WO2019031368A1 - Modified promoter - Google Patents

Modified promoter Download PDF

Info

Publication number
WO2019031368A1
WO2019031368A1 PCT/JP2018/028937 JP2018028937W WO2019031368A1 WO 2019031368 A1 WO2019031368 A1 WO 2019031368A1 JP 2018028937 W JP2018028937 W JP 2018028937W WO 2019031368 A1 WO2019031368 A1 WO 2019031368A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
nucleotide sequence
polynucleotide
promoter
nucleotides
Prior art date
Application number
PCT/JP2018/028937
Other languages
French (fr)
Japanese (ja)
Inventor
大視 掛下
望 柴田
洋介 志田
渉 小笠原
Original Assignee
花王株式会社
国立大学法人長岡技術科学大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018143957A external-priority patent/JP7138505B2/en
Application filed by 花王株式会社, 国立大学法人長岡技術科学大学 filed Critical 花王株式会社
Priority to US16/635,311 priority Critical patent/US11542499B2/en
Publication of WO2019031368A1 publication Critical patent/WO2019031368A1/en
Priority to PH12020500275A priority patent/PH12020500275A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the present invention relates to a modified promoter and a method for producing the same, and a vector and a transformant containing the modified promoter.
  • biomass material hereinafter sometimes referred to as “biomass”
  • biomass material a technology for producing sugar from cellulose in biomass material
  • fuel such as ethanol or a chemical product by a fermentation method or the like.
  • biomass material hereinafter sometimes referred to as “biomass”
  • fuel such as ethanol or a chemical product by a fermentation method or the like.
  • various technological developments have been advanced with the background of recent interest in environmental problems, and large-scale production of fuels and chemicals by this technology has also begun to be developed.
  • Biomass is composed of cellulose fibers and hemicellulose and lignin mainly containing xylan surrounding them.
  • an enzyme that hydrolyzes cellulose and hemicellulose is required.
  • Biomass saccharification by cellulase and enzymatic degradation of biomass by hemicellulase and ligninase have been conventionally performed.
  • Patent Document 1 discloses an enzyme composition for converting biomass containing a cellulase and a hemicellulase such as Trichoderma reesei-derived xylanase and arabinofuranosidase into sugar.
  • Patent Document 2 discloses a method for producing sugar by causing a biomass resource to react a protein having xylanase activity derived from a microorganism group present in bagasse compost and cellulase.
  • the filamentous fungus Trichoderma reesei is a bacterium that efficiently produces xylanase, and is conventionally used for xylanase production.
  • Three xylanases (Xyn1, Xyn2 and Xyn3) have been reported to date as xylanases from Trichoderma reesei.
  • Xyn1 and Xyn2 are classified into glycosidic hydrolase family 11 (glycoside hydrolase family 11: GH11), but Xyn 3 is classified into glycosidic hydrolase family 10 (glycoside hydrolase family 10: GH10) And Xyn1 and Xyn2 belong to different families.
  • Xyn3 shows high expression only in the PC-3-7 strain.
  • the expression level of Xyn3 in strain PC-3-7 is higher than that of the other two xylanases Xyn1 and Xyn2.
  • Xyn3 is expressed in a regulatory mechanism different from Xyn1 and Xyn2. While expression of Xyn1 and Xyn2 is induced by xylan and cellulose, expression of Xyn3 is not induced by xylan (enzyme substrate) but is induced by cellulose and its derivatives (Non-patent Documents 1 and 2) . In order to elucidate the expression control mechanism of these xylanases, analysis of the promoters of these genes has been carried out.
  • the region essential for the expression of Xyn3 includes the binding domain (5'-GGCTAT-3 'and 5'-GGCAAA-) of Xyr1 (a transcriptional regulator essential for lignocellulase production) on the promoter region of the gene encoding Xyn3.
  • a cis element composed of a 3 ') and a 16 bp spacer sequence has been reported (Non-patent Document 3).
  • a cis element composed of a binding domain (5'-GGCTAA-3 ') of Xyr1 and a spacer sequence of 10 bp is reported on the promoter region of the gene encoding Xyn1.
  • Non-Patent Document 4 Although the promoter of Xyn1 and the promoter of Xyn3 have cis elements with similar structures to each other, their inducers are different. The reason why the responsiveness of cis element to cellulose and xylan differs among these promoters is not clear.
  • Patent Document 1 JP-A-2011-515089 (Patent Document 2) JP-A-2012-029678 (Non-Patent Document 1) Appl Microbiol Biotechnol, 1998, 49: 718-724 (Non-patent document 2) Appl Microbiol Biotechnol, 2006, 72: 995-1003 (Non-Patent Document 3) Fungal Genet Biol, 2009, 46 (8): 564-574. (Non-Patent Document 4) Eukaryot Cell, 2006, 5 (3): 447-456
  • the invention is a modified promoter, It consists of a polynucleotide of Xyn3 promoter including a polynucleotide containing a polynucleotide of cis element of one or more Xyn1 promoters or a complementary strand thereof in a region corresponding to nucleotides 374 to 401 of SEQ ID NO: 1,
  • the polynucleotide of the Xyn3 promoter is as follows: A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 1; A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1; or a nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1 at least 90% A region identical to that of SEQ ID NO: 1 corresponding to nucleot
  • the present invention provides a vector containing the above-mentioned modified promoter.
  • the present invention provides a DNA fragment comprising a gene of interest and the above modified promoter upstream of the gene.
  • the present invention provides a transformant comprising the vector or the DNA fragment.
  • the invention relates to a method of producing a modified promoter, comprising Substituting or inserting a polynucleotide containing a polynucleotide of cis element of one or more Xyn1 promoters or a complementary strand thereof in a region corresponding to the nucleotides 374 to 401 of SEQ ID NO: 1 in the polynucleotide of the Xyn 3 promoter Including
  • the polynucleotide of the Xyn3 promoter is as follows: A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 1; A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1; or a nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1 at least 90%
  • B GUS activity after culture in the presence of xylan.
  • White bar X3-2RB_AB1 strain
  • black bar PC-3-7 strain.
  • nucleotide sequences and amino acid sequences is calculated by the Lipman-Pearson method (Science, 1985, 227: 1435-1441). Specifically, it is calculated by performing analysis with Unit size to compare (ktup) of 2 using a homology analysis (Search homology) program of genetic information processing software Genetyx-Win.
  • amino acid sequence or nucleotide sequence is 90% or more, preferably 95% or more, more preferably 96% or more, still more preferably 97% or more, still more preferably 98% or more, more preferably 99% or more identity.
  • amino acid sequence or nucleotide sequence is 95% or more, preferably 96% or more, more preferably 97% or more, still more preferably 98% or more, still more preferably 99% or more of identity.
  • the "corresponding position" or “corresponding region” on the amino acid sequence or nucleotide sequence refers to the target sequence and the reference sequence (for example, the nucleotide sequence shown in SEQ ID NO: 1) with maximum homology. It can be determined by aligning as given. Alignment of amino acid sequences or nucleotide sequences can be performed using known algorithms, the procedures of which are known to those skilled in the art. For example, alignment can be performed using the Clustal W multiple alignment program (Thompson, JD et al, 1994, Nucleic Acids Res. 22: 4673-4680) with default settings. Alternatively, Clustal W2 or Clustal omega, which is a revised version of Clustal W, can be used.
  • Clustal W, Clustal W2 and Clustal omega are, for example, Japanese DNA data operated by the European Bioinformatics Institute (EBI [www.ebi.ac.uk/index.html]) and the National Institute of Genetics. It can be used on the bank (DDBJ [www.ddbj.nig.ac.jp/searches-j.html]) website.
  • the position or region of the target sequence aligned corresponding to an arbitrary region of the reference sequence by the alignment described above is regarded as "corresponding position" or "corresponding region” to the arbitrary region.
  • upstream and downstream with respect to a gene refers to upstream and downstream of the transcription direction of the gene.
  • a gene located downstream of a promoter means that the gene is present 3 'of the promoter in the DNA sense strand, and upstream of the gene is 5' of the gene in the DNA sense strand. Means the side area.
  • an "operable linkage" between a promoter and a gene means that the promoter is linked so as to direct transcription of the gene.
  • Procedures for "operably linking" promoters and genes are well known to those skilled in the art.
  • promoter activity refers to an activity that promotes expression of a gene located downstream thereof, more specifically, an activity that promotes transcription from DNA to mRNA of a gene located downstream.
  • Promoter activity can be confirmed by using an appropriate reporter gene.
  • promoter activity can be confirmed by linking a DNA encoding a detectable protein downstream of the promoter, ie, by linking a reporter gene, and measuring the amount of the expression product of the reporter gene.
  • reporter genes include genes of fluorescent proteins such as ⁇ -galactosidase (LacZ) gene, ⁇ -glucuronidase (GUS) gene, luciferase gene, ⁇ -lactamase gene, GFP (Green Fluorescent Protein) gene and the like.
  • promoter activity can also be confirmed by measuring the expression level of mRNA transcribed from a reporter gene by quantitative RT-PCR or the like.
  • a “foreign” gene or polynucleotide is a gene or polynucleotide that has been introduced into the cell from the outside.
  • the foreign gene or polynucleotide may be from an organism homologous to the cell into which it has been introduced, or may be from a different organism (i.e., a heterologous gene or polynucleotide).
  • Xyn3 promoter refers to a promoter of a gene encoding xylanase Xyn3 and a promoter equivalent thereto.
  • Examples of Xyn3 promoters include promoters consisting of the following polynucleotides: A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 1; A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1; or a nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1 at least 90% It consists of a nucleotide sequence which is identical and which comprises a sequence represented by GGCTAT-NNNNNNNNNNNNNNNN-TTTGCC (SEQ ID NO: 2; N is any nucleotide) in a region corresponding to nucleotide
  • nucleotide sequence at least 90% identical to the nucleotide sequence shown in SEQ ID NO: 1 include the nucleotide sequence shown in nucleotides 3 to 1073 of SEQ ID NO: 1.
  • nucleotide sequence at least 90% identical to the nucleotide sequence shown by nucleotides 350 to 1084 of SEQ ID NO: 1 can be mentioned.
  • sequences contain a sequence represented by GGCTAT-NNNNNNNNNNNNNN-NN-NN-TNTGNN (SEQ ID NO: 2; N is any nucleotide) in a region corresponding to nucleotides 372-399 of SEQ ID NO: 1, and a cellulose-derived promoter It has activity.
  • a further example of the Xyn3 promoter of the present invention includes a promoter consisting of the following polynucleotide: A polynucleotide consisting of a nucleotide sequence represented by nucleotides 3 to 1073 of SEQ ID NO: 1; A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1073 of SEQ ID NO: 1; or a nucleotide sequence represented by nucleotides 3 to 1073 of SEQ ID NO: 1, or nucleotides 350 to 1073 of SEQ ID NO: 1 Nucleotide which is at least 90% identical to the nucleotide sequence shown and which corresponds to nucleotides 374-401 of SEQ ID NO: 1 in the region corresponding to nucleotides GGCTAT-NNNNNNNNNNNNNN-NN-NNTNNN-TTTGCC (SEQ ID NO: 2; N is any nucleotide) A polynucleotide
  • the GGCTAT-NNNNNNNNNNNNNNNN-TTTGCC (SEQ ID NO: 2) is a cis element of the Xyn3 promoter.
  • sequence number 2 the sequence shown by GGCTATATAGGACACTGTCAATTTTGCC (sequence number 3) is mentioned.
  • the Xyn3 promoter has a motif (Fungal Genet Biol, 2008, 45: 1094-1102) possessed by the existing xylanase promoter.
  • the motif include TATA box, CREI binding site, ACEI binding site, ACEII binding site, CAAT motif and the like.
  • TATA box (eg, TATA) in a region corresponding to nucleotides 860 to 863 and nucleotides 889 to 892 of SEQ ID NO: 1; Regions corresponding to nucleotides 53 to 58, nucleotides 124 to 129, nucleotides 249 to 254, nucleotides 456 to 461, nucleotides 509 to 514, and nucleotides 811 to 816 of SEQ ID NO: 1
  • a CREI binding site eg, a sequence selected from the group consisting of CTCCAG, CTCCAC, CCCCAG, CTCCGG, CTCCGC and CTGGGG
  • ACEI binding site eg, TGCCT, AGGCA, etc.
  • ACEII binding site for example, a sequence selected from the group consisting of GGCTAA, TTAGCC, and GGCT
  • cis element of Xyn1 promoter refers to a cis element present on the promoter of a gene encoding xylanase Xyn1 and cis elements equivalent thereto.
  • An example of the cis element of the Xyn1 promoter includes a polynucleotide consisting of a nucleotide sequence represented by GGCTAA-NNNNNNNN-TTAGCC (SEQ ID NO: 4; N is any nucleotide).
  • Preferred examples of the sequence shown in SEQ ID NO: 4 include the sequence shown in GGCTAAATGCGACATCTTAGCC (SEQ ID NO: 5).
  • the present invention relates to the provision of a modified promoter derived from a xylanase promoter, and a method of producing the same.
  • the present invention also relates to the provision of vectors and transformants containing the modified promoter.
  • the present inventors have modified the cis element of the promoter of the gene encoding xylanase Xyn3 based on the cis elements of other xylanase promoters, thereby inducing the expression inducibility of the promoter of the gene encoding Xyn3 in biomass.
  • the modified promoter of the present invention has an improved ability to induce sophorose and cellulose, and may further have the ability to be induced by a xylan-based substance. According to the present invention, it is possible to improve the efficiency of microbiological production of xylanase and other enzymes involved in the degradation or saccharification of biomass.
  • the present invention provides modified promoters.
  • the modified promoter of the present invention is a modified promoter of Xyn3 promoter.
  • the modified promoter of the present invention is obtained by substituting or inserting a polynucleotide containing a cis element of Xyn1 promoter or a complementary strand thereof to a cis element region in a polynucleotide of Xyn3 promoter. is there.
  • the Xyn3 promoter is a parent promoter of the modified promoter of the present invention.
  • substitution or insertion of a cis element (or its complementary strand) consisting of a predetermined nucleotide sequence, or a polynucleotide containing the same into the Xyn3 promoter is to the side of the promoter linked to the DNA sense strand.
  • the predetermined nucleotide sequence (or the complementary strand thereof) is arranged.
  • the modified promoter of the present invention contains a cis element (or a complementary strand thereof) consisting of a predetermined nucleotide sequence, or a polynucleotide containing the same
  • the predetermined nucleotide sequence or a complementary strand thereof
  • the promoter Are present on the side which is linked to the DNA sense strand of
  • the invention is a modified promoter, It consists of a polynucleotide of Xyn3 promoter including a polynucleotide containing a polynucleotide of cis element of one or more Xyn1 promoters or a complementary strand thereof in a region corresponding to nucleotides 374 to 401 of SEQ ID NO: 1,
  • the polynucleotide of the Xyn3 promoter is as follows: A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 1; A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1; or a nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1 at least 90% A region identical to that of SEQ ID NO: 1 and corresponding to
  • the polynucleotide of the Xyn3 promoter is A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 1; A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1; or a nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1 at least 95% A region identical to that of SEQ ID NO: 1 and corresponding to nucleotides 374 to 401, consisting of a nucleotide sequence comprising the sequence shown by GGCTAT-NNNNNNNNNNNNNN-TTTGCC (SEQ ID NO: 2), and having a cellulose-induced promoter activity , Polynucleotides, It is.
  • the polynucleotide of the Xyn3 promoter is A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 1; A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1; or a nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1 at least 95% A polynucleotide comprising a nucleotide sequence which is identical and corresponds to nucleotides 374-401 of SEQ ID NO: 1 and which comprises the sequence shown by GGCTATATAGGACACTGTCAATTTTGCC (SEQ ID NO: 3) and has a cellulose-induced promoter activity, It is.
  • the polynucleotide of said Xyn3 promoter is A polynucleotide consisting of a nucleotide sequence represented by nucleotides 3-1073 of SEQ ID NO: 1; A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1073 of SEQ ID NO: 1; or a nucleotide sequence represented by nucleotides 3 to 1073 of SEQ ID NO: 1, or represented by nucleotides 350 to 1073 of SEQ ID NO: 1 GGCTAT-NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
  • the SEQ. Polynucleotides having promoter activity It is.
  • the sequence represented by GGCTAT-NNNNNNNNNNNN-TTTGCC (SEQ ID NO: 2) is the sequence represented by GCTATATAGGACACTGTCAATTTTGCC (SEQ ID NO: 3).
  • the polynucleotide of said Xyn3 promoter is A polynucleotide consisting of a nucleotide sequence represented by nucleotides 3-1073 of SEQ ID NO: 1; A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1073 of SEQ ID NO: 1; or a nucleotide sequence represented by nucleotides 3 to 1073 of SEQ ID NO: 1, or represented by nucleotides 350 to 1073 of SEQ ID NO: 1 GGCTAT-NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
  • the region is derived from cellulose, which is at least 95% identical to the nucleotide sequence and at least 95% identical to the nucleotide sequence and corresponding to nucleotides 374 to 401 of Polynucleotides having promoter activity, It is.
  • the sequence represented by GGCTAT-NNNNNNNNNNNN-TTTGCC (SEQ ID NO: 2) is the sequence represented by GCTATATAGGACACTGTCAATTTTGCC (SEQ ID NO: 3).
  • the polynucleotide of the cis element of the Xyn1 promoter consists of the nucleotide sequence shown in GGCTAAATGCGACATCTTAGCC (SEQ ID NO: 5).
  • a region corresponding to nucleotides 374 to 401 of SEQ ID NO: 1 in the polynucleotide of Xyn3 promoter (parent promoter) (also referred to as “region 374 to 401 in the following specification”)
  • a polynucleotide containing one or more cis-element polynucleotides of the Xyn1 promoter or a complementary strand thereof (hereinafter also referred to as “Xyn1 cis-element-containing fragment” in the following specification) is substituted or inserted, There is.
  • the number of the Xyn1 cis element or its complementary strand contained in the Xyn1 cis element-containing fragment is preferably 1 to 10, more preferably 1 to 8, still more preferably 1 to 6, further preferably 2 to 6 It is preferably one, two, three or six.
  • the Xyn1 cis element-containing fragment comprises 1 to 10, more preferably 1 to 8, more preferably 1 to 6 polynucleotides consisting of the nucleotide sequence shown in SEQ ID NO: 4 or the complementary strand thereof More preferably, it is a polynucleotide containing 2 to 6, more preferably 1, 2, 3 or 6. Therefore, in a preferred embodiment, the modified promoter of the present invention comprises 1 to 10, more preferably 1 to 8, more preferably 1 to 6 polynucleotides consisting of the nucleotide sequence shown in SEQ ID NO: 4 or the complementary strand thereof. , More preferably 2 to 6, still more preferably 1, 2, 3 or 6.
  • the Xyn1 cis-element-containing fragment comprises 1 to 10, more preferably 1 to 8, still more preferably 1 to 6, polynucleotides consisting of the nucleotide sequence shown in SEQ ID NO: 5 Is a polynucleotide comprising 2 to 6, more preferably 1, 2, 3 or 6.
  • the Xyn1 cis-element-containing fragment has 1 to 10, more preferably 1 to 8, more preferably 1 to 10, complementary strands of a polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 5 It is a polynucleotide containing six, more preferably 2 to 6, more preferably 1, 2, 3 or 6.
  • the Xyn1 cis-element-containing fragment is a polynucleotide comprising two polynucleotides consisting of the nucleotide sequence shown in SEQ ID NO: 5, or a polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 5 It is a polynucleotide containing one or two complementary strands.
  • the Xyn1 cis-element containing fragment is a polynucleotide comprising three polynucleotides consisting of the nucleotide sequence shown in SEQ ID NO: 5 or a poly consisting of the nucleotide sequence shown in SEQ ID NO: 5 A polynucleotide comprising three or six complementary strands of nucleotides.
  • the Xyn1 cis-element-containing fragment comprises two or more polynucleotides consisting of the nucleotide sequence shown in SEQ ID NO: 4 or 5 or a complementary strand thereof, it is preferable to have a spacer sequence between each of them.
  • the spacer sequence may be a sequence consisting of 5 to 20 bases which does not inhibit the gene expression control function of the Xyn1 cis element-containing fragment. Examples of the spacer sequence include TCAAGA, TCTAGA and the like.
  • Xyn1 cis-element-containing fragment examples include the nucleotide sequence shown in SEQ ID NO: 5 or its complementary strand; and the spacer sequence linked downstream of the nucleotide sequence shown in SEQ ID NO: 5 or its complementary strand 2 or more, preferably 2 to 10, more preferably 2 to 8, still more preferably 2 to 6, still more preferably 3 to 6, still more preferably 2, 3 or 6, of the above sequence
  • the above-mentioned spacer sequences may be arranged at the most upstream and the most downstream.
  • Preferred examples of said Xyn1 cis-element containing fragment are: A polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 6 or its complementary strand; A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 7; A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 8; A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 41; A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 42; A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 43, Can be mentioned.
  • the modified promoter of the present invention comprises the following polynucleotide in the 374 to 401 region compared to the Xyn3 promoter (parent promoter): A polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 6 or its complementary strand; A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 7; A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 8; A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 41; A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 42; or A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 43.
  • HAP2 / 3/5 binding site transcription promoting factor, 5'-CCAAT-3 '
  • CREI binding site carbon source catabolite repressor, 5'-SYGGRG-
  • the Xyn1 cis-element-containing fragment to be substituted or inserted into the parent promoter is preferably one that does not contain the HAP2 / 3/5 binding site and the CREI binding site.
  • the modified promoter of the present invention does not contain the HAP2 / 3/5 binding site and the CREI binding site in the vicinity of the cis element of the substituted or inserted Xyn1 promoter. If the Xyn1 cis-element-containing fragment not containing the HAP2 / 3/5 binding site and the CREI binding site is substituted or inserted in the No. 374 to No.
  • the entire 374 to 401 region of the Xyn3 promoter may be replaced with the Xyn1 cis element-containing fragment, or the nucleotides of the 374 to 401 region
  • the Xyn1 cis-element-containing fragment may be inserted into the inside of the region while leaving all the fragments.
  • the Xyn1 cis-element-containing fragment may be inserted inside the 374th-401th region so that a part of the 374th-401th region is replaced with the Xyn1 cis-element-containing fragment.
  • the regions 374 to 401 may be entirely deleted or partially deleted, or in the Xyn1 cis element-containing fragment It may be divided.
  • the entire 374 to 401 region of the Xyn3 promoter is substituted with the Xyn1 cis element-containing fragment, and the entire 374 to 401 region is deleted. There is.
  • the method for obtaining the modified promoter of the present invention is not particularly limited, and can be obtained by a conventional chemical synthesis method or a genetic engineering method.
  • the modified promoter of the present invention can be artificially synthesized.
  • a service such as Invitrogen can be used.
  • the modified promoter of the present invention can be produced by genetically modifying the Xyn3 promoter (parent promoter).
  • the parent promoter of the modified promoter of the present invention may be artificially synthesized by the means described above, but may also be cloned from a microorganism.
  • a polynucleotide of the Xyn3 promoter consisting of the nucleotide sequence shown in SEQ ID NO: 1 can be cloned from Trichoderma reesei PC-3-7 strain.
  • the parent promoter of the modified promoter of the present invention can be cloned from a mutated Trichoderma reesei strain PC-3-7.
  • a mutation is introduced into the DNA of the Xyn3 promoter in Trichoderma reesei PC-3-7 strain, and among the obtained mutant DNA, at least 90% identical to the nucleotide sequence shown in SEQ ID NO: 1,
  • a polynucleotide consisting of a nucleotide sequence comprising the sequence shown in SEQ ID NO: 2 in the region corresponding to nucleotides 374 to 401 of the number 1 and having a promoter activity can be selected.
  • mutagenesis for example, ultraviolet irradiation and site-directed mutagenesis can be mentioned.
  • the promoter activity of the mutant DNA can be measured, for example, by operably linking the target gene downstream of the mutagenized DNA and analyzing the expression amount of the target gene.
  • the introduction of these mutations and the selection of the target mutant DNA are routine procedures of those skilled in the art.
  • substitution or insertion of the Xyn1 cis-element-containing fragment into the region 374 to 401 of the parent promoter can be carried out according to procedures well known to those skilled in the art such as construction of a fragment using PCR, ligation and the like.
  • an upstream fragment and a downstream fragment of the region 374 to 401 of the parent promoter (Xyn3 promoter) and a fragment containing Xyn1 cis element are prepared by PCR, and they are ligated to form Xyn1 between the upstream fragment and the downstream fragment.
  • a DNA fragment containing the modified promoter of the present invention can be prepared, which contains the Xyn1 cis-element-containing fragment instead of the 374 to 401 regions.
  • the modified promoter of the present invention has the function of controlling the expression of the gene located downstream thereof.
  • a DNA fragment having an expression control region excellent in transcriptional activity can be obtained.
  • a DNA fragment can be constructed which comprises a gene of interest and the modified promoter of the present invention operably linked upstream thereof.
  • a DNA fragment containing the modified promoter of the present invention can be constructed to have restriction enzyme recognition sequences at both ends. The restriction enzyme recognition sequence can be used to introduce the modified promoter of the present invention into a vector.
  • a modified vector of the present invention is introduced into a vector by cutting a known vector with a restriction enzyme and adding thereto a DNA fragment containing the modified promoter of the present invention and having a restriction enzyme cleavage sequence at the end. Can be done (restriction enzyme method).
  • the modified promoter of the present invention can be contained in a vector.
  • an expression vector capable of enhancing expression of the target gene at the transcription level can be obtained.
  • the modified promoter of the present invention can be operably linked upstream of the DNA encoding the target gene.
  • the vector having the promoter of the present invention may be in the form introduced into the chromosome of the host cell or in the form retained extrachromosomally.
  • a DNA fragment having a target gene and the modified promoter of the present invention operably linked upstream thereof may be constructed and directly introduced into the genome of the host cell.
  • the vector incorporating the modified promoter of the present invention is not particularly limited as long as it is stably maintained and can be propagated in a host cell, and includes, for example, AMA1 which functions as a self-sustaining replication factor in Aspergillus microorganism A plasmid etc. are mentioned.
  • the modified promoter of the present invention has an improved ability to induce promoter activity by cellulose or a derivative thereof possessed by the parent promoter Xyn3 promoter. Preferably, the ability to induce promoter activity by xylan or a derivative thereof is obtained.
  • the modified promoter of the present invention is suitable for use in the presence of cellulose and xylan.
  • the modified promoter of the present invention is suitable as a promoter for enzymes used in the process of biomass degradation or biomass saccharification.
  • the target gene operably linked to the promoter or vector in the vector or DNA fragment containing the modified promoter of the present invention includes enzymes used in the process of biomass degradation or biomass saccharification, such as cellulases (eg, ⁇ -endoglucanase , Cellobiohydrolase, ⁇ -glucosidase, etc., hemicellulase (eg, endoxylanase, ⁇ -xylosidase, arabinofuranosidase, glucuronidase, acetyl xylan esterase, mannanase, ⁇ -mannosidase, ferulic acid esterase etc.), xylanase etc. Genes are preferred.
  • cellulases eg, ⁇ -endoglucanase , Cellobiohydrolase, ⁇ -glucosidase, etc.
  • hemicellulase eg, endoxylanase, ⁇ -xylosidase
  • the target gene a gene that is controlled by a promoter that is not naturally induced in expression by cellulose or xylan is preferable.
  • a more preferred example of the target gene operably linked to the modified promoter of the present invention is a polynucleotide encoding xylanase Xyn3 consisting of the amino acid sequence shown in SEQ ID NO: 38, an amino acid sequence at least 90% identical to SEQ ID NO: 38 Or a nucleotide sequence represented by SEQ ID NO: 37 or a nucleotide sequence consisting of a nucleotide sequence at least 90% identical thereto, which encodes xylanase, and the like.
  • a polynucleotide encoding xylanase PspXyn (WO2016 / 208492) consisting of the amino acid sequence shown by SEQ ID NO: 40, encoding a xylanase consisting of an amino acid sequence at least 90% identical to SEQ ID NO: 40
  • the polynucleotide includes a nucleotide sequence shown by SEQ ID NO: 39 or a nucleotide sequence consisting of a nucleotide sequence at least 90% identical thereto, which encodes xylanase, and the like.
  • the types of target genes that can be operably linked to the promoter of the present invention are not limited thereto.
  • the vector or DNA fragment containing the modified promoter of the present invention can be transformed by a general transformation method such as electroporation, transformation, transfection, conjugation, protoplast, particle gun method, Agrobacterium method etc.
  • the transformant of the present invention can be obtained by introducing it into a host cell using
  • filamentous fungi examples include, for example, Acremonium, Aspergillus, Aureobasidium, Bjerkandera, Ceriporiopsis, Chrysosporium, Coprinus, Coriolus, Coriolus, Cryptococcus, Filibasidium, Fusarium, Humicola, Magnaporthe, Mucor.
  • Trichoderma reesei and mutants thereof include Trichoderma reesei QM9414 and mutants thereof, such as Licoderma reesei PC-3-7.
  • a modified promoter which It consists of a polynucleotide of Xyn3 promoter including a polynucleotide containing a polynucleotide of cis element of one or more Xyn1 promoters or a complementary strand thereof in a region corresponding to nucleotides 374 to 401 of SEQ ID NO: 1,
  • the polynucleotide of the Xyn3 promoter is as follows: A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 1; A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1; or a nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1 at least 90% A region identical to that of SEQ ID NO: 1 corresponding to nucleotides 374
  • the polynucleotide of the Xyn3 promoter is Preferably, it contains one or more selected from the group consisting of TATA box, CREI binding site, ACEI binding site, ACEII binding site, and CAAT motif, More preferably, the modified promoter according to [1], which comprises TATA box, CREI binding site, ACEI binding site, ACEII binding site, and CAAT motif.
  • TATA box is a TATA box (eg, TATA) in a region corresponding to nucleotides 860 to 863 and nucleotides 889 to 892 of SEQ ID NO: 1.
  • the CREI binding site is Preferably, a CREI binding site (for example, CTCCAG, CTCCAC, CCCCAG, CTCCGG, CTCCGC, and CTGGGG in a region corresponding to nucleotides 456 to 461, nucleotides 509 to 514, and nucleotides 811 to 816 of SEQ ID NO: 1).
  • a CREI binding site for example, CTCCAG, CTCCAC, CCCCAG, CTCCGG, CTCCGC, and CTGGGG in a region corresponding to nucleotides 456 to 461, nucleotides 509 to 514, and nucleotides 811 to 816 of SEQ ID NO: 1).
  • a CREI binding site eg, a sequence selected from the group consisting of CTCCAG, CTCCAC, CCCCAG, CTCCGG, CTCCGC and CTGGGG
  • the modified promoter according to [2] or [3].
  • the ACEII binding site is selected from the group consisting of ACEII binding sites (eg, GGCTAA, TTAGCC, and GGCTAA) in the regions corresponding to nucleotides 594 to 599 and nucleotides 845 to 850 of SEQ ID NO: 1 A modified promoter according to any one of [2] to [5].
  • ACEII binding sites eg, GGCTAA, TTAGCC, and GGCTAA
  • the modified promoter according to any one of [2] to [6], wherein the CAAT motif is a CAAT motif (for example, CCAAT) in a region corresponding to nucleotides 583 to 587.
  • CAAT motif for example, CCAAT
  • the polynucleotide of the Xyn3 promoter is A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 1; A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1; or a nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1 at least 95% A polynucleotide which is identical and comprises a nucleotide sequence comprising the sequence shown in SEQ ID NO: 2 in the region corresponding to nucleotides 374 to 401 of SEQ ID NO: 1 and having a cellulose-induced promoter activity,
  • the modified promoter according to any one of [1] to [7], which is
  • the polynucleotide of the Xyn3 promoter is A polynucleotide consisting of a nucleotide sequence represented by nucleotides 3 to 1073 of SEQ ID NO: 1; A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1073 of SEQ ID NO: 1; or a nucleotide sequence represented by nucleotides 3 to 1073 of SEQ ID NO: 1, or nucleotides 350 to 1073 of SEQ ID NO: 1 A nucleotide sequence comprising a sequence represented by SEQ ID NO: 2 in a region corresponding to nucleotides 374-401 of SEQ ID NO: 1 and at least 90% identical to the nucleotide sequence Having a polynucleotide,
  • the modified promoter according to any one of [1] to [7], which is
  • the modified promoter according to any one of [1] to [9], wherein the nucleotide sequence containing the sequence represented by SEQ ID NO: 2 is the sequence represented by GGCTATATAGGACACTGTCAATTTTGCC (SEQ ID NO: 3).
  • the polynucleotide comprising a polynucleotide of a cis element of the one or more Xyn1 promoters or a complementary strand thereof is a polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 4 or a complementary strand thereof Any one of [1] to [10], more preferably 1 to 8, still more preferably 1 to 6, still more preferably 2 to 6, still more preferably 1, 2, 3 or 6 The modified promoter described in paragraph.
  • modified promoter according to [11], preferably, wherein the polynucleotide consisting of the nucleotide sequence shown by SEQ ID NO: 4 is a polynucleotide consisting of the nucleotide sequence shown by SEQ ID NO: 5.
  • the polynucleotide comprising a polynucleotide of a cis element of the one or more Xyn1 promoters or a complementary strand thereof does not contain a HAP2 / 3/5 binding site and a CREI binding site,
  • the HAP2 / 3/5 binding site is CCAAT
  • the CREI binding site is SYGGRG or CCCCAG
  • the modified promoter according to any one of [1] to [12].
  • the polynucleotide comprising a polynucleotide of a cis element of the one or more Xyn1 promoters or a complementary strand thereof,
  • It is a polynucleotide consisting of one, more preferably 3 to 6, still more preferably 2, 3 or 6 repeats.
  • the modified promoter according to any one of [1] to [13].
  • the polynucleotide containing a cis-element polynucleotide of the one or more Xyn1 promoters or a complementary strand thereof is: A polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 6 or its complementary strand; A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 7; A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 8; A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 41; A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 42; or A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 43,
  • the modified promoter according to any one of [1] to [15], which is
  • a method for producing a modified promoter comprising Substituting or inserting a polynucleotide containing a polynucleotide of cis element of one or more Xyn1 promoters or a complementary strand thereof in a region corresponding to the nucleotides 374 to 401 of SEQ ID NO: 1 in the polynucleotide of the Xyn 3 promoter Including
  • the polynucleotide of the Xyn3 promoter is as follows: A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 1; A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1; or a nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1 at least 90% A region identical to that of SEQ ID
  • the polynucleotide of the Xyn3 promoter is Preferably, it contains one or more selected from the group consisting of TATA box, CREI binding site, ACEI binding site, ACEII binding site, and CAAT motif, More preferably, the method according to [18], which comprises TATA box, CREI binding site, ACEI binding site, ACEII binding site, and CAAT motif.
  • TATA box is a TATA box (eg, TATA) in a region corresponding to nucleotides 860 to 863 and nucleotides 889 to 892 of SEQ ID NO: 1.
  • the CREI binding site is Preferably, a CREI binding site (for example, CTCCAG, CTCCAC, CCCCAG, CTCCGG, CTCCGC, and CTGGGG in a region corresponding to nucleotides 456 to 461, nucleotides 509 to 514, and nucleotides 811 to 816 of SEQ ID NO: 1).
  • a CREI binding site for example, CTCCAG, CTCCAC, CCCCAG, CTCCGG, CTCCGC, and CTGGGG in a region corresponding to nucleotides 456 to 461, nucleotides 509 to 514, and nucleotides 811 to 816 of SEQ ID NO: 1).
  • a CREI binding site eg, a sequence selected from the group consisting of CTCCAG, CTCCAC, CCCCAG, CTCCGG, CTCCGC and CTGGGG
  • a CREI binding site eg, a sequence selected from the group consisting of CTCCAG, CTCCAC, CCCCAG, CTCCGG, CTCCGC and CTGGGG
  • the ACE II binding site is selected from the group consisting of ACE II binding sites (eg, GGCTAA, TTAGCC, and GGCTAA) in the regions corresponding to nucleotides 594 to 599 and nucleotides 845 to 850 of SEQ ID NO: 1
  • ACE II binding sites eg, GGCTAA, TTAGCC, and GGCTAA
  • CAAT motif is a CAAT motif (eg, CCAAT) in a region corresponding to nucleotides 583 to 587.
  • the polynucleotide of the Xyn3 promoter is A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 1; A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1; or a nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1 at least 95% A polynucleotide which is identical and comprises a nucleotide sequence comprising the sequence shown in SEQ ID NO: 2 in the region corresponding to nucleotides 374 to 401 of SEQ ID NO: 1 and having a cellulose-induced promoter activity, The method according to any one of [18] to [24], which is
  • the polynucleotide of the Xyn3 promoter is A polynucleotide consisting of a nucleotide sequence represented by nucleotides 3 to 1073 of SEQ ID NO: 1; A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1073 of SEQ ID NO: 1; or a nucleotide sequence represented by nucleotides 3 to 1073 of SEQ ID NO: 1, or nucleotides 350 to 1073 of SEQ ID NO: 1 A nucleotide sequence comprising a sequence represented by SEQ ID NO: 2 in a region corresponding to nucleotides 374-401 of SEQ ID NO: 1 and at least 90% identical to the nucleotide sequence Having a polynucleotide, The method according to any one of [18] to [24], which is
  • nucleotide sequence containing the sequence shown in SEQ ID NO: 2 is the sequence shown in GGCTATATAGGACACTGTCAATTTTGCC (SEQ ID NO: 3).
  • the polynucleotide comprising a polynucleotide of a cis element of the one or more Xyn1 promoters or a complementary strand thereof is 1 to 10 of a polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 4 or a complementary strand thereof Any one of [18] to [27], more preferably 1 to 8, still more preferably 1 to 6, still more preferably 2 to 6, still more preferably 1, 2, 3 or 6 Method according to paragraph.
  • polynucleotide consisting of the nucleotide sequence shown by SEQ ID NO: 4 is a polynucleotide consisting of the nucleotide sequence shown by SEQ ID NO: 5.
  • the polynucleotide comprising a polynucleotide of a cis element of the one or more Xyn1 promoters or a complementary strand thereof does not contain a HAP2 / 3/5 binding site and a CREI binding site,
  • the HAP2 / 3/5 binding site is CCAAT
  • the CREI binding site is SYGGRG or CCCCAG
  • the polynucleotide comprising a polynucleotide of a cis element of the one or more Xyn1 promoters or a complementary strand thereof,
  • It is a polynucleotide consisting of one, more preferably 3 to 6, more preferably 2, 3 or 6 repeats. The method according to any one of [18] to [30].
  • the polynucleotide comprising a polynucleotide of a cis element of the one or more Xyn1 promoters or a complementary strand thereof is: A polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 6 or its complementary strand; A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 7; A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 8; A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 41; A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 42; or A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 43, The method according to any one of [18] to [32], which is
  • a vector comprising the modified promoter according to any one of [1] to [17].
  • the vector according to [35] wherein the modified promoter is linked upstream of the target gene.
  • the target gene is Preferably, a gene encoding an enzyme selected from the group consisting of cellulase, hemicellulase and cellulase, More preferably, the nucleotide sequence of SEQ ID NO: 37 or a nucleotide sequence consisting of a nucleotide sequence at least 90% identical thereto and encoding a xylanase, or the nucleotide sequence of SEQ ID NO: 39 or at least 90% identical thereto A polynucleotide encoding a xylanase consisting of [36] The vector according to [36].
  • a DNA fragment comprising a target gene and the modified promoter according to any one of [1] to [17] linked upstream of the gene.
  • the target gene is Preferably, a gene encoding an enzyme selected from the group consisting of cellulase, hemicellulase and cellulase, More preferably, the nucleotide sequence of SEQ ID NO: 37 or a nucleotide sequence consisting of a nucleotide sequence at least 90% identical thereto and encoding a xylanase, or the nucleotide sequence of SEQ ID NO: 39 or at least 90% identical thereto A polynucleotide encoding a xylanase consisting of The DNA fragment of [38].
  • a transformant comprising the vector of any one of [35] to [37] or the DNA fragment of [38] or [39].
  • the transformant according to [40] which is a Trichoderma sp.
  • Example 1 Preparation of Modified Xyn3 Promoter (1) Cloning of Xyn3 Promoter Using a gene region including the upstream of a gene (xyn3) encoding xylanase Xyn3 derived from Trichoderma reesei PC-3-7 strain as a template, primer xyn3-EcoRI- The Xyn3 promoter region (SEQ ID NO: 1) including the primer fragment at both ends was amplified by PCR using U (SEQ ID NO: 9) and the primer xyn3-NcoI (SEQ ID NO: 10). The obtained DNA fragment was introduced into pT7blue (Novagen) to obtain a plasmid pTxyn3PD0.
  • a plasmid pTxyn3PD0 was cleaved with BamHI and XbaI to obtain a DNA fragment containing a promoter region, which was amplified and introduced into a pKF18K plasmid (Takara) to obtain a Xyn3 promoter-containing plasmid pKFxyn3PD0.
  • Example 2 Preparation of Reporter Cassette Containing Modified Promoter (1) Preparation of GUS Reporter-Containing Plasmid
  • GUS ⁇ which is a reporter under the control of each promoter
  • a reporter cassette was constructed in which a gene (gus) encoding -glucuronidase was introduced.
  • the downstream region of 0.8 kbp xyn3 amplified by primers xyn3-SpeI (SEQ ID NO: 15) and primer xyn3-EcoRI-D (SEQ ID NO: 16) was introduced into pT7Blue-T (Novagen) to obtain pTxyn3T. .
  • the gus gene is amplified using pBACgus-1 (Novagen) as a template, primer gus-NcoI (SEQ ID NO: 17) and primer gus-SpeI (SEQ ID NO: 18), and introduced into pT7Blue-T. I got one.
  • pTxyn3T and pTgus-1 were digested with SpeI and ligated to construct pTgus-2 (having xyn3 downstream region after stop codon of gus gene).
  • the modified promoter-containing plasmid fragment and the pTgus-2 fragment were ligated to prepare plasmids pTxyn3-1 Box, pTxyn3-2 Box, pTxyn3-1RBox, and pTxyn3-2RBox, respectively.
  • the resulting plasmid was digested with EcoRI and NsiI, respectively, to obtain a fragment containing promoter-GUS.
  • pBxyn3SE This plasmid was partially digested with EcoRI and blunted to construct pBxyn3SE 'in which only the EcoRI site present in the downstream region was deleted.
  • p3SR2 Mol Cell Biol, 1983, 3 (8): 1430-1439
  • pBxyn3SE ' was digested with NarI and ligated with the 3.5 kbp DNA fragment to obtain pBxyn3amdS.
  • the resulting plasmid was digested with coRI and NsiI to obtain a fragment containing xyn3-amdS.
  • Example 3 Preparation of Transformant and Evaluation of Inducibility of Promoter (1) Acquisition of Transformant A transformant having a reporter cassette containing the modified promoter prepared in Example 2 was prepared. First, the plasmid containing the GUS reporter cassette prepared in (2) of Example 2 was cleaved with SalI. The obtained fragment was introduced into Trichoderma reesei strain PC-3-7 by the protoplast PEG method (Biotechnol Bioeng, 2012, Jan; 109 (1): 92-99).
  • Transformants were selected from selection medium (2% (w / v) glucose, 0.6 mg / mL MgSO 4 , 0.6 mg / mL CaCl 2 , 12.5 mM CsCl 2 , 10 mM KH 2 ) using acetamide as a single nitrogen source.
  • PO 4 Buffer pH 5.5
  • the selected transformant candidate strain was cultured twice in a minimal medium supplemented with acetamide and stabilized.
  • the homologous recombination and the introduced copy number in the transformant were confirmed by Southern analysis using AlkPhos Direct kit (GE Healthcare Bio Science, Waukesha, WI). As a result, it was confirmed that the reporter cassette was homologously recombined in one copy at the position of the xyn3 gene on the genome.
  • Transformants into which pBxyn3ag-D0C, pBxyn3ag- ⁇ cis, pBxyn3ag-1Box, pBxyn3ag-1RBox, pBxyn3ag-2Box, and pBxyn3ag-2RBox have been introduced are respectively strain D0C, strain ⁇ cis, strain 1Box, strain 1RBox, strain 2Box And 2R Box stock.
  • the collected cells were treated with an induction medium as the sole carbon source for the promoter (0.0075% (w / v) CaCl 2 ⁇ 2H 2 O, 0.0075% (w / v) MgSO 4 ⁇ 7H 2 )
  • the culture was transferred to 50 mL of O, 0.025% (w / v) Tween 80, 0.025% (w / v) Trace element * 1) , 50 mM citrate buffer (pH 4.0)).
  • Inducers include 0.1% (w / v) glucose, 0.05% (w / v) sorbose, 0.01% (w / v) sophorus, 0.1% (w / v) xylose, or One of 0.1% (w / v) birch wood xylan was used.
  • the ⁇ -glucuronidase (GUS) activity and the amount of protein in the GUS extract were measured to determine the GUS activity per protein amount.
  • GUS activity was quantified by measuring fluorescence after reacting for 10 minutes at 37 ° C. using 4-Methylumbelliferyl- ⁇ -D-glucuronide (4-MUG) as a substrate.
  • the amount of protein was quantified by the Bradford method using bovine immunoglobulin as a standard.
  • FIG. 2A depicts GUS activity in extracts of cells cultured in the presence of glucose, sorbose, or the cellulosic substrate Sophorose.
  • D0C strain control
  • GUS activity was detected in the presence of sorbose or sophorose.
  • the ⁇ cis strain showed extremely low GUS activity as compared to the D0C strain in the presence of both sorbose and sophorose.
  • 1Box strain and 1R Box strain introductionoduced strain of a modified promoter into which a cis element of Xyn1 promoter or one complementary strand is inserted
  • the GUS activity in the presence of Sophorus is 2.3 times and 2.times. It has increased sixfold.
  • FIG. 2B represents GUS activity in extracts of cells cultured in the presence of xylan-based substrates (xylose or xylan).
  • xylan-based substrates xylose or xylan.
  • xylan-based substrates xylose or xylan.
  • strains 1RBox, 2Box and 2RBox exhibited GUS activity in the presence of either xylose or xylan.
  • the results shown in FIG. 2 indicate that the modified Xyn3 promoter into which a cis element of the Xyn1 promoter has been introduced can improve the inducibility by a cellulose-based substrate, and can further acquire the inducibility by a xylan-based substrate.
  • Example 4 Evaluation of Inducibility of Promoter (1) Preparation of Modified Xyn 3 Promoter 3 Box, 3 R Box and 6 R Box
  • cis element SEQ ID NO: 5 of promoter of gene encoding Xyn 1 or its complement
  • a DNA fragment (3 Box and 3 R Box; SEQ ID NOs: 41 and 42) containing three strands and Xbal site at both ends was constructed.
  • a DNA fragment (6RBox; SEQ ID NO: 43) was synthesized which contains six complementary strands of the sequence shown in SEQ ID NO: 5 and contains XbaI sites at both ends. Each of these DNA fragments was used to prepare a modified Xyn3 promoter-containing plasmid by the procedure of Example 1 (4).
  • FIG. 4 shows the data of the 2R Box strain measured in Example 3.
  • the expression of the GUS reporter was improved in the 3Box strain and the 3R Box strain as compared to the 2R Box strain, and was further improved in the 6R Box strain, in the presence of either Sophorus or xylan. From these results, it was suggested that the promoter activity of the modified Xyn3 promoter was increased according to the number of cis elements of the introduced Xyn1 promoter.
  • PCR Inverse PCR was also performed using pBxyn3ag-D0C as a template and the primers aX3invert (SEQ ID NO: 21) and sX3invert (SEQ ID NO: 22). These PCR products were cloned using In-fusion PCR advanced kit (TaKaRaBio, Shiga, Japan) to obtain pBxyn3aabgl1.
  • pBxyn3aabg1 has the aabgl1 gene under the control of the upstream region of xyn3 and the amdS gene as a selection marker at the NarI site of the downstream region.
  • the inverse PCR product of pBxyn3aabgl1 was constructed using pBxyn3aabgl1 as a template and primers recyinvert3a (SEQ ID NO: 23) and primer recyinvert3s (SEQ ID NO: 24).
  • the downstream region 748 bp of xyn3 was amplified using the genome of PC-3-7 strain as a template and primers xyn3 reps (SEQ ID NO: 25) and xyn3 repa (SEQ ID NO: 26), and introduced into the HincII site of pUC118 (Takara) ( pUxyn3DR).
  • pUxyn3DR was digested with EcoRV and BamHI to obtain a DNA fragment.
  • pBpyr4 (a plasmid obtained by cloning a DNA fragment containing the pyr4 gene derived from Trichoderma reesei and its upstream and downstream regions into pBluescript II SK (+) (Novagen)) was digested with EcoRV and BamHI to obtain a DNA fragment. The resulting DNA fragments were ligated to obtain pBpyr4RM (a fragment in which the downstream region of xyn3 was inserted downstream of the pyr4 selection marker).
  • pBpyr4RM Using pBpyr4RM as a template, amplification was carried out with primers recyclex3s (SEQ ID NO: 27) and primers recyclex3a (SEQ ID NO: 28) to which sequences of the downstream region of xyn 3 were added, respectively. The resulting amplified fragment was in-fused with pBxyn3aabgl1 to obtain pBxyn3aabgl1pyr4RM.
  • PBxyn3aabgl1pyr4RM was amplified by inverse PCR using primers xyn1_2Box_inv_Rv (SEQ ID NO: 29) and Aabgl1_Fw (SEQ ID NO: 30).
  • pKFxyn3-2RBox was amplified with primer xyn1_2box_Fw (SEQ ID NO: 31) and primer xyn1_2box_Rv (SEQ ID NO: 32) to obtain a DNA fragment containing 2R Box region (SEQ ID NO: 8).
  • These PCR products were ligated to obtain pBxyn3_2RBaabgl1pyr4RM in which the upstream region of xyn3 was replaced with a promoter containing 2R Box region.
  • the enzyme activity and the amount of protein were measured for the culture supernatants of the X3_2RB_AB1 strain (strain enhanced with BGL activity by introducing a modified promoter) and the PC-3-7 strain (host).
  • the culture supernatant was subjected to SDS-PAGE with 12.5% polyacrylamide and stained with Coomassie Brilliant Blue R250.
  • a Precision Plus Dual Color Standard Marker Bio-Rad Laboratories was used for molecular weight determination.
  • the amount of protein was determined by the Bradford method using bovine immunoglobulin as a standard.
  • the avicelase, carboxymethylcellulose (CMCase), and xylanase activities were calculated by measuring the amount of reducing sugar obtained by the enzyme reaction by the 3,5-dinitrosalicylic acid (DNS) method.
  • the enzymatic reaction for determination of avicelase activity was carried out at 50 ° C. for 30 minutes using a reaction solution in which 1% (w / v) Avicel (registered trademark) was suspended in 50 mM sodium acetate buffer (pH 5.0).
  • the enzyme reaction for measurement of CMCase activity was carried out at 50 ° C. for 15 minutes using a reaction solution in which 40 mM carboxymethyl cellulose (CMC) was dissolved in 50 mM sodium acetate buffer.
  • the enzyme reaction for measuring xylanase activity was carried out at 50 ° C. for 10 minutes using a reaction solution in which 1% (w / v) birch wood xylan was dissolved in 50 mM sodium acetate buffer.
  • the activity of 1 U was defined as the amount of enzyme that produces 1 ⁇ mol equivalent of glucose (or xylose) in 1 minute.
  • the enzyme was allowed to react at 50 ° C. for 10 minutes in a reaction solution in which a final concentration of 20 mM cellobiose (Sigma) was added to 50 mM acetic acid buffer, and then the glucose concentration was measured by Glucose C2 kit (Wako).
  • One unit of cellobiase activity was an amount of enzyme that produces 2 ⁇ mol of glucose in one minute.
  • aaBGL in the culture supernatant sample was observed using Western blotting with anti-BGL antibody.
  • Western blotting was performed using a semi-dry blotting apparatus (ATTO). After protein separation by SDS-PAGE, proteins were transferred to Immobilon-P membrane (Merck Millipore).
  • ECL select western blotting detection reagent GE healthcare
  • the anti-aa BGL antibody one obtained by preparing an antibody by rabbit immunization using purified aa BGL as an antigen was used. Also, HRP-labeled secondary antibodies were detected using GE Healthcare.
  • Table 1 shows the amounts of proteins in the X3_2RB_AB1 strain and the PC-3-7 strain, and the results of measurement of avicelase, CMCase, cellobiase, and xylanase activities.
  • the CMCase activity and the xylanase activity were comparable between the X3-2RB_AB1 strain and the PC-3-7 strain, but the cellobiase activity was 35.0 U / mL (Avicel® containing medium) and 17 in the X3-2RB_AB1 strain. .7 U / mL (Avicel.RTM. + Xylan-containing medium), which increased about 120 and 85 times over the PC-3-7 strain, respectively.
  • the avicelase activity also showed about 30% higher activity than the host strain in the X3-2RB_AB1 strain. From these results, it was suggested that, in the culture in the presence of cellulose, cellulose and xylan, the 2R Box promoter efficiently expressed the gene of AaBGL1 linked downstream.
  • PC-3-7 strain and X3-2RB_AB1 strain were cultured in a medium containing 0.3% (w / v) glucose for 2 days to obtain resting cells. Derivation of the obtained cells with 0.01% (w / v) sophorus (cellulose-based substrate, strong cellulase derivative) or 0.1% (w / v) xylan (xylan-based substrate) as the sole carbon source After culturing for 1, 3, 6, and 9 hours in the medium, transcriptional analysis was performed to examine gene expression.
  • a major cellulase gene cbh1 As target genes for transcriptional analysis, a major cellulase gene cbh1, a major xylanase gene xyn1, a transcription activation factor xyr1 essential for cellulase production, a xylanase gene xyn3 and aabgl1 were analyzed. Gene expression was measured by quantitative real-time PCR, and relative expression level was determined when expression level of ⁇ -actin (act1) was 1.
  • Xyn3 is originally expressed in Trichoderma reesei PC-3-7 strain, but is not expressed in Trichoderma reesei QM9414 strain, which is its ancestor.
  • the possibility of the modified Xyn3 promoter functioning in the QM9414 strain was examined.
  • Example 5 The procedure is the same as in Example 5, but using pBxyn3_2RBaabgl1pyr4RM, a plasmid containing an expression cassette into which aabgl1 has been introduced under the control of a modified Xyn3 promoter containing the 2R Box region (SEQ ID NO: 8) using QM9414 as the host of transformants.
  • the transformant QMX3-2RB_AB1 into which was introduced was prepared.
  • the enzyme activities in the QMX3-2RB_AB1 strain and the host QM9414 strain were measured in the same manner as in Example 5 (4).
  • the concentration of xylan in the induction medium was 0.01% (w / v).
  • the transcriptional activity of aabgl1 was examined in the same manner as in Example 5 (5).
  • Example 7 Evaluation of Xyn3 Expression Using Modified Xyn3 Promoter (1) Construction of Trichoderma reesei Xyn3 Expression Cassette The genome of PC-3-7 strain is used as a template, primer pyr4_Fw (SEQ ID NO: 33) and primer pyr4_Rv (SEQ ID NO: 34) was used to obtain a DNA fragment containing the upstream region 2,274 bp and the downstream region 1,244 bp of pyr4 and the pyr4 ORF. This DNA fragment was inserted into pUC118 linearized with HincII to prepare pU ⁇ pyr4.
  • Inverse PCR was performed using pBxyn3_2RBaabgl1pyr4RM prepared in Example 5 as a template and the primers aX3invert (SEQ ID NO: 21) and sX3invert (SEQ ID NO: 22). Furthermore, using the PC-3-7 strain genomic DNA as a template, the xyn3 ORF is amplified using primer xyn3_Fw (SEQ ID NO: 35) and primer xyn3_Rv (SEQ ID NO: 36), and phosphate group addition is carried out with Blunting Kination kit (TaKaRa). Did. These DNA fragments were ligated to produce pBxyn3_2RBxyn3pyr4RM.
  • Media composition is as follows: 1% (w / v) glucose, 0.14% (w / v) (NH 4 ) 2 SO 4 , 0.2% (w / v) KH 2 PO 4 , 0 .03% (w / v) CaCl 2 ⁇ 2 H 2 O, 0.03% (w / v) MgSO 4 ⁇ 7 H 2 O, 0.1% (w / v) high polypeptone N, 0.05% (w / V) Bacto Yeast extract, 0.1% (w / v) Tween 80, 0.1% (w / v) Trace element 2, 50 mM tartaric acid buffer (pH 4.0).
  • Trace element 2 is as follows: 6 mg H 3 BO 3 , 26 mg (NH 4 ) 6 Mo 7 O 24 ⁇ 4 H 2 O, 100 mg FeCl 3 ⁇ 6 H 2 O, 40 mg CuSO 4 ⁇ 5 H 2 O, 8 mg MnCl 2 ⁇ 4 H 2 O, 200 mg ZnCl 2 was added to 100 mL with distilled water.
  • the culture supernatant was recovered in the same manner as in Example 5 (3), and the protein concentration was measured by the bradford method.
  • the amount of protein was calculated based on a calibration curve using bovine gamma globulin as a standard protein, using Quick Start protein assay (BioRad).
  • BioRad Quick Start protein assay
  • the relative ratio of the amount of protein in the culture supernatant (JN24) of strain E1AB1_X3-2RBX3 was determined, where the amount of protein in the culture supernatant of strain E1AB1 (JN13) was 1.
  • JN24 had a 23% improvement in protein productivity as compared to the JN13 strain.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Provided is a modified promoter derived from a xylanase promoter. The modified promoter comprises a polynucleotide of the Xyn3 promoter which comprises a polynucleotide containing at least one cis-element polynucleotide of the Xyn1 promoter or a complementary chain thereof in a region corresponding to the nucleotides at the 374-401 positions in SEQ ID NO: 1. The polynucleotide of the Xyn3 promoter comprises: the nucleotide sequence represented by SEQ ID NO: 1; a nucleotide sequence represented by the nucleotides at the 350-1084 positions in SEQ ID NO: 1; or a nucleotide sequence having an identity of 90% or more to the aforesaid sequences and containing the sequence represented by SEQ ID NO: 2 in the region corresponding to the nucleotides at the 374-401 positions in SEQ ID NO: 1. The cis-element polynucleotide of the Xyn1 promoter is a polynucleotide which comprises the nucleotide sequence represented by SEQ ID NO: 4.

Description

改変プロモーターModified promoter
 本発明は、改変プロモーター及びその製造方法、ならびに該改変プロモーターを含有するベクター及び形質転換体に関する。 The present invention relates to a modified promoter and a method for producing the same, and a vector and a transformant containing the modified promoter.
 バイオマス材料(以下、「バイオマス」ということがある)中のセルロースから糖を製造し、それを発酵法などでエタノールなどの燃料や化学品へ変換する技術が知られている。この技術については、近年の環境問題への関心を背景に様々な技術開発が進んでおり、またこの技術による燃料や化学品の大規模製造も展開され始めている。 There is known a technology for producing sugar from cellulose in biomass material (hereinafter sometimes referred to as "biomass") and converting it into fuel such as ethanol or a chemical product by a fermentation method or the like. With regard to this technology, various technological developments have been advanced with the background of recent interest in environmental problems, and large-scale production of fuels and chemicals by this technology has also begun to be developed.
 バイオマスは、セルロース繊維と、それを取り巻くキシランを主に含むヘミセルロース及びリグニンとから構成されている。バイオマスを原料とした糖の製造では、セルロースやヘミセルロースを加水分解する酵素が必要となる。セルラーゼによるバイオマス糖化や、ヘミセルラーゼやリグニナーゼによるバイオマスの酵素分解は、従来から行われている。例えば、特許文献1には、セルラーゼと、トリコデルマ・リーセイ(Trichoderma reesei)由来キシラナーゼやアラビノフラノシダーゼなどのヘミセルラーゼを含むバイオマスを糖へ変換するための酵素組成物が開示されている。また、特許文献2には、バガス堆肥に存在する微生物群由来のキシラナーゼ活性を有するタンパク質とセルラーゼとをバイオマス資源に反応させることによる糖の製造方法が開示されている。 Biomass is composed of cellulose fibers and hemicellulose and lignin mainly containing xylan surrounding them. In the production of sugar from biomass, an enzyme that hydrolyzes cellulose and hemicellulose is required. Biomass saccharification by cellulase and enzymatic degradation of biomass by hemicellulase and ligninase have been conventionally performed. For example, Patent Document 1 discloses an enzyme composition for converting biomass containing a cellulase and a hemicellulase such as Trichoderma reesei-derived xylanase and arabinofuranosidase into sugar. Further, Patent Document 2 discloses a method for producing sugar by causing a biomass resource to react a protein having xylanase activity derived from a microorganism group present in bagasse compost and cellulase.
 糸状菌であるトリコデルマ・リーセイは、キシラナーゼを効率的に生産する菌であり、従来、キシラナーゼ生産に利用されている。トリコデルマ・リーセイ由来のキシラナーゼとして、現在までに3つのキシラナーゼ(Xyn1、Xyn2、及びXyn3)が報告されている。これらキシラナーゼのうち、Xyn1及びXyn2は、グリコシドヒドラーゼファミリー11(glycoside hydrolase family 11:GH11)に区分されているが、Xyn3は、グリコシドヒドラーゼファミリー10(glycoside hydrolase family 10:GH10)に区分されており、Xyn1及びXyn2とは別のファミリーに属している。Xyn3は、トリコデルマ・リーセイQM9414株から派生した数あるトリコデルマ・リーセイ変異株のなかで、PC-3-7株でのみ高い発現を示している。PC-3-7株におけるXyn3の発現量は、他の2つのキシラナーゼXyn1及びXyn2と比べて高い。 The filamentous fungus Trichoderma reesei is a bacterium that efficiently produces xylanase, and is conventionally used for xylanase production. Three xylanases (Xyn1, Xyn2 and Xyn3) have been reported to date as xylanases from Trichoderma reesei. Among these xylanases, Xyn1 and Xyn2 are classified into glycosidic hydrolase family 11 (glycoside hydrolase family 11: GH11), but Xyn 3 is classified into glycosidic hydrolase family 10 (glycoside hydrolase family 10: GH10) And Xyn1 and Xyn2 belong to different families. Among the numerous Trichoderma reesei mutants derived from Trichoderma reesei strain QM9414, Xyn3 shows high expression only in the PC-3-7 strain. The expression level of Xyn3 in strain PC-3-7 is higher than that of the other two xylanases Xyn1 and Xyn2.
 またXyn3は、Xyn1及びXyn2とは異なる制御機構で発現される。Xyn1及びXyn2の発現が、キシラン及びセルロースによって誘導されるのに対して、Xyn3の発現は、キシラン(酵素基質)では誘導されず、セルロース及びその誘導体によって誘導される(非特許文献1及び2)。これらキシラナーゼの発現制御機構の解明のため、それらの遺伝子のプロモーターの解析が行われてきた。Xyn3の発現に必須な領域としては、Xyn3をコードする遺伝子のプロモーター領域上の、Xyr1(リグノセルラーゼ生産に必須な転写調節因子)の結合ドメイン(5’-GGCTAT-3’と5’-GGCAAA-3’)と16bpのスペーサー配列により構成されるシスエレメントが報告されている(非特許文献3)。一方、Xyn1の発現に必須な領域としては、Xyn1をコードする遺伝子のプロモーター領域上の、Xyr1の結合ドメイン(5’-GGCTAA-3’)と10bpのスペーサー配列により構成されるシスエレメントが報告されている(非特許文献4)。このように、Xyn1のプロモーターとXyn3のプロモーターは互いによく似た構造のシスエレメントを有しているが、その誘導物質は異なる。これらのプロモーターの間で、シスエレメントのセルロース及びキシランに対する応答性が異なる理由は明らかになっていない。 Also, Xyn3 is expressed in a regulatory mechanism different from Xyn1 and Xyn2. While expression of Xyn1 and Xyn2 is induced by xylan and cellulose, expression of Xyn3 is not induced by xylan (enzyme substrate) but is induced by cellulose and its derivatives (Non-patent Documents 1 and 2) . In order to elucidate the expression control mechanism of these xylanases, analysis of the promoters of these genes has been carried out. The region essential for the expression of Xyn3 includes the binding domain (5'-GGCTAT-3 'and 5'-GGCAAA-) of Xyr1 (a transcriptional regulator essential for lignocellulase production) on the promoter region of the gene encoding Xyn3. A cis element composed of a 3 ') and a 16 bp spacer sequence has been reported (Non-patent Document 3). On the other hand, as a region essential for the expression of Xyn1, a cis element composed of a binding domain (5'-GGCTAA-3 ') of Xyr1 and a spacer sequence of 10 bp is reported on the promoter region of the gene encoding Xyn1. (Non-Patent Document 4). Thus, although the promoter of Xyn1 and the promoter of Xyn3 have cis elements with similar structures to each other, their inducers are different. The reason why the responsiveness of cis element to cellulose and xylan differs among these promoters is not clear.
(特許文献1)特表2011-515089号公報
(特許文献2)特開2012-029678号公報
(非特許文献1)Appl Microbiol Biotechnol,1998,49:718-724
(非特許文献2)Appl Microbiol Biotechnol,2006,72:995-1003
(非特許文献3)Fungal Genet Biol,2009,46(8):564-574
(非特許文献4)Eukaryot Cell,2006,5(3):447-456
(Patent Document 1) JP-A-2011-515089 (Patent Document 2) JP-A-2012-029678 (Non-Patent Document 1) Appl Microbiol Biotechnol, 1998, 49: 718-724
(Non-patent document 2) Appl Microbiol Biotechnol, 2006, 72: 995-1003
(Non-Patent Document 3) Fungal Genet Biol, 2009, 46 (8): 564-574.
(Non-Patent Document 4) Eukaryot Cell, 2006, 5 (3): 447-456
 一態様において本発明は、改変プロモーターであって、
 配列番号1の374番~401番ヌクレオチドに相当する領域に、1つ以上のXyn1プロモーターのシスエレメントのポリヌクレオチド又はその相補鎖、を含有するポリヌクレオチドを含む、Xyn3プロモーターのポリヌクレオチドからなり、
 該Xyn3プロモーターのポリヌクレオチドが、以下:
 配列番号1で示されるヌクレオチド配列からなるポリヌクレオチド;
 配列番号1の350番~1084番ヌクレオチドで示されるヌクレオチド配列からなるポリヌクレオチド;又は
 配列番号1で示されるヌクレオチド配列、又は配列番号1の350番~1084番ヌクレオチドで示されるヌクレオチド配列と少なくとも90%同一であって、配列番号1の374番~401番ヌクレオチドに相当する領域にGGCTAT-NNNNNNNNNNNNNNNN-TTTGCC(配列番号2)で示される配列を含むヌクレオチド配列からなり、かつセルロースに誘導されるプロモーター活性を有する、ポリヌクレオチド、
であり、
 該Xyn1プロモーターのシスエレメントのポリヌクレオチドが、GGCTAA-NNNNNNNNNN-TTAGCC(配列番号4)で示されるヌクレオチド配列からなり、かつ
 該1つ以上のXyn1プロモーターのシスエレメントのポリヌクレオチド又はその相補鎖を含有するポリヌクレオチドが、HAP2/3/5結合サイト及びCREI結合サイトを含まない、
改変プロモーターを提供する。
In one aspect the invention is a modified promoter,
It consists of a polynucleotide of Xyn3 promoter including a polynucleotide containing a polynucleotide of cis element of one or more Xyn1 promoters or a complementary strand thereof in a region corresponding to nucleotides 374 to 401 of SEQ ID NO: 1,
The polynucleotide of the Xyn3 promoter is as follows:
A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 1;
A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1; or a nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1 at least 90% A region identical to that of SEQ ID NO: 1 corresponding to nucleotides 374 to 401, consisting of a nucleotide sequence comprising the sequence shown by GGCTAT-NNNNNNNNNNNNNNNNNN-TTTGCC (SEQ ID NO: 2), and a cellulose-induced promoter activity Having a polynucleotide,
And
The polynucleotide of the cis element of the Xyn1 promoter consists of the nucleotide sequence shown by GGCTAA-NNNNNNNNNN-TTAGCC (SEQ ID NO: 4), and contains the polynucleotide of the cis element of the one or more Xyn1 promoters or a complementary strand thereof The polynucleotide does not contain HAP2 / 3/5 binding site and CREI binding site,
Provide a modified promoter.
 別の一態様において、本発明は、上記改変プロモーターを含有するベクターを提供する。 In another aspect, the present invention provides a vector containing the above-mentioned modified promoter.
 別の一態様において、本発明は、目的遺伝子と、該遺伝子の上流に上記改変プロモーターとを含む、DNA断片を提供する。 In another aspect, the present invention provides a DNA fragment comprising a gene of interest and the above modified promoter upstream of the gene.
 別の一態様において、本発明は、上記ベクター又は上記DNA断片を含む形質転換体を提供する。 In another aspect, the present invention provides a transformant comprising the vector or the DNA fragment.
 さらなる態様において、本発明は、改変プロモーターの製造方法であって、
 Xyn3プロモーターのポリヌクレオチドにおいて、配列番号1の374番~401番ヌクレオチドに相当する領域に、1つ以上のXyn1プロモーターのシスエレメントのポリヌクレオチド又はその相補鎖、を含むポリヌクレオチドを置換又は挿入することを含み、
 該Xyn3プロモーターのポリヌクレオチドが、以下:
 配列番号1で示されるヌクレオチド配列からなるポリヌクレオチド;
 配列番号1の350番~1084番ヌクレオチドで示されるヌクレオチド配列からなるポリヌクレオチド;又は
 配列番号1で示されるヌクレオチド配列、又は配列番号1の350番~1084番ヌクレオチドで示されるヌクレオチド配列と少なくとも90%同一であって、配列番号1の374番~401番ヌクレオチドに相当する領域にGGCTAT-NNNNNNNNNNNNNNNN-TTTGCC(配列番号2)で示される配列を含むヌクレオチド配列からなり、かつセルロースに誘導されるプロモーター活性を有する、ポリヌクレオチド、
であり、
 該Xyn1プロモーターのシスエレメントのポリヌクレオチドが、GGCTAA-NNNNNNNNNN-TTAGCC(配列番号4)で示されるヌクレオチド配列からなり、かつ
 該1つ以上のXyn1プロモーターのシスエレメントのポリヌクレオチド又はその相補鎖を含有するポリヌクレオチドが、HAP2/3/5結合サイト及びCREI結合サイトを含まない、
方法を提供する。
In a further aspect, the invention relates to a method of producing a modified promoter, comprising
Substituting or inserting a polynucleotide containing a polynucleotide of cis element of one or more Xyn1 promoters or a complementary strand thereof in a region corresponding to the nucleotides 374 to 401 of SEQ ID NO: 1 in the polynucleotide of the Xyn 3 promoter Including
The polynucleotide of the Xyn3 promoter is as follows:
A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 1;
A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1; or a nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1 at least 90% A region identical to that of SEQ ID NO: 1 corresponding to nucleotides 374 to 401, consisting of a nucleotide sequence comprising the sequence shown by GGCTAT-NNNNNNNNNNNNNNNNNN-TTTGCC (SEQ ID NO: 2), and a cellulose-induced promoter activity Having a polynucleotide,
And
The polynucleotide of the cis element of the Xyn1 promoter consists of the nucleotide sequence shown by GGCTAA-NNNNNNNNNN-TTAGCC (SEQ ID NO: 4), and contains the polynucleotide of the cis element of the one or more Xyn1 promoters or a complementary strand thereof The polynucleotide does not contain HAP2 / 3/5 binding site and CREI binding site,
Provide a way.
実施例2で作製したGUSレポーターカセット中の改変プロモーターに含まれるシスエレメント領域の配列。黒枠:Xyn1プロモーターのシスエレメント、黒地白抜き文字:XYRI結合サイト。Sequence of the cis element region contained in the modified promoter in the GUS reporter cassette prepared in Example 2. Black frame: cis element of Xyn1 promoter, black outline letter: XYRI binding site. 12時間誘導培養後の改変プロモーター導入細胞の抽出液におけるGUS活性。A:グルコース、ソルボース又はソフォロース存在下での培養後のGUS活性。B:キシロース又はキシラン存在下での培養後のGUS活性。GUS activity in extracts of modified promoter-transduced cells after induction culture for 12 hours. A: GUS activity after culture in the presence of glucose, sorbose or sophorose. B: GUS activity after culture in the presence of xylose or xylan. 実施例4で使用した形質転換体中のGUSレポーターカセット。Box:Xyn1プロモーターのシスエレメント。GUS reporter cassette in transformants used in Example 4. Box: cis element of Xyn1 promoter. 誘導培養後の改変プロモーター導入細胞の抽出液における相対GUS活性。A:ソフォロース存在下での培養後のGUS活性。B:キシラン存在下での培養後のGUS活性。Relative GUS activity in extracts of modified promoter-transduced cells after induction culture. A: GUS activity after culture in the presence of Sophorus. B: GUS activity after culture in the presence of xylan. PC-3-7株及びX3-2RB_AB1株の培養上清のウエスタンブロッティング解析。左:1%アビセル(登録商標)含有培地からの培養上清、右:1%アビセル(登録商標)及び0.5%キシラン含有培地からの培養上清。Western blotting analysis of culture supernatants of PC-3-7 strain and X3-2RB_AB1 strain. Left: culture supernatant from 1% Avicel® containing medium, right: culture supernatant from 1% Avicel® and 0.5% xylan containing medium. 0.01%ソフォロース誘導下でのX3-2RB_AB1株及びPC-3-7株におけるcbh1、xyr1、xyn3及びaabgl1遺伝子の発現。白色バー:X3-2RB_AB1株、黒色バー:PC-3-7株。Expression of cbh1, xyr1, xyn3 and aabgl1 genes in X3-2 RB_AB1 strain and PC-3-7 strain under 0.01% sophorus induction. White bar: X3-2RB_AB1 strain, black bar: PC-3-7 strain. 0.1%キシラン誘導下でのX3-2RB_AB1株及びPC-3-7株におけるxyn1、xyr1、xyn3及びaabgl1遺伝子の発現。白色バー:X3-2RB_AB1株、黒色バー:PC-3-7株。Expression of xyn1, xyr1, xyn3 and aabgl1 genes in strains X3-2RB_AB1 and PC-3-7 under 0.1% xylan induction. White bar: X3-2RB_AB1 strain, black bar: PC-3-7 strain. QM9414株及びQMX3-2RB_AB1株の培養上清のウエスタンブロッティング解析。左:1%アビセル(登録商標)含有培地からの培養上清、右:1%アビセル(登録商標)及び0.5%キシラン含有培地からの培養上清。Western blotting analysis of culture supernatants of QM9414 strain and QMX3-2RB_AB1 strain. Left: culture supernatant from 1% Avicel® containing medium, right: culture supernatant from 1% Avicel® and 0.5% xylan containing medium. QMX3-2RB_AB1株及びQM9414株におけるaabgl1遺伝子の発現。A:0.01%ソフォロース誘導下、B:0.01%キシラン誘導下。白色バー:QMX3-2RB_AB1株、黒色バー:QM9414株。Expression of aabgl1 gene in QMX3-2RB_AB1 strain and QM9414 strain. A: Under 0.01% Sophorus induction B: Under 0.01% xylan induction White bar: QMX3-2RB_AB1 strain, black bar: QM 9414 strain. E1AB1株の培養上清(JN13)及びE1AB1_X3-2RBX3株の培養上清(JN24)のSDS-PAGE解析。SDS-PAGE analysis of culture supernatant (JN13) of E1 AB1 strain and culture supernatant (JN24) of E1 AB1_X3-2RBX3.
発明の詳細な説明Detailed Description of the Invention
 本明細書中で引用された全ての特許文献、非特許文献、及びその他の刊行物は、その全体が本明細書中において参考として援用される。 All patent, non-patent and other publications cited herein are hereby incorporated by reference in their entirety.
 本明細書において、ヌクレオチド配列及びアミノ酸配列の同一性は、Lipman-Pearson法(Science,1985,227:1435-1441)によって計算される。具体的には、遺伝情報処理ソフトウェアGenetyx-Winのホモロジー解析(Search homology)プログラムを用いて、Unit size to compare(ktup)を2として解析を行うことにより算出される。 Herein, the identity of nucleotide sequences and amino acid sequences is calculated by the Lipman-Pearson method (Science, 1985, 227: 1435-1441). Specifically, it is calculated by performing analysis with Unit size to compare (ktup) of 2 using a homology analysis (Search homology) program of genetic information processing software Genetyx-Win.
 本明細書において、アミノ酸配列又はヌクレオチド配列に関する「少なくとも90%の同一性」とは、90%以上、好ましくは95%以上、より好ましくは96%以上、さらに好ましくは97%以上、さらにより好ましくは98%以上、なお好ましくは99%以上の同一性をいう。また本明細書において、アミノ酸配列又はヌクレオチド配列に関する「少なくとも95%の同一性」とは、95%以上、好ましくは96%以上、より好ましくは97%以上、さらに好ましくは98%以上、なお好ましくは99%以上の同一性をいう。 In the present specification, "at least 90% identity" with respect to the amino acid sequence or nucleotide sequence is 90% or more, preferably 95% or more, more preferably 96% or more, still more preferably 97% or more, still more preferably 98% or more, more preferably 99% or more identity. In the present specification, “at least 95% identity” with respect to the amino acid sequence or nucleotide sequence is 95% or more, preferably 96% or more, more preferably 97% or more, still more preferably 98% or more, still more preferably 99% or more of identity.
 本明細書において、アミノ酸配列又はヌクレオチド配列上の「相当する位置」又は「相当する領域」は、目的配列と参照配列(例えば、配列番号1で示されるヌクレオチド配列)とを、最大の相同性を与えるように整列(アラインメント)させることにより決定することができる。アミノ酸配列またはヌクレオチド配列のアラインメントは、公知のアルゴリズムを用いて実行することができ、その手順は当業者に公知である。例えば、アラインメントは、Clustal Wマルチプルアラインメントプログラム(Thompson,J.D.et al,1994,Nucleic Acids Res.22:4673-4680)をデフォルト設定で用いることにより、行うことができる。あるいは、Clustal Wの改訂版であるClustal W2やClustal omegaを使用することもできる。Clustal W、Clustal W2及びClustal omegaは、例えば、欧州バイオインフォマティクス研究所(European Bioinformatics Institute:EBI[www.ebi.ac.uk/index.html])や、国立遺伝学研究所が運営する日本DNAデータバンク(DDBJ[www.ddbj.nig.ac.jp/searches-j.html])のウェブサイト上で利用することができる。上述のアラインメントにより参照配列の任意の領域に対応してアラインされた目的配列の位置又は領域は、当該任意の領域に「相当する位置」又は「相当する領域」とみなされる。 In the present specification, the "corresponding position" or "corresponding region" on the amino acid sequence or nucleotide sequence refers to the target sequence and the reference sequence (for example, the nucleotide sequence shown in SEQ ID NO: 1) with maximum homology. It can be determined by aligning as given. Alignment of amino acid sequences or nucleotide sequences can be performed using known algorithms, the procedures of which are known to those skilled in the art. For example, alignment can be performed using the Clustal W multiple alignment program (Thompson, JD et al, 1994, Nucleic Acids Res. 22: 4673-4680) with default settings. Alternatively, Clustal W2 or Clustal omega, which is a revised version of Clustal W, can be used. Clustal W, Clustal W2 and Clustal omega are, for example, Japanese DNA data operated by the European Bioinformatics Institute (EBI [www.ebi.ac.uk/index.html]) and the National Institute of Genetics. It can be used on the bank (DDBJ [www.ddbj.nig.ac.jp/searches-j.html]) website. The position or region of the target sequence aligned corresponding to an arbitrary region of the reference sequence by the alignment described above is regarded as "corresponding position" or "corresponding region" to the arbitrary region.
 本明細書において、遺伝子に関する「上流」及び「下流」とは、該遺伝子の転写方向の上流及び下流をいう。例えば、「プロモーターの下流に配置された遺伝子」とは、DNAセンス鎖においてプロモーターの3’側に該遺伝子が存在することを意味し、遺伝子の上流とは、DNAセンス鎖における該遺伝子の5’側の領域を意味する。 As used herein, "upstream" and "downstream" with respect to a gene refers to upstream and downstream of the transcription direction of the gene. For example, "a gene located downstream of a promoter" means that the gene is present 3 'of the promoter in the DNA sense strand, and upstream of the gene is 5' of the gene in the DNA sense strand. Means the side area.
 本明細書において、プロモーターと遺伝子との「作動可能な連結」とは、該プロモーターが該遺伝子の転写を誘導し得るように連結されていることをいう。プロモーターと遺伝子との「作動可能な連結」の手順は当業者に周知である。 As used herein, an "operable linkage" between a promoter and a gene means that the promoter is linked so as to direct transcription of the gene. Procedures for "operably linking" promoters and genes are well known to those skilled in the art.
 本明細書において、「プロモーター活性」とは、その下流に位置する遺伝子の発現を促進する活性、より詳細には、下流に位置する遺伝子のDNAからmRNAへの転写を促進する活性を意味する。プロモーター活性は、適当なレポーター遺伝子を用いることにより確認することができる。例えば、プロモーターの下流に検出可能なタンパク質をコードするDNA、すなわち、レポーター遺伝子を連結し、そのレポーター遺伝子の発現産物の生産量を測定することにより、プロモーター活性を確認可能である。レポーター遺伝子の例としては、β-ガラクトシダーゼ(LacZ)遺伝子、β-グルクロニダーゼ(GUS)遺伝子、ルシフェラーゼ遺伝子、β-ラクタマーゼ遺伝子、GFP(Green Fluorescent Protein)遺伝子等の蛍光タンパク質の遺伝子、などが挙げられる。あるいは、プロモーター活性は、レポーター遺伝子から転写されたmRNAの発現量を定量RT-PCR等で測定することによっても確認することができる。 As used herein, “promoter activity” refers to an activity that promotes expression of a gene located downstream thereof, more specifically, an activity that promotes transcription from DNA to mRNA of a gene located downstream. Promoter activity can be confirmed by using an appropriate reporter gene. For example, promoter activity can be confirmed by linking a DNA encoding a detectable protein downstream of the promoter, ie, by linking a reporter gene, and measuring the amount of the expression product of the reporter gene. Examples of reporter genes include genes of fluorescent proteins such as β-galactosidase (LacZ) gene, β-glucuronidase (GUS) gene, luciferase gene, β-lactamase gene, GFP (Green Fluorescent Protein) gene and the like. Alternatively, promoter activity can also be confirmed by measuring the expression level of mRNA transcribed from a reporter gene by quantitative RT-PCR or the like.
 本明細書において、細胞の機能や性状、形質に対して使用する用語「本来」とは、当該機能や性状、形質が当該細胞に元から存在していることを表すために使用される。対照的に、用語「外来」とは、当該細胞に元から存在するのではなく、外部から導入された機能や性状、形質を表すために使用される。例えば、「外来」遺伝子又はポリヌクレオチドとは、細胞に外部から導入された遺伝子又はポリヌクレオチドである。外来遺伝子又はポリヌクレオチドは、それが導入された細胞と同種の生物由来であっても、異種の生物由来(すなわち異種遺伝子又はポリヌクレオチド)であってもよい。 As used herein, the term "intrinsic" used in reference to a cell function, property, or trait is used to indicate that the function, property, or trait is originally present in the cell. In contrast, the term "foreign" is used to denote an externally introduced function, property, or trait, not originally present in the cell. For example, a "foreign" gene or polynucleotide is a gene or polynucleotide that has been introduced into the cell from the outside. The foreign gene or polynucleotide may be from an organism homologous to the cell into which it has been introduced, or may be from a different organism (i.e., a heterologous gene or polynucleotide).
 本明細書において、「Xyn3プロモーター」とは、キシラナーゼXyn3をコードする遺伝子のプロモーター、及びそれと同等なプロモーターをいう。Xyn3プロモーターの例としては、以下のポリヌクレオチドからなるプロモーターが挙げられる:
 配列番号1で示されるヌクレオチド配列からなるポリヌクレオチド;
 配列番号1の350番~1084番ヌクレオチドで示されるヌクレオチド配列からなるポリヌクレオチド;又は
 配列番号1で示されるヌクレオチド配列、又は配列番号1の350番~1084番ヌクレオチドで示されるヌクレオチド配列と少なくとも90%同一であって、配列番号1の374番~401番ヌクレオチドに相当する領域にGGCTAT-NNNNNNNNNNNNNNNN-TTTGCC(配列番号2;Nは任意のヌクレオチド)で示される配列を含むヌクレオチド配列からなり、かつセルロースに誘導されるプロモーター活性を有する、ポリヌクレオチド。
As used herein, "Xyn3 promoter" refers to a promoter of a gene encoding xylanase Xyn3 and a promoter equivalent thereto. Examples of Xyn3 promoters include promoters consisting of the following polynucleotides:
A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 1;
A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1; or a nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1 at least 90% It consists of a nucleotide sequence which is identical and which comprises a sequence represented by GGCTAT-NNNNNNNNNNNNNNNNNNNN-TTTGCC (SEQ ID NO: 2; N is any nucleotide) in a region corresponding to nucleotides 374 to 401 of SEQ ID NO: 1, and A polynucleotide having induced promoter activity.
 配列番号1で示されるヌクレオチド配列と少なくとも90%同一なヌクレオチド配列の好ましい例としては、配列番号1の3番~1073番ヌクレオチドで示されるヌクレオチド配列が挙げられる。配列番号1の350番~1084番ヌクレオチドで示されるヌクレオチド配列と少なくとも90%同一なヌクレオチド配列の好ましい例としては、配列番号1の350番~1073番ヌクレオチドで示されるヌクレオチド配列が挙げられる。これらの配列は、配列番号1の372番~399番ヌクレオチドに相当する領域にGGCTAT-NNNNNNNNNNNNNNNN-TTTGCC(配列番号2;Nは任意のヌクレオチド)で示される配列を含み、かつセルロースに誘導されるプロモーター活性を有する。したがって、本発明のXyn3プロモーターのさらなる例としては、以下のポリヌクレオチドからなるプロモーターが挙げられる:
 配列番号1の3番~1073番ヌクレオチドで示されるヌクレオチド配列からなるポリヌクレオチド;
 配列番号1の350番~1073番ヌクレオチドで示されるヌクレオチド配列からなるポリヌクレオチド;又は
 配列番号1の3番~1073番ヌクレオチドで示されるヌクレオチド配列、又は配列番号1の350番~1073番ヌクレオチドで示されるヌクレオチド配列と少なくとも90%同一であって、配列番号1の374番~401番ヌクレオチドに相当する領域にGGCTAT-NNNNNNNNNNNNNNNN-TTTGCC(配列番号2;Nは任意のヌクレオチド)で示される配列を含むヌクレオチド配列からなり、かつセルロースに誘導されるプロモーター活性を有する、ポリヌクレオチド。
Preferred examples of the nucleotide sequence at least 90% identical to the nucleotide sequence shown in SEQ ID NO: 1 include the nucleotide sequence shown in nucleotides 3 to 1073 of SEQ ID NO: 1. As a preferred example of a nucleotide sequence at least 90% identical to the nucleotide sequence shown by nucleotides 350 to 1084 of SEQ ID NO: 1, the nucleotide sequence shown by nucleotides 350 to 1073 of SEQ ID NO: 1 can be mentioned. These sequences contain a sequence represented by GGCTAT-NNNNNNNNNNNNNNNN-NN-NN-TNTGNN (SEQ ID NO: 2; N is any nucleotide) in a region corresponding to nucleotides 372-399 of SEQ ID NO: 1, and a cellulose-derived promoter It has activity. Thus, a further example of the Xyn3 promoter of the present invention includes a promoter consisting of the following polynucleotide:
A polynucleotide consisting of a nucleotide sequence represented by nucleotides 3 to 1073 of SEQ ID NO: 1;
A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1073 of SEQ ID NO: 1; or a nucleotide sequence represented by nucleotides 3 to 1073 of SEQ ID NO: 1, or nucleotides 350 to 1073 of SEQ ID NO: 1 Nucleotide which is at least 90% identical to the nucleotide sequence shown and which corresponds to nucleotides 374-401 of SEQ ID NO: 1 in the region corresponding to nucleotides GGCTAT-NNNNNNNNNNNNNNNNNN-NN-NNTNNN-TTTGCC (SEQ ID NO: 2; N is any nucleotide) A polynucleotide consisting of a sequence and having cellulose-induced promoter activity.
 該GGCTAT-NNNNNNNNNNNNNNNN-TTTGCC(配列番号2)は、Xyn3プロモーターのシスエレメントである。当該配列番号2で示される配列の好ましい例としては、GGCTATATAGGACACTGTCAATTTTGCC(配列番号3)で示される配列が挙げられる。 The GGCTAT-NNNNNNNNNNNNNNNN-TTTGCC (SEQ ID NO: 2) is a cis element of the Xyn3 promoter. As a preferable example of the said sequence shown by sequence number 2, the sequence shown by GGCTATATAGGACACTGTCAATTTTGCC (sequence number 3) is mentioned.
 好ましくは、該Xyn3プロモーターは、既存のキシラナーゼプロモーターが有するモチーフ(非特許文献2、Fungal Genet Biol,2008,45:1094-1102)を保有している。該モチーフの例としては、TATA box、CREI結合部位、ACEI結合部位、ACEII結合部位、CAATモチーフなどが挙げられる。より詳細には以下の領域が挙げられる:
 配列番号1の860番~863番ヌクレオチド及び889番~892番ヌクレオチドに相当する領域におけるTATA box(例えばTATA);
 配列番号1の53番~58番ヌクレオチド、124番~129番ヌクレオチド、249番~254番ヌクレオチド、456番~461番ヌクレオチド、509番~514番ヌクレオチド、及び811番~816番ヌクレオチドに相当する領域におけるCREI結合部位(例えば、CTCCAG、CTCCAC、CCCCAG、CTCCGG、CTCCGC及びCTGGGGからなる群より選択される配列):
 配列番号1の350番~354番ヌクレオチドに相当する領域におけるACEI結合部位(例えばTGCCT、AGGCAなど);
 配列番号1の594番~599番ヌクレオチド及び845番~850番ヌクレオチドに相当する領域におけるACEII結合部位(例えばGGCTAA、TTAGCC、及びGGCTAAからなる群より選択される配列);ならびに
 配列番号1の583番~587番ヌクレオチドに相当する領域におけるCAATモチーフ(例えばCCAAT)。
Preferably, the Xyn3 promoter has a motif (Fungal Genet Biol, 2008, 45: 1094-1102) possessed by the existing xylanase promoter. Examples of the motif include TATA box, CREI binding site, ACEI binding site, ACEII binding site, CAAT motif and the like. The following areas may be mentioned in more detail:
TATA box (eg, TATA) in a region corresponding to nucleotides 860 to 863 and nucleotides 889 to 892 of SEQ ID NO: 1;
Regions corresponding to nucleotides 53 to 58, nucleotides 124 to 129, nucleotides 249 to 254, nucleotides 456 to 461, nucleotides 509 to 514, and nucleotides 811 to 816 of SEQ ID NO: 1 A CREI binding site (eg, a sequence selected from the group consisting of CTCCAG, CTCCAC, CCCCAG, CTCCGG, CTCCGC and CTGGGG):
ACEI binding site (eg, TGCCT, AGGCA, etc.) in a region corresponding to nucleotides 350 to 354 of SEQ ID NO: 1;
ACEII binding site (for example, a sequence selected from the group consisting of GGCTAA, TTAGCC, and GGCTAA) in a region corresponding to nucleotides 594 to 599 and nucleotides 845 to 850 of SEQ ID NO: 1; and SEQ ID NO: 583 CAAT motif (eg, CCAAT) in the region corresponding to nucleotides 587.
 本明細書において、「Xyn1プロモーターのシスエレメント」とは、キシラナーゼXyn1をコードする遺伝子のプロモーター上に存在するシスエレメント、及びそれと同等なシスエレメントをいう。Xyn1プロモーターのシスエレメントの例としては、GGCTAA-NNNNNNNNNN-TTAGCC(配列番号4;Nは任意のヌクレオチド)で示されるヌクレオチド配列からなるポリヌクレオチドが挙げられる。配列番号4で示される配列の好ましい例としては、GGCTAAATGCGACATCTTAGCC(配列番号5)で示される配列が挙げられる。 As used herein, “cis element of Xyn1 promoter” refers to a cis element present on the promoter of a gene encoding xylanase Xyn1 and cis elements equivalent thereto. An example of the cis element of the Xyn1 promoter includes a polynucleotide consisting of a nucleotide sequence represented by GGCTAA-NNNNNNNNNN-TTAGCC (SEQ ID NO: 4; N is any nucleotide). Preferred examples of the sequence shown in SEQ ID NO: 4 include the sequence shown in GGCTAAATGCGACATCTTAGCC (SEQ ID NO: 5).
 本発明は、キシラナーゼプロモーター由来の改変プロモーター、及びその製造方法の提供に関する。本発明はまた、該改変プロモーターを含有するベクター及び形質転換体の提供に関する。 The present invention relates to the provision of a modified promoter derived from a xylanase promoter, and a method of producing the same. The present invention also relates to the provision of vectors and transformants containing the modified promoter.
 本発明者らは、キシラナーゼXyn3をコードする遺伝子のプロモーターのシスエレメントを他のキシラナーゼプロモーターのシスエレメントをもとに改変することで、バイオマス中での該Xyn3をコードする遺伝子のプロモーターの発現誘導能が向上することを見出した。 The present inventors have modified the cis element of the promoter of the gene encoding xylanase Xyn3 based on the cis elements of other xylanase promoters, thereby inducing the expression inducibility of the promoter of the gene encoding Xyn3 in biomass. Was found to improve.
 本発明の改変プロモーターは、ソフォロース、セルロースに対する誘導能が向上しており、さらにはキシラン系物質による誘導能を有することがある。本発明によれば、キシラナーゼや、その他バイオマスの分解又は糖化に関わる酵素の微生物学的製造の効率を向上させることができる。 The modified promoter of the present invention has an improved ability to induce sophorose and cellulose, and may further have the ability to be induced by a xylan-based substance. According to the present invention, it is possible to improve the efficiency of microbiological production of xylanase and other enzymes involved in the degradation or saccharification of biomass.
 本発明は、改変プロモーターを提供する。本発明の改変プロモーターは、Xyn3プロモーターの改変プロモーターである。代表的には、本発明の改変プロモーターは、Xyn3プロモーターのポリヌクレオチドにおけるシスエレメント領域に対して、Xyn1プロモーターのシスエレメント又はその相補鎖を含むポリヌクレオチドを置換又は挿入することによって得られたものである。Xyn3プロモーターは、本発明の改変プロモーターの親プロモーターである。 The present invention provides modified promoters. The modified promoter of the present invention is a modified promoter of Xyn3 promoter. Typically, the modified promoter of the present invention is obtained by substituting or inserting a polynucleotide containing a cis element of Xyn1 promoter or a complementary strand thereof to a cis element region in a polynucleotide of Xyn3 promoter. is there. The Xyn3 promoter is a parent promoter of the modified promoter of the present invention.
 本発明において、所定のヌクレオチド配列からなるシスエレメント(又はその相補鎖)、又はそれを含むポリヌクレオチドの、Xyn3プロモーターへの置換又は挿入は、該プロモーターのDNAセンス鎖に連結される側の鎖に、該所定のヌクレオチド配列(又はその相補鎖)が配置するように行われる。同様に、本発明の改変プロモーターが所定のヌクレオチド配列からなるシスエレメント(又はその相補鎖)、又はそれを含むポリヌクレオチドを含有する場合、該所定のヌクレオチド配列(又はその相補鎖)は、該プロモーターのDNAセンス鎖に連結される側の鎖に存在する。 In the present invention, substitution or insertion of a cis element (or its complementary strand) consisting of a predetermined nucleotide sequence, or a polynucleotide containing the same into the Xyn3 promoter is to the side of the promoter linked to the DNA sense strand. , The predetermined nucleotide sequence (or the complementary strand thereof) is arranged. Similarly, when the modified promoter of the present invention contains a cis element (or a complementary strand thereof) consisting of a predetermined nucleotide sequence, or a polynucleotide containing the same, the predetermined nucleotide sequence (or a complementary strand thereof) is the promoter Are present on the side which is linked to the DNA sense strand of
 好ましい実施形態において、本発明は、改変プロモーターであって、
 配列番号1の374番~401番ヌクレオチドに相当する領域に、1つ以上のXyn1プロモーターのシスエレメントのポリヌクレオチド又はその相補鎖、を含有するポリヌクレオチドを含む、Xyn3プロモーターのポリヌクレオチドからなり、
 該Xyn3プロモーターのポリヌクレオチドが、以下:
 配列番号1で示されるヌクレオチド配列からなるポリヌクレオチド;
 配列番号1の350番~1084番ヌクレオチドで示されるヌクレオチド配列からなるポリヌクレオチド;又は
 配列番号1で示されるヌクレオチド配列、又は配列番号1の350番~1084番ヌクレオチドで示されるヌクレオチド配列と少なくとも90%同一であって配列番号1の374番~401番ヌクレオチドに相当する領域にGGCTAT-NNNNNNNNNNNNNNNN-TTTGCC(配列番号2)で示される配列を含むヌクレオチド配列からなり、かつセルロースに誘導されるプロモーター活性を有する、ポリヌクレオチド、
であり、かつ
 該Xyn1プロモーターのシスエレメントのポリヌクレオチドが、GGCTAA-NNNNNNNNNN-TTAGCC(配列番号4)で示されるヌクレオチド配列からなる、
改変プロモーターを提供する。
In a preferred embodiment, the invention is a modified promoter,
It consists of a polynucleotide of Xyn3 promoter including a polynucleotide containing a polynucleotide of cis element of one or more Xyn1 promoters or a complementary strand thereof in a region corresponding to nucleotides 374 to 401 of SEQ ID NO: 1,
The polynucleotide of the Xyn3 promoter is as follows:
A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 1;
A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1; or a nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1 at least 90% A region identical to that of SEQ ID NO: 1 and corresponding to nucleotides 374 to 401, consisting of a nucleotide sequence comprising the sequence shown by GGCTAT-NNNNNNNNNNNNNNNN-TTTGCC (SEQ ID NO: 2), and having a cellulose-induced promoter activity , Polynucleotides,
And the polynucleotide of the cis element of the Xyn1 promoter consists of the nucleotide sequence shown by GGCTAA-NNNNNNNNNN-TTAGCC (SEQ ID NO: 4)
Provide a modified promoter.
 好ましい実施形態において、該Xyn3プロモーターのポリヌクレオチドは、
 配列番号1で示されるヌクレオチド配列からなるポリヌクレオチド;
 配列番号1の350番~1084番ヌクレオチドで示されるヌクレオチド配列からなるポリヌクレオチド;又は
 配列番号1で示されるヌクレオチド配列、又は配列番号1の350番~1084番ヌクレオチドで示されるヌクレオチド配列と少なくとも95%同一であって配列番号1の374番~401番ヌクレオチドに相当する領域にGGCTAT-NNNNNNNNNNNNNNNN-TTTGCC(配列番号2)で示される配列を含むヌクレオチド配列からなり、かつセルロースに誘導されるプロモーター活性を有する、ポリヌクレオチド、
である。
In a preferred embodiment, the polynucleotide of the Xyn3 promoter is
A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 1;
A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1; or a nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1 at least 95% A region identical to that of SEQ ID NO: 1 and corresponding to nucleotides 374 to 401, consisting of a nucleotide sequence comprising the sequence shown by GGCTAT-NNNNNNNNNNNNNNNN-TTTGCC (SEQ ID NO: 2), and having a cellulose-induced promoter activity , Polynucleotides,
It is.
 より好ましい実施形態において、該Xyn3プロモーターのポリヌクレオチドは、
 配列番号1で示されるヌクレオチド配列からなるポリヌクレオチド;
 配列番号1の350番~1084番ヌクレオチドで示されるヌクレオチド配列からなるポリヌクレオチド;又は
 配列番号1で示されるヌクレオチド配列、又は配列番号1の350番~1084番ヌクレオチドで示されるヌクレオチド配列と少なくとも95%同一であって配列番号1の374番~401番ヌクレオチドに相当する領域にGGCTATATAGGACACTGTCAATTTTGCC(配列番号3)で示される配列を含むヌクレオチド配列からなり、かつセルロースに誘導されるプロモーター活性を有する、ポリヌクレオチド、
である。
In a more preferred embodiment, the polynucleotide of the Xyn3 promoter is
A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 1;
A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1; or a nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1 at least 95% A polynucleotide comprising a nucleotide sequence which is identical and corresponds to nucleotides 374-401 of SEQ ID NO: 1 and which comprises the sequence shown by GGCTATATAGGACACTGTCAATTTTGCC (SEQ ID NO: 3) and has a cellulose-induced promoter activity,
It is.
 さらに好ましい実施形態において、該Xyn3プロモーターのポリヌクレオチドは、
 配列番号1の3~1073番ヌクレオチドで示されるヌクレオチド配列からなるポリヌクレオチド;
 配列番号1の350番~1073番ヌクレオチドで示されるヌクレオチド配列からなるポリヌクレオチド;又は
 配列番号1の3~1073番ヌクレオチドで示されるヌクレオチド配列、又は配列番号1の350番~1073番ヌクレオチドで示されるヌクレオチド配列と少なくとも90%同一であって配列番号1の374番~401番ヌクレオチドに相当する領域にGGCTAT-NNNNNNNNNNNNNNNN-TTTGCC(配列番号2)で示される配列を含むヌクレオチド配列からなり、かつセルロースに誘導されるプロモーター活性を有する、ポリヌクレオチド、
である。さらに好ましい実施形態において、該GGCTAT-NNNNNNNNNNNNNNNN-TTTGCC(配列番号2)で示される配列は、GCTATATAGGACACTGTCAATTTTGCC(配列番号3)で示される配列である。
In a further preferred embodiment, the polynucleotide of said Xyn3 promoter is
A polynucleotide consisting of a nucleotide sequence represented by nucleotides 3-1073 of SEQ ID NO: 1;
A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1073 of SEQ ID NO: 1; or a nucleotide sequence represented by nucleotides 3 to 1073 of SEQ ID NO: 1, or represented by nucleotides 350 to 1073 of SEQ ID NO: 1 GGCTAT-NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN (SEQ. The SEQ. Polynucleotides having promoter activity,
It is. In a further preferred embodiment, the sequence represented by GGCTAT-NNNNNNNNNNNNNN-TTTGCC (SEQ ID NO: 2) is the sequence represented by GCTATATAGGACACTGTCAATTTTGCC (SEQ ID NO: 3).
 さらに好ましい実施形態において、該Xyn3プロモーターのポリヌクレオチドは、
 配列番号1の3~1073番ヌクレオチドで示されるヌクレオチド配列からなるポリヌクレオチド;
 配列番号1の350番~1073番ヌクレオチドで示されるヌクレオチド配列からなるポリヌクレオチド;又は
 配列番号1の3~1073番ヌクレオチドで示されるヌクレオチド配列、又は配列番号1の350番~1073番ヌクレオチドで示されるヌクレオチド配列と少なくとも95%同一であって配列番号1の374番~401番ヌクレオチドに相当する領域にGGCTAT-NNNNNNNNNNNNNNNN-TTTGCC(配列番号2)で示される配列を含むヌクレオチド配列からなり、かつセルロースに誘導されるプロモーター活性を有する、ポリヌクレオチド、
である。さらに好ましい実施形態において、該GGCTAT-NNNNNNNNNNNNNNNN-TTTGCC(配列番号2)で示される配列は、GCTATATAGGACACTGTCAATTTTGCC(配列番号3)で示される配列である。
In a further preferred embodiment, the polynucleotide of said Xyn3 promoter is
A polynucleotide consisting of a nucleotide sequence represented by nucleotides 3-1073 of SEQ ID NO: 1;
A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1073 of SEQ ID NO: 1; or a nucleotide sequence represented by nucleotides 3 to 1073 of SEQ ID NO: 1, or represented by nucleotides 350 to 1073 of SEQ ID NO: 1 GGCTAT-NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN (SEQ. The region is derived from cellulose, which is at least 95% identical to the nucleotide sequence and at least 95% identical to the nucleotide sequence and corresponding to nucleotides 374 to 401 of Polynucleotides having promoter activity,
It is. In a further preferred embodiment, the sequence represented by GGCTAT-NNNNNNNNNNNNNN-TTTGCC (SEQ ID NO: 2) is the sequence represented by GCTATATAGGACACTGTCAATTTTGCC (SEQ ID NO: 3).
 好ましい実施形態において、該Xyn1プロモーターのシスエレメントのポリヌクレオチドは、GGCTAAATGCGACATCTTAGCC(配列番号5)で示されるヌクレオチド配列からなる。 In a preferred embodiment, the polynucleotide of the cis element of the Xyn1 promoter consists of the nucleotide sequence shown in GGCTAAATGCGACATCTTAGCC (SEQ ID NO: 5).
 本発明の改変プロモーターにおいては、Xyn3プロモーター(親プロモーター)のポリヌクレオチドにおける配列番号1の374番~401番ヌクレオチドに相当する領域(以下の本明細書において、「374番~401番領域」ともいう)に、1つ以上の該Xyn1プロモーターのシスエレメントのポリヌクレオチド又はその相補鎖、を含有するポリヌクレオチド(以下の本明細書において、「Xyn1シスエレメント含有フラグメント」ともいう)が置換又は挿入されている。該Xyn1シスエレメント含有フラグメントに含まれる該Xyn1シスエレメント又はその相補鎖の数は、好ましくは1~10個、より好ましくは1~8個、さらに好ましくは1~6個、さらに好ましくは2~6個、さらに好ましくは1、2、3又は6個である。 In the modified promoter of the present invention, a region corresponding to nucleotides 374 to 401 of SEQ ID NO: 1 in the polynucleotide of Xyn3 promoter (parent promoter) (also referred to as “region 374 to 401 in the following specification”) A polynucleotide containing one or more cis-element polynucleotides of the Xyn1 promoter or a complementary strand thereof (hereinafter also referred to as “Xyn1 cis-element-containing fragment” in the following specification) is substituted or inserted, There is. The number of the Xyn1 cis element or its complementary strand contained in the Xyn1 cis element-containing fragment is preferably 1 to 10, more preferably 1 to 8, still more preferably 1 to 6, further preferably 2 to 6 It is preferably one, two, three or six.
 好ましい実施形態において、該Xyn1シスエレメント含有フラグメントは、配列番号4で示されるヌクレオチド配列からなるポリヌクレオチド又はその相補鎖を1~10個、より好ましくは1~8個、さらに好ましくは1~6個、さらに好ましくは2~6個、さらに好ましくは1、2、3又は6個含むポリヌクレオチドである。よって好ましい実施形態において、本発明の改変プロモーターは、配列番号4で示されるヌクレオチド配列からなるポリヌクレオチド又はその相補鎖を1~10個、より好ましくは1~8個、さらに好ましくは1~6個、さらに好ましくは2~6個、さらに好ましくは1、2、3又は6個含む。 In a preferred embodiment, the Xyn1 cis element-containing fragment comprises 1 to 10, more preferably 1 to 8, more preferably 1 to 6 polynucleotides consisting of the nucleotide sequence shown in SEQ ID NO: 4 or the complementary strand thereof More preferably, it is a polynucleotide containing 2 to 6, more preferably 1, 2, 3 or 6. Therefore, in a preferred embodiment, the modified promoter of the present invention comprises 1 to 10, more preferably 1 to 8, more preferably 1 to 6 polynucleotides consisting of the nucleotide sequence shown in SEQ ID NO: 4 or the complementary strand thereof. , More preferably 2 to 6, still more preferably 1, 2, 3 or 6.
 さらに好ましい実施形態において、該Xyn1シスエレメント含有フラグメントは、配列番号5で示されるヌクレオチド配列からなるポリヌクレオチドを1~10個、より好ましくは1~8個、さらに好ましくは1~6個、さらに好ましくは2~6個、さらに好ましくは1、2、3又は6個含むポリヌクレオチドである。別のさらに好ましい実施形態において、該Xyn1シスエレメント含有フラグメントは、配列番号5で示されるヌクレオチド配列からなるポリヌクレオチドの相補鎖を1~10個、より好ましくは1~8個、さらに好ましくは1~6個、さらに好ましくは2~6個、さらに好ましくは1、2、3又は6個含むポリヌクレオチドである。なお好ましい実施形態において、該Xyn1シスエレメント含有フラグメントは、配列番号5で示されるヌクレオチド配列からなるポリヌクレオチドを2個含むポリヌクレオチドであるか、又は配列番号5で示されるヌクレオチド配列からなるポリヌクレオチドの相補鎖を1個又は2個含むポリヌクレオチドである。別のなお好ましい実施形態において、該Xyn1シスエレメント含有フラグメントは、配列番号5で示されるヌクレオチド配列からなるポリヌクレオチドを3個含むポリヌクレオチドであるか、又は配列番号5で示されるヌクレオチド配列からなるポリヌクレオチドの相補鎖を3個又は6個含むポリヌクレオチドである。 In a further preferred embodiment, the Xyn1 cis-element-containing fragment comprises 1 to 10, more preferably 1 to 8, still more preferably 1 to 6, polynucleotides consisting of the nucleotide sequence shown in SEQ ID NO: 5 Is a polynucleotide comprising 2 to 6, more preferably 1, 2, 3 or 6. In another further preferred embodiment, the Xyn1 cis-element-containing fragment has 1 to 10, more preferably 1 to 8, more preferably 1 to 10, complementary strands of a polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 5 It is a polynucleotide containing six, more preferably 2 to 6, more preferably 1, 2, 3 or 6. In a still preferred embodiment, the Xyn1 cis-element-containing fragment is a polynucleotide comprising two polynucleotides consisting of the nucleotide sequence shown in SEQ ID NO: 5, or a polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 5 It is a polynucleotide containing one or two complementary strands. In another still preferred embodiment, the Xyn1 cis-element containing fragment is a polynucleotide comprising three polynucleotides consisting of the nucleotide sequence shown in SEQ ID NO: 5 or a poly consisting of the nucleotide sequence shown in SEQ ID NO: 5 A polynucleotide comprising three or six complementary strands of nucleotides.
 該Xyn1シスエレメント含有フラグメントが配列番号4又は5で示されるヌクレオチド配列からなるポリヌクレオチド又はその相補鎖を2個以上含む場合、好ましくは、それらの各々の間にスペーサー配列を有する。該スペーサー配列は、5~20個の塩基からなる配列であって、該Xyn1シスエレメント含有フラグメントが有する遺伝子発現制御機能を阻害しないものであればよい。該スペーサー配列の例としては、TCAAGA、TCTAGAなどが挙げられる。 When the Xyn1 cis-element-containing fragment comprises two or more polynucleotides consisting of the nucleotide sequence shown in SEQ ID NO: 4 or 5 or a complementary strand thereof, it is preferable to have a spacer sequence between each of them. The spacer sequence may be a sequence consisting of 5 to 20 bases which does not inhibit the gene expression control function of the Xyn1 cis element-containing fragment. Examples of the spacer sequence include TCAAGA, TCTAGA and the like.
 したがって、該Xyn1シスエレメント含有フラグメントの好ましい例としては、配列番号5で示されるヌクレオチド配列又はその相補鎖;ならびに、配列番号5で示されるヌクレオチド配列又はその相補鎖の下流に該スペーサー配列が連結された配列の、2個以上、好ましくは2~10個、より好ましくは2~8個、さらに好ましくは2~6個、さらに好ましくは3~6個、さらに好ましくは2、3又は6個の繰り返しからなるポリヌクレオチドが挙げられる。これらのXyn1シスエレメント含有フラグメントには、その最上流及び最下流に、上述した該スペーサー配列が配置されていてもよい。 Therefore, preferred examples of the Xyn1 cis-element-containing fragment include the nucleotide sequence shown in SEQ ID NO: 5 or its complementary strand; and the spacer sequence linked downstream of the nucleotide sequence shown in SEQ ID NO: 5 or its complementary strand 2 or more, preferably 2 to 10, more preferably 2 to 8, still more preferably 2 to 6, still more preferably 3 to 6, still more preferably 2, 3 or 6, of the above sequence And a polynucleotide consisting of In these Xyn1 cis-element-containing fragments, the above-mentioned spacer sequences may be arranged at the most upstream and the most downstream.
 該Xyn1シスエレメント含有フラグメントの好ましい例としては以下:
 配列番号6で示されるヌクレオチド配列からなるポリヌクレオチド又はその相補鎖;
 配列番号7で示されるヌクレオチド配列からなるポリヌクレオチド;
 配列番号8で示されるヌクレオチド配列からなるポリヌクレオチド;
 配列番号41で示されるヌクレオチド配列からなるポリヌクレオチド;
 配列番号42で示されるヌクレオチド配列からなるポリヌクレオチド;及び、
 配列番号43で示されるヌクレオチド配列からなるポリヌクレオチド、
が挙げられる。
Preferred examples of said Xyn1 cis-element containing fragment are:
A polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 6 or its complementary strand;
A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 7;
A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 8;
A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 41;
A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 42;
A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 43,
Can be mentioned.
 したがって、好ましい実施形態において、本発明の改変プロモーターは、Xyn3プロモーター(親プロモーター)と比べて、該374番~401番領域に、以下のポリヌクレオチドを含む:
 配列番号6で示されるヌクレオチド配列からなるポリヌクレオチド又はその相補鎖;
 配列番号7で示されるヌクレオチド配列からなるポリヌクレオチド;
 配列番号8で示されるヌクレオチド配列からなるポリヌクレオチド;
 配列番号41で示されるヌクレオチド配列からなるポリヌクレオチド;
 配列番号42で示されるヌクレオチド配列からなるポリヌクレオチド;あるいは、
 配列番号43で示されるヌクレオチド配列からなるポリヌクレオチド。
Thus, in a preferred embodiment, the modified promoter of the present invention comprises the following polynucleotide in the 374 to 401 region compared to the Xyn3 promoter (parent promoter):
A polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 6 or its complementary strand;
A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 7;
A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 8;
A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 41;
A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 42; or
A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 43.
 Xyn1遺伝子のプロモーターには、そのシスエレメントに隣接してHAP2/3/5結合サイト(転写促進因子、5’-CCAAT-3’)及びCREI結合サイト(炭素源異化抑制因子、5’-SYGGRG-3’、5’-CCCCAG-3’)が存在する(Biosci Biotechnol Biochem,2016,80(9):1712-1729)。一方、該親プロモーターに置換又は挿入される該Xyn1シスエレメント含有フラグメントは、HAP2/3/5結合サイト及びCREI結合サイトを含まないものが好ましい。また好ましくは、本発明の改変プロモーターは、置換又は挿入されたXyn1プロモーターのシスエレメントの近傍にHAP2/3/5結合サイト及びCREI結合サイトを含まない。Xyn3プロモーターの該374番~401番領域にHAP2/3/5結合サイト及びCREI結合サイトを含まない該Xyn1シスエレメント含有フラグメントを置換又は挿入すれば、置換又は挿入されたXyn1プロモーターのシスエレメントの近傍にHAP2/3/5結合サイト及びCREI結合サイトは配置されない。HAP結合サイト又はCREI結合サイトを含むXyn1プロモーターのシスエレメンを置換又は挿入した場合、改変プロモーターのプロモーター活性が低下したことが報告されている(Applied Microbiology and Biotechnology,2018,102(6):2737-2752)。 In the promoter of Xyn1 gene, HAP2 / 3/5 binding site (transcription promoting factor, 5'-CCAAT-3 ') and CREI binding site (carbon source catabolite repressor, 5'-SYGGRG-) adjacent to its cis element 3 ', 5'-CCCCAG-3') is present (Biosci Biotechnol Biochem, 2016, 80 (9): 1712-1729). On the other hand, the Xyn1 cis-element-containing fragment to be substituted or inserted into the parent promoter is preferably one that does not contain the HAP2 / 3/5 binding site and the CREI binding site. Also preferably, the modified promoter of the present invention does not contain the HAP2 / 3/5 binding site and the CREI binding site in the vicinity of the cis element of the substituted or inserted Xyn1 promoter. If the Xyn1 cis-element-containing fragment not containing the HAP2 / 3/5 binding site and the CREI binding site is substituted or inserted in the No. 374 to No. 401 region of the Xyn3 promoter, the vicinity of the substituted or inserted Xyn1 promoter cis element HAP2 / 3/5 binding site and CREI binding site are not located in It has been reported that when the cis-element of Xyn1 promoter containing HAP binding site or CREI binding site is substituted or inserted, the promoter activity of the modified promoter is reduced (Applied Microbiology and Biotechnology, 2018, 102 (6): 2737-2752 ).
 親プロモーターから本発明の改変プロモーターを製造する場合、Xyn3プロモーターの該374番~401番領域の全体を該Xyn1シスエレメント含有フラグメントで置換してもよく、又は該374番~401番領域のヌクレオチドを全て残したまま、該領域の内部に該Xyn1シスエレメント含有フラグメントを挿入してもよい。あるいは、該374番~401番領域の一部を該Xyn1シスエレメント含有フラグメントで置換するように、該374番~401番領域の内部に該Xyn1シスエレメント含有フラグメントを挿入してもよい。言い換えると、本発明の改変プロモーターにおいて、該374番~401番領域は、その全体が欠失していても、又はその一部が欠失していてもよく、あるいは該Xyn1シスエレメント含有フラグメントで分断されていてもよい。好ましくは、本発明の改変プロモーターにおいては、Xyn3プロモーターの該374番~401番領域の全体が該Xyn1シスエレメント含有フラグメントで置換されており、該374番~401番領域の全体が欠失している。 When producing the modified promoter of the present invention from the parent promoter, the entire 374 to 401 region of the Xyn3 promoter may be replaced with the Xyn1 cis element-containing fragment, or the nucleotides of the 374 to 401 region The Xyn1 cis-element-containing fragment may be inserted into the inside of the region while leaving all the fragments. Alternatively, the Xyn1 cis-element-containing fragment may be inserted inside the 374th-401th region so that a part of the 374th-401th region is replaced with the Xyn1 cis-element-containing fragment. In other words, in the modified promoter of the present invention, the regions 374 to 401 may be entirely deleted or partially deleted, or in the Xyn1 cis element-containing fragment It may be divided. Preferably, in the modified promoter of the present invention, the entire 374 to 401 region of the Xyn3 promoter is substituted with the Xyn1 cis element-containing fragment, and the entire 374 to 401 region is deleted. There is.
 本発明の改変プロモーターの取得方法は、特に制限されず、通常の化学合成法又は遺伝子工学的手法により得ることができる。例えば、本発明の改変プロモーターは、人工合成することができる。DNAの人工合成には、例えば、インビトロジェン社等のサービスを利用することができる。あるいは、本発明の改変プロモーターは、Xyn3プロモーター(親プロモーター)を遺伝子工学的に改変することによって製造することができる。 The method for obtaining the modified promoter of the present invention is not particularly limited, and can be obtained by a conventional chemical synthesis method or a genetic engineering method. For example, the modified promoter of the present invention can be artificially synthesized. For artificial synthesis of DNA, for example, a service such as Invitrogen can be used. Alternatively, the modified promoter of the present invention can be produced by genetically modifying the Xyn3 promoter (parent promoter).
 本発明の改変プロモーターの親プロモーターは、上述した手段で人工合成してもよいが、微生物からクローニングすることもできる。例えば、配列
番号1で示されるヌクレオチド配列からなるXyn3プロモーターのポリヌクレオチドは、トリコデルマ・リーセイPC-3-7株からクローニングすることができる。
The parent promoter of the modified promoter of the present invention may be artificially synthesized by the means described above, but may also be cloned from a microorganism. For example, a polynucleotide of the Xyn3 promoter consisting of the nucleotide sequence shown in SEQ ID NO: 1 can be cloned from Trichoderma reesei PC-3-7 strain.
 あるいは、本発明の改変プロモーターの親プロモーターは、突然変異導入したトリコデルマ・リーセイPC-3-7株からクローニングすることができる。例えば、トリコデルマ・リーセイPC-3-7株におけるXyn3プロモーターのDNAに突然変異を導入し、得られた変異DNAの中から、配列番号1で示されるヌクレオチド配列と少なくとも90%同一であって、配列番号1の374番~401番ヌクレオチドに相当する領域に配列番号2で示される配列を含むヌクレオチド配列からなり、かつプロモーター活性を有するポリヌクレオチドを選択することができる。突然変異導入の手法としては、例えば、紫外線照射及び部位特異的変異導入法が挙げられる。変異DNAのプロモーター活性は、例えば、変異導入したDNAの下流に目的遺伝子を作動可能に連結し、該目的遺伝子の発現量解析を行うことにより、測定することができる。これらの変異導入及び目的とする変異DNAの選択は、当業者の慣用手段である。 Alternatively, the parent promoter of the modified promoter of the present invention can be cloned from a mutated Trichoderma reesei strain PC-3-7. For example, a mutation is introduced into the DNA of the Xyn3 promoter in Trichoderma reesei PC-3-7 strain, and among the obtained mutant DNA, at least 90% identical to the nucleotide sequence shown in SEQ ID NO: 1, A polynucleotide consisting of a nucleotide sequence comprising the sequence shown in SEQ ID NO: 2 in the region corresponding to nucleotides 374 to 401 of the number 1 and having a promoter activity can be selected. As a method of mutagenesis, for example, ultraviolet irradiation and site-directed mutagenesis can be mentioned. The promoter activity of the mutant DNA can be measured, for example, by operably linking the target gene downstream of the mutagenized DNA and analyzing the expression amount of the target gene. The introduction of these mutations and the selection of the target mutant DNA are routine procedures of those skilled in the art.
 親プロモーターの374番~401番領域に対するXyn1シスエレメント含有フラグメントの置換又は挿入は、PCRを用いたフラグメントの構築や、ライゲーションなどの当業者に周知の手順に従って行うことができる。例えば、PCRにより親プロモーター(Xyn3プロモーター)の該374番~401番領域の上流断片及び下流断片と、Xyn1シスエレメント含有フラグメントを調製し、これらを連結して該上流断片と下流断片の間にXyn1シスエレメント含有フラグメントを配置することで、該374番~401番領域の代わりにXyn1シスエレメント含有フラグメントを含む本発明の改変プロモーターを含むDNA断片を調製することができる。 The substitution or insertion of the Xyn1 cis-element-containing fragment into the region 374 to 401 of the parent promoter can be carried out according to procedures well known to those skilled in the art such as construction of a fragment using PCR, ligation and the like. For example, an upstream fragment and a downstream fragment of the region 374 to 401 of the parent promoter (Xyn3 promoter) and a fragment containing Xyn1 cis element are prepared by PCR, and they are ligated to form Xyn1 between the upstream fragment and the downstream fragment. By arranging a cis-element-containing fragment, a DNA fragment containing the modified promoter of the present invention can be prepared, which contains the Xyn1 cis-element-containing fragment instead of the 374 to 401 regions.
 本発明の改変プロモーターは、その下流に配置された遺伝子の発現を制御する機能を有する。本発明の改変プロモーターを利用することによって、転写活性に優れた発現制御領域を有するDNA断片を得ることができる。例えば、目的遺伝子と、その上流に作動可能に連結された本発明の改変プロモーターとを含むDNA断片を構築することができる。あるいは、本発明の改変プロモーターを含むDNA断片を、両末端に制限酵素認識配列を有するように構築することができる。該制限酵素認識配列を使用して、本発明の改変プロモーターをベクターに導入することができる。すなわち、公知のベクターを制限酵素で切断し、そこに、本発明の改変プロモーターを含み端部に制限酵素切断配列を有するDNA断片を添加することによって、本発明の改変プロモーターをベクターに導入することができる(制限酵素法)。 The modified promoter of the present invention has the function of controlling the expression of the gene located downstream thereof. By using the modified promoter of the present invention, a DNA fragment having an expression control region excellent in transcriptional activity can be obtained. For example, a DNA fragment can be constructed which comprises a gene of interest and the modified promoter of the present invention operably linked upstream thereof. Alternatively, a DNA fragment containing the modified promoter of the present invention can be constructed to have restriction enzyme recognition sequences at both ends. The restriction enzyme recognition sequence can be used to introduce the modified promoter of the present invention into a vector. That is, a modified vector of the present invention is introduced into a vector by cutting a known vector with a restriction enzyme and adding thereto a DNA fragment containing the modified promoter of the present invention and having a restriction enzyme cleavage sequence at the end. Can be done (restriction enzyme method).
 したがって、本発明の改変プロモーターは、ベクターに含有され得る。本発明の改変プロモーターを、目的遺伝子の発現を可能とするベクターに組み込むことで、当該目的遺伝子の発現を転写レベルで向上させることができる発現ベクターが得られる。該発現ベクターにおいては、本発明の改変プロモーターは、目的遺伝子をコードするDNAの上流に作動可能に連結され得る。本発明のプロモーターを有するベクターは、宿主細胞の染色体に導入する形態や染色体外に保持する形態のいずれであってもよい。またあるいは、目的遺伝子とその上流に作動可能に連結された本発明の改変プロモーターとを有するDNA断片を構築し、それを宿主細胞のゲノムに直接導入してもよい。 Thus, the modified promoter of the present invention can be contained in a vector. By incorporating the modified promoter of the present invention into a vector that allows expression of a target gene, an expression vector capable of enhancing expression of the target gene at the transcription level can be obtained. In the expression vector, the modified promoter of the present invention can be operably linked upstream of the DNA encoding the target gene. The vector having the promoter of the present invention may be in the form introduced into the chromosome of the host cell or in the form retained extrachromosomally. Alternatively, a DNA fragment having a target gene and the modified promoter of the present invention operably linked upstream thereof may be constructed and directly introduced into the genome of the host cell.
 本発明の改変プロモーターを組み込むベクターとしては、宿主細胞内で安定に保持され増殖が可能なものであるならば特に限定されず、例えば、アスペルギルス属(Aspergillus)微生物で自立複製因子として働くAMA1を含むプラスミド等が挙げられる。 The vector incorporating the modified promoter of the present invention is not particularly limited as long as it is stably maintained and can be propagated in a host cell, and includes, for example, AMA1 which functions as a self-sustaining replication factor in Aspergillus microorganism A plasmid etc. are mentioned.
 本発明の改変プロモーターは、親プロモーターであるXyn3プロモーターが有していたセルロース又はその誘導体によるプロモーター活性誘導能が向上している。好ましくはさらに、キシラン又はその誘導体によるプロモーター活性誘導能を獲得している。したがって、本発明の改変プロモーターは、セルロース及びキシランが存在する環境下での使用に好適である。例えば、本発明の改変プロモーターは、バイオマスの分解又はバイオマス糖化の過程で使用される酵素のプロモーターとして好適である。 The modified promoter of the present invention has an improved ability to induce promoter activity by cellulose or a derivative thereof possessed by the parent promoter Xyn3 promoter. Preferably, the ability to induce promoter activity by xylan or a derivative thereof is obtained. Thus, the modified promoter of the present invention is suitable for use in the presence of cellulose and xylan. For example, the modified promoter of the present invention is suitable as a promoter for enzymes used in the process of biomass degradation or biomass saccharification.
 したがって、本発明の改変プロモーターを含むベクターやDNA断片において該プロモーターと作動可能に連結される目的遺伝子としては、バイオマス分解又はバイオマス糖化の過程で使用される酵素、例えば、セルラーゼ(例えばβ-エンドグルカナーゼ、セロビオヒドロラーゼ、β-グルコシダーゼ等)、ヘミセルラーゼ(例えばエンドキシラナーゼ、β-キシロシダーゼ、アラビノフラノシダーゼ、グルクロニダーゼ、アセチルキシランエステラーゼ、マンナナーゼ、β-マンノシダーゼ、フェルラ酸エステラーゼ等)、キシラナーゼなどをコードする遺伝子が好ましい。あるいは、該目的遺伝子としては、本来セルロース又はキシランでは発現が誘導されないプロモーターに制御される遺伝子が好ましい。本発明の改変プロモーターと作動可能に連結される目的遺伝子のより好ましい例としては、配列番号38で示されるアミノ酸配列からなるキシラナーゼXyn3をコードするポリヌクレオチド、配列番号38と少なくとも90%同一なアミノ酸配列からなるキシラナーゼをコードするポリヌクレオチド、配列番号37で示されるヌクレオチド配列又はこれと少なくとも90%同一なヌクレオチド配列からなり、キシラナーゼをコードするポリヌクレオチド、などが挙げられる。目的遺伝子の他の好ましい例としては、配列番号40で示されるアミノ酸配列からなるキシラナーゼPspXyn(WO2016/208492)をコードするポリヌクレオチド、配列番号40と少なくとも90%同一なアミノ酸配列からなるキシラナーゼをコードするポリヌクレオチド、配列番号39で示されるヌクレオチド配列又はこれと少なくとも90%同一なヌクレオチド配列からなり、キシラナーゼをコードするポリヌクレオチド、などが挙げられる。しかし、本発明のプロモーターと作動可能に連結され得る目的遺伝子の種類は、これらに限定されない。 Therefore, the target gene operably linked to the promoter or vector in the vector or DNA fragment containing the modified promoter of the present invention includes enzymes used in the process of biomass degradation or biomass saccharification, such as cellulases (eg, β-endoglucanase , Cellobiohydrolase, β-glucosidase, etc., hemicellulase (eg, endoxylanase, β-xylosidase, arabinofuranosidase, glucuronidase, acetyl xylan esterase, mannanase, β-mannosidase, ferulic acid esterase etc.), xylanase etc. Genes are preferred. Alternatively, as the target gene, a gene that is controlled by a promoter that is not naturally induced in expression by cellulose or xylan is preferable. A more preferred example of the target gene operably linked to the modified promoter of the present invention is a polynucleotide encoding xylanase Xyn3 consisting of the amino acid sequence shown in SEQ ID NO: 38, an amino acid sequence at least 90% identical to SEQ ID NO: 38 Or a nucleotide sequence represented by SEQ ID NO: 37 or a nucleotide sequence consisting of a nucleotide sequence at least 90% identical thereto, which encodes xylanase, and the like. In another preferred example of the target gene, a polynucleotide encoding xylanase PspXyn (WO2016 / 208492) consisting of the amino acid sequence shown by SEQ ID NO: 40, encoding a xylanase consisting of an amino acid sequence at least 90% identical to SEQ ID NO: 40 The polynucleotide includes a nucleotide sequence shown by SEQ ID NO: 39 or a nucleotide sequence consisting of a nucleotide sequence at least 90% identical thereto, which encodes xylanase, and the like. However, the types of target genes that can be operably linked to the promoter of the present invention are not limited thereto.
 本発明の改変プロモーターを含むベクター又はDNA断片を、一般的な形質転換法、例えばエレクトロポレーション法、トランスフォーメーション法、トランスフェクション法、接合法、プロトプラスト法、パーティクル・ガン法、アグロバクテリウム法等を用いて宿主細胞に導入することによって、本発明の形質転換体を得ることができる。 The vector or DNA fragment containing the modified promoter of the present invention can be transformed by a general transformation method such as electroporation, transformation, transfection, conjugation, protoplast, particle gun method, Agrobacterium method etc. The transformant of the present invention can be obtained by introducing it into a host cell using
 上記ベクターやDNA断片を導入する宿主細胞の例としては、その細胞内で、本発明のプロモーターがプロモーターとして機能し得るものであれば特に限定されないが、通常は真核生物、好ましくは真菌、より好ましくは糸状菌が挙げられる。好ましい糸状菌としては、例えば、Acremonium属、Aspergillus属、Aureobasidium属、Bjerkandera属、Ceriporiopsis属、Chrysosporium属、Coprinus属、Coriolus属、Cryptococcus属、Filibasidium属、Fusarium属、Humicola属、Magnaporthe属、Mucor属、Myceliophthora属、Neocallimastix属、Neurospora属、Paecilomyces属、Penicillium属、Phanerochaete属、Phlebia属、Piromyces属、Pleurotus属、Rhizopus属、Schizophyllum属、Talaromyces属、Thermoascus属、Thielavia属、Tolypocladium属、Trametes属、及びTrichoderma属の糸状菌が挙げられ、このうち、Trichoderma属菌が好ましく、Trichoderma reesei及びその変異株がより好ましい。Trichoderma reesei及びその変異株の例としては、トリコデルマ・リーセイQM9414株及びその変異株、例えば、リコデルマ・リーセイPC-3-7株などが挙げられる。 Examples of host cells into which the above vectors and DNA fragments are introduced are not particularly limited as long as the promoter of the present invention can function as a promoter in the cells, but usually eukaryotes, preferably fungi Preferably, filamentous fungi are mentioned. Preferred filamentous fungi include, for example, Acremonium, Aspergillus, Aureobasidium, Bjerkandera, Ceriporiopsis, Chrysosporium, Coprinus, Coriolus, Coriolus, Cryptococcus, Filibasidium, Fusarium, Humicola, Magnaporthe, Mucor. Myceliophthora, Neocallimastix, Neurospora, Pasilomyces, Paecilomyces, Penicillium, Phanerochaete, Phlebia, Piromyces, Pleurotus, Rhizopus, Schizophyllum, Tala omyces genus Thermoascus genus Thielavia genus Tolypocladium sp, Trametes sp, and the genus Trichoderma filamentous fungus and the like, these, preferably Trichoderma genus, Trichoderma reesei and its mutant strain is more preferable. Examples of Trichoderma reesei and mutants thereof include Trichoderma reesei QM9414 and mutants thereof, such as Licoderma reesei PC-3-7.
 本発明の例示的実施形態として、以下の物質、製造方法、用途、方法等をさらに本明細書に開示する。但し、本発明はこれらの実施形態に限定されない。 The following materials, methods of manufacture, uses, methods, etc. are further disclosed herein as exemplary embodiments of the present invention. However, the present invention is not limited to these embodiments.
〔1〕改変プロモーターであって、
 配列番号1の374番~401番ヌクレオチドに相当する領域に、1つ以上のXyn1プロモーターのシスエレメントのポリヌクレオチド又はその相補鎖、を含有するポリヌクレオチドを含む、Xyn3プロモーターのポリヌクレオチドからなり、
 該Xyn3プロモーターのポリヌクレオチドが、以下:
 配列番号1で示されるヌクレオチド配列からなるポリヌクレオチド;
 配列番号1の350番~1084番ヌクレオチドで示されるヌクレオチド配列からなるポリヌクレオチド;又は
 配列番号1で示されるヌクレオチド配列、又は配列番号1の350番~1084番ヌクレオチドで示されるヌクレオチド配列と少なくとも90%同一であって、配列番号1の374番~401番ヌクレオチドに相当する領域にGGCTAT-NNNNNNNNNNNNNNNN-TTTGCC(配列番号2)で示される配列を含むヌクレオチド配列からなり、かつセルロースに誘導されるプロモーター活性を有する、ポリヌクレオチド、
であり、
 該Xyn1プロモーターのシスエレメントのポリヌクレオチドが、GGCTAA-NNNNNNNNNN-TTAGCC(配列番号4)で示されるヌクレオチド配列からなり、かつ
 該1つ以上のXyn1プロモーターのシスエレメントのポリヌクレオチド又はその相補鎖を含有するポリヌクレオチドが、HAP2/3/5結合サイト及びCREI結合サイトを含まない、改変プロモーター。
[1] A modified promoter, which
It consists of a polynucleotide of Xyn3 promoter including a polynucleotide containing a polynucleotide of cis element of one or more Xyn1 promoters or a complementary strand thereof in a region corresponding to nucleotides 374 to 401 of SEQ ID NO: 1,
The polynucleotide of the Xyn3 promoter is as follows:
A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 1;
A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1; or a nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1 at least 90% A region identical to that of SEQ ID NO: 1 corresponding to nucleotides 374 to 401, consisting of a nucleotide sequence comprising the sequence shown by GGCTAT-NNNNNNNNNNNNNNNNNN-TTTGCC (SEQ ID NO: 2), and a cellulose-induced promoter activity Having a polynucleotide,
And
The polynucleotide of the cis element of the Xyn1 promoter consists of the nucleotide sequence shown by GGCTAA-NNNNNNNNNN-TTAGCC (SEQ ID NO: 4), and contains the polynucleotide of the cis element of the one or more Xyn1 promoters or a complementary strand thereof A modified promoter, wherein the polynucleotide does not contain HAP2 / 3/5 binding site and CREI binding site.
〔2〕前記Xyn3プロモーターのポリヌクレオチドが、
 好ましくは、TATA box、CREI結合部位、ACEI結合部位、ACEII結合部位、及びCAATモチーフからなる群より選択される1つ以上を含有し、
 より好ましくは、TATA box、CREI結合部位、ACEI結合部位、ACEII結合部位、及びCAATモチーフを含有する、〔1〕記載の改変プロモーター。
[2] The polynucleotide of the Xyn3 promoter is
Preferably, it contains one or more selected from the group consisting of TATA box, CREI binding site, ACEI binding site, ACEII binding site, and CAAT motif,
More preferably, the modified promoter according to [1], which comprises TATA box, CREI binding site, ACEI binding site, ACEII binding site, and CAAT motif.
〔3〕好ましくは、前記TATA boxが、配列番号1の860番~863番ヌクレオチド及び889番~892番ヌクレオチドに相当する領域におけるTATA box(例えばTATA)である、〔2〕記載の改変プロモーター。 [3] The modified promoter according to [2], preferably, wherein said TATA box is a TATA box (eg, TATA) in a region corresponding to nucleotides 860 to 863 and nucleotides 889 to 892 of SEQ ID NO: 1.
〔4〕前記CREI結合部位が、
 好ましくは、配列番号1の456番~461番ヌクレオチド、509番~514番ヌクレオチド、及び811番~816番ヌクレオチドに相当する領域におけるCREI結合部位(例えば、CTCCAG、CTCCAC、CCCCAG、CTCCGG、CTCCGC及びCTGGGGからなる群より選択される配列)であり、
 より好ましくは、配列番号1の53番~58番ヌクレオチド、124番~129番ヌクレオチド、249番~254番ヌクレオチド、456番~461番ヌクレオチド、509番~514番ヌクレオチド、及び811番~816番ヌクレオチドに相当する領域におけるCREI結合部位(例えば、CTCCAG、CTCCAC、CCCCAG、CTCCGG、CTCCGC及びCTGGGGからなる群より選択される配列)である、
〔2〕又は〔3〕記載の改変プロモーター。
[4] The CREI binding site is
Preferably, a CREI binding site (for example, CTCCAG, CTCCAC, CCCCAG, CTCCGG, CTCCGC, and CTGGGG in a region corresponding to nucleotides 456 to 461, nucleotides 509 to 514, and nucleotides 811 to 816 of SEQ ID NO: 1). A sequence selected from the group consisting of
More preferably, nucleotides 53 to 58, nucleotides 124 to 129, nucleotides 249 to 254, nucleotides 456 to 461, nucleotides 509 to 514, and nucleotides 811 to 816 of SEQ ID NO: 1 A CREI binding site (eg, a sequence selected from the group consisting of CTCCAG, CTCCAC, CCCCAG, CTCCGG, CTCCGC and CTGGGG) in the region corresponding to
The modified promoter according to [2] or [3].
〔5〕好ましくは、前記ACEI結合部位が、配列番号1の350番~354番ヌクレオチドに相当する領域におけるTGCCT又はAGGCAである、〔2〕~〔4〕のいずれか1項記載の改変プロモーター。 [5] The modified promoter according to any one of [2] to [4], preferably, wherein the ACEI binding site is TGCCT or AGGCA in a region corresponding to nucleotides 350 to 354 of SEQ ID NO: 1.
〔6〕好ましくは、前記ACEII結合部位が、配列番号1の594番~599番ヌクレオチド及び845番~850番ヌクレオチドに相当する領域におけるACEII結合部位(例えばGGCTAA、TTAGCC、及びGGCTAAからなる群より選択される配列)である、〔2〕~〔5〕のいずれか1項記載の改変プロモーター。 [6] Preferably, the ACEII binding site is selected from the group consisting of ACEII binding sites (eg, GGCTAA, TTAGCC, and GGCTAA) in the regions corresponding to nucleotides 594 to 599 and nucleotides 845 to 850 of SEQ ID NO: 1 A modified promoter according to any one of [2] to [5].
〔7〕好ましくは、前記CAATモチーフが、583番~587番ヌクレオチドに相当する領域におけるCAATモチーフ(例えばCCAAT)である、〔2〕~〔6〕のいずれか1項記載の改変プロモーター。 [7] Preferably, the modified promoter according to any one of [2] to [6], wherein the CAAT motif is a CAAT motif (for example, CCAAT) in a region corresponding to nucleotides 583 to 587.
〔8〕好ましくは、前記Xyn3プロモーターのポリヌクレオチドが、以下:
 配列番号1で示されるヌクレオチド配列からなるポリヌクレオチド;
 配列番号1の350番~1084番ヌクレオチドで示されるヌクレオチド配列からなるポリヌクレオチド;又は
 配列番号1で示されるヌクレオチド配列、又は配列番号1の350番~1084番ヌクレオチドで示されるヌクレオチド配列と少なくとも95%同一であって、配列番号1の374番~401番ヌクレオチドに相当する領域に配列番号2で示される配列を含むヌクレオチド配列からなり、かつセルロースに誘導されるプロモーター活性を有する、ポリヌクレオチド、
である、〔1〕~〔7〕のいずれか1項記載の改変プロモーター。
[8] Preferably, the polynucleotide of the Xyn3 promoter is
A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 1;
A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1; or a nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1 at least 95% A polynucleotide which is identical and comprises a nucleotide sequence comprising the sequence shown in SEQ ID NO: 2 in the region corresponding to nucleotides 374 to 401 of SEQ ID NO: 1 and having a cellulose-induced promoter activity,
The modified promoter according to any one of [1] to [7], which is
〔9〕好ましくは、前記Xyn3プロモーターのポリヌクレオチドが、以下:
 配列番号1の3番~1073番ヌクレオチドで示されるヌクレオチド配列からなるポリヌクレオチド;
 配列番号1の350番~1073番ヌクレオチドで示されるヌクレオチド配列からなるポリヌクレオチド;又は
 配列番号1の3番~1073番ヌクレオチドで示されるヌクレオチド配列、又は配列番号1の350番~1073番ヌクレオチドで示されるヌクレオチド配列と少なくとも90%同一であって、配列番号1の374番~401番ヌクレオチドに相当する領域に配列番号2で示される配列を含むヌクレオチド配列からなり、かつセルロースに誘導されるプロモーター活性を有する、ポリヌクレオチド、
である、〔1〕~〔7〕のいずれか1項記載の改変プロモーター。
[9] Preferably, the polynucleotide of the Xyn3 promoter is
A polynucleotide consisting of a nucleotide sequence represented by nucleotides 3 to 1073 of SEQ ID NO: 1;
A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1073 of SEQ ID NO: 1; or a nucleotide sequence represented by nucleotides 3 to 1073 of SEQ ID NO: 1, or nucleotides 350 to 1073 of SEQ ID NO: 1 A nucleotide sequence comprising a sequence represented by SEQ ID NO: 2 in a region corresponding to nucleotides 374-401 of SEQ ID NO: 1 and at least 90% identical to the nucleotide sequence Having a polynucleotide,
The modified promoter according to any one of [1] to [7], which is
〔10〕好ましくは、前記配列番号2で示される配列を含むヌクレオチド配列が、GGCTATATAGGACACTGTCAATTTTGCC(配列番号3)で示される配列である、〔1〕~〔9〕のいずれか1項記載の改変プロモーター。 [10] Preferably, the modified promoter according to any one of [1] to [9], wherein the nucleotide sequence containing the sequence represented by SEQ ID NO: 2 is the sequence represented by GGCTATATAGGACACTGTCAATTTTGCC (SEQ ID NO: 3).
〔11〕好ましくは、前記1つ以上のXyn1プロモーターのシスエレメントのポリヌクレオチド又はその相補鎖を含有するポリヌクレオチドが、配列番号4で示されるヌクレオチド配列からなるポリヌクレオチド又はその相補鎖を1~10個、より好ましくは1~8個、さらに好ましくは1~6個、さらに好ましくは2~6個、なお好ましくは1、2、3又は6個含む、〔1〕~〔10〕のいずれか1項記載の改変プロモーター。 [11] Preferably, the polynucleotide comprising a polynucleotide of a cis element of the one or more Xyn1 promoters or a complementary strand thereof is a polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 4 or a complementary strand thereof Any one of [1] to [10], more preferably 1 to 8, still more preferably 1 to 6, still more preferably 2 to 6, still more preferably 1, 2, 3 or 6 The modified promoter described in paragraph.
〔12〕好ましくは、前記配列番号4で示されるヌクレオチド配列からなるポリヌクレオチドが、配列番号5で示されるヌクレオチド配列からなるポリヌクレオチドである、〔11〕記載の改変プロモーター。 [12] The modified promoter according to [11], preferably, wherein the polynucleotide consisting of the nucleotide sequence shown by SEQ ID NO: 4 is a polynucleotide consisting of the nucleotide sequence shown by SEQ ID NO: 5.
〔13〕好ましくは、前記1つ以上のXyn1プロモーターのシスエレメントのポリヌクレオチド又はその相補鎖を含有するポリヌクレオチドがHAP2/3/5結合サイト及びCREI結合サイトを含まず、
 該HAP2/3/5結合サイトがCCAATであり、かつ該CREI結合サイトがSYGGRG又はCCCCAGである、
〔1〕~〔12〕のいずれか1項記載の改変プロモーター。
[13] Preferably, the polynucleotide comprising a polynucleotide of a cis element of the one or more Xyn1 promoters or a complementary strand thereof does not contain a HAP2 / 3/5 binding site and a CREI binding site,
The HAP2 / 3/5 binding site is CCAAT, and the CREI binding site is SYGGRG or CCCCAG,
The modified promoter according to any one of [1] to [12].
〔14〕好ましくは、前記1つ以上のXyn1プロモーターのシスエレメントのポリヌクレオチド又はその相補鎖を含有するポリヌクレオチドが、
 配列番号5で示されるヌクレオチド配列又はその相補鎖であるか、
 配列番号5で示されるヌクレオチド配列又はその相補鎖の下流にスペーサー配列が連結された配列の、2個以上、より好ましくは2~10個、さらに好ましくは2~8個、さらに好ましくは2~6個、さらに好ましくは3~6個、なお好ましくは2、3又は6個の繰り返しからなるポリヌクレオチドである、
〔1〕~〔13〕のいずれか1項記載の改変プロモーター。
[14] Preferably, the polynucleotide comprising a polynucleotide of a cis element of the one or more Xyn1 promoters or a complementary strand thereof,
The nucleotide sequence shown in SEQ ID NO: 5 or its complementary strand,
2 or more, more preferably 2 to 10, still more preferably 2 to 8, still more preferably 2 to 6 of the nucleotide sequence shown in SEQ ID NO: 5 or a sequence in which a spacer sequence is linked downstream of the complementary strand thereof It is a polynucleotide consisting of one, more preferably 3 to 6, still more preferably 2, 3 or 6 repeats.
The modified promoter according to any one of [1] to [13].
〔15〕好ましくは、前記スペーサー配列がTCAAGA又はTCTAGAである、〔14〕記載の改変プロモーター。 [15] The modified promoter according to [14], preferably, wherein the spacer sequence is TCAAGA or TCTAGA.
〔16〕好ましくは、前記1つ以上のXyn1プロモーターのシスエレメントのポリヌクレオチド又はその相補鎖を含有するポリヌクレオチドが、以下:
 配列番号6で示されるヌクレオチド配列からなるポリヌクレオチド又はその相補鎖;
 配列番号7で示されるヌクレオチド配列からなるポリヌクレオチド;
 配列番号8で示されるヌクレオチド配列からなるポリヌクレオチド;
 配列番号41で示されるヌクレオチド配列からなるポリヌクレオチド;
 配列番号42で示されるヌクレオチド配列からなるポリヌクレオチド;あるいは、
 配列番号43で示されるヌクレオチド配列からなるポリヌクレオチド、
である、〔1〕~〔15〕のいずれか1項記載の改変プロモーター。
[16] Preferably, the polynucleotide containing a cis-element polynucleotide of the one or more Xyn1 promoters or a complementary strand thereof is:
A polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 6 or its complementary strand;
A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 7;
A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 8;
A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 41;
A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 42; or
A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 43,
The modified promoter according to any one of [1] to [15], which is
〔17〕好ましくは、前記配列番号1の374番~401番ヌクレオチドに相当する領域の全部もしくは一部が欠失しているか、又は、前記配列番号1の374番~401番ヌクレオチドに相当する領域が、前記1つ以上のXyn1プロモーターのシスエレメントのポリヌクレオチド又はその相補鎖を含有するポリヌクレオチドで分断されている、〔1〕~〔16〕のいずれか1項記載の改変プロモーター。 [17] Preferably, all or part of the region corresponding to nucleotides 374 to 401 of SEQ ID NO: 1 is deleted or a region corresponding to nucleotides 374 to 401 of SEQ ID NO: 1 The modified promoter according to any one of [1] to [16], which is interrupted by a polynucleotide containing a polynucleotide of a cis element of the one or more Xyn1 promoters or a complementary strand thereof.
〔18〕改変プロモーターの製造方法であって、
 Xyn3プロモーターのポリヌクレオチドにおいて、配列番号1の374番~401番ヌクレオチドに相当する領域に、1つ以上のXyn1プロモーターのシスエレメントのポリヌクレオチド又はその相補鎖、を含むポリヌクレオチドを置換又は挿入することを含み、
 該Xyn3プロモーターのポリヌクレオチドが、以下:
 配列番号1で示されるヌクレオチド配列からなるポリヌクレオチド;
 配列番号1の350番~1084番ヌクレオチドで示されるヌクレオチド配列からなるポリヌクレオチド;又は
 配列番号1で示されるヌクレオチド配列、又は配列番号1の350番~1084番ヌクレオチドで示されるヌクレオチド配列と少なくとも90%同一であって、配列番号1の374番~401番ヌクレオチドに相当する領域にGGCTAT-NNNNNNNNNNNNNNNN-TTTGCC(配列番号2)で示される配列を含むヌクレオチド配列からなり、かつセルロースに誘導されるプロモーター活性を有する、ポリヌクレオチド、
であり、
 該Xyn1プロモーターのシスエレメントのポリヌクレオチドが、GGCTAA-NNNNNNNNNN-TTAGCC(配列番号4)で示されるヌクレオチド配列からなり、かつ
 該1つ以上のXyn1プロモーターのシスエレメントのポリヌクレオチド又はその相補鎖を含有するポリヌクレオチドが、HAP2/3/5結合サイト及びCREI結合サイトを含まない、
方法。
[18] A method for producing a modified promoter, comprising
Substituting or inserting a polynucleotide containing a polynucleotide of cis element of one or more Xyn1 promoters or a complementary strand thereof in a region corresponding to the nucleotides 374 to 401 of SEQ ID NO: 1 in the polynucleotide of the Xyn 3 promoter Including
The polynucleotide of the Xyn3 promoter is as follows:
A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 1;
A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1; or a nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1 at least 90% A region identical to that of SEQ ID NO: 1 corresponding to nucleotides 374 to 401, consisting of a nucleotide sequence comprising the sequence shown by GGCTAT-NNNNNNNNNNNNNNNNNN-TTTGCC (SEQ ID NO: 2), and a cellulose-induced promoter activity Having a polynucleotide,
And
The polynucleotide of the cis element of the Xyn1 promoter consists of the nucleotide sequence shown by GGCTAA-NNNNNNNNNN-TTAGCC (SEQ ID NO: 4), and contains the polynucleotide of the cis element of the one or more Xyn1 promoters or a complementary strand thereof The polynucleotide does not contain HAP2 / 3/5 binding site and CREI binding site,
Method.
〔19〕前記Xyn3プロモーターのポリヌクレオチドが、
 好ましくは、TATA box、CREI結合部位、ACEI結合部位、ACEII結合部位、及びCAATモチーフからなる群より選択される1つ以上を含有し、
 より好ましくは、TATA box、CREI結合部位、ACEI結合部位、ACEII結合部位、及びCAATモチーフを含有する、〔18〕記載の方法。
[19] The polynucleotide of the Xyn3 promoter is
Preferably, it contains one or more selected from the group consisting of TATA box, CREI binding site, ACEI binding site, ACEII binding site, and CAAT motif,
More preferably, the method according to [18], which comprises TATA box, CREI binding site, ACEI binding site, ACEII binding site, and CAAT motif.
〔20〕好ましくは、前記TATA boxが、配列番号1の860番~863番ヌクレオチド及び889番~892番ヌクレオチドに相当する領域におけるTATA box(例えばTATA)である、〔19〕記載の方法。 [20] The method according to [19], preferably, wherein said TATA box is a TATA box (eg, TATA) in a region corresponding to nucleotides 860 to 863 and nucleotides 889 to 892 of SEQ ID NO: 1.
〔21〕前記CREI結合部位が、
 好ましくは、配列番号1の456番~461番ヌクレオチド、509番~514番ヌクレオチド、及び811番~816番ヌクレオチドに相当する領域におけるCREI結合部位(例えば、CTCCAG、CTCCAC、CCCCAG、CTCCGG、CTCCGC及びCTGGGGからなる群より選択される配列)であり、
 より好ましくは、配列番号1の53番~58番ヌクレオチド、124番~129番ヌクレオチド、249番~254番ヌクレオチド、456番~461番ヌクレオチド、509番~514番ヌクレオチド、及び811番~816番ヌクレオチドに相当する領域におけるCREI結合部位(例えば、CTCCAG、CTCCAC、CCCCAG、CTCCGG、CTCCGC及びCTGGGGからなる群より選択される配列)である、
〔19〕又は〔20〕記載の方法。
[21] The CREI binding site is
Preferably, a CREI binding site (for example, CTCCAG, CTCCAC, CCCCAG, CTCCGG, CTCCGC, and CTGGGG in a region corresponding to nucleotides 456 to 461, nucleotides 509 to 514, and nucleotides 811 to 816 of SEQ ID NO: 1). A sequence selected from the group consisting of
More preferably, nucleotides 53 to 58, nucleotides 124 to 129, nucleotides 249 to 254, nucleotides 456 to 461, nucleotides 509 to 514, and nucleotides 811 to 816 of SEQ ID NO: 1 A CREI binding site (eg, a sequence selected from the group consisting of CTCCAG, CTCCAC, CCCCAG, CTCCGG, CTCCGC and CTGGGG) in the region corresponding to
The method according to [19] or [20].
〔22〕好ましくは、前記ACEI結合部位が、配列番号1の350番~354番ヌクレオチドに相当する領域におけるTGCCT又はAGGCAである、〔19〕~〔21〕のいずれか1項記載の方法。 [22] The method according to any one of [19] to [21], preferably, wherein the ACEI binding site is TGCCT or AGGCA in a region corresponding to nucleotides 350 to 354 of SEQ ID NO: 1.
〔23〕好ましくは、前記ACEII結合部位が、配列番号1の594番~599番ヌクレオチド及び845番~850番ヌクレオチドに相当する領域におけるACEII結合部位(例えばGGCTAA、TTAGCC、及びGGCTAAからなる群より選択される配列)である、〔19〕~〔22〕のいずれか1項記載の方法。 [23] Preferably, the ACE II binding site is selected from the group consisting of ACE II binding sites (eg, GGCTAA, TTAGCC, and GGCTAA) in the regions corresponding to nucleotides 594 to 599 and nucleotides 845 to 850 of SEQ ID NO: 1 The method according to any one of [19] to [22],
〔24〕好ましくは、前記CAATモチーフが、583番~587番ヌクレオチドに相当する領域におけるCAATモチーフ(例えばCCAAT)である、〔19〕~〔23〕のいずれか1項記載の方法。 [24] The method according to any one of [19] to [23], preferably, wherein the CAAT motif is a CAAT motif (eg, CCAAT) in a region corresponding to nucleotides 583 to 587.
〔25〕好ましくは、前記Xyn3プロモーターのポリヌクレオチドが、以下:
 配列番号1で示されるヌクレオチド配列からなるポリヌクレオチド;
 配列番号1の350番~1084番ヌクレオチドで示されるヌクレオチド配列からなるポリヌクレオチド;又は
 配列番号1で示されるヌクレオチド配列、又は配列番号1の350番~1084番ヌクレオチドで示されるヌクレオチド配列と少なくとも95%同一であって、配列番号1の374番~401番ヌクレオチドに相当する領域に配列番号2で示される配列を含むヌクレオチド配列からなり、かつセルロースに誘導されるプロモーター活性を有する、ポリヌクレオチド、
である、〔18〕~〔24〕のいずれか1項記載の方法。
[25] Preferably, the polynucleotide of the Xyn3 promoter is
A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 1;
A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1; or a nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1 at least 95% A polynucleotide which is identical and comprises a nucleotide sequence comprising the sequence shown in SEQ ID NO: 2 in the region corresponding to nucleotides 374 to 401 of SEQ ID NO: 1 and having a cellulose-induced promoter activity,
The method according to any one of [18] to [24], which is
〔26〕好ましくは、前記Xyn3プロモーターのポリヌクレオチドが、以下:
 配列番号1の3番~1073番ヌクレオチドで示されるヌクレオチド配列からなるポリヌクレオチド;
 配列番号1の350番~1073番ヌクレオチドで示されるヌクレオチド配列からなるポリヌクレオチド;又は
 配列番号1の3番~1073番ヌクレオチドで示されるヌクレオチド配列、又は配列番号1の350番~1073番ヌクレオチドで示されるヌクレオチド配列と少なくとも90%同一であって、配列番号1の374番~401番ヌクレオチドに相当する領域に配列番号2で示される配列を含むヌクレオチド配列からなり、かつセルロースに誘導されるプロモーター活性を有する、ポリヌクレオチド、
である、〔18〕~〔24〕のいずれか1項記載の方法。
[26] Preferably, the polynucleotide of the Xyn3 promoter is
A polynucleotide consisting of a nucleotide sequence represented by nucleotides 3 to 1073 of SEQ ID NO: 1;
A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1073 of SEQ ID NO: 1; or a nucleotide sequence represented by nucleotides 3 to 1073 of SEQ ID NO: 1, or nucleotides 350 to 1073 of SEQ ID NO: 1 A nucleotide sequence comprising a sequence represented by SEQ ID NO: 2 in a region corresponding to nucleotides 374-401 of SEQ ID NO: 1 and at least 90% identical to the nucleotide sequence Having a polynucleotide,
The method according to any one of [18] to [24], which is
〔27〕好ましくは、前記配列番号2で示される配列を含むヌクレオチド配列が、GGCTATATAGGACACTGTCAATTTTGCC(配列番号3)で示される配列である、〔18〕~〔26〕のいずれか1項記載の方法。 [27] Preferably, the method according to any one of [18] to [26], wherein the nucleotide sequence containing the sequence shown in SEQ ID NO: 2 is the sequence shown in GGCTATATAGGACACTGTCAATTTTGCC (SEQ ID NO: 3).
〔28〕好ましくは、前記1つ以上のXyn1プロモーターのシスエレメントのポリヌクレオチド又はその相補鎖を含有するポリヌクレオチドが、配列番号4で示されるヌクレオチド配列からなるポリヌクレオチド又はその相補鎖を1~10個、より好ましくは1~8個、さらに好ましくは1~6個、さらに好ましくは2~6個、さらに好ましくは1、2、3又は6個含む、〔18〕~〔27〕のいずれか1項記載の方法。 [28] Preferably, the polynucleotide comprising a polynucleotide of a cis element of the one or more Xyn1 promoters or a complementary strand thereof is 1 to 10 of a polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 4 or a complementary strand thereof Any one of [18] to [27], more preferably 1 to 8, still more preferably 1 to 6, still more preferably 2 to 6, still more preferably 1, 2, 3 or 6 Method according to paragraph.
〔29〕好ましくは、前記配列番号4で示されるヌクレオチド配列からなるポリヌクレオチドが、配列番号5で示されるヌクレオチド配列からなるポリヌクレオチドである、〔28〕記載の方法。 [29] The method according to [28], preferably, wherein the polynucleotide consisting of the nucleotide sequence shown by SEQ ID NO: 4 is a polynucleotide consisting of the nucleotide sequence shown by SEQ ID NO: 5.
〔30〕好ましくは、前記1つ以上のXyn1プロモーターのシスエレメントのポリヌクレオチド又はその相補鎖を含有するポリヌクレオチドがHAP2/3/5結合サイト及びCREI結合サイトを含まず、
 該HAP2/3/5結合サイトがCCAATであり、かつ該CREI結合サイトがSYGGRG又はCCCCAGである、
〔18〕~〔29〕のいずれか1項記載の方法。
[30] Preferably, the polynucleotide comprising a polynucleotide of a cis element of the one or more Xyn1 promoters or a complementary strand thereof does not contain a HAP2 / 3/5 binding site and a CREI binding site,
The HAP2 / 3/5 binding site is CCAAT, and the CREI binding site is SYGGRG or CCCCAG,
The method according to any one of [18] to [29].
〔31〕好ましくは、前記1つ以上のXyn1プロモーターのシスエレメントのポリヌクレオチド又はその相補鎖を含有するポリヌクレオチドが、
 配列番号5で示されるヌクレオチド配列又はその相補鎖であるか、
 配列番号5で示されるヌクレオチド配列又はその相補鎖の下流にスペーサー配列が連結された配列の、2個以上、より好ましくは2~10個、さらに好ましくは2~8個、さらに好ましくは2~6個、さらに好ましくは3~6個、さらに好ましくは2、3又は6個の繰り返しからなるポリヌクレオチドである、
〔18〕~〔30〕のいずれか1項記載の方法。
[31] Preferably, the polynucleotide comprising a polynucleotide of a cis element of the one or more Xyn1 promoters or a complementary strand thereof,
The nucleotide sequence shown in SEQ ID NO: 5 or its complementary strand,
2 or more, more preferably 2 to 10, still more preferably 2 to 8, still more preferably 2 to 6 of the nucleotide sequence shown in SEQ ID NO: 5 or a sequence in which a spacer sequence is linked downstream of the complementary strand thereof It is a polynucleotide consisting of one, more preferably 3 to 6, more preferably 2, 3 or 6 repeats.
The method according to any one of [18] to [30].
〔32〕好ましくは、前記スペーサー配列がTCAAGA又はTCTAGAである、〔31〕記載の方法。 [32] The method according to [31], preferably, wherein the spacer sequence is TCAAGA or TCTAGA.
〔33〕好ましくは、前記1つ以上のXyn1プロモーターのシスエレメントのポリヌクレオチド又はその相補鎖を含有するポリヌクレオチドが、以下:
 配列番号6で示されるヌクレオチド配列からなるポリヌクレオチド又はその相補鎖;
 配列番号7で示されるヌクレオチド配列からなるポリヌクレオチド;
 配列番号8で示されるヌクレオチド配列からなるポリヌクレオチド;
 配列番号41で示されるヌクレオチド配列からなるポリヌクレオチド;
 配列番号42で示されるヌクレオチド配列からなるポリヌクレオチド;あるいは、
 配列番号43で示されるヌクレオチド配列からなるポリヌクレオチド、
である、〔18〕~〔32〕のいずれか1項記載の方法。
[33] Preferably, the polynucleotide comprising a polynucleotide of a cis element of the one or more Xyn1 promoters or a complementary strand thereof is:
A polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 6 or its complementary strand;
A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 7;
A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 8;
A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 41;
A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 42; or
A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 43,
The method according to any one of [18] to [32], which is
〔34〕好ましくは、前記1つ以上のXyn1プロモーターのシスエレメントのポリヌクレオチド又はその相補鎖を含有するポリヌクレオチドが、前記配列番号1の374番~401番ヌクレオチドに相当する領域の全部もしくは一部と置換されているか、又は、前記配列番号1の374番~401番ヌクレオチドに相当する領域に挿入されている、〔18〕~〔33〕のいずれか1項記載の方法。 [34] Preferably, all or a part of a region corresponding to nucleotides 374 to 401 of SEQ ID NO: 1 which is a polynucleotide containing a polynucleotide of a cis element of the one or more Xyn1 promoters or a complementary strand thereof The method according to any one of [18] to [33], which is substituted or inserted into a region corresponding to nucleotides 374 to 401 of SEQ ID NO: 1.
〔35〕〔1〕~〔17〕のいずれか1項記載の改変プロモーターを含有するベクター。 [35] A vector comprising the modified promoter according to any one of [1] to [17].
〔36〕好ましくは、前記改変プロモーターが目的遺伝子の上流に連結されている、〔35〕記載のベクター。 [36] Preferably, the vector according to [35], wherein the modified promoter is linked upstream of the target gene.
〔37〕前記目的遺伝子が、
 好ましくは、セルラーゼ、ヘミセルラーゼ、セルラーゼからなる群より選択される酵素をコードする遺伝子であり、
 より好ましくは、配列番号37で示されるヌクレオチド配列又はこれと少なくとも90%同一なヌクレオチド配列からなりキシラナーゼをコードするポリヌクレオチドであるか、又は配列番号39で示されるヌクレオチド配列又はこれと少なくとも90%同一なヌクレオチド配列からなりキシラナーゼをコードするポリヌクレオチドである、
〔36〕記載のベクター。
[37] The target gene is
Preferably, a gene encoding an enzyme selected from the group consisting of cellulase, hemicellulase and cellulase,
More preferably, the nucleotide sequence of SEQ ID NO: 37 or a nucleotide sequence consisting of a nucleotide sequence at least 90% identical thereto and encoding a xylanase, or the nucleotide sequence of SEQ ID NO: 39 or at least 90% identical thereto A polynucleotide encoding a xylanase consisting of
[36] The vector according to [36].
〔38〕目的遺伝子と、該遺伝子の上流に連結された〔1〕~〔17〕のいずれか1項記載の改変プロモーターとを含む、DNA断片。 [38] A DNA fragment comprising a target gene and the modified promoter according to any one of [1] to [17] linked upstream of the gene.
〔39〕前記目的遺伝子が、
 好ましくは、セルラーゼ、ヘミセルラーゼ、セルラーゼからなる群より選択される酵素をコードする遺伝子であり、
 より好ましくは、配列番号37で示されるヌクレオチド配列又はこれと少なくとも90%同一なヌクレオチド配列からなりキシラナーゼをコードするポリヌクレオチドであるか、又は配列番号39で示されるヌクレオチド配列又はこれと少なくとも90%同一なヌクレオチド配列からなりキシラナーゼをコードするポリヌクレオチドである、
〔38〕記載のDNA断片。
[39] The target gene is
Preferably, a gene encoding an enzyme selected from the group consisting of cellulase, hemicellulase and cellulase,
More preferably, the nucleotide sequence of SEQ ID NO: 37 or a nucleotide sequence consisting of a nucleotide sequence at least 90% identical thereto and encoding a xylanase, or the nucleotide sequence of SEQ ID NO: 39 or at least 90% identical thereto A polynucleotide encoding a xylanase consisting of
The DNA fragment of [38].
〔40〕〔35〕~〔37〕のいずれか1項記載のベクター又は〔38〕又は〔39〕記載のDNA断片を含む形質転換体。
〔41〕トリコデルマ属菌である、〔40〕記載の形質転換体。
[40] A transformant comprising the vector of any one of [35] to [37] or the DNA fragment of [38] or [39].
[41] The transformant according to [40], which is a Trichoderma sp.
 以下、実施例に基づき本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
実施例1 改変Xyn3プロモーターの作製
(1)Xyn3プロモーターのクローニング
 トリコデルマ・リーセイPC-3-7株由来のキシラナーゼXyn3をコードする遺伝子(xyn3)の上流を含む遺伝子領域を鋳型とし、プライマーxyn3-EcoRI-U(配列番号9)およびプライマーxyn3-NcoI(配列番号10)を用いたPCRにより、両端にプライマー断片を含むXyn3プロモーター領域(配列番号1)を増幅した。得られたDNA断片をpT7blue(Novagen)に導入し、プラスミドpTxyn3PD0を取得した。レポーターカセット構築のため、プラスミドpTxyn3PD0をBamHIおよびXbaIにより切断して増幅したプロモーター領域を含むDNA断片を獲得し、これをpKF18Kプラスミド(Takara)に導入して、Xyn3プロモーター含有プラスミドpKFxyn3PD0を取得した。
Example 1 Preparation of Modified Xyn3 Promoter (1) Cloning of Xyn3 Promoter Using a gene region including the upstream of a gene (xyn3) encoding xylanase Xyn3 derived from Trichoderma reesei PC-3-7 strain as a template, primer xyn3-EcoRI- The Xyn3 promoter region (SEQ ID NO: 1) including the primer fragment at both ends was amplified by PCR using U (SEQ ID NO: 9) and the primer xyn3-NcoI (SEQ ID NO: 10). The obtained DNA fragment was introduced into pT7blue (Novagen) to obtain a plasmid pTxyn3PD0. For construction of a reporter cassette, a plasmid pTxyn3PD0 was cleaved with BamHI and XbaI to obtain a DNA fragment containing a promoter region, which was amplified and introduced into a pKF18K plasmid (Takara) to obtain a Xyn3 promoter-containing plasmid pKFxyn3PD0.
(2)Xyn3プロモーターからのシスエレメント除去
 pKFxyn3PD0に対して、プライマーxyn3P_cis_inv_Fw(配列番号11)、プライマーxyn3P_cis_inv_Rv(配列番号12)を用いたPCRにより、Xyn3プロモーターのシスエレメント(配列番号3)の除去およびXbaI制限酵素サイトを付加した。このPCR産物をセルフライゲーションすることにより、プラスミドpKFxyn3P-Δcisを得た。
(2) Removal of cis element from Xyn3 promoter Removal of cis element (SEQ ID NO: 3) of Xyn3 promoter and XbaI by PCR using primers xyn3P_cis_inv_Fw (SEQ ID NO: 11) and primer xyn3P_cis_inv_Rv (SEQ ID NO: 12) for pKFxyn3PD0. A restriction enzyme site was added. The plasmid pKFxyn3P-Δcis was obtained by self-ligation of this PCR product.
(3)Xyn1プロモーターシスエレメント含有断片の作製
 Xyn1をコードする遺伝子のプロモーターのシスエレメント(配列番号5)を含むDNA断片を構築した。トリコデルマ・リーセイPC-3-7株由来のキシラナーゼXyn1をコードする遺伝子(xyn1)の上流を含む遺伝子領域から、プライマー1Box_Fw(配列番号13)及びプライマー1Box_Rv(配列番号14)を用いて、配列番号5で示される配列を1つ含み、両端にXbaIサイトを含むDNA断片(1Box;配列番号6)、及びその相補鎖(1RBox)を構築した。さらに、配列番号5で示される配列又はその相補鎖を2つ含み、両端にXbaIサイトを含むDNA断片(2Box及び2RBox;配列番号7及び8)を合成した。
(3) Preparation of Xyn1 Promoter cis Element-Containing Fragment A DNA fragment containing a cis element (SEQ ID NO: 5) of the promoter of the gene encoding Xyn 1 was constructed. SEQ ID NO: 5 using primer 1 Box_Fw (SEQ ID NO: 13) and Primer 1 Box Rv (SEQ ID NO: 14) from the gene region including the upstream of the gene (xyn 1) encoding xylanase Xyn1 derived from Trichoderma reesei strain PC-3-7. A DNA fragment (1 Box; SEQ ID NO: 6) containing one sequence shown in and containing XbaI sites at both ends, and its complementary strand (1R Box) were constructed. Furthermore, a DNA fragment (2 Box and 2 R Box; SEQ ID NOs: 7 and 8) was synthesized which contains the sequence shown in SEQ ID NO: 5 or two complementary strands thereof, and contains XbaI site at both ends.
(4)改変Xyn3プロモーター含有プラスミドの作製
 (3)で作製したそれぞれのDNA断片をXbaIで切断したpKFxyn3P-Δcisへと導入し、改変プロモーター含有プラスミドpKFxyn3-1Box、pKFxyn3-1RBox、pKFxyn3-2Box、及びpKFxyn3-2RBoxを構築した。
(4) Preparation of modified Xyn3 promoter-containing plasmid Each DNA fragment prepared in (3) is introduced into pKFxyn3P-Δcis digested with XbaI, and modified promoter-containing plasmids pKFxyn3-1Box, pKFxyn3-1RBox, pKFxyn3-2Box, and pKFxyn3-2RBox was constructed.
実施例2 改変プロモーターを含むレポーターカセットの作製
(1)GUSレポーター含有プラスミドの作製
 実施例1で作製した改変Xyn3プロモーターの誘導能を評価するため、それぞれのプロモーターの制御下にレポーターであるGUS(β-グルクロニダーゼ)をコードする遺伝子(gus)を導入したレポーターカセットを構築した。プライマーxyn3-SpeI(配列番号15)及びプライマーxyn3-EcoRI-D(配列番号16)により増幅させた0.8kbpのxyn3の下流領域を、pT7Blue-T(Novagen)へと導入し、pTxyn3Tを得た。また、pBACgus-1(Novagen)を鋳型とし、プライマーgus-NcoI(配列番号17)及びプライマーgus-SpeI(配列番号18)を用いてgus遺伝子を増幅させ、pT7Blue-Tへと導入し、pTgus-1を得た。pTxyn3T及びpTgus-1をSpeIにより切断し、ライゲーションしてpTgus-2(gus遺伝子の終止コドン後にxyn3下流領域を有する)を構築した。
Example 2 Preparation of Reporter Cassette Containing Modified Promoter (1) Preparation of GUS Reporter-Containing Plasmid In order to evaluate the inducibility of the modified Xyn 3 promoter prepared in Example 1, GUS (β which is a reporter under the control of each promoter) A reporter cassette was constructed in which a gene (gus) encoding -glucuronidase was introduced. The downstream region of 0.8 kbp xyn3 amplified by primers xyn3-SpeI (SEQ ID NO: 15) and primer xyn3-EcoRI-D (SEQ ID NO: 16) was introduced into pT7Blue-T (Novagen) to obtain pTxyn3T. . In addition, the gus gene is amplified using pBACgus-1 (Novagen) as a template, primer gus-NcoI (SEQ ID NO: 17) and primer gus-SpeI (SEQ ID NO: 18), and introduced into pT7Blue-T. I got one. pTxyn3T and pTgus-1 were digested with SpeI and ligated to construct pTgus-2 (having xyn3 downstream region after stop codon of gus gene).
(2)プロモーター-GUS断片の作製
 実施例1で作製したpKFxyn3PD0、pKFxyn3P-Δcis、及び改変プロモーター含有プラスミドをBamHI及びNcoIで切断してDNA断片を得た。(1)で作製したpTgus-2をBamHI及びNcoIで切断してDNA断片を得た。pKFxyn3PD0断片とpTgus-2断片をライゲーションして、プラスミドpTxyn3-PD0を作製した。pKFxyn3P-Δcis断片とpTgus-2断片をライゲーションして、プラスミドpTxyn3-Δcisを作製した。また改変プロモーター含有プラスミド断片とpTgus-2断片をライゲーションして、それぞれプラスミドpTxyn3-1Box、pTxyn3-2Box、pTxyn3-1RBox、及びpTxyn3-2RBoxを作製した。得られたプラスミドをそれぞれ、EcoRI及びNsiIで切断し、プロモーター-GUSを含む断片を得た。
(2) Preparation of promoter-GUS fragment The plasmid containing pKFxyn3PD0, pKFxyn3P-Δcis, and the modified promoter prepared in Example 1 was cleaved with BamHI and NcoI to obtain a DNA fragment. PTgus-2 prepared in (1) was cleaved with BamHI and NcoI to obtain a DNA fragment. The pKFxyn3PD0 fragment and the pTgus-2 fragment were ligated to create a plasmid pTxyn3-PD0. The pKFxyn3P-Δcis and pTgus-2 fragments were ligated to create the plasmid pTxyn3-Δcis. Furthermore, the modified promoter-containing plasmid fragment and the pTgus-2 fragment were ligated to prepare plasmids pTxyn3-1 Box, pTxyn3-2 Box, pTxyn3-1RBox, and pTxyn3-2RBox, respectively. The resulting plasmid was digested with EcoRI and NsiI, respectively, to obtain a fragment containing promoter-GUS.
(3)xyn3-amdS断片の作製
 トリコデルマ・リーセイPC-3-7株から、xyn3のORFを含む7.7kbpのDNA断片(3.1kbpのxyn3上流領域、1.4kbpのxyn3 ORF、3.2kbpのxyn3下流領域を含む)をクローニングした。pBluescript II SK(Novagen)をEcoRIで切断後、平滑化を行い、pBE(EcoRIサイトを欠損)を構築した。pBEをSalIにより切断し、上記7.7kbp断片とライゲーションし、pBxyn3S’を得た。このプラスミドをEcoRIにて部分切断し、平滑化することで下流領域に存在するEcoRIサイトのみを欠損させたpBxyn3SE’を構築した。p3SR2(Mol Cell Biol,1983,3(8):1430-1439)を、SpeI及びXbaIで切断し、amdS遺伝子を含む3.5kbpのDNA断片(Aspergillus nidulans acetoamidase遺伝子amdS、ならびにその上流及び下流領域を含む)を得た。pBxyn3SE’をNarIにて切断し、該3.5kbpDNA断片とライゲーションすることでpBxyn3amdSを獲得した。得られたプラスミドをcoRI及びNsiIで切断し、xyn3-amdSを含む断片を得た。
(3) Preparation of xyn3-amdS fragment A 7.7 kbp DNA fragment (3.1 kbp xyn3 upstream region, 1.4 kbp xyn3 ORF, 3.2 kbp) from Trichoderma reesei PC-3-7 strain, containing the ORF of xyn3 Containing the xyn3 downstream region of pBluescript II SK (Novagen) was digested with EcoRI and blunted to construct pBE (EcoRI site deleted). pBE was digested with SalI and ligated with the above-mentioned 7.7 kbp fragment to obtain pBxyn3S '. This plasmid was partially digested with EcoRI and blunted to construct pBxyn3SE 'in which only the EcoRI site present in the downstream region was deleted. p3SR2 (Mol Cell Biol, 1983, 3 (8): 1430-1439) is digested with SpeI and XbaI, and a 3.5 kbp DNA fragment containing the amdS gene (Aspergillus nidulans acetoamylase gene amdS, and its upstream and downstream regions) Included). pBxyn3SE 'was digested with NarI and ligated with the 3.5 kbp DNA fragment to obtain pBxyn3amdS. The resulting plasmid was digested with coRI and NsiI to obtain a fragment containing xyn3-amdS.
(4)プロモーター解析用GUSレポーターカセットの作製
 (3)で作製したxyn3-amdS断片に、(2)で作製したプロモーター-GUS断片を導入し、GUSレポーターカセットを含むプロモーター解析用プラスミドpBxyn3ag-D0C、pBxyn3ag-Δcis、pBxyn3ag-1Box、pBxyn3ag-1RBox、pBxyn3ag-2Box、及びpBxyn3ag-2RBoxを作製した。得られたプラスミドについて、Genome LabTM Dye Terminator Cycle Sequencing Quick Start kit、及びCEQTM 2000XL DNA sequencer(Beckman Coulter)を用いて、改変Xyn3プロモーター、gus遺伝子、amdS遺伝子の配列を確認した。作製したレポーターカセット中の改変プロモーターに含まれるシスエレメント領域の配列を図1に示す。
(4) Preparation of GUS Reporter Cassette for Promoter Analysis The promoter-GUS fragment prepared in (2) was introduced into the xyn3-amdS fragment prepared in (3), and the plasmid for promoter analysis pBxyn3ag-D0C containing the GUS reporter cassette was used, pBxyn3ag-Δcis, pBxyn3ag-1 Box, pBxyn3ag-1 RBox, pBxyn3ag-2 Box, and pBxyn3ag-2 RBox were prepared. The resulting plasmid, Genome Lab TM Dye Terminator Cycle Sequencing Quick Start kit, and using the CEQ TM 2000XL DNA sequencer (Beckman Coulter ), modified Xyn3 promoter, gus gene was sequence verified amdS gene. The sequence of the cis element region contained in the modified promoter in the generated reporter cassette is shown in FIG.
実施例3 形質転換体の作製及びプロモーターの誘導能の評価
(1)形質転換体の取得
 実施例2で作製した改変プロモーターを含むレポーターカセットを有する形質転換体を作製した。まず、実施例2の(4)で作製したGUSレポーターカセットを含むプラスミドをSalIにより切断した。得られた断片を、プロトプラストPEG法(Biotechnol Bioeng,2012,Jan;109(1):92-99)にてトリコデルマ・リーセイPC-3-7株に導入した。
Example 3 Preparation of Transformant and Evaluation of Inducibility of Promoter (1) Acquisition of Transformant A transformant having a reporter cassette containing the modified promoter prepared in Example 2 was prepared. First, the plasmid containing the GUS reporter cassette prepared in (2) of Example 2 was cleaved with SalI. The obtained fragment was introduced into Trichoderma reesei strain PC-3-7 by the protoplast PEG method (Biotechnol Bioeng, 2012, Jan; 109 (1): 92-99).
 形質転換体は、アセトアミドを単一窒素源とした選択培地(2%(w/v)グルコース、0.6mg/mL MgSO4、0.6mg/mL CaCl2、12.5mM CsCl2、10mM KH2PO4 Buffer(pH5.5)、0.005mg/mL FeSO4・7H2O、0.0016mg/mL MnSO4・H2O、0.0014mg/mL ZnSO4・7H2O、0.002mg/mL CoCl2、2%(w/v)アガー)にて選抜した。選抜した形質転換体候補株は、アセトアミドを添加した最少培地にて2回培養し、安定化した。形質転換体における相同組換え及び導入コピー数は、AlkPhos Direct kit(GE Healthcare Bio Science,Waukesha,WI)を用いてサザン解析にて確認した。結果、ゲノム上のxyn3遺伝子の位置にレポーターカセットが1コピーで相同組換えされていることを確認した。pBxyn3ag-D0C、pBxyn3ag-Δcis、pBxyn3ag-1Box、pBxyn3ag-1RBox、pBxyn3ag-2Box、及びpBxyn3ag-2RBoxが導入された形質転換体を、それぞれ、D0C株、Δcis株、1Box株、1RBox株、2Box株、及び2RBox株として取得した。 Transformants were selected from selection medium (2% (w / v) glucose, 0.6 mg / mL MgSO 4 , 0.6 mg / mL CaCl 2 , 12.5 mM CsCl 2 , 10 mM KH 2 ) using acetamide as a single nitrogen source. PO 4 Buffer (pH 5.5), 0.005 mg / mL FeSO 4 · 7H 2 O, 0.0016 mg / mL MnSO 4 · H 2 O, 0.0014 mg / mL ZnSO 4 · 7H 2 O, 0.002 mg / mL CoCl were selected by 2, 2% (w / v ) agar). The selected transformant candidate strain was cultured twice in a minimal medium supplemented with acetamide and stabilized. The homologous recombination and the introduced copy number in the transformant were confirmed by Southern analysis using AlkPhos Direct kit (GE Healthcare Bio Science, Waukesha, WI). As a result, it was confirmed that the reporter cassette was homologously recombined in one copy at the position of the xyn3 gene on the genome. Transformants into which pBxyn3ag-D0C, pBxyn3ag-Δcis, pBxyn3ag-1Box, pBxyn3ag-1RBox, pBxyn3ag-2Box, and pBxyn3ag-2RBox have been introduced are respectively strain D0C, strain Δcis, strain 1Box, strain 1RBox, strain 2Box And 2R Box stock.
(2)細胞抽出液の調製とGUS活性測定
 1×106個の形質転換体の分生子を、50mLの0.3%(w/v)グルコース含有培養培地にて28℃、220rpmで48h培養し、ろ過により菌体を回収した。集めた菌体を、プロモーターに対する誘導因子を唯一の炭素源とした誘導培地(0.0075%(w/v)CaCl2・2H2O、0.0075%(w/v)MgSO4・7H2O、0.025%(w/v)Tween80、0.025%(w/v)Trace element*1)、50mMクエン酸バッファー(pH4.0))50mLに移して培養した。誘導因子には、0.1%(w/v)グルコース、0.05%(w/v)ソルボース、0.01%(w/v)ソフォロース、0.1%(w/v)キシロース、又は0.1%(w/v)birch wood xylanのいずれかを用いた。
* 1)Trace element組成:0.006%(w/v)H3BO3、0.026%(w/v)(NH4)6Mo724・4H2O、0.1%(w/v)FeCl3・6H2O、0.4%(w/v)CuSO4・5H2O、0.008%(w/v)MnCl2・4H2O、0.2%(w/v)ZnCl2
(2) Preparation of cell extract and GUS activity measurement Conidia of 1 × 10 6 transformants were cultured at 28 ° C., 220 rpm for 48 h in 50 mL of a culture medium containing 0.3% (w / v) glucose And the cells were collected by filtration. The collected cells were treated with an induction medium as the sole carbon source for the promoter (0.0075% (w / v) CaCl 2 · 2H 2 O, 0.0075% (w / v) MgSO 4 · 7H 2 ) The culture was transferred to 50 mL of O, 0.025% (w / v) Tween 80, 0.025% (w / v) Trace element * 1) , 50 mM citrate buffer (pH 4.0)). Inducers include 0.1% (w / v) glucose, 0.05% (w / v) sorbose, 0.01% (w / v) sophorus, 0.1% (w / v) xylose, or One of 0.1% (w / v) birch wood xylan was used.
* 1) Trace element composition: 0.006% (w / v) H 3 BO 3 , 0.026% (w / v) (NH 4 ) 6Mo 7 O 2 4 · 4H 2 O, 0.1% (w) / V) FeCl 3 · 6H 2 O, 0.4% (w / v) CuSO 4 · 5H 2 O, 0.008% (w / v) MnCl 2 · 4H 2 O, 0.2% (w / v) ) ZnCl 2
 誘導12h後、ミラクロスを用いて菌糸を回収し、すぐに液体窒素にて凍結させた。凍結菌糸をマルチビーズショッカーにより粉末化し、GUS抽出液(50mMリン酸ナトリウムバッファー、10mM EDTA(pH8.0)10mM β-メルカプトエタノール、0.1%(w/v)TritonX、0.1%(w/v)ラウロイルサルコシン酸ナトリウム)に懸濁し、13,000×g、15min、4℃で遠心した。得られた上清をGUS抽出液とした。GUS抽出液におけるβ-グルクロニダーゼ(GUS)活性及びタンパク質量を測定し、タンパク質量当たりのGUS活性を求めた。GUS活性は、4-Methylumbelliferyl-β-D-glucuronide(4-MUG)を基質として37℃で10分間反応後、蛍光測定することで定量した。タンパク質量は、Bradford法によりウシ免疫グロブリンを標準として定量した。 After induction for 12 h, mycelium was recovered using miracloth and immediately frozen with liquid nitrogen. Frozen mycelium is powdered by multi-bead shocker, GUS extract (50 mM sodium phosphate buffer, 10 mM EDTA (pH 8.0) 10 mM β-mercaptoethanol, 0.1% (w / v) Triton X, 0.1% (w) / V) It was suspended in sodium lauroyl sarcosinate) and centrifuged at 13,000 × g, 15 min, 4 ° C. The obtained supernatant was used as a GUS extract. The β-glucuronidase (GUS) activity and the amount of protein in the GUS extract were measured to determine the GUS activity per protein amount. GUS activity was quantified by measuring fluorescence after reacting for 10 minutes at 37 ° C. using 4-Methylumbelliferyl-β-D-glucuronide (4-MUG) as a substrate. The amount of protein was quantified by the Bradford method using bovine immunoglobulin as a standard.
(3)結果
 GUS活性の測定結果を図2に示す。図2Aは、グルコース、ソルボース、又はセルロース系基質であるソフォロースの存在下で培養した細胞の抽出液におけるGUS活性を表す。D0C株(コントロール)では、ソルボース又はソフォロース存在下でGUS活性が検出された。Δcis株は、ソルボース及びソフォロースのいずれの存在下でも、D0C株と比べて極めて低いGUS活性を示した。1Box株及び1RBox株(Xyn1プロモーターのシスエレメント又はその相補鎖を1つ挿入した改変プロモーターの導入株)では、ソフォロース存在下でのGUS活性が、D0C株と比べてそれぞれ2.3倍及び2.6倍に増加していた。2Box株(Xyn1プロモーターのシスエレメントを2つ挿入した改変プロモーターの導入株)では、ソフォロース存在下でのGUS活性が3.2倍に増加した。一方、2RBox株(Xyn1プロモーターのシスエレメントの相補鎖を2つ挿入した改変プロモーターの導入株)のソフォロース存在下でのGUS活性は、1Box株と同等であった。
(3) Results The measurement results of GUS activity are shown in FIG. FIG. 2A depicts GUS activity in extracts of cells cultured in the presence of glucose, sorbose, or the cellulosic substrate Sophorose. In the D0C strain (control), GUS activity was detected in the presence of sorbose or sophorose. The Δcis strain showed extremely low GUS activity as compared to the D0C strain in the presence of both sorbose and sophorose. In the 1Box strain and 1R Box strain (introduced strain of a modified promoter into which a cis element of Xyn1 promoter or one complementary strand is inserted), the GUS activity in the presence of Sophorus is 2.3 times and 2.times. It has increased sixfold. In the 2Box strain (introduced strain of the modified promoter into which two cis elements of the Xyn1 promoter were inserted), GUS activity in the presence of Sophorus increased by 3.2 times. On the other hand, GUS activity in the presence of Sophorus of 2R Box strain (introduced strain of modified promoter into which two complementary strands of cis element of Xyn1 promoter were inserted) was equivalent to that of 1 Box strain.
 図2Bは、キシラン系基質(キシロース又はキシラン)存在下で培養した細胞の抽出液におけるGUS活性を表す。キシラン系基質で誘導した場合、D0C株及び1Box株ではGUS活性を検出できなかった。一方で、1RBox株、2Box株及び2RBox株はキシロース及びキシランのいずれの存在下でもGUS活性を示した。 FIG. 2B represents GUS activity in extracts of cells cultured in the presence of xylan-based substrates (xylose or xylan). When induced with xylan substrates, GUS activity could not be detected in strain D0C and strain 1Box. On the other hand, strains 1RBox, 2Box and 2RBox exhibited GUS activity in the presence of either xylose or xylan.
 図2の結果から、Xyn1プロモーターのシスエレメントを導入した改変Xyn3プロモーターが、セルロース系基質による誘導能を向上させること、及びさらにはキシラン系基質による誘導能をも獲得し得ることが示された。 The results shown in FIG. 2 indicate that the modified Xyn3 promoter into which a cis element of the Xyn1 promoter has been introduced can improve the inducibility by a cellulose-based substrate, and can further acquire the inducibility by a xylan-based substrate.
実施例4 プロモーターの誘導能の評価
(1)改変Xyn3プロモーター 3Box、3RBox及び6RBoxの作製
 実施例1(3)の手順で、Xyn1をコードする遺伝子のプロモーターのシスエレメント(配列番号5)又はその相補鎖を3つ含み、両端にXbaIサイトを含むDNA断片(3Box及び3RBox;配列番号41及び42)を構築した。さらに、配列番号5で示される配列の相補鎖を6つ含み、両端にXbaIサイトを含むDNA断片(6RBox;配列番号43)を合成した。これらのDNA断片をそれぞれ用いて、実施例1(4)の手順で改変Xyn3プロモーター含有プラスミドを作製した。
Example 4 Evaluation of Inducibility of Promoter (1) Preparation of Modified Xyn 3 Promoter 3 Box, 3 R Box and 6 R Box In the procedure of Example 1 (3), cis element (SEQ ID NO: 5) of promoter of gene encoding Xyn 1 or its complement A DNA fragment (3 Box and 3 R Box; SEQ ID NOs: 41 and 42) containing three strands and Xbal site at both ends was constructed. Furthermore, a DNA fragment (6RBox; SEQ ID NO: 43) was synthesized which contains six complementary strands of the sequence shown in SEQ ID NO: 5 and contains XbaI sites at both ends. Each of these DNA fragments was used to prepare a modified Xyn3 promoter-containing plasmid by the procedure of Example 1 (4).
(2)プロモーターの誘導能の評価
 実施例2の手順で、上記(1)で作製した改変Xyn3プロモーターを含むGUSレポーターカセット(図3)を構築し、次いで該GUSレポーターカセットを含むプロモーター解析用プラスミドを作製した。作製したプラスミドを用いて、実施例3の手順で、形質転換体3Box株、3RBox株及び6RBox株を作製した。作製した形質転換体を用いて、ソフォロース(図4A)もしくはキシラン(図4B)存在下で培養した細胞の抽出液におけるGUS活性を測定した。野生型(D0C株)のGUS活性を100としたときの相対GUS活性を求めた。
(2) Evaluation of Inducibility of Promoter According to the procedure of Example 2, a GUS reporter cassette (FIG. 3) containing the modified Xyn3 promoter prepared in (1) above was constructed, and then a plasmid for promoter analysis containing the GUS reporter cassette Was produced. The transformants 3Box strain, 3R Box strain and 6 R Box strain were produced by the procedure of Example 3 using the prepared plasmid. The GUS activity in the extract of cells cultured in the presence of Sophorus (FIG. 4A) or xylan (FIG. 4B) was measured using the prepared transformants. The relative GUS activity was determined when the GUS activity of wild type (D0C strain) was taken as 100.
(3)結果

 図4に、各形質転換体についての相対GUS活性を表す。図4には、実施例3で測定した2RBox株のデータも示す。ソフォロース及びキシランいずれの存在下においても、GUSレポーターの発現は、2RBox株と比べて3Box株及び3RBox株で向上しており、6RBox株ではさらに向上していた。これらの結果より、導入したXyn1プロモーターのシスエレメントの数に従って、改変Xyn3プロモーターのプロモーター活性が増加することが示唆された。
(3) Results

The relative GUS activity for each transformant is shown in FIG. FIG. 4 also shows the data of the 2R Box strain measured in Example 3. The expression of the GUS reporter was improved in the 3Box strain and the 3R Box strain as compared to the 2R Box strain, and was further improved in the 6R Box strain, in the presence of either Sophorus or xylan. From these results, it was suggested that the promoter activity of the modified Xyn3 promoter was increased according to the number of cis elements of the introduced Xyn1 promoter.
実施例5 改変Xyn3プロモーターを用いた酵素発現の評価
(1)Aspergillus aculeatus bgl1(aabgl1)発現カセットの構築
 pABG7(Biosci biotech biochem,1998,62(8):1615-1618)を鋳型として、xyn3の上流配列を付加したプライマーaabgl1_xyn3P(配列番号19)およびxyn3の下流配列を付加したプライマーaabgl1_xyn3T(配列番号20)を用いてPCRを行い、両端にxyn3の上流及び下流配列が付加されたAspergillus aculeatusのβ-グルコシダーゼ(AaBGL1)をコードする遺伝子(aabgl1)断片を得た。また、pBxyn3ag-D0Cを鋳型にプライマーaX3invert(配列番号21)及びプライマーsX3invert(配列番号22)を用いて、inverse PCRを行った。これらPCR産物をIn-fusion PCR advanced kit(TaKaRaBio,Shiga,Japan)を用いてクローニングし、pBxyn3aabgl1を得た。pBxyn3aabg1は、xyn3の上流領域の制御下にaabgl1遺伝子を、及び選択マーカーとしてamdS遺伝子を下流領域のNarIサイトに持つ。マーカーをリサイクルするため、pBxyn3aabgl1を鋳型として、プライマーrecyinvert3a(配列番号23)及びプライマーrecyinvert3s(配列番号24)を用いて、pBxyn3aabgl1のinverse PCR産物(amdSマーカーを除去)を構築した。
Example 5 Evaluation of enzyme expression using modified Xyn3 promoter (1) Construction of Aspergillus aculeatus bgl1 (aabgl1) expression cassette pABG7 (Biosci biotech biochem, 1998, 62 (8): 1615-1618) as a template, upstream of xyn 3 PCR was carried out using the primer aabgl1_xyn3P (SEQ ID NO: 19) to which the sequence was added and the primer aabgl1_xyn3T (SEQ ID NO: 20) to which the downstream sequence of xyn3 was added, and β of Aspergillus aculeatus to which the upstream and downstream sequences of xyn3 were added at both ends A gene (aabgl1) fragment encoding glucosidase (AaBGL1) was obtained. Inverse PCR was also performed using pBxyn3ag-D0C as a template and the primers aX3invert (SEQ ID NO: 21) and sX3invert (SEQ ID NO: 22). These PCR products were cloned using In-fusion PCR advanced kit (TaKaRaBio, Shiga, Japan) to obtain pBxyn3aabgl1. pBxyn3aabg1 has the aabgl1 gene under the control of the upstream region of xyn3 and the amdS gene as a selection marker at the NarI site of the downstream region. In order to recycle the marker, the inverse PCR product of pBxyn3aabgl1 (with the amdS marker removed) was constructed using pBxyn3aabgl1 as a template and primers recyinvert3a (SEQ ID NO: 23) and primer recyinvert3s (SEQ ID NO: 24).
 PC-3-7株のゲノムを鋳型として、プライマーxyn3reps(配列番号25)及びxyn3repa(配列番号26)を用いてxyn3の下流領域748bpを増幅し、pUC118(Takara)のHincIIサイトへと導入した(pUxyn3DR)。pUxyn3DRをEcoRV及びBamHIにより切断し、DNA断片を得た。また、pBpyr4(pBluescriptII SK(+)(Novagen)にトリコデルマ・リーセイ由来のpyr4遺伝子及びその上流、下流領域を含むDNA断片をクローニングしたプラスミド)をEcoRV及びBamHIにて切断し、DNA断片を得た。得られたDNA断片をライゲーションして、pBpyr4RM(pyr4選択マーカーの下流にxyn3の下流領域が挿入された断片)を得た。pBpyr4RMを鋳型とし、xyn3の下流領域の配列をそれぞれ付加したプライマーrecyclex3s(配列番号27)及びプライマーrecyclex3a(配列番号28)にて増幅させた。得られた増幅断片と、pBxyn3aabgl1とをIn-Fusionすることで、pBxyn3aabgl1pyr4RMを獲得した。 The downstream region 748 bp of xyn3 was amplified using the genome of PC-3-7 strain as a template and primers xyn3 reps (SEQ ID NO: 25) and xyn3 repa (SEQ ID NO: 26), and introduced into the HincII site of pUC118 (Takara) ( pUxyn3DR). pUxyn3DR was digested with EcoRV and BamHI to obtain a DNA fragment. Also, pBpyr4 (a plasmid obtained by cloning a DNA fragment containing the pyr4 gene derived from Trichoderma reesei and its upstream and downstream regions into pBluescript II SK (+) (Novagen)) was digested with EcoRV and BamHI to obtain a DNA fragment. The resulting DNA fragments were ligated to obtain pBpyr4RM (a fragment in which the downstream region of xyn3 was inserted downstream of the pyr4 selection marker). Using pBpyr4RM as a template, amplification was carried out with primers recyclex3s (SEQ ID NO: 27) and primers recyclex3a (SEQ ID NO: 28) to which sequences of the downstream region of xyn 3 were added, respectively. The resulting amplified fragment was in-fused with pBxyn3aabgl1 to obtain pBxyn3aabgl1pyr4RM.
 pBxyn3aabgl1pyr4RMをプライマーxyn1_2Box_inv_Rv(配列番号29)及びAabgl1_Fw(配列番号30)にてinverse PCRにより増幅した。また、pKFxyn3-2RBoxをプライマーxyn1_2box_Fw(配列番号31)およびプライマーxyn1_2box_Rv(配列番号32)にて増幅し、2RBox領域(配列番号8)を含むDNA断片を取得した。これらPCR産物をライゲーションすることにより、xyn3の上流領域が2RBox領域を含むプロモーターに置き換えられたpBxyn3_2RBaabgl1pyr4RMを得た。 PBxyn3aabgl1pyr4RM was amplified by inverse PCR using primers xyn1_2Box_inv_Rv (SEQ ID NO: 29) and Aabgl1_Fw (SEQ ID NO: 30). In addition, pKFxyn3-2RBox was amplified with primer xyn1_2box_Fw (SEQ ID NO: 31) and primer xyn1_2box_Rv (SEQ ID NO: 32) to obtain a DNA fragment containing 2R Box region (SEQ ID NO: 8). These PCR products were ligated to obtain pBxyn3_2RBaabgl1pyr4RM in which the upstream region of xyn3 was replaced with a promoter containing 2R Box region.
(2)形質転換体の取得
 上記(1)で構築したベクターpBxyn3_2RBaabgl1pyr4RMをSspI及びNotIにより切断し、これを宿主株に導入して形質転換を行った。導入はプロトプラストPEG法(Biotechnol Bioeng,2012,Jan;109(1):92-99)で行った。宿主株には、PC-3-7株を用いた。形質転換体は、ウリジン要求性に基づいた選抜のため、ウリジンを除いた最少培地にて培養した。形質転換体候補株は、アセトアミドを添加またはウリジンを除いた最少培地にて2回培養し、安定化した。相同組換え及び導入コピー数は、AlkPhos Direct kit(GE Healthcare Bio Science,Waukesha,WI)を用いてサザン解析にて確認した。得られた形質転換体を、X3_2RB_AB1と称した。
(2) Acquisition of Transformant The vector pBxyn3_2RBaabgl1pyr4RM constructed in the above (1) was cleaved with SspI and NotI, and introduced into a host strain for transformation. The introduction was performed by the protoplast PEG method (Biotechnol Bioeng, 2012, Jan; 109 (1): 92-99). As a host strain, PC-3-7 strain was used. The transformant was cultured in a minimal medium from which uridine was removed for selection based on uridine auxotrophy. Transformant candidate strains were stabilized by culturing twice in minimal medium supplemented with acetamide or without uridine. The homologous recombination and the introduced copy number were confirmed by Southern analysis using AlkPhos Direct kit (GE Healthcare Bio Science, Waukesha, WI). The resulting transformant was called X3_2RB_AB1.
(3)培養
 宿主株及び形質転換体は、DifcoTM Potato Dextrose Agar(以下、PDA)培地で生育させ、分生子は0.9%(w/v)NaCl、10%(w/v)グリセロール溶液にて-80℃で保管した。セルラーゼ生産のために、分生子1×107個を1%(w/v)アビセル(登録商標)(微結晶セルロース)、又は1%(w/v)アビセル(登録商標)及び0.5%(w/v)キシランを炭素源とした培地(0.14%(w/v)(NH42SO4、0.2%(w/v)KH2PO4、0.03%(w/v)CaCl2・2H2O、0.03%(w/v)MgSO4・7H2O、0.1%(w/v)BactoTM Polypeptone、0.05%(w/v)BactoTM Yeast extract、0.1%(w/v)Tween80、0.1%(w/v)Trace element(上述)、50mM酒石酸Buffer(pH4.0))50mLに植菌し、28℃、220rpmで5日間培養した。培養上清はミラクロスでのろ過により回収し、酵素標品として使用した。
(3) culturing the host strain and transformants, Difco TM Potato Dextrose Agar (hereinafter, PDA) grown in a medium, conidia 0.9% (w / v) NaCl , 10% (w / v) glycerol solution Stored at -80.degree. For cellulase production, 1 × 10 7 conidia with 1% (w / v) Avicel® (microcrystalline cellulose), or 1% (w / v) Avicel® and 0.5% (W / v) Xylan as a carbon source medium (0.14% (w / v) (NH 4 ) 2 SO 4 , 0.2% (w / v) KH 2 PO 4 , 0.03% (w) / v) CaCl 2 · 2H 2 O, 0.03% (w / v) MgSO 4 · 7H 2 O, 0.1% (w / v) Bacto TM polypeptone, 0.05% (w / v) Bacto TM Inoculate 50 mL of Yeast extract, 0.1% (w / v) Tween 80, 0.1% (w / v) Trace element (described above), 50 mM Tartrate buffer (pH 4.0)), 5 at 28 ° C, 220 rpm It was cultured for a day. The culture supernatant was collected by filtration with Miracloth and used as an enzyme preparation.
(4)酵素分析
 X3_2RB_AB1株(改変プロモーター導入によるBGL活性強化株)及びPC-3-7株(宿主)の培養上清について、酵素活性及びタンパク質量を測定した。培養上清は12.5%のポリアクリルアミドによりSDS-PAGEを行い、クマシーブリリアントブルーR250にて染色した。Precision Plus Dual Color Standard Marker(Bio-Rad Laboratories)を分子量決定のために使用した。タンパク質量はBradford法によりウシ免疫グロブリンを標準として求めた。
(4) Enzyme Analysis The enzyme activity and the amount of protein were measured for the culture supernatants of the X3_2RB_AB1 strain (strain enhanced with BGL activity by introducing a modified promoter) and the PC-3-7 strain (host). The culture supernatant was subjected to SDS-PAGE with 12.5% polyacrylamide and stained with Coomassie Brilliant Blue R250. A Precision Plus Dual Color Standard Marker (Bio-Rad Laboratories) was used for molecular weight determination. The amount of protein was determined by the Bradford method using bovine immunoglobulin as a standard.
 アビセラーゼ、カルボキシメチルセルラーゼ(CMCase)、及びキシラナーゼ活性は、酵素反応で得られた還元糖量を3,5-ジニトロサリチル酸(DNS)法により測定することで算出した。アビセラーゼ活性測定の酵素反応は、50mM酢酸ナトリウムバッファー(pH5.0)に終濃度1%(w/v)アビセル(登録商標)を懸濁させた反応液を用いて50℃で30分間行った。CMCase活性測定の酵素反応は、50mM酢酸ナトリウムバッファーに40mMカルボキシメチルセルロース(CMC)を溶解させた反応液を用いて50℃で15分間行った。キシラナーゼ活性測定の酵素反応は、50mM酢酸ナトリウムバッファーに1%(w/v)birch wood xylanを溶解させた反応液を用いて50℃で10分間行った。1Uの活性は、グルコース(又はキシロース)1μmol相当を1分で作り出す酵素量と定義した。セロビアーゼ活性測定では、50mM酢酸バッファーに終濃度20mMセロビオース(シグマ)を添加した反応液中で酵素を50℃、10分間反応させた後、Glucose C2 kit(和光)によりグルコース濃度を測定した。セロビアーゼ活性の1Uはグルコース2μmolを1分間に作り出す酵素量とした。 The avicelase, carboxymethylcellulose (CMCase), and xylanase activities were calculated by measuring the amount of reducing sugar obtained by the enzyme reaction by the 3,5-dinitrosalicylic acid (DNS) method. The enzymatic reaction for determination of avicelase activity was carried out at 50 ° C. for 30 minutes using a reaction solution in which 1% (w / v) Avicel (registered trademark) was suspended in 50 mM sodium acetate buffer (pH 5.0). The enzyme reaction for measurement of CMCase activity was carried out at 50 ° C. for 15 minutes using a reaction solution in which 40 mM carboxymethyl cellulose (CMC) was dissolved in 50 mM sodium acetate buffer. The enzyme reaction for measuring xylanase activity was carried out at 50 ° C. for 10 minutes using a reaction solution in which 1% (w / v) birch wood xylan was dissolved in 50 mM sodium acetate buffer. The activity of 1 U was defined as the amount of enzyme that produces 1 μmol equivalent of glucose (or xylose) in 1 minute. In the cellobiase activity measurement, the enzyme was allowed to react at 50 ° C. for 10 minutes in a reaction solution in which a final concentration of 20 mM cellobiose (Sigma) was added to 50 mM acetic acid buffer, and then the glucose concentration was measured by Glucose C2 kit (Wako). One unit of cellobiase activity was an amount of enzyme that produces 2 μmol of glucose in one minute.
 培養上清サンプル中のaaBGLの発現を抗BGL抗体によるウエスタンブロッティング法を用いて観察した。ウエスタンブロッティングは、セミドライ式ブロッティング装置(ATTO社)を用いて行った。SDS-PAGEによるタンパク質分離後、タンパク質をイモビロン-P メンブレン(メルクミリポア)に転写した。タンパク質の検出は、ECL select western blotting detection reagent(GEヘルスケア)を用いた。抗aaBGL抗体は、精製したaaBGLを抗原にウサギ免疫による抗体を作成したものを使用した。また、HRP標識二次抗体は、GEヘルスケアのものを使用して検出した。ウエスタンブロッティング解析の結果、X3_2RB_AB1株ではAaBGL1のバンドが130kDa付近に観察され、PC-3-7株(宿主)では観察されなかった。(図5)。X3_2RB_AB1株で130kDa付近のバンドが2本観察されたが、これらは、いずれもPC-3-7株(宿主)では観察されていないことから、非特異バンドではなく、AaBGLへの糖鎖修飾により泳動時の分子量サイズが変化したために生じたものであると考えられた。 The expression of aaBGL in the culture supernatant sample was observed using Western blotting with anti-BGL antibody. Western blotting was performed using a semi-dry blotting apparatus (ATTO). After protein separation by SDS-PAGE, proteins were transferred to Immobilon-P membrane (Merck Millipore). For protein detection, ECL select western blotting detection reagent (GE healthcare) was used. As the anti-aa BGL antibody, one obtained by preparing an antibody by rabbit immunization using purified aa BGL as an antigen was used. Also, HRP-labeled secondary antibodies were detected using GE Healthcare. As a result of western blotting analysis, a band of AaBGL1 was observed at around 130 kDa in the X3_2RB_AB1 strain and was not observed in the PC-3-7 strain (host). (Figure 5). Two bands around 130 kDa were observed in the X3_2RB_AB1 strain, but none of them were observed in the PC-3-7 strain (host). Therefore, not a nonspecific band but a sugar chain modification to AaBGL It was considered to be caused by the change in molecular weight size during electrophoresis.
 X3_2RB_AB1株及びPC-3-7株におけるタンパク質量、ならびにアビセラーゼ、CMCase、セロビアーゼ、及びキシラナーゼ活性の測定結果を表1に示す。CMCase活性とキシラナーゼ活性は、X3-2RB_AB1株とPC-3-7株で同等であったが、セロビアーゼ活性は、X3-2RB_AB1株において35.0U/mL(アビセル(登録商標)含有培地)及び17.7U/mL(アビセル(登録商標)+キシラン含有培地)であり、これらは、PC-3-7株よりもそれぞれ約120倍及び約85倍増加していた。またアビセラーゼ活性も、X3-2RB_AB1株は、宿主株よりも約30%高い活性を示した。これらの結果から、セルロースやセルロースおよびキシラン存在下での培養において、2RBoxプロモーターが下流に連結したAaBGL1の遺伝子を効率的に発現させたことが示唆された。 Table 1 shows the amounts of proteins in the X3_2RB_AB1 strain and the PC-3-7 strain, and the results of measurement of avicelase, CMCase, cellobiase, and xylanase activities. The CMCase activity and the xylanase activity were comparable between the X3-2RB_AB1 strain and the PC-3-7 strain, but the cellobiase activity was 35.0 U / mL (Avicel® containing medium) and 17 in the X3-2RB_AB1 strain. .7 U / mL (Avicel.RTM. + Xylan-containing medium), which increased about 120 and 85 times over the PC-3-7 strain, respectively. Moreover, the avicelase activity also showed about 30% higher activity than the host strain in the X3-2RB_AB1 strain. From these results, it was suggested that, in the culture in the presence of cellulose, cellulose and xylan, the 2R Box promoter efficiently expressed the gene of AaBGL1 linked downstream.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(5)転写解析
 改変Xyn3プロモーターの転写レベルでの評価を行うため、PC-3-7株とX3-2RB_AB1株の転写解析を行った。PC-3-7株とX3-2RB_AB1株を0.3%(w/v)グルコース含有培地で2日間培養し、休止菌体を獲得した。得られた菌体を0.01%(w/v)ソフォロース(セルロース系基質、強いセルラーゼ誘導物質)又は0.1%(w/v)キシラン(キシラン系基質)を唯一の炭素源とした誘導培地にて1、3、6、及び9時間培養した後、転写解析を行って遺伝子発現を調べた。転写解析のターゲット遺伝子として、主要なセルラーゼ遺伝子cbh1、主要なキシラナーゼ遺伝子xyn1、セルラーゼ生産に必須な転写活性化因子xyr1、キシラナーゼ遺伝子xyn3、及びaabgl1を解析した。遺伝子発現は定量的リアルタイムPCRにより測定し、β-actin (act1)の発現レベルを1としたときの相対発現レベルを求めた。
(5) Transcription analysis In order to evaluate at the transcription level of the modified Xyn3 promoter, transcription analysis of PC-3-7 strain and X3-2RB_AB1 strain was performed. PC-3-7 strain and X3-2RB_AB1 strain were cultured in a medium containing 0.3% (w / v) glucose for 2 days to obtain resting cells. Derivation of the obtained cells with 0.01% (w / v) sophorus (cellulose-based substrate, strong cellulase derivative) or 0.1% (w / v) xylan (xylan-based substrate) as the sole carbon source After culturing for 1, 3, 6, and 9 hours in the medium, transcriptional analysis was performed to examine gene expression. As target genes for transcriptional analysis, a major cellulase gene cbh1, a major xylanase gene xyn1, a transcription activation factor xyr1 essential for cellulase production, a xylanase gene xyn3 and aabgl1 were analyzed. Gene expression was measured by quantitative real-time PCR, and relative expression level was determined when expression level of β-actin (act1) was 1.
 結果を図6及び図7に示す。ソフォロース誘導下、cbh1、xyr1、及びxyn3の発現レベルはPC-3-7株及びX3-2RB_AB1株で同等であった(図6)。また従来知られているとおり、ソフォロース誘導下ではxyn1は発現しなかった(データ示さず)。一方で、キシラン誘導下では、PC-3-7株、X3-2RB_AB1株ともに、xyn3は発現せず、xyn1は高い発現レベルであった(図7)。これらの結果は、これらの遺伝子のプロモーター活性に関する従来の知見と一致する。一方、X3-2RB_AB1株では、ソフォロース誘導下及びキシラン誘導下ともにaabgl1の発現がみられ、これらの誘導物質が改変Xyn3プロモーターを活性化させていることが示された。 The results are shown in FIG. 6 and FIG. Under Sophorus induction, the expression levels of cbh1, xyr1, and xyn3 were similar in strains PC-3-7 and X3-2RB_AB1 (FIG. 6). Also, as is conventionally known, xyn1 was not expressed under Sophorose induction (data not shown). On the other hand, under xylan induction, neither the PC-3-7 strain nor the X3-2RB_AB1 strain expressed xyn3 and the xyn1 expression level was high (FIG. 7). These results are consistent with the conventional findings on the promoter activity of these genes. On the other hand, in the X3-2RB_AB1 strain, expression of aabgl1 was observed under sophorose and xylan induction, and it was shown that these inducers activate the modified Xyn3 promoter.
実施例6 QM9414株(Xyn3非発現株)における改変Xyn3プロモーターによるAaBGL1の発現
 Xyn3はトリコデルマ・リーセイPC-3-7株で本来発現するが、その先祖に当たるトリコデルマ・リーセイQM9414株では本来発現しない。本実施例では、改変Xyn3プロモーターがQM9414株で機能する可能性を検討した。
Example 6 Expression of AaBGL1 by Modified Xyn3 Promoter in QM9414 Strain (Xyn3 Non-Expressing Strain) Xyn3 is originally expressed in Trichoderma reesei PC-3-7 strain, but is not expressed in Trichoderma reesei QM9414 strain, which is its ancestor. In this example, the possibility of the modified Xyn3 promoter functioning in the QM9414 strain was examined.
 実施例5と同様の手順で、ただし形質転換体の宿主としてQM9414株を用いて、2RBox領域(配列番号8)を含む改変Xyn3プロモーターの制御下にaabgl1を導入した発現カセットを含むプラスミドであるpBxyn3_2RBaabgl1pyr4RMを導入した形質転換体QMX3-2RB_AB1を作製した。さらに、QMX3-2RB_AB1株及び宿主QM9414株における酵素活性を、実施例5(4)と同様の手順で測定した。ただし誘導培地中のキシランの濃度は0.01%(w/v)とした。さらに、実施例5(5)と同様の手順でaabgl1の転写活性を調べた。 The procedure is the same as in Example 5, but using pBxyn3_2RBaabgl1pyr4RM, a plasmid containing an expression cassette into which aabgl1 has been introduced under the control of a modified Xyn3 promoter containing the 2R Box region (SEQ ID NO: 8) using QM9414 as the host of transformants. The transformant QMX3-2RB_AB1 into which was introduced was prepared. Furthermore, the enzyme activities in the QMX3-2RB_AB1 strain and the host QM9414 strain were measured in the same manner as in Example 5 (4). However, the concentration of xylan in the induction medium was 0.01% (w / v). Furthermore, the transcriptional activity of aabgl1 was examined in the same manner as in Example 5 (5).
 QMX3-2RB_AB1株の培養上清のウエスタンブロッティング解析において、AaBGL1のバンドが観察された(図8)。さらに、QMX3-2RB_AB1株は、タンパク質量、ならびにアビセラーゼ活性、及びセロビアーゼ活性が、QM9414(宿主)よりも高い値を示した(表2)。また転写解析の結果、QMX3-2RB_AB1株では、ソフォロース(セルロース系基質)誘導下(図9A)及びキシラン(キシラン系基質)誘導下(図9B)の両方でaabgl1の転写が確認され、改変プロモーター制御下でaabgl1の転写が促進されたことが示された。 In the western blotting analysis of the culture supernatant of the QMX3-2RB_AB1 strain, a band of AaBGL1 was observed (FIG. 8). Furthermore, the QMX3-2RB_AB1 strain showed higher levels of protein, as well as avicelase activity and cellobiase activity than QM9414 (host) (Table 2). Moreover, as a result of transcription analysis, in the QMX3-2RB_AB1 strain, transcription of aabgl1 was confirmed both under Sophorus (cellulose-based substrate) induction (FIG. 9A) and under xylan (xylan-based substrate) induction (FIG. 9B), and control of the modified promoter Below, it was shown that transcription of aabgl1 was promoted.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
実施例7 改変Xyn3プロモーターを用いたXyn3発現の評価
(1)トリコデルマ・リーセイXyn3発現カセットの構築
 PC-3-7株ゲノムを鋳型とし、プライマーpyr4_Fw(配列番号33)及びプライマーpyr4_Rv(配列番号34)を用いて、pyr4の上流領域2,274bp及び下流領域1,244bp、ならびにpyr4 ORFを含むDNA断片を取得した。このDNA断片をHincIIにて線上化したpUC118に挿入し、pUΔpyr4を作製した。
Example 7 Evaluation of Xyn3 Expression Using Modified Xyn3 Promoter (1) Construction of Trichoderma reesei Xyn3 Expression Cassette The genome of PC-3-7 strain is used as a template, primer pyr4_Fw (SEQ ID NO: 33) and primer pyr4_Rv (SEQ ID NO: 34) Was used to obtain a DNA fragment containing the upstream region 2,274 bp and the downstream region 1,244 bp of pyr4 and the pyr4 ORF. This DNA fragment was inserted into pUC118 linearized with HincII to prepare pUΔpyr4.
 実施例5で作製したpBxyn3_2RBaabgl1pyr4RMを鋳型とし、プライマーaX3invert(配列番号21)及びプライマーsX3invert(配列番号22)を用いてinverse PCRを行った。また、PC-3-7株ゲノムDNAを鋳型とし、プライマーxyn3_Fw(配列番号35)及びプライマーxyn3_Rv(配列番号36)を用いてxyn3 ORFを増幅させ、Blunting Kination kit(TaKaRa)にてリン酸基付加を行った。これらDNA断片をライゲーションすることで、pBxyn3_2RBxyn3pyr4RMを作製した。 Inverse PCR was performed using pBxyn3_2RBaabgl1pyr4RM prepared in Example 5 as a template and the primers aX3invert (SEQ ID NO: 21) and sX3invert (SEQ ID NO: 22). Furthermore, using the PC-3-7 strain genomic DNA as a template, the xyn3 ORF is amplified using primer xyn3_Fw (SEQ ID NO: 35) and primer xyn3_Rv (SEQ ID NO: 36), and phosphate group addition is carried out with Blunting Kination kit (TaKaRa). Did. These DNA fragments were ligated to produce pBxyn3_2RBxyn3pyr4RM.
(2)形質転換体の取得
 (1)で作製したpUΔpyr4をHindIII及びXbaIにて消化した断片を調製し、これを宿主にプロトプラスト-PEG法にて導入した。宿主株としては、E1AB1株(Enzyme Microb Technol,2016,82:89-95)を用いた。10mM FOAおよび20mMウリジンを添加した最少培地にて選抜を行い、E1AB1株Δpyr4株を取得した。次いで、E1AB1株Δpyr4に、(1)で作製したpBxyn3_2RBxyn3pyr4RMをApaI及びNotIで消化した断片を導入した。ウリジンを含まない最少培地にて選択された形質転換体候補株のうち、最も高い糖化能を示した形質転換体をE1AB1_X3-2RBX3株として取得した。
(2) Preparation of Transformant A fragment prepared by digesting pUΔpyr4 prepared in (1) with HindIII and XbaI was prepared, and this was introduced into a host by the protoplast-PEG method. As a host strain, E1AB1 strain (Enzyme Microb Technol, 2016, 82: 89-95) was used. Selection was performed in a minimal medium supplemented with 10 mM FOA and 20 mM uridine to obtain E1AB1 strain Δpyr4 strain. Subsequently, a fragment obtained by digesting pBxyn3_2RBxyn3pyr4RM prepared in (1) with ApaI and NotI was introduced into E1AB1 strain Δpyr4. Among transformant candidates selected in the minimal medium containing no uridine, the transformant showing the highest saccharification ability was obtained as E1AB1_X3-2RBX3.
(3)形質転換体の培養
 形質転換体の酵素生産性は、以下に示す培養により評価した。前培養として500mLフラスコに培地を50mL仕込み、1×10個/mLとなるよう胞子を植菌し、28℃、220rpmにて振とう培養した(プリス社製PRXYg-98R)。培地組成は以下の通りである:1%(w/v)グルコース、0.14%(w/v)(NHSO、0.2%(w/v)KHPO、0.03%(w/v)CaCl・2HO、0.03%(w/v)MgSO・7HO、0.1%(w/v)ハイポリペプトンN、0.05%(w/v)Bacto Yeast extract、0.1%(w/v)Tween 80、0.1%(w/v)Trace element 2、50mM酒石酸バッファー(pH4.0)。なおTrace element 2の組成は以下の通りである:6mg HBO、26mg(NHMo24・4HO、100mg FeCl・6HO、40mg CuSO・5HO、8mg MnCl・4HO、200mg ZnClを蒸留水にて100mLにメスアップした。
(3) Cultivation of Transformant The enzyme productivity of the transformant was evaluated by the following culture. As a preculture, 50 mL of culture medium was charged in a 500 mL flask, spores were inoculated to 1 × 10 5 cells / mL, and shake culture was performed at 28 ° C. and 220 rpm (PRXYg-98R manufactured by Priss). Media composition is as follows: 1% (w / v) glucose, 0.14% (w / v) (NH 4 ) 2 SO 4 , 0.2% (w / v) KH 2 PO 4 , 0 .03% (w / v) CaCl 2 · 2 H 2 O, 0.03% (w / v) MgSO 4 · 7 H 2 O, 0.1% (w / v) high polypeptone N, 0.05% (w / V) Bacto Yeast extract, 0.1% (w / v) Tween 80, 0.1% (w / v) Trace element 2, 50 mM tartaric acid buffer (pH 4.0). The composition of Trace element 2 is as follows: 6 mg H 3 BO 3 , 26 mg (NH 4 ) 6 Mo 7 O 24 · 4 H 2 O, 100 mg FeCl 3 · 6 H 2 O, 40 mg CuSO 4 · 5 H 2 O, 8 mg MnCl 2 · 4 H 2 O, 200 mg ZnCl 2 was added to 100 mL with distilled water.
 2日間の前培養後、ジャーファーメンター(バイオット社製BTR-25NA1S-8M)を用いて本培養を行った。上記前培養液を10%(v/v)植菌し、5日間培養した。炭素源として10%(w/v)アビセル(登録商標)+2%(w/v)キシランとし、その他の培地成分は、0.42%(w/v)(NH42SO4、0.2%(w/v)KH2PO4、0.03%(w/v)CaCl2・2H2O、0.03%(w/v)MgSO4・7HO、0.1%(w/v)ハイポリペプトンN、0.05%(w/v)Bacto Yeast extract、0.1%(w/v)Tween 80、0.1%(w/v)Trace element(上述)、0.2%(w/v)Antifoam PE-Lである。ジャーファーメンターの設定は以下の通りである:温度28℃、pH4.5、撹拌数はDO=3.0ppmを一定に保つよう変動。 After preculturing for 2 days, main culture was performed using a jar fermenter (BTR-25NA1S-8M manufactured by Biot). The above preculture was inoculated at 10% (v / v) and cultured for 5 days. 10% (w / v) Avicel (registered trademark) + 2% (w / v) xylan as a carbon source, and the other medium components are 0.42% (w / v) (NH 4 ) 2 SO 4 , 0. 2% (w / v) KH 2 PO 4 , 0.03% (w / v) CaCl 2 · 2 H 2 O, 0.03% (w / v) MgSO 4 · 7 H 2 O, 0.1% (w) / V) High polypeptone N, 0.05% (w / v) Bacto Yeast extract, 0.1% (w / v) Tween 80, 0.1% (w / v) Trace element (described above), 0.2 % (W / v) Antifoam PE-L. The setting of the jar fermenter is as follows: temperature 28 ° C., pH 4.5, the number of stirring changes so as to keep DO = 3.0 ppm constant.
 実施例5(3)と同様の手順で培養上清を回収し、タンパク質の濃度をbradford法にて測定した。bradford法では、Quick Startプロテインアッセイ(BioRad)を使用し、ウシγグロブリンを標準タンパク質とした検量線をもとにタンパク質量を計算した。その際、E1AB1株培養上清(JN13)中のタンパク質量を1としたときの、E1AB1_X3-2RBX3株の培養上清(JN24)中のタンパク質量の相対比を求めた。その結果、JN24は、JN13株に比べてタンパク質生産性が23%向上していた。 The culture supernatant was recovered in the same manner as in Example 5 (3), and the protein concentration was measured by the bradford method. In the bradford method, the amount of protein was calculated based on a calibration curve using bovine gamma globulin as a standard protein, using Quick Start protein assay (BioRad). At that time, the relative ratio of the amount of protein in the culture supernatant (JN24) of strain E1AB1_X3-2RBX3 was determined, where the amount of protein in the culture supernatant of strain E1AB1 (JN13) was 1. As a result, JN24 had a 23% improvement in protein productivity as compared to the JN13 strain.
 各培養上清のSDS-PAGE解析を行った結果、JN24では、元株の培養上清であるJN13と比べて、Xyn3のバンドのみが非常に増加していることが観察された(図10)。このSDS-PAGEのバンドの濃淡をImage Lab(バイオラット)を用いて数値化し、各酵素のタンパク質量比を算出した。その算出値と上清のタンパク質量からJN13とJN24それぞれに含まれる酵素量を算出し比較した結果、JN13とJN24ではほとんどの酵素が同等量であったのに対し、Xyn3だけがJN24で4倍以上増加していた。よって、JN24で生産向上したタンパク質のほとんどはXyn3であることがわかった。このことから、改変Xyn3プロモーターが、ジャーファーメンター培養においてもタンパク質を高発現させることが可能なプロモーターであることが示された。 As a result of SDS-PAGE analysis of each culture supernatant, it was observed that in JN24, only the band of Xyn3 was significantly increased compared to JN13, which is the culture supernatant of the original strain (FIG. 10) . The intensity of the bands of this SDS-PAGE was quantified using Image Lab (Biorat) to calculate the protein amount ratio of each enzyme. As a result of calculating and comparing the amount of enzyme contained in each of JN13 and JN24 from the calculated value and the amount of protein in the supernatant, most of the enzymes were equivalent in JN13 and JN24, but only Xyn3 was 4 times in JN24 It has increased over. Thus, it was found that most of the proteins produced by JN24 were Xyn3. From this, it was shown that the modified Xyn3 promoter is a promoter capable of highly expressing a protein even in jar fermenter culture.
 以上の実施例に用いたプライマーの配列を以下の表3~4に示す。 The sequences of the primers used in the above examples are shown in Tables 3 to 4 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Claims (19)

  1.  改変プロモーターであって、
     配列番号1の374番~401番ヌクレオチドに相当する領域に、1つ以上のXyn1プロモーターのシスエレメントのポリヌクレオチド又はその相補鎖、を含有するポリヌクレオチドを含む、Xyn3プロモーターのポリヌクレオチドからなり、
     該Xyn3プロモーターのポリヌクレオチドが、以下:
     配列番号1で示されるヌクレオチド配列からなるポリヌクレオチド;
     配列番号1の350番~1084番ヌクレオチドで示されるヌクレオチド配列からなるポリヌクレオチド;又は
     配列番号1で示されるヌクレオチド配列、又は配列番号1の350番~1084番ヌクレオチドで示されるヌクレオチド配列と少なくとも90%同一であって、配列番号1の374番~401番ヌクレオチドに相当する領域にGGCTAT-NNNNNNNNNNNNNNNN-TTTGCC(配列番号2)で示される配列を含むヌクレオチド配列からなり、かつセルロースに誘導されるプロモーター活性を有する、ポリヌクレオチド、
    であり、
     該Xyn1プロモーターのシスエレメントのポリヌクレオチドが、GGCTAA-NNNNNNNNNN-TTAGCC(配列番号4)で示されるヌクレオチド配列からなり、かつ
     該1つ以上のXyn1プロモーターのシスエレメントのポリヌクレオチド又はその相補鎖を含有するポリヌクレオチドが、HAP2/3/5結合サイト及びCREI結合サイトを含まない、改変プロモーター。
    A modified promoter,
    It consists of a polynucleotide of Xyn3 promoter including a polynucleotide containing a polynucleotide of cis element of one or more Xyn1 promoters or a complementary strand thereof in a region corresponding to nucleotides 374 to 401 of SEQ ID NO: 1,
    The polynucleotide of the Xyn3 promoter is as follows:
    A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 1;
    A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1; or a nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1 at least 90% A region identical to that of SEQ ID NO: 1 corresponding to nucleotides 374 to 401, consisting of a nucleotide sequence comprising the sequence shown by GGCTAT-NNNNNNNNNNNNNNNNNN-TTTGCC (SEQ ID NO: 2), and a cellulose-induced promoter activity Having a polynucleotide,
    And
    The polynucleotide of the cis element of the Xyn1 promoter consists of the nucleotide sequence shown by GGCTAA-NNNNNNNNNN-TTAGCC (SEQ ID NO: 4), and contains the polynucleotide of the cis element of the one or more Xyn1 promoters or a complementary strand thereof A modified promoter, wherein the polynucleotide does not contain HAP2 / 3/5 binding site and CREI binding site.
  2.  前記Xyn3プロモーターのポリヌクレオチドが、以下:
     配列番号1で示されるヌクレオチド配列からなるポリヌクレオチド;
     配列番号1の350番~1084番ヌクレオチドで示されるヌクレオチド配列からなるポリヌクレオチド;又は
     配列番号1で示されるヌクレオチド配列、又は配列番号1の350番~1084番ヌクレオチドで示されるヌクレオチド配列と少なくとも95%同一であって、配列番号1の374番~401番ヌクレオチドに相当する領域に配列番号2で示される配列を含むヌクレオチド配列からなり、かつセルロースに誘導されるプロモーター活性を有する、ポリヌクレオチド、
    である、請求項1記載の改変プロモーター。
    The polynucleotide of the Xyn3 promoter is as follows:
    A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 1;
    A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1; or a nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1 at least 95% A polynucleotide which is identical and comprises a nucleotide sequence comprising the sequence shown in SEQ ID NO: 2 in the region corresponding to nucleotides 374 to 401 of SEQ ID NO: 1 and having a cellulose-induced promoter activity,
    The modified promoter according to claim 1, which is
  3.  前記Xyn3プロモーターのポリヌクレオチドが、以下:
     配列番号1の3~1073番ヌクレオチドで示されるヌクレオチド配列からなるポリヌクレオチド;
     配列番号1の350番~1073番ヌクレオチドで示されるヌクレオチド配列からなるポリヌクレオチド;又は
     配列番号1の3~1073番ヌクレオチドで示されるヌクレオチド配列、又は配列番号1の350番~1073番ヌクレオチドで示されるヌクレオチド配列と少なくとも90%同一であって、配列番号1の374番~401番ヌクレオチドに相当する領域に配列番号2で示される配列を含むヌクレオチド配列からなり、かつセルロースに誘導されるプロモーター活性を有する、ポリヌクレオチド、
    である、請求項1記載の改変プロモーター。
    The polynucleotide of the Xyn3 promoter is as follows:
    A polynucleotide consisting of a nucleotide sequence represented by nucleotides 3-1073 of SEQ ID NO: 1;
    A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1073 of SEQ ID NO: 1; or a nucleotide sequence represented by nucleotides 3 to 1073 of SEQ ID NO: 1, or represented by nucleotides 350 to 1073 of SEQ ID NO: 1 It consists of a nucleotide sequence that is at least 90% identical to the nucleotide sequence and contains the sequence shown in SEQ ID NO: 2 in the region corresponding to nucleotides 374 to 401 of SEQ ID NO: 1 and has a cellulose-induced promoter activity , Polynucleotides,
    The modified promoter according to claim 1, which is
  4.  前記1つ以上のXyn1プロモーターのシスエレメントのポリヌクレオチド又はその相補鎖を含有するポリヌクレオチドが、配列番号4で示されるヌクレオチド配列からなるポリヌクレオチド又はその相補鎖を1~10個含む、請求項1~3のいずれか1項記載の改変プロモーター。 The polynucleotide comprising a polynucleotide of a cis element of the one or more Xyn1 promoters or a complementary strand thereof comprises 1 to 10 polynucleotides consisting of the nucleotide sequence shown in SEQ ID NO: 4 or a complementary strand thereof The modified promoter according to any one of to 3.
  5.  前記配列番号4で示されるヌクレオチド配列からなるポリヌクレオチドが、配列番号5で示されるヌクレオチド配列からなるポリヌクレオチドである、請求項4記載の改変プロモーター。 The modified promoter according to claim 4, wherein the polynucleotide consisting of the nucleotide sequence shown by SEQ ID NO: 4 is a polynucleotide consisting of the nucleotide sequence shown by SEQ ID NO: 5.
  6.  前記1つ以上のXyn1プロモーターのシスエレメントのポリヌクレオチド又はその相補鎖を含有するポリヌクレオチドが、以下:
     配列番号6で示されるヌクレオチド配列からなるポリヌクレオチド又はその相補鎖;
     配列番号7で示されるヌクレオチド配列からなるポリヌクレオチド;
     配列番号8で示されるヌクレオチド配列からなるポリヌクレオチド;
     配列番号41で示されるヌクレオチド配列からなるポリヌクレオチド;
     配列番号42で示されるヌクレオチド配列からなるポリヌクレオチド;あるいは、
     配列番号43で示されるヌクレオチド配列からなるポリヌクレオチド、
    である、請求項4又は5記載の改変プロモーター。
    The polynucleotide comprising the polynucleotide of the cis element of the one or more Xyn1 promoters or the complementary strand thereof is as follows:
    A polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 6 or its complementary strand;
    A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 7;
    A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 8;
    A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 41;
    A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 42; or
    A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 43,
    The modified promoter according to claim 4 or 5, which is
  7.  請求項1~6のいずれか1項記載の改変プロモーターを含有するベクター。 A vector containing the modified promoter according to any one of claims 1 to 6.
  8.  前記改変プロモーターが目的遺伝子の上流に連結されている請求項7記載のベクター。 The vector according to claim 7, wherein the modified promoter is linked upstream of the target gene.
  9.  前記目的遺伝子が、配列番号37で示されるヌクレオチド配列又はこれと少なくとも90%同一なヌクレオチド配列からなりキシラナーゼをコードするポリヌクレオチドであるか、又は配列番号39で示されるヌクレオチド配列又はこれと少なくとも90%同一なヌクレオチド配列からなりキシラナーゼをコードするポリヌクレオチドである、請求項8記載のベクター。 The target gene is a nucleotide sequence consisting of a nucleotide sequence shown in SEQ ID NO: 37 or a nucleotide sequence consisting of at least 90% identical thereto and encoding a xylanase, or a nucleotide sequence shown in SEQ ID NO: 39 or at least 90% The vector according to claim 8, which is a polynucleotide consisting of the same nucleotide sequence and encoding xylanase.
  10.  目的遺伝子と、該遺伝子の上流に連結された請求項1~6のいずれか1項記載の改変プロモーターとを含む、DNA断片。 A DNA fragment comprising a gene of interest and the modified promoter according to any one of claims 1 to 6 linked upstream of said gene.
  11.  前記目的遺伝子が、配列番号37で示されるヌクレオチド配列又はこれと少なくとも90%同一なヌクレオチド配列からなりキシラナーゼをコードするポリヌクレオチドであるか、又は配列番号39で示されるヌクレオチド配列又はこれと少なくとも90%同一なヌクレオチド配列からなりキシラナーゼをコードするポリヌクレオチドである、請求項10記載のDNA断片。 The target gene is a nucleotide sequence consisting of a nucleotide sequence shown in SEQ ID NO: 37 or a nucleotide sequence consisting of at least 90% identical thereto and encoding a xylanase, or a nucleotide sequence shown in SEQ ID NO: 39 or at least 90% 11. The DNA fragment according to claim 10, which is a polynucleotide consisting of the same nucleotide sequence and encoding xylanase.
  12.  請求項7~9のいずれか1項記載のベクター又は請求項10もしくは11記載のDNA断片を含む形質転換体。 A transformant comprising the vector according to any one of claims 7 to 9 or the DNA fragment according to claim 10 or 11.
  13.  トリコデルマ属菌である、請求項12記載の形質転換体。 The transformant according to claim 12, which is Trichoderma.
  14.  改変プロモーターの製造方法であって、
     Xyn3プロモーターのポリヌクレオチドにおいて、配列番号1の374番~401番ヌクレオチドに相当する領域に、1つ以上のXyn1プロモーターのシスエレメントのポリヌクレオチド又はその相補鎖、を含むポリヌクレオチドを置換又は挿入することを含み、
     該Xyn3プロモーターのポリヌクレオチドが、以下:
     配列番号1で示されるヌクレオチド配列からなるポリヌクレオチド;
     配列番号1の350番~1084番ヌクレオチドで示されるヌクレオチド配列からなるポリヌクレオチド;又は
     配列番号1で示されるヌクレオチド配列、又は配列番号1の350番~1084番ヌクレオチドで示されるヌクレオチド配列と少なくとも90%同一であって、配列番号1の374番~401番ヌクレオチドに相当する領域にGGCTAT-NNNNNNNNNNNNNNNN-TTTGCC(配列番号2)で示される配列を含むヌクレオチド配列からなり、かつセルロースに誘導されるプロモーター活性を有する、ポリヌクレオチド、
    であり、
     該Xyn1プロモーターのシスエレメントのポリヌクレオチドが、GGCTAA-NNNNNNNNNN-TTAGCC(配列番号4)で示されるヌクレオチド配列からなり、かつ
     該1つ以上のXyn1プロモーターのシスエレメントのポリヌクレオチド又はその相補鎖を含有するポリヌクレオチドが、HAP2/3/5結合サイト及びCREI結合サイトを含まない、
    方法。
    A method for producing a modified promoter, comprising
    Substituting or inserting a polynucleotide containing a polynucleotide of cis element of one or more Xyn1 promoters or a complementary strand thereof in a region corresponding to the nucleotides 374 to 401 of SEQ ID NO: 1 in the polynucleotide of the Xyn 3 promoter Including
    The polynucleotide of the Xyn3 promoter is as follows:
    A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 1;
    A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1; or a nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1 at least 90% A region identical to that of SEQ ID NO: 1 corresponding to nucleotides 374 to 401, consisting of a nucleotide sequence comprising the sequence shown by GGCTAT-NNNNNNNNNNNNNNNNNN-TTTGCC (SEQ ID NO: 2), and a cellulose-induced promoter activity Having a polynucleotide,
    And
    The polynucleotide of the cis element of the Xyn1 promoter consists of the nucleotide sequence shown by GGCTAA-NNNNNNNNNN-TTAGCC (SEQ ID NO: 4), and contains the polynucleotide of the cis element of the one or more Xyn1 promoters or a complementary strand thereof The polynucleotide does not contain HAP2 / 3/5 binding site and CREI binding site,
    Method.
  15.  前記Xyn3プロモーターのポリヌクレオチドが、以下:
     配列番号1で示されるヌクレオチド配列からなるポリヌクレオチド;
     配列番号1の350番~1084番ヌクレオチドで示されるヌクレオチド配列からなるポリヌクレオチド;又は
     配列番号1で示されるヌクレオチド配列、又は配列番号1の350番~1084番ヌクレオチドで示されるヌクレオチド配列と少なくとも95%同一であって、配列番号1の374番~401番ヌクレオチドに相当する領域に配列番号2で示される配列を含むヌクレオチド配列からなり、かつセルロースに誘導されるプロモーター活性を有する、ポリヌクレオチド、
    である、請求項14記載の方法。
    The polynucleotide of the Xyn3 promoter is as follows:
    A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 1;
    A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1; or a nucleotide sequence represented by SEQ ID NO: 1 or a nucleotide sequence represented by nucleotides 350 to 1084 of SEQ ID NO: 1 at least 95% A polynucleotide which is identical and comprises a nucleotide sequence comprising the sequence shown in SEQ ID NO: 2 in the region corresponding to nucleotides 374 to 401 of SEQ ID NO: 1 and having a cellulose-induced promoter activity,
    15. The method of claim 14, wherein
  16.  前記Xyn3プロモーターのポリヌクレオチドが、以下:
     配列番号1の3~1073番ヌクレオチドで示されるヌクレオチド配列からなるポリヌクレオチド;
     配列番号1の350番~1073番ヌクレオチドで示されるヌクレオチド配列からなるポリヌクレオチド;又は
     配列番号1の3~1073番ヌクレオチドで示されるヌクレオチド配列、又は配列番号1の350番~1073番ヌクレオチドで示されるヌクレオチド配列と少なくとも90%同一であって、配列番号1の374番~401番ヌクレオチドに相当する領域に配列番号2で示される配列を含むヌクレオチド配列からなり、かつセルロースに誘導されるプロモーター活性を有する、ポリヌクレオチド、
    である、請求項14記載の方法。
    The polynucleotide of the Xyn3 promoter is as follows:
    A polynucleotide consisting of a nucleotide sequence represented by nucleotides 3-1073 of SEQ ID NO: 1;
    A polynucleotide consisting of a nucleotide sequence represented by nucleotides 350 to 1073 of SEQ ID NO: 1; or a nucleotide sequence represented by nucleotides 3 to 1073 of SEQ ID NO: 1, or represented by nucleotides 350 to 1073 of SEQ ID NO: 1 It consists of a nucleotide sequence that is at least 90% identical to the nucleotide sequence and contains the sequence shown in SEQ ID NO: 2 in the region corresponding to nucleotides 374 to 401 of SEQ ID NO: 1 and has a cellulose-induced promoter activity , Polynucleotides,
    15. The method of claim 14, wherein
  17.  前記1つ以上のXyn1プロモーターのシスエレメントのポリヌクレオチド又はその相補鎖、を含有するポリヌクレオチドが、配列番号4で示されるヌクレオチド配列からなるポリヌクレオチド又はその相補鎖を1~10個含む、請求項14~16のいずれか1項記載の方法。 The polynucleotide comprising the polynucleotide of the cis element of the one or more Xyn1 promoter or the complementary strand thereof, comprises 1 to 10 polynucleotides consisting of the nucleotide sequence shown in SEQ ID NO: 4 or a complementary strand thereof The method according to any one of 14 to 16.
  18.  前記配列番号4で示されるヌクレオチド配列からなるポリヌクレオチドが、配列番号5で示されるヌクレオチド配列からなるポリヌクレオチドである、請求項17記載の方法。 The method according to claim 17, wherein the polynucleotide consisting of the nucleotide sequence shown by SEQ ID NO: 4 is a polynucleotide consisting of the nucleotide sequence shown by SEQ ID NO: 5.
  19.  前記1つ以上のXyn1プロモーターのシスエレメントのポリヌクレオチド又はその相補鎖、を含有するポリヌクレオチドが、以下:
     配列番号6で示されるヌクレオチド配列からなるポリヌクレオチド又はその相補鎖;
     配列番号7で示されるヌクレオチド配列からなるポリヌクレオチド;
     配列番号8で示されるヌクレオチド配列からなるポリヌクレオチド;
     配列番号41で示されるヌクレオチド配列からなるポリヌクレオチド;
     配列番号42で示されるヌクレオチド配列からなるポリヌクレオチド;あるいは、
     配列番号43で示されるヌクレオチド配列からなるポリヌクレオチド、
    である、請求項17又は18記載の方法。 
    The polynucleotide comprising the polynucleotide of the cis element of the one or more Xyn1 promoters or the complementary strand thereof comprises:
    A polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 6 or its complementary strand;
    A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 7;
    A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 8;
    A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 41;
    A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 42; or
    A polynucleotide consisting of the nucleotide sequence set forth in SEQ ID NO: 43,
    The method according to claim 17 or 18, which is
PCT/JP2018/028937 2017-08-09 2018-08-01 Modified promoter WO2019031368A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/635,311 US11542499B2 (en) 2017-08-09 2018-08-01 Modified promoter
PH12020500275A PH12020500275A1 (en) 2017-08-09 2020-02-06 Modified promoter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017153983 2017-08-09
JP2017-153983 2017-08-09
JP2018-143957 2018-07-31
JP2018143957A JP7138505B2 (en) 2017-08-09 2018-07-31 Modified promoter

Publications (1)

Publication Number Publication Date
WO2019031368A1 true WO2019031368A1 (en) 2019-02-14

Family

ID=65271508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028937 WO2019031368A1 (en) 2017-08-09 2018-08-01 Modified promoter

Country Status (1)

Country Link
WO (1) WO2019031368A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012075369A (en) * 2010-09-30 2012-04-19 Toyota Motor Corp Cis-acting element and utilization thereof
WO2016170283A1 (en) * 2015-04-23 2016-10-27 IFP Energies Nouvelles Inducible trichoderma reesei promoters
JP2017012006A (en) * 2015-06-26 2017-01-19 花王株式会社 Novel xylanase

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012075369A (en) * 2010-09-30 2012-04-19 Toyota Motor Corp Cis-acting element and utilization thereof
WO2016170283A1 (en) * 2015-04-23 2016-10-27 IFP Energies Nouvelles Inducible trichoderma reesei promoters
JP2017012006A (en) * 2015-06-26 2017-01-19 花王株式会社 Novel xylanase

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
FURUKAWA , TAKANORI ET AL.: "Analysis of transcription-activating region of xylanase III gene (xyn3) in trichoderma reesei PC-3-7", LECTURE ABSTRACTS OF THE JAPANESE SOCIETY OF APPLIED GLYCOSCIENCE, vol. 52, 2005, pages 45 *
FURUKAWA, TAKANORI ET AL.: "Binding specificity of trichoderma reesei-derived xylanase regulator 1 (Xyrl", LECTURE ABSTRACTS OF CONFERENCE OF JAPAN SOCIETY OF BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY, vol. 103, 2008 *
FURUKAWA, TAKANORI ET AL.: "Transcription- activating region existing in 5'-upstream region of trichoderma reesei xyn3 gene", LECTURE ABSTRACTS OF CONFERENCE OF JAPAN SOCIETY OF BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY, 2005, pages 28 *
HIRASAWA, H. ET AL.: "Engineering of the Trichoderma reesei xylanase3 promoter for efficient enzyme expression", APPL. MICROBIOL. BIOTECHNOL., vol. 102, no. 6, 7 February 2018 (2018-02-07), pages 2737 - 2752, XP036441053 *
LI, W. -C. ET AL.: "Trichoderma reesei complete genome sequence, repeat-induced point mutation, and partitioning of CAZyme gene clusters", BIOTECHNOL. BIOFUELS., vol. 10, no. 1, 3 July 2017 (2017-07-03), pages 170, XP055575639 *
OGASAWARA, W. ET AL.: "Cloning, functional expression and promoter analysis of xylanase III gene from Trichoderma reesei", APPL. MICROBIOL. BIOTECHNOL., vol. 72, 2006, pages 995 - 1003, XP019441655, DOI: doi:10.1007/s00253-006-0365-y *
RAUSCHER, R . ET AL.: "Transcriptional Regulation of xyn1, Encoding Xylanase I, in Hypocrea jecorina", EEUKARYOTIC CELL, vol. 5, no. 3, 2006, pages 447 - 456, XP055235005, DOI: doi:10.1128/EC.5.3.447-456.2006 *

Similar Documents

Publication Publication Date Title
US20180208945A1 (en) Genome editing systems and methods of use
CA2876287C (en) Agse-deficient strain
BRPI9914278B1 (en) recombinant chrysosporium strain, and method for producing a polypeptide of interest
Bando et al. Isolation of a novel promoter for efficient protein expression by Aspergillus oryzae in solid-state culture
EP2875120A1 (en) Amylase-deficient strain
JP7334997B2 (en) Method for rapid screening of Trichoderma reesei expressing cellulase with high enzymatic activity and high secretion
US20080070277A1 (en) Homologous Amds Genes as Selectable Marker
JP2019528797A (en) Protein production in filamentous fungal cells in the absence of inducing substrate
Rahman et al. Evaluation and characterization of Trichoderma reesei cellulase and xylanase promoters
Wang et al. Secretory overproduction of a raw starch-degrading glucoamylase in Penicillium oxalicum using strong promoter and signal peptide
US9322027B2 (en) Expression constructs comprising fungal promoters
Sun et al. Heterologous expression of codon optimized Trichoderma reesei Cel6A in Pichia pastoris
Wang et al. Development of a powerful synthetic hybrid promoter to improve the cellulase system of Trichoderma reesei for efficient saccharification of corncob residues
WO2012043755A1 (en) Cis-acting element and utilization thereof
US11542499B2 (en) Modified promoter
Jin et al. Heterologous expression of an endo-β-1, 4-glucanase gene from the anaerobic fungus Orpinomyces PC-2 in Trichoderma reesei
Han et al. Effect of VIB gene on cellulase production of Trichoderma orientalis EU7-22
WO2001025468A1 (en) High-throughput screening of expressed dna libraries in filamentous fungi
WO2019031368A1 (en) Modified promoter
CN114107360B (en) Method for improving cellulase expression of trichoderma reesei by interfering phosphatase gene
CN106190874A (en) A kind of method strengthening the production of thread Fungal Protein
Shida et al. Functional analysis of the egl3 upstream region in filamentous fungus Trichoderma reesei
US11225679B2 (en) Mutant β-glucosidase
EP3282012B1 (en) Improved variants of cellobiohydrolase 1
KR20240110854A (en) Compositions and methods for improved protein production in fungal cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18843687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18843687

Country of ref document: EP

Kind code of ref document: A1