화물, 탄산이트륨 3 수화물 등이 사용될 수 있다.  The salt or oxide may be in the form of a hydrate. For example, cerium nitrate hexahydrate, cerium carbonate 5, 8, or 9 hydrate, cerium chloride 1, 3, 6, or 7 hydrate, and yttrium carbonate trihydrate may be used.
상기 희토류 금속 전구체는 열처리 단계에서 소성되어 희토류 금속 산화물로 전환된다. 희토류 금속 산화물은 수소 발생 활성은 부족하나, 수소가 발생하는 환경 하에서 입자형에서 침상형으로 변화하며, 이러한 침상 형태는 백금족 화합물의 촉매층을 지지하는 역할을 하여 촉매층의 탈락을 억제하는 효과가 있다.  The rare earth metal precursor is calcined in the heat treatment step and converted to a rare earth metal oxide. The rare earth metal oxide has a hydrogen generating activity which is insufficient, but changes from a granular form to an acicular form under an environment in which hydrogen is generated. Such an acicular form plays a role of supporting a catalyst layer of a platinum group compound and has an effect of suppressing the drop of the catalyst layer.
본 발명의 제조방법에 따라 제조된 전해용 전극은 기존 제조방법에 의하여 제조된 전극에 비하여 셀 구동 중 희토류 금속 산화물의 침상 구조가 현저히 증가하는 것이 확인되었으며, 이에 따라 역전류 발생 후에도 안정적으로 전극 성능을 유지하는 등, 뛰어난 내구성을 나타낸다.  It was confirmed that the needle structure of the rare earth metal oxide during cell driving significantly increased in the electrode for electrolysis manufactured according to the manufacturing method of the present invention compared with the electrode manufactured by the conventional manufacturing method, And exhibits excellent durability.
바람직하기로, 본 발명에서 상기 희토류 금속 전구체는 세륨 (Ce) 염 또는 산화물을 1종 이상 포함한다. 본 발명의 바람직한 일 실시예에 따르면, 상기 희토류 금속 전구체로는 질산세륨 6 수화물 (Ce(N03)3 · 6¾0)을 사용할 수 있고, 상기 백금족 금속 전구체로는 루테늄 클로라이드 수화물 (RuClrn¾0)을 사용할 수 있다. Preferably, in the present invention, the rare earth metal precursor comprises at least one cerium (Ce) salt or oxide. According to a preferred embodiment of the present invention, cerium nitrate hexahydrate (Ce (NO 3 ) 3 · 6¾O) may be used as the rare earth metal precursor, and ruthenium chloride hydrate (RuClrn ¼ 0) may be used as the platinum group metal precursor have.
상기 백금족 금속 전구체 및 희토류 금속 전구체의 흔합 비율은 특별히 제한되는 것은 아니며 사용되는 전구체의 종류에 따라 적절히 조절될 수 있으나, 최종 제조되는 전해용 전극의 촉매 활성을 최적화하기 위하여 1 : 1 내지 10 : 1, 또는 3 : 1 내지 10 : 1 의 몰 비율로 흔합하여 사용될 수 있다. The mixing ratio of the platinum group metal precursor and the rare earth metal precursor is not particularly limited and can be appropriately adjusted according to the kind of the precursor used. However, in order to optimize the catalytic activity of the finally prepared electrolytic electrode, To 10: 1, or from 3: 1 to 10: 1.
본 발명에서 전극 제조용 코팅액에 사용되는 용매는 백금족 금속 전구체및 회토류 금속 전구체의 용해가 가능한 유기 용매로서, 건조 및 열처리 단계에서 95% 이상 휘발될 수 있는 용매가 적합하다.  In the present invention, the solvent used in the coating solution for electrode production is an organic solvent capable of dissolving the platinum group metal precursor and the recrystallized metal precursor, and is preferably a solvent capable of volatilizing at least 95% in the drying and heat treatment steps.
예를 들어 상기 유기 용매로는 알코올계 용매, 글리콜 에테르계 용매, 에스테르계 용매, 케톤계 용매 등의 유기 극성 용매가 사용될 수 있으며, 1종 이상을 흔합하여 사용할 수 있다. 바람직하기로, 상기 유기 용매로는 알코올계 용매, 글리콜 에테르계 용매, 또는 이들의 조합이 사용될 수 있다.  For example, the organic solvent may be an organic polar solvent such as an alcohol solvent, a glycol ether solvent, an ester solvent or a ketone solvent, and one or more of them may be used in common. Preferably, the organic solvent may be an alcohol-based solvent, a glycol ether-based solvent, or a combination thereof.
상기 알코올계 용매는 C1 내지 C6의 알코올이 바람직하며, 구체적으로 메탄올, 에탄올, 프로판올, 이소프로필알코올, 부탄을, 에틸렌글리콜, 및 프로필렌글리콜로 이루어지는 군에서 선택되는 1종이 사용될 수 있으나 이에 제한되지 않는다.  The alcohol solvent is preferably a C1 to C6 alcohol, and specifically, one kind selected from the group consisting of methanol, ethanol, propanol, isopropyl alcohol, butane, ethylene glycol, and propylene glycol may be used, but is not limited thereto .
상기 글리콜 에테르계 용매는 C4 내지 C8의 글리콜 에테르가 바람직하며, 구체적으로 2-에특시에탄을, 2-프로폭시에탄올, 2- 이소프로폭시에탄올, 2-부록시에탄올, 및 2-(2-메록시에특시)에탄을로 이루어지는 군에서 선택되는 1종 이상이 사용될 수 있으나 이에 제한되는 것은 아니다.  The glycol ether solvent is preferably a C4 to C8 glycol ether, and specifically 2-ethoxyethane, 2-propoxyethanol, 2-isopropoxyethanol, 2- Ethoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated propoxylated ethylenes.
본 발명의 일 실시예에서 상기 유기 용매는 C1 내지 C6 알코올 및 C4 내지 C8 글리콜 에테르의 흔합용매일 수 있다. 이와 같은 흔합 용매를 사용할 경우 단일 알코올계 용매만 사용한 전극에 비해 제조한 전극의 박리와 크랙 (crack) 발생이 현저히 줄어드는 효과가 있으며, 대면적 코팅 시 건조 시간이 길어지면서 보다 균일한 코팅이 가능한 효과가 있어 바람직하다.  In one embodiment of the present invention, the organic solvent may be a C1 to C6 alcohol and a C4 to C8 glycol ether. When such a co-solvent is used, there is an effect of significantly reducing the peeling and cracking of the prepared electrode compared to an electrode using only a single alcohol solvent, and a coating capable of more uniform coating due to a longer drying time .
상기 효과를 확보하기 위하여, C1 내지 C6 알코올 및 C4 내지 C8 글리콜 에테르의 흔합비는 10 : 1 내지 1 : 2 범위인 것이 바람직하며, 4 : 1 내지 1 : 1 범위가 보다 바람직하다. 본 발명의 일 실시예에서는 상기 유기용매로 이소프로필알코올 및 2-부특시에탄올의 1 : 1 흔합용매 또는 에탄올 및 2- 부록시에탄올의 1 : 1 흔합용매를 사용하였으나, 용매의 조합 및 흔합비가 이에 제한되는 것은 아니다.  In order to ensure the above effect, the flame ratio of the C1 to C6 alcohol and the C4 to C8 glycol ether is preferably in the range of 10: 1 to 1: 2, more preferably in the range of 4: 1 to 1: In one embodiment of the present invention, 1: 1 coalescing solvent of isopropyl alcohol and 2-peculiar ethanol or 1: 1 coalescing solvent of ethanol and 2-annex ethanol was used as the organic solvent, But is not limited thereto.
본 발명에서 전극 제조용 코팅액은 상기 유기 용매 외에 안정화제로서 아민계 용매를 더 포함한다. 이와 같이 코팅액에 아민계 용매를 포함하는 경우 최종 제조되는 전극은 셀 구동 중 표면에 희토류 금속의 침상 구조가 증대되고ᅳ 이에 따라 전극의 내구성이 향상되며, 전극의 과전압 감소 효과 또한 더욱 향상되는 효과를 나타낸다. In the present invention, the coating liquid for electrode production further contains an amine-based solvent as a stabilizer in addition to the organic solvent. When the amine-based solvent is included in the coating solution, the electrode formed in the final step increases the needle-like structure of the rare-earth metal on the surface of the cell during driving, Accordingly, the durability of the electrode is improved and the effect of reducing the overvoltage of the electrode is further improved.
상기 아민계 용매는 C6 내지 C30의 포화 또는 불포화 지방족 아민이 사용될 수 있으며, 그 종류는 특별히 제한되는 것은 아니나, 예를 들어 옥틸아민, 데실아민, 도데실아민, 올레일아민, 라우릴아민 및 핵사데실아민으로 이루어지는 군에서 선택되는 1종 이상이 사용될 수 있다. 또는, 상기 아민계 용매는 옥틸아민, 올레일아민 및 이들의 조합이 사용될 수 있다.  The amine-based solvent may be a C6 to C30 saturated or unsaturated aliphatic amine. The amine type solvent may be, for example, octylamine, decylamine, dodecylamine, oleylamine, laurylamine, Decylamine, and the like. Alternatively, the amine-based solvent may be octylamine, oleylamine, and combinations thereof.
본 발명에서 상기 아민계 용매는 전극 제조용 코팅액 100 부피 %에 대하여 3 내지 40 부피 % 범위로 포함되며, 또는 5 내지 30 부피 %로 포함된다. 만일, 아민계 용매의 함량이 3 부피 % 미만이면 상기한 전극의 내구성 향상 효과, 과전압 감소 효과를 확보할 수 없고, 40 부피 %를 초과하면 금속 전구체들을 용해시키기 어려워 전구체가 균일하게 분산된 전극 제조용 코팅액을 얻을 수 없는 문제가 있다.  In the present invention, the amine-based solvent is contained in an amount of 3 to 40% by volume, or 5 to 30% by volume based on 100% by volume of the coating liquid for electrode production. If the content of the amine-based solvent is less than 3 vol%, the durability improvement effect and the overvoltage reduction effect of the electrode can not be ensured. If it exceeds 40 vol%, it is difficult to dissolve the metal precursors, There is a problem that a coating liquid can not be obtained.
본 발명에서 전극 제조용 코팅액의 제조 방법은 특별히 한정되지 않으며, 일례로 유기 용매와 아민계 용매를 흔합한 흔합 용매에 백금족 금속 전구체와 희토류 금속 전구체를 투입하고 용해시키는 방법에 의할 수 있다. 또는, 금속 전구체들의 용해를 보다 용이하게 하기 위하여, 유기 용매에 먼저 금속 전구체들을 완전히 용해시킨 다음 아민계 용매를 투입하여 흔합하는 방법으로 상기 코팅액을 제조할 수 있다.  In the present invention, a method for producing a coating liquid for electrode production is not particularly limited. For example, a method in which a platinum group metal precursor and a rare earth metal precursor are added to and dissolve in a common solvent in which an organic solvent and an amine-based solvent are common. Alternatively, in order to facilitate dissolution of the metal precursors, the coating solution may be prepared by completely dissolving the metal precursors in an organic solvent, and then adding an amine-based solvent to the solution.
이때, 전극 제조용 코팀액의 최종 농도는 50 내지 150 g/L , 또는 80 내지 120 g/L일 수 있다. 상기 농도 범위를 만족할 때, 코팅액 중 금속 전구체의 함량이 충분하게 되어 전극 성능 및 내구성을 확보할 수 있으며, 코팅액을 기판 상에 적절한 두께로 코팅할 수 있어 공정 효율이 극대화될 수 있다.  At this time, the final concentration of the nasal solution for electrode preparation may be 50 to 150 g / L, or 80 to 120 g / L. When the concentration range is satisfied, the content of the metal precursor in the coating liquid becomes sufficient to ensure electrode performance and durability, and the coating solution can be coated on the substrate with an appropriate thickness, thereby maximizing the process efficiency.
다음으로, 상기 전극 제조용 코팅액을 금속 기판상에 도포하여 촉매층을 형성하고, 이를 건조 및 열처리하여 전해용 전극을 제조한다. 이때, ' 금속 기판은 촉매층을 형성하기 전에 탈지, 블래스트 등의 청정화 처리 또는 표면조화 처리를 하여, 촉매층과의 부착성을 더욱 향상시키도록 할 수 있다. Next, the coating solution for electrode production is coated on a metal substrate to form a catalyst layer, which is then dried and heat-treated to produce an electrode for electrolysis. In this case, the "metal substrate is degreased prior to forming the catalyst layer, by a cleaning treatment or surface roughening treatment such as blasting, it may be to further improve the adhesion of the catalyst layer.
또한, 적절한 두께의 전극을 형성하기 위하여, 코팅액의 도포, 건조 및 열처리 단계는 수회 반복될 수 있다. 전극 제조용 코팅액의 도포 방법은 특별히 제한되지 않으며, 스프레이 코팅, 페인트 브러싱, 닥터 블레이드, 침지-인상법, 스핀코팅법 등 당 업계에 알려진 코팅법이 사용될 수 있다. Further, in order to form an electrode having an appropriate thickness, the application, drying and heat treatment steps of the coating liquid may be repeated several times. The method of applying the coating liquid for electrode production is not particularly limited, and coating methods known in the art can be used such as spray coating, paint brushing, doctor blade, dip-pulling, and spin coating.
건조 단계는 촉매층에 포함된 용매를 제거하기 위하여 수행하는 것으로서, 건조 조건은 특별히 제한되지 않으며 사용된 용매 및 촉매층의 두께에 따라 적절히 조절될 수 있다. 예를 들어, 상기 건조 단계는 70 내자 The drying step is carried out to remove the solvent contained in the catalyst layer, and the drying conditions are not particularly limited and can be appropriately adjusted according to the thickness of the solvent and the catalyst layer used. For example, the drying step may be carried out using a 70-
200 °C의 온도에서 5분 내지 15분 동안 수행될 수 있다. Lt; RTI ID = 0.0 > 200 C < / RTI > for 5 minutes to 15 minutes.
다음으로, 금속 전구체의 소성을 위한 열처리 단계를 수행한다.  Next, a heat treatment step for firing the metal precursor is performed.
상기 열처리 단계에서 촉매층 중의 백금족 금속 전구체와 회토류 금속 전구체의 열분해가 일어나며, 이에 따라 촉매 활성을 갖는 백금족 금속 및 그 화합물과 희토류 금속 산화물 등으로 전환된다.  In the heat treatment step, pyrolysis of the platinum group metal precursor and the fly ash metal precursor in the catalyst layer takes place, thereby converting into a platinum group metal having the catalytic activity, a compound thereof, and a rare earth metal oxide.
열처리 조건은 사용된 금속 전구체의 종류에 따라 상이할 수 있으나, 구체적으로 열처리 온도는 300 내지 600 °C 또는 400 내지 550 °C, 열처리 시간은 10분 내지 2시간일 수 있다. The heat treatment conditions may vary depending on the type of the metal precursor used, but specifically, the heat treatment temperature may be 300 to 600 ° C or 400 to 550 ° C, and the heat treatment time may be 10 minutes to 2 hours.
만일, 상술한 바와 같이 도포, 건조 및 열처리 단계를 1회 이상 반복하여 전극을 제조하는 경우, 각 도포, 건조 단계 이후에 수행하는 열처리 단계는 5분 내지 15분 정도로 짧게 수행하고, 마지막 건조 단계 이후의 최종 열처리 단계는 30분 이상, 또는 1시간 내지 2시간 정도로 층분한 시간 동안 수행하는 방법을 사용할 수 있다. 이와 같이 마지막의 열처리 단계를 장시간 수행하게 되면 금속 전구체를 완전히 열분해시킬 수 있고, 각 촉매층의 계면이 최소화되어 전극 성능 향상 효과를 얻을 수 있어 바람직하다.  If the electrode is manufactured by repeating the coating, drying and heat treatment steps one or more times as described above, the heat treatment step performed after each coating and drying step is performed for about 5 to 15 minutes, and after the last drying step May be carried out for a period of 30 minutes or more, or for a period of 1 hour to 2 hours. When the last heat treatment step is performed for a long time, the metal precursor can be completely pyrolyzed and the interface of each catalyst layer can be minimized, thereby improving the electrode performance.
상기와 같은 방법에 의하여 제조된 전해용 전극에서 촉매층의 두께는 특별히 한정되는 것은 아니나, 구체적으로 0.5 내지 5 μ ιιι 범위일 수 있으며, The thickness of the catalyst layer in the electrolytic electrode manufactured by the above method is not particularly limited, but may be in the range of 0.5 to 5 μιιι,
1 내지 3 μ η 범위일 수 있다. 1 to 3 mu eta.
상술한 본 발명의 제조방법에 따라 제조된 전해용 전극은 각종 공업 전해의 전해 셀에 적용될 수 있으며, 특히 클로르-알칼리 샐 (chlor-alkal i cel l )의 음극 (cathode)으로서 적합하게 사용될 수 있다. 이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다. [실시예] The electrolytic electrode manufactured according to the production method of the present invention can be applied to electrolytic cells of various industrial electrolytic processes and can be suitably used as a cathode of a chlor-alkali electrolyte in particular . It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the present invention. Such changes and modifications are intended to be within the scope of the appended claims. [Example]
실시예 1  Example 1
RuCl3 'n 0와 Ce(N03)2.6H20가 6 : 1 몰 비율로 흔합된 금속 전구체를 이소프로필 알코을 ( IPA)과 2-부특시 에탄올 (2-butoxy ethanol )의 1 : 1 (부피비) 흔합 용매에 녹여 전구체 용액을 제조하고, 상기 전구체 용액과 아민계 용매 (Oleylamine)를 2 : 1 비율 (부피비)로 흔합하여 100 g/L 농도의 전극 제조용 코팅액을 제조하였다. 상기 코팅액을 니켈 메쉬에 브러쉬 코팅 후 200 °C에서 10분 건조, 500 °C에서 10분 열처리하는 공정을 총 10 회 반복한 다음, 500 °C에서 1시간 열처리 하여 전해용 전극을 얻었다. 실시예 2 The metal precursors fused in a 6: 1 molar ratio of RuCl 3 'n 0 and Ce (NO 3 ) 2 .6H 2 O to 1: 1 of isopropyl alcohol (IPA) and 2-butoxy ethanol (Volume ratio) to prepare a precursor solution. The precursor solution and the amine-based solvent (Oleylamine) were mixed at a ratio of 2: 1 (volume ratio) to prepare a coating solution for electrode preparation at a concentration of 100 g / L. The coating solution was brush-coated on a nickel mesh, dried at 200 ° C for 10 minutes, and heat-treated at 500 ° C for 10 minutes, and then heat-treated at 500 ° C for 1 hour to obtain an electrolytic electrode. Example 2
아민계 용매로서 올레일아민 대신에 옥틸아민 (Octylamine)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 전해용 전극을 제조하였다. 비교예 1  An electrolytic electrode was prepared in the same manner as in Example 1, except that octylamine was used instead of oleylamine as an amine-based solvent. Comparative Example 1
RuCl3 'n¾0와 Ce(N¾) 6H20가 6 : 1 몰 비율로 흔합된 금속 전구체를 이소프로필 알코올 ( IPA)과 2-부록시 에탄올 (2-butoxy ethanol )의 1 : 1 (부피비) 흔합 용매에 녹여 100 g/L 농도의 코팅액을 제조하였다. 상기 코팅액을 니켈 메쉬에 브러쉬 코팅 후 200 °C에서 10분 건조, 500 °C에서 10분 열처리하는 공정을 총 10 회 반복한 다음, 500 °C에서 1시간 열처리하여 전해용 전극을 얻었다. 비교예 2 RuCl 3 'n¾0 and Ce (N¾) 6H 2 0 6: 1 isopropyl alcohol (IPA) to the metal precursor in a molar ratio of 2-heunhap Appendix during ethanol (2-butoxy ethanol) in 1: 1 (volume ratio) heunhap And dissolved in a solvent to prepare a coating solution having a concentration of 100 g / L. The coating solution was brush-coated on a nickel mesh, dried at 200 ° C for 10 minutes, and heat-treated at 500 ° C for 10 minutes, and then heat-treated at 500 ° C for 1 hour to obtain an electrolytic electrode. Comparative Example 2
RuClrn¾0와 Ce(N03)2.6H20가 6 : 1 몰 비율로 흔합된 금속 전구체를 이소프로필 알코올 ( IPA)과 2-부록시 에탄을 (2— butoxy ethanol )의 1 : 1 (부피비) 흔합 용매에 녹여 전구체 용액을 제조하고, 추가 첨가제로서 옥살산을 루테늄에 대하여 0.5배 몰이 되도록 첨가하고 용해시켜 100 g/L 농도의 코팅액을 제조하였다. 상기 코팅액을 니켈 메쉬에 브러쉬 코팅 후 200 °C에서 10분 건조, 500 °C에서 10분 열처리하는 공정을 총 10 회 반복한 다음, 500 °C에서 1시간 열처리 하여 전해용 전극을 얻었다. 제조예 1: 1 (volume ratio) of isopropyl alcohol (IPA) and 2-butoxy ethanol was mixed with a metal precursor in which RuClrn 占 와 and Ce (NO 3 ) 2 .6H 2 O were mixed in a 6: Dissolved in a dissolving solvent to prepare a precursor solution, and oxalic acid as an additional additive was added thereto in a molar ratio of 0.5 times with respect to ruthenium and dissolved to prepare a coating solution having a concentration of 100 g / L. The coating solution was brush-coated on a nickel mesh, followed by drying at 200 ° C for 10 minutes and heat treatment at 500 ° C for 10 minutes. Then, it was heat-treated at 500 ° C for 1 hour to obtain an electrolytic electrode. Manufacturing example
상기 각 실시예 및 비교예의 전해용 전극 (10 mmXlO mm)을 음극으로 하는 반쪽 셀을 다음의 방법으로 제조하였다. 전해액으로는 상기 32 중량 % NaOH 수용액, 상대 전극은 Pt 와이어, 기준 전극은 Saturated Calomel 전극 (SCE)을 이용하여 각 실시예 및 비교예의 전극을 음극으로 하는 반쪽 셀을 제조하였다. 실험예 1: 과전압 개선 정도 평가  A half cell having an electrolytic electrode (10 mm × 10 mm) of each of the above Examples and Comparative Examples as a negative electrode was prepared by the following method. As the electrolyte solution, a half cell was prepared by using the 32 wt% NaOH aqueous solution, the counter electrode as a Pt wire, and the reference electrode as a saturated calomel electrode (SCE). EXPERIMENTAL EXAMPLE 1 Evaluation of Over Voltage Improvement Level
상기 제조예의 반쪽 전지를 이용하여, 선형주사전위법 (Linear Sweep Voltammetry)을 통해 각 전해용 전극의 전류 밀도 4.4 kA/m2 에서의 전압을 측정하였다. 상기 실험을 10회 반복하여 측정된 전압의 평균값을 과전압 개선 평균 수치로 하였으며, 상용전극 (Asahi Kasei 상용음극 전극: ncz-2)의 전압과 비교하여 과전압 개선 정도를 산출하였다. The voltage of each electrolytic electrode at a current density of 4.4 kA / m 2 was measured by a linear sweep voltammetry using the half cell of the above production example. The average value of the measured voltage was determined as an average overvoltage improvement value by repeating the above-mentioned experiment ten times, and the degree of improvement of the overvoltage was calculated by comparing with the voltage of the commercial electrode (Asahi Kasei commercial cathode electrode: ncz-2).
<LSV Test 조건〉 <LSV test condition>
전극 size: 10隱 X10睡, 온도: 90°C, 전해액: 32 중량 % NaOH수용액 샘플 (전해용 전극)전처리: 전류 밀도 -6 A/cm2로 1시간 동안 수소를 발생시키도록 전해. Electrode size: 10 隱 X10 Sleep, temperature: 90 ° C, electrolyte: 32 wt% NaOH aqueous solution sample (electrolytic electrode) Pretreatment: electrolysis to generate hydrogen for 1 hour at current density -6 A / cm 2 .
Initial potential (V): -500.0 e— 3 Initial potential (V): -500.0 e- 3
Final potential (V): -1.500.0 e°  Final potential (V): -1.500.0 e
Scan rate (V/s): 10.0 e"3 Scan rate (V / s): 10.0 e "3
Sample period (V): 1.0 e~3 Sample period (V): 1.0 e to 3
【표 1】  [Table 1]
Figure imgf000014_0001
상기 표 1을 참조하면, 아민계 용매로서 을레일 아민을 첨가하여 제조 된 실시예 1은 상용전극에 비하여 평균 과전압 개선 정도가 —51 mV로, 아민계 용매를 첨가하지 않고 제조된 비교예 1 및 아민계 용매 대신 옥살산을 첨가하 여 제조된 비교예 2 보다 우수한 것을 알 수 있다. 또한, 아민계 용매로서 옥 틸 아민을 첨가하여 제조된 실시예 2의 전극도 과전압이 -55 mV 개선된 것으로 나타났다.
Figure imgf000014_0001
Example 1, which was prepared by adding valylamine as an amine-based solvent, had the average degree of over-voltage improvement of -51 mV as compared with the commercial electrode, Comparative Example 1 prepared without adding an amine-based solvent, Which is superior to Comparative Example 2 prepared by adding oxalic acid instead of an amine-based solvent. It was also found that the electrode over-voltage of Example 2 prepared by adding octylamine as an amine-based solvent was improved by -55 mV.
상기 결과로부터, 전극 제조용 코팅액에 아민계 용매를 포함할 경우 기 존과 동일 공정 조건으로 보다 우수한 과전압 개선 효과를갖는 전극을 제조할 수 있음을 확인할 수 있다. 실험예 2: 내구성 평가  From the above results, it can be confirmed that when an amine-based solvent is contained in the coating liquid for electrode production, an electrode having better overvoltage improving effect can be manufactured under the same process conditions as the existing process. Experimental Example 2: Evaluation of durability
상기 제조예의 반쪽 샐에 대하여 하기 시험 조건에서 역전류 테스트 (Reverse current test )를 수행하여 실시예 1 전극과 상용전극 (실험예 1과 동 일)에 대한 내구성을 평가하였으며, 그 결과를 하기 표 2 및 도 1에 나타내었 다.  The durability of the Example 1 electrode and commercial electrode (same as Experimental Example 1) was evaluated by performing a reverse current test under the following test conditions under the following conditions. The results are shown in Table 2 below. And Fig.
< Reverse current test 조건 > <Reverse current test condition>
전극 s ize : 10 隱 X 10 画, 온도: 90°C, 전해액: 32 중량 % NaOH수용액 샘플전처리: 전류 밀도 -0. 1 A/cn 로 20분간, -0.2 A/cn 및 -0.3 A/c m2로 각 3분간, -0.4 로 30분간 수소를 발생시키도록 전해. Electrode s ize: 10 Χ x 10, Temperature: 90 ° C, Electrolyte: 32 wt% NaOH aqueous solution Sample Pretreatment: Current density -0. 1 A / cn for 20 minutes, -0.2 A / cn and -0.3 A / cm 2 for 3 minutes, and -0.4 for 30 minutes.
Revers current 조건: +0.05 kA/ m2 Reversed current condition: +0.05 kA / m 2
【표 2】 [Table 2]
Figure imgf000015_0001
Figure imgf000015_0001
역전류 테스트 시, 활성층의 전해가 일어나는 - 0. 1 V 까지 도달하는 시간을 확인해봤을 때 실시예 1의 전극 (2.31 시간)이 상용전극 ( 1.01 시간)에 비해 2.29 배 더 걸리는 것을 확인할 수 있었다. 상기 결과로부터, 본 발명에 따라 제조된 전극은 역전류 시에도 상용전 극에 비해 내구성에서 이점이 있는 것을 확인할 수 있다. 실험예 3: 전극표면 구조의 비교 In the reverse current test, it was confirmed that the electrode (2.31 hours) of Example 1 took 2.29 times longer than the commercial electrode (1.01 hours) when the time to reach -0.1 V where electrolysis of the active layer occurs is checked. From the above results, it can be seen that the electrode manufactured according to the present invention has an advantage in durability as compared with a commercial electrode even in reverse current flow. Experimental Example 3: Comparison of electrode surface structures
상기 실험예 1의 테스트가 완료된 전지를 분해하여, 실시예 1, 2 및 비 교예 1의 전극 표면 상태를 SEM을 통해 각각 1000배, 10000배에서 확인하였다 (도 2) . 그리고 SEM의 길이 측정 를을 통하여 침상 구조의 두께와 길이를 측정 하였다.  The battery completed in Test Example 1 was disassembled, and the surface states of the electrodes of Examples 1 and 2 and Comparative Example 1 were confirmed at 1000 times and 10000 times through SEM (FIG. 2). The thickness and length of the acicular structure were measured by measuring the length of the SEM.
도 2를 참조하면, 전극 제조용 전구체 용액에 아민계 용매를 첨가한 실 시예 1 및 2는 아민계 용매를 첨가하지 않은 비교예 1에 비하여 셀 구동 후 전 극 표면에 세륨의 침상 구조가뚜렷하게 나타나는 것을 확인할 수 있다.  Referring to FIG. 2, Examples 1 and 2 in which an amine-based solvent was added to the precursor solution for electrode production showed that the structure of the cerium needle was clearly observed on the surface of the electrode after cell driving as compared with Comparative Example 1 in which no amine- Can be confirmed.
구체적으로, 실시예 1의 경우 각 침상의 구조체가 두께 50 ~ 200 nm , 길이 0.5 ~ 5 μ ηι로 형성된 반면, 비교예 1의 경우 두께 20 ~ 50 nm , 길이 0.2 - 0.5 ii m에 불과하였다. 즉, 아민을 첨가한 전극에서 세륨의 침상 구조가 2 ~ 4배 증가한 것을 확인할 수 있다.  Specifically, in the case of Example 1, the structure of each needle bed was formed to have a thickness of 50 to 200 nm and a length of 0.5 to 5 μηη, whereas in Comparative Example 1, the thickness was 20 to 50 nm and the length was 0.2 to 0.5 ii m. That is, it can be confirmed that the needle-like structure of cerium increased by 2 to 4 times in the electrode to which amine was added.
또한, 비교예 1의 전극 표면에 박리 및 균열이 발생한 것에 비하여, 실 시예 1 및 2는 뚜렷한 박리와 균열이 관찰되지 않았다.  In addition, in Comparative Example 1, peeling and cracking occurred on the surface of the electrode, and no significant peeling and cracking were observed in Examples 1 and 2.
상기 결과로부터, 본 발명의 제조방법에 따를 경우 희토류 금속의 침상 구조가 증가되고, 이에 따라 전극의 내구성을 현저히 향상시킬 수 있음을 알 수 있다. 실험예 4: 전극표면 성분의 비교  From the above results, it can be seen that according to the production method of the present invention, the needle-shaped structure of the rare earth metal is increased, and thus the durability of the electrode can be remarkably improved. Experimental Example 4: Comparison of electrode surface components
상기 실시예 1, 2 및 비교예 1에서 제조된 전극의 성분을 EDX(Energy Di spers ive Spectrometer )를 통해 측정하였다. 1 개의 전극의 각각 다른 포인 트에 대하여 3회씩 측정하였으며, 전극 내 Ru 및 N의 몰%를 하기 표 3에 기재 하였다.  The components of the electrodes prepared in Examples 1 and 2 and Comparative Example 1 were measured by EDX (Energy Diverts ive Spectrometer). Three measurements were made for each point on one electrode, and the molar ratios of Ru and N in the electrode are shown in Table 3 below.
【표 3]  [Table 3]
Figure imgf000016_0001
실시예 2 17 7 41
Figure imgf000016_0001
Example 2 17 7 41
17 7 41  17 7 41
16 8 50  16 8 50
비교예 1 26 5 19  Comparative Example 1 26 5 19
45 6 13  45 6 13
24 4 16  24 4 16
측정 결과, 전해용 전극 제조 시 아민계 용매가 포함된 실시예 1과 2 전극의 경우 루테늄 대비 질소의 몰 비을이 35 - 50 %로 높게 나타난 반면, 아민을 사용하지 않은 비교예 1의 경우 루테늄 대비 질소의 몰 비율이 13 ~ 19 %로 낮게 나타난 것을 확인할 수 있다. As a result of measurement, the molar ratio of nitrogen to ruthenium was as high as 35 to 50% in the case of Example 1 and 2 electrode containing an amine-based solvent in the production of electrolytic electrode, whereas in Comparative Example 1 in which amine was not used, And the molar ratio of nitrogen was as low as 13 to 19%.
상기 결과로부터, 본 발명의 방법에 따라 제조된 전극은 제조 시 아민계 용매가 포함되지 않은 전극에 비해 열처리 후에도 아민 성분인 질소의 함량이 높게 나타나는 것을 확인할 수 있다.  From the above results, it can be seen that the electrode prepared according to the method of the present invention has a higher content of nitrogen, which is an amine component, than the electrode not containing an amine-based solvent at the time of the heat treatment.

Claims

【청구의 범위】 Claims:
【청구항 1】 [Claim 1]
금속 기판; 및 상기 금속 기판상에 형성된 촉매층;을 포함하는 전해용 전극으로서,  A metal substrate; And a catalyst layer formed on the metal substrate,
상기 촉매층은 질소, 백금족 금속 및 회토류 금속을 포함하고, 상기 촉매층 중 질소의 함량은 백금족 금속에 대하여 20 내지 60 몰¾>인, 전해용 전극. Wherein the catalyst layer contains nitrogen, a platinum group metal, and a recirculating metal, and the content of nitrogen in the catalyst layer is 20 to 60 mol >3> based on the platinum group metal.
【청구항 2】  [Claim 2]
제 1항에 있어서,  The method according to claim 1,
상기 촉매층은 희토류 금속의 침상 구조를 포함하는 것인, 전해용 전극. Wherein the catalyst layer comprises a needle-like structure of a rare-earth metal.
【청구항 3】 [Claim 3]
제 2항에 있어서,  3. The method of claim 2,
상기 침상 구조는 50 내지 300 nm의 두께 및 0.5 내지 10 μ ηι의 길이를 갖는 침상의 구조체를 2 이상 포함하는, 전해용 전극.  Wherein the needle-shaped structure comprises at least two needle-shaped structures having a thickness of 50 to 300 nm and a length of 0.5 to 10 mu eta.
【청구항 4】  Claim 4
백금족 금속 전구체, 희토류 금속 전구체, 유가용매 및 아민계 용매를 포함하는 전극 제조용 코팅액을 제조하는 단계;  Preparing a coating liquid for electrode production comprising a platinum group metal precursor, a rare earth metal precursor, an oil-soluble solvent, and an amine-based solvent;
상기 전극 제조용 코팅액을 금속 기판 상에 도포하여 촉매층을 형성하는 단계; .  Coating the coating solution for electrode production on a metal substrate to form a catalyst layer; .
상기 촉매층을 건조시키는 단계; 및  Drying the catalyst layer; And
상기 촉매층을 열처리하는 단계를 포함하는, 전해용 전극의 제조 방법.  And heat treating the catalyst layer.
【청구항 5】 [Claim 5]
거 항에 있어서,  In the present invention,
상기 백금족 금속 전구체는 염화루테늄 수화물 (RuCl3 * nH20) , 테트라아민플래티늄 ( Π ) 클로라이드 수화물 (Pt (N¾)4Cl2 ¾0), 염화로듐 (RhCl3) , 질산로듐 수화물 (Rh(N03)3 · n¾0)ᅳ 염화이리듐 수화물 ( IrCl3 · n¾0) , 질산팔라듐 (Pd(N03)2)으로 이루어지는 군에서 선택되는 1종 이상인, 전해용 전극의 제조방법 . The platinum group metal precursor is ruthenium chloride hydrate (RuCl 3 * nH 2 0) , tetraamine platinum (Π) chloride hydrate (Pt (N¾) 4 Cl 2 ■ ¾0), chloride, rhodium (RhCl 3), rhodium nitrate hydrate (Rh ( N0 3) 3 · n¾0) eu iridium chloride hydrate (IrCl 3 · n¾0), palladium nitrate (Pd (N0 3) 2) the method of one or more electrodes for electrolytic compound selected from the group consisting of.
【청구항 6】  [Claim 6]
제 4항에 있어서, 상기 희토류 금속 전구체는 질산세륨 (in) (Ce(N03)3) , 탄산세륨 (m) (Ce2(C03)3) , 염화세륨 (m) (CeCl3) , 산화이트륨 (Y203) 및 탄산이트륨 (Y2(C03)3)으로 이루어지는 군에서 선택되는 1종 이상인, 전해용 전극의 제조 방법 . 5. The method of claim 4, The rare-earth metal precursor is cerium nitrate (in) (Ce (N0 3 ) 3), cerium carbonate (m) (Ce 2 (C0 3) 3), cerium chloride (m) (CeCl 3), yttrium oxide (Y 2 0 3 ) and yttrium carbonate (Y 2 (C0 3 ) 3 ).
【청구항 7】  7.
제 4항에 있어서,  5. The method of claim 4,
상기 유기 용매는 C1 내지 C6의 알코올 및 C4 내지 C8의 글리콜 에테르의 흔합 용매인, 전해용 전극의 제조방법 .  Wherein the organic solvent is a coalescing solvent of a C1 to C6 alcohol and a C4 to C8 glycol ether.
【청구항 8】  8.
제 7항에 있어서,  8. The method of claim 7,
상기 C1 내지 C6의 알코올 및 C4 내지 C8의 글리콜 에테르의 흔합비는 10: 1 내지 1 : 2인, 전해용 전극의 제조방법.  Wherein the flame ratio of the C1 to C6 alcohol and the C4 to C8 glycol ether is from 10: 1 to 1: 2.
【청구항 9]  9]
거 항에 있어서,  In the present invention,
상기 아민계 용매는 C6 내지 C30의 포화 또는 불포화 지방족 아민인, 전해용 전극의 제조방법 .  Wherein the amine-based solvent is a C6 to C30 saturated or unsaturated aliphatic amine.
【청구항 10】  Claim 10
제 4항에 있어서,  5. The method of claim 4,
상기 아민계 용매는 옥틸아민, 데실아민, 도데실아민, 올레일아민, 라우릴아민 및 핵사데실아민으로 이루어지는 군에서 선택되는 1종 이상인, 전해용 전극의 제조방법 .  Wherein the amine-based solvent is at least one selected from the group consisting of octylamine, decylamine, dodecylamine, oleylamine, laurylamine, and hexadecylamine.
【청구항 11】  Claim 11
거 14항에 있어서,  14. The method of claim 14,
상기 백금족 금속 전구체 및 희토류 금속 전구체는 1 : 1 내지 10 : 1의 몰 비율로 포함되는 것인, 전해용 전극의 제조방법.  Wherein the platinum group metal precursor and the rare earth metal precursor are contained in a molar ratio of 1: 1 to 10: 1.
【청구항 12】  Claim 12
저 14항에 있어서,  In Item 14,
상기 아민계 용매는 전극 제조용 코팅액 100 부피%에 대하여 3 내지 40 부피 %로 포함되는 것인, 전해용 전극의 제조방법.  Wherein the amine-based solvent is contained in an amount of 3 to 40% by volume based on 100% by volume of the coating liquid for electrode production.
【청구항 13】  Claim 13
제 4항에 있어서, 상기 전극 제조용 코팅액의 농도는 50 내지 150 g/L인, 전해용 전극의 제조방법. 5. The method of claim 4, Wherein the concentration of the coating solution for electrode preparation is 50 to 150 g / L.
【청구항 14]  [14]
계 4항에 있어서,  In Item 4,
상기 건조 단계의 온도는 70 내지 200 °C인, 전해용 전극의 제조방법 . And the temperature of the drying step is 70 to 200 ° C.
【청구항 15] [15]
제 4항에 있어서,  5. The method of claim 4,
상기 열처리 단계의 온도는 300 내지 600 °C인, 전해용 전극의 제조방법. Wherein the temperature of the heat treatment step is 300 to 600 ° C.
【청구항 16】  Claim 16
제 4항 내지 제 15항 중 어느 한 항의 제조방법에 의하여 제조된 전해용 전극.  An electrolytic electrode produced by the method of any one of claims 4 to 15.
PCT/KR2018/008645 2017-08-11 2018-07-30 Electrolytic electrode and manufacturing method therefor WO2019031753A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019510866A JP6790241B2 (en) 2017-08-11 2018-07-30 Electrode for electrolysis and its manufacturing method
CN201880003679.6A CN109790634B (en) 2017-08-11 2018-07-30 Electrode for electrolysis and preparation method thereof
US16/328,224 US11396709B2 (en) 2017-08-11 2018-07-30 Electrode for electrolysis and preparation method thereof
EP18843984.8A EP3492631B1 (en) 2017-08-11 2018-07-30 Electrolytic electrode and manufacturing method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0102524 2017-08-11
KR20170102524 2017-08-11
KR1020180087750A KR101950465B1 (en) 2017-08-11 2018-07-27 Electrode for electrolysis and preparation method thereof
KR10-2018-0087750 2018-07-27

Publications (1)

Publication Number Publication Date
WO2019031753A1 true WO2019031753A1 (en) 2019-02-14

Family

ID=65271720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008645 WO2019031753A1 (en) 2017-08-11 2018-07-30 Electrolytic electrode and manufacturing method therefor

Country Status (3)

Country Link
EP (1) EP3492631B1 (en)
CN (1) CN109790634B (en)
WO (1) WO2019031753A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200102845A (en) * 2019-02-22 2020-09-01 주식회사 엘지화학 Electrode for Electrolysis

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7300521B2 (en) * 2019-12-19 2023-06-29 エルジー・ケム・リミテッド electrode for electrolysis
EP3971328B1 (en) * 2020-01-09 2023-10-18 LG Chem, Ltd. Electrode for electrolysis

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269763A (en) * 1995-03-28 1996-10-15 Toyo Seikan Kaisha Ltd Electrode and its production
JP2003277966A (en) * 2002-03-22 2003-10-02 Asahi Kasei Corp Hydrogen generating cathode of low overvoltage and excellent durability
KR20060085676A (en) * 2003-10-08 2006-07-27 악조 노벨 엔.브이. Electrode
JP2013166994A (en) * 2012-02-15 2013-08-29 Asahi Kasei Chemicals Corp Electrolysis electrode, electrolysis tank, and method for manufacturing electrolysis electrode
KR20150060978A (en) * 2013-09-06 2015-06-03 페르메렉덴꾜꾸가부시끼가이샤 Production method for electrode for electrolysis

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102703921A (en) * 2007-11-16 2012-10-03 阿克佐诺贝尔股份有限公司 Electrode
JP4927006B2 (en) * 2008-03-07 2012-05-09 ペルメレック電極株式会社 Cathode for hydrogen generation
KR101390588B1 (en) * 2010-02-10 2014-04-30 페르메렉덴꾜꾸가부시끼가이샤 Activated cathode for hydrogen evolution
JP6515509B2 (en) * 2013-12-26 2019-05-22 東ソー株式会社 ELECTRODE FOR HYDROGEN GENERATION, METHOD FOR PRODUCING THE SAME, AND ELECTROLYTIC METHOD USING THE SAME

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269763A (en) * 1995-03-28 1996-10-15 Toyo Seikan Kaisha Ltd Electrode and its production
JP2003277966A (en) * 2002-03-22 2003-10-02 Asahi Kasei Corp Hydrogen generating cathode of low overvoltage and excellent durability
KR20060085676A (en) * 2003-10-08 2006-07-27 악조 노벨 엔.브이. Electrode
JP2013166994A (en) * 2012-02-15 2013-08-29 Asahi Kasei Chemicals Corp Electrolysis electrode, electrolysis tank, and method for manufacturing electrolysis electrode
KR20150060978A (en) * 2013-09-06 2015-06-03 페르메렉덴꾜꾸가부시끼가이샤 Production method for electrode for electrolysis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3492631A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200102845A (en) * 2019-02-22 2020-09-01 주식회사 엘지화학 Electrode for Electrolysis
JP2022509659A (en) * 2019-02-22 2022-01-21 エルジー・ケム・リミテッド Electrode for electrolysis
JP7121861B2 (en) 2019-02-22 2022-08-18 エルジー・ケム・リミテッド electrode for electrolysis
KR102503553B1 (en) * 2019-02-22 2023-02-27 주식회사 엘지화학 Electrode for Electrolysis

Also Published As

Publication number Publication date
CN109790634B (en) 2021-02-23
EP3492631A4 (en) 2019-11-20
EP3492631B1 (en) 2021-03-03
CN109790634A (en) 2019-05-21
EP3492631A1 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
KR101950465B1 (en) Electrode for electrolysis and preparation method thereof
CN111495395B (en) High-efficiency bimetallic nickel-molybdenum selenide electrocatalytic material and preparation method thereof
WO2015098058A1 (en) Electrode for hydrogen generation, process for producing same, and method of electrolysis therewith
WO2019031753A1 (en) Electrolytic electrode and manufacturing method therefor
EP3971328B1 (en) Electrode for electrolysis
JP2016148074A (en) Cathode for hydrogen generation and manufacturing method therefor
JP6515509B2 (en) ELECTRODE FOR HYDROGEN GENERATION, METHOD FOR PRODUCING THE SAME, AND ELECTROLYTIC METHOD USING THE SAME
CN113242915A (en) Electrode for electrolysis
EA020438B1 (en) Electrode for electrochemical processes and method for obtaining the same
JP7142862B2 (en) Electrode manufacturing method, electrode and hydrogen manufacturing method
KR102505751B1 (en) Electrode for electrolysis and preparation method thereof
KR102404706B1 (en) Active layer composition of cathode for electrolysis and cathode for electrolysis prepared by the same
KR102605336B1 (en) Electrode for electrolysis, method for producing the same, and electrochemical cell
KR102663795B1 (en) Electrode for electrolysis and preparation method thereof
US20220282386A1 (en) Water electrolysis electrode containing catalyst having three-dimensional nanosheet structure, method for manufacturing same, and water electrolysis device including same
EP3971327B1 (en) Electrode for electrolysis
KR102492777B1 (en) Electrode for electrolysis and preparation method thereof
KR102393900B1 (en) Coating composition for electrolysis cathode
JP6926782B2 (en) Hydrogen generation electrode and its manufacturing method and electrolysis method using hydrogen generation electrode
KR20200142464A (en) Electrode for Electrolysis
US20220205120A1 (en) Electrode for Electrolysis
WO2023218327A2 (en) Electrodes for electrochemical water splitting
EP3971326A1 (en) Electrode for electrolysis
KR20200142463A (en) Electrode for Electrolysis
EP4253606A1 (en) Method for manufacturing electrode for electrolysis

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019510866

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018843984

Country of ref document: EP

Effective date: 20190228

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18843984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE