WO2019031435A1 - Method for producing block polymer - Google Patents

Method for producing block polymer Download PDF

Info

Publication number
WO2019031435A1
WO2019031435A1 PCT/JP2018/029368 JP2018029368W WO2019031435A1 WO 2019031435 A1 WO2019031435 A1 WO 2019031435A1 JP 2018029368 W JP2018029368 W JP 2018029368W WO 2019031435 A1 WO2019031435 A1 WO 2019031435A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
block polymer
producing
monomer
mixer
Prior art date
Application number
PCT/JP2018/029368
Other languages
French (fr)
Japanese (ja)
Inventor
真介 田所
征巳 小沢
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to CN201880051098.XA priority Critical patent/CN110997743A/en
Priority to JP2019535639A priority patent/JP7173013B2/en
Priority to CN202311467938.XA priority patent/CN117362556A/en
Publication of WO2019031435A1 publication Critical patent/WO2019031435A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type

Definitions

  • the present invention relates to a method of producing a block polymer.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a method capable of stably producing a block polymer for a long time.
  • the present inventors produced a block polymer containing a polymer block derived from a styrenic monomer and a polymer block derived from an acrylic monomer, By using a predetermined flow reactor, it has been found that a block polymer can be stably produced over a long time, and the present invention has been completed.
  • the present invention provides the following method for producing a block polymer.
  • a method for producing a block polymer according to 1, comprising the step of reacting a non-homopolymerizable monomer before anionically polymerizing a first monomer to synthesize a polymer and then block polymerizing a second monomer. 3.
  • the method for producing the block polymer according to 1 or 2 wherein the non-homopolymerizable monomer is 1,1-diphenylethylene or a derivative thereof.
  • the static mixer member comprises a cylindrical body and an element body inserted into the inside of the cylindrical body. 5.
  • the two-component mixing mixer includes a joint member having a double pipe therein and a static mixer member,
  • the static mixer member comprises a tubular body and an element body inserted therein;
  • the block of 5 wherein the joint member and the static mixer member are connected such that the end face of the cylindrical body on the double pipe side abuts against the end face of the double pipe on the static mixer member side
  • Method of producing a polymer 7.
  • the manufacturing method of the block polymer of 6 whose end by the side of the static mixer member of the said double pipe
  • the joint member has an insertion hole for inserting an inner pipe through which an initiator solution flows, and in a state where the inner pipe is inserted, the inner pipe inner side and the inner pipe at least near the tip of the inner pipe.
  • the joint member has an introduction hole for introducing a monomer solution, and the introduction hole is connected to the insertion hole.
  • the insertion hole is formed to have a hole diameter substantially the same as the outer diameter of the inner pipe in the vicinity of the connection portion with the introduction hole, and from the connection portion to the tip of the inner pipe 9.
  • the method for producing a block polymer according to any one of 8 to 10 wherein the joint member has a static mixer member connecting hole, and the insertion hole is connected to the connecting hole.
  • the styrenic monomer is a compound represented by the following formula (1): (Wherein, R 1 represents a hydrogen atom or a methyl group, and R 2 to R 6 each independently represent a hydrogen atom, an alkoxy group having 1 to 5 carbon atoms, or a carbon number which may be substituted with a halogen atom) an alkyl group having 1 to 10, -OSiR 7 3 or -SiR 7 3, R 7 are independently an alkyl group having 1 to 10 carbon atoms, a phenyl group, an alkoxy group or a carbon number of 1 to 5 carbon atoms 1 to 5 alkylsilyl groups.) 16.
  • the two-liquid mixing mixer used in the flow reactor is difficult to be clogged and has a good mixing efficiency. Therefore, according to the method of producing a polymer of the present invention using the same, the polymer can be stably produced over a long time it can.
  • the block polymer obtained by the production method of the present invention has a low degree of dispersion (Mw / Mn) (narrow molecular weight distribution), and the structure is controlled to a high order, and the semiconductor lithography technology by induced self-assembly and others
  • the present invention can be applied to the application to nanopatterning technology or to the production of highly functional elastomers and the like.
  • FIG. 3 is a cross-sectional view of the main body taken along line III-III of FIG. 2;
  • FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG. It is an expanded sectional view of the double tube
  • FIG. 1 is a 1 H-NMR chart of a polymer obtained in Example 1. It is a graph which shows the pressure trend in reaction in the comparative example 1. FIG. It is a graph which shows the pressure trend during reaction in comparative example 2.
  • the method for producing a block polymer of the present invention uses a flow reactor equipped with a two-liquid mixing mixer provided with a flow path capable of mixing a plurality of liquids, and uses a styrenic monomer as the first monomer in the presence of an initiator. It comprises the steps of polymerizing to synthesize a homopolymer, and block polymerizing said homopolymer with an acrylic monomer as a second monomer to synthesize a block polymer.
  • the flow reactor is not particularly limited as long as it is equipped with a two-component mixing mixer having a double pipe inside, but one having the following configuration is preferable. That is, the mixer for two-component mixing preferably has a joint member having a double pipe inside or a static mixer member. It is more preferable that the mixer for two-component mixing includes both a joint member having a double pipe inside and a static mixer member, and the static mixer member is a cylindrical body and an element body inserted into the inside thereof. And the joint member and the static mixer member are connected such that the end face of the cylindrical body on the double pipe side abuts on the end face of the double pipe on the static mixer member side. More preferred.
  • the joint member and the static mixer member are connected such that the end surface of the cylindrical body on the double tube side abuts with the end surface of the double tube on the static mixer member side.
  • the mixer while maintaining the mixing efficiency, is not easily clogged, and stable long-term continuous operation is possible.
  • the mixer has a configuration in which the double pipe and the static mixer (the cylindrical body of the mixer) are connected inside the joint, but the abutment of each end face is more reliably compared to the conventional microreactor structure As a result, since the two liquids flowing out of the double pipe will flow into the static mixer almost simultaneously when flowing out, more reliable mixing of the two liquids is performed at the start of the reaction.
  • an end portion on the static mixer member side of the double pipe is inside the joint member.
  • the joint member has an insertion hole for inserting an inner pipe through which the first liquid flows, and in the state where the inner pipe is inserted, at least near the end of the inner pipe
  • the double pipe is formed by the inner side of the inner pipe and a space formed by the inner pipe outer wall and the inner wall of the insertion hole.
  • This insertion hole can be formed by cutting, using a mold provided with a mold corresponding to the insertion hole, or the like.
  • the inner pipe is detachably fixed from the joint member main body even if the inner pipe is fixed to the joint member main body in a state inserted in the insertion hole formed in the joint member as long as liquid tight can be maintained.
  • it may be fixed, it is preferable to be removably fixed from the joint member main body.
  • the means for fixing and fixing the inner pipe is not particularly limited as long as it can maintain liquid tightness as described above, but fixing with an adhesive, fixing with welding, etc. or removable fixing means with screw fastening etc. may be mentioned. It is preferred to use removable fixing means, such as by fastening.
  • the joint member has an introduction hole for introducing a second liquid, and the introduction hole is connected to the insertion hole.
  • the double pipe can be constructed inside the joint member body, and as a result, the length of the double pipe can be shortened, which facilitates the manufacture of the joint member.
  • the introduction hole can be formed by a cutting method or a method using a mold.
  • the formation position of the introduction hole in the joint member is not particularly limited, it is preferable to form in the direction orthogonal to the insertion hole, and in consideration of shortening the length of the double pipe, It is preferable to form in the position which can be connected with an insertion hole in the near end part rather than the center part of an end and an end part.
  • the insertion hole is formed to have a hole diameter substantially the same as the outer diameter of the inner pipe in the vicinity of the connection portion with the introduction hole, and the inside from the connection portion to the tip of the inner pipe is
  • the hole diameter is preferably larger than the outer diameter of the tube.
  • the joint member has a static mixer member connecting hole, and the insertion hole is connected to the connecting hole.
  • the connection holes can be formed by cutting or using a die.
  • the static mixer member is also fixed to the joint member main body in a state of being inserted in the connection hole formed in the joint member as long as liquid tightness can be maintained. It may be releasably fixed from the member body, but is preferably fixed releasably from the joint member body. By making it removable, it becomes easy to adjust the position of the element body inside the static mixer member and to clean the mixer after use, and it becomes possible to replace each part when it becomes contaminated or deteriorated.
  • the fixing and fixing means of the static mixer member may be the same as the means described for the inner pipe, but also in this case, it is preferable to use a removable fixing means by screw fastening or the like.
  • the element body is inserted into the inside of the cylindrical body such that one end thereof is substantially flush with an end face of the cylindrical body on the side of the double pipe.
  • the end face of the cylindrical body substantially coincides with the end of the element body, the two liquids flowing out of the double pipe will flow into the element body and be mixed almost simultaneously as they flow out, From the start of the reaction, more efficient mixing and stirring will be performed.
  • the shape of the cylindrical body is not particularly limited, but is preferably cylindrical in consideration of the flowability and mixing property of the two liquids passing through the inside.
  • the structure of the element body is not particularly limited, and can be appropriately selected from those used as an element body of a static mixer.
  • the right and left torsion blades extend in the longitudinal direction (torsion axis direction And the like), those having a shape in which a plurality of alternating lines are formed, those having a spiral shape with a constant twisting direction, and those in which a plurality of plates provided with one or more holes are stacked, etc.
  • the blade and the left twist blade have a shape in which plural blades are alternately connected in the twist axis direction.
  • the element body may be a removable structure that is simply inserted into the tubular body, or may be a non-removable structure that is inserted and then fixed to the inside of the tubular body, but is only removable. It is preferable to set it as the following structure.
  • the removable structure facilitates the adjustment of the position inside the cylindrical body of the element body and the replacement of the element body.
  • the diameter of the element body is not particularly limited as long as it can be inserted into the cylindrical body, but it is preferable that the diameter (maximum diameter) thereof is substantially the same as the inner diameter of the cylindrical body. By doing so, even when the element body is simply inserted into the cylindrical body, it is possible to prevent the position of the element body from fluctuating in the longitudinal direction and the lateral direction inside the cylindrical body.
  • the diameter of the element body is preferably about 1 to 10 mm, more preferably about 1.6 to 8 mm, and still more preferably about 2 to 5 mm, in consideration of the application of the mixer for mixing two liquids.
  • the length of the element body is not particularly limited as long as it can be inserted into the inside of the cylindrical body, but it is preferable to make the length substantially the same as the length of the cylindrical body. In this way, the alignment between the end of the element body and the end face of the tubular body on the double tube side is facilitated.
  • the flow reactor used in the present invention is provided with the mixer for two-component mixing.
  • the flow reactor may include one or two or more mixers for mixing the two liquids.
  • two or more mixers for two-component mixing are provided, multistage flow synthesis is possible.
  • the two-component mixing mixer is less likely to be clogged, so there is less pressure loss when flow synthesis is performed using a flow reactor, stable long-term continuous operation is possible, and it is suitable for mass synthesis.
  • the feed pump is not particularly limited, and commonly used pumps such as a plunger pump, a syringe pump, and a rotary pump can be used.
  • the material of the tube for forming the flow path is not particularly limited, and metals such as stainless steel, titanium, iron, copper, nickel, and aluminum, polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer It may be a resin such as (FEP), perfluoroalkoxy fluorine (PFA), polyetheretherketone (PEEK), polypropylene (PP) or the like.
  • metals such as stainless steel, titanium, iron, copper, nickel, and aluminum, polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer It may be a resin such as (FEP), perfluoroalkoxy fluorine (PFA), polyetheretherketone (PEEK), polypropylene (PP) or the like.
  • the inner diameter of the tube for forming the flow path may be appropriately set according to the purpose within the range that does not impair the effects of the present invention, but generally, about 0.5 to 10 mm is preferable, and about 0.7 to 4 mm is more preferable. Preferably, about 1 to 2 mm is more preferable.
  • the length of the tube for forming the flow path may be appropriately set according to the purpose as long as the effects of the present invention are not impaired. Usually, about 0.1 to 20 m is preferable, and about 0.2 to 10 m is more preferable. Preferably, about 0.3 to 5 m is more preferable.
  • the two-component mixing mixer 1 includes a joint member 2 and a static mixer member 3.
  • the joint member 2 includes a stainless steel main body 21 and a stainless steel inner pipe 22 (outside diameter: 1.6 mm, inside diameter: 1.0 mm) through which the first liquid flows.
  • the main body 21 is an insertion hole 211 for inserting the inner tube 22, and a second liquid orthogonal to the insertion hole 211 and connected to the insertion hole 211 inside the main body 21. And a static mixer member connecting hole 213.
  • the introduction hole 212, and the connection hole 213, female screw parts 211a, 212a, 213a corresponding to the male screw parts formed in each connector described later are formed.
  • the introduction tube through which the liquid flows and the static mixer member 3 can be fixed to the main body 21 by screw fastening.
  • the insertion hole 211 has a female screw portion 211a from the base end side to the terminal end side, and a liquid-tight portion 211b which is subsequently formed and has a trapezoidal cross-sectional diameter-reduced in accordance with a connector tip shape described later. It is comprised from the inner pipe
  • the inner diameter b of the inner pipe passage portion 211 c of the insertion hole 211 has a hole diameter substantially the same as the outer diameter a of the inner pipe 22 in the vicinity of the connection portion 214 with the introduction hole 212.
  • the inner diameter c of the inner pipe passage portion 211 c from the connection portion 214 to the connection hole 213 is formed to be larger than the outer diameter a of the inner pipe 22 while being formed as described above. In this manner, a gap is hardly formed between the inner pipe 22 and the insertion hole 211 at the connection portion 214, and the second liquid flowing from the introduction hole 212 leaks to the proximal end side of the insertion hole 211.
  • the double pipe 25 is constructed by the space 24 formed by the inner pipe inner side 221 and the inner pipe outer wall 222 and the inner wall 211d of the insertion hole. .
  • the insertion hole 211 is connected to the connection hole 213 at its base end, whereby the hole formed by the insertion hole 211 and the connection hole 213 is a main body. 21 penetrates.
  • the inner pipe 22 is formed with a hole (not shown) through which the inner pipe 22 passes, and is formed integrally with a substantially hexagonal columnar head 232 for screwing. Then, the connector 23 having the male screw portion 231 and the seal portion 233 having an inverted truncated cone shape for maintaining fluid tightness inside the joint body 21 is attached, and in this state, the insertion hole 211 having the above-mentioned female screw portion 211a. It is inserted and fixed to the main body 21 by screw fastening.
  • the introduction hole 212 has a female screw portion 212a from the proximal end side to the terminal end side, and a liquid having a rectangular cross section according to the shape of a connector tip portion described later, which is subsequently formed. It comprises a dense portion 212 b and a connecting portion 212 c extending from there to a connecting portion 214 to the insertion hole 211.
  • the insertion hole 211 and the introduction hole 212 are connected closer to the end than the center of the proximal end and the end of the insertion hole 211.
  • the static mixer connection hole 213 is formed with a female screw portion 213a from the base end side to the terminal end side, and a cross-sectional rectangular shape corresponding to the shape of the connector tip portion described later. And a liquid-tight portion 213b of a shape.
  • the static mixer member 3 is, as shown in FIGS. 1 and 2, a cylindrical tubular member 31 (inner diameter 3.0 mm) made of fluorine resin or stainless steel, and an element body 32 made of polyacetal inserted in the inside thereof. (3 mm diameter) and.
  • the element body 32 is inserted into the tubular body 31 in a state where the base end thereof is flush with the end face of the tubular body 31 on the double tube 25 side.
  • the element body 32 has a shape in which a plurality of right twist blades 321 and left twist blades 322 are alternately arranged in the direction of a twist axis (central axis in the longitudinal direction) 323. .
  • a hole (not shown) through which the cylindrical body 31 passes is formed inside, and a fluorine resin connector 33 having a male screw portion 331 Is inserted into the connection hole 213 having the above-mentioned female screw portion 213a, and is fixed to the main body 21 by screw fastening.
  • the hole diameter of the insertion hole 211 specifically, the inner diameter b of the inner pipe passage portion 211c in the vicinity of the connection portion 214 with the introduction hole 212 is substantially the same as the outer diameter a of the inner pipe 22.
  • the inner diameter c of the inner pipe passage portion 211c from the connection portion 214 between the insertion hole 211 and the introduction hole 212 to the end 223 of the inner pipe 22 on the static mixer member 3 side is formed larger than the outer diameter a of the inner pipe 22. It is done.
  • the double pipe 25 is formed by the inner side 221 of the inner pipe 22 and the space 24 formed by the outer wall 222 of the inner pipe 22 and the inner wall 211 d of the insertion hole 211.
  • the end face of the cylindrical body 31 of the static mixer member 3 on the double tube 25 side is in contact with the end face of the double tube 25 on the static mixer member 3 side, and in the present embodiment, as described above Since the base end of the element body 32 is flush with the end face of the cylindrical body 31 on the double pipe 25 side, the end face of the double pipe 25 on the static mixer member 3 side and the base end of the element body 32 (see FIG. 4) The middle upper end is also in contact.
  • the second liquid is introduced from the introduction hole 212.
  • the introduction tube 26 through which the second liquid flows is a hole through which the introduction tube 26 passes (not shown)
  • the first two-component mixing mixer 1a and the second two-component mixing mixer 1b disposed inside the constant-temperature layer 43 are connected in series by a PTFE tube 42d (inner diameter 1.5 mm) And is configured.
  • a first liquid feed pump 41a is connected to the inner pipe 22a of the first two-liquid mixing mixer 1a via a PTFE tube 42a (inner diameter: 1.0 mm).
  • the second liquid feed pump 41b is provided with PTFE at the tip thereof through which the second liquid flows. It is connected via a tube 42b (inner diameter: 1.0 mm).
  • a third pump 41c for liquid transfer is provided via a PTFE tube 42c (inner diameter 1.0 mm) through which the third liquid provided with a connector at its tip flows.
  • a PTFE tube 42e (inner diameter: 1.5 mm) is connected to the end of the static mixer member 3b of the two-component mixing mixer 1b.
  • each liquid fed from the first liquid feed pump 41a and the second liquid feed pump 41b is a joint member of the first two-liquid mixing mixer 1a.
  • the first reaction occurs.
  • the first reaction liquid after reaction passes through the tube 42d, and then flows into the joint member main body 21b through the inner pipe 22b of the second two-liquid mixing mixer 1b.
  • the first reaction liquid passes through the double pipe in the joint member main body 21b together with the third liquid sent from the third liquid delivery pump 41c and flowing into the joint member main body 21b, As in the case of the first two-liquid mixing mixer 1a, it flows into the static mixer member 3b, where the second reaction proceeds.
  • mixer and flow reactor for two-liquid mixing used by this invention are not limited to each embodiment mentioned above, You may perform the change and improvement in the range which can achieve the objective of this invention, and an effect.
  • the inner pipe 22 and the static mixer member 3 are removably screwed to the joint member main body 21, but these are configured to be removable by other fixing means. It may be connected and fixed in a non-removable manner.
  • the introduction hole 212 is formed in the joint member main body 21 in a manner to be orthogonally connected to the insertion hole 211, it may be connected to the insertion hole at another angle, and the position of the introduction hole 212 is also arbitrary. It can be set in place of
  • the material of the main body 21, the inner pipe 22 and the connector 23 is stainless steel, but it is not limited to this, and other metals such as titanium, iron, copper, nickel, aluminum etc., PTFE, FEP, PFA, PEEK, PP etc. It may be a resin.
  • the inner diameter of the inner pipe 22 may be appropriately set according to the purpose within the range that does not impair the effects of the present invention, but generally, about 0.1 to 3 mm is preferable, and about 0.5 to 2 mm is more preferable. About 5 to 1 mm is more preferable.
  • the outer diameter of the inner pipe 22 may be appropriately set according to the purpose within the range that does not impair the effects of the present invention, but generally, about 0.8 to 4 mm is preferable, and about 0.8 to 3 mm is more preferable. It is more preferable that the distance be about 8 to 1.6 mm.
  • the hole diameter c of the insertion hole 211 may be appropriately set according to the purpose within the range that does not impair the effects of the present invention, but generally, about 0.1 to 5 mm is preferable and about 0.5 to 4 mm is more preferable. 8 to 2 mm is more preferable.
  • the material of the cylindrical body 31 is not limited to stainless steel, and may be another metal such as titanium, iron, copper, nickel, or aluminum, or a resin such as PTFE, FEP, PFA, PEEK, or PP.
  • the material of the element body 32 is not limited to polyacetal, and may be other resins such as PTFE, FEP, PFA, PEEK and PP, metals such as stainless steel, titanium, iron, copper, nickel and aluminum, and ceramics.
  • the shape of the element body 32 may be a spiral shape having a constant twisting direction, a plurality of plates provided with one or more holes, or the like.
  • the material of the connector 33 is not limited to a fluorine-based resin, and may be another resin such as PEEK or PP, or a metal such as stainless steel, titanium, iron, copper, nickel, or aluminum.
  • the inner diameter of the cylindrical body 31 may be appropriately set according to the purpose within the range that does not impair the effects of the present invention, but generally, about 1 to 10 mm is preferable, about 1.6 to 8 mm is more preferable, and 2 to 5 mm The degree is even more preferred. Also, the diameter of the element body 32 may be appropriately set according to the purpose within the range not impairing the effects of the present invention, and usually about 1 to 10 mm is preferable, about 1.6 to 8 mm is more preferable, and 2 to 5 mm The degree is even more preferred.
  • the flow reactor 4 is provided with two two-liquid mixing mixers, so two-stage flow synthesis is possible, but when performing one-step flow synthesis, one two-liquid mixing mixer may be used.
  • the flow reactor may be assembled as described above using n two-liquid mixing mixers.
  • the inner diameters of the tubes 42a to 42e constituting the flow reactor 4 may be appropriately set according to the purpose within the range that does not impair the effects of the present invention, but in general 0.5 to 10 mm is preferable, 0.7 It is more preferably about 4 mm, and even more preferably about 1 to 2 mm.
  • the length may be appropriately set according to the purpose as long as the effect of the present invention is not impaired, but generally, about 0.1 to 20 m is preferable, about 0.2 to 10 m is more preferable, and 0.3 to About 5 m is more preferable.
  • the styrene-based monomer as the first monomer is not particularly limited as long as it is a styrene derivative, but those represented by the following formula (1) are preferable.
  • R 1 represents a hydrogen atom or a methyl group.
  • R 2 ⁇ R 6 are each independently a hydrogen atom, an alkoxy group having 1 to 5 carbon atoms, an alkyl group having 1 to 10 carbon atoms which may be substituted with a halogen atom, -OSiR 7 3 or -SiR 7 3 Represents Each R 7 independently represents an alkyl group having 1 to 10 carbon atoms, a phenyl group, an alkoxy group having 1 to 5 carbon atoms, or an alkylsilyl group having 1 to 5 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms may be linear, branched or cyclic, and specifically, methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n- Butyl group, isobutyl group, sec-butyl group, tert-butyl group, cyclobutyl group, 1-methyl-cyclopropyl group, 2-methyl-cyclopropyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, 1-methyl-n-butyl group, 2 -Methyl-n-butyl group
  • alkoxy group examples include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, a cyclopropoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group, a cyclobutoxy group, and 1-methyl -Cyclopropoxy group, 2-methyl-cyclopropoxy group, n-pentyloxy group, 1-methyl-n-butoxy group, 2-methyl-n-butoxy group, 3-methyl-n-butoxy group, 1,1- Dimethyl-n-propoxy group, 1,2-dimethyl-n-propoxy group, 2,2-dimethyl-n-propoxy group, 1-ethyl-n-propoxy group, 1,1-diethyl-n-propoxy group, cyclo Pentoxy group, 1-methyl-cyclobutoxy group, 2-methyl-cyclobutoxy group, 3-methyl-cyclobutoxy group, 1,2-dimethyl- Kuropuropokish
  • halogen atom a fluorine atom, a chlorine atom, a bromine atom and an iodine atom are preferable, and a fluorine atom and a chlorine atom are more preferable.
  • R 4 an alkoxy group having 1 to 5 carbon atoms or —SiR 7 3 is preferable, and a methoxy group or —Si (CH 3 ) 3 is more preferable.
  • R 2, R 3, R 5 and R 6, a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group or a -SiR 7 3 1 to 5 carbon atoms, more preferably a hydrogen atom, a methoxy group or -Si (CH 3 ) 3 is more preferred.
  • styrene derivative examples include styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-ethylstyrene, 2-ethylstyrene, 3-ethylstyrene, 4-tert- Butylstyrene, 4-dimethylsilylstyrene, 4-trimethylsilylstyrene, 4-trimethylsilyloxystyrene, 4-dimethyl (tert-butyl) silylstyrene, 4-dimethyl (tert-butyl) silyloxystyrene, 2-methoxystyrene, 3- Methoxystyrene, 4-methoxystyrene, 4-methoxystyrene, 4-methoxystyrene, 4-ethoxystyrene, 3,4-dimethylstyrene, 2,6-di
  • styrene, 4-tert-butylstyrene, 4-methoxystyrene, 4-trimethylsilylstyrene and the like are preferable as the styrene-based monomer from the viewpoint that monodispersed polymers can be easily obtained even at relatively high temperatures.
  • the acrylic monomer as the second monomer is not particularly limited as long as it is a compound having a (meth) acryloyl group, but one having one (meth) acryloyl group is preferable. As such a compound, those represented by the following formula (2) are particularly preferable.
  • R 11 is a hydrogen atom or a methyl group.
  • R 12 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms is there.
  • the alkyl group having 1 to 20 carbon atoms may be linear, branched or cyclic, and specifically, methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n- Butyl group, isobutyl group, sec-butyl group, tert-butyl group, cyclobutyl group, 1-methyl-cyclopropyl group, 2-methyl-cyclopropyl group, n-pentyl group, 1-methyl-n-butyl group, 2 -Methyl-n-butyl group, 3-methyl-n-butyl group, 1,1-dimethyl-n-propyl group, 1,2-dimethyl-n-propyl group, 2,2-dimethyl-n-propyl group, 1-ethyl-n-propyl group, cyclopentyl group, 1-methyl-cyclobutyl group, 2-methyl-cyclobutyl group, 3-methyl-cyclobutyl
  • halogenated alkyl group having 1 to 20 carbon atoms examples include those in which part or all of the hydrogen atoms of the aforementioned alkyl group are substituted with a halogen atom such as fluorine, chlorine, bromine or iodine.
  • Specific examples thereof include trifluoromethyl group, 2,2,2-trifluoroethyl group, 1,1,2,2,2-pentafluoroethyl group, 3,3,3-trifluoropropyl group, 2, 2,3,3,3-pentafluoropropyl group, 1,1,2,2,3,3,3-heptafluoropropyl group, 4,4,4-trifluorobutyl group, 3,3,4,4 2,4-pentafluorobutyl, 2,2,3,3,4,4,4-heptafluorobutyl, 1,1,2,2,3,3,4,4,4-nonafluorobutyl and the like Can be mentioned.
  • aryl group having 6 to 20 carbon atoms examples include phenyl group, naphthyl group, naphthyl group, anthryl group and phenanthryl group.
  • Examples of the aralkyl group having 7 to 20 carbon atoms include benzyl group, 2-phenylethyl group and anthrylmethyl group.
  • R 12 an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aralkyl group having 7 to 20 carbon atoms are preferable, and an alkyl group having 1 to 10 carbon atoms and 6 carbon atoms An aryl group of -14 and an aralkyl group having 7 to 15 carbon atoms are more preferable.
  • (meth) acrylic compound methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, sec -Butyl (meth) acrylate, tert-butyl (meth) acrylate, n-pentyl (meth) acrylate, isopentyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, n-octyl (meth) acrylate , 2-ethylhexyl (meth) acrylate, n-decyl (meth) acrylate, isodecyl (meth) acrylate, n-dodecyl (meth) acrylate, n
  • tert-butyl (meth) acrylate and isopropyl (meth) acrylate are preferable as the acrylic monomer from the viewpoint that monodispersed polymer can be easily obtained even at relatively high temperature.
  • the initiator used in the method for producing a polymer of the present invention is not particularly limited as long as it is generally used in anionic polymerization, and examples thereof include organic lithium compounds and the like.
  • Examples of the organic lithium compound include methyllithium, ethyllithium, n-propyllithium, isopropyllithium, n-butyllithium, isobutyllithium, sec-butyllithium, tert-butyllithium, pentyllithium, hexyllithium, methoxymethyllithium, ethoxy Methyllithium, phenyllithium, naphthyllithium, benzyllithium, phenylethyllithium, ⁇ -methylstyryllithium, 1,1-diphenylhexyllithium, 1,1-diphenyl 3-methylpentryllithium, 3-methyl-1,1- Diphenyl pentyl lithium, vinyl lithium, allyl lithium, propenyl lithium, butenyl lithium, ethynyl lithium, butynyl lithium, pentynyl lithium, hexynyl lithium, 2 Monoorganic lithium compounds such as
  • a block polymer having two or more monomer units can be synthesized by using a flow reactor having two or more mixers for mixing two liquids as in the flow reactor 4 described above.
  • the method for producing the block polymer of the present invention will be described by taking the synthesis of a binary block polymer as an example.
  • the first monomer solution containing the above-mentioned monomer is introduced into the flow reactor through the introduction hole of the first mixer, and the solution containing the above-mentioned initiator is introduced into the flow reactor through the inner pipe of the first mixer
  • a homopolymer consisting of the first monomer is synthesized.
  • the first monomer solution and the initiator solution as described above, clogging of the flow reactor is unlikely to occur, the pressure loss is suppressed, and the polymer is stably produced for a long time. be able to.
  • non-homopolymerizing monomer such as 1,1-diphenylethylene (DPE) or a derivative thereof is reacted to form an end of the polymer.
  • DPE 1,1-diphenylethylene
  • non-homopolymerizable monomer refers to a monomer which does not cause anionic polymerization with only that monomer.
  • the DPE is introduced into the flow reactor from the inlet of the second mixer.
  • DPE may be introduced into the flow reactor as it is, or may be diluted with an appropriate solvent before being introduced into the flow reactor.
  • the solvent used for dilution include tetrahydrofuran (THF), 2-methyl THF, diethyl ether, tetrahydropyran (THP), ether solvents such as oxepane and 1,4-dioxane, toluene, dichloromethane, diethoxyethane and the like.
  • THF tetrahydrofuran
  • 2-methyl THF diethyl ether
  • TTP tetrahydropyran
  • ether solvents such as oxepane and 1,4-dioxane, toluene, dichloromethane, diethoxyethane and the like.
  • Be The concentration of DPE is preferably 0.1 to 5.7 mol / L.
  • the second monomer solution is introduced into the flow reactor from the introduction hole of the third mixer to synthesize a block polymer.
  • the solvent for dissolving the first monomer and the second monomer is not particularly limited, and examples thereof include THF, 2-methyl THF, diethyl ether, THP, oxepan, ether solvents such as 1,4-dioxane, toluene, dichloromethane And diethoxy ethane are preferable.
  • the concentration of the first monomer is not particularly limited and can be appropriately set according to the purpose, but is preferably 0.1 to 5 mol / L, more preferably 0.1 to 3 mol / L, 0.1 Particularly preferred is -2 mol / L.
  • the concentration of the second monomer is also not particularly limited and may be appropriately set depending on the purpose, but is preferably 0.1 to 9.4 mol / L, and more preferably 1.0 to 9.4 mol / L. Preferably, 2.0 to 9.4 mol / L is particularly preferred. If the monomer concentration is in the above-mentioned range, clogging of the flow reactor is unlikely to occur, the pressure loss is suppressed, and the polymer can be stably produced over a long time.
  • the flow rate of the first monomer flowing in the flow channel of the flow reactor is not particularly limited and may be appropriately set according to the purpose, but it is preferably 1 to 50 mL / min, and preferably 5 to 30 mL / min. Is more preferable, and 10 to 30 mL / min is particularly preferable.
  • the flow rate of the second monomer is also not particularly limited and may be appropriately set depending on the purpose, but is preferably 0.1 to 50 mL / min, more preferably 0.1 to 30 mL / min, 0.1 -20 mL / min is particularly preferred. If the flow rate of the monomer is in the above range, clogging of the flow reactor is unlikely to occur, the pressure loss is suppressed, and the polymer can be stably produced over a long time.
  • n-butyllithium can be suitably used as the initiator.
  • the anionic polymerization is usually carried out at a low temperature because the polymerization rate is increased when it is carried out in a polar solvent (for example, THF). Therefore, there is a disadvantage that the initiation reaction is difficult to achieve unless sec-butyllithium is used as the initiator.
  • a nonpolar solvent for example, toluene
  • the reaction rate is slow and heating is required. In this case, less reactive n-butyllithium may be used as an initiator.
  • the method for producing a block polymer using the flow reactor of the present invention is characterized in that low reactivity n-butyllithium can be used as an initiator because it can be reacted in a polar solvent at around room temperature.
  • the solvent for dissolving the initiator is not particularly limited, and hexane, THF, 2-methyl THF, diethyl ether, THP, oxepane, ether solvents such as 1,4-dioxane, toluene, dichloromethane, diethoxy ethane, Toluene, diethyl ether and the like are preferred.
  • the concentration of the initiator is not particularly limited and may be appropriately set according to the type of monomer, but is preferably 0.01 to 0.5 mol / L, and more preferably 0.03 to 0.3 mol / L. 0.05 to 0.1 mol / L is particularly preferred.
  • concentration of the initiator is in the above range, the flow reactor is unlikely to be clogged, the pressure loss can be suppressed, and the polymer can be stably produced over a long time.
  • the flow rate of the initiator flowing through the flow channel of the flow reactor is not particularly limited and may be appropriately set according to the purpose, preferably 0.1 to 10 mL / min, and more preferably 0.5 to 8 mL. / Min is more preferable, and 1 to 6 mL / min is particularly preferable. If the flow rate of the initiator is in the above range, the flow reactor is unlikely to be clogged, the pressure loss can be suppressed, and the polymer can be stably produced over a long time.
  • the reaction temperature (the temperature of the flow reactor) in the production method of the present invention is not particularly limited and can be appropriately set according to the purpose, but from the viewpoint of the reaction rate, -80 ° C or higher is preferable, -40 ° C or higher Is more preferable, and -20.degree. C. or more is even more preferable.
  • the reaction temperature is preferably 100 ° C. or less, more preferably 50 ° C. or less, and still more preferably 30 ° C. or less from the viewpoint of side reaction suppression and suppression of inactivation of growth terminals.
  • a method of terminating the reaction a method of recovering the polymerization reaction solution coming out of the flow reactor with a container containing a reaction terminator such as an excess amount of methanol, or three mixers for mixing the two liquids in the flow reactor It is set as the structure which has the above, and the method of pouring reaction terminators, such as methanol, etc. from one side of the mixer for two last liquid mixing, etc. are mentioned.
  • a polymer having a small degree of dispersion (Mw / Mn) (narrow molecular weight distribution) can be synthesized.
  • the degree of dispersion is preferably 1.5 or less, more preferably 1.3 or less, still more preferably 1.2 or less, and still more preferably 1.15 or less.
  • Mw and Mn represent a weight average molecular weight and a number average molecular weight, respectively, and these are the polystyrene conversion measurement values by gel permeation chromatography (GPC).
  • the Mw of the polymer obtained by the production method of the present invention is not particularly limited, but is preferably 1,000 to 100,000, and more preferably 1,000 to 50,000.
  • FIG. 10 The schematic diagram of the flow reactor (reactor) used in the following Example is shown in FIG. In FIG. 10, arrows indicate the flow direction of the liquid.
  • Plunger using a PTFE tube (inner diameter 1.0 mm, outer diameter 1.6 mm, length 2 m) using the plunger pump 1 (HP-12 manufactured by Fromm) for feeding the first monomer solution Connect pump 1 and mixer 1, and use syringe pump 1 (1000D Syringe pump made by TELEDYNE ISCO), PTFE tube (inner diameter 1.0 mm, outer diameter 1.6 mm, length 2 m) for initiator solution delivery.
  • the syringe pump 1 and the mixer 1 were connected using this.
  • the outlet of mixer 1 and the inlet of mixer 2 are connected by PFA tube 1 (internal diameter 2.0 mm, outer diameter 3 mm, length 1 m), and the other inlet of mixer 2 is a syringe for reaction modifier solution delivery
  • the pump 2 Keychem-L, manufactured by YMC Co., Ltd.
  • a PTFE tube inner diameter: 1.0 mm, outer diameter: 1.6 mm, length: 2 m.
  • the outlet of the mixer 2 and the inlet of the mixer 3 are connected with a PFA tube 2 (inside diameter 2.0 mm, outer diameter 3 mm, length 1 m), and the other inlet of the mixer 3 is for feeding the second monomer solution
  • the plunger pump 2 (KP-12 manufactured by Fromm) was connected by a PTFE tube (inner diameter 1.0 mm, outer diameter 1.6 mm, length 2 m).
  • the outlet of the mixer 3 and the inlet of the mixer 4 are connected by a PFA tube 3 (internal diameter 2.0 mm, outer diameter 3 mm, length 5 m), and the other inlet of the mixer 4 is a syringe for reaction solution supply Pump 3 (Asia manufactured by Syrris) was connected by a PTFE tube (inner diameter 1.0 mm, outer diameter 1.6 mm, length 2 m).
  • a PFA tube 4 inner diameter: 2.0 mm, outer diameter: 3 mm, length: 0.7 m
  • the flow path from each pump to the tip and 90% length of the tube 4 was immersed in a thermostat at 24 ° C. to adjust the temperature.
  • the pressure sensor log of the initiator solution delivery pump is shown as a pressure trend.
  • FIG. 11 The schematic diagram of the flow reactor used by the following comparative example is shown in FIG. In FIG. 11, the arrow indicates the flow direction of the liquid.
  • the pump 1 and the mixer 1 are connected, and a syringe pump 2 (Keychem-L manufactured by YMC Co., Ltd.) and a PTFE tube (inner diameter 1.0 mm, outer diameter 1.6 mm, length 2 m) are used for initiator solution delivery.
  • the syringe pump 2 and the mixer 1 were connected using The outlet of mixer 1 and the inlet of mixer 2 are connected by PTFE tube 1 (inner diameter 1.5 mm, outer diameter 3 mm, length 1.3 m (comparative example 1), 0.7 m (comparative example 2))
  • the other inlet of 2 was connected with a syringe pump 3 for supplying a solution for stopping reaction (Syrris Asia) with a PTFE tube (inner diameter 1.0 mm, outer diameter 1.6 mm, length 2 m).
  • a PTFE tube 2 at the outlet of the mixer 2, a PTFE tube 2 (inner diameter 1.5 mm, outer diameter 3 mm, length 1.3 m (comparative example 1), 0.7 m (comparative example 2)) was connected.
  • the temperature was adjusted by immersing in the thermostatic baths of 5 ° C. (Comparative Example 1) and -20 ° C. (Comparative Example 2) for the flow paths from each pump to the tip and 90% length of the tube 2. Also, the pressure sensor log of the initiator solution delivery pump is shown as a pressure trend.
  • Example 1 The first monomer is mixed with a 0.25 mol / L styrene / THF solution and an initiator as a 0.05 mol / L n-butyllithium hexane solution at a flow rate of 30 mL / min and 6 mL / min, respectively, using a mixer 1 Were polymerized.
  • the joint member of the mixer 1 was made of stainless steel, and the cylindrical body was made of stainless steel.
  • the static mixer element body one processed by DSP-MXA3-17 (element made of polyacetal, number of torsion blades: 17, 3 mm diameter) manufactured by Noritake Co., Limited is used.
  • the reactivity with the second monomer was adjusted by mixing 1,1-diphenylethylene (DPE) with the mixer 2 at 56 ⁇ L / min.
  • the mixer 2 used the same one as the mixer 1.
  • tert-butyl methacrylate as a second monomer was mixed by a mixer 3 at 1.2 mL / min to perform block polymerization.
  • the mixer 3 used was the same as the mixer 1.
  • a 0.25 mol / L methanol / THF solution as a polymerization terminator was mixed with the mixer 4 at 10 mL / min to terminate the polymerization.
  • the mixer 4 used the general simple double pipe mixer.
  • the first monomer solution tube is connected to the inlet of the mixer 1, the initiator solution tube is connected to the inner tube inlet, the tube 1 is connected to the inlet of the mixer 2, and the DPE fluid tube is connected to the inner tube inlet.
  • a tube 2 was connected to the inlet, a tert-butyl methacrylate liquid tube was connected to the inner tube inlet, a polymerization terminator solution tube was connected to the inlet of the mixer 4, and a tube 3 was connected to the inner tube inlet.
  • the solution was sent for 10 minutes and the effluent was collected. The pressure trend during the reaction is shown in FIG. There was almost no pressure fluctuation for 10 minutes.
  • the mixer 1 and the mixer 2 are T-shaped mixers (manufactured by Sanko Seiki Kogyo Co., Ltd., made of stainless steel, inner diameter 0.25 mm), and each pump and the first monomer solution collide with each other at 180 °. Connected. A 1.0 mol / L 4-methoxystyrene / THF solution as the first monomer and a 0.11 mol / L sec-butyl lithium hexane solution as the initiator are mixed with a mixer 1 at a flow rate of 5 mL / min and 1 mL / min, respectively. , And the first monomer was polymerized.
  • Comparative Example 2 As mixer 1 and mixer 2, Comet X-01 (made of stainless steel) manufactured by Techno Applications Inc. was used.
  • the first monomer solution tube is connected to the inlet side of the outer tube portion of the mixer 1
  • the initiator solution tube is connected to the inlet side of the inner tube portion
  • the polymerization stopper solution tube is connected to the inlet side of the outer tube portion of the mixer 2, and the inlet side of the inner tube portion.
  • the tube 1 was connected.
  • a 2.0 mol / L styrene / THF solution and an 0.1 mol / L sec-butyllithium hexane solution as an initiator are mixed by a mixer 1 at a flow rate of 5 mL / min and 1 mL / min, respectively.
  • a mixer 1 at a flow rate of 5 mL / min and 1 mL / min, respectively.
  • 0.25 mol / L methanol / THF solution as a polymerization terminator was mixed with the mixer 2 at 6.1 mL / min to terminate the polymerization.
  • the pressure trend when liquid is sent for 35 minutes is shown in FIG. A slight pressure fluctuation and a pressure rise over time were observed.

Abstract

Provided is a method for producing a block polymer, the method including: a step of synthesizing a polymer by subjecting a styrene-based monomer as a first monomer to anionic polymerization in the presence of an initiator using a flow reactor comprising a two-liquid blending mixer provided with a flow path capable of blending a plurality of liquids; and a step of synthesizing a block polymer by block polymerizing an acrylic monomer as a second monomer with the polymer. The flow reactor comprises a two-liquid blending mixer which is provided therein with: a joint member having a double pipe; or a static mixer member.

Description

ブロックポリマーの製造方法Method for producing block polymer
 本発明は、ブロックポリマーの製造方法に関する。 The present invention relates to a method of producing a block polymer.
 近年、フローリアクターやマイクロリアクターと呼ばれる反応装置を用いて、溶液を流しながら連続的に化学合成を行うフローケミストリーが注目されている。フローケミストリーは、従来実施されているバッチ方式と比べて、小さな反応容器を用いて反応を行うため精密な温度制御が可能であり、混合効率も良いという利点を有する。 BACKGROUND ART In recent years, flow chemistry in which chemical synthesis is continuously performed while flowing a solution using a reaction apparatus called a flow reactor or a microreactor attracts attention. Flow chemistry has the advantage that precise temperature control is possible and the mixing efficiency is good because reactions are carried out using a small reaction vessel, as compared with the batch method conventionally practiced.
 二液混合式のフロー合成では、しばしば、混合部分(ミキサー)で不溶物が析出し、流路を閉塞して圧力変動が起こり、長時間連続運転ができなかったり、得られる合成物の品質が安定しなかったりすることが問題となる。特に、ポリマーのアニオン重合のように有機リチウム試剤を用いる反応系でこの問題が顕著であり、安定的な長時間連続運転と高効率な混合を両立することは容易なことではない。 In the two-liquid mixed flow synthesis, insoluble matter often precipitates in the mixing part (mixer), and the flow path is blocked, causing pressure fluctuation, and continuous operation can not be performed for a long time, or the quality of the obtained compound is It becomes a problem that it is not stable. In particular, in a reaction system using an organolithium reagent such as anionic polymerization of a polymer, this problem is remarkable, and it is not easy to achieve stable long-term continuous operation and highly efficient mixing at the same time.
特開2009-067999号公報JP, 2009-067999, A
 本発明は、前記事情に鑑みなされたもので、安定的に長時間に亘ってブロックポリマーを製造することができる方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a method capable of stably producing a block polymer for a long time.
 本発明者らは、前記目的を達成するため鋭意検討を重ねた結果、スチレン系モノマーに由来する重合体ブロックと、アクリル系モノマーに由来する重合体ブロックとを含むブロックポリマーを製造する際に、所定のフローリアクターを用いることで、安定的に長時間に亘ってブロックポリマーを製造することができることを見出し、本発明を完成させた。 As a result of intensive studies to achieve the above object, the present inventors produced a block polymer containing a polymer block derived from a styrenic monomer and a polymer block derived from an acrylic monomer, By using a predetermined flow reactor, it has been found that a block polymer can be stably produced over a long time, and the present invention has been completed.
 したがって、本発明は、下記ブロックポリマーの製造方法を提供する。
1.複数の液体を混合可能な流路を備える2液混合用ミキサーを備えるフローリアクターを用いて、第1のモノマーとしてスチレン系モノマーを開始剤の存在下でアニオン重合させ、ポリマーを合成する工程、及び前記ポリマーに第2のモノマーとしてアクリル系モノマーをブロック重合させ、ブロックポリマーを合成する工程を含む、ブロックポリマーの製造方法であって、
 前記フローリアクターが、内部に二重管を有するジョイント部材又はスタティックミキサー部材を備える2液混合用ミキサーを備えるものであるブロックポリマーの製造方法。
2.第1のモノマーをアニオン重合させポリマーを合成した後、第2のモノマーをブロック重合させる前に、非単独重合性モノマーを反応させる工程を含む1のブロックポリマーの製造方法。
3.前記非単独重合性モノマーが、1,1-ジフェニルエチレン又はその誘導体である1又は2のブロックポリマーの製造方法。
4.前記スタティックミキサー部材が、筒状体とその内部に挿入されたエレメント体とを備えるものである1~3のいずれかのブロックポリマーの製造方法。
5.前記2液混合用ミキサーが、内部に二重管を有するジョイント部材及びスタティックミキサー部材を備えるものである1~4のいずれかのブロックポリマーの製造方法。
6.前記2液混合用ミキサーが、内部に二重管を有するジョイント部材及びスタティックミキサー部材を備え、
 前記スタティックミキサー部材が、筒状体とその内部に挿入されたエレメント体とを備え、
 前記筒状体の前記二重管側の端面が前記二重管のスタティックミキサー部材側の端面と当接するように、前記ジョイント部材と前記スタティックミキサー部材とが接続されている
ものである5のブロックポリマーの製造方法。
7.前記二重管のスタティックミキサー部材側の端部が、前記ジョイント部材の内部にある6のブロックポリマーの製造方法。
8.前記ジョイント部材が、開始剤溶液が流れる内管を挿入するための挿入孔を有し、前記内管が挿入された状態で、少なくとも前記内管の先端近傍において、前記内管内側と、前記内管外壁及び前記挿入孔の内壁で構築される空間とで、前記二重管が形成される5~7のいずれかのブロックポリマーの製造方法。
9.前記ジョイント部材が、モノマー溶液を導入するための導入孔を有するとともに、前記導入孔が前記挿入孔と連結している8のブロックポリマーの製造方法。
10.前記挿入孔が、前記導入孔との接続部近傍において、前記内管の外径と略同一の孔径となるように形成されるとともに、前記接続部から前記内管の先端までは前記内管の外径よりも大きな孔径となるように形成されている9のブロックポリマーの製造方法。
11.前記ジョイント部材が、スタティックミキサー部材接続用孔を有し、前記挿入孔が前記接続用孔と接続されている8~10のいずれかのブロックポリマーの製造方法。
12.前記エレメント体が、前記筒状体内部に、その一端が前記筒状体の前記二重管側の端面と略面一になるように挿入されている4~11のいずれかのブロックポリマーの製造方法。
13.前記エレメント体が、右ねじり羽根と左ねじり羽根とがねじり軸方向に交互に複数連なった形状を有するものである4~12のいずれかのブロックポリマーの製造方法。
14.前記開始剤が、モノ有機リチウム化合物である1~13のいずれかのブロックポリマーの製造方法。
15.前記スチレン系モノマーが、下記式(1)で表される化合物である1~14のいずれかのブロックポリマーの製造方法。
Figure JPOXMLDOC01-appb-C000003
(式中、R1は、水素原子又はメチル基であり、R2~R6は、それぞれ独立に、水素原子、炭素数1~5のアルコキシ基、ハロゲン原子で置換されていてもよい炭素数1~10のアルキル基、-OSiR7 3又は-SiR7 3であり、R7は、それぞれ独立に、炭素数1~10のアルキル基、フェニル基、炭素数1~5のアルコキシ基又は炭素数1~5のアルキルシリル基である。)
16.前記アクリル系モノマーが、下記式(2)で表される化合物である1~15のいずれかのブロックポリマーの製造方法。
Figure JPOXMLDOC01-appb-C000004
(式中、R11は、水素原子又はメチル基であり、R12は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基、炭素数6~20のアリール基、又は炭素数7~20のアラルキル基である。)
Accordingly, the present invention provides the following method for producing a block polymer.
1. A step of anionically polymerizing a styrenic monomer as a first monomer in the presence of an initiator to synthesize a polymer, using a flow reactor comprising a two-liquid mixing mixer having a flow path capable of mixing a plurality of liquids; A method for producing a block polymer, comprising block polymerizing an acrylic monomer as a second monomer to the polymer to synthesize a block polymer,
The method for producing a block polymer, wherein the flow reactor comprises a two-component mixing mixer including a joint member having a double pipe inside or a static mixer member.
2. A method for producing a block polymer according to 1, comprising the step of reacting a non-homopolymerizable monomer before anionically polymerizing a first monomer to synthesize a polymer and then block polymerizing a second monomer.
3. The method for producing the block polymer according to 1 or 2, wherein the non-homopolymerizable monomer is 1,1-diphenylethylene or a derivative thereof.
4. The method for producing a block polymer according to any one of 1 to 3, wherein the static mixer member comprises a cylindrical body and an element body inserted into the inside of the cylindrical body.
5. The method for producing a block polymer according to any one of 1 to 4, wherein the mixer for two-component mixing comprises a joint member having a double pipe inside and a static mixer member.
6. The two-component mixing mixer includes a joint member having a double pipe therein and a static mixer member,
The static mixer member comprises a tubular body and an element body inserted therein;
The block of 5, wherein the joint member and the static mixer member are connected such that the end face of the cylindrical body on the double pipe side abuts against the end face of the double pipe on the static mixer member side Method of producing a polymer
7. The manufacturing method of the block polymer of 6 whose end by the side of the static mixer member of the said double pipe | tube exists in the inside of the said joint member.
8. The joint member has an insertion hole for inserting an inner pipe through which an initiator solution flows, and in a state where the inner pipe is inserted, the inner pipe inner side and the inner pipe at least near the tip of the inner pipe. The method for producing a block polymer according to any one of 5 to 7, wherein the double pipe is formed by a pipe outer wall and a space constructed by the inner wall of the insertion hole.
9. The method for producing the block polymer according to claim 8, wherein the joint member has an introduction hole for introducing a monomer solution, and the introduction hole is connected to the insertion hole.
10. The insertion hole is formed to have a hole diameter substantially the same as the outer diameter of the inner pipe in the vicinity of the connection portion with the introduction hole, and from the connection portion to the tip of the inner pipe 9. A method for producing a block polymer of 9 formed to have a pore diameter larger than the outer diameter.
11. The method for producing a block polymer according to any one of 8 to 10, wherein the joint member has a static mixer member connecting hole, and the insertion hole is connected to the connecting hole.
12. The production of a block polymer according to any one of 4 to 11, wherein the element body is inserted into the tubular body such that one end thereof is substantially flush with the end face of the tubular body on the double tube side Method.
13. The method for producing a block polymer according to any one of 4 to 12, wherein the element body has a shape in which a right twist blade and a left twist blade are alternately and continuously connected in the twist axis direction.
14. The method for producing a block polymer according to any one of 1 to 13, wherein the initiator is a mono-organolithium compound.
15. The method for producing a block polymer according to any one of 1 to 14, wherein the styrenic monomer is a compound represented by the following formula (1):
Figure JPOXMLDOC01-appb-C000003
(Wherein, R 1 represents a hydrogen atom or a methyl group, and R 2 to R 6 each independently represent a hydrogen atom, an alkoxy group having 1 to 5 carbon atoms, or a carbon number which may be substituted with a halogen atom) an alkyl group having 1 to 10, -OSiR 7 3 or -SiR 7 3, R 7 are independently an alkyl group having 1 to 10 carbon atoms, a phenyl group, an alkoxy group or a carbon number of 1 to 5 carbon atoms 1 to 5 alkylsilyl groups.)
16. The method for producing a block polymer according to any one of 1 to 15, wherein the acrylic monomer is a compound represented by the following formula (2):
Figure JPOXMLDOC01-appb-C000004
(Wherein, R 11 represents a hydrogen atom or a methyl group, and each R 12 independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms, or 6 carbon atoms An aryl group of -20, or an aralkyl group having 7 to 20 carbon atoms.)
 前記フローリアクターに用いる2液混合用ミキサーは、閉塞しにくく、混合効率もよいため、これを用いる本発明のポリマーの製造方法によれば、安定的に長時間に亘ってポリマーを製造することができる。特に、本発明の製造方法により得られるブロックポリマーは、分散度(Mw/Mn)が小さく(分子量分布が狭く)、構造が高次に制御されており、誘導自己組織化による半導体リソグラフィー技術やその他ナノパターニング技術への適用、あるいは高機能エラストマー等の製造に適用できる。 The two-liquid mixing mixer used in the flow reactor is difficult to be clogged and has a good mixing efficiency. Therefore, according to the method of producing a polymer of the present invention using the same, the polymer can be stably produced over a long time it can. In particular, the block polymer obtained by the production method of the present invention has a low degree of dispersion (Mw / Mn) (narrow molecular weight distribution), and the structure is controlled to a high order, and the semiconductor lithography technology by induced self-assembly and others The present invention can be applied to the application to nanopatterning technology or to the production of highly functional elastomers and the like.
本発明で用いた2液混合用ミキサーの形態に係る斜視図である。It is a perspective view which concerns on the form of the mixer for 2 liquid mixing used by this invention. 図1の2液混合用ミキサーの分解斜視図である。It is a disassembled perspective view of the mixer for two-component mixing of FIG. 図2のIII-III線に沿う本体の断面図である。FIG. 3 is a cross-sectional view of the main body taken along line III-III of FIG. 2; 図1のIV-IV線に沿う断面図である。FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG. 図4の二重管部の拡大断面図である。It is an expanded sectional view of the double tube | pipe part of FIG. 内管を挿入した状態における本体の底面図である。It is a bottom view of the main body in the state where the inner pipe was inserted. スタティックミキサー部材のエレメント体を、そのねじり軸方向に対する直交方向から見た図である。It is the figure which looked at the element body of the static mixer member from the orthogonal direction to the twist axis direction. 本発明で用いた2液混合用ミキサーの形態を示す斜視図である。It is a perspective view which shows the form of the mixer for 2 liquid mixing used by this invention. 本発明で用いたフローリアクターの形態を示す模式図である。It is a schematic diagram which shows the form of the flow reactor used by this invention. 実施例において用いたフローリアクターの構成を示す模式図である。It is a schematic diagram which shows the structure of the flow reactor used in the Example. 比較例において用いたフローリアクターの構成を示す模式図である。It is a schematic diagram which shows the structure of the flow reactor used in the comparative example. 実施例1における、反応中の圧力トレンドを示すグラフである。5 is a graph showing the pressure trend during the reaction in Example 1. FIG. 実施例1で得られたポリマーの1H-NMRチャートである。1 is a 1 H-NMR chart of a polymer obtained in Example 1. 比較例1における、反応中の圧力トレンドを示すグラフである。It is a graph which shows the pressure trend in reaction in the comparative example 1. FIG. 比較例2における、反応中の圧力トレンドを示すグラフである。It is a graph which shows the pressure trend during reaction in comparative example 2.
 本発明のブロックポリマーの製造方法は、複数の液体を混合可能な流路を備える2液混合用ミキサーを備えるフローリアクターを用いて、第1のモノマーとしてスチレン系モノマーを開始剤の存在下でアニオン重合させ、ホモポリマーを合成する工程、及び前記ホモポリマーに第2のモノマーとしてアクリル系モノマーをブロック重合させ、ブロックポリマーを合成する工程を含むものである。 The method for producing a block polymer of the present invention uses a flow reactor equipped with a two-liquid mixing mixer provided with a flow path capable of mixing a plurality of liquids, and uses a styrenic monomer as the first monomer in the presence of an initiator. It comprises the steps of polymerizing to synthesize a homopolymer, and block polymerizing said homopolymer with an acrylic monomer as a second monomer to synthesize a block polymer.
[フローリアクター]
 前記フローリアクターとしては、内部に二重管を有する2液混合用ミキサーを備えるものであれば特に限定されないが、以下の構成を有するものが好ましい。すなわち、前記2液混合用ミキサーは、内部に二重管を有するジョイント部材又はスタティックミキサー部材を備えるものが好ましい。前記2液混合用ミキサーとしては、内部に二重管を有するジョイント部材及びスタティックミキサー部材の両方を備えるものがより好ましく、前記スタティックミキサー部材が、筒状体とその内部に挿入されたエレメント体とを備え、前記筒状体の前記二重管側の端面が前記二重管のスタティックミキサー部材側の端面と当接するように、前記ジョイント部材と前記スタティックミキサー部材とが接続されているものがより一層好ましい。
[Flow reactor]
The flow reactor is not particularly limited as long as it is equipped with a two-component mixing mixer having a double pipe inside, but one having the following configuration is preferable. That is, the mixer for two-component mixing preferably has a joint member having a double pipe inside or a static mixer member. It is more preferable that the mixer for two-component mixing includes both a joint member having a double pipe inside and a static mixer member, and the static mixer member is a cylindrical body and an element body inserted into the inside thereof. And the joint member and the static mixer member are connected such that the end face of the cylindrical body on the double pipe side abuts on the end face of the double pipe on the static mixer member side. More preferred.
 このように、筒状体の二重管側の端面が二重管のスタティックミキサー部材側の端面と当接するように、ジョイント部材とスタティックミキサー部材とが接続されていることで、前記2液混合用ミキサーは、混合効率を維持しつつも、閉塞しにくく、安定的な長時間連続運転が可能である。 In this manner, the joint member and the static mixer member are connected such that the end surface of the cylindrical body on the double tube side abuts with the end surface of the double tube on the static mixer member side. The mixer, while maintaining the mixing efficiency, is not easily clogged, and stable long-term continuous operation is possible.
 すなわち、前記ミキサーは、二重管と、スタティックミキサー(の筒状体)とが、ジョイント内部で接続される構成であるところ、従来のマイクロリアクター構造と比べて各端面の当接がより確実に行える結果、二重管から流出した2液が、流出するとほぼ同時にスタティックミキサー内に流入することとなるため、反応開始時に2液のより確実な混合が行われる。 That is, the mixer has a configuration in which the double pipe and the static mixer (the cylindrical body of the mixer) are connected inside the joint, but the abutment of each end face is more reliably compared to the conventional microreactor structure As a result, since the two liquids flowing out of the double pipe will flow into the static mixer almost simultaneously when flowing out, more reliable mixing of the two liquids is performed at the start of the reaction.
 前記2液混合用ミキサーにおいて、前記二重管のスタティックミキサー部材側の端部が、前記ジョイント部材の内部にあることが好ましい。このような構成とすることで、二重管の構築が簡便となる結果、ジョイント部材の製造が容易となり、また、前記ジョイント部材とスタティックミキサー部材との接点が確認しやすくなる。 In the mixer for two-component mixing, it is preferable that an end portion on the static mixer member side of the double pipe is inside the joint member. With such a configuration, the construction of the double pipe is simplified, so that the manufacture of the joint member is facilitated, and the contact between the joint member and the static mixer member is easily confirmed.
 前記2液混合用ミキサーにおいて、前記ジョイント部材が、第1の液体が流れる内管を挿入するための挿入孔を有し、前記内管が挿入された状態で、少なくとも前記内管の終端部近傍において、前記内管内側と、前記内管外壁及び前記挿入孔の内壁で構築される空間とで、前記二重管が形成されることが好ましい。このような構成とすることで、二重管の構築が簡便となる結果、ジョイント部材の製造が容易となる。 In the mixer for two-component mixing, the joint member has an insertion hole for inserting an inner pipe through which the first liquid flows, and in the state where the inner pipe is inserted, at least near the end of the inner pipe Preferably, the double pipe is formed by the inner side of the inner pipe and a space formed by the inner pipe outer wall and the inner wall of the insertion hole. With such a configuration, the construction of the double pipe is simplified, and as a result, the manufacture of the joint member is facilitated.
 この挿入孔は、切削加工や、挿入孔に対応する型を備えた金型を用いること等で形成することができる。この際、内管は、液密を保つことができる限りにおいて、ジョイント部材に形成された挿入孔に挿入された状態でジョイント部材本体に固着されていても、ジョイント部材本体から取り外し可能に固定されていてもよいが、ジョイント部材本体から取り外し可能に固定されていることが好ましい。このように内管を取り外し可能な構造とすることで、使用後の二重管部分の洗浄が簡便になるとともに、内管が破損又は閉塞したり、汚染されたりした場合に交換することが可能となるという利点がある。 This insertion hole can be formed by cutting, using a mold provided with a mold corresponding to the insertion hole, or the like. At this time, the inner pipe is detachably fixed from the joint member main body even if the inner pipe is fixed to the joint member main body in a state inserted in the insertion hole formed in the joint member as long as liquid tight can be maintained. Although it may be fixed, it is preferable to be removably fixed from the joint member main body. By making the inner pipe removable in this way, it becomes easy to clean the double pipe after use, and it can be replaced if the inner pipe is broken, blocked or contaminated. It has the advantage of
 内管の固着及び固定手段としては、前述のとおり液密を保持できる限り特に限定されないが、接着剤による固着、溶接による固着等や、ねじ締結等による取り外し可能な固定手段等が挙げられ、ねじ締結等による取り外し可能な固定手段を用いることが好ましい。 The means for fixing and fixing the inner pipe is not particularly limited as long as it can maintain liquid tightness as described above, but fixing with an adhesive, fixing with welding, etc. or removable fixing means with screw fastening etc. may be mentioned. It is preferred to use removable fixing means, such as by fastening.
 また、前記ジョイント部材が、第2の液体を導入するための導入孔を有するとともに、前記導入孔が前記挿入孔と接続していることが好ましい。このような構成とすることで、ジョイント部材本体の内部で二重管を構築することができる結果、二重管の長さを短くできるため、ジョイント部材の製造が容易となる。この導入孔も前記挿入孔と同様、切削加工や金型を用いた手法により形成することができる。 Preferably, the joint member has an introduction hole for introducing a second liquid, and the introduction hole is connected to the insertion hole. With such a configuration, the double pipe can be constructed inside the joint member body, and as a result, the length of the double pipe can be shortened, which facilitates the manufacture of the joint member. Similar to the insertion hole, the introduction hole can be formed by a cutting method or a method using a mold.
 また、ジョイント部材における導入孔の形成位置は、特に限定されないが、挿入孔に直交する方向で形成することが好ましく、更に、二重管の長さを短くすることを考慮すると、挿入孔の基端部及び終端部の中央部よりも終端部に近い位置で挿入孔と接続できる位置に形成することが好ましい。 Further, although the formation position of the introduction hole in the joint member is not particularly limited, it is preferable to form in the direction orthogonal to the insertion hole, and in consideration of shortening the length of the double pipe, It is preferable to form in the position which can be connected with an insertion hole in the near end part rather than the center part of an end and an end part.
 更に、前記挿入孔が、前記導入孔との接続部近傍において、前記内管の外径と略同一の孔径となるように形成されるとともに、前記接続部から前記内管の先端までは前記内管の外径よりも大きな孔径となるように形成されていることが好ましい。このような異径を有する孔構造とすることで、接続部において内管と挿入孔との間にほとんど空隙が形成されないことから、導入孔から流入した第2の液体の挿入孔の基端部側への漏出を防止することができ、効率的に2液を混合することができる。 Further, the insertion hole is formed to have a hole diameter substantially the same as the outer diameter of the inner pipe in the vicinity of the connection portion with the introduction hole, and the inside from the connection portion to the tip of the inner pipe is The hole diameter is preferably larger than the outer diameter of the tube. By setting it as the hole structure which has such a different diameter, since a space is hardly formed between the inner pipe and the insertion hole in the connection portion, the proximal end portion of the insertion hole of the second liquid flowing from the introduction hole Leakage to the side can be prevented, and the two solutions can be efficiently mixed.
 また、前記ジョイント部材が、スタティックミキサー部材接続用孔を有し、前記挿入孔が前記接続用孔と連結していることが好ましい。このような構成とすることで、ジョイント部材とスタティックミキサー部材とを個別に設計することができるため、2液混合用ミキサーの内部構造の調整が容易となる。この接続用孔も前記挿入孔と同様、切削加工や金型を用いた手法により形成することができる。 Preferably, the joint member has a static mixer member connecting hole, and the insertion hole is connected to the connecting hole. With such a configuration, since the joint member and the static mixer member can be designed separately, adjustment of the internal structure of the two-component mixing mixer is facilitated. Similar to the insertion holes, the connection holes can be formed by cutting or using a die.
 このスタティックミキサー部材も、前述の内管と同様に、液密を保つことができる限りにおいて、ジョイント部材に形成された接続用孔に挿入された状態でジョイント部材本体に固着されていても、ジョイント部材本体から取り外し可能に固定されていてもよいが、ジョイント部材本体から取り外し可能に固定されていることが好ましい。取り外し可能とすることで、スタティックミキサー部材内部のエレメント体の位置調整や、使用後のミキサーの洗浄が簡便になるとともに、汚染や劣化した場合等に、各部の交換が可能になる。なお、スタティックミキサー部材の固着及び固定手段としては、内管で述べた手段と同様のものが挙げられるが、この場合も、ねじ締結等による取り外し可能な固定手段を用いることが好ましい。 Similar to the above-described inner pipe, the static mixer member is also fixed to the joint member main body in a state of being inserted in the connection hole formed in the joint member as long as liquid tightness can be maintained. It may be releasably fixed from the member body, but is preferably fixed releasably from the joint member body. By making it removable, it becomes easy to adjust the position of the element body inside the static mixer member and to clean the mixer after use, and it becomes possible to replace each part when it becomes contaminated or deteriorated. The fixing and fixing means of the static mixer member may be the same as the means described for the inner pipe, but also in this case, it is preferable to use a removable fixing means by screw fastening or the like.
 更に、前記エレメント体が、前記筒状体内部に、その一端が前記筒状体の前記二重管側の端面と略面一になるように挿入されていることが好ましい。このように、筒状体の端面とエレメント体の端部がほぼ一致することで、二重管から流出した2つの液体が、流出するとほぼ同時にエレメント体に流入して混合されることになり、反応開始時から、より効率的な混合・攪拌が行われるようになる。 Furthermore, it is preferable that the element body is inserted into the inside of the cylindrical body such that one end thereof is substantially flush with an end face of the cylindrical body on the side of the double pipe. As described above, when the end face of the cylindrical body substantially coincides with the end of the element body, the two liquids flowing out of the double pipe will flow into the element body and be mixed almost simultaneously as they flow out, From the start of the reaction, more efficient mixing and stirring will be performed.
 前記筒状体の形状は、特に限定されないが、その内部を通過する2液の流動性及び混合性等を考慮すると、円筒状が好ましい。 The shape of the cylindrical body is not particularly limited, but is preferably cylindrical in consideration of the flowability and mixing property of the two liquids passing through the inside.
 前記エレメント体の構造は、特に限定されず、スタティックミキサーのエレメント体として用いられているものから適宜選択して用いることができ、例えば、右ねじり羽根と左ねじり羽根とが長手方向(ねじり軸方向)に交互に複数連なった形状を有するもの、ねじり方向が一定の螺旋形状を有するもの、1つ又は2つ以上の孔が設けられたプレートが複数積層されたもの等が挙げられるが、右ねじり羽根と左ねじり羽根とがねじり軸方向に交互に複数連なった形状を有するものであることが好ましい。このような形状のエレメント体を用いることで、より効率的に混合することが可能となり、反応時のミキサーの閉塞もより起こりにくくなる。 The structure of the element body is not particularly limited, and can be appropriately selected from those used as an element body of a static mixer. For example, the right and left torsion blades extend in the longitudinal direction (torsion axis direction And the like), those having a shape in which a plurality of alternating lines are formed, those having a spiral shape with a constant twisting direction, and those in which a plurality of plates provided with one or more holes are stacked, etc. It is preferable that the blade and the left twist blade have a shape in which plural blades are alternately connected in the twist axis direction. By using the element body of such a shape, it becomes possible to mix more efficiently, and blocking of the mixer at the time of reaction also becomes less likely to occur.
 前記エレメント体は、筒状体内部に単に挿入するだけの取り外し可能な構造としても、挿入した上で筒状体内部に固着した取り外し不可能な構造としてもよいが、単に挿入するだけの取り外し可能な構造とすることが好ましい。取り外し可能な構造とすることで、エレメント体の筒状体内部の位置調整や、エレメント体の交換が容易になる。 The element body may be a removable structure that is simply inserted into the tubular body, or may be a non-removable structure that is inserted and then fixed to the inside of the tubular body, but is only removable. It is preferable to set it as the following structure. The removable structure facilitates the adjustment of the position inside the cylindrical body of the element body and the replacement of the element body.
 前記エレメント体の径は、筒状体内部に挿入できる限り特に限定されないが、その径(最大径)が、筒状体の内径と略同一であることが好ましい。このようにすることで、エレメント体を単に筒状体内部に挿入した場合でも、エレメント体の位置が筒状体内部長手方向及び短手方向で変動することを防止できる。なお、前記2液混合用ミキサーの用途を考慮すると、エレメント体の径は、1~10mm程度が好ましく、1.6~8mm程度がより好ましく、2~5mm程度がより一層好ましい。 The diameter of the element body is not particularly limited as long as it can be inserted into the cylindrical body, but it is preferable that the diameter (maximum diameter) thereof is substantially the same as the inner diameter of the cylindrical body. By doing so, even when the element body is simply inserted into the cylindrical body, it is possible to prevent the position of the element body from fluctuating in the longitudinal direction and the lateral direction inside the cylindrical body. The diameter of the element body is preferably about 1 to 10 mm, more preferably about 1.6 to 8 mm, and still more preferably about 2 to 5 mm, in consideration of the application of the mixer for mixing two liquids.
 また、前記エレメント体の長さも、前記筒状体内部に挿入できる限り特に限定されないが、前記筒状体の長さと略同一の長さとすることが好ましい。このようにすることで、エレメント体端部と、筒状体の二重管側の端面との位置合わせが容易になる。 Further, the length of the element body is not particularly limited as long as it can be inserted into the inside of the cylindrical body, but it is preferable to make the length substantially the same as the length of the cylindrical body. In this way, the alignment between the end of the element body and the end face of the tubular body on the double tube side is facilitated.
 本発明で用いるフローリアクターは、前記2液混合用ミキサーを備えるものである。前記フローリアクターは、前記2液混合用ミキサーを1つ備えるものでもよく、2つ以上備えるものであってもよい。前記2液混合用ミキサーを2つ以上備えるものである場合、多段階のフロー合成が可能となる。前記2液混合用ミキサーは閉塞しにくいため、フローリアクターを用いてフロー合成を行った場合の圧力損失が少なく、安定的な長時間連続運転が可能であり、大量合成に適している。 The flow reactor used in the present invention is provided with the mixer for two-component mixing. The flow reactor may include one or two or more mixers for mixing the two liquids. When two or more mixers for two-component mixing are provided, multistage flow synthesis is possible. The two-component mixing mixer is less likely to be clogged, so there is less pressure loss when flow synthesis is performed using a flow reactor, stable long-term continuous operation is possible, and it is suitable for mass synthesis.
 本発明で用いるフローリアクターは、前記2液混合用ミキサーのほかに、必要に応じて、送液用ポンプ、流路形成用のチューブ、温度調整のための温度調整装置等の反応に必要なその他の各種部材を備えていてもよい。 In the flow reactor used in the present invention, in addition to the mixer for two-component mixing, other components necessary for reactions such as a pump for liquid transfer, a tube for flow path formation, a temperature control device for temperature control, etc. The various members of may be provided.
 前記送液ポンプとしては、特に限定されず、プランジャーポンプ、シリンジポンプ、ロータリーポンプ等の通常使用されるポンプを使用することができる。 The feed pump is not particularly limited, and commonly used pumps such as a plunger pump, a syringe pump, and a rotary pump can be used.
 前記流路形成用のチューブの材質は、特に限定されず、ステンレス、チタン、鉄、銅、ニッケル、アルミニウム等の金属や、ポリテトラフルオロエチレン(PTFE)、四フッ化エチレン・六フッ化プロピレンコポリマー(FEP)、ペルフルオロアルコキシフッ素(PFA)、ポリエーテルエーテルケトン(PEEK)、ポリプロピレン(PP)等の樹脂でもよい。 The material of the tube for forming the flow path is not particularly limited, and metals such as stainless steel, titanium, iron, copper, nickel, and aluminum, polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer It may be a resin such as (FEP), perfluoroalkoxy fluorine (PFA), polyetheretherketone (PEEK), polypropylene (PP) or the like.
 前記流路形成用のチューブの内径は、本発明の効果を損なわない範囲で目的に応じて適宜設定すればよいが、通常、0.5~10mm程度が好ましく、0.7~4mm程度がより好ましく、1~2mm程度がより一層好ましい。前記流路形成用のチューブの長さも、本発明の効果を損なわない範囲で目的に応じて適宜設定すればよいが、通常、0.1~20m程度が好ましく、0.2~10m程度がより好ましく、0.3~5m程度がより一層好ましい。 The inner diameter of the tube for forming the flow path may be appropriately set according to the purpose within the range that does not impair the effects of the present invention, but generally, about 0.5 to 10 mm is preferable, and about 0.7 to 4 mm is more preferable. Preferably, about 1 to 2 mm is more preferable. The length of the tube for forming the flow path may be appropriately set according to the purpose as long as the effects of the present invention are not impaired. Usually, about 0.1 to 20 m is preferable, and about 0.2 to 10 m is more preferable. Preferably, about 0.3 to 5 m is more preferable.
 以下、図面に基づいて、本発明で用いた2液混合用ミキサー及びフローリアクターについて具体的に説明する。2液混合用ミキサー1は、図1に示されるように、ジョイント部材2とスタティックミキサー部材3とを備えて構成される。ジョイント部材2は、ステンレス製の本体21と、第1の液体が流れるステンレス製の内管22(外径1.6mm、内径1.0mm)とを備えている。 Hereinafter, the mixer for two-component mixing and the flow reactor used in the present invention will be specifically described based on the drawings. As shown in FIG. 1, the two-component mixing mixer 1 includes a joint member 2 and a static mixer member 3. The joint member 2 includes a stainless steel main body 21 and a stainless steel inner pipe 22 (outside diameter: 1.6 mm, inside diameter: 1.0 mm) through which the first liquid flows.
 図2及び図3に示されるように、本体21は、内管22を挿入するための挿入孔211と、これに直交し、本体21の内部で挿入孔211に接続される、第2の液体を導入するための導入孔212と、スタティックミキサー部材接続用孔213とを有する。挿入孔211、導入孔212及び接続用孔213の内壁には、後述する各コネクターに形成された雄ねじ部に対応した雌ねじ部211a、212a、213aが形成されており、内管22、第2の液体が流れる導入チューブ及びスタティックミキサー部材3をねじ締結で本体21に固定できるようにされている。 As shown in FIGS. 2 and 3, the main body 21 is an insertion hole 211 for inserting the inner tube 22, and a second liquid orthogonal to the insertion hole 211 and connected to the insertion hole 211 inside the main body 21. And a static mixer member connecting hole 213. On the inner wall of the insertion hole 211, the introduction hole 212, and the connection hole 213, female screw parts 211a, 212a, 213a corresponding to the male screw parts formed in each connector described later are formed. The introduction tube through which the liquid flows and the static mixer member 3 can be fixed to the main body 21 by screw fastening.
 挿入孔211は、基端部側から終端部側にかけて、雌ねじ部211aと、これに続いて形成される、後述のコネクター先端部形状に応じて縮径した断面台形状の液密部211bと、これに続いて形成される内管通過部211cとから構成される。ここで、図5に示されるように、挿入孔211の内管通過部211cの内径bは、導入孔212との接続部214近傍において、内管22の外径aと略同一の孔径となるように形成されているとともに、接続部214から接続用孔213に至るまでの内管通過部211cの内径cは、内管22の外径aよりも大きくなるように形成されている。このようにして、接続部214において内管22と挿入孔211との間にほとんど空隙が形成されない構造とし、導入孔212から流入した第2の液体が挿入孔211の基端部側に漏出することを防止するとともに、図6に示されるように、内管内側221と、前記内管外壁222及び前記挿入孔の内壁211dとで形成される空間24によって、二重管25を構築している。 The insertion hole 211 has a female screw portion 211a from the base end side to the terminal end side, and a liquid-tight portion 211b which is subsequently formed and has a trapezoidal cross-sectional diameter-reduced in accordance with a connector tip shape described later. It is comprised from the inner pipe | tube passage part 211c formed following this. Here, as shown in FIG. 5, the inner diameter b of the inner pipe passage portion 211 c of the insertion hole 211 has a hole diameter substantially the same as the outer diameter a of the inner pipe 22 in the vicinity of the connection portion 214 with the introduction hole 212. The inner diameter c of the inner pipe passage portion 211 c from the connection portion 214 to the connection hole 213 is formed to be larger than the outer diameter a of the inner pipe 22 while being formed as described above. In this manner, a gap is hardly formed between the inner pipe 22 and the insertion hole 211 at the connection portion 214, and the second liquid flowing from the introduction hole 212 leaks to the proximal end side of the insertion hole 211. , And as shown in FIG. 6, the double pipe 25 is constructed by the space 24 formed by the inner pipe inner side 221 and the inner pipe outer wall 222 and the inner wall 211d of the insertion hole. .
 また、図3に示されるように、挿入孔211は、その基端部で接続用孔213と接続されており、これにより、挿入孔211と接続用孔213とから形成される孔は、本体21を貫通している。 Further, as shown in FIG. 3, the insertion hole 211 is connected to the connection hole 213 at its base end, whereby the hole formed by the insertion hole 211 and the connection hole 213 is a main body. 21 penetrates.
 内管22には、図2に示されるように、内部に内管22が通る孔(図示省略)が形成されるとともに、ねじ止めするための略六角柱状の頭部232と、これに一体形成された、雄ねじ部231及びジョイント本体21内部での液密を保つための逆円錐台形状のシール部233を有するコネクター23が取り付けられ、この状態で、前述の雌ねじ部211aを有する挿入孔211に挿入され、ねじ締結により、本体21に固定されている。 As shown in FIG. 2, the inner pipe 22 is formed with a hole (not shown) through which the inner pipe 22 passes, and is formed integrally with a substantially hexagonal columnar head 232 for screwing. Then, the connector 23 having the male screw portion 231 and the seal portion 233 having an inverted truncated cone shape for maintaining fluid tightness inside the joint body 21 is attached, and in this state, the insertion hole 211 having the above-mentioned female screw portion 211a. It is inserted and fixed to the main body 21 by screw fastening.
 導入孔212は、図3に示されるように、基端部側から終端部側にかけて、雌ねじ部212aと、これに続いて形成される、後述のコネクター先端部形状に応じた断面矩形状の液密部212bと、そこから、挿入孔211との接続部214まで延びる連結部212cとから構成される。挿入孔211及び導入孔212は、挿入孔211の基端部及び終端部の中央よりも終端部側で接続されている。 As shown in FIG. 3, the introduction hole 212 has a female screw portion 212a from the proximal end side to the terminal end side, and a liquid having a rectangular cross section according to the shape of a connector tip portion described later, which is subsequently formed. It comprises a dense portion 212 b and a connecting portion 212 c extending from there to a connecting portion 214 to the insertion hole 211. The insertion hole 211 and the introduction hole 212 are connected closer to the end than the center of the proximal end and the end of the insertion hole 211.
 スタティックミキサー接続用孔213は、図3に示されるように、基端部側から終端部側にかけて、雌ねじ部213aと、これに続いて形成される、後述のコネクター先端部形状に応じた断面矩形状の液密部213bとから構成される。 As shown in FIG. 3, the static mixer connection hole 213 is formed with a female screw portion 213a from the base end side to the terminal end side, and a cross-sectional rectangular shape corresponding to the shape of the connector tip portion described later. And a liquid-tight portion 213b of a shape.
 スタティックミキサー部材3は、図1、2に示されるように、フッ素樹脂製又はステンレス製の円筒状の筒状体31(内径3.0mm)と、その内部に挿入されたポリアセタール製のエレメント体32(3mm径)と、を備えている。エレメント体32は、図2、4に示されるように、その基端が筒状体31の二重管25側の端面と面一になる状態で筒状体31内部に挿入されている。ここで、図7に示されるように、エレメント体32は、右ねじり羽根321と左ねじり羽根322とがねじり軸(長手方向の中心軸)323方向に交互に複数連なった形状を有するものである。 The static mixer member 3 is, as shown in FIGS. 1 and 2, a cylindrical tubular member 31 (inner diameter 3.0 mm) made of fluorine resin or stainless steel, and an element body 32 made of polyacetal inserted in the inside thereof. (3 mm diameter) and. As shown in FIGS. 2 and 4, the element body 32 is inserted into the tubular body 31 in a state where the base end thereof is flush with the end face of the tubular body 31 on the double tube 25 side. Here, as shown in FIG. 7, the element body 32 has a shape in which a plurality of right twist blades 321 and left twist blades 322 are alternately arranged in the direction of a twist axis (central axis in the longitudinal direction) 323. .
 図2に示されるように、筒状体31の図中における上端部には、内部に筒状体31が通る孔(図示省略)が形成されるとともに、雄ねじ部331を有するフッ素樹脂製コネクター33が取り付けられ、この状態で、前述の雌ねじ部213aを有する接続用孔213に挿入され、ねじ締結により、本体21に固定されている。 As shown in FIG. 2, at the upper end portion of the cylindrical body 31 in the drawing, a hole (not shown) through which the cylindrical body 31 passes is formed inside, and a fluorine resin connector 33 having a male screw portion 331 Is inserted into the connection hole 213 having the above-mentioned female screw portion 213a, and is fixed to the main body 21 by screw fastening.
 続いて図4~6を参照し、以上のような構成を有する2液混合用ミキサー1の内部構造を説明する。前述したように、挿入孔211の孔径、具体的には導入孔212との接続部214近傍の内管通過部211cの内径bは、内管22の外径aと略同一とされている。また、挿入孔211と導入孔212との接続部214から内管22のスタティックミキサー部材3側の先端223までの内管通過部211cの内径cは、内管22の外径aよりも大きく形成されている。これにより、内管22の内側221と、内管22の外壁222及び挿入孔211の内壁211dで構築される空間24とで、二重管25が形成される。 Subsequently, the internal structure of the two-component mixing mixer 1 having the above-described configuration will be described with reference to FIGS. As described above, the hole diameter of the insertion hole 211, specifically, the inner diameter b of the inner pipe passage portion 211c in the vicinity of the connection portion 214 with the introduction hole 212 is substantially the same as the outer diameter a of the inner pipe 22. Further, the inner diameter c of the inner pipe passage portion 211c from the connection portion 214 between the insertion hole 211 and the introduction hole 212 to the end 223 of the inner pipe 22 on the static mixer member 3 side is formed larger than the outer diameter a of the inner pipe 22. It is done. Thus, the double pipe 25 is formed by the inner side 221 of the inner pipe 22 and the space 24 formed by the outer wall 222 of the inner pipe 22 and the inner wall 211 d of the insertion hole 211.
 また、スタティックミキサー部材3の筒状体31の二重管25側の端面と、二重管25のスタティックミキサー部材3側の端面とが当接しており、本実施形態では、前述のように、エレメント体32の基端が筒状体31の二重管25側の端面と面一になっていることから、二重管25のスタティックミキサー部材3側の端面及びエレメント体32の基端(図4中上端)も当接している。 Further, the end face of the cylindrical body 31 of the static mixer member 3 on the double tube 25 side is in contact with the end face of the double tube 25 on the static mixer member 3 side, and in the present embodiment, as described above Since the base end of the element body 32 is flush with the end face of the cylindrical body 31 on the double pipe 25 side, the end face of the double pipe 25 on the static mixer member 3 side and the base end of the element body 32 (see FIG. 4) The middle upper end is also in contact.
 なお、第2の液体は導入孔212から導入されるが、この場合、図8に示されるように、第2の液体が流れる導入チューブ26が、その内部に導入チューブ26が通る孔(図示省略)が形成されるとともにジョイント本体21内部での液密を保つためのシール部(図示省略)及び雄ねじ部271を有するコネクター27を用いて、導入孔212にねじ締結により固定接続される。 The second liquid is introduced from the introduction hole 212. In this case, as shown in FIG. 8, the introduction tube 26 through which the second liquid flows is a hole through which the introduction tube 26 passes (not shown) And a connector 27 having a male screw 271 and a seal (not shown) for maintaining liquid tightness inside the joint main body 21 and fixedly connected to the introducing hole 212 by screw fastening.
 次に、図9を参照しつつ、以上のように構成される2液混合用ミキサーを用いたフローリアクターの一実施形態を説明する。
 フローリアクター4は、恒温層43の内部に配置された、第1の2液混合用ミキサー1a及び第2の2液混合用ミキサー1bが、PTFE製チューブ42d(内径1.5mm)によって直列に接続され構成されている。
Next, an embodiment of a flow reactor using the two-component mixing mixer configured as described above will be described with reference to FIG.
In the flow reactor 4, the first two-component mixing mixer 1a and the second two-component mixing mixer 1b disposed inside the constant-temperature layer 43 are connected in series by a PTFE tube 42d (inner diameter 1.5 mm) And is configured.
 第1の2液混合用ミキサー1aの内管22aには、第1の液体送液用のポンプ41aがPTFE製チューブ42a(内径1.0mm)を介して接続されている。一方、2液混合用ミキサー1aのジョイント部材の本体21aに設けられた導入孔には、第2の液体送液用のポンプ41bが、その先端にコネクターが設けられた第2の液体が流れるPTFE製チューブ42b(内径1.0mm)を介して接続されている。 A first liquid feed pump 41a is connected to the inner pipe 22a of the first two-liquid mixing mixer 1a via a PTFE tube 42a (inner diameter: 1.0 mm). On the other hand, in the introduction hole provided in the main body 21a of the joint member of the two-liquid mixing mixer 1a, the second liquid feed pump 41b is provided with PTFE at the tip thereof through which the second liquid flows. It is connected via a tube 42b (inner diameter: 1.0 mm).
 2液混合用ミキサー1bの導入孔には、第3の液体送液用のポンプ41cが、その先端にコネクターが設けられた第3の液体が流れるPTFE製チューブ42c(内径1.0mm)を介して接続され、2液混合用ミキサー1bのスタティックミキサー部材3bの終端部には、PTFE製チューブ42e(内径1.5mm)が接続されている。 In the introduction hole of the two-liquid mixing mixer 1b, a third pump 41c for liquid transfer is provided via a PTFE tube 42c (inner diameter 1.0 mm) through which the third liquid provided with a connector at its tip flows. A PTFE tube 42e (inner diameter: 1.5 mm) is connected to the end of the static mixer member 3b of the two-component mixing mixer 1b.
 このような構成を有するフローリアクター4では、第1の液体送液用ポンプ41a及び第2の液体送液用ポンプ41bから送られた各液が、第1の2液混合用ミキサー1aのジョイント部材本体21aに流入し、その内部に構築された二重管を通過した後、この二重管端部に当接しているスタティックミキサー部材3aに流入し、その内部のエレメント体で混合・攪拌されつつ第1の反応が起こる。反応後の第1の反応液は、チューブ42dを通過した後、第2の2液混合用ミキサー1bの内管22bを通ってジョイント部材本体21bに流入する。この第1の反応液は、第3の液体送液用ポンプ41cから送られてジョイント部材本体21bの内部に流入した第3の液体とともに、ジョイント部材本体21b内部の二重管を通過して、第1の2液混合用ミキサー1aの場合と同様に、スタティックミキサー部材3b内部に流入し、そこで第2の反応が進行する。 In the flow reactor 4 having such a configuration, each liquid fed from the first liquid feed pump 41a and the second liquid feed pump 41b is a joint member of the first two-liquid mixing mixer 1a. After flowing into the main body 21a and passing through the double pipe built in the inside, it flows into the static mixer member 3a in contact with the end of the double pipe, and while being mixed and stirred by the element body inside The first reaction occurs. The first reaction liquid after reaction passes through the tube 42d, and then flows into the joint member main body 21b through the inner pipe 22b of the second two-liquid mixing mixer 1b. The first reaction liquid passes through the double pipe in the joint member main body 21b together with the third liquid sent from the third liquid delivery pump 41c and flowing into the joint member main body 21b, As in the case of the first two-liquid mixing mixer 1a, it flows into the static mixer member 3b, where the second reaction proceeds.
 なお、本発明で用いる2液混合用ミキサー及びフローリアクターは、前述した各実施形態に限定されるものではなく、本発明の目的、効果を達成できる範囲での変更や改良を行ってもよい。 In addition, the mixer and flow reactor for two-liquid mixing used by this invention are not limited to each embodiment mentioned above, You may perform the change and improvement in the range which can achieve the objective of this invention, and an effect.
 すなわち、前述の2液混合用ミキサー1では、内管22及びスタティックミキサー部材3が、ジョイント部材本体21に取り外し可能にねじ締結されていたが、これらはその他の固定手段により取り外し可能に構成されていてもよく、また、取り外しできない状態で接続及び固着されていてもよい。 That is, in the two-component mixing mixer 1 described above, the inner pipe 22 and the static mixer member 3 are removably screwed to the joint member main body 21, but these are configured to be removable by other fixing means. It may be connected and fixed in a non-removable manner.
 また、内管22及び筒状体31には、別体のコネクター23、33が設けられていたが、これらを設けずに、内管及び筒状体自体に適宜な固定手段を形成してもよい。 Moreover, although the connectors 23 and 33 of another body were provided in the inner pipe 22 and the cylindrical body 31, even if it forms these fixing means suitable for the inner pipe and cylindrical body itself without providing these. Good.
 更に、導入孔212は、挿入孔211と直交して接続する態様でジョイント部材本体21に形成されていたが、その他の角度で挿入孔に接続する態様でもよく、導入孔212の位置も、任意の場所に設定することができる。 Furthermore, although the introduction hole 212 is formed in the joint member main body 21 in a manner to be orthogonally connected to the insertion hole 211, it may be connected to the insertion hole at another angle, and the position of the introduction hole 212 is also arbitrary. It can be set in place of
 本体21、内管22及びコネクター23の材質はステンレスであったが、これに限定されず、チタン、鉄、銅、ニッケル、アルミニウム等の他の金属、PTFE、FEP、PFA、PEEK、PP等の樹脂でもよい。 The material of the main body 21, the inner pipe 22 and the connector 23 is stainless steel, but it is not limited to this, and other metals such as titanium, iron, copper, nickel, aluminum etc., PTFE, FEP, PFA, PEEK, PP etc. It may be a resin.
 内管22の内径は、本発明の効果を損なわない範囲で目的に応じて適宜設定すればよいが、通常、0.1~3mm程度が好ましく、0.5~2mm程度がより好ましく、0.5~1mm程度がより一層好ましい。内管22の外径は、本発明の効果を損なわない範囲で目的に応じて適宜設定すればよいが、通常、0.8~4mm程度が好ましく、0.8~3mm程度がより好ましく、0.8~1.6mm程度がより一層好ましい。 The inner diameter of the inner pipe 22 may be appropriately set according to the purpose within the range that does not impair the effects of the present invention, but generally, about 0.1 to 3 mm is preferable, and about 0.5 to 2 mm is more preferable. About 5 to 1 mm is more preferable. The outer diameter of the inner pipe 22 may be appropriately set according to the purpose within the range that does not impair the effects of the present invention, but generally, about 0.8 to 4 mm is preferable, and about 0.8 to 3 mm is more preferable. It is more preferable that the distance be about 8 to 1.6 mm.
 挿入孔211の孔径cは、本発明の効果を損なわない範囲で目的に応じて適宜設定すればよいが、通常、0.1~5mm程度が好ましく、0.5~4mm程度がより好ましく、0.8~2mm程度がより一層好ましい。 The hole diameter c of the insertion hole 211 may be appropriately set according to the purpose within the range that does not impair the effects of the present invention, but generally, about 0.1 to 5 mm is preferable and about 0.5 to 4 mm is more preferable. 8 to 2 mm is more preferable.
 筒状体31の材質は、ステンレスに限定されず、チタン、鉄、銅、ニッケル、アルミニウム等の他の金属、PTFE、FEP、PFA、PEEK、PP等の樹脂等でもよい。 The material of the cylindrical body 31 is not limited to stainless steel, and may be another metal such as titanium, iron, copper, nickel, or aluminum, or a resin such as PTFE, FEP, PFA, PEEK, or PP.
 エレメント体32の材質は、ポリアセタールに限定されず、PTFE、FEP、PFA、PEEK、PP等の他の樹脂、ステンレス、チタン、鉄、銅、ニッケル、アルミニウム等の金属、セラミックス等でもよい。 The material of the element body 32 is not limited to polyacetal, and may be other resins such as PTFE, FEP, PFA, PEEK and PP, metals such as stainless steel, titanium, iron, copper, nickel and aluminum, and ceramics.
 また、エレメント体32の形状も、ねじり方向が一定の螺旋形状を有するもの、1つ又は2つ以上の孔が設けられたプレートが複数積層されたもの等でもよい。 In addition, the shape of the element body 32 may be a spiral shape having a constant twisting direction, a plurality of plates provided with one or more holes, or the like.
 コネクター33の材質は、フッ素系樹脂に限定されず、PEEK、PP等の他の樹脂や、ステンレス、チタン、鉄、銅、ニッケル、アルミニウム等の金属等でもよい。 The material of the connector 33 is not limited to a fluorine-based resin, and may be another resin such as PEEK or PP, or a metal such as stainless steel, titanium, iron, copper, nickel, or aluminum.
 筒状体31の内径は、本発明の効果を損なわない範囲で目的に応じて適宜設定すればよいが、通常、1~10mm程度が好ましく、1.6~8mm程度がより好ましく、2~5mm程度がより一層好ましい。また、エレメント体32の径も、本発明の効果を損なわない範囲で目的に応じて適宜設定すればよく、通常、1~10mm程度が好ましく、1.6~8mm程度がより好ましく、2~5mm程度がより一層好ましい。 The inner diameter of the cylindrical body 31 may be appropriately set according to the purpose within the range that does not impair the effects of the present invention, but generally, about 1 to 10 mm is preferable, about 1.6 to 8 mm is more preferable, and 2 to 5 mm The degree is even more preferred. Also, the diameter of the element body 32 may be appropriately set according to the purpose within the range not impairing the effects of the present invention, and usually about 1 to 10 mm is preferable, about 1.6 to 8 mm is more preferable, and 2 to 5 mm The degree is even more preferred.
 フローリアクター4は、2液混合用ミキサーを2個備えているため、2段階のフロー合成が可能であるが、1段階のフロー合成を行う場合は、2液混合用ミキサーが1個でもよく、n段階のフロー合成を行う場合は、2液混合用ミキサーをn個用いて前述のようにフローリアクターを組み立てればよい。 The flow reactor 4 is provided with two two-liquid mixing mixers, so two-stage flow synthesis is possible, but when performing one-step flow synthesis, one two-liquid mixing mixer may be used. When n-stage flow synthesis is performed, the flow reactor may be assembled as described above using n two-liquid mixing mixers.
 また、フローリアクター4を構成するチューブ42a~42eの内径は、本発明の効果を損なわない範囲で目的に応じて適宜設定すればよいが、通常、0.5~10mm程度が好ましく、0.7~4mm程度がより好ましく、1~2mm程度がより一層好ましい。また、その長さも本発明の効果を損なわない範囲で目的に応じて適宜設定すればよいが、通常、0.1~20m程度が好ましく、0.2~10m程度がより好ましく、0.3~5m程度がより一層好ましい。 Further, the inner diameters of the tubes 42a to 42e constituting the flow reactor 4 may be appropriately set according to the purpose within the range that does not impair the effects of the present invention, but in general 0.5 to 10 mm is preferable, 0.7 It is more preferably about 4 mm, and even more preferably about 1 to 2 mm. In addition, the length may be appropriately set according to the purpose as long as the effect of the present invention is not impaired, but generally, about 0.1 to 20 m is preferable, about 0.2 to 10 m is more preferable, and 0.3 to About 5 m is more preferable.
[第1のモノマー]
 第1のモノマーであるスチレン系モノマーとしては、スチレン誘導体であれば特に限定されないが、下記式(1)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000005
[First monomer]
The styrene-based monomer as the first monomer is not particularly limited as long as it is a styrene derivative, but those represented by the following formula (1) are preferable.
Figure JPOXMLDOC01-appb-C000005
 式中、R1は、水素原子又はメチル基を表す。R2~R6は、それぞれ独立に、水素原子、炭素数1~5のアルコキシ基、ハロゲン原子で置換されていてもよい炭素数1~10のアルキル基、-OSiR7 3又は-SiR7 3を表す。R7は、それぞれ独立に、炭素数1~10のアルキル基、フェニル基、炭素数1~5のアルコキシ基、炭素数1~5のアルキルシリル基を表す。 In the formula, R 1 represents a hydrogen atom or a methyl group. R 2 ~ R 6 are each independently a hydrogen atom, an alkoxy group having 1 to 5 carbon atoms, an alkyl group having 1 to 10 carbon atoms which may be substituted with a halogen atom, -OSiR 7 3 or -SiR 7 3 Represents Each R 7 independently represents an alkyl group having 1 to 10 carbon atoms, a phenyl group, an alkoxy group having 1 to 5 carbon atoms, or an alkylsilyl group having 1 to 5 carbon atoms.
 前記炭素数1~10のアルキル基としては、直鎖状、分岐状、環状のいずれでもよく、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、シクロブチル基、1-メチル-シクロプロピル基、2-メチル-シクロプロピル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、1-メチル-n-ブチル基、2-メチル-n-ブチル基、3-メチル-n-ブチル基、1,1-ジメチル-n-プロピル基、1,2-ジメチル-n-プロピル基、2,2-ジメチル-n-プロピル基、1-エチル-n-プロピル基、シクロペンチル基、1-メチル-シクロブチル基、2-メチル-シクロブチル基、3-メチル-シクロブチル基、1,2-ジメチル-シクロプロピル基、2,3-ジメチル-シクロプロピル基、1-エチル-シクロプロピル基、2-エチル-シクロプロピル基、n-ヘキシル基、1-メチル-n-ペンチル基、2-メチル-n-ペンチル基、3-メチル-n-ペンチル基、4-メチル-n-ペンチル基、1,1-ジメチル-n-ブチル基、1,2-ジメチル-n-ブチル基、1,3-ジメチル-n-ブチル基、2,2-ジメチル-n-ブチル基、2,3-ジメチル-n-ブチル基、3,3-ジメチル-n-ブチル基、1-エチル-n-ブチル基、2-エチル-n-ブチル基、1,1,2-トリメチル-n-プロピル基、1,2,2-トリメチル-n-プロピル基、1-エチル-1-メチル-n-プロピル基、1-エチル-2-メチル-n-プロピル基、シクロヘキシル基、1-メチル-シクロペンチル基、2-メチル-シクロペンチル基、3-メチル-シクロペンチル基、1-エチル-シクロブチル基、2-エチル-シクロブチル基、3-エチル-シクロブチル基、1,2-ジメチル-シクロブチル基、1,3-ジメチル-シクロブチル基、2,2-ジメチル-シクロブチル基、2,3-ジメチル-シクロブチル基、2,4-ジメチル-シクロブチル基、3,3-ジメチル-シクロブチル基、1-n-プロピル-シクロプロピル基、2-n-プロピル-シクロプロピル基、1-イソプロピル-シクロプロピル基、2-イソプロピル-シクロプロピル基、1,2,2-トリメチル-シクロプロピル基、1,2,3-トリメチル-シクロプロピル基、2,2,3-トリメチル-シクロプロピル基、1-エチル-2-メチル-シクロプロピル基、2-エチル-1-メチル-シクロプロピル基、2-エチル-2-メチル-シクロプロピル基、2-エチル-3-メチル-シクロプロピル基等が挙げられる。これらのうち、炭素数1~8のものが好ましく、炭素数1~6のものがより好ましく、炭素数1~3のものがより一層好ましい。 The alkyl group having 1 to 10 carbon atoms may be linear, branched or cyclic, and specifically, methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n- Butyl group, isobutyl group, sec-butyl group, tert-butyl group, cyclobutyl group, 1-methyl-cyclopropyl group, 2-methyl-cyclopropyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, 1-methyl-n-butyl group, 2 -Methyl-n-butyl group, 3-methyl-n-butyl group, 1,1-dimethyl-n-propyl group, 1,2-dimethyl-n-propyl group, 2,2-dimethyl-n-propyl group, 1 Ethyl-n-propyl group, cyclopentyl group, 1-methyl-cyclobutyl group, 2-methyl-cyclobutyl group, 3-methyl-cyclobutyl group, 1,2-dimethyl-cyclopropyl group, 2,3-dimethyl-cyclopropyl group 1-ethyl-cyclopropyl group, 2-ethyl-cyclopropyl group, n-hexyl group, 1-methyl-n-pentyl group, 2-methyl-n-pentyl group, 3-methyl-n-pentyl group, 4 -Methyl-n-pentyl group, 1,1-dimethyl-n-butyl group, 1,2-dimethyl-n-butyl group, 1,3-dimethyl-n-butyl group, 2,2-dimethyl-n-butyl group Group, 2,3-dimethyl-n-butyl group, 3,3-dimethyl-n-butyl group, 1-ethyl-n-butyl group, 2-ethyl-n-butyl group, 1,1,2-trimethyl- n-propyl group, 1, 2, 2 Trimethyl-n-propyl group, 1-ethyl-1-methyl-n-propyl group, 1-ethyl-2-methyl-n-propyl group, cyclohexyl group, 1-methyl-cyclopentyl group, 2-methyl-cyclopentyl group, 3-Methyl-cyclopentyl group, 1-ethyl-cyclobutyl group, 2-ethyl-cyclobutyl group, 3-ethyl-cyclobutyl group, 1,2-dimethyl-cyclobutyl group, 1,3-dimethyl-cyclobutyl group, 2, 2- Dimethyl-cyclobutyl group, 2,3-dimethyl-cyclobutyl group, 2,4-dimethyl-cyclobutyl group, 3,3-dimethyl-cyclobutyl group, 1-n-propyl-cyclopropyl group, 2-n-propyl-cyclopropyl group Group, 1-isopropyl-cyclopropyl group, 2-isopropyl-cyclopropyl group, 1,2,2-trimethyl-cyclic Propyl group, 1,2,3-Trimethyl-cyclopropyl group, 2,2,3-trimethyl-cyclopropyl group, 1-ethyl-2-methyl-cyclopropyl group, 2-ethyl-1-methyl-cyclopropyl group And 2-ethyl-2-methyl-cyclopropyl group, 2-ethyl-3-methyl-cyclopropyl group and the like. Among these, those having 1 to 8 carbon atoms are preferable, those having 1 to 6 carbon atoms are more preferable, and those having 1 to 3 carbon atoms are still more preferable.
 前記アルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、シクロプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、シクロブトキシ基、1-メチル-シクロプロポキシ基、2-メチル-シクロプロポキシ基、n-ペンチルオキシ基、1-メチル-n-ブトキシ基、2-メチル-n-ブトキシ基、3-メチル-n-ブトキシ基、1,1-ジメチル-n-プロポキシ基、1,2-ジメチル-n-プロポキシ基、2,2-ジメチル-n-プロポキシ基、1-エチル-n-プロポキシ基、1,1-ジエチル-n-プロポキシ基、シクロペントキシ基、1-メチル-シクロブトキシ基、2-メチル-シクロブトキシ基、3-メチル-シクロブトキシ基、1,2-ジメチル-シクロプロポキシ基、2,3-ジメチル-シクロプロポキシ基、1-エチル-シクロプロポキシ基、2-エチル-シクロプロポキシ基等が挙げられる。アルコキシ基の構造は直鎖状又は分岐鎖状が好ましい。これらのうち、炭素数1~3のものが好ましい。 Examples of the alkoxy group include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, a cyclopropoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group, a cyclobutoxy group, and 1-methyl -Cyclopropoxy group, 2-methyl-cyclopropoxy group, n-pentyloxy group, 1-methyl-n-butoxy group, 2-methyl-n-butoxy group, 3-methyl-n-butoxy group, 1,1- Dimethyl-n-propoxy group, 1,2-dimethyl-n-propoxy group, 2,2-dimethyl-n-propoxy group, 1-ethyl-n-propoxy group, 1,1-diethyl-n-propoxy group, cyclo Pentoxy group, 1-methyl-cyclobutoxy group, 2-methyl-cyclobutoxy group, 3-methyl-cyclobutoxy group, 1,2-dimethyl- Kuropuropokishi group, 2,3-dimethyl - cyclopropoxy group, 1-ethyl - cyclopropoxy group, 2-ethyl - cyclopropoxy group, and the like. The structure of the alkoxy group is preferably linear or branched. Among these, those having 1 to 3 carbon atoms are preferable.
 前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が好ましく、フッ素原子及び塩素原子等がより好ましい。 As the halogen atom, a fluorine atom, a chlorine atom, a bromine atom and an iodine atom are preferable, and a fluorine atom and a chlorine atom are more preferable.
 R4としては、炭素数1~5のアルコキシ基又は-SiR7 3が好ましく、メトキシ基又は-Si(CH3)3がより好ましい。また、R2、R3、R5及びR6としては、水素原子、炭素数1~10のアルキル基、炭素数1~5のアルコキシ基又は-SiR7 3が好ましく、水素原子、メトキシ基又は-Si(CH3)3がより好ましい。 As R 4 , an alkoxy group having 1 to 5 carbon atoms or —SiR 7 3 is preferable, and a methoxy group or —Si (CH 3 ) 3 is more preferable. As the R 2, R 3, R 5 and R 6, a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group or a -SiR 7 3 1 to 5 carbon atoms, more preferably a hydrogen atom, a methoxy group or -Si (CH 3 ) 3 is more preferred.
 前記スチレン誘導体として具体的には、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、4-エチルスチレン、2-エチルスチレン、3-エチルスチレン、4-tert-ブチルスチレン、4-ジメチルシリルスチレン、4-トリメチルシリルスチレン、4-トリメチルシリルオキシスチレン、4-ジメチル(tert-ブチル)シリルスチレン、4-ジメチル(tert-ブチル)シリルオキシスチレン、2-メトキシスチレン、3-メトキシスチレン、4-メトキシスチレン、4-エトキシスチレン、3,4-ジメチルスチレン、2,6-ジメチルスチレン、2,4-ジメトキシスチレン、3,4-ジメトキシスチレン、3,4,5-トリメトキシスチレン等が挙げられる。 Specific examples of the styrene derivative include styrene, α-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-ethylstyrene, 2-ethylstyrene, 3-ethylstyrene, 4-tert- Butylstyrene, 4-dimethylsilylstyrene, 4-trimethylsilylstyrene, 4-trimethylsilyloxystyrene, 4-dimethyl (tert-butyl) silylstyrene, 4-dimethyl (tert-butyl) silyloxystyrene, 2-methoxystyrene, 3- Methoxystyrene, 4-methoxystyrene, 4-ethoxystyrene, 3,4-dimethylstyrene, 2,6-dimethylstyrene, 2,4-dimethoxystyrene, 3,4-dimethoxystyrene, 3,4,5-trimethoxystyrene Etc.
 これらのうち、スチレン系モノマーとしては、比較的高い温度でも単分散高分子を得られやすいという点から、スチレン、4-tert-ブチルスチレン、4-メトキシスチレン、4-トリメチルシリルスチレン等が好ましい。 Among them, styrene, 4-tert-butylstyrene, 4-methoxystyrene, 4-trimethylsilylstyrene and the like are preferable as the styrene-based monomer from the viewpoint that monodispersed polymers can be easily obtained even at relatively high temperatures.
[第2のモノマー]
 第2のモノマーであるアクリル系モノマーとしては、(メタ)アクリロイル基を有する化合物であれば特に限定されないが、(メタ)アクリロイル基を1つ有するものが好ましい。このような化合物としては、特に、下記式(2)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000006
[Second monomer]
The acrylic monomer as the second monomer is not particularly limited as long as it is a compound having a (meth) acryloyl group, but one having one (meth) acryloyl group is preferable. As such a compound, those represented by the following formula (2) are particularly preferable.
Figure JPOXMLDOC01-appb-C000006
 式中、R11は、水素原子又はメチル基である。R12は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基、炭素数6~20のアリール基、又は炭素数7~20のアラルキル基である。 In the formula, R 11 is a hydrogen atom or a methyl group. R 12 each independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms is there.
 前記炭素数1~20のアルキル基としては、直鎖状、分岐状、環状のいずれでもよく、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、シクロブチル基、1-メチル-シクロプロピル基、2-メチル-シクロプロピル基、n-ペンチル基、1-メチル-n-ブチル基、2-メチル-n-ブチル基、3-メチル-n-ブチル基、1,1-ジメチル-n-プロピル基、1,2-ジメチル-n-プロピル基、2,2-ジメチル-n-プロピル基、1-エチル-n-プロピル基、シクロペンチル基、1-メチル-シクロブチル基、2-メチル-シクロブチル基、3-メチル-シクロブチル基、1,2-ジメチル-シクロプロピル基、2,3-ジメチル-シクロプロピル基、1-エチル-シクロプロピル基、2-エチル-シクロプロピル基、n-ヘキシル基、1-メチル-n-ペンチル基、2-メチル-n-ペンチル基、3-メチル-n-ペンチル基、4-メチル-n-ペンチル基、1,1-ジメチル-n-ブチル基、1,2-ジメチル-n-ブチル基、1,3-ジメチル-n-ブチル基、2,2-ジメチル-n-ブチル基、2,3-ジメチル-n-ブチル基、3,3-ジメチル-n-ブチル基、1-エチル-n-ブチル基、2-エチル-n-ブチル基、1,1,2-トリメチル-n-プロピル基、1,2,2-トリメチル-n-プロピル基、1-エチル-1-メチル-n-プロピル基、1-エチル-2-メチル-n-プロピル基、シクロヘキシル基、1-メチル-シクロペンチル基、2-メチル-シクロペンチル基、3-メチル-シクロペンチル基、1-エチル-シクロブチル基、2-エチル-シクロブチル基、3-エチル-シクロブチル基、1,2-ジメチル-シクロブチル基、1,3-ジメチル-シクロブチル基、2,2-ジメチル-シクロブチル基、2,3-ジメチル-シクロブチル基、2,4-ジメチル-シクロブチル基、3,3-ジメチル-シクロブチル基、1-n-プロピル-シクロプロピル基、2-n-プロピル-シクロプロピル基、1-イソプロピル-シクロプロピル基、2-イソプロピル-シクロプロピル基、1,2,2-トリメチル-シクロプロピル基、1,2,3-トリメチル-シクロプロピル基、2,2,3-トリメチル-シクロプロピル基、1-エチル-2-メチル-シクロプロピル基、2-エチル-1-メチル-シクロプロピル基、2-エチル-2-メチル-シクロプロピル基、2-エチル-3-メチル-シクロプロピル基、n-ヘプチル基、1-メチル-n-ヘキシル基、2-メチル-n-ヘキシル基、3-メチル-n-ヘキシル基、1,1-ジメチル-n-ペンチル基、1,2-ジメチル-n-ペンチル基、1,3-ジメチル-n-ペンチル基、2,2-ジメチル-n-ペンチル基、2,3-ジメチル-n-ペンチル基、3,3-ジメチル-n-ペンチル基、1-エチル-n-ペンチル基、2-エチル-n-ペンチル基、3-エチル-n-ペンチル基、1-メチル-1-エチル-n-ブチル基、1-メチル-2-エチル-n-ブチル基、1-エチル-2-メチル-n-ブチル基、2-メチル-2-エチル-n-ブチル基、2-エチル-3-メチル-n-ブチル基、n-オクチル基、1-メチル-n-ヘプチル基、2-メチル-n-ヘプチル基、3-メチル-n-ヘプチル基、1,1-ジメチル-n-ヘキシル基、1,2-ジメチル-n-ヘキシル基、1,3-ジメチル-n-ヘキシル基、2,2-ジメチル-n-ヘキシル基、2,3-ジメチル-n-ヘキシル基、3,3-ジメチル-n-ヘキシル基、1-エチル-n-ヘキシル基、2-エチル-n-ヘキシル基、3-エチル-n-ヘキシル基、1-メチル-1-エチル-n-ペンチル基、1-メチル-2-エチル-n-ペンチル基、1-メチル-3-エチル-n-ペンチル基、2-メチル-2-エチル-n-ペンチル基、2-メチル-3-エチル-n-ペンチル基、3-メチル-3-エチル-n-ペンチル基、n-ノニル基、n-デシル基、イソデシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、16-メチル-n-オクタデシル基、n-ノナデシル基、イコシル基、アダマンチル基、ノルボルニル基、イソボルニル基、2-メチル-2-アダマンチル基等が挙げられる。 The alkyl group having 1 to 20 carbon atoms may be linear, branched or cyclic, and specifically, methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n- Butyl group, isobutyl group, sec-butyl group, tert-butyl group, cyclobutyl group, 1-methyl-cyclopropyl group, 2-methyl-cyclopropyl group, n-pentyl group, 1-methyl-n-butyl group, 2 -Methyl-n-butyl group, 3-methyl-n-butyl group, 1,1-dimethyl-n-propyl group, 1,2-dimethyl-n-propyl group, 2,2-dimethyl-n-propyl group, 1-ethyl-n-propyl group, cyclopentyl group, 1-methyl-cyclobutyl group, 2-methyl-cyclobutyl group, 3-methyl-cyclobutyl group, 1,2-dimethyl-cyclopropyl group, 2,3 Dimethyl-cyclopropyl group, 1-ethyl-cyclopropyl group, 2-ethyl-cyclopropyl group, n-hexyl group, 1-methyl-n-pentyl group, 2-methyl-n-pentyl group, 3-methyl-n group -Pentyl group, 4-methyl-n-pentyl group, 1,1-dimethyl-n-butyl group, 1,2-dimethyl-n-butyl group, 1,3-dimethyl-n-butyl group, 2, 2- Dimethyl-n-butyl group, 2,3-dimethyl-n-butyl group, 3,3-dimethyl-n-butyl group, 1-ethyl-n-butyl group, 2-ethyl-n-butyl group, 1,1 , 2-trimethyl-n-propyl, 1,2,2-trimethyl-n-propyl, 1-ethyl-1-methyl-n-propyl, 1-ethyl-2-methyl-n-propyl, cyclohexyl Group, 1-methyl-cyclopentyl group, 2-methyl Cyclopentyl group, 3-methyl-cyclopentyl group, 1-ethyl-cyclobutyl group, 2-ethyl-cyclobutyl group, 3-ethyl-cyclobutyl group, 1,2-dimethyl-cyclobutyl group, 1,3-dimethyl-cyclobutyl group, 2 , 2-Dimethyl-cyclobutyl, 2,3-dimethyl-cyclobutyl, 2,4-dimethyl-cyclobutyl, 3,3-dimethyl-cyclobutyl, 1-n-propyl-cyclopropyl, 2-n-propyl -Cyclopropyl group, 1-isopropyl-cyclopropyl group, 2-isopropyl-cyclopropyl group, 1,2,2-trimethyl-cyclopropyl group, 1,2,3-trimethyl-cyclopropyl group, 2,2,3 -Trimethyl-cyclopropyl group, 1-ethyl-2-methyl-cyclopropyl group, 2-ethyl-1-methyl-cyclopropyl group Pill group, 2-ethyl-2-methyl-cyclopropyl group, 2-ethyl-3-methyl-cyclopropyl group, n-heptyl group, 1-methyl-n-hexyl group, 2-methyl-n-hexyl group, 3-methyl-n-hexyl group, 1,1-dimethyl-n-pentyl group, 1,2-dimethyl-n-pentyl group, 1,3-dimethyl-n-pentyl group, 2,2-dimethyl-n- group Pentyl group, 2,3-dimethyl-n-pentyl group, 3,3-dimethyl-n-pentyl group, 1-ethyl-n-pentyl group, 2-ethyl-n-pentyl group, 3-ethyl-n-pentyl group Group, 1-methyl-1-ethyl-n-butyl group, 1-methyl-2-ethyl-n-butyl group, 1-ethyl-2-methyl-n-butyl group, 2-methyl-2-ethyl-n group -Butyl, 2-ethyl-3-methyl-n-butyl, n- Kutyl group, 1-methyl-n-heptyl group, 2-methyl-n-heptyl group, 3-methyl-n-heptyl group, 1,1-dimethyl-n-hexyl group, 1,2-dimethyl-n-hexyl group Group, 1,3-dimethyl-n-hexyl group, 2,2-dimethyl-n-hexyl group, 2,3-dimethyl-n-hexyl group, 3,3-dimethyl-n-hexyl group, 1-ethyl- n-hexyl group, 2-ethyl-n-hexyl group, 3-ethyl-n-hexyl group, 1-methyl-1-ethyl-n-pentyl group, 1-methyl-2-ethyl-n-pentyl group, 1 -Methyl-3-ethyl-n-pentyl group, 2-methyl-2-ethyl-n-pentyl group, 2-methyl-3-ethyl-n-pentyl group, 3-methyl-3-ethyl-n-pentyl group , N-nonyl group, n-decyl group, isodecyl group, n-un group Silyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, 16-methyl-n-octadecyl group, n-nonadecyl Groups, icosyl groups, adamantyl groups, norbornyl groups, isobornyl groups, 2-methyl-2-adamantyl groups and the like.
 前記炭素数1~20のハロゲン化アルキル基としては、前述したアルキル基の水素原子の一部又は全部が、フッ素、塩素、臭素、ヨウ素等のハロゲン原子で置換されたものが挙げられる。その具体例としては、トリフルオロメチル基、2,2,2-トリフルオロエチル基、1,1,2,2,2-ペンタフルオロエチル基、3,3,3-トリフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、1,1,2,2,3,3,3-ヘプタフルオロプロピル基、4,4,4-トリフルオロブチル基、3,3,4,4,4-ペンタフルオロブチル基、2,2,3,3,4,4,4-ヘプタフルオロブチル基、1,1,2,2,3,3,4,4,4-ノナフルオロブチル基等が挙げられる。 Examples of the halogenated alkyl group having 1 to 20 carbon atoms include those in which part or all of the hydrogen atoms of the aforementioned alkyl group are substituted with a halogen atom such as fluorine, chlorine, bromine or iodine. Specific examples thereof include trifluoromethyl group, 2,2,2-trifluoroethyl group, 1,1,2,2,2-pentafluoroethyl group, 3,3,3-trifluoropropyl group, 2, 2,3,3,3-pentafluoropropyl group, 1,1,2,2,3,3,3-heptafluoropropyl group, 4,4,4-trifluorobutyl group, 3,3,4,4 2,4-pentafluorobutyl, 2,2,3,3,4,4,4-heptafluorobutyl, 1,1,2,2,3,3,4,4,4-nonafluorobutyl and the like Can be mentioned.
 前記炭素数6~20のアリール基としては、フェニル基、ナフチル基、ナフチル基、アントリル基、フェナントリル基等が挙げられる。 Examples of the aryl group having 6 to 20 carbon atoms include phenyl group, naphthyl group, naphthyl group, anthryl group and phenanthryl group.
 前記炭素数7~20のアラルキル基としては、ベンジル基、2-フェニルエチル基、アントリルメチル基等が挙げられる。 Examples of the aralkyl group having 7 to 20 carbon atoms include benzyl group, 2-phenylethyl group and anthrylmethyl group.
 これらのうち、R12としては、炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基が好ましく、炭素数1~10のアルキル基、炭素数6~14のアリール基、炭素数7~15のアラルキル基がより好ましい。 Among them, as R 12 , an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aralkyl group having 7 to 20 carbon atoms are preferable, and an alkyl group having 1 to 10 carbon atoms and 6 carbon atoms An aryl group of -14 and an aralkyl group having 7 to 15 carbon atoms are more preferable.
 前記(メタ)アクリル化合物としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、n-ドデシル(メタ)アクリレート、n-オクタデシル(メタ)アクリレート、16-メチル-n-ヘプタデシル(メタ)アクリレート、フェニル(メタ)アクリレート、ナフチル(メタ)アクリレート、アントリル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-フェニルエチル(メタ)アクリレート、アントリルメチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,2-トリクロロエチル(メタ)アクリレート、2,2,3,3,4,4,4-ヘプタフルオロブチル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、n-ブトキシエチル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、2-メチル-2-アダマンチル(メタ)アクリレート、2-エチル-2-アダマンチル(メタ)アクリレート、2-プロピル-2-アダマンチル(メタ)アクリレート、2-メトキシブチル-2-アダマンチル(メタ)アクリレート、8-メチル-8-トリシクロデシル(メタ)アクリレート、8-エチル-8-トリシクロデシル(メタ)アクリレート、5-メタクリロイルオキシ-6-ヒドロキシノルボルネン-2-カルボキシリック-6-ラクトン等が挙げられる。 As the (meth) acrylic compound, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, sec -Butyl (meth) acrylate, tert-butyl (meth) acrylate, n-pentyl (meth) acrylate, isopentyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, n-octyl (meth) acrylate , 2-ethylhexyl (meth) acrylate, n-decyl (meth) acrylate, isodecyl (meth) acrylate, n-dodecyl (meth) acrylate, n-octadecyl (meth) acrylate, 16-methyl-n-heptadecyl (meth) acrylate , Phenyl (meth) acrylic , Naphthyl (meth) acrylate, anthryl (meth) acrylate, benzyl (meth) acrylate, 2-phenylethyl (meth) acrylate, anthrylmethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxy Propyl (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,2-trichloroethyl (meth) acrylate, 2,2,3,3,4,4,4-heptafluorobutyl (Meth) acrylate, methoxydiethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, isobornyl (meth) acrylate, n-butoxyethyl (meth) acrylate, 3-chloro-2-hydroxy Propyl (meth) acrylate, 2-methyl 2-adamantyl (meth) acrylate, 2-ethyl-2-adamantyl (meth) acrylate, 2-propyl-2-adamantyl (meth) acrylate, 2-methoxybutyl-2-adamantyl (meth) acrylate, 8-methyl-8 -Tricyclodecyl (meth) acrylate, 8-ethyl-8-tricyclodecyl (meth) acrylate, 5-methacryloyloxy-6-hydroxynorbornene-2-carboxylic 6-lactone and the like.
 これらのうち、アクリル系モノマーとしては、比較的高い温度でも単分散高分子を得られやすいという点から、tert-ブチル(メタ)アクリレート、イソプロピル(メタ)アクリレートが好ましい。 Among these, tert-butyl (meth) acrylate and isopropyl (meth) acrylate are preferable as the acrylic monomer from the viewpoint that monodispersed polymer can be easily obtained even at relatively high temperature.
[開始剤]
 本発明のポリマーの製造方法において用いる開始剤は、アニオン重合で通常用いられるものであれば特に限定されないが、例えば、有機リチウム化合物等が挙げられる。
[Initiator]
The initiator used in the method for producing a polymer of the present invention is not particularly limited as long as it is generally used in anionic polymerization, and examples thereof include organic lithium compounds and the like.
 前記有機リチウム化合物としては、メチルリチウム、エチルリチウム、n-プロピルリチウム、イソプロピルリチウム、n-ブチルリチウム、イソブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、ペンチルリチウム、ヘキシルリチウム、メトキシメチルリチウム、エトキシメチルリチウム、フェニルリチウム、ナフチルリチウム、ベンジルリチウム、フェニルエチルリチウム、α-メチルスチリルリチウム、1,1-ジフェニルヘキシルリチウム、1,1-ジフェニル3-メチルペントリルリチウム、3-メチル-1,1-ジフェニルペンチルリチウム、ビニルリチウム、アリルリチウム、プロペニルリチウム、ブテニルリチウム、エチニルリチウム、ブチニルリチウム、ペンチニルリチウム、ヘキシニルリチウム、2-チエニルリチウム、4-ピリジルリチウム、2-キノリルリチウム等のモノ有機リチウム化合物;1,4-ジリチオブタン、1,5-ジリチオペンタン、1,6-ジリチオヘキサン、1,10-ジリチオデカン、1,1-ジリチオジフェニレン、ジリチオポリブタジエン、ジリチオポリイソプレン、1,4-ジリチオベンゼン、1,2-ジリチオ-1,2-ジフェニルエタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼン、1,3,5-トリリチオ-2,4,6-トリエチルベンゼン等の多官能性有機リチウム化合物が挙げられる。これらの中でも、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム等のモノ有機リチウム化合物が好ましい。 Examples of the organic lithium compound include methyllithium, ethyllithium, n-propyllithium, isopropyllithium, n-butyllithium, isobutyllithium, sec-butyllithium, tert-butyllithium, pentyllithium, hexyllithium, methoxymethyllithium, ethoxy Methyllithium, phenyllithium, naphthyllithium, benzyllithium, phenylethyllithium, α-methylstyryllithium, 1,1-diphenylhexyllithium, 1,1-diphenyl 3-methylpentryllithium, 3-methyl-1,1- Diphenyl pentyl lithium, vinyl lithium, allyl lithium, propenyl lithium, butenyl lithium, ethynyl lithium, butynyl lithium, pentynyl lithium, hexynyl lithium, 2 Monoorganic lithium compounds such as thienyllithium, 4-pyridyllithium, 2-quinolyllithium; 1,4-dilithiobutane, 1,5-dilithiopentane, 1,6-dilithiohexane, 1,10-dilithiodecane, 1,1- Dilithiodiphenylene, dilithiopolybutadiene, dilithiopolyisoprene, 1,4-dilithiobenzene, 1,2-dilithio-1,2-diphenylethane, 1,4-dilithio-2-ethylcyclohexane, 1,3, Polyfunctional organolithium compounds such as 5-trilithiobenzene and 1,3,5-trilithio-2,4,6-triethylbenzene can be mentioned. Among these, mono-organic lithium compounds such as n-butyllithium, sec-butyllithium and tert-butyllithium are preferable.
[ブロックポリマーの製造方法]
 前述したフローリアクター4のように2液混合用ミキサーを2個以上有するフローリアクターを用いることで、2つ以上のモノマー単位を有するブロックポリマーを合成することができる。
[Method of producing block polymer]
A block polymer having two or more monomer units can be synthesized by using a flow reactor having two or more mixers for mixing two liquids as in the flow reactor 4 described above.
 以下、本発明のブロックポリマーの製造方法について、2元ブロックポリマーの合成を例に挙げて説明する。まず、前述したモノマーを含む第1のモノマー溶液を第1のミキサーの導入孔からフローリアクターに導入し、前述した開始剤を含む溶液を第1のミキサーの内管からフローリアクターに導入し、アニオン重合させることで、第1のモノマーからなるホモポリマーを合成する。このとき、前記第1のモノマー溶液や開始剤溶液を前述したように導入されることで、フローリアクターの閉塞が起こりにくく、圧力損失が抑えられ、安定的に長時間に亘ってポリマーを製造することができる。 Hereinafter, the method for producing the block polymer of the present invention will be described by taking the synthesis of a binary block polymer as an example. First, the first monomer solution containing the above-mentioned monomer is introduced into the flow reactor through the introduction hole of the first mixer, and the solution containing the above-mentioned initiator is introduced into the flow reactor through the inner pipe of the first mixer By polymerization, a homopolymer consisting of the first monomer is synthesized. At this time, by introducing the first monomer solution and the initiator solution as described above, clogging of the flow reactor is unlikely to occur, the pressure loss is suppressed, and the polymer is stably produced for a long time. be able to.
 第1のモノマーからなるホモポリマーを合成した後、その反応性を調整するために、1,1-ジフェニルエチレン(DPE)やその誘導体等の非単独重合性モノマーを反応させて、前記ポリマーの末端を修飾してもよい。なお、ここでは、非単独重合性モノマーとは、そのモノマーのみではアニオン重合を起こさないモノマーのことをいう。 After synthesizing a homopolymer consisting of the first monomer, in order to adjust its reactivity, a non-homopolymerizing monomer such as 1,1-diphenylethylene (DPE) or a derivative thereof is reacted to form an end of the polymer. You may modify Here, the term "non-homopolymerizable monomer" refers to a monomer which does not cause anionic polymerization with only that monomer.
 DPEは、第2のミキサーの導入孔からフローリアクターに導入される。この場合、DPEは、そのままフローリアクターに導入してもよく、適切な溶媒で希釈してからフローリアクターに導入してもよい。希釈に用いられる溶媒としては、テトラヒドロフラン(THF)、2-メチルTHF、ジエチルエーテル、テトラヒドロピラン(THP)、オキセパン、1,4-ジオキサン等のエーテル系溶媒、トルエン、ジクロロメタン、ジエトキシエタン等が挙げられる。DPEの濃度は、0.1~5.7mol/Lが好ましい。 The DPE is introduced into the flow reactor from the inlet of the second mixer. In this case, DPE may be introduced into the flow reactor as it is, or may be diluted with an appropriate solvent before being introduced into the flow reactor. Examples of the solvent used for dilution include tetrahydrofuran (THF), 2-methyl THF, diethyl ether, tetrahydropyran (THP), ether solvents such as oxepane and 1,4-dioxane, toluene, dichloromethane, diethoxyethane and the like. Be The concentration of DPE is preferably 0.1 to 5.7 mol / L.
 DPE等の非重合性モノマーを反応させた後、第2のモノマー溶液を第3のミキサーの導入孔からフローリアクターに導入し、ブロックポリマーを合成する。 After reacting a non-polymerizable monomer such as DPE, the second monomer solution is introduced into the flow reactor from the introduction hole of the third mixer to synthesize a block polymer.
 前記第1のモノマー及び第2のモノマーを溶解する溶媒としては、特に限定されないが、THF、2-メチルTHF、ジエチルエーテル、THP、オキセパン、1,4-ジオキサン等のエーテル系溶媒、トルエン、ジクロロメタン、ジエトキシエタン等が好ましい。 The solvent for dissolving the first monomer and the second monomer is not particularly limited, and examples thereof include THF, 2-methyl THF, diethyl ether, THP, oxepan, ether solvents such as 1,4-dioxane, toluene, dichloromethane And diethoxy ethane are preferable.
 前記第1のモノマーの濃度は、特に限定されず、目的に応じて適宜設定することができるが、0.1~5mol/Lが好ましく、0.1~3mol/Lがより好ましく、0.1~2mol/Lが特に好ましい。また、前記第2のモノマーの濃度も、特に限定されず、目的に応じて適宜設定することができるが、0.1~9.4mol/Lが好ましく、1.0~9.4mol/Lより好ましく、2.0~9.4mol/Lが特に好ましい。モノマー濃度が前記範囲であれば、フローリアクターの閉塞が起こりにくく、圧力損失が抑えられ、安定的に長時間に亘ってポリマーを製造することができる。 The concentration of the first monomer is not particularly limited and can be appropriately set according to the purpose, but is preferably 0.1 to 5 mol / L, more preferably 0.1 to 3 mol / L, 0.1 Particularly preferred is -2 mol / L. The concentration of the second monomer is also not particularly limited and may be appropriately set depending on the purpose, but is preferably 0.1 to 9.4 mol / L, and more preferably 1.0 to 9.4 mol / L. Preferably, 2.0 to 9.4 mol / L is particularly preferred. If the monomer concentration is in the above-mentioned range, clogging of the flow reactor is unlikely to occur, the pressure loss is suppressed, and the polymer can be stably produced over a long time.
 また、前記フローリアクターの流路を流れる前記第1のモノマーの流量としては、特に限定されず、目的に応じて適宜設定することができるが、1~50mL/minが好ましく、5~30mL/minがより好ましく、10~30mL/minが特に好ましい。前記第2のモノマーの流量も、特に限定されず、目的に応じて適宜設定することができるが、0.1~50mL/minが好ましく、0.1~30mL/minがより好ましく、0.1~20mL/minが特に好ましい。前記モノマーの流量が前記範囲であれば、フローリアクターの閉塞が起こりにくく、圧力損失が抑えられ、安定的に長時間に亘ってポリマーを製造することができる。 The flow rate of the first monomer flowing in the flow channel of the flow reactor is not particularly limited and may be appropriately set according to the purpose, but it is preferably 1 to 50 mL / min, and preferably 5 to 30 mL / min. Is more preferable, and 10 to 30 mL / min is particularly preferable. The flow rate of the second monomer is also not particularly limited and may be appropriately set depending on the purpose, but is preferably 0.1 to 50 mL / min, more preferably 0.1 to 30 mL / min, 0.1 -20 mL / min is particularly preferred. If the flow rate of the monomer is in the above range, clogging of the flow reactor is unlikely to occur, the pressure loss is suppressed, and the polymer can be stably produced over a long time.
 前記開始剤として、特にn-ブチルリチウムを好適に使用することができる。アニオン重合は、極性溶媒中(例えば、THF)で行うと、重合速度が速くなるため、通常低温で反応を行う。そのため、開始剤としてsec-ブチルリチウムを用いないと開始反応が揃いにくいという欠点があった。一方、非極性溶媒中(例えば、トルエン)で行うと、反応速度が遅く、加熱が必要となる。この場合、開始剤として反応性の低いn-ブチルリチウムを用いることがある。本発明のフローリアクターを用いるブロックポリマーの製造方法は、極性溶媒中、室温付近で反応が可能なため、低反応性のn-ブチルリチウムを開始剤として用いることができるという特長を有する。 In particular, n-butyllithium can be suitably used as the initiator. The anionic polymerization is usually carried out at a low temperature because the polymerization rate is increased when it is carried out in a polar solvent (for example, THF). Therefore, there is a disadvantage that the initiation reaction is difficult to achieve unless sec-butyllithium is used as the initiator. On the other hand, when it is carried out in a nonpolar solvent (for example, toluene), the reaction rate is slow and heating is required. In this case, less reactive n-butyllithium may be used as an initiator. The method for producing a block polymer using the flow reactor of the present invention is characterized in that low reactivity n-butyllithium can be used as an initiator because it can be reacted in a polar solvent at around room temperature.
 前記開始剤を溶解する溶媒としては、特に限定されないが、ヘキサン、THF、2-メチルTHF、ジエチルエーテル、THP、オキセパン、1,4-ジオキサン等のエーテル系溶媒、トルエン、ジクロロメタン、ジエトキシエタン、トルエン、ジエチルエーテル等が好ましい。 The solvent for dissolving the initiator is not particularly limited, and hexane, THF, 2-methyl THF, diethyl ether, THP, oxepane, ether solvents such as 1,4-dioxane, toluene, dichloromethane, diethoxy ethane, Toluene, diethyl ether and the like are preferred.
 前記開始剤の濃度は、特に限定されず、モノマーの種類に応じて適宜設定することができるが、0.01~0.5mol/Lが好ましく、0.03~0.3mol/Lがより好ましく、0.05~0.1mol/Lが特に好ましい。開始剤の濃度が前記範囲であれば、フローリアクターの閉塞が起こりにくく、圧力損失が抑えられ、安定的に長時間に亘ってポリマーを製造することができる。 The concentration of the initiator is not particularly limited and may be appropriately set according to the type of monomer, but is preferably 0.01 to 0.5 mol / L, and more preferably 0.03 to 0.3 mol / L. 0.05 to 0.1 mol / L is particularly preferred. When the concentration of the initiator is in the above range, the flow reactor is unlikely to be clogged, the pressure loss can be suppressed, and the polymer can be stably produced over a long time.
 また、前記フローリアクターの流路を流れる前記開始剤の流量としては、特に限定されず、目的に応じて適宜設定することができるが、0.1~10mL/minが好ましく、0.5~8mL/minがより好ましく、1~6mL/minが特に好ましい。開始剤の流量が前記範囲であれば、フローリアクターの閉塞が起こりにくく、圧力損失が抑えられ、安定的に長時間に亘ってポリマーを製造することができる。 The flow rate of the initiator flowing through the flow channel of the flow reactor is not particularly limited and may be appropriately set according to the purpose, preferably 0.1 to 10 mL / min, and more preferably 0.5 to 8 mL. / Min is more preferable, and 1 to 6 mL / min is particularly preferable. If the flow rate of the initiator is in the above range, the flow reactor is unlikely to be clogged, the pressure loss can be suppressed, and the polymer can be stably produced over a long time.
 本発明の製造方法における反応温度(フローリアクターの温度)は、特に限定されず、目的に応じて適宜設定することができるが、反応速度の点から、-80℃以上が好ましく、-40℃以上がより好ましく、-20℃以上がより一層好ましい。また、前記反応温度は、副反応抑制及び成長末端の失活抑制の点から、100℃以下が好ましく、50℃以下がより好ましく、30℃以下がより一層好ましい。 The reaction temperature (the temperature of the flow reactor) in the production method of the present invention is not particularly limited and can be appropriately set according to the purpose, but from the viewpoint of the reaction rate, -80 ° C or higher is preferable, -40 ° C or higher Is more preferable, and -20.degree. C. or more is even more preferable. The reaction temperature is preferably 100 ° C. or less, more preferably 50 ° C. or less, and still more preferably 30 ° C. or less from the viewpoint of side reaction suppression and suppression of inactivation of growth terminals.
 反応を終結させる方法としては、フローリアクターから出てきた重合反応溶液を過剰量のメタノール等の反応停止剤が入った容器で回収する方法や、フローリアクターにおいて、前記2液混合用ミキサーを3つ以上有する構成とし、最後の2液混合用ミキサーの一方からメタノール等の反応停止剤を流す方法等が挙げられる。 As a method of terminating the reaction, a method of recovering the polymerization reaction solution coming out of the flow reactor with a container containing a reaction terminator such as an excess amount of methanol, or three mixers for mixing the two liquids in the flow reactor It is set as the structure which has the above, and the method of pouring reaction terminators, such as methanol, etc. from one side of the mixer for two last liquid mixing, etc. are mentioned.
 本発明の製造方法によれば、分散度(Mw/Mn)が小さい(分子量分布が狭い)ポリマーを合成することができる。前記分散度は、1.5以下が好ましく、1.3以下がより好ましく、1.2以下がより一層好ましく、1.15以下が更に好ましい。なお、Mw及びMnは、それぞれ重量平均分子量及び数平均分子量を表し、これらは、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算測定値である。なお、本発明の製造方法によって得られるポリマーのMwは、特に限定されないが、1,000~100,000が好ましく、1,000~50,000がより好ましい。 According to the production method of the present invention, a polymer having a small degree of dispersion (Mw / Mn) (narrow molecular weight distribution) can be synthesized. The degree of dispersion is preferably 1.5 or less, more preferably 1.3 or less, still more preferably 1.2 or less, and still more preferably 1.15 or less. In addition, Mw and Mn represent a weight average molecular weight and a number average molecular weight, respectively, and these are the polystyrene conversion measurement values by gel permeation chromatography (GPC). The Mw of the polymer obtained by the production method of the present invention is not particularly limited, but is preferably 1,000 to 100,000, and more preferably 1,000 to 50,000.
 以下、合成例、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記実施例に限定されない。 Hereinafter, the present invention will be specifically described by showing synthesis examples, examples and comparative examples, but the present invention is not limited to the following examples.
 下記実施例で使用したフローリアクター(反応装置)の模式図を図10に示す。なお、図10中、矢印は液体の流れる方向を示す。第1のモノマー溶液送液用にプランジャーポンプ1((株)フロム製HP-12)を用い、PTFE製チューブ(内径1.0mm、外径1.6mm、長さ2m)を用いてプランジャーポンプ1とミキサー1とを接続し、開始剤溶液送液用にシリンジポンプ1(TELEDYNE ISCO社製 1000D Syringe pump)、PTFE製チューブ(内径1.0mm、外径1.6mm、長さ2m)を用いてシリンジポンプ1とミキサー1を接続した。ミキサー1の出口とミキサー2の入口とはPFA製チューブ1(内径2.0mm、外径3mm、長さ1m)で接続し、ミキサー2のもう一方の入口は、反応調整剤溶液送液用シリンジポンプ2((株)ワイエムシィ製Keychem-L)をPTFE製チューブ(内径1.0mm、外径1.6mm、長さ2m)で接続した。ミキサー2の出口とミキサー3の入口とはPFA製チューブ2(内径2.0mm、外径3mm、長さ1m)を接続し、ミキサー3のもう一方の入口は、第2のモノマー溶液送液用プランジャーポンプ2((株)フロム製KP-12)をPTFE製チューブ(内径1.0mm、外径1.6mm、長さ2m)で接続した。ミキサー3の出口とミキサー4の入口とはPFA製チューブ3(内径2.0mm、外径3mm、長さ5m)で接続し、ミキサー4のもう一方の入口は、反応停止剤溶液送液用シリンジポンプ3(Syrris社製Asia)をPTFE製チューブ(内径1.0mm、外径1.6mm、長さ2m)で接続した。ミキサー4の出口にはPFA製チューブ4(内径2.0mm、外径3mm、長さ0.7m)を接続した。なお、各ポンプから先とチューブ4の9割長までの流路については24℃の恒温槽に浸し温度を調整した。また、開始剤溶液送液用ポンプの圧力センサーのログを圧力トレンドとして示す。 The schematic diagram of the flow reactor (reactor) used in the following Example is shown in FIG. In FIG. 10, arrows indicate the flow direction of the liquid. Plunger using a PTFE tube (inner diameter 1.0 mm, outer diameter 1.6 mm, length 2 m) using the plunger pump 1 (HP-12 manufactured by Fromm) for feeding the first monomer solution Connect pump 1 and mixer 1, and use syringe pump 1 (1000D Syringe pump made by TELEDYNE ISCO), PTFE tube (inner diameter 1.0 mm, outer diameter 1.6 mm, length 2 m) for initiator solution delivery. The syringe pump 1 and the mixer 1 were connected using this. The outlet of mixer 1 and the inlet of mixer 2 are connected by PFA tube 1 (internal diameter 2.0 mm, outer diameter 3 mm, length 1 m), and the other inlet of mixer 2 is a syringe for reaction modifier solution delivery The pump 2 (Keychem-L, manufactured by YMC Co., Ltd.) was connected with a PTFE tube (inner diameter: 1.0 mm, outer diameter: 1.6 mm, length: 2 m). The outlet of the mixer 2 and the inlet of the mixer 3 are connected with a PFA tube 2 (inside diameter 2.0 mm, outer diameter 3 mm, length 1 m), and the other inlet of the mixer 3 is for feeding the second monomer solution The plunger pump 2 (KP-12 manufactured by Fromm) was connected by a PTFE tube (inner diameter 1.0 mm, outer diameter 1.6 mm, length 2 m). The outlet of the mixer 3 and the inlet of the mixer 4 are connected by a PFA tube 3 (internal diameter 2.0 mm, outer diameter 3 mm, length 5 m), and the other inlet of the mixer 4 is a syringe for reaction solution supply Pump 3 (Asia manufactured by Syrris) was connected by a PTFE tube (inner diameter 1.0 mm, outer diameter 1.6 mm, length 2 m). At the outlet of the mixer 4, a PFA tube 4 (inner diameter: 2.0 mm, outer diameter: 3 mm, length: 0.7 m) was connected. The flow path from each pump to the tip and 90% length of the tube 4 was immersed in a thermostat at 24 ° C. to adjust the temperature. Also, the pressure sensor log of the initiator solution delivery pump is shown as a pressure trend.
 下記比較例で使用したフローリアクターの模式図を図11に示す。なお、図11中、矢印は液体の流れる方向を示す。第1のモノマー溶液送液用にプランジャーポンプ1((株)フロム製HP-12)を用い、PTFE製チューブ(内径1.0mm、外径1.6mm、長さ2m)を用いてプランジャーポンプ1とミキサー1とを接続し、開始剤溶液送液用にシリンジポンプ2((株)ワイエムシィ製Keychem-L)、PTFE製チューブ(内径1.0mm、外径1.6mm、長さ2m)を用いてシリンジポンプ2とミキサー1を接続した。ミキサー1の出口とミキサー2の入口とはPTFE製チューブ1(内径1.5mm、外径3mm、長さ1.3m(比較例1)、0.7m(比較例2))で接続し、ミキサー2のもう一方の入口は、反応停止剤溶液送液用シリンジポンプ3(Syrris社製Asia)をPTFE製チューブ(内径1.0mm、外径1.6mm、長さ2m)で接続した。ミキサー2の出口にはPTFE製チューブ2(内径1.5mm、外径3mm、長さ1.3m(比較例1)、0.7m(比較例2))を接続した。なお、各ポンプから先とチューブ2の9割長までの流路については5℃(比較例1)、-20℃(比較例2)の恒温槽に浸し温度を調整した。また、開始剤溶液送液用ポンプの圧力センサーのログを圧力トレンドとして示す。 The schematic diagram of the flow reactor used by the following comparative example is shown in FIG. In FIG. 11, the arrow indicates the flow direction of the liquid. Plunger using a PTFE tube (inner diameter 1.0 mm, outer diameter 1.6 mm, length 2 m) using the plunger pump 1 (HP-12 manufactured by Fromm) for feeding the first monomer solution The pump 1 and the mixer 1 are connected, and a syringe pump 2 (Keychem-L manufactured by YMC Co., Ltd.) and a PTFE tube (inner diameter 1.0 mm, outer diameter 1.6 mm, length 2 m) are used for initiator solution delivery. The syringe pump 2 and the mixer 1 were connected using The outlet of mixer 1 and the inlet of mixer 2 are connected by PTFE tube 1 (inner diameter 1.5 mm, outer diameter 3 mm, length 1.3 m (comparative example 1), 0.7 m (comparative example 2)) The other inlet of 2 was connected with a syringe pump 3 for supplying a solution for stopping reaction (Syrris Asia) with a PTFE tube (inner diameter 1.0 mm, outer diameter 1.6 mm, length 2 m). At the outlet of the mixer 2, a PTFE tube 2 (inner diameter 1.5 mm, outer diameter 3 mm, length 1.3 m (comparative example 1), 0.7 m (comparative example 2)) was connected. The temperature was adjusted by immersing in the thermostatic baths of 5 ° C. (Comparative Example 1) and -20 ° C. (Comparative Example 2) for the flow paths from each pump to the tip and 90% length of the tube 2. Also, the pressure sensor log of the initiator solution delivery pump is shown as a pressure trend.
 GPCの測定条件は、以下のとおりである。
カラム:PLgel 3μm MIXED-E(Agilent Technologies社製)
移動相:テトラヒドロフラン(THF)
流量:1.0mL/min
カラムオーブン:40℃
検出器:UV検出器
検量線:標準ポリスチレン
The measurement conditions of GPC are as follows.
Column: PLgel 3μm MIXED-E (manufactured by Agilent Technologies)
Mobile phase: tetrahydrofuran (THF)
Flow rate: 1.0 mL / min
Column oven: 40 ° C
Detector: UV detector Calibration curve: Standard polystyrene
 また、1H-NMR(300MHz)の測定条件は以下のとおりである。
測定溶媒:重クロロホルム
基準物質:テトラメチルシラン(TMS)(δ0.0ppm)
The measurement conditions for 1 H-NMR (300 MHz) are as follows.
Measurement solvent: Heavy chloroform Reference substance: Tetramethylsilane (TMS) (δ 0.0 ppm)
[実施例1]
 第1のモノマーとして0.25mol/L スチレン/THF溶液と、開始剤として0.05mol/L n-ブチルリチウムヘキサン溶液を、ミキサー1でそれぞれ流速30mL/min及び6mL/minで混合し、第1のモノマーを重合させた。ミキサー1のジョイント部材としてはステンレス製のものを用い、筒状体としてはステンレス製のものを用いた。また、スタティックミキサーエレメント体としては(株)ノリタケカンパニーリミテド製DSP-MXA3-17(ポリアセタール製エレメント、ねじり羽根数17、3mm径)を加工したものを用いた。続いて、1,1-ジフェニルエチレン(DPE)をミキサー2で、56μL/minで混合することで、第2モノマーとの反応性を調整した。ミキサー2はミキサー1と同じものを用いた。続いて、第2のモノマーとしてtert-ブチルメタクリレートをミキサー3で1.2mL/minで混合し、ブロック重合させた。ミキサー3はミキサー1と同じものを用いた。続いて、重合停止剤として0.25mol/L メタノール/THF溶液を、ミキサー4で10mL/minで混合し、重合を停止させた。なお、ミキサー4は、一般的な簡便な二重管ミキサーを用いた。ミキサー1の導入孔入口に第1モノマー溶液チューブ、内管入口に開始剤溶液チューブを接続し、ミキサー2の導入孔入口にチューブ1、内管入口にDPE液チューブを接続し、ミキサー3導入孔入口にチューブ2、内管入口にtert-ブチルメタクリレート液チューブを接続し、ミキサー4の導入孔入口に重合停止剤溶液チューブ、内管入口にチューブ3を接続した。10分送液し、流出液を採取した。反応中の圧力トレンドを図12に示す。10分間の間ほとんど圧力変動がなかった。
 更に、前記流出液387gをエバポレーターで溶媒を留去し、130gとした後に、室温下、メタノール401gと水101gの混合液に滴下した。得られた白色懸濁液を0.5μmのメンブレンフィルターでろ過後、メタノール201gで洗浄した。得られた白色固体を減圧乾燥(50℃、2.5時間)し、PS-b-PtBuMA17.51gを得た。GPCにて分析したところ、Mn=10,053、Mw/Mn=1.09であった。得られたポリマーの1H-NMRチャートを図13に示す。
Example 1
The first monomer is mixed with a 0.25 mol / L styrene / THF solution and an initiator as a 0.05 mol / L n-butyllithium hexane solution at a flow rate of 30 mL / min and 6 mL / min, respectively, using a mixer 1 Were polymerized. The joint member of the mixer 1 was made of stainless steel, and the cylindrical body was made of stainless steel. Further, as the static mixer element body, one processed by DSP-MXA3-17 (element made of polyacetal, number of torsion blades: 17, 3 mm diameter) manufactured by Noritake Co., Limited is used. Subsequently, the reactivity with the second monomer was adjusted by mixing 1,1-diphenylethylene (DPE) with the mixer 2 at 56 μL / min. The mixer 2 used the same one as the mixer 1. Subsequently, tert-butyl methacrylate as a second monomer was mixed by a mixer 3 at 1.2 mL / min to perform block polymerization. The mixer 3 used was the same as the mixer 1. Subsequently, a 0.25 mol / L methanol / THF solution as a polymerization terminator was mixed with the mixer 4 at 10 mL / min to terminate the polymerization. In addition, the mixer 4 used the general simple double pipe mixer. The first monomer solution tube is connected to the inlet of the mixer 1, the initiator solution tube is connected to the inner tube inlet, the tube 1 is connected to the inlet of the mixer 2, and the DPE fluid tube is connected to the inner tube inlet. A tube 2 was connected to the inlet, a tert-butyl methacrylate liquid tube was connected to the inner tube inlet, a polymerization terminator solution tube was connected to the inlet of the mixer 4, and a tube 3 was connected to the inner tube inlet. The solution was sent for 10 minutes and the effluent was collected. The pressure trend during the reaction is shown in FIG. There was almost no pressure fluctuation for 10 minutes.
Furthermore, after the solvent was distilled off with an evaporator to make 130 g of the effluent, the solution was added dropwise to a mixed solution of 401 g of methanol and 101 g of water at room temperature. The resulting white suspension was filtered through a 0.5 μm membrane filter and then washed with 201 g of methanol. The obtained white solid was dried under reduced pressure (50 ° C., 2.5 hours) to obtain 17.51 g of PS-b-PtBuMA. It was Mn = 10,053 and Mw / Mn = 1.09 when it analyzed by GPC. The 1 H-NMR chart of the obtained polymer is shown in FIG.
[比較例1]
 ミキサー1及びミキサー2としてはT字ミキサー((株)三幸精機工業製、ステンレス製、内径0.25mm)を用い、第1モノマー溶液と開始剤溶液とが180°で衝突するように各ポンプと接続した。第1のモノマーとして1.0mol/L 4-メトキシスチレン/THF溶液と、開始剤として0.11mol/L sec-ブチルリチウムヘキサン溶液を、ミキサー1でそれぞれ流速5mL/min及び1mL/minで混合し、第1のモノマーを重合させた。続いて、重合停止剤として0.25mol/L メタノール/THF溶液を、ミキサー2で6.3mL/minで混合し、重合を停止させた。
 10分間送液した時の圧力トレンドを図14に示す。送液後5分あたりから急激に圧力変動がみられた。
Comparative Example 1
The mixer 1 and the mixer 2 are T-shaped mixers (manufactured by Sanko Seiki Kogyo Co., Ltd., made of stainless steel, inner diameter 0.25 mm), and each pump and the first monomer solution collide with each other at 180 °. Connected. A 1.0 mol / L 4-methoxystyrene / THF solution as the first monomer and a 0.11 mol / L sec-butyl lithium hexane solution as the initiator are mixed with a mixer 1 at a flow rate of 5 mL / min and 1 mL / min, respectively. , And the first monomer was polymerized. Subsequently, 0.25 mol / L methanol / THF solution as a polymerization terminator was mixed at 6.3 mL / min with mixer 2 to terminate the polymerization.
The pressure trend when liquid is sent for 10 minutes is shown in FIG. The pressure fluctuation was rapidly observed from 5 minutes after the liquid transfer.
[比較例2]
 ミキサー1及びミキサー2としては(株)テクノアプリケーションズ製コメットX-01(ステンレス製)を用いた。なお、ミキサー1の外管部入口側に第1モノマー溶液チューブ、内管部入口に開始剤溶液チューブを接続し、ミキサー2の外管部入口側に重合停止剤溶液チューブ、内管部入口にチューブ1を接続した。第1のモノマーとして2.0mol/Lスチレン/THF溶液と、開始剤として0.1mol/L sec-ブチルリチウムヘキサン溶液を、ミキサー1でそれぞれ流速5mL/min及び1mL/minで混合し、第1のモノマーを重合させた。続いて、重合停止剤として0.25mol/L メタノール/THF溶液を、ミキサー2で6.1mL/minで混合し、重合を停止させた。
 35分間送液した時の圧力トレンドを図15に示す。若干の圧力変動と、経時的な圧力上昇がみられた。
Comparative Example 2
As mixer 1 and mixer 2, Comet X-01 (made of stainless steel) manufactured by Techno Applications Inc. was used. The first monomer solution tube is connected to the inlet side of the outer tube portion of the mixer 1, the initiator solution tube is connected to the inlet side of the inner tube portion, the polymerization stopper solution tube is connected to the inlet side of the outer tube portion of the mixer 2, and the inlet side of the inner tube portion. The tube 1 was connected. As a first monomer, a 2.0 mol / L styrene / THF solution and an 0.1 mol / L sec-butyllithium hexane solution as an initiator are mixed by a mixer 1 at a flow rate of 5 mL / min and 1 mL / min, respectively. Were polymerized. Subsequently, 0.25 mol / L methanol / THF solution as a polymerization terminator was mixed with the mixer 2 at 6.1 mL / min to terminate the polymerization.
The pressure trend when liquid is sent for 35 minutes is shown in FIG. A slight pressure fluctuation and a pressure rise over time were observed.
 以上のように、本発明のポリマーの製造方法によれば、フローリアクターの流路の閉塞が起こりにくいため圧力変動が見られず、安定的に長時間に亘ってポリマーを製造することができた。 As described above, according to the method for producing a polymer of the present invention, since clogging of the flow channel of the flow reactor is unlikely to occur, no pressure fluctuation is observed, and the polymer can be produced stably for a long time .
1    2液混合用ミキサー
2    ジョイント部材
21   本体
211  挿入孔
212  導入孔
213  接続用孔
22   内管
221  内管内側
222  内管外壁
223  内管先端
24   空間
25   二重管
3    スタティックミキサー部材
31   筒状体
32   エレメント体
321  右ねじり羽根
322  左ねじり羽根
4    フローリアクター
DESCRIPTION OF SYMBOLS 1 Two-liquid mixing mixer 2 joint member 21 main body 211 insertion hole 212 introduction hole 213 connection hole 22 inner pipe 221 inner pipe inner side 222 inner pipe outer wall 223 inner pipe outer end 24 space 25 double pipe 3 static mixer member 31 cylindrical body 32 element body 321 right twist blade 322 left twist blade 4 flow reactor

Claims (16)

  1.  複数の液体を混合可能な流路を備える2液混合用ミキサーを備えるフローリアクターを用いて、第1のモノマーとしてスチレン系モノマーを開始剤の存在下でアニオン重合させ、ポリマーを合成する工程、及び前記ポリマーに第2のモノマーとしてアクリル系モノマーをブロック重合させ、ブロックポリマーを合成する工程を含む、ブロックポリマーの製造方法であって、
     前記フローリアクターが、内部に二重管を有するジョイント部材又はスタティックミキサー部材を備える2液混合用ミキサーを備えるものであるブロックポリマーの製造方法。
    A step of anionically polymerizing a styrenic monomer as a first monomer in the presence of an initiator to synthesize a polymer, using a flow reactor comprising a two-liquid mixing mixer having a flow path capable of mixing a plurality of liquids; A method for producing a block polymer, comprising block polymerizing an acrylic monomer as a second monomer to the polymer to synthesize a block polymer,
    The method for producing a block polymer, wherein the flow reactor comprises a two-component mixing mixer including a joint member having a double pipe inside or a static mixer member.
  2.  第1のモノマーをアニオン重合させポリマーを合成した後、第2のモノマーをブロック重合させる前に、非単独重合性モノマーを反応させる工程を含む請求項1記載のブロックポリマーの製造方法。 The method for producing a block polymer according to claim 1, comprising the step of reacting a non-homopolymerizable monomer before anionically polymerizing the first monomer to synthesize a polymer and then block polymerizing the second monomer.
  3.  前記非単独重合性モノマーが、1,1-ジフェニルエチレン又はその誘導体である請求項1又は2記載のブロックポリマーの製造方法。 The method for producing a block polymer according to claim 1 or 2, wherein the non-homopolymerizable monomer is 1,1-diphenylethylene or a derivative thereof.
  4.  前記スタティックミキサー部材が、筒状体とその内部に挿入されたエレメント体とを備えるものである請求項1~3のいずれか1項記載のブロックポリマーの製造方法。 The method for producing a block polymer according to any one of claims 1 to 3, wherein the static mixer member comprises a cylindrical body and an element body inserted into the inside of the cylindrical body.
  5.  前記2液混合用ミキサーが、内部に二重管を有するジョイント部材及びスタティックミキサー部材を備えるものである請求項1~4のいずれか1項記載のブロックポリマーの製造方法。 The method for producing a block polymer according to any one of claims 1 to 4, wherein the two-component mixing mixer comprises a joint member having a double pipe inside and a static mixer member.
  6.  前記2液混合用ミキサーが、内部に二重管を有するジョイント部材及びスタティックミキサー部材を備え、
     前記スタティックミキサー部材が、筒状体とその内部に挿入されたエレメント体とを備え、
     前記筒状体の前記二重管側の端面が前記二重管のスタティックミキサー部材側の端面と当接するように、前記ジョイント部材と前記スタティックミキサー部材とが接続されている
    ものである請求項5記載のブロックポリマーの製造方法。
    The two-component mixing mixer includes a joint member having a double pipe therein and a static mixer member,
    The static mixer member comprises a tubular body and an element body inserted therein;
    The joint member and the static mixer member are connected such that the end surface of the cylindrical body on the double tube side abuts on the end surface of the double tube on the static mixer member side. The manufacturing method of the described block polymer.
  7.  前記二重管のスタティックミキサー部材側の端部が、前記ジョイント部材の内部にある請求項6記載のブロックポリマーの製造方法。 The method for producing a block polymer according to claim 6, wherein an end of the double pipe on the static mixer member side is inside the joint member.
  8.  前記ジョイント部材が、開始剤溶液が流れる内管を挿入するための挿入孔を有し、前記内管が挿入された状態で、少なくとも前記内管の先端近傍において、前記内管内側と、前記内管外壁及び前記挿入孔の内壁で構築される空間とで、前記二重管が形成される請求項5~7のいずれか1項記載のブロックポリマーの製造方法。 The joint member has an insertion hole for inserting an inner pipe through which an initiator solution flows, and in a state where the inner pipe is inserted, the inner pipe inner side and the inner pipe at least near the tip of the inner pipe. The method for producing a block polymer according to any one of claims 5 to 7, wherein the double pipe is formed by a pipe outer wall and a space constructed by an inner wall of the insertion hole.
  9.  前記ジョイント部材が、モノマー溶液を導入するための導入孔を有するとともに、前記導入孔が前記挿入孔と連結している請求項8記載のブロックポリマーの製造方法。 9. The method for producing a block polymer according to claim 8, wherein the joint member has an introduction hole for introducing a monomer solution, and the introduction hole is connected to the insertion hole.
  10.  前記挿入孔が、前記導入孔との接続部近傍において、前記内管の外径と略同一の孔径となるように形成されるとともに、前記接続部から前記内管の先端までは前記内管の外径よりも大きな孔径となるように形成されている請求項9記載のブロックポリマーの製造方法。 The insertion hole is formed to have a hole diameter substantially the same as the outer diameter of the inner pipe in the vicinity of the connection portion with the introduction hole, and from the connection portion to the tip of the inner pipe The method for producing a block polymer according to claim 9, wherein the pore size is larger than the outer diameter.
  11.  前記ジョイント部材が、スタティックミキサー部材接続用孔を有し、前記挿入孔が前記接続用孔と接続されている請求項8~10のいずれか1項記載のブロックポリマーの製造方法。 The method for producing a block polymer according to any one of claims 8 to 10, wherein the joint member has a static mixer member connecting hole, and the insertion hole is connected to the connecting hole.
  12.  前記エレメント体が、前記筒状体内部に、その一端が前記筒状体の前記二重管側の端面と略面一になるように挿入されている請求項4~11のいずれか1項記載のブロックポリマーの製造方法。 The element according to any one of claims 4 to 11, wherein the element body is inserted into the cylindrical body such that one end thereof is substantially flush with the end face of the cylindrical body on the side of the double tube. Of producing block polymers.
  13.  前記エレメント体が、右ねじり羽根と左ねじり羽根とがねじり軸方向に交互に複数連なった形状を有するものである請求項4~12のいずれか1項記載のブロックポリマーの製造方法。 The method for producing a block polymer according to any one of claims 4 to 12, wherein the element body has a shape in which a right twist blade and a left twist blade are alternately and continuously connected in the twist axis direction.
  14.  前記開始剤が、モノ有機リチウム化合物である請求項1~13のいずれか1項記載のブロックポリマーの製造方法。 The method for producing a block polymer according to any one of claims 1 to 13, wherein the initiator is a mono-organolithium compound.
  15.  前記スチレン系モノマーが、下記式(1)で表される化合物である請求項1~14のいずれか1項記載のブロックポリマーの製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は、水素原子又はメチル基であり、R2~R6は、それぞれ独立に、水素原子、炭素数1~5のアルコキシ基、ハロゲン原子で置換されていてもよい炭素数1~10のアルキル基、-OSiR7 3又は-SiR7 3であり、R7は、それぞれ独立に、炭素数1~10のアルキル基、フェニル基、炭素数1~5のアルコキシ基又は炭素数1~5のアルキルシリル基である。)
    The method for producing a block polymer according to any one of claims 1 to 14, wherein the styrenic monomer is a compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (Wherein, R 1 represents a hydrogen atom or a methyl group, and R 2 to R 6 each independently represent a hydrogen atom, an alkoxy group having 1 to 5 carbon atoms, or a carbon number which may be substituted with a halogen atom) an alkyl group having 1 to 10, -OSiR 7 3 or -SiR 7 3, R 7 are independently an alkyl group having 1 to 10 carbon atoms, a phenyl group, an alkoxy group or a carbon number of 1 to 5 carbon atoms 1 to 5 alkylsilyl groups.)
  16.  前記アクリル系モノマーが、下記式(2)で表される化合物である請求項1~15のいずれか1項記載のブロックポリマーの製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R11は、水素原子又はメチル基であり、R12は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基、炭素数6~20のアリール基、又は炭素数7~20のアラルキル基である。)
    The method for producing a block polymer according to any one of claims 1 to 15, wherein the acrylic monomer is a compound represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (Wherein, R 11 represents a hydrogen atom or a methyl group, and each R 12 independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a halogenated alkyl group having 1 to 20 carbon atoms, or 6 carbon atoms An aryl group of -20, or an aralkyl group having 7 to 20 carbon atoms.)
PCT/JP2018/029368 2017-08-08 2018-08-06 Method for producing block polymer WO2019031435A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880051098.XA CN110997743A (en) 2017-08-08 2018-08-06 Method for producing block polymer
JP2019535639A JP7173013B2 (en) 2017-08-08 2018-08-06 Method for producing block polymer
CN202311467938.XA CN117362556A (en) 2017-08-08 2018-08-06 Method for producing block polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-153184 2017-08-08
JP2017153184 2017-08-08

Publications (1)

Publication Number Publication Date
WO2019031435A1 true WO2019031435A1 (en) 2019-02-14

Family

ID=65272029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029368 WO2019031435A1 (en) 2017-08-08 2018-08-06 Method for producing block polymer

Country Status (4)

Country Link
JP (1) JP7173013B2 (en)
CN (2) CN110997743A (en)
TW (1) TWI773804B (en)
WO (1) WO2019031435A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023002877A1 (en) 2021-07-19 2023-01-26 東レ株式会社 Method for separating polyarylene sulfide and method for producing polyarylene sulfide resin composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004106398A1 (en) * 2003-05-30 2004-12-09 Nippon Soda Co., Ltd. Process for producing polymer
WO2006016639A1 (en) * 2004-08-13 2006-02-16 Kuraray Co., Ltd. Process for continuously producing (meth)acrylic ester polymer or copolymer
WO2015093611A1 (en) * 2013-12-20 2015-06-25 株式会社堀場エステック Continuous reaction device and continuous polymerization method using same
WO2017135398A1 (en) * 2016-02-04 2017-08-10 日産化学工業株式会社 Polymer production method
JP2017136558A (en) * 2016-02-04 2017-08-10 日産化学工業株式会社 Two-liquid mixing mixer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4260537B2 (en) * 2003-04-30 2009-04-30 日本基礎技術株式会社 Drug injection method for natural ground reinforcement
JP2014193947A (en) * 2013-03-28 2014-10-09 Nippon Zeon Co Ltd Coating liquid production apparatus
JP2015120642A (en) * 2013-12-20 2015-07-02 株式会社堀場エステック Continuous reaction apparatus, and continuous synthesis method using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004106398A1 (en) * 2003-05-30 2004-12-09 Nippon Soda Co., Ltd. Process for producing polymer
WO2006016639A1 (en) * 2004-08-13 2006-02-16 Kuraray Co., Ltd. Process for continuously producing (meth)acrylic ester polymer or copolymer
WO2015093611A1 (en) * 2013-12-20 2015-06-25 株式会社堀場エステック Continuous reaction device and continuous polymerization method using same
WO2017135398A1 (en) * 2016-02-04 2017-08-10 日産化学工業株式会社 Polymer production method
JP2017136558A (en) * 2016-02-04 2017-08-10 日産化学工業株式会社 Two-liquid mixing mixer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023002877A1 (en) 2021-07-19 2023-01-26 東レ株式会社 Method for separating polyarylene sulfide and method for producing polyarylene sulfide resin composition

Also Published As

Publication number Publication date
JP7173013B2 (en) 2022-11-16
CN110997743A (en) 2020-04-10
CN117362556A (en) 2024-01-09
JPWO2019031435A1 (en) 2020-07-09
TWI773804B (en) 2022-08-11
TW201917137A (en) 2019-05-01

Similar Documents

Publication Publication Date Title
JP6922745B2 (en) Polymer manufacturing method
CN105934456B (en) Block copolymer
Steinkoenig et al. Controlled radical polymerization and in-depth mass-spectrometric characterization of poly (ionic liquid) s and their photopatterning on surfaces
JP7173013B2 (en) Method for producing block polymer
CN106715619B (en) Coating liquid for coating resist pattern
WO2017026426A1 (en) Porous particle made of organic polymer, method for producing porous particle made of organic polymer, and block copolymer
CN106030408B (en) Resistant upper layer film forms the manufacturing method of the semiconductor device with composition and using the composition
JP2009019079A (en) Method for producing water-soluble formaldehyde condensation product having reduced residual formaldehyde content
JPWO2017026424A1 (en) Porous particles, method for producing porous particles, and block copolymer
KR100773542B1 (en) A microfluidic device for electrochemically regulating the pH of a fluid therein and method for regulating the pH of a fluid in a microfuidic device using the same
CN115785341B (en) Synthesis process and application of functional carboxymethyl cellulose adsorbent
JP7176515B2 (en) Method for producing block polymer
WO2017026425A1 (en) Silica-gel porous particles and method of manufacturing same
WO2022186312A1 (en) Protection film formation composition
CN112771091B (en) Composition for forming block copolymer layer for forming fine phase separation pattern
WO2004078811A1 (en) Solvent for polymerization reaction and process for producing polymer
JPWO2020166580A1 (en) Polymer manufacturing method
WO2020179642A1 (en) Porous body, and method for producing porous body
RU2566303C1 (en) Method of obtaining acryl and methacryl polymers
JP2010214356A (en) Nitrite/nitrate-nitrogen lowering agent and method of lowering nitrite/nitrate-nitrogen concentration in water
JP2023078733A (en) Platinum group element-carrying porous particle and platinum group element catalyst, and column filled therewith
WO2021172296A1 (en) Method for producing polymer
Lee et al. Radiation induced grafting of poly (styrene) onto electrospun poly (vinylidenefluoride)-A novel approach for the preparation of ion exchange membranes
JPWO2019031454A1 (en) High-purity amphiphilic aryl sulfonic acid amine salt vinyl monomer and its (co)polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845167

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019535639

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18845167

Country of ref document: EP

Kind code of ref document: A1