WO2019031178A1 - Resin composition, cured product, single-layer resin sheet, laminated resin sheet, prepreg, metal-foiled laminate sheet, printed circuit board, sealing material, fiber reinforced composite material, and adhesive agent - Google Patents

Resin composition, cured product, single-layer resin sheet, laminated resin sheet, prepreg, metal-foiled laminate sheet, printed circuit board, sealing material, fiber reinforced composite material, and adhesive agent Download PDF

Info

Publication number
WO2019031178A1
WO2019031178A1 PCT/JP2018/027009 JP2018027009W WO2019031178A1 WO 2019031178 A1 WO2019031178 A1 WO 2019031178A1 JP 2018027009 W JP2018027009 W JP 2018027009W WO 2019031178 A1 WO2019031178 A1 WO 2019031178A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
group
resin
cyanatophenyl
composition according
Prior art date
Application number
PCT/JP2018/027009
Other languages
French (fr)
Japanese (ja)
Inventor
講平 中西
俊介 片桐
染谷 昌男
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2019535058A priority Critical patent/JP7052797B2/en
Publication of WO2019031178A1 publication Critical patent/WO2019031178A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/095Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J179/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
    • C09J179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds

Definitions

  • the present invention relates to a resin composition, a cured product, a single-layer resin sheet, a laminated resin sheet, a prepreg, a metal foil-clad laminate, a printed wiring board, a sealing material, a fiber reinforced composite material, and an adhesive.
  • cyanate ester compounds are known as resins for printed wiring boards excellent in heat resistance and electrical properties, and in recent years, resin compositions in which an epoxy resin, a bismaleimide compound, etc. are used in combination with a cyanate ester compound are semiconductor plastic packages It is widely used for high-performance printed wiring board materials etc.
  • Patent Document 1 describes that a resin composition composed of a cyanate ester compound having a specific structure and other components is excellent in properties such as low water absorption and low coefficient of thermal expansion.
  • the resin composition described in Patent Document 1 has good physical properties with respect to properties such as low water absorption and low thermal expansion coefficient, it still has room for improvement from the viewpoint of thermal conductivity. is there.
  • the resin composition described in Patent Document 1 has good physical properties with respect to properties such as low water absorption and low thermal expansion coefficient, it still has room for improvement from the viewpoint of thermal conductivity. is there.
  • the resin composition described in Patent Document 1 has good physical properties with respect to properties such as low water absorption and low thermal expansion coefficient, it still has room for improvement from the viewpoint of thermal conductivity. is there.
  • it is set as an insulating material like a printed wiring board, and other resin sheets, if these heat conductivity is not enough, it is difficult to apply to the use where heat dissipation is required.
  • the present invention has been made in view of the above problems, and exhibits excellent thermal conductivity, a resin composition, a cured product, a single layer resin sheet, a laminated resin sheet, a prepreg, a metal foil-clad laminate, and a print. It is an object of the present invention to provide a wiring board, a sealing material, a fiber reinforced composite material and an adhesive.
  • the present inventors diligently studied to solve the above problems. As a result, by using together the cyanate ester compound which has a specific structure, and the filler which has a predetermined
  • the present invention includes the following aspects.
  • [1] The resin composition containing the cyanate ester compound represented by following formula (1), and the filler whose thermal conductivity is 3 W / (m * K) or more.
  • Ar 1 and Ar 3 are the same or different and each represents a divalent group represented by the following Formula (2)
  • Ar 2 is represented by the following Formula (3) or (4) (Indicating a divalent group))
  • R 1 and R 2 each represent a monovalent substituent, each independently a hydrogen atom, a linear or branched C 1 to C 6 chain Or an alkyl group of 1 to 4 or a halogen atom, n is an integer of 1 to 4 and m is an integer of 1 to 8)
  • [3] The resin composition as described in [1] or [2] to which said Ar 2 is represented by following formula (7) or (8).
  • [4] 1 type selected from the group consisting of cyanate ester compounds (A) other than the above-mentioned cyanate ester compounds, maleimide compounds, phenol resins, epoxy resins, oxetane resins, benzoxazine compounds, and compounds having a polymerizable unsaturated group
  • [5] The resin composition according to any one of [1] to [4], which is for a sheet-like shaped article.
  • [6] A cured product obtained by curing the resin composition according to any one of [1] to [5].
  • a single-layer resin sheet obtained by forming the resin composition according to any one of [1] to [4] into a sheet.
  • a support The resin composition according to any one of [1] to [4], which is disposed on one side or both sides of the support. Having a laminated resin sheet.
  • a substrate The resin composition according to any one of [1] to [4], which is impregnated or applied to the substrate. Have a prepreg.
  • a sealing material comprising the resin composition according to any one of [1] to [4].
  • a fiber-reinforced composite material comprising the resin composition according to any one of [1] to [4] and a reinforcing fiber.
  • An adhesive comprising the resin composition according to any one of [1] to [4].
  • a resin composition a cured product, a single-layer resin sheet, a laminated resin sheet, a prepreg, a metal foil-clad laminate, a printed wiring board, a sealing material, and a fiber reinforced that exhibit excellent thermal conductivity.
  • Composite materials as well as adhesives can be provided.
  • FIG. 1 is an IR chart of DPCCN obtained in Synthesis Example 1.
  • FIG. 2 is a 1 H-NMR chart of DPCCN obtained in Synthesis Example 1.
  • FIG. 3 is a 13 C-NMR chart of DPCCN obtained in Synthesis Example 1.
  • FIG. 4 is an IR chart of DPCMeCN obtained in Synthesis Example 2.
  • FIG. 5 is a 1 H-NMR chart of DPCMeCN obtained in Synthesis Example 2.
  • FIG. 6 is an IR chart of TPM eCN obtained in Synthesis Example 3.
  • FIG. 7 is a graph showing the relationship between the filler volume filling rate and the filler-containing cured product thermal conductivity in Example 3 and Example 4 and Comparative Examples 5 and 6.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as "the present embodiment") will be described in detail, the present invention is not limited to this, and various modifications can be made within the scope of the present invention. Is possible.
  • the resin composition of the present embodiment contains a cyanate ester compound represented by the following formula (1), and a filler having a thermal conductivity of 3 W / (m ⁇ K) or more. Since it is comprised in this way, the resin composition of this embodiment can express the outstanding thermal conductivity.
  • Ar 1 and Ar 3 are the same or different and each represents a divalent group represented by the following Formula (2)
  • Ar 2 is represented by the following Formula (3) or (4) (Indicating a divalent group))
  • R 1 and R 2 each represent a monovalent substituent, each independently a hydrogen atom, a linear or branched C 1 to C 6 chain Or an alkyl group of 1 to 4 or a halogen atom, n is an integer of 1 to 4 and m is an integer of 1 to 8)
  • the cyanate ester compound in the present embodiment is represented by the above formula (1).
  • the cyanate ester compound of the present embodiment can exhibit excellent thermal conductivity.
  • the present inventors infer as follows. Since the cyanate ester compound in the present embodiment has the mesogen structure as described above, it exhibits a specific orientation on the surface of the filler in the present embodiment as compared to other compounds not having the mesogen structure. As a result, it is assumed that many heat conduction paths can be secured. Therefore, it is considered that the resin composition of the present embodiment can exhibit excellent thermal conductivity as compared to the case where the other compound and the filler are combined.
  • cyanate ester compound represented by the above formula (1) are not limited to the following, 1,4-bis (4-cyanatophenyl) -1-cyclohexene, 1- (3-Methyl-4-cyanatophenyl) -4- (4-cyanatophenyl) -1-cyclohexene, 1- (2-Methyl-4-cyanatophenyl) -4- (4-cyanatophenyl) -1-cyclohexene, 1- (3-ethyl-4-cyanatophenyl) -4- (4-cyanatophenyl) -1-cyclohexene, 1- (2-ethyl-4-cyanatophenyl) -4- (4-cyanatophenyl) -1-cyclohexene, 1- (3-n-Propyl-4-cyanatophenyl) -4- (4-cyanatophenyl) -1-cyclohexene, 1- (2-n-Propyl-4-cyanatophenyl) -4
  • Ar 1 and Ar 3 in the formula (1) are each independently represented by the following formula (5) or (6) from the viewpoint of expressing better thermal conductivity.
  • Ar 2 in Formula (1) is preferably represented by the following Formula (7) or (8).
  • the cyanate ester compound in the present embodiment is a cyanate ester compound represented by the following formula (1A) from the viewpoint of expressing a further favorable thermal conductivity, and the following formulas (1B) and ( It is even more preferable to be a cyanate ester compound represented by 1C).
  • R represents a monovalent substituent, and each independently represents a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, or a halogen atom.
  • N is 1 to 6 Indicates an integer of 4.
  • the method for producing the cyanate ester compound of the present embodiment is not particularly limited, but the hydroxy-substituted aromatic compound represented by the following formula (9) is cyanated to be represented by the following formula (1) It is preferable to have a cyanation step to obtain a cyanate ester compound.
  • the obtained cyanate ester compound can be identified by a known method such as NMR.
  • the purity of the cyanate ester compound can be analyzed by liquid chromatography or IR spectroscopy.
  • Byproducts such as dialkyl cyanoamide in the cyanate ester compound and volatile components such as residual solvent can be quantitatively analyzed by gas chromatography.
  • a halogen compound remaining in a cyanate ester compound can be identified by a liquid chromatograph mass spectrometer, and can be quantitatively analyzed by ion chromatography after decomposition by a potentiometric titration or combustion method using a silver nitrate solution .
  • the polymerization reactivity of the cyanate ester compound can be evaluated by the gelation time by the hot plate method or the torque measurement method.
  • the content of the cyanate ester compound of the present embodiment in the resin composition is preferably 5% by mass or more, more preferably 10% by mass. It is above.
  • the resin composition of the present embodiment further includes a cyanate ester compound other than the cyanate ester compound of the present embodiment (hereinafter, also referred to as “cyanate ester compound (A)”), a maleimide compound, a phenol resin, an epoxy resin And at least one selected from the group consisting of oxetane resins, benzoxazine compounds, and compounds having a polymerizable unsaturated group.
  • cyanate ester compound (A) also referred to as “cyanate ester compound (A)”
  • the cyanate ester compound (A) is a cyanate ester compound other than the cyanate ester compound of the present embodiment, and is a compound having in the molecule an aromatic moiety substituted at least one cyanate ester group. If it is, it will not be limited in particular.
  • the resin composition using a cyanate ester compound has excellent properties of glass transition temperature, low thermal expansion, plating adhesion and the like when it is a cured product.
  • Examples of the cyanate ester compound (A) include, but are not limited to, those represented by the following formula (10).
  • Ar 1 represents an aromatic ring. When there are two or more, they may be the same or different.
  • the aromatic ring is not particularly limited, and examples thereof include a benzene ring, a naphthalene ring, an anthracene ring, and a single benzene ring.
  • Ra each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkoxyl group having 1 to 4 carbon atoms, an alkyl group having 1 to 6 carbon atoms, and 6 to 12 carbon atoms A group to which an aryl group is bonded is shown.
  • the aromatic ring in Ra may have a substituent, and the substituent in Ar 1 and Ra can be selected at any position.
  • p represents the number of cyanato groups bonded to Ar 1 and each is independently an integer of 1 to 3.
  • q represents the number of Ra to bind to Ar 1, when Ar 1 is 4-p, naphthalene ring when the benzene ring when those 6-p, 2 one benzene ring is a single bond is 8-p .
  • t represents an average repeat number and is an integer of 0 to 50, and the cyanate ester compound (A) may be a mixture of compounds different in t.
  • a divalent organic group having 1 to 50 carbon atoms a hydrogen atom may be substituted with a hetero atom
  • Organic group eg, -NRN- (wherein R represents an organic group)
  • carbonyl group -CO-
  • -SO 2- sulfonyl
  • the alkyl group at Ra in the above formula (10) may have any of a linear or branched chain structure and a cyclic structure (for example, a cycloalkyl group and the like).
  • the hydrogen atom in the alkyl group in the above formula (10) and the aryl group in Ra is substituted by a halogen atom such as a fluorine atom or a chlorine atom, an alkoxyl group such as a methoxy group or a phenoxy group, or a cyano group It is also good.
  • alkyl group examples include, but are not limited to, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, 1-ethylpropyl group, Examples include 2,2-dimethylpropyl group, cyclopentyl group, hexyl group, cyclohexyl group, and trifluoromethyl group.
  • aryl group examples include, but are not limited to, phenyl group, xylyl group, mesityl group, naphthyl group, phenoxyphenyl group, ethylphenyl group, o-, m- or p-fluorophenyl group, dichlorophenyl group, dicyano A phenyl group, a trifluorophenyl group, a methoxyphenyl group, an o-, m- or p-tolyl group and the like can be mentioned.
  • alkoxyl group examples include, but are not limited to, a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, and a tert-butoxy group.
  • divalent organic group having 1 to 50 carbon atoms as X in the above-mentioned formula (10) are not limited to the following, but methylene group, ethylene group, trimethylene group, dimethylmethylene group, cyclopentylene group, cyclohexene group
  • examples thereof include a silene group, a trimethylcyclohexylene group, a biphenylylmethylene group, a dimethylmethylene-phenylene-dimethylmethylene group, a fluorenediyl group, and a phthalide diyl group.
  • the hydrogen atom in the divalent organic group may be substituted by a halogen atom such as a fluorine atom or a chlorine atom, an alkoxyl group such as a methoxy group or a phenoxy group, a cyano group or the like.
  • a halogen atom such as a fluorine atom or a chlorine atom
  • an alkoxyl group such as a methoxy group or a phenoxy group
  • a cyano group or the like examples include, but are not limited to, a group represented by -NRN-, an imino group, a polyimide group, etc. It can be mentioned.
  • Ar 2 represents an aromatic ring, and when u is 2 or more, they may be the same or different from each other.
  • the aromatic ring is not particularly limited.
  • Rb, Rc, Rf and Rg each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, And each independently represents an aryl group having at least one trifluoromethyl group or a phenolic hydroxy group
  • Rd and Re each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms, It is selected from any one of an alkoxyl group having 1 to 4 carbon atoms or a hydroxy group, and u represents an integer of 0 to 5.
  • Ar 3 represents a phenylene group, a naphthylene group or a biphenylene group, and when v is 2 or more, they may be the same or different from each other.
  • Ri and Rj are each independently hydrogen At least one substituted with an atom, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, a benzyl group, an alkoxyl group having 1 to 4 carbon atoms, a hydroxy group, a trifluoromethyl group or a cyanato group An aryl group is shown, and v is an integer of 0 to 5, but the cyanate ester compound (A) may be a mixture of compounds different in v).
  • R k independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Ar 2 of Formula (11) and Ar 3 of Formula (12) include 1,4-phenylene, 1,3-phenylene, 4,4′-biphenylene, and 2,4′-biphenylene 2,2'-biphenylene group, 2,3'-biphenylene group, 3,3'-biphenylene group, 3,4'-biphenylene group, 2,6-naphthylene group, 1,5-naphthylene group, 1,6 And-a naphthylene group, a 1,8-naphthylene group, a 1,3-naphthylene group, a 1,4-naphthylene group and a 2,7-naphthylene group.
  • the alkyl group and aryl group in Rb, Rc, Rd, Re, Rf and Rg in Formula (11), and Ri and Rj in Formula (12) have the same meanings as the alkyl group and aryl group in Ra in Formula (10) above. is there.
  • cyanate ester compound represented by the above formula (10) include, but are not limited to, cyanatobenzene, 1-cyanato-2-, 1-cyanato-3-, or 1-cyanato-4- 1-Cyanato-2-, 1-Cyanato-3-, or 1-Cyanato-4-methoxybenzene, 1-Cyanato-2,3-, 1-Cyanato-2,4-, 1-Cyanato-2 , 5-, 1-Cyanato-2,6-, 1-Cyanato-3,4- or 1-Cyanato-3,5-dimethylbenzene, Cyanatoethylbenzene, Cyanatobutylbenzene, Cyanatooctylbenzene, Cyanatononyl Benzene, 2- (4-cyanaphenyl) -2-phenylpropane (cyanate of 4- ⁇ -cumylphenol), 1-cyanato-4-cyclohexylbenzene, 1-cyana -4-vinylbenzene, 1-cyanato-2- or 1-cyan
  • phenol novolac resin and cresol novolac resin phenol, alkyl substituted phenol or halogen substituted phenol by a known method
  • Formaldehyde compounds such as formalin and paraformaldehyde are reacted in an acidic solution
  • trisphenol novolak resin reaction of hydroxybenzaldehyde and phenol in the presence of an acidic catalyst
  • fluorene novolac resin fluorenone compound
  • 9,9-bis (hydroxyaryl) fluorenes in the presence of an acidic catalyst phenolaralkyl resin, cresolaralkyl resin, naphtholaralkyl resin and biphenylaralkyl resin (known methods)
  • Ar '- phenol novolac resin and cresol novolac resin
  • R 1 independently represents a methylene group, a methyleneoxy group, a methyleneoxymethylene group or an oxy
  • R 2 represents a monovalent substituent, each independently represents a hydrogen atom, an alkyl group or an aryl group
  • R 3 each independently represents a hydrogen atom or carbon number Is an alkyl group of 1 to 3, an aryl group, a hydroxy group or a hydroxymethylene group
  • m is an integer of 1 or more
  • n is an integer of 0 or more
  • cyanate ester compounds (A) are m and n.
  • the sequence of each repeating unit is arbitrary, l represents the number of bonded cyanato groups and is an integer of 1 to 3.
  • x represents the number of bonded R 2
  • Ar 4 of displaceable group From represents the number obtained by subtracting the (l + 2) .
  • y represents a bond number of R 3
  • Ar 4 in the above formula (13) examples include a benzene ring, a naphthalene ring, an anthracene ring and the like, but are not particularly limited thereto.
  • the alkyl group in R 2 and R 3 of Formula (13) may have any of a linear or branched chain structure and a cyclic structure (eg, a cycloalkyl group etc.). Further, even if the hydrogen atom in the aryl group in R 2 and R 3 in the formula (13) is substituted by a halogen atom such as a fluorine atom or a chlorine atom, an alkoxy group such as a methoxy group or a phenoxy group, a cyano group or the like Good.
  • a halogen atom such as a fluorine atom or a chlorine atom
  • an alkoxy group such as a methoxy group or a phenoxy group, a cyano group or the like Good.
  • alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, 1-ethylpropyl group and 2,2-dimethyl group
  • a propyl group, a cyclopentyl group, a hexyl group, a cyclohexyl group, a trifluoromethyl group etc. are mentioned.
  • aryl group examples include phenyl group, xylyl group, mesityl group, naphthyl group, phenoxyphenyl group, ethylphenyl group, o-, m- or p-fluorophenyl group, dichlorophenyl group, dicyanophenyl group, trifluoro And phenyl group, methoxyphenyl group, o-, m- or p-tolyl group and the like.
  • alkoxy group examples include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, a tert-butoxy group and the like.
  • cyanate ester compound represented by the formula (13) examples include phenol-modified xylene-formaldehyde resin (in which a xylene-formaldehyde resin and a phenol compound are reacted in the presence of an acidic catalyst by a known method), modified naphthalene
  • phenol-modified xylene-formaldehyde resin in which a xylene-formaldehyde resin and a phenol compound are reacted in the presence of an acidic catalyst by a known method
  • modified naphthalene Although the thing which cyanated phenol resins, such as formaldehyde resin (The thing which made naphthalene formaldehyde resin and a hydroxy substituted aromatic compound react in presence of an acidic catalyst by the well-known method) by the method similar to the after-mentioned is mentioned, It is not particularly limited.
  • These cyanate ester compounds can be used alone or in combination of two or more.
  • cyanate ester compounds (A) can be used singly or in combination of two or more.
  • phenol novolac type cyanate ester compound naphthol aralkyl type cyanate ester compound, biphenylaralkyl type cyanate ester compound, naphthylene ether type cyanate ester compound, xylene resin type cyanate ester compound, adamantane skeleton type cyanate Ester compounds are preferred, and naphthol aralkyl type cyanate ester compounds are particularly preferred.
  • epoxy resin As an epoxy resin, if it is an epoxy resin which has 2 or more epoxy groups in 1 molecule, a well-known thing can be used suitably, The kind in particular is not limited. Specifically, bisphenol A epoxy resin, bisphenol E epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, bisphenol AD epoxy resin, phenol novolac epoxy resin, bisphenol A novolac epoxy resin, glycidyl ester Type epoxy resin, aralkyl novolac type epoxy resin, biphenyl aralkyl type epoxy resin, biphenyl novolac type epoxy resin, naphthalene ether type epoxy resin, cresol novolac type epoxy resin, polyfunctional phenol type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy Resin, dihydroanthracene type epoxy resin, naphthalene skeleton modified novolac type epoxy resin, phenol aralkyl type epoxy resin, Epoxy resin, dicyclopentadiene type epoxy resin, bipheny
  • the resin composition of the present embodiment is at least selected from the group consisting of naphthalene type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin and isocyanuric acid type epoxy resin. It is preferred to include one epoxy resin.
  • the naphthalene type epoxy resin include, but are not limited to, for example, trade name HP-4710, trade name HP-4700, trade name HP-4032D, etc., manufactured by DIC Corporation.
  • the biphenyl type epoxy resin include, but are not limited to, for example, Mitsubishi Chemical Co., Ltd., trade name YX4000, trade name YL6121H, trade name YX7399, and the like.
  • triphenylmethane epoxy resin examples include, but are not limited to, Nippon Kayaku Co., Ltd., trade name EPPN-501H, trade name EPPN-501HY, trade name EPPN-502H, and the like.
  • isocyanuric acid type epoxy resin examples include, but are not limited to, for example, Nissan Chemical Industries, Ltd., trade name TEPIC-S, trade name TEPIC-VL, and the like. These epoxy resins can be used singly or in combination of two or more.
  • maleimide compound As the maleimide compound, generally known compounds can be used as long as they are compounds having one or more maleimide groups in one molecule. For example, 4,4-diphenylmethanebismaleimide, phenylmethanemaleimide, m-phenylenebismaleimide, 2,2-bis (4- (4-maleimidophenoxy) -phenyl) propane, 3,3-dimethyl-5,5-diethyl -4,4-Diphenylmethane bismaleimide, 4-methyl-1,3-phenylenebismaleimide, 1,6-bismaleimide- (2,2,4-trimethyl) hexane, 4,4-diphenylether bismaleimide, 4,4 -Diphenylsulfone bismaleimide, 1,3-bis (3-maleimidophenoxy) benzene, 1,3-bis (4-maleimidophenoxy) benzene, polyphenylmethane maleimide, novolac maleimide,
  • phenol resin As the phenol resin, generally known phenol resins can be used as long as they have two or more hydroxy groups in one molecule. Specific examples thereof include bisphenol A type phenol resin, bisphenol E type phenol resin, bisphenol F type phenol resin, bisphenol S type phenol resin, phenol novolac resin, bisphenol A novolac type phenol resin, glycidyl ester type phenol resin, aralkyl novolac type Phenol resin, biphenylaralkyl type phenol resin, cresol novolac type phenol resin, polyfunctional phenol resin, naphthol resin, naphthol novolak resin, polyfunctional naphthol resin, anthracene type phenol resin, naphthalene skeleton modified novolac type phenol resin, phenolaralkyl type phenol resin Naphthol aralkyl type phenol resin, dicyclopentadiene type phenol resin, biphenyl type phenol resin Nord resins, alicyclic phenolic
  • phenol resins biphenylaralkyl type phenol resins, naphtholaralkyl type phenol resins, phosphorus-containing phenol resins, and hydroxyl group-containing silicone resins are preferable in view of flame retardancy. These phenol resins can be used singly or in combination of two or more.
  • oxetane resin As the oxetane resin, those generally known can be used. For example, alkyl oxetanes such as oxetane, 2-methyl oxetane, 2,2-dimethyl oxetane, 3-methyl oxetane, 3, 3-dimethyl oxetane, 3-methyl 3-methoxymethyl oxetane, 3, 3-di (trifluoro) Methyl) perfluoxetane, 2-chloromethyl oxetane, 3,3-bis (chloromethyl) oxetane, biphenyl type oxetane, OXT-101 (trade name of Toho Gosei Co., Ltd.), OXT-121 (trade name of Toho Gosei Co., Ltd.), etc. Although it may be mentioned, it is not particularly limited. These oxetane resins can be used alone or in combination of
  • benzoxazine compound As the benzoxazine compound, generally known compounds can be used as long as they are compounds having two or more dihydrobenzoxazine rings in one molecule.
  • bisphenol A type benzoxazine BA-BXZ (trade name of Konishi Chemical) bisphenol F type benzooxazine BF-BXZ (trade name of Konishi Chemical), bisphenol S type benzooxazine BS-BXZ (trade name of Konishi Chemical), P Examples thereof include -d-type benzoxazine (trade name of Shikoku Kasei Kogyo Co., Ltd.) and F-a type benzoxazine (trade name of Shikoku Kasei Kogyo Co., Ltd.) and the like, but not limited thereto. These benzoxazine compounds can be used alone or in combination of two or more.
  • Compound having a polymerizable unsaturated group As compounds having a polymerizable unsaturated group, generally known compounds can be used. For example, vinyl compounds such as ethylene, propylene, styrene, divinylbenzene and divinylbiphenyl, methyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, polypropylene glycol di (meth) acrylate, (Meth) acrylates of monohydric or polyhydric alcohols such as trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, bisphenol Epoxy (meth) acrylates such as A-type epoxy (meth) acrylate, bisphenol F-type epoxy (meth) acrylate
  • the resin composition of the present embodiment contains a filler from the viewpoint of thermal expansion characteristics, dimensional stability, flame retardancy, thermal conductivity, dielectric characteristics, and the like.
  • the filler in the present embodiment has a thermal conductivity of 3 W / (m ⁇ K) or more.
  • the thermal conductivity of the filler is preferably 5 W / (m ⁇ K) or more, more preferably 10 W / (m ⁇ K) or more, and 15 W / (m ⁇ K) or more Is more preferably 20 W / (m ⁇ K) or more, still more preferably 25 W / (m ⁇ K) or more, and 30 W / (m ⁇ K) or more Even more preferred.
  • the thermal conductivity of the filler used in the present embodiment can be confirmed with reference to “Thermal physical property handbook” edited by the Japan Society of Thermophysical Properties, etc., and a known value is adopted as the thermal conductivity of the filler. be able to.
  • the filler may include one having a thermal conductivity of less than 3 W / (m ⁇ K).
  • a well-known thing can be used suitably as a filler mentioned above, about the filler which has the heat conductivity of 3 W / (m * K) or more, the heat of less than 3 W / (m * K)
  • the type of the filler having conductivity is not particularly limited. In particular, fillers commonly used in laminate applications can be suitably used as fillers.
  • the filler include natural silica, crystalline silica, synthetic silica, amorphous silica, aerosil, silicas such as hollow silica, white carbon, titanium white, oxides such as zinc oxide, magnesium oxide, zirconium oxide, boron nitride Cohesive boron nitride, silicon nitride, aluminum nitride, barium sulfate, aluminum hydroxide, aluminum hydroxide heat-treated product (Aluminum hydroxide is heat-treated to reduce a part of crystal water), boehmite, magnesium hydroxide etc.
  • molybdenum compounds such as molybdenum oxide and zinc molybdate, zinc borate, zinc stannate, alumina, clay, kaolin, talc, calcined clay, calcined kaolin, calcined talc, mica, E-glass, A- Glass, NE-glass, C-glass, L-glass, D-glass, -In addition to inorganic fillers such as glass, M-glass G20, short glass fibers (including fine glass powders such as E glass, T glass, D glass, S glass, Q glass etc.), hollow glass, spherical glass etc.
  • inorganic fillers such as glass, M-glass G20, short glass fibers (including fine glass powders such as E glass, T glass, D glass, S glass, Q glass etc.), hollow glass, spherical glass etc.
  • rubber powders such as styrene type, butadiene type and acrylic type, core-shell type rubber powder, and organic fillers such as silicone resin powder, silicone rubber powder, silicone composite powder and the like.
  • the fillers may be used alone or in combination of two or more.
  • crystalline silica, boron nitride, agglomerated boron nitride, silicon nitride, aluminum nitride, boehmite and alumina are preferable, and alumina, aluminum nitride and boron nitride are particularly preferable.
  • the thermal conductivity of the resin composition tends to be further improved by using these fillers.
  • the filling amount of the filler in the composition is not particularly limited, but is preferably 40 vol% or more, more preferably 50 vol% or more, and further preferably 60 vol% or more from the viewpoint of giving more excellent thermal conductivity. Preferably, 70 vol% or more is even more preferable. Further, the filling amount is preferably 90 vol% or less, more preferably 85 vol% or less from the viewpoint of formability.
  • silane coupling agent when the filler is contained in the resin composition, it is preferable to use a silane coupling agent or a wetting and dispersing agent in combination.
  • a silane coupling agent what is generally used for the surface treatment of an inorganic substance can be used suitably, The kind in particular is not limited.
  • silane coupling agent examples include, but are not limited to, aminosilanes such as, but not limited to, ⁇ -aminopropyltriethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, ⁇ -glycid Epoxysilanes such as xylpropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, vinylsilanes such as ⁇ -methacryloxypropyltrimethoxysilane, vinyl-tri ( ⁇ -methoxyethoxy) silane, N Cationic silane systems, such as - ⁇ - (N-vinylbenzylaminoethyl) - ⁇ -aminopropyltrimethoxysilane hydrochloride, as well as phenylsilane systems.
  • aminosilanes such as, but not limited to,
  • the silane coupling agent can be used singly or in combination of two or more.
  • a wetting and dispersing agent what is generally used for paints can be used suitably, The kind in particular is not limited.
  • a copolymer-based wetting and dispersing agent is preferably used, and may be a commercially available product. Specific examples of commercially available products include, but are not limited to, Disperbyk-110, 111, 161, 180, BYK-W 996, BYK-W 9010, BYK-W 903, BYK-W 940, etc., manufactured by Big Chemie Japan Ltd. Be The wetting and dispersing agents can be used alone or in combination of two or more.
  • the resin composition of this embodiment may contain the hardening accelerator for adjusting a hardening speed suitably, as needed.
  • this hardening accelerator what is generally used as hardening accelerators, such as a cyanate ester compound and an epoxy resin, can be used suitably, The kind is not specifically limited.
  • the curing accelerator include zinc octylate, zinc naphthenate, cobalt naphthenate, copper naphthenate, iron acetylacetonate, nickel octylate, organic acid salts such as manganese octylate, phenol, xylenol, cresol, resorcinol, catechol Phenols such as octylphenol and nonylphenol, alcohols such as 1-butanol and 2-ethylhexanol, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, Imidazoles such as 1-cyanoethyl-2-ethyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole and the like; Derivatives such as adduct
  • various polymer compounds such as other thermosetting resins, thermoplastic resins and their oligomers, elastomers, and flame retardant compounds as long as the desired properties are not impaired. And various additives etc. can be used in combination. These are not particularly limited as long as they are generally used.
  • Specific examples of flame retardant compounds include, but are not limited to: bromine compounds such as 4,4'-dibromobiphenyl, phosphate esters, melamine phosphates, phosphorus-containing epoxy resins, nitrogen compounds such as melamine and benzoguanamine, oxazines Examples thereof include ring-containing compounds and silicone compounds.
  • additives although it is not limited to the following, for example, an ultraviolet light absorber, an antioxidant, a photopolymerization initiator, a fluorescent whitening agent, a photosensitizer, a dye, a pigment, a thickener, a flow control agent Lubricants, antifoaming agents, dispersants, leveling agents, brighteners, polymerization inhibitors and the like. These can be used singly or in combination of two or more, as desired.
  • the resin composition of this embodiment can contain the organic solvent as needed.
  • the resin composition of the present embodiment can be used as an aspect (solution or varnish) in which at least part, preferably all, of the various resin components described above are dissolved or compatible with the organic solvent.
  • known solvents can be appropriately used so long as at least a part, preferably all of the various resin components described above can be dissolved or compatible, and the type thereof is not particularly limited. .
  • organic solvent examples include ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, cellosolve solvents such as propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate, ethyl lactate, methyl acetate, ethyl acetate, butyl acetate and isoamyl acetate And ester solvents such as methyl methoxypropionate and methyl hydroxyisobutyrate; polar solvents such as amides such as dimethylacetamide and dimethylformamide; and nonpolar solvents such as aromatic hydrocarbons such as toluene and xylene. These can be used singly or in combination of two or more.
  • ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone
  • cellosolve solvents such as propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate,
  • the resin composition of the present embodiment can be prepared according to a conventional method, and a method of obtaining a resin composition uniformly containing the cyanate ester compound of the present embodiment, a filler, and the other optional components described above
  • the preparation method is not particularly limited as long as
  • the resin composition of the present embodiment can be easily prepared by sequentially blending the cyanate ester compound of the present embodiment, the filler, and the other optional components described above in a solvent and sufficiently stirring.
  • the well-known process for dissolving or disperse
  • the dispersibility with respect to a resin composition is improved by performing a stirring dispersion process using the stirring tank attached to the stirrer which has a suitable stirring capability in the case of uniform dispersion
  • the above-mentioned stirring, mixing, and kneading processing can be appropriately performed using, for example, a device intended for mixing such as a ball mill and a bead mill, or a known device such as a mixing device of revolution and rotation type.
  • the resin composition of the present embodiment is particularly excellent in thermal conductivity as described above, it is particularly preferable to use it for application to a sheet-like molded body.
  • the cured product of the present embodiment is obtained by curing the resin composition of the present embodiment.
  • the method for producing the cured product is not particularly limited. For example, after the resin composition is melted or dissolved in a solvent, it is poured into a mold and obtained by curing under normal conditions using heat or light. Can.
  • the curing temperature is not particularly limited, but is preferably in the range of 120 ° C. to 300 ° C. from the viewpoint of efficient curing and prevention of deterioration of the obtained cured product.
  • the wavelength range of light is not particularly limited, but it is preferable to cure in the range of 100 nm to 500 nm in which curing proceeds efficiently by a photopolymerization initiator or the like.
  • the resin composition of the present embodiment can be used as a constituent material of a prepreg, a single layer resin sheet, a laminated resin sheet, a metal foil-clad laminate, a printed wiring board, and a semiconductor package.
  • a prepreg can be obtained by impregnating or coating a base material with a solution in which the resin composition of the present embodiment is dissolved in a solvent, and drying.
  • a film obtained by dissolving the resin composition of the present embodiment in a solvent is applied to a plastic film and dried using a peelable plastic film as a support to obtain a build-up film or a dry film solder resist. be able to.
  • the solvent can be removed by drying at a temperature of 20 ° C. to 150 ° C. for 1 to 90 minutes.
  • the resin composition of this embodiment can also be used in the state which removed the solvent (non-hardened state), and can also be used in the state of semi-hardening (B stage formation) as needed.
  • the laminated resin sheet of the present embodiment has a support and the above-described resin composition disposed on one side or both sides of the support.
  • the method for producing the laminated resin sheet can be performed according to a conventional method, and is not particularly limited. For example, it can be obtained by applying a solution obtained by dissolving the resin composition of the present embodiment described above in a solvent to a support and drying it.
  • the support used herein is not particularly limited.
  • a polyethylene film, a polypropylene film, a polycarbonate film, a polyethylene terephthalate film, an ethylene tetrafluoroethylene copolymer film, and a surface of these films are coated with a release agent.
  • An organic film substrate such as a mold release film and a polyimide film, a conductor foil such as copper foil and aluminum foil, a glass plate, a SUS plate, and a plate such as FRP are exemplified, but not limited thereto.
  • Examples of the coating method include a method of coating a solution obtained by dissolving the resin composition of the present embodiment in a solvent on a support with a bar coater, a die coater, a doctor blade, a baker applicator, or the like.
  • the single layer resin sheet of this embodiment is formed by shaping
  • the manufacturing method of a single layer resin sheet can be performed according to a conventional method, and is not particularly limited.
  • a method is available in which a solution obtained by dissolving the resin composition of the present embodiment in a solvent is applied onto a support and dried, and then the support is peeled or etched from the laminated resin sheet. It can be mentioned.
  • using a support by forming in a sheet shape by supplying a solution obtained by dissolving the resin composition of the present embodiment in the above-described embodiment in a solvent into a mold having a sheet-like cavity and drying. It is also possible to obtain a single layer resin sheet (resin sheet).
  • a solvent tends to remain in a resin composition as it is low temperature, It is high temperature And a temperature of 20 ° C. to 170 ° C. for 1 to 90 minutes, since curing of the resin composition proceeds.
  • the thickness of the resin layer of the single layer or the laminated sheet of the present embodiment can be adjusted by the concentration of the solution of the resin composition of the present embodiment and the application thickness, and is not particularly limited. When the thickness is larger, the solvent tends to remain at the time of drying, and the thickness is preferably 0.1 to 500 ⁇ m.
  • the prepreg of the present embodiment has a substrate and the above-described resin composition impregnated or coated on the substrate.
  • the method for producing the prepreg of the present embodiment is not particularly limited as long as it is a method of producing a prepreg by combining the resin composition of the present embodiment and a substrate. Specifically, after impregnating or applying the resin composition of the present embodiment to a substrate, the resin composition is semi-cured by a method such as drying in a dryer at 120 to 220 ° C. for about 2 to 15 minutes.
  • the prepreg of the embodiment can be manufactured.
  • the adhesion amount of the resin composition to the base material that is, the content of the resin composition (including the filler) with respect to the total amount of the semi-cured prepreg is preferably in the range of 20 to 99% by mass.
  • a base material used when manufacturing the prepreg of this embodiment the well-known thing used for various printed wiring board materials may be used.
  • a substrate include glass fibers, inorganic fibers other than glass such as quartz, organic fibers such as polyimide, polyamide and polyester, and woven fabrics such as liquid crystal polyester, but are particularly limited thereto. is not.
  • As the shape of the substrate woven fabrics, non-woven fabrics, rovings, chopped strand mats, surfacing mats and the like are known, and any of these may be used.
  • a base material can be used individually by 1 type or in combination of 2 or more types as appropriate.
  • the woven fabrics in particular, woven fabrics which have been subjected to super-opening treatment and filling treatment are preferable from the viewpoint of dimensional stability. Furthermore, a liquid crystalline polyester woven fabric is preferable from the viewpoint of electrical properties. Furthermore, the thickness of the substrate is not particularly limited, but in the case of laminated plate applications, the range of 0.01 to 0.2 mm is preferable.
  • the metal foil tension laminate sheet of the present embodiment includes at least one selected from the group consisting of the single layer resin sheet of the present embodiment, the laminated resin sheet of the present embodiment, and the prepreg of the present embodiment, and the single layer resin A sheet, at least one metal foil selected from the group consisting of the laminated resin sheet and the prepreg, and a group consisting of the single-layer resin sheet, the laminated resin sheet, and the prepreg It contains the cured product of the resin composition contained in at least one selected from the above.
  • a metal foil such as copper or aluminum is disposed on one side or both sides of one prepreg or a laminate of a plurality of prepregs as described above, and a lamination molding is performed. It can be produced by
  • the metal foil used here is not particularly limited as long as it is used for a printed wiring board material, but a copper foil such as a rolled copper foil and an electrolytic copper foil is preferable.
  • the thickness of the metal foil is not particularly limited, but is preferably 2 to 70 ⁇ m, and more preferably 3 to 35 ⁇ m.
  • a method used at the time of producing a laminate for a general printed wiring board and a multilayer board can be adopted.
  • a multilayer board can also be produced by laminating and molding the above-mentioned prepreg and a wiring board for the inner layer prepared separately.
  • a method of manufacturing a multilayer board for example, copper foils of 35 ⁇ m are disposed on both sides of one of the prepregs described above, and laminated under the above conditions, an inner layer circuit is formed, and the circuit is blackened. Forming an inner layer circuit board.
  • the inner layer circuit board and the above-mentioned prepreg are alternately arranged one by one, and a copper foil is further arranged as the outermost layer, and laminated and formed preferably under vacuum under the above conditions.
  • a multilayer board can be produced.
  • the metal foil-clad laminate of this embodiment can be suitably used as a printed wiring board by further forming a pattern.
  • the printed wiring board can be manufactured according to a conventional method, and the manufacturing method is not particularly limited.
  • the manufacturing method is not particularly limited.
  • an example of the manufacturing method of a printed wiring board is shown.
  • the metal foil-clad laminate described above is prepared.
  • the surface of the metal foil-clad laminate is subjected to etching to form an inner circuit, whereby an inner substrate is produced. If necessary, the inner layer circuit surface of the inner layer substrate is subjected to a surface treatment to increase the adhesive strength, and then, the required number of the above-described prepregs is superimposed on the inner layer circuit surface.
  • a metal foil for the outer layer circuit is laminated on the outer side, and heat and pressure are integrally molded.
  • a multilayer laminate is produced in which an insulating layer made of a cured product of a base material and a thermosetting resin composition is formed between the inner layer circuit and the metal foil for the outer layer circuit.
  • a plated metal film is formed on the wall surfaces of the holes so that the inner layer circuit and the outer layer circuit metal foil are conducted.
  • the printed wiring board is manufactured by etching the metal foil for the outer layer circuit to form the outer layer circuit.
  • the printed wiring board obtained in the above production example has a configuration including an insulating layer and a conductor layer formed on one side or both sides of the insulating layer, and the insulating layer includes the resin composition of the above-described embodiment.
  • the prepreg of the present embodiment described above the base material and the resin composition of the present embodiment impregnated or coated with the same
  • the layer of the resin composition of the metal foil-clad laminate of the present embodiment described above the present embodiment
  • the layer made of the resin composition of the present invention can constitute an insulating layer containing the resin composition of the present embodiment.
  • the sealing material of the present embodiment includes the resin composition of the present embodiment.
  • a method for producing the sealing material generally known methods can be appropriately applied, and are not particularly limited.
  • the sealing material can be produced by mixing the above-described resin composition and various known additives or solvents generally used in sealing material applications using a known mixer.
  • the method of adding a cyanate ester compound, various additives, and a solvent at the time of mixing can apply a generally known method suitably, and is not particularly limited.
  • the fiber-reinforced composite material of the present embodiment includes the resin composition of the present embodiment and reinforcing fibers.
  • the reinforcing fiber a generally known one can be used, and it is not particularly limited. Specific examples thereof include glass fibers such as E glass, D glass, L glass, S glass, T glass, Q glass, UN glass, NE glass, spherical glass, carbon fibers, aramid fibers, boron fibers, PBO fibers, high Examples include strong polyethylene fibers, alumina fibers, and silicon carbide fibers.
  • the form and arrangement of the reinforcing fibers are not particularly limited, and may be suitably selected from woven fabric, non-woven fabric, mat, knit, braid, unidirectional strand, roving, chopped and the like.
  • a preform a laminated fabric base made of reinforcing fiber, or one obtained by integrally stitching the same with a stitch yarn, or a fiber structure such as a three-dimensional woven fabric or a braid. You can also.
  • a publicly known method can be applied suitably, and it is not limited in particular.
  • Specific examples thereof include a liquid composite molding method, a resin film infusion method, a filament winding method, a hand layup method, and a pultrusion method.
  • the resin transfer molding method which is one of the liquid composite molding methods, requires that materials other than preforms, such as metal sheets, foam cores, honeycomb cores, etc., be set in advance in the mold. Since it can correspond to various applications from what it can, it is preferably used when mass-producing relatively complex composite materials in a short time.
  • the adhesive of the present embodiment includes the resin composition of the present embodiment.
  • a method for producing an adhesive generally known methods can be applied as appropriate, and are not particularly limited.
  • an adhesive agent can be manufactured by mixing the above-mentioned resin composition, and various well-known additives or solvents etc. which are generally used by adhesive application using a known mixer.
  • the method of adding a cyanate ester compound, various additives, and a solvent at the time of mixing can apply a generally known method suitably, and is not particularly limited.
  • DPCOH diphenylcyclohexene-type bisphenol
  • the IR spectrum of the resulting cyanate ester compound DPCCN showed absorptions at 2252 cm -1 and 2287 cm -1 (cyanate groups) and no absorption at the hydroxy group.
  • the IR chart is shown in FIG.
  • the assignments of 1 H-NMR for the cyanate ester compound DPCCN are shown below.
  • the 1 H-NMR chart is shown in FIG.
  • DPCMeOH methyl-added diphenylcyclohexene type bisphenol
  • TPMeCN Terphenyl Cyanate Ester Compound (hereinafter abbreviated as TPMeCN) TPMeCN represented by the following formula (16) was synthesized as described below.
  • the hydroxy-substituted aromatic compound represented by the above formula (17) was synthesized as follows. 100 g of phenol and 16.0 g of 35% hydrochloric acid were charged into a 1 L four-necked flask equipped with a nitrogen blowing port and a dropping funnel, and the liquid temperature was raised to 55 ° C. while stirring. Then, a mixed solution of 38.2 g of 4- (4-hydroxyphenyl) cyclohexanone and 94.0 g of phenol separately prepared by heating was added dropwise over 3 hours, and after the addition, the mixture was stirred at 55 ° C. for 4 hours.
  • reaction mixture was stirred at 55 ° C., and 39.1 g of a 16% aqueous solution of sodium hydroxide was added for neutralization. Further, 190 g of toluene was added, and the precipitated crystals were suction filtered at room temperature and then dried to obtain 1,4,4-tris (4-hydroxyphenyl) cyclohexane. 49.7 g of 1,4,4-tris (4-hydroxyphenyl) cyclohexane obtained above is charged in a 300 mL four-necked flask), and 0.3 g of a 48% aqueous solution of sodium hydroxide and 26.0 g of tetraethylene glycol are contained in the flask Added to.
  • the obtained solid was dissolved in 435 g of methyl ethyl ketone (MEK), 430 g of tetrahydrofuran and 113 g of n-hexane at 80 ° C. and then recrystallized.
  • the resulting crystals were washed with 1 L of n-hexane and then dried under reduced pressure to obtain 86 g of the target cyanate ester compound TPMeCN (light orange crystals).
  • the IR spectrum of the resulting cyanate ester compound TPMeCN showed absorptions of 2237 cm -1 and 2283 cm -1 (cyanate group) and no absorption of hydroxy group.
  • the IR chart is shown in FIG.
  • ⁇ Preparation of filler-containing cured product The filler used for preparation of a filler containing hardened
  • ⁇ FAN-f50 Aluminum nitride particles, manufactured by Furukawa Electronics Co., Ltd., thermal conductivity 200 W / m ⁇ K ⁇ AA-18: Alumina particles, manufactured by Sumitomo Chemical Co., Ltd., thermal conductivity 30 W / m ⁇ K ⁇ AA-3: alumina particles, manufactured by Sumitomo Chemical Co., Ltd., thermal conductivity 30 W / m ⁇ K ⁇ AA-03: Alumina particles, manufactured by Sumitomo Chemical Co., Ltd., thermal conductivity 30 W / m ⁇ K ⁇ AZ 35-75: Alumina particles, manufactured by Nippon Steel & Sumikin Materials Co., Ltd.
  • thermo conductivity 30 W / m K ⁇ AZ 10-75 Alumina particles, manufactured by Nippon Steel & Sumikin Materials Co., Ltd.
  • thermal conductivity 30 W / m K ⁇ PT 110 boron nitride particles, manufactured by Momentive Performance Materials Japan Ltd.
  • thermal conductivity 200 W / m ⁇ K ⁇ FB-940 Fused silica particles, manufactured by Denka Co., thermal conductivity 1 W / m ⁇ K
  • Example 1 100.0 parts by mass of cyanate ester compound DPCCN obtained in Synthesis Example 1, 0.05 parts by mass of zinc octylate (Nihon Kagaku Sangyo Co., Ltd., trade mark zinc with a nickel content of 18%), aluminum nitride particles ( 57. 0 parts by mass of Furukawa Electronics Co., Ltd., FAN-f50, 88.3 parts by mass of alumina particles (AA-18, manufactured by Sumitomo Chemical Co., Ltd.), alumina particles (AA-3, manufactured by Sumitomo Chemical Co., Ltd.) 88.
  • zinc octylate Nihon Kagaku Sangyo Co., Ltd., trade mark zinc with a nickel content of 18%
  • aluminum nitride particles 57. 0 parts by mass of Furukawa Electronics Co., Ltd., FAN-f50, 88.3 parts by mass of alumina particles (AA-18, manufactured by Sumitomo Chemical Co., Ltd
  • Example 2 100.0 parts by mass of cyanate ester compound DPCCN obtained in Synthesis Example 1, 0.05 parts by mass of zinc octylate (manufactured by Nippon Kagaku Sangyo Co., Ltd., trade name zinc with a trademark of 18% of metal content), boron nitride particles ( 290.0 parts by mass of Momentive Performance Materials Japan Ltd. (PT 110) and 4.4 parts by mass of phenyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) are mixed, and methyl ethyl ketone (Wako Pure Chemical Industries, Ltd., special grade reagent) To make a varnish.
  • zinc octylate manufactured by Nippon Kagaku Sangyo Co., Ltd., trade name zinc with a trademark of 18% of metal content
  • boron nitride particles 290.0 parts by mass of Momentive Performance Materials Japan Ltd. (PT 110)
  • PT 110 boron nitride particles
  • the varnish produced is coated on a rough surface of copper foil (3EC-VLP, 18 ⁇ m thick, manufactured by Mitsui Mining & Smelting Co., Ltd.) using an applicator, and dried at 130 ° C. for 10 minutes to obtain a copper foil with a B-stage resin composition.
  • the B-stage resin composition was peeled off from the copper foil and ground in a mortar.
  • the obtained resin composition powder is filled in a die for powder molding (DT 5025-1525, manufactured by NP System Co., Ltd.) and pressurized to 50 MPa using a manual hydraulic pump (P-16B, manufactured by Riken Seiki Co., Ltd.) The pellet was made.
  • the obtained pellet was vacuum hot pressed (220 ° C., 90 minutes, pressing pressure 10 MPa) to obtain a filler-containing cured product (containing 61 volume% of filler).
  • Example 3 100.0 parts by mass of cyanate ester compound DPCMeCN obtained in Synthesis Example 2, 0.05 parts by mass of zinc octylate (Nihon Kagaku Sangyo Co., Ltd., trade name zinc with a trademark of 18% of metal content), boron nitride particles ( 294.7 parts by mass of Momentive Performance Materials Japan Ltd. (PT 110) and 4.4 parts by mass of phenyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) are mixed, and methyl ethyl ketone (Wako Pure Chemical Industries, Ltd., special grade reagent) To make a varnish.
  • the varnish produced is coated on a rough surface of copper foil (3EC-VLP, 18 ⁇ m thick, manufactured by Mitsui Mining & Smelting Co., Ltd.) using an applicator, and dried at 130 ° C. for 10 minutes to obtain a copper foil with a B-stage resin composition.
  • the B-stage resin composition was peeled off from the copper foil and ground in a mortar.
  • the obtained resin composition powder is filled in a die for powder molding (DT 5025-1525, manufactured by NP System Co., Ltd.) and pressurized to 50 MPa using a manual hydraulic pump (P-16B, manufactured by Riken Seiki Co., Ltd.) The pellet was made.
  • the obtained pellet was vacuum hot pressed (220 ° C., 90 minutes, pressing pressure 10 MPa) to obtain a filler-containing cured product (containing 61 volume% of filler).
  • Example 4 100.0 parts by mass of cyanate ester compound DPCCN obtained in Synthesis Example 1, 0.05 parts by mass of zinc octylate (Nihon Kagaku Sangyo Co., Ltd., trade name zinc with a nickel content of 18%), alumina particles (Nippon Iron Corp. 190.7 parts by mass of Sumikin Material Co., Ltd.
  • the B-stage resin composition was peeled off from the copper foil and ground in a mortar.
  • the obtained resin composition powder was filled in a mold, and a filler-containing cured product (containing 60 volume% of filler) was obtained by a vacuum heat press (220 ° C., 90 minutes, press pressure 10 MPa).
  • Example 5 100.0 parts by mass of cyanate ester compound DPCCN obtained in Synthesis Example 1, 0.05 parts by mass of zinc octylate (Nihon Kagaku Sangyo Co., Ltd., trade name zinc with a nickel content of 18%), alumina particles (Nippon Iron Corp. 127.3 parts by mass of Sumikin Material Co., Ltd. manufactured by Micron Company, AZ 35-75, 127.3 parts by mass of alumina particles (manufactured by Nippon Steel & Sumikin Material Co., Ltd.
  • the B-stage resin composition was peeled off from the copper foil and ground in a mortar.
  • the obtained resin composition powder was filled in a mold, and a filler-containing cured product (containing 50 volume% of filler) was obtained by vacuum heat press (220 ° C., 90 minutes, press pressure 10 MPa).
  • Example 6 100.0 parts by mass of cyanate ester compound DPCMeCN obtained in Synthesis Example 2, 0.05 parts by mass of zinc octylate (manufactured by Nippon Kagaku Sangyo Co., Ltd., trade name zinc with a trademark of 18% of metal content), alumina particles (Nippon Iron Corp. 194.0 parts by mass of Sumikin Material Co., Ltd. Micron Company, AZ 35-75, 194.0 parts by mass of alumina particles (Nippon Steel & Sumikin Material Co., Ltd.
  • alumina particles (Sumitomo Chemical Co., Ltd., AA -03) 97.0 parts by mass, 4.9 parts by mass of 3-glycidoxypropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., LS-2940) are mixed, and methyl ethyl ketone (Wako Pure Chemical Industries, Ltd., special grade reagent)
  • the varnish was prepared by dilution with The varnish produced is coated on a rough surface of copper foil (3EC-VLP, 18 ⁇ m thick, manufactured by Mitsui Mining & Smelting Co., Ltd.) using an applicator, and dried at 130 ° C.
  • the B-stage resin composition was peeled off from the copper foil and ground in a mortar.
  • the obtained resin composition powder was filled in a mold, and a filler-containing cured product (containing 60 volume% of filler) was obtained by a vacuum heat press (220 ° C., 90 minutes, press pressure 10 MPa).
  • Example 7 100.0 parts by mass of cyanate ester compound DPCMeCN obtained in Synthesis Example 2, 0.05 parts by mass of zinc octylate (manufactured by Nippon Kagaku Sangyo Co., Ltd., trade name zinc with a trademark of 18% of metal content), alumina particles (Nippon Iron Corp. 129.5 parts by mass of Sumikin Material Co., Ltd. manufactured by Micron Company, AZ 35-75, 129.5 parts by mass of alumina particles (Nippon Steel & Sumikin Material Co., Ltd.
  • the B-stage resin composition was peeled off from the copper foil and ground in a mortar.
  • the obtained resin composition powder was filled in a mold, and a filler-containing cured product (containing 50 volume% of filler) was obtained by vacuum heat press (220 ° C., 90 minutes, press pressure 10 MPa).
  • Comparative Example 1 47.8 parts by mass of TPMeCN obtained in Synthesis Example 3, 52.2 parts by mass of phenylmethane maleimide (BMI-2300, manufactured by Daiwa Kasei Kogyo Co., Ltd.), zinc octylate (manufactured by Nippon Kagaku Sangyo Co., Ltd., trade name: Nickomatics Zinc) Metal content: 18%) 0.1 parts by mass, aluminum nitride particles (Furukawa Electronics Co., Ltd., FAN-f50) 550.0 parts by mass, alumina particles (Sumitomo Chemical Co., Ltd., AA-18) 85.3 mass Parts, 85.3 parts by mass of alumina particles (manufactured by Sumitomo Chemical Co., Ltd., AA-3), 85.3 parts by mass of alumina particles (manufactured by Sumitomo Chemical Co., Ltd., AA-03), 3-glycidoxypropyltrimethoxysi
  • Emissions (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade) was diluted with to prepare a varnish.
  • the varnish produced is coated on a rough surface of copper foil (3EC-VLP, 18 ⁇ m thick, manufactured by Mitsui Mining & Smelting Co., Ltd.) using an applicator, and dried at 100 ° C. for 10 minutes to obtain a copper foil with a B-stage resin composition.
  • the B-stage resin composition was peeled off from the copper foil and ground in a mortar.
  • the obtained resin composition powder was filled in a mold, and a filler-containing cured product (containing 75 volume% of filler) was obtained by a vacuum heat press (220 ° C., 90 minutes, press pressure 5 MPa).
  • Comparative Example 3 100.0 parts by mass of cyanate ester compound DPCCN obtained in Synthesis Example 1, 0.05 parts by mass of zinc octylate (manufactured by Nippon Kagaku Sangyo Co., Ltd., trade name zinc with a nickel content of 18%), fused silica particles ( Denka Co., Ltd., FB-940) 526.7 parts by mass, 3-glycidoxypropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., LS-2940) 5.3 parts by mass are mixed, and methyl ethyl ketone (Wako Pure Chemical Industries, Ltd.) The varnish was prepared by diluting with a reagent grader (manufactured by Kogyo Co., Ltd.).
  • the varnish produced is coated on a rough surface of copper foil (3EC-VLP, 18 ⁇ m thick, manufactured by Mitsui Mining & Smelting Co., Ltd.) using an applicator, and dried at 130 ° C. for 10 minutes to obtain a copper foil with a B-stage resin composition.
  • the B-stage resin composition was peeled off from the copper foil and ground in a mortar.
  • the obtained resin composition powder was filled in a mold, and a filler-containing cured product (containing 75 vol% of filler) was obtained by vacuum heat press (220 ° C., 90 minutes, press pressure 10 MPa).
  • Comparative Example 4 61.4 parts by mass of triphenylmethane type epoxy resin (Nippon Kayaku Co., Ltd., EPPN-501H), 38.6 parts by mass of phenol novolac resin (Miwa Kasei Co., Ltd., DL-92), tetraphenylphosphonium tetraphenylborate 0.06 parts by mass (manufactured by Wako Pure Chemical Industries, Ltd.), 305.9 parts by mass of boron nitride particles (manufactured by Momentive Performance Materials Japan LLC, PT 110), phenyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) 4 6 parts by mass was mixed and diluted with methyl ethyl ketone (Wako Pure Chemical Industries, Ltd., special grade reagent) to prepare a varnish.
  • triphenylmethane type epoxy resin Nippon Kayaku Co., Ltd., EPPN-501H
  • phenol novolac resin Mi
  • the varnish produced is coated on a rough surface of copper foil (3EC-VLP, 18 ⁇ m thick, manufactured by Mitsui Mining & Smelting Co., Ltd.) using an applicator, and dried at 130 ° C. for 10 minutes to obtain a copper foil with a B-stage resin composition.
  • the B-stage resin composition was peeled off from the copper foil and ground in a mortar.
  • the obtained resin composition powder is filled in a die for powder molding (DT 5025-1525, manufactured by NP System Co., Ltd.) and pressurized to 50 MPa using a manual hydraulic pump (P-16B, manufactured by Riken Seiki Co., Ltd.) The pellet was made.
  • the obtained pellet was vacuum hot pressed (220 ° C., 90 minutes, pressing pressure 10 MPa) to obtain a filler-containing cured product (containing 61 volume% of filler).
  • alumina particles manufactured by Kogyo Co., Ltd., 400 parts by mass of alumina particles (manufactured by Sumitomo Chemical Co., Ltd., AA-3), 3-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., LS-2940) 4 0 parts by mass was mixed and diluted with methyl ethyl ketone (reagent special grade manufactured by Wako Pure Chemical Industries, Ltd.) to prepare a varnish.
  • the varnish produced is coated on a rough surface of a copper foil (3EC-VLP, 18 ⁇ m thick, made by Mitsui Metal Mining Co., Ltd.) using an applicator, and dried at 120 ° C.
  • alumina particles manufactured by Kogyo Co., Ltd., 233.3 parts by mass of alumina particles (manufactured by Sumitomo Chemical Co., Ltd., AA-3), 3-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., LS-2940) 2.3 parts by mass were mixed and diluted with methyl ethyl ketone (reagent special grade manufactured by Wako Pure Chemical Industries, Ltd.) to prepare a varnish.
  • the varnish produced is coated on a rough surface of a copper foil (3EC-VLP, 18 ⁇ m thick, made by Mitsui Metal Mining Co., Ltd.) using an applicator, and dried at 120 ° C.
  • Comparative Example 8 100.0 parts by mass of cyanate ester compound DPCMeCN obtained in Synthesis Example 2 and 0.05 parts by mass of zinc octylate (Nihon Kagaku Sangyo Co., Ltd., trade name zinc with a trademark of 18% of metal content) are heated and melted. Thus, a curable resin composition was obtained. The obtained curable resin composition was filled in a mold, and a cured resin was produced by a vacuum heat press (220 ° C., 90 minutes, press pressure 10 MPa).
  • Comparative Example 9 Bisphenol A type epoxy resin (manufactured by DIC Corporation, 850-S) 64.3 parts by mass, Phenolic novolak resin (manufactured by Meiwa Kasei Kogyo Co., Ltd., DL-92) It heat-melted (made by Kogyo Co., Ltd. make) 0.2 mass part, and obtained curable resin composition.
  • the obtained curable resin composition was filled in a mold, and a cured resin was produced by vacuum heat press (190 ° C., 30 minutes, press pressure 2 MPa).
  • Thermal diffusion coefficient A cured product processed to a size of 1 cm square is set in a sample holder in a xenon flash thermal diffusivity measurement device (manufactured by NETZSCH, LFA 447 NanoFlash), and measurement is performed at 25 ° C. in the atmosphere. It asked by.
  • Specific heat Determined according to JIS K 7123 (method of measuring specific heat capacity of plastic) using DSC (manufactured by Seiko Instruments Inc., EXSTAR 6000 DSC 6220).
  • Density It was determined by a water displacement method using a densitometer (MS-DNY-43, manufactured by METTLER TOLEDO Co., Ltd.).
  • Thermal conductivity The thermal conductivity of the cured product was determined by the following equation from the determined thermal diffusion coefficient, specific heat, and density.
  • Formula: ⁇ ⁇ ⁇ Cp ⁇ ⁇ [ ⁇ : thermal conductivity (W / m ⁇ K), ⁇ : thermal diffusion coefficient (m 2 / s), Cp: specific heat (J / g ⁇ K), ⁇ : density (kg / m 3 )]
  • the cyanate ester compound represented by the formula (1) according to one aspect of the present embodiment and aluminum nitride and alumina having a thermal conductivity of 3 W / (m ⁇ K) or more
  • the resin composition of the present embodiment containing the above showed excellent thermal conductivity.
  • the resin composition contained showed excellent thermal conductivity.
  • the thermal conductivity of the resin portion converted from the filler-containing cured product constituted of the resin composition of the present embodiment is the resin cured product containing no filler (Comparative Example 7, It showed a higher value than the thermal conductivity of 8).
  • the thermal conductivity of the resin part converted from Comparative Example 5 and Comparative Example 6 using a general-purpose epoxy resin was equivalent to that of a cured resin containing no filler (see Comparative Example 9). From the above results, it was proved that the cyanate ester compound represented by the formula (1) has improved thermal conductivity in the presence of a filler having a thermal conductivity of 3 W / (m ⁇ K) or more .
  • the relationship between the filler volume filling ratio and the filler-containing cured product thermal conductivity in Example 4, Example 5, Example 6, Example 7, Comparative Example 5 and Comparative Example 6 is shown in FIG.

Abstract

A resin composition comprising a cyanic ester compound represented by formula (1) and a filler having a thermal conductivity of 3W/(m∙K) or more. NCO-Ar1-Ar2-Ar3-OCN (1) (In formula (1), Ar1 and Ar3 are the same or different and represent a divalent group expressed by formula (2), and Ar2 represents a divalent group expressed by formula (3) or (4).) (2) (3) (4) (In formulas (2), (3), and (4), R1 and R2 represent monovalent substituents and each independently represents a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, or a halogen atom, n represents an integer of 1 to 4, and m represents an integer of 1 to 8.)

Description

樹脂組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料及び接着剤Resin composition, cured product, single layer resin sheet, laminated resin sheet, prepreg, metal foil-clad laminate, printed wiring board, sealing material, fiber reinforced composite material and adhesive
 本発明は、樹脂組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料及び接着剤に関する。 The present invention relates to a resin composition, a cured product, a single-layer resin sheet, a laminated resin sheet, a prepreg, a metal foil-clad laminate, a printed wiring board, a sealing material, a fiber reinforced composite material, and an adhesive.
 近年、電子機器や通信機、パーソナルコンピューター等に広く用いられている半導体の高集積化、微細化はますます加速している。これに伴い、プリント配線板に用いられる半導体パッケージ用積層板に求められる諸特性はますます厳しいものとなっている。求められる特性として、例えば、低吸水性、吸湿耐熱性、難燃性、低誘電率、低誘電正接、低熱膨張率、耐熱性、耐薬品性、高めっきピール強度等の特性が挙げられる。 In recent years, high integration and miniaturization of semiconductors widely used in electronic devices, communication devices, personal computers, etc. are accelerating. Along with this, various characteristics required for a laminate for a semiconductor package used for a printed wiring board are becoming increasingly severe. Examples of the required properties include properties such as low water absorption, hygroscopic heat resistance, flame retardancy, low dielectric constant, low dielectric loss tangent, low thermal expansion coefficient, heat resistance, chemical resistance, high plating peel strength and the like.
 従来から、耐熱性や電気特性に優れるプリント配線板用樹脂として、シアン酸エステル化合物が知られており、近年シアン酸エステル化合物にエポキシ樹脂、ビスマレイミド化合物などを併用した樹脂組成物が半導体プラスチックパッケージ用などの高機能のプリント配線板用材料などに幅広く使用されている。
 例えば、特許文献1においては、特定構造のシアン酸エステル化合物と、その他の成分とからなる樹脂組成物が低吸水性、低熱膨張率などの特性に優れることが記載されている。
Conventionally, cyanate ester compounds are known as resins for printed wiring boards excellent in heat resistance and electrical properties, and in recent years, resin compositions in which an epoxy resin, a bismaleimide compound, etc. are used in combination with a cyanate ester compound are semiconductor plastic packages It is widely used for high-performance printed wiring board materials etc.
For example, Patent Document 1 describes that a resin composition composed of a cyanate ester compound having a specific structure and other components is excellent in properties such as low water absorption and low coefficient of thermal expansion.
国際公開第2012/105547号WO 2012/105547
 特許文献1に記載の樹脂組成物は、低吸水性及び低熱膨張率などの特性について良好な物性を有しているといえるものの、熱伝導率の観点からは、依然として改良の余地を有するものである。例えば、プリント配線板のような絶縁材料や、その他の樹脂シートとしたとき、これらの熱伝導率が十分でないと、放熱性が要求される用途には適用し難い。 Although it can be said that the resin composition described in Patent Document 1 has good physical properties with respect to properties such as low water absorption and low thermal expansion coefficient, it still has room for improvement from the viewpoint of thermal conductivity. is there. For example, when it is set as an insulating material like a printed wiring board, and other resin sheets, if these heat conductivity is not enough, it is difficult to apply to the use where heat dissipation is required.
 本発明は、上記問題点に鑑みてなされたものであり、優れた熱伝導性を発現する、樹脂組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料並びに接着剤を提供することを目的とする。 The present invention has been made in view of the above problems, and exhibits excellent thermal conductivity, a resin composition, a cured product, a single layer resin sheet, a laminated resin sheet, a prepreg, a metal foil-clad laminate, and a print. It is an object of the present invention to provide a wiring board, a sealing material, a fiber reinforced composite material and an adhesive.
 本発明者らは、上記課題を解決するために鋭意検討した。その結果、特定構造を有するシアン酸エステル化合物と所定の熱伝導率を有する充填材とを併用することにより、上記課題が解決できることを見出し、本発明を完成するに至った。 The present inventors diligently studied to solve the above problems. As a result, by using together the cyanate ester compound which has a specific structure, and the filler which has a predetermined | prescribed thermal conductivity, it discovers that the said subject is solvable, and came to complete this invention.
 すなわち、本発明は以下の態様を包含する。
[1]
 下記式(1)で表されるシアン酸エステル化合物と、熱伝導率が3W/(m・K)以上である充填材と、を含む、樹脂組成物。
Figure JPOXMLDOC01-appb-C000009
(式(1)中、Ar及びArはそれぞれ同一又は相異なって、下記式(2)で表される二価基を示し、Arは下記式(3)又は(4)で表される二価基を示す。)
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
(式(2)、式(3)及び式(4)中、R及びRは一価の置換基を示し、各々独立に水素原子、炭素数1~6の直鎖状もしくは分枝状のアルキル基、又はハロゲン原子を示す。nは1~4の整数を示し、mは1~8の整数を示す。)
[2]
 前記Ar及びArが、各々独立に下記式(5)又は(6)で表される、[1]に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
[3]
 前記Arが下記式(7)又は(8)で表される、[1]又は[2]に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
[4]
 前記シアン酸エステル化合物以外のシアン酸エステル化合物(A)、マレイミド化合物、フェノール樹脂、エポキシ樹脂、オキセタン樹脂、ベンゾオキサジン化合物、及び重合可能な不飽和基を有する化合物からなる群より選択される1種以上をさらに含む、[1]~[3]のいずれかに記載の樹脂組成物。
[5]
 シート状成形体用である、[1]~[4]のいずれかに記載の樹脂組成物。
[6]
 [1]~[5]のいずれかに記載の樹脂組成物を硬化させてなる、硬化物。
[7]
 [1]~[4]のいずれかに記載の樹脂組成物をシート状に成形してなる、単層樹脂シート。
[8]
 支持体と、
 前記支持体の片面又は両面に配された、[1]~[4]のいずれかに記載の樹脂組成物と、
 を有する、積層樹脂シート。
[9]
 基材と、
 前記基材に含浸又は塗布された、[1]~[4]のいずれかに記載の樹脂組成物と、
 を有する、プリプレグ。
[10]
 [7]に記載の単層樹脂シート、[8]に記載の積層樹脂シート、及び、[9]に記載のプリプレグからなる群より選ばれる少なくとも1種と、
 前記単層樹脂シート、前記積層樹脂シート及び前記プリプレグからなる群より選ばれる少なくとも1種の片面又は両面に配された金属箔と、
 を有し、
 前記単層樹脂シート、前記樹脂シート及び前記プリプレグからなる群より選ばれる少なくとも1種に含まれる樹脂組成物の硬化物を含む、金属箔張積層板。
[11]
 絶縁層と、
 前記絶縁層の片面又は両面に形成された導体層と、
 を有し、
 前記絶縁層が、[1]~[4]のいずれかに記載の樹脂組成物を含む、プリント配線板。
[12]
 [1]~[4]のいずれかに記載の樹脂組成物を含む、封止用材料。
[13]
 [1]~[4]のいずれかに記載の樹脂組成物と、強化繊維と、を含む、繊維強化複合材料。
[14]
 [1]~[4]のいずれかに記載の樹脂組成物を含む、接着剤。
That is, the present invention includes the following aspects.
[1]
The resin composition containing the cyanate ester compound represented by following formula (1), and the filler whose thermal conductivity is 3 W / (m * K) or more.
Figure JPOXMLDOC01-appb-C000009
(In Formula (1), Ar 1 and Ar 3 are the same or different and each represents a divalent group represented by the following Formula (2), Ar 2 is represented by the following Formula (3) or (4) (Indicating a divalent group))
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
(In the formula (2), the formula (3) and the formula (4), R 1 and R 2 each represent a monovalent substituent, each independently a hydrogen atom, a linear or branched C 1 to C 6 chain Or an alkyl group of 1 to 4 or a halogen atom, n is an integer of 1 to 4 and m is an integer of 1 to 8)
[2]
The resin composition according to [1], wherein Ar 1 and Ar 3 are each independently represented by the following formula (5) or (6).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
[3]
The resin composition as described in [1] or [2] to which said Ar 2 is represented by following formula (7) or (8).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
[4]
1 type selected from the group consisting of cyanate ester compounds (A) other than the above-mentioned cyanate ester compounds, maleimide compounds, phenol resins, epoxy resins, oxetane resins, benzoxazine compounds, and compounds having a polymerizable unsaturated group The resin composition according to any one of [1] to [3], further including the above.
[5]
The resin composition according to any one of [1] to [4], which is for a sheet-like shaped article.
[6]
A cured product obtained by curing the resin composition according to any one of [1] to [5].
[7]
A single-layer resin sheet obtained by forming the resin composition according to any one of [1] to [4] into a sheet.
[8]
A support,
The resin composition according to any one of [1] to [4], which is disposed on one side or both sides of the support.
Having a laminated resin sheet.
[9]
A substrate,
The resin composition according to any one of [1] to [4], which is impregnated or applied to the substrate.
Have a prepreg.
[10]
At least one selected from the group consisting of the single-layer resin sheet described in [7], the laminated resin sheet described in [8], and the prepreg described in [9],
At least one metal foil disposed on one side or both sides selected from the group consisting of the single-layer resin sheet, the laminated resin sheet, and the prepreg;
Have
The metal foil tension laminate board containing the hardened material of the resin composition contained in at least one sort chosen from the group which consists of the single layer resin sheet, the resin sheet, and the pre-preg.
[11]
An insulating layer,
A conductor layer formed on one side or both sides of the insulating layer;
Have
A printed wiring board, wherein the insulating layer comprises the resin composition according to any one of [1] to [4].
[12]
A sealing material comprising the resin composition according to any one of [1] to [4].
[13]
A fiber-reinforced composite material comprising the resin composition according to any one of [1] to [4] and a reinforcing fiber.
[14]
An adhesive comprising the resin composition according to any one of [1] to [4].
 本発明によれば、優れた熱伝導性を発現する、樹脂組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料並びに接着剤を提供することができる。 According to the present invention, a resin composition, a cured product, a single-layer resin sheet, a laminated resin sheet, a prepreg, a metal foil-clad laminate, a printed wiring board, a sealing material, and a fiber reinforced that exhibit excellent thermal conductivity. Composite materials as well as adhesives can be provided.
図1は、合成例1で得られたDPCCNのIRチャートである。FIG. 1 is an IR chart of DPCCN obtained in Synthesis Example 1. 図2は、合成例1で得られたDPCCNのH-NMRチャートである。FIG. 2 is a 1 H-NMR chart of DPCCN obtained in Synthesis Example 1. 図3は、合成例1で得られたDPCCNの13C-NMRチャートである。FIG. 3 is a 13 C-NMR chart of DPCCN obtained in Synthesis Example 1. 図4は、合成例2で得られたDPCMeCNのIRチャートである。FIG. 4 is an IR chart of DPCMeCN obtained in Synthesis Example 2. 図5は、合成例2で得られたDPCMeCNのH-NMRチャートである。FIG. 5 is a 1 H-NMR chart of DPCMeCN obtained in Synthesis Example 2. 図6は、合成例3で得られたTPMeCNのIRチャートである。FIG. 6 is an IR chart of TPM eCN obtained in Synthesis Example 3. 図7は、実施例3、実施例4、比較例5及び比較例6における充填材体積充填率と充填材含有硬化物熱伝導率の関係を示すグラフである。FIG. 7 is a graph showing the relationship between the filler volume filling rate and the filler-containing cured product thermal conductivity in Example 3 and Example 4 and Comparative Examples 5 and 6.
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。 Hereinafter, although a mode for carrying out the present invention (hereinafter referred to as "the present embodiment") will be described in detail, the present invention is not limited to this, and various modifications can be made within the scope of the present invention. Is possible.
[樹脂組成物]
 本実施形態の樹脂組成物は、下記式(1)で表されるシアン酸エステル化合物と、熱伝導率が3W/(m・K)以上である充填材と、を含む。このように構成されているため、本実施形態の樹脂組成物は、優れた熱伝導性を発現することができる。
Figure JPOXMLDOC01-appb-C000017
(式(1)中、Ar及びArはそれぞれ同一又は相異なって、下記式(2)で表される二価基を示し、Arは下記式(3)又は(4)で表される二価基を示す。)
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
(式(2)、式(3)及び式(4)中、R及びRは一価の置換基を示し、各々独立に水素原子、炭素数1~6の直鎖状もしくは分枝状のアルキル基、又はハロゲン原子を示す。nは1~4の整数を示し、mは1~8の整数を示す。)
[Resin composition]
The resin composition of the present embodiment contains a cyanate ester compound represented by the following formula (1), and a filler having a thermal conductivity of 3 W / (m · K) or more. Since it is comprised in this way, the resin composition of this embodiment can express the outstanding thermal conductivity.
Figure JPOXMLDOC01-appb-C000017
(In Formula (1), Ar 1 and Ar 3 are the same or different and each represents a divalent group represented by the following Formula (2), Ar 2 is represented by the following Formula (3) or (4) (Indicating a divalent group))
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
(In the formula (2), the formula (3) and the formula (4), R 1 and R 2 each represent a monovalent substituent, each independently a hydrogen atom, a linear or branched C 1 to C 6 chain Or an alkyl group of 1 to 4 or a halogen atom, n is an integer of 1 to 4 and m is an integer of 1 to 8)
(シアン酸エステル化合物)
 本実施形態におけるシアン酸エステル化合物は、上記式(1)で表される。このような構造を有することにより、本実施形態のシアン酸エステル化合物は、優れた熱伝導性を発現することができる。このような本実施形態の所望の効果について、以下に限定する趣旨ではないが、本発明者らは次のように推察している。本実施形態におけるシアン酸エステル化合物は、上述のようなメソゲン構造を有することから、メソゲン構造を有さない他の化合物と比べて、本実施形態における充填材の表面で特定の配向性を示すことができ、その結果、熱伝導経路を多く確保することができるものと推察される。そのため、本実施形態の樹脂組成物は、当該他の化合物と充填材を組み合わせた場合と比べても、優れた熱伝導性を発現することができると考えられる。
(Cyanate ester compound)
The cyanate ester compound in the present embodiment is represented by the above formula (1). By having such a structure, the cyanate ester compound of the present embodiment can exhibit excellent thermal conductivity. About the desired effect of such this embodiment, although it is not the meaning limited to the following, the present inventors infer as follows. Since the cyanate ester compound in the present embodiment has the mesogen structure as described above, it exhibits a specific orientation on the surface of the filler in the present embodiment as compared to other compounds not having the mesogen structure. As a result, it is assumed that many heat conduction paths can be secured. Therefore, it is considered that the resin composition of the present embodiment can exhibit excellent thermal conductivity as compared to the case where the other compound and the filler are combined.
 上記式(1)で表されるシアン酸エステル化合物の具体例としては、以下に限定されないが、
1,4-ビス(4-シアナトフェニル)-1-シクロヘキセン、
1-(3-メチル-4-シアナトフェニル)-4-(4-シアナトフェニル)-1-シクロヘキセン、
1-(2-メチル-4-シアナトフェニル)-4-(4-シアナトフェニル)-1-シクロヘキセン、
1-(3-エチル-4-シアナトフェニル)-4-(4-シアナトフェニル)-1-シクロヘキセン、
1-(2-エチル-4-シアナトフェニル)-4-(4-シアナトフェニル)-1-シクロヘキセン、
1-(3-n-プロピル-4-シアナトフェニル)-4-(4-シアナトフェニル)-1-シクロヘキセン、
1-(2-n-プロピル-4-シアナトフェニル)-4-(4-シアナトフェニル)-1-シクロヘキセン、
1-(3-イソプロピル-4-シアナトフェニル)-4-(4-シアナトフェニル)-1-シクロヘキセン、
1-(2-イソプロピル-4-シアナトフェニル)-4-(4-シアナトフェニル)-1-シクロヘキセン、
1-(3-n-ブチル-4-シアナトフェニル)-4-(4-シアナトフェニル)-1-シクロヘキセン、
1-(2-n-ブチル-4-シアナトフェニル)-4-(4-シアナトフェニル)-1-シクロヘキセン、
1-(3-イソブチル-4-シアナトフェニル)-4-(4-シアナトフェニル)-1-シクロヘキセン、
1-(2-イソブチル-4-シアナトフェニル)-4-(4-シアナトフェニル)-1-シクロヘキセン、
1-(3-s-ブチル-4-シアナトフェニル)-4-(4-シアナトフェニル)-1-シクロヘキセン、
1-(2-s-ブチル-4-シアナトフェニル)-4-(4-シアナトフェニル)-1-シクロヘキセン、
1-(3-t-ブチル-4-シアナトフェニル)-4-(4-シアナトフェニル)-1-シクロヘキセン、
1-(2-t-ブチル-4-シアナトフェニル)-4-(4-シアナトフェニル)-1-シクロヘキセン、
1-(3,6-ジメチル-4-シアナトフェニル)-4-(4-シアナトフェニル)-1-シクロヘキセン、
1-(3,5-ジメチル-4-シアナトフェニル)-4-(4-シアナトフェニル)-1-シクロヘキセン、
1-(2,3,6-トリメチル-4-シアナトフェニル)-4-(4-シアナトフェニル)-1-シクロヘキセン、
1-(2,3,5-トリメチル-4-シアナトフェニル)-4-(4-シアナトフェニル)-1-シクロヘキセン、
1-(3-イソプロピル-6-メチル-4-シアナトフェニル)-4-(4-シアナトフェニル)-1-シクロヘキセン、
1-(3-イソプロピル-5-メチル-4-シアナトフェニル)-4-(4-シアナトフェニル)-1-シクロヘキセン、
1-(3-t-ブチル-6-メチル-4-シアナトフェニル)-4-(4-シアナトフェニル)-1-シクロヘキセン、
1-(3-t-ブチル-5-メチル-4-シアナトフェニル)-4-(4-シアナトフェニル)-1-シクロヘキセン、
1-(3,5-ジ-t-ブチル-4-シアナトフェニル)-4-(4-シアナトフェニル)-1-シクロヘキセン、
1-(3,5-ジイソプロピル-4-シアナトフェニル)-4-(4-シアナトフェニル)-1-シクロヘキセン
等を挙げることができる。
Specific examples of the cyanate ester compound represented by the above formula (1) are not limited to the following,
1,4-bis (4-cyanatophenyl) -1-cyclohexene,
1- (3-Methyl-4-cyanatophenyl) -4- (4-cyanatophenyl) -1-cyclohexene,
1- (2-Methyl-4-cyanatophenyl) -4- (4-cyanatophenyl) -1-cyclohexene,
1- (3-ethyl-4-cyanatophenyl) -4- (4-cyanatophenyl) -1-cyclohexene,
1- (2-ethyl-4-cyanatophenyl) -4- (4-cyanatophenyl) -1-cyclohexene,
1- (3-n-Propyl-4-cyanatophenyl) -4- (4-cyanatophenyl) -1-cyclohexene,
1- (2-n-Propyl-4-cyanatophenyl) -4- (4-cyanatophenyl) -1-cyclohexene,
1- (3-isopropyl-4-cyanatophenyl) -4- (4-cyanatophenyl) -1-cyclohexene,
1- (2-isopropyl-4-cyanatophenyl) -4- (4-cyanatophenyl) -1-cyclohexene,
1- (3-n-butyl-4-cyanatophenyl) -4- (4-cyanatophenyl) -1-cyclohexene,
1- (2-n-butyl-4-cyanatophenyl) -4- (4-cyanatophenyl) -1-cyclohexene,
1- (3-Isobutyl-4-cyanatophenyl) -4- (4-cyanatophenyl) -1-cyclohexene,
1- (2-isobutyl-4-cyanatophenyl) -4- (4-cyanatophenyl) -1-cyclohexene,
1- (3-s-butyl-4-cyanatophenyl) -4- (4-cyanatophenyl) -1-cyclohexene,
1- (2-s-Butyl-4-cyanatophenyl) -4- (4-cyanatophenyl) -1-cyclohexene,
1- (3-t-butyl-4-cyanatophenyl) -4- (4-cyanatophenyl) -1-cyclohexene,
1- (2-t-butyl-4-cyanatophenyl) -4- (4-cyanatophenyl) -1-cyclohexene,
1- (3,6-dimethyl-4-cyanatophenyl) -4- (4-cyanatophenyl) -1-cyclohexene,
1- (3,5-dimethyl-4-cyanatophenyl) -4- (4-cyanatophenyl) -1-cyclohexene,
1- (2,3,6-trimethyl-4-cyanatophenyl) -4- (4-cyanatophenyl) -1-cyclohexene,
1- (2,3,5-trimethyl-4-cyanatophenyl) -4- (4-cyanatophenyl) -1-cyclohexene,
1- (3-isopropyl-6-methyl-4-cyanatophenyl) -4- (4-cyanatophenyl) -1-cyclohexene,
1- (3-isopropyl-5-methyl-4-cyanatophenyl) -4- (4-cyanatophenyl) -1-cyclohexene,
1- (3-t-Butyl-6-methyl-4-cyanatophenyl) -4- (4-cyanatophenyl) -1-cyclohexene,
1- (3-t-Butyl-5-methyl-4-cyanatophenyl) -4- (4-cyanatophenyl) -1-cyclohexene,
1- (3,5-di-t-butyl-4-cyanatophenyl) -4- (4-cyanatophenyl) -1-cyclohexene,
1- (3,5-diisopropyl-4-cyanatophenyl) -4- (4-cyanatophenyl) -1-cyclohexene and the like can be mentioned.
 本実施形態において、より良好な熱伝導率を発現する観点から、式(1)中のAr及びArは、各々独立に下記式(5)又は(6)で表されることが好ましい。同様の観点から、式(1)中のArは下記式(7)又は(8)で表されることが好ましい。 In the embodiment, it is preferable that Ar 1 and Ar 3 in the formula (1) are each independently represented by the following formula (5) or (6) from the viewpoint of expressing better thermal conductivity. From the same viewpoint, Ar 2 in Formula (1) is preferably represented by the following Formula (7) or (8).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 本実施形態におけるシアン酸エステル化合物は、さらに良好な熱伝導率を発現する観点から、下記式(1A)で表されるシアン酸エステル化合物であることが一層好ましく、下記式(1B)及び式(1C)で表されるシアン酸エステル化合物であることがより一層好ましい。 It is more preferable that the cyanate ester compound in the present embodiment is a cyanate ester compound represented by the following formula (1A) from the viewpoint of expressing a further favorable thermal conductivity, and the following formulas (1B) and ( It is even more preferable to be a cyanate ester compound represented by 1C).
Figure JPOXMLDOC01-appb-C000025
(式(1A)中、Rは一価の置換基を示し、各々独立に水素原子、炭素数1~6の直鎖状もしくは分枝状のアルキル基、又はハロゲン原子を示す。nは1~4の整数を示す。)
Figure JPOXMLDOC01-appb-C000025
(In formula (1A), R represents a monovalent substituent, and each independently represents a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, or a halogen atom. N is 1 to 6 Indicates an integer of 4.)
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
[シアン酸エステル化合物の製造方法]
 本実施形態のシアン酸エステル化合物の製造方法としては、特に限定されるものではないが、下記式(9)で表されるヒドロキシ置換芳香族化合物をシアネート化して、下記式(1)で表されるシアン酸エステル化合物を得るシアネート化工程を有するものであることが好ましい。
[Method for producing cyanate ester compound]
The method for producing the cyanate ester compound of the present embodiment is not particularly limited, but the hydroxy-substituted aromatic compound represented by the following formula (9) is cyanated to be represented by the following formula (1) It is preferable to have a cyanation step to obtain a cyanate ester compound.
Figure JPOXMLDOC01-appb-C000028
(式(9)中、Ar、Ar及びArは式(1)中のものと同義である。)
Figure JPOXMLDOC01-appb-C000028
(In formula (9), Ar 1 , Ar 3 and Ar 2 have the same meanings as those in formula (1))
<シアネート化工程>
 シアネート化工程におけるヒドロキシ置換芳香族化合物をシアネート化する方法としては、特に限定されるものではなく、公知の方法を適用することができる。具体的には、ヒドロキシ置換芳香族化合物とハロゲン化シアンを、溶媒中で、塩基性化合物存在下で反応させる方法、溶媒中、塩基の存在下で、ハロゲン化シアンが常に塩基より過剰に存在するようにして、ヒドロキシ置換芳香族化合物とハロゲン化シアンを反応させる方法(米国特許第3553244号明細書参照)や、塩基として3級アミンを用い、これをハロゲン化シアンよりも過剰に用いながら、溶媒の存在下、ヒドロキシ置換芳香族化合物に3級アミンを添加した後、ハロゲン化シアンを滴下する、或いは、ハロゲン化シアンと3級アミンを併注滴下する方法(特許第3319061号明細書参照)、連続プラグフロー方式で、ヒドロキシ置換芳香族化合物、トリアルキルアミン及びハロゲン化シアンを反応させる方法(特許第3905559号明細書参照)、ヒドロキシ置換芳香族化合物とハロゲン化シアンとを、4級アミンの存在下、非水溶液中で反応させる際に副生するtert-アンモニウムハライドを、カチオン及びアニオン交換対で処理する方法(特許第4055210号明細書参照)、ヒドロキシ置換芳香族化合物に対して、水と分液可能な溶媒の存在下で、3級アミンとハロゲン化シアンとを同時に添加して反応させた後、水洗分液し、得られた溶液から2級若しくは3級アルコール類又は炭化水素の貧溶媒を用いて沈殿精製する方法(特許第2991054号明細書参照)、更には、ヒドロキシ置換芳香族化合物、ハロゲン化シアン、及び3級アミンを、水と有機溶媒との二相系溶媒中、酸性条件下で反応させる方法(特許第5026727号明細書参照)等により、本実施形態のシアン酸エステル化合物を得ることができる。
<Cyanation process>
It does not specifically limit as method to cyanate the hydroxy-substituted aromatic compound in a cyanation process, A well-known method is applicable. Specifically, a method of reacting a hydroxy-substituted aromatic compound with a cyanogen halide in the presence of a basic compound in a solvent, wherein the cyanogen halide is always present in excess of a base in the presence of a base in the solvent Thus, a method of reacting a hydroxy-substituted aromatic compound with a cyanogen halide (see US Patent 3,553,244), or using a tertiary amine as a base and using it in excess over cyanogen halide, a solvent After the tertiary amine is added to the hydroxy-substituted aromatic compound in the presence of the compound, and then the halogenated cyanogen is dropped, or the halogenated cyanogen and the tertiary amine are dropped together (see Patent No. 3319061); Method of reacting a hydroxy-substituted aromatic compound, a trialkylamine and a cyanogen halide in a continuous plug flow system (Patent No. 3 (See Japanese Patent Application Laid-Open No. 05559)), treatment of a tert-ammonium halide by-produced when reacting a hydroxy-substituted aromatic compound with a cyanogen halide in the presence of a quaternary amine in a non-aqueous solution with a cation and anion exchange pair (See Patent No. 4055210), after simultaneously adding and reacting a tertiary amine and a cyanogen halide in the presence of water and a separable solvent to a hydroxy-substituted aromatic compound Washing and liquid separation, and precipitation purification from the resulting solution using a secondary or tertiary alcohol or a hydrocarbon poor solvent (see Patent No. 2991054), further, a hydroxy-substituted aromatic compound, Method of reacting cyanogen halide and tertiary amine in a biphasic solvent of water and an organic solvent under acidic conditions (Japanese Patent No. 5026727) The irradiation) or the like, can be obtained cyanate ester compound of the present embodiment.
 得られたシアン酸エステル化合物は、NMR等の公知の方法により同定することができる。シアン酸エステル化合物の純度は、液体クロマトグラフィー又はIRスペクトル法等で分析することができる。シアン酸エステル化合物中のジアルキルシアノアミド等の副生物や残存溶媒等の揮発成分は、ガスクロマトグラフィーで定量分析することができる。シアン酸エステル化合物中に残存するハロゲン化合物は、液体クロマトグラフ質量分析計で同定することができ、また、硝酸銀溶液を用いた電位差滴定又は燃焼法による分解後イオンクロマトグラフィーで定量分析することができる。シアン酸エステル化合物の重合反応性は、熱板法又はトルク計測法によるゲル化時間で評価することができる。 The obtained cyanate ester compound can be identified by a known method such as NMR. The purity of the cyanate ester compound can be analyzed by liquid chromatography or IR spectroscopy. Byproducts such as dialkyl cyanoamide in the cyanate ester compound and volatile components such as residual solvent can be quantitatively analyzed by gas chromatography. A halogen compound remaining in a cyanate ester compound can be identified by a liquid chromatograph mass spectrometer, and can be quantitatively analyzed by ion chromatography after decomposition by a potentiometric titration or combustion method using a silver nitrate solution . The polymerization reactivity of the cyanate ester compound can be evaluated by the gelation time by the hot plate method or the torque measurement method.
 本実施形態において、より優れた熱伝導性を得る観点から、樹脂組成物中における本実施形態のシアン酸エステル化合物の含有量は、5質量%以上であることが好ましく、より好ましくは10質量%以上である。 In the present embodiment, from the viewpoint of obtaining more excellent thermal conductivity, the content of the cyanate ester compound of the present embodiment in the resin composition is preferably 5% by mass or more, more preferably 10% by mass. It is above.
 本実施形態の樹脂組成物は、さらに、本実施形態のシアン酸エステル化合物以外のシアン酸エステル化合物(以下、「シアン酸エステル化合物(A)」ともいう。)、マレイミド化合物、フェノール樹脂、エポキシ樹脂、オキセタン樹脂、ベンゾオキサジン化合物、及び重合可能な不飽和基を有する化合物からなる群より選択される1種以上を含むことができる。以下、これらの各成分について説明する。 The resin composition of the present embodiment further includes a cyanate ester compound other than the cyanate ester compound of the present embodiment (hereinafter, also referred to as “cyanate ester compound (A)”), a maleimide compound, a phenol resin, an epoxy resin And at least one selected from the group consisting of oxetane resins, benzoxazine compounds, and compounds having a polymerizable unsaturated group. Each of these components will be described below.
〔シアン酸エステル化合物(A)〕
 シアン酸エステル化合物(A)としては、本実施形態のシアン酸エステル化合物以外のシアン酸エステル化合物であって、かつ、シアン酸エステル基で少なくとも1個置換された芳香族部分を分子内に有する化合物であれば、特に限定されない。シアン酸エステル化合物を用いた樹脂組成物は、硬化物とした際に、ガラス転移温度、低熱膨張性、めっき密着性等に優れた特性を有する。
[Cyanate ester compound (A)]
The cyanate ester compound (A) is a cyanate ester compound other than the cyanate ester compound of the present embodiment, and is a compound having in the molecule an aromatic moiety substituted at least one cyanate ester group. If it is, it will not be limited in particular. The resin composition using a cyanate ester compound has excellent properties of glass transition temperature, low thermal expansion, plating adhesion and the like when it is a cured product.
 シアン酸エステル化合物(A)の例としては、以下に限定されないが、下記式(10)で表されるものが挙げられる。 Examples of the cyanate ester compound (A) include, but are not limited to, those represented by the following formula (10).
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 上記式(10)中、Arは、芳香環を表す。複数ある場合は互いに同一であっても異なっていてもよい。上記芳香環としては、特に限定されないが、例えば、ベンゼン環、ナフタレン環、アントラセン環、及び、2つのベンゼン環が単結合したものが挙げられる。Raは各々独立に水素原子、炭素数1~6のアルキル基、炭素数6~12のアリール基、炭素数1~4のアルコキシル基、炭素数1~6のアルキル基と炭素数6~12のアリール基とが結合された基を示す。Raにおける芳香環は置換基を有していてもよく、Ar及びRaにおける置換基は任意の位置を選択できる。pはArに結合するシアナト基の数を示し、各々独立に1~3の整数である。qはArに結合するRaの数を示し、Arがベンゼン環のときは4-p、ナフタレン環のときは6-p、2つのベンゼン環が単結合したもののときは8-pである。tは平均繰り返し数を示し、0~50の整数であり、シアン酸エステル化合物(A)は、tが異なる化合物の混合物であってもよい。Xは、複数ある場合は各々独立に、単結合、炭素数1~50の2価の有機基(水素原子がヘテロ原子に置換されていてもよい。)、窒素数1~10の2価の有機基(例えば-N-R-N-(ここでRは有機基を示す。))、カルボニル基(-CO-)、カルボキシ基(-C(=O)O-)、カルボニルジオキサイド基(-OC(=O)O-)、スルホニル基(-SO-)、2価の硫黄原子又は2価の酸素原子のいずれかを示す。 In the above formula (10), Ar 1 represents an aromatic ring. When there are two or more, they may be the same or different. The aromatic ring is not particularly limited, and examples thereof include a benzene ring, a naphthalene ring, an anthracene ring, and a single benzene ring. Ra each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkoxyl group having 1 to 4 carbon atoms, an alkyl group having 1 to 6 carbon atoms, and 6 to 12 carbon atoms A group to which an aryl group is bonded is shown. The aromatic ring in Ra may have a substituent, and the substituent in Ar 1 and Ra can be selected at any position. p represents the number of cyanato groups bonded to Ar 1 and each is independently an integer of 1 to 3. q represents the number of Ra to bind to Ar 1, when Ar 1 is 4-p, naphthalene ring when the benzene ring when those 6-p, 2 one benzene ring is a single bond is 8-p . t represents an average repeat number and is an integer of 0 to 50, and the cyanate ester compound (A) may be a mixture of compounds different in t. When there are a plurality of X's, each independently has a single bond, a divalent organic group having 1 to 50 carbon atoms (a hydrogen atom may be substituted with a hetero atom), or a bivalent nitrogen having 1 to 10 Organic group (eg, -NRN- (wherein R represents an organic group)), carbonyl group (-CO-), carboxy group (-C (= O) O-), carbonyl dioxide group ( -OC (= O) O-), a sulfonyl group (-SO 2- ), a divalent sulfur atom or a divalent oxygen atom.
 上記式(10)のRaにおけるアルキル基は、直鎖もしくは分枝の鎖状構造、及び、環状構造(例えばシクロアルキル基等)のいずれを有していてもよい。
 また、上記式(10)におけるアルキル基及びRaにおけるアリール基中の水素原子は、フッ素原子、塩素原子等のハロゲン原子、メトキシ基、フェノキシ基等のアルコキシル基、又はシアノ基等で置換されていてもよい。
 アルキル基の具体例としては、以下に限定されないが、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、1-エチルプロピル基、2,2-ジメチルプロピル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、及びトリフルオロメチル基が挙げられる。
 アリール基の具体例としては、以下に限定されないが、フェニル基、キシリル基、メシチル基、ナフチル基、フェノキシフェニル基、エチルフェニル基、o-,m-又はp-フルオロフェニル基、ジクロロフェニル基、ジシアノフェニル基、トリフルオロフェニル基、メトキシフェニル基、及びo-,m-又はp-トリル基等が挙げられる。
 アルコキシル基としては、以下に限定されないが、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、及びtert-ブトキシ基が挙げられる。
 上記式(10)のXにおける炭素数1~50の2価の有機基の具体例としては、以下に限定されないが、メチレン基、エチレン基、トリメチレン基、ジメチルメチレン基、シクロペンチレン基、シクロヘキシレン基、トリメチルシクロヘキシレン基、ビフェニルイルメチレン基、ジメチルメチレン-フェニレン-ジメチルメチレン基、フルオレンジイル基、及びフタリドジイル基等が挙げられる。該2価の有機基中の水素原子は、フッ素原子、塩素原子等のハロゲン原子、メトキシ基、フェノキシ基等のアルコキシル基、シアノ基等で置換されていてもよい。
 上記式(10)のXにおける窒素数1~10の2価の有機基の例としては、以下に限定されないが、-N-R-N-で表される基、イミノ基、ポリイミド基等が挙げられる。
The alkyl group at Ra in the above formula (10) may have any of a linear or branched chain structure and a cyclic structure (for example, a cycloalkyl group and the like).
The hydrogen atom in the alkyl group in the above formula (10) and the aryl group in Ra is substituted by a halogen atom such as a fluorine atom or a chlorine atom, an alkoxyl group such as a methoxy group or a phenoxy group, or a cyano group It is also good.
Specific examples of the alkyl group include, but are not limited to, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, 1-ethylpropyl group, Examples include 2,2-dimethylpropyl group, cyclopentyl group, hexyl group, cyclohexyl group, and trifluoromethyl group.
Specific examples of the aryl group include, but are not limited to, phenyl group, xylyl group, mesityl group, naphthyl group, phenoxyphenyl group, ethylphenyl group, o-, m- or p-fluorophenyl group, dichlorophenyl group, dicyano A phenyl group, a trifluorophenyl group, a methoxyphenyl group, an o-, m- or p-tolyl group and the like can be mentioned.
Examples of the alkoxyl group include, but are not limited to, a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, and a tert-butoxy group.
Specific examples of the divalent organic group having 1 to 50 carbon atoms as X in the above-mentioned formula (10) are not limited to the following, but methylene group, ethylene group, trimethylene group, dimethylmethylene group, cyclopentylene group, cyclohexene group Examples thereof include a silene group, a trimethylcyclohexylene group, a biphenylylmethylene group, a dimethylmethylene-phenylene-dimethylmethylene group, a fluorenediyl group, and a phthalide diyl group. The hydrogen atom in the divalent organic group may be substituted by a halogen atom such as a fluorine atom or a chlorine atom, an alkoxyl group such as a methoxy group or a phenoxy group, a cyano group or the like.
Examples of the divalent organic group having a nitrogen number of 1 to 10 in X in the above formula (10) include, but are not limited to, a group represented by -NRN-, an imino group, a polyimide group, etc. It can be mentioned.
 また、上記式(10)中のXの有機基として、例えば、下記式(11)又は下記式(12)で表される構造であるものが挙げられる。 Moreover, as an organic group of X in said Formula (10), what is a structure represented with following formula (11) or following formula (12) is mentioned, for example.
Figure JPOXMLDOC01-appb-C000030
(上記式(11)中、Arは芳香環を示し、uが2以上の場合、互いに同一であっても異なっていてもよい。上記芳香環としては、特に限定されないが、例えば、ベンゼンテトライル基、ナフタレンテトライル基及びビフェニルテトライル基が挙げられる。Rb、Rc、Rf、及びRgは各々独立に、水素原子、炭素数1~6のアルキル基、炭素数6~12のアリール基、トリフルオロメチル基、又はフェノール性ヒドロキシ基を少なくとも1個有するアリール基を示す。Rd及び、Reは各々独立に、水素原子、炭素数1~6のアルキル基、炭素数6~12のアリール基、炭素数1~4のアルコキシル基、又はヒドロキシ基のいずれか一種から選択される。uは0~5の整数を示す。)
Figure JPOXMLDOC01-appb-C000030
(In the above formula (11), Ar 2 represents an aromatic ring, and when u is 2 or more, they may be the same or different from each other. The aromatic ring is not particularly limited. Rb, Rc, Rf and Rg each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, And each independently represents an aryl group having at least one trifluoromethyl group or a phenolic hydroxy group, Rd and Re each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms, It is selected from any one of an alkoxyl group having 1 to 4 carbon atoms or a hydroxy group, and u represents an integer of 0 to 5.)
Figure JPOXMLDOC01-appb-C000031
(式(12)中、Arはフェニレン基、ナフチレン基又はビフェニレン基を示し、vが2以上の場合、互いに同一であっても異なっていてもよい。Ri、及びRjは各々独立に、水素原子、炭素数1~6のアルキル基、炭素数6~12のアリール基、ベンジル基、炭素数1~4のアルコキシル基、ヒドロキシ基、トリフルオロメチル基、又はシアナト基が少なくとも1個置換されたアリール基を示す。vは0~5の整数を示すが、シアン酸エステル化合物(A)は、vが異なる化合物の混合物であってもよい。)
Figure JPOXMLDOC01-appb-C000031
(In the formula (12), Ar 3 represents a phenylene group, a naphthylene group or a biphenylene group, and when v is 2 or more, they may be the same or different from each other. Ri and Rj are each independently hydrogen At least one substituted with an atom, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, a benzyl group, an alkoxyl group having 1 to 4 carbon atoms, a hydroxy group, a trifluoromethyl group or a cyanato group An aryl group is shown, and v is an integer of 0 to 5, but the cyanate ester compound (A) may be a mixture of compounds different in v).
 さらに、式(10)中のXとしては、下記式で表される2価の基が挙げられる。 Furthermore, as X in Formula (10), the bivalent group represented by a following formula is mentioned.
Figure JPOXMLDOC01-appb-C000032
(上記式中、zは4~7の整数を示す。Rkは各々独立に、水素原子又は炭素数1~6のアルキル基を示す。)
Figure JPOXMLDOC01-appb-C000032
(In the above formula, z represents an integer of 4 to 7. R k independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.)
 式(11)のAr及び式(12)のArの具体例としては、1,4-フェニレン基、1,3-フェニレン基、4,4’-ビフェニレン基、2,4’-ビフェニレン基、2,2’-ビフェニレン基、2,3’-ビフェニレン基、3,3’-ビフェニレン基、3,4’-ビフェニレン基、2,6-ナフチレン基、1,5-ナフチレン基、1,6-ナフチレン基、1,8-ナフチレン基、1,3-ナフチレン基、1,4-ナフチレン基、2,7-ナフチレン基が挙げられる。
 式(11)のRb、Rc、Rd、Re、Rf及びRg、並びに式(12)のRi、Rjにおけるアルキル基及びアリール基は、上記式(10)のRaにおけるアルキル基及びアリール基と同義である。
Specific examples of Ar 2 of Formula (11) and Ar 3 of Formula (12) include 1,4-phenylene, 1,3-phenylene, 4,4′-biphenylene, and 2,4′-biphenylene 2,2'-biphenylene group, 2,3'-biphenylene group, 3,3'-biphenylene group, 3,4'-biphenylene group, 2,6-naphthylene group, 1,5-naphthylene group, 1,6 And-a naphthylene group, a 1,8-naphthylene group, a 1,3-naphthylene group, a 1,4-naphthylene group and a 2,7-naphthylene group.
The alkyl group and aryl group in Rb, Rc, Rd, Re, Rf and Rg in Formula (11), and Ri and Rj in Formula (12) have the same meanings as the alkyl group and aryl group in Ra in Formula (10) above. is there.
 上記式(10)で表されるシアン酸エステル化合物の具体例としては、以下に限定されないが、シアナトベンゼン、1-シアナト-2-,1-シアナト-3-,又は1-シアナト-4-メチルベンゼン、1-シアナト-2-,1-シアナト-3-,又は1-シアナト-4-メトキシベンゼン、1-シアナト-2,3-,1-シアナト-2,4-,1-シアナト-2,5-,1-シアナト-2,6-,1-シアナト-3,4-又は1-シアナト-3,5-ジメチルベンゼン、シアナトエチルベンゼン、シアナトブチルベンゼン、シアナトオクチルベンゼン、シアナトノニルベンゼン、2-(4-シアナフェニル)-2-フェニルプロパン(4-α-クミルフェノールのシアネート)、1-シアナト-4-シクロヘキシルベンゼン、1-シアナト-4-ビニルベンゼン、1-シアナト-2-又は1-シアナト-3-クロロベンゼン、1-シアナト-2,6-ジクロロベンゼン、1-シアナト-2-メチル-3-クロロベンゼン、シアナトニトロベンゼン、1-シアナト-4-ニトロ-2-エチルベンゼン、1-シアナト-2-メトキシ-4-アリルベンゼン(オイゲノールのシアネート)、メチル(4-シアナトフェニル)スルフィド、1-シアナト-3-トリフルオロメチルベンゼン、4-シアナトビフェニル、1-シアナト-2-又は1-シアナト-4-アセチルベンゼン、4-シアナトベンズアルデヒド、4-シアナト安息香酸メチルエステル、4-シアナト安息香酸フェニルエステル、1-シアナト-4-アセトアミノベンゼン、4-シアナトベンゾフェノン、1-シアナト-2,6-ジ-tert-ブチルベンゼン、1,2-ジシアナトベンゼン、1,3-ジシアナトベンゼン、1,4-ジシアナトベンゼン、1,4-ジシアナト-2-tert-ブチルベンゼン、1,4-ジシアナト-2,4-ジメチルベンゼン、1,4-ジシアナト-2,3,4-ジメチルベンゼン、1,3-ジシアナト-2,4,6-トリメチルベンゼン、1,3-ジシアナト-5-メチルベンゼン、1-シアナト又は2-シアナトナフタレン、1-シアナト4-メトキシナフタレン、2-シアナト-6-メチルナフタレン、2-シアナト-7-メトキシナフタレン、2,2’-ジシアナト-1,1’-ビナフチル、1,3-,1,4-,1,5-,1,6-,1,7-,2,3-,2,6-又は2,7-ジシアナトシナフタレン、2,2’-又は4,4’-ジシアナトビフェニル、4,4’-ジシアナトオクタフルオロビフェニル、2,4’-又は4,4’-ジシアナトジフェニルメタン、ビス(4-シアナト-3,5-ジメチルフェニル)メタン、1,1-ビス(4-シアナトフェニル)エタン、1,1-ビス(4-シアナトフェニル)プロパン、2,2-ビス(4-シアナトフェニル)プロパン、2,2-ビス(4-シアナト-3-メチルフェニル)プロパン、2,2-ビス(2-シアナト-5-ビフェニルイル)プロパン、2,2-ビス(4-シアナトフェニル)ヘキサフルオロプロパン、2,2-ビス(4-シアナト-3,5-ジメチルフェニル)プロパン、1,1-ビス(4-シアナトフェニル)ブタン、1,1-ビス(4-シアナトフェニル)イソブタン、1,1-ビス(4-シアナトフェニル)ペンタン、1,1-ビス(4-シアナトフェニル)-3-メチルブタン、1,1-ビス(4-シアナトフェニル)-2-メチルブタン、1,1-ビス(4-シアナトフェニル)-2,2-ジメチルプロパン、2,2-ビス(4-シアナトフェニル)ブタン、2,2-ビス(4-シアナトフェニル)ペンタン、2,2-ビス(4-シアナトフェニル)ヘキサン、2,2-ビス(4-シアナトフェニル)-3-メチルブタン、2,2-ビス(4-シアナトフェニル)-4-メチルペンタン、2,2-ビス(4-シアナトフェニル)-3,3-ジメチルブタン、3,3-ビス(4-シアナトフェニル)ヘキサン、3,3-ビス(4-シアナトフェニル)ヘプタン、3,3-ビス(4-シアナトフェニル)オクタン、3,3-ビス(4-シアナトフェニル)-2-メチルペンタン、3,3-ビス(4-シアナトフェニル)-2-メチルヘキサン、3,3-ビス(4-シアナトフェニル)-2,2-ジメチルペンタン、4,4-ビス(4-シアナトフェニル)-3-メチルヘプタン、3,3-ビス(4-シアナトフェニル)-2-メチルヘプタン、3,3-ビス(4-シアナトフェニル)-2,2-ジメチルヘキサン、3,3-ビス(4-シアナトフェニル)-2,4-ジメチルヘキサン、3,3-ビス(4-シアナトフェニル)-2,2,4-トリメチルペンタン、2,2-ビス(4-シアナトフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、ビス(4-シアナトフェニル)フェニルメタン、1,1-ビス(4-シアナトフェニル)-1-フェニルエタン、ビス(4-シアナトフェニル)ビフェニルメタン、1,1-ビス(4-シアナトフェニル)シクロペンタン、1,1-ビス(4-シアナトフェニル)シクロヘキサン、2,2-ビス(4-シアナト-3-イソプロピルフェニル)プロパン、1,1-ビス(3-シクロヘキシル-4-シアナトフェニル)シクロヘキサン、ビス(4-シアナトフェニル)ジフェニルメタン、ビス(4-シアナトフェニル)-2,2-ジクロロエチレン、1,3-ビス[2-(4-シアナトフェニル)-2-プロピル]ベンゼン、1,4-ビス[2-(4-シアナトフェニル)-2-プロピル]ベンゼン、1,1-ビス(4-シアナトフェニル)-3,3,5-トリメチルシクロヘキサン、4-[ビス(4-シアナトフェニル)メチル]ビフェニル、4,4-ジシアナトベンゾフェノン、1,3-ビス(4-シアナトフェニル)-2-プロペン-1-オン、ビス(4-シアナトフェニル)エーテル、ビス(4-シアナトフェニル)スルフィド、ビス(4-シアナトフェニル)スルホン、4-シアナト安息香酸-4-シアナトフェニルエステル(4-シアナトフェニル-4-シアナトベンゾエート)、ビス-(4-シアナトフェニル)カーボネート、1,3-ビス(4-シアナトフェニル)アダマンタン、1,3-ビス(4-シアナトフェニル)-5,7-ジメチルアダマンタン、3,3-ビス(4-シアナトフェニル)イソベンゾフラン-1(3H)-オン(フェノールフタレインのシアネート)、3,3-ビス(4-シアナト-3-メチルフェニル)イソベンゾフラン-1(3H)-オン(o-クレゾールフタレインのシアネート)、9,9’-ビス(4-シアナトフェニル)フルオレン、9,9-ビス(4-シアナト-3-メチルフェニル)フルオレン、9,9-ビス(2-シアナト-5-ビフェニルイル)フルオレン、トリス(4-シアナトフェニル)メタン、1,1,1-トリス(4-シアナトフェニル)エタン、1,1,3-トリス(4-シアナトフェニル)プロパン、α,α,α’-トリス(4-シアナトフェニル)-1-エチル-4-イソプロピルベンゼン、1,1,2,2-テトラキス(4-シアナトフェニル)エタン、テトラキス(4-シアナトフェニル)メタン、2,4,6-トリス(N-メチル-4-シアナトアニリノ)-1,3,5-トリアジン、2,4-ビス(N-メチル-4-シアナトアニリノ)-6-(N-メチルアニリノ)-1,3,5-トリアジン、ビス(N-4-シアナト-2-メチルフェニル)-4,4’-オキシジフタルイミド、ビス(N-3-シアナト-4-メチルフェニル)-4,4’-オキシジフタルイミド、ビス(N-4-シアナトフェニル)-4,4’-オキシジフタルイミド、ビス(N-4-シアナト-2-メチルフェニル)-4,4’-(ヘキサフルオロイソプロピリデン)ジフタルイミド、トリス(3,5-ジメチル-4-シアナトベンジル)イソシアヌレート、2-フェニル-3,3-ビス(4-シアナトフェニル)フタルイミジン、2-(4-メチルフェニル)-3,3-ビス(4-シアナトフェニル)フタルイミジン、2-フェニル-3,3-ビス(4-シアナト-3-メチルフェニル)フタルイミジン、1-メチル-3,3-ビス(4-シアナトフェニル)インドリン-2-オン、及び、2-フェニル-3,3-ビス(4-シアナトフェニル)インドリン-2-オンが挙げられる。 Specific examples of the cyanate ester compound represented by the above formula (10) include, but are not limited to, cyanatobenzene, 1-cyanato-2-, 1-cyanato-3-, or 1-cyanato-4- 1-Cyanato-2-, 1-Cyanato-3-, or 1-Cyanato-4-methoxybenzene, 1-Cyanato-2,3-, 1-Cyanato-2,4-, 1-Cyanato-2 , 5-, 1-Cyanato-2,6-, 1-Cyanato-3,4- or 1-Cyanato-3,5-dimethylbenzene, Cyanatoethylbenzene, Cyanatobutylbenzene, Cyanatooctylbenzene, Cyanatononyl Benzene, 2- (4-cyanaphenyl) -2-phenylpropane (cyanate of 4-α-cumylphenol), 1-cyanato-4-cyclohexylbenzene, 1-cyana -4-vinylbenzene, 1-cyanato-2- or 1-cyanato-3-chlorobenzene, 1-cyanato-2,6-dichlorobenzene, 1-cyanato-2-methyl-3-chlorobenzene, cyanatonitrobenzene, 1- Cyanato-4-nitro-2-ethylbenzene, 1-cyanato-2-methoxy-4-allylbenzene (eugenol cyanate), methyl (4-cyanatophenyl) sulfide, 1-cyanato-3-trifluoromethylbenzene, 4 -Cyanatobiphenyl, 1-cyanato-2- or 1-cyanato-4-acetylbenzene, 4-cyanatobenzaldehyde, 4-cyanatobenzoic acid methyl ester, 4-cyanatobenzoic acid phenyl ester, 1-cyanato-4-aceto Aminobenzene, 4-cyanatobenzophenone, 1-cyanato- 2,6-di-tert-butylbenzene, 1,2-dicyanatobenzene, 1,3-dicyanatobenzene, 1,4-dicyanatobenzene, 1,4-dicyanato-2-tert-butylbenzene, 1,2 4-dicyanato-2,4-dimethylbenzene, 1,4-dicyanato-2,3,4-dimethylbenzene, 1,3-dicyanato-2,4,6-trimethylbenzene, 1,3-dicyanato-5-methyl Benzene, 1-cyanato or 2-cyanatonaphthalene, 1-cyanato 4-methoxynaphthalene, 2-cyanato-6-methylnaphthalene, 2-cyanato-7-methoxynaphthalene, 2,2'-dicyanato-1,1'- Binaphthyl, 1,3-, 1,4-, 1, 5-, 1, 6-, 1, 7-, 2, 3-, 2, 6- or 2, 7-disocyanatosilane, 2, 2 ' Or 4,4'-dicyanatobiphenyl, 4,4'-dicyanatooctafluorobiphenyl, 2,4'- or 4,4'-dicyanatodiphenylmethane, bis (4-cyanato-3,5-dimethylphenyl) methane 1,1-bis (4-cyanatophenyl) ethane, 1,1-bis (4-cyanatophenyl) propane, 2,2-bis (4-cyanatophenyl) propane, 2,2-bis (4 -Cyanato-3-methylphenyl) propane, 2,2-bis (2-cyanato-5-biphenylyl) propane, 2,2-bis (4-cyanatophenyl) hexafluoropropane, 2,2-bis (4 -Cyanato-3,5-dimethylphenyl) propane, 1,1-bis (4-cyanatophenyl) butane, 1,1-bis (4-cyanatophenyl) isobutane, 1,1- (4-cyanatophenyl) pentane, 1,1-bis (4-cyanatophenyl) -3-methylbutane, 1,1-bis (4-cyanatophenyl) -2-methylbutane, 1,1-bis ( 4-Cyanatophenyl) -2,2-dimethylpropane, 2,2-bis (4-cyanatophenyl) butane, 2,2-bis (4-cyanatophenyl) pentane, 2,2-bis (4-) Cyanatophenyl) hexane, 2,2-bis (4-cyanatophenyl) -3-methylbutane, 2,2-bis (4-cyanatophenyl) -4-methylpentane, 2,2-bis (4-cyano) Anatophenyl) -3,3-dimethylbutane, 3,3-bis (4-cyanatophenyl) hexane, 3,3-bis (4-cyanatophenyl) heptane, 3,3-bis (4-cyanatophenyl) ) Octane, 3, 3-Bis (4-cyanatophenyl) -2-methylpentane, 3,3-bis (4-cyanatophenyl) -2-methylhexane, 3,3-bis (4-cyanatophenyl) -2,2 -Dimethylpentane, 4,4-bis (4-cyanatophenyl) -3-methylheptane, 3,3-bis (4-cyanatophenyl) -2-methylheptane, 3,3-bis (4-cyanato) Phenyl) -2,2-dimethylhexane, 3,3-bis (4-cyanatophenyl) -2,4-dimethylhexane, 3,3-bis (4-cyanatophenyl) -2,2,4-trimethyl Pentane, 2,2-bis (4-cyanatophenyl) -1,1,1,3,3,3-hexafluoropropane, bis (4-cyanatophenyl) phenylmethane, 1,1-bis (4- Cyanatophenyl) -1-fe Luethane, bis (4-cyanatophenyl) biphenylmethane, 1,1-bis (4-cyanatophenyl) cyclopentane, 1,1-bis (4-cyanatophenyl) cyclohexane, 2,2-bis (4-bis (4-cyanatophenyl) biphenylmethane) Cyanato-3-isopropylphenyl) propane, 1,1-bis (3-cyclohexyl-4-cyanatophenyl) cyclohexane, bis (4-cyanatophenyl) diphenylmethane, bis (4-cyanatophenyl) -2,2- Dichloroethylene, 1,3-bis [2- (4-cyanatophenyl) -2-propyl] benzene, 1,4-bis [2- (4-cyanatophenyl) -2-propyl] benzene, 1,1- Bis (4-cyanatophenyl) -3,3,5-trimethylcyclohexane, 4- [bis (4-cyanatophenyl) methyl] biphenyl, 2,4-dicyanatobenzophenone, 1,3-bis (4-cyanatophenyl) -2-propen-1-one, bis (4-cyanatophenyl) ether, bis (4-cyanatophenyl) sulfide, bis ( 4-Cyanatophenyl) sulfone, 4-cyanatobenzoic acid-4-cyanatophenyl ester (4-cyanatophenyl-4-cyanatobenzoate), bis- (4-cyanatophenyl) carbonate, 1,3-bis (4-Cyanatophenyl) adamantane, 1,3-bis (4-cyanatophenyl) -5,7-dimethyladamantane, 3,3-bis (4-cyanatophenyl) isobenzofuran-1 (3H) -one (Phenolphthalein cyanate), 3,3-bis (4-cyanato-3-methylphenyl) isobenzofuran-1 (3H) -one (3 cyanate of o-cresolphthalein), 9,9'-bis (4-cyanatophenyl) fluorene, 9,9-bis (4-cyanato-3-methylphenyl) fluorene, 9,9-bis (2-cyanato) -5-biphenylyl) fluorene, tris (4-cyanatophenyl) methane, 1,1,1-tris (4-cyanatophenyl) ethane, 1,1,3-tris (4-cyanatophenyl) propane, α, α, α'-Tris (4-cyanatophenyl) -1-ethyl-4-isopropylbenzene, 1,1,2,2-tetrakis (4-cyanatophenyl) ethane, tetrakis (4-cyanatophenyl) ) Methane, 2,4,6-tris (N-methyl-4-cyanatoanilino) -1,3,5-triazine, 2,4-bis (N-methyl-4-cyanatoanilino) -6- N-Methylanilino) -1,3,5-triazine, bis (N-4-cyanato-2-methylphenyl) -4,4′-oxydiphthalimide, bis (N-3-cyanato-4-methylphenyl)- 4,4'-oxydiphthalimide, bis (N-4-cyanatophenyl) -4,4'-oxydiphthalimide, bis (N-4-cyanato-2-methylphenyl) -4,4 '-(hexa) Fluoroisopropylidene) diphthalimide, tris (3,5-dimethyl-4-cyanatobenzyl) isocyanurate, 2-phenyl-3,3-bis (4-cyanatophenyl) phthalimidine, 2- (4-methylphenyl) -3,3-bis (4-cyanatophenyl) phthalimidine, 2-phenyl-3,3-bis (4-cyanato-3-methylphenyl) phthalimidine, - 3,3-bis (4-cyanatophenyl) indolin-2-one, and 2-phenyl-3,3-bis (4-cyanatophenyl) include indolin-2-one.
 また、上記式(10)で表される化合物の別の具体例としては、以下に限定されないが、フェノールノボラック樹脂及びクレゾールノボラック樹脂(公知の方法により、フェノール、アルキル置換フェノール又はハロゲン置換フェノールと、ホルマリンやパラホルムアルデヒドなどのホルムアルデヒド化合物とを、酸性溶液中で反応させたもの)、トリスフェノールノボラック樹脂(ヒドロキシベンズアルデヒドとフェノールとを酸性触媒の存在下に反応させたもの)、フルオレンノボラック樹脂(フルオレノン化合物と9,9-ビス(ヒドロキシアリール)フルオレン類を酸性触媒の存在下に反応させたもの)、フェノールアラルキル樹脂、クレゾールアラルキル樹脂、ナフトールアラルキル樹脂及びビフェニルアラルキル樹脂(公知の方法により、Ar’-(CHY)(Ar’はフェニル基を示し、Yはハロゲン原子を示す。以下、この段落において同様。)で表されるようなビスハロゲノメチル化合物とフェノール化合物とを酸性触媒若しくは無触媒で反応させたもの、Ar’-(CHOR)で表されるようなビス(アルコキシメチル)化合物とフェノール化合物とを酸性触媒の存在下に反応させたもの、又は、Ar’-(CHOH)で表されるようなビス(ヒドロキシメチル)化合物とフェノール化合物を酸性触媒の存在下に反応させたもの、あるいは、芳香族アルデヒド化合物とアラルキル化合物とフェノール化合物とを重縮合させたもの)、フェノール変性キシレンホルムアルデヒド樹脂(公知の方法により、キシレンホルムアルデヒド樹脂とフェノール化合物とを酸性触媒の存在下に反応させたもの)、変性ナフタレンホルムアルデヒド樹脂(公知の方法により、ナフタレンホルムアルデヒド樹脂とヒドロキシ置換芳香族化合物を酸性触媒の存在下に反応させたもの)、フェノール変性ジシクロペンタジエン樹脂、ポリナフチレンエーテル構造を有するフェノール樹脂(公知の方法により、フェノール性ヒドロキシ基を1分子中に2つ以上有する多価ヒドロキシナフタレン化合物を、塩基性触媒の存在下に脱水縮合させたもの)等のフェノール樹脂を、公知の方法によりシアネート化したもの等、並びにこれらのプレポリマー等が挙げられる。 In addition, other specific examples of the compound represented by the above formula (10) include, but are not limited to, phenol novolac resin and cresol novolac resin (phenol, alkyl substituted phenol or halogen substituted phenol by a known method; Formaldehyde compounds such as formalin and paraformaldehyde are reacted in an acidic solution), trisphenol novolak resin (reaction of hydroxybenzaldehyde and phenol in the presence of an acidic catalyst), fluorene novolac resin (fluorenone compound) And 9,9-bis (hydroxyaryl) fluorenes in the presence of an acidic catalyst), phenolaralkyl resin, cresolaralkyl resin, naphtholaralkyl resin and biphenylaralkyl resin (known methods) By, Ar '- (. (CH 2 Y) 2 Ar' represents a phenyl group, Y is below a halogen atom, similarly in this paragraph.) And bishalogenomethyl compounds represented by the phenol compound Acidic catalyst or non-catalyzed reaction, reaction of a bis (alkoxymethyl) compound such as Ar ′-(CH 2 OR) 2 with a phenolic compound in the presence of an acidic catalyst, or A reaction product of a bis (hydroxymethyl) compound represented by Ar ′-(CH 2 OH) 2 and a phenol compound in the presence of an acidic catalyst, or an aromatic aldehyde compound, an aralkyl compound and a phenol compound Polycondensation), phenol-modified xylene formaldehyde resin (xylene formaldehyde resin and phenol by a known method) A compound in which it is reacted in the presence of an acidic catalyst), a modified naphthalene formaldehyde resin (a reaction of a naphthalene formaldehyde resin and a hydroxy substituted aromatic compound in the presence of an acidic catalyst by a known method) Cyclopentadiene resin, phenol resin having a polynaphthylene ether structure (in a known method, a polyhydroxy naphthalene compound having two or more phenolic hydroxy groups in one molecule is subjected to dehydration condensation in the presence of a basic catalyst And the like, and those prepolymers and the like.
 また、シアン酸エステル化合物(A)の例としては、下記式(13)で表されるものも挙げられる。
Figure JPOXMLDOC01-appb-C000033
(式(13)中、Arは芳香環を表し、複数ある場合は互いに同一であっても異なっていてもよい。Rは各々独立にメチレン基、メチレンオキシ基、メチレンオキシメチレン基又はオキシメチレン基を表し、これらが連結していてもよい。Rは一価の置換基を表し、各々独立に水素原子、アルキル基又はアリール基を表し、Rは各々独立に水素原子、炭素数が1~3のアルキル基、アリール基、ヒドロキシ基又はヒドロキシメチレン基を表し、mは1以上の整数を表し、nは0以上の整数を表す。シアン酸エステル化合物(A)は、m及びnが異なる化合物の混合物であってもよい。各繰り返し単位の配列は任意である。lはシアナト基の結合個数を表し、1~3の整数である。xはRの結合個数を表し、Arの置換可能基数から(l+2)を引いた数を表す。yはRの結合個数を表し、Arの置換可能基数から2を引いた数を表す。)
Moreover, as an example of a cyanate ester compound (A), what is represented by following formula (13) is also mentioned.
Figure JPOXMLDOC01-appb-C000033
(In formula (13), Ar 4 represents an aromatic ring, and when there are a plurality, it may be the same as or different from each other. R 1 independently represents a methylene group, a methyleneoxy group, a methyleneoxymethylene group or an oxy And R 2 represents a monovalent substituent, each independently represents a hydrogen atom, an alkyl group or an aryl group, and R 3 each independently represents a hydrogen atom or carbon number Is an alkyl group of 1 to 3, an aryl group, a hydroxy group or a hydroxymethylene group, m is an integer of 1 or more, n is an integer of 0 or more, and cyanate ester compounds (A) are m and n. The sequence of each repeating unit is arbitrary, l represents the number of bonded cyanato groups and is an integer of 1 to 3. x represents the number of bonded R 2 , Ar 4 of displaceable group From represents the number obtained by subtracting the (l + 2) .y represents a bond number of R 3, represents the number obtained by subtracting 2 from the replaceable radix Ar 4.)
 上記式(13)におけるArとしては、ベンゼン環、ナフタレン環、アントラセン環等が例示されるが、これらに特に限定されない。
 式(13)のR及びRにおけるアルキル基は、直鎖若しくは分枝の鎖状構造、及び、環状構造(例えばシクロアルキル基等)の何れを有していてもよい。
 また、式(13)のR及びRにおけるアリール基中の水素原子は、フッ素原子、塩素原子等のハロゲン原子、メトキシ基、フェノキシ基等のアルコキシ基、シアノ基等で置換されていてもよい。
 前記アルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、1-エチルプロピル基、2,2-ジメチルプロピル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、トリフルオロメチル基等が挙げられる。
 前記アリール基の具体例としては、フェニル基、キシリル基、メシチル基、ナフチル基、フェノキシフェニル基、エチルフェニル基、o-,m-又はp-フルオロフェニル基、ジクロロフェニル基、ジシアノフェニル基、トリフルオロフェニル基、メトキシフェニル基、o-,m-又はp-トリル基等が挙げられる。更にアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、tert-ブトキシ基等が挙げられる。
Examples of Ar 4 in the above formula (13) include a benzene ring, a naphthalene ring, an anthracene ring and the like, but are not particularly limited thereto.
The alkyl group in R 2 and R 3 of Formula (13) may have any of a linear or branched chain structure and a cyclic structure (eg, a cycloalkyl group etc.).
Further, even if the hydrogen atom in the aryl group in R 2 and R 3 in the formula (13) is substituted by a halogen atom such as a fluorine atom or a chlorine atom, an alkoxy group such as a methoxy group or a phenoxy group, a cyano group or the like Good.
Specific examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, 1-ethylpropyl group and 2,2-dimethyl group A propyl group, a cyclopentyl group, a hexyl group, a cyclohexyl group, a trifluoromethyl group etc. are mentioned.
Specific examples of the aryl group include phenyl group, xylyl group, mesityl group, naphthyl group, phenoxyphenyl group, ethylphenyl group, o-, m- or p-fluorophenyl group, dichlorophenyl group, dicyanophenyl group, trifluoro And phenyl group, methoxyphenyl group, o-, m- or p-tolyl group and the like. Furthermore, examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, a tert-butoxy group and the like.
 式(13)で表されるシアン酸エステル化合物の具体例としては、フェノール変性キシレンホルムアルデヒド樹脂(公知の方法により、キシレンホルムアルデヒド樹脂とフェノール化合物を酸性触媒の存在下に反応させたもの)、変性ナフタレンホルムアルデヒド樹脂(公知の方法により、ナフタレンホルムアルデヒド樹脂とヒドロキシ置換芳香族化合物を酸性触媒の存在下に反応させたもの)等のフェノール樹脂を後述と同様の方法によりシアネート化したもの等が挙げられるが、特に制限されるものではない。これらのシアン酸エステル化合物は1種又は2種以上を混合して用いることができる。 Specific examples of the cyanate ester compound represented by the formula (13) include phenol-modified xylene-formaldehyde resin (in which a xylene-formaldehyde resin and a phenol compound are reacted in the presence of an acidic catalyst by a known method), modified naphthalene Although the thing which cyanated phenol resins, such as formaldehyde resin (The thing which made naphthalene formaldehyde resin and a hydroxy substituted aromatic compound react in presence of an acidic catalyst by the well-known method) by the method similar to the after-mentioned is mentioned, It is not particularly limited. These cyanate ester compounds can be used alone or in combination of two or more.
 上記したシアン酸エステル化合物(A)は、1種を単独で又は2種以上を混合して用いることができる。 The above-mentioned cyanate ester compounds (A) can be used singly or in combination of two or more.
 上記した中でも、フェノールノボラック型シアン酸エステル化合物、ナフトールアラルキル型シアン酸エステル化合物、ビフェニルアラルキル型シアン酸エステル化合物、ナフチレンエーテル型シアン酸エステル化合物、キシレン樹脂型シアン酸エステル化合物、アダマンタン骨格型シアン酸エステル化合物が好ましく、ナフトールアラルキル型シアン酸エステル化合物が特に好ましい。 Among the above, phenol novolac type cyanate ester compound, naphthol aralkyl type cyanate ester compound, biphenylaralkyl type cyanate ester compound, naphthylene ether type cyanate ester compound, xylene resin type cyanate ester compound, adamantane skeleton type cyanate Ester compounds are preferred, and naphthol aralkyl type cyanate ester compounds are particularly preferred.
(エポキシ樹脂)
 エポキシ樹脂としては、1分子中に2個以上のエポキシ基を有するエポキシ樹脂であれば、公知のものを適宜使用することができ、その種類は特に限定されない。具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、多官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ジヒドロアントラセン型エポキシ樹脂、ナフタレン骨格変性ノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、イソシアヌル酸型エポキシ樹脂、フルオレン型エポキシ樹脂、キサンテン型エポキシ樹脂、脂環式エポキシ樹脂、ポリオール型エポキシ樹脂、リン含有エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ブタジエンなどの二重結合をエポキシ化した化合物、水酸基含有シリコーン樹脂類とエピクロルヒドリンとの反応により得られる化合物などが挙げられる。これらのエポキシ樹脂のなかでは、難燃性、耐熱性の観点から、ビフェニルアラルキル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、多官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂が好ましい。また、より熱伝導性を高める観点から、本実施形態の樹脂組成物は、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂及びイソシアヌル酸型エポキシ樹脂からなる群より選択される少なくとも1種のエポキシ樹脂を含むことが好ましい。前記ナフタレン型エポキシ樹脂としては、以下に限定されないが、例えば、DIC株式会社製、商品名HP-4710、商品名HP-4700、商品名HP-4032D等が挙げられる。前記ビフェニル型エポキシ樹脂としては、以下に限定されないが、例えば、三菱ケミカル株式会社製、商品名YX4000、商品名YL6121H、商品名YX7399等が挙げられる。前記トリフェニルメタン型エポキシ樹脂としては、以下に限定されないが、例えば、日本化薬株式会社製、商品名EPPN-501H、商品名EPPN-501HY、商品名EPPN-502H等が挙げられる。前記イソシアヌル酸型エポキシ樹脂としては、以下に限定されないが、例えば、日産化学工業株式会社製、商品名TEPIC-S、商品名TEPIC-VL等が挙げられる。これらのエポキシ樹脂は、1種を単独で又は2種以上を組み合わせて用いることができる。
(Epoxy resin)
As an epoxy resin, if it is an epoxy resin which has 2 or more epoxy groups in 1 molecule, a well-known thing can be used suitably, The kind in particular is not limited. Specifically, bisphenol A epoxy resin, bisphenol E epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, bisphenol AD epoxy resin, phenol novolac epoxy resin, bisphenol A novolac epoxy resin, glycidyl ester Type epoxy resin, aralkyl novolac type epoxy resin, biphenyl aralkyl type epoxy resin, biphenyl novolac type epoxy resin, naphthalene ether type epoxy resin, cresol novolac type epoxy resin, polyfunctional phenol type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy Resin, dihydroanthracene type epoxy resin, naphthalene skeleton modified novolac type epoxy resin, phenol aralkyl type epoxy resin, Epoxy resin, dicyclopentadiene type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin, tetraphenylethane type epoxy resin, isocyanuric acid type epoxy resin, fluorene type epoxy resin, xanthene type epoxy resin, fat Cyclic epoxy resin, polyol type epoxy resin, phosphorus-containing epoxy resin, glycidyl amine type epoxy resin, compound obtained by epoxidizing double bond such as butadiene, and compound obtained by reaction of hydroxyl group-containing silicone resin with epichlorohydrin Be Among these epoxy resins, biphenylaralkyl type epoxy resins, naphthylene ether type epoxy resins, polyfunctional phenol type epoxy resins, and naphthalene type epoxy resins are preferable from the viewpoint of flame retardancy and heat resistance. Further, from the viewpoint of further enhancing the thermal conductivity, the resin composition of the present embodiment is at least selected from the group consisting of naphthalene type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin and isocyanuric acid type epoxy resin. It is preferred to include one epoxy resin. Examples of the naphthalene type epoxy resin include, but are not limited to, for example, trade name HP-4710, trade name HP-4700, trade name HP-4032D, etc., manufactured by DIC Corporation. Examples of the biphenyl type epoxy resin include, but are not limited to, for example, Mitsubishi Chemical Co., Ltd., trade name YX4000, trade name YL6121H, trade name YX7399, and the like. Examples of the triphenylmethane epoxy resin include, but are not limited to, Nippon Kayaku Co., Ltd., trade name EPPN-501H, trade name EPPN-501HY, trade name EPPN-502H, and the like. Examples of the isocyanuric acid type epoxy resin include, but are not limited to, for example, Nissan Chemical Industries, Ltd., trade name TEPIC-S, trade name TEPIC-VL, and the like. These epoxy resins can be used singly or in combination of two or more.
(マレイミド化合物)
 マレイミド化合物としては、1分子中に1個以上のマレイミド基を有する化合物であれば、一般に公知のものを使用できる。例えば、4,4-ジフェニルメタンビスマレイミド、フェニルメタンマレイミド、m-フェニレンビスマレイミド、2,2-ビス(4-(4-マレイミドフェノキシ)-フェニル)プロパン、3,3-ジメチル-5,5-ジエチル-4,4-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、4,4-ジフェニルエーテルビスマレイミド、4,4-ジフェニルスルフォンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン、ポリフェニルメタンマレイミド、ノボラック型マレイミド、ビフェニルアラルキル型マレイミド、及びこれらマレイミド化合物のプレポリマー、もしくはマレイミド化合物とアミン化合物のプレポリマー等が挙げられるが、特に限定されるものではない。これらのマレイミド化合物は、1種又は2種以上混合して用いることができる。この中でも、ノボラック型マレイミド化合物、ビフェニルアラルキル型マレイミド化合物が特に好ましい。
(Maleimide compound)
As the maleimide compound, generally known compounds can be used as long as they are compounds having one or more maleimide groups in one molecule. For example, 4,4-diphenylmethanebismaleimide, phenylmethanemaleimide, m-phenylenebismaleimide, 2,2-bis (4- (4-maleimidophenoxy) -phenyl) propane, 3,3-dimethyl-5,5-diethyl -4,4-Diphenylmethane bismaleimide, 4-methyl-1,3-phenylenebismaleimide, 1,6-bismaleimide- (2,2,4-trimethyl) hexane, 4,4-diphenylether bismaleimide, 4,4 -Diphenylsulfone bismaleimide, 1,3-bis (3-maleimidophenoxy) benzene, 1,3-bis (4-maleimidophenoxy) benzene, polyphenylmethane maleimide, novolac maleimide, biphenylaralkyl maleimide, and these maleimide compounds Prepolymer Or although prepolymer of the maleimide compound and amine compound, but is not particularly limited. These maleimide compounds can be used alone or in combination of two or more. Among these, novolak type maleimide compounds and biphenylaralkyl type maleimide compounds are particularly preferable.
(フェノール樹脂)
 フェノール樹脂としては、1分子中に2個以上のヒドロキシ基を有するフェノール樹脂であれば、一般に公知のものを使用できる。その具体例としては、ビスフェノールA型フェノール樹脂、ビスフェノールE型フェノール樹脂、ビスフェノールF型フェノール樹脂、ビスフェノールS型フェノール樹脂、フェノールノボラック樹脂、ビスフェノールAノボラック型フェノール樹脂、グリシジルエステル型フェノール樹脂、アラルキルノボラック型フェノール樹脂、ビフェニルアラルキル型フェノール樹脂、クレゾールノボラック型フェノール樹脂、多官能フェノール樹脂、ナフトール樹脂、ナフトールノボラック樹脂、多官能ナフトール樹脂、アントラセン型フェノール樹脂、ナフタレン骨格変性ノボラック型フェノール樹脂、フェノールアラルキル型フェノール樹脂、ナフトールアラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、ビフェニル型フェノール樹脂、脂環式フェノール樹脂、ポリオール型フェノール樹脂、リン含有フェノール樹脂、水酸基含有シリコーン樹脂類等が挙げられるが、特に限定されるものではない。これらのフェノール樹脂の中では、ビフェニルアラルキル型フェノール樹脂、ナフトールアラルキル型フェノール樹脂、リン含有フェノール樹脂、水酸基含有シリコーン樹脂が難燃性の点で好ましい。これらのフェノール樹脂は、1種を単独で又は2種以上を組み合わせて用いることができる。
(Phenol resin)
As the phenol resin, generally known phenol resins can be used as long as they have two or more hydroxy groups in one molecule. Specific examples thereof include bisphenol A type phenol resin, bisphenol E type phenol resin, bisphenol F type phenol resin, bisphenol S type phenol resin, phenol novolac resin, bisphenol A novolac type phenol resin, glycidyl ester type phenol resin, aralkyl novolac type Phenol resin, biphenylaralkyl type phenol resin, cresol novolac type phenol resin, polyfunctional phenol resin, naphthol resin, naphthol novolak resin, polyfunctional naphthol resin, anthracene type phenol resin, naphthalene skeleton modified novolac type phenol resin, phenolaralkyl type phenol resin Naphthol aralkyl type phenol resin, dicyclopentadiene type phenol resin, biphenyl type phenol resin Nord resins, alicyclic phenolic resins, polyol-type phenolic resin, a phosphorus-containing phenol resin, a hydroxyl group-containing silicone resins and the like, but is not particularly limited. Among these phenol resins, biphenylaralkyl type phenol resins, naphtholaralkyl type phenol resins, phosphorus-containing phenol resins, and hydroxyl group-containing silicone resins are preferable in view of flame retardancy. These phenol resins can be used singly or in combination of two or more.
(オキセタン樹脂)
 オキセタン樹脂としては、一般に公知のものを使用できる。例えば、オキセタン、2-メチルオキセタン、2,2-ジメチルオキセタン、3-メチルオキセタン、3,3-ジメチルオキセタン等のアルキルオキセタン、3-メチル-3-メトキシメチルオキセタン、3,3-ジ(トリフルオロメチル)パーフルオキセタン、2-クロロメチルオキセタン、3,3-ビス(クロロメチル)オキセタン、ビフェニル型オキセタン、OXT-101(東亞合成製商品名)、OXT-121(東亞合成製商品名)等が挙げられるが、特に限定されるものではない。これらのオキセタン樹脂は、1種又は2種以上混合して用いることができる。
(Oxetane resin)
As the oxetane resin, those generally known can be used. For example, alkyl oxetanes such as oxetane, 2-methyl oxetane, 2,2-dimethyl oxetane, 3-methyl oxetane, 3, 3-dimethyl oxetane, 3-methyl 3-methoxymethyl oxetane, 3, 3-di (trifluoro) Methyl) perfluoxetane, 2-chloromethyl oxetane, 3,3-bis (chloromethyl) oxetane, biphenyl type oxetane, OXT-101 (trade name of Toho Gosei Co., Ltd.), OXT-121 (trade name of Toho Gosei Co., Ltd.), etc. Although it may be mentioned, it is not particularly limited. These oxetane resins can be used alone or in combination of two or more.
(ベンゾオキサジン化合物)
 ベンゾオキサジン化合物としては、1分子中に2個以上のジヒドロベンゾオキサジン環を有する化合物であれば、一般に公知のものを用いることができる。例えば、ビスフェノールA型ベンゾオキサジンBA-BXZ(小西化学製商品名)ビスフェノールF型ベンゾオキサジンBF-BXZ(小西化学製商品名)、ビスフェノールS型ベンゾオキサジンBS-BXZ(小西化学製商品名)、P-d型ベンゾオキサジン(四国化成工業製商品名)、F-a型ベンゾオキサジン(四国化成工業製商品名)等が挙げられるが、特に限定されるものではない。これらのベンゾオキサジン化合物は、1種又は2種以上混合して用いることができる。
(Benzoxazine compound)
As the benzoxazine compound, generally known compounds can be used as long as they are compounds having two or more dihydrobenzoxazine rings in one molecule. For example, bisphenol A type benzoxazine BA-BXZ (trade name of Konishi Chemical) bisphenol F type benzooxazine BF-BXZ (trade name of Konishi Chemical), bisphenol S type benzooxazine BS-BXZ (trade name of Konishi Chemical), P Examples thereof include -d-type benzoxazine (trade name of Shikoku Kasei Kogyo Co., Ltd.) and F-a type benzoxazine (trade name of Shikoku Kasei Kogyo Co., Ltd.) and the like, but not limited thereto. These benzoxazine compounds can be used alone or in combination of two or more.
(重合可能な不飽和基を有する化合物)
 重合可能な不飽和基を有する化合物としては、一般に公知のものを使用できる。例えば、エチレン、プロピレン、スチレン、ジビニルベンゼン、ジビニルビフェニル等のビニル化合物、メチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の1価又は多価アルコールの(メタ)アクリレート類、ビスフェノールA型エポキシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート類、及びベンゾシクロブテン樹脂、が挙げられるが、特に限定されるものではない。これらの不飽和基を有する化合物は、1種又は2種以上混合して用いることができる。なお、上記「(メタ)アクリレート」は、アクリレート及びそれに対応するメタクリレートを包含する概念である。
(Compound having a polymerizable unsaturated group)
As compounds having a polymerizable unsaturated group, generally known compounds can be used. For example, vinyl compounds such as ethylene, propylene, styrene, divinylbenzene and divinylbiphenyl, methyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, polypropylene glycol di (meth) acrylate, (Meth) acrylates of monohydric or polyhydric alcohols such as trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, bisphenol Epoxy (meth) acrylates such as A-type epoxy (meth) acrylate, bisphenol F-type epoxy (meth) acrylate and the like, and benzocyclobutene resin But it is not particularly limited. The compound which has these unsaturated groups can be used 1 type or in mixture of 2 or more types. In addition, the said "(meth) acrylate" is the concept containing an acrylate and the methacrylate corresponding to it.
(充填材)
 本実施形態の樹脂組成物は、熱膨張特性、寸法安定性、難燃性、熱伝導率、誘電特性などの観点から、充填材を含有する。本実施形態における充填材は、熱伝導率が3W/(m・K)以上である。本実施形態において、充填材の熱伝導率は、5W/(m・K)以上であることが好ましく、10W/(m・K)以上であることがより好ましく、15W/(m・K)以上であることがさらに好ましく、20W/(m・K)以上であることがよりさらに好ましく、25W/(m・K)以上であることが一層好ましく、30W/(m・K)以上であることがより一層好ましい。
 本実施形態で用いられる充填材の熱伝導率としては、日本熱物性学会編「熱物性ハンドブック」等を参照して確認することができ、当該充填材の熱伝導率として既知の値を採用することができる。なお、樹脂組成物に含まれる充填材の全てが3W/(m・K)以上の熱伝導率を有する必要はなく、含まれる充填材の全量に対して50質量%以上の充填材が3W/(m・K)以上の熱伝導率を有していることが好ましく、75質量%以上の充填材が3W/(m・K)以上の熱伝導率を有していることがより好ましい。すなわち、充填材が3W/(m・K)未満の熱伝導率を有するものが含まれていてもよい。
 上述した充填材としては、公知のものを適宜使用することができ、3W/(m・K)以上の熱伝導率を有している充填材についても、3W/(m・K)未満の熱伝導率を有する充填材についても、種類は特に限定されない。特に、積層板用途において一般に使用されている充填材を、充填材として好適に用いることができる。充填材の具体例としては、天然シリカ、結晶シリカ、合成シリカ、アモルファスシリカ、アエロジル、中空シリカ等のシリカ類、ホワイトカーボン、チタンホワイト、酸化亜鉛、酸化マグネシウム、酸化ジルコニウム等の酸化物、窒化ホウ素、凝集窒化ホウ素、窒化ケイ素、窒化アルミニウム、硫酸バリウム、水酸化アルミニウム、水酸化アルミニウム加熱処理品(水酸化アルミニウムを加熱処理し、結晶水の一部を減じたもの)、ベーマイト、水酸化マグネシウム等の金属水和物、酸化モリブデンやモリブデン酸亜鉛等のモリブデン化合物、ホウ酸亜鉛、錫酸亜鉛、アルミナ、クレー、カオリン、タルク、焼成クレー、焼成カオリン、焼成タルク、マイカ、E-ガラス、A-ガラス、NE-ガラス、C-ガラス、L-ガラス、D-ガラス、S-ガラス、M-ガラスG20、ガラス短繊維(Eガラス、Tガラス、Dガラス、Sガラス、Qガラス等のガラス微粉末類を含む。)、中空ガラス、球状ガラスなど無機系の充填材の他、スチレン型、ブタジエン型、アクリル型などのゴムパウダー、コアシェル型のゴムパウダー、並びにシリコーンレジンパウダー、シリコーンゴムパウダー、シリコーン複合パウダーなど有機系の充填材などが挙げられる。充填材は、1種を単独で又は2種以上を組み合わせて用いることができる。
 上述した中でも、結晶シリカ、窒化ホウ素、凝集窒化ホウ素、窒化ケイ素、窒化アルミニウム、ベーマイト及びアルミナが好ましく、アルミナ、窒化アルミニウム、窒化ホウ素が特に好ましい。これらの充填材を使用することで、樹脂組成物の熱伝導性がより向上する傾向にある。
 本実施形態において、組成物中における充填材の充填量は、特に限定されないが、より優れた熱伝導性を与える観点から、40vol%以上が好ましく、50vol%以上がより好ましく、60vol%以上がさらに好ましく、70vol%以上がよりさらに好ましい。また、上記充填量は、成形性の観点から、90vol%以下が好ましく、より好ましくは85vol%以下である。
(Filling material)
The resin composition of the present embodiment contains a filler from the viewpoint of thermal expansion characteristics, dimensional stability, flame retardancy, thermal conductivity, dielectric characteristics, and the like. The filler in the present embodiment has a thermal conductivity of 3 W / (m · K) or more. In the present embodiment, the thermal conductivity of the filler is preferably 5 W / (m · K) or more, more preferably 10 W / (m · K) or more, and 15 W / (m · K) or more Is more preferably 20 W / (m · K) or more, still more preferably 25 W / (m · K) or more, and 30 W / (m · K) or more Even more preferred.
The thermal conductivity of the filler used in the present embodiment can be confirmed with reference to “Thermal physical property handbook” edited by the Japan Society of Thermophysical Properties, etc., and a known value is adopted as the thermal conductivity of the filler. be able to. In addition, it is not necessary for all the fillers contained in the resin composition to have a thermal conductivity of 3 W / (m · K) or more, and the filler having 50 mass% or more with respect to the total amount of the contained fillers is 3 W / It is preferable to have a thermal conductivity of (m · K) or more, and it is more preferable that the filler of 75% by mass or more has a thermal conductivity of 3 W / (m · K) or more. That is, the filler may include one having a thermal conductivity of less than 3 W / (m · K).
A well-known thing can be used suitably as a filler mentioned above, About the filler which has the heat conductivity of 3 W / (m * K) or more, the heat of less than 3 W / (m * K) The type of the filler having conductivity is not particularly limited. In particular, fillers commonly used in laminate applications can be suitably used as fillers. Specific examples of the filler include natural silica, crystalline silica, synthetic silica, amorphous silica, aerosil, silicas such as hollow silica, white carbon, titanium white, oxides such as zinc oxide, magnesium oxide, zirconium oxide, boron nitride Cohesive boron nitride, silicon nitride, aluminum nitride, barium sulfate, aluminum hydroxide, aluminum hydroxide heat-treated product (Aluminum hydroxide is heat-treated to reduce a part of crystal water), boehmite, magnesium hydroxide etc. Metal hydrates, molybdenum compounds such as molybdenum oxide and zinc molybdate, zinc borate, zinc stannate, alumina, clay, kaolin, talc, calcined clay, calcined kaolin, calcined talc, mica, E-glass, A- Glass, NE-glass, C-glass, L-glass, D-glass, -In addition to inorganic fillers such as glass, M-glass G20, short glass fibers (including fine glass powders such as E glass, T glass, D glass, S glass, Q glass etc.), hollow glass, spherical glass etc. And rubber powders such as styrene type, butadiene type and acrylic type, core-shell type rubber powder, and organic fillers such as silicone resin powder, silicone rubber powder, silicone composite powder and the like. The fillers may be used alone or in combination of two or more.
Among the above, crystalline silica, boron nitride, agglomerated boron nitride, silicon nitride, aluminum nitride, boehmite and alumina are preferable, and alumina, aluminum nitride and boron nitride are particularly preferable. The thermal conductivity of the resin composition tends to be further improved by using these fillers.
In the present embodiment, the filling amount of the filler in the composition is not particularly limited, but is preferably 40 vol% or more, more preferably 50 vol% or more, and further preferably 60 vol% or more from the viewpoint of giving more excellent thermal conductivity. Preferably, 70 vol% or more is even more preferable. Further, the filling amount is preferably 90 vol% or less, more preferably 85 vol% or less from the viewpoint of formability.
 ここで充填材を樹脂組成物に含有させるにあたり、シランカップリング剤や湿潤分散剤を併用することが好ましい。シランカップリング剤としては、一般に無機物の表面処理に用いられるものを好適に用いることができ、その種類は特に限定されない。シランカップリング剤として、具体的には、以下に限定されないが、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシランなどのアミノシラン系、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシシラン系、γ-メタアクリロキシプロピルトリメトキシシラン、ビニルートリ(β-メトキシエトキシ)シランなどのビニルシラン系、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン塩酸塩などのカチオニックシラン系、並びにフェニルシラン系が挙げられる。シランカップリング剤は、1種を単独で又は2種以上を組み合わせて用いることができる。また、湿潤分散剤としては、一般に塗料用に用いられているものを好適に用いることができ、その種類は特に限定されない。湿潤分散剤としては、好ましくは、共重合体ベースの湿潤分散剤が用いられ、市販品であってもよい。市販品の具体例としては、以下に限定されないが、ビックケミー・ジャパン(株)製のDisperbyk-110、111、161、180、BYK-W996、BYK-W9010、BYK-W903、BYK-W940などが挙げられる。湿潤分散剤は、1種を単独で又は2種以上を組み合わせて用いることができる。 Here, when the filler is contained in the resin composition, it is preferable to use a silane coupling agent or a wetting and dispersing agent in combination. As a silane coupling agent, what is generally used for the surface treatment of an inorganic substance can be used suitably, The kind in particular is not limited. Specific examples of the silane coupling agent include, but are not limited to, aminosilanes such as, but not limited to, γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, γ-glycid Epoxysilanes such as xylpropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, vinylsilanes such as γ-methacryloxypropyltrimethoxysilane, vinyl-tri (β-methoxyethoxy) silane, N Cationic silane systems, such as -β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane hydrochloride, as well as phenylsilane systems. The silane coupling agent can be used singly or in combination of two or more. Moreover, as a wetting and dispersing agent, what is generally used for paints can be used suitably, The kind in particular is not limited. As the wetting and dispersing agent, a copolymer-based wetting and dispersing agent is preferably used, and may be a commercially available product. Specific examples of commercially available products include, but are not limited to, Disperbyk-110, 111, 161, 180, BYK-W 996, BYK-W 9010, BYK-W 903, BYK-W 940, etc., manufactured by Big Chemie Japan Ltd. Be The wetting and dispersing agents can be used alone or in combination of two or more.
(硬化促進剤)
 また、本実施形態の樹脂組成物は、必要に応じて、硬化速度を適宜調節するための硬化促進剤を含有していてもよい。この硬化促進剤としては、シアン酸エステル化合物やエポキシ樹脂等の硬化促進剤として一般に使用されているものを好適に用いることができ、その種類は特に限定されない。硬化促進剤の具体例としては、オクチル酸亜鉛、ナフテン酸亜鉛、ナフテン酸コバルト、ナフテン酸銅、アセチルアセトン鉄、オクチル酸ニッケル、オクチル酸マンガン等の有機金属塩類、フェノール、キシレノール、クレゾール、レゾルシン、カテコール、オクチルフェノール、ノニルフェノール等のフェノール化合物、1-ブタノール、2-エチルヘキサノール等のアルコール類、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール類及びこれらのイミダゾール類のカルボン酸若しくはその酸無水類の付加体等の誘導体、ジシアンジアミド、ベンジルジメチルアミン、4-メチル-N,N-ジメチルベンジルアミン等のアミン類、ホスフィン系化合物、ホスフィンオキサイド系化合物、ホスホニウム塩系化合物、ダイホスフィン系化合物等のリン化合物、エポキシ-イミダゾールアダクト系化合物、ベンゾイルパーオキサイド、p-クロロベンゾイルパーオキサイド、ジ-t-ブチルパーオキサイド、ジイソプロピルパーオキシカーボネート、ジ-2-エチルヘキシルパーオキシカーボネート等の過酸化物、又はアゾビスイソブチロニトリル等のアゾ化合物が挙げられる。硬化促進剤は、1種を単独で又は2種以上を組み合わせて用いることができる。
(Hardening accelerator)
Moreover, the resin composition of this embodiment may contain the hardening accelerator for adjusting a hardening speed suitably, as needed. As this hardening accelerator, what is generally used as hardening accelerators, such as a cyanate ester compound and an epoxy resin, can be used suitably, The kind is not specifically limited. Specific examples of the curing accelerator include zinc octylate, zinc naphthenate, cobalt naphthenate, copper naphthenate, iron acetylacetonate, nickel octylate, organic acid salts such as manganese octylate, phenol, xylenol, cresol, resorcinol, catechol Phenols such as octylphenol and nonylphenol, alcohols such as 1-butanol and 2-ethylhexanol, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, Imidazoles such as 1-cyanoethyl-2-ethyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole and the like; Derivatives such as adducts of carboxylic acids of imidazoles or their anhydrides, dicyandiamide, amines such as benzyldimethylamine, 4-methyl-N, N-dimethylbenzylamine, phosphine compounds, phosphine oxide compounds, Phosphorus compounds such as phosphonium salt compounds, diphosphine compounds, epoxy-imidazole adduct compounds, benzoyl peroxide, p-chlorobenzoyl peroxide, di-t-butyl peroxide, diisopropyl peroxy carbonate, di-2-ethylhexyl Peroxides such as peroxycarbonates or azo compounds such as azobisisobutyronitrile can be mentioned. The curing accelerator can be used singly or in combination of two or more.
(他の添加剤)
 さらに、本実施形態の樹脂組成物は、所期の特性が損なわれない範囲において、他の熱硬化性樹脂、熱可塑性樹脂及びそのオリゴマー、エラストマー類などの種々の高分子化合物、難燃性化合物、並びに各種添加剤等を併用することができる。これらは一般に使用されているものであれば、特に限定されるものではない。難燃性化合物の具体例としては、以下に限定されないが、4,4’-ジブロモビフェニル等の臭素化合物、リン酸エステル、リン酸メラミン、リン含有エポキシ樹脂、メラミン及びベンゾグアナミンなどの窒素化合物、オキサジン環含有化合物、並びに、シリコーン系化合物等が挙げられる。また、各種添加剤としては、以下に限定されないが、例えば、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤、光増感剤、染料、顔料、増粘剤、流動調整剤、滑剤、消泡剤、分散剤、レベリング剤、光沢剤、重合禁止剤等が挙げられる。これらは、所望に応じて1種を単独で又は2種以上を組み合わせて用いることができる。
(Other additives)
Furthermore, in the resin composition of the present embodiment, various polymer compounds such as other thermosetting resins, thermoplastic resins and their oligomers, elastomers, and flame retardant compounds as long as the desired properties are not impaired. And various additives etc. can be used in combination. These are not particularly limited as long as they are generally used. Specific examples of flame retardant compounds include, but are not limited to: bromine compounds such as 4,4'-dibromobiphenyl, phosphate esters, melamine phosphates, phosphorus-containing epoxy resins, nitrogen compounds such as melamine and benzoguanamine, oxazines Examples thereof include ring-containing compounds and silicone compounds. Moreover, as various additives, although it is not limited to the following, for example, an ultraviolet light absorber, an antioxidant, a photopolymerization initiator, a fluorescent whitening agent, a photosensitizer, a dye, a pigment, a thickener, a flow control agent Lubricants, antifoaming agents, dispersants, leveling agents, brighteners, polymerization inhibitors and the like. These can be used singly or in combination of two or more, as desired.
(有機溶剤)
 なお、本実施形態の樹脂組成物は、必要に応じて、有機溶剤を含有することができる。この場合、本実施形態の樹脂組成物は、上述した各種樹脂成分の少なくとも一部、好ましくは全部が有機溶剤に溶解又は相溶した態様(溶液又はワニス)として用いることができる。有機溶剤としては、上述した各種樹脂成分の少なくとも一部、好ましくは全部を溶解又は相溶可能なものであれば、公知のものを適宜用いることができ、その種類は特に限定されるものではない。有機溶剤の具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のセロソルブ系溶媒、乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソアミル、メトキシプロピオン酸メチル、ヒドロキシイソ酪酸メチル等のエステル系溶媒、ジメチルアセトアミド、ジメチルホルムアミド等のアミド類などの極性溶剤類、トルエン、キシレン等の芳香族炭化水素等の無極性溶剤が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いることができる。
(Organic solvent)
In addition, the resin composition of this embodiment can contain the organic solvent as needed. In this case, the resin composition of the present embodiment can be used as an aspect (solution or varnish) in which at least part, preferably all, of the various resin components described above are dissolved or compatible with the organic solvent. As the organic solvent, known solvents can be appropriately used so long as at least a part, preferably all of the various resin components described above can be dissolved or compatible, and the type thereof is not particularly limited. . Specific examples of the organic solvent include ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, cellosolve solvents such as propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate, ethyl lactate, methyl acetate, ethyl acetate, butyl acetate and isoamyl acetate And ester solvents such as methyl methoxypropionate and methyl hydroxyisobutyrate; polar solvents such as amides such as dimethylacetamide and dimethylformamide; and nonpolar solvents such as aromatic hydrocarbons such as toluene and xylene. These can be used singly or in combination of two or more.
 本実施形態の樹脂組成物は、常法にしたがって調製することができ、本実施形態のシアン酸エステル化合物、充填材、及び上述したその他の任意成分を均一に含有する樹脂組成物が得られる方法であれば、その調製方法は特に限定されない。例えば、本実施形態のシアン酸エステル化合物、充填材、及び上述したその他の任意成分を溶剤に順次配合し、十分に撹拌することで本実施形態の樹脂組成物を容易に調製することができる。 The resin composition of the present embodiment can be prepared according to a conventional method, and a method of obtaining a resin composition uniformly containing the cyanate ester compound of the present embodiment, a filler, and the other optional components described above The preparation method is not particularly limited as long as For example, the resin composition of the present embodiment can be easily prepared by sequentially blending the cyanate ester compound of the present embodiment, the filler, and the other optional components described above in a solvent and sufficiently stirring.
 なお、樹脂組成物の調製時に、各成分を均一に溶解或いは分散させるための公知の処理(撹拌、混合、混練処理など)を行うことができる。例えば、充填材の均一分散にあたり、適切な撹拌能力を有する撹拌機を付設した撹拌槽を用いて撹拌分散処理を行うことで、樹脂組成物に対する分散性が高められる。上記の撹拌、混合、混練処理は、例えば、ボールミル、ビーズミルなどの混合を目的とした装置、または、公転・自転型の混合装置などの公知の装置を用いて適宜行うことができる。 In addition, at the time of preparation of a resin composition, the well-known process (stirring, mixing, kneading process, etc.) for dissolving or disperse | distributing each component uniformly can be performed. For example, the dispersibility with respect to a resin composition is improved by performing a stirring dispersion process using the stirring tank attached to the stirrer which has a suitable stirring capability in the case of uniform dispersion | distribution of a filler. The above-mentioned stirring, mixing, and kneading processing can be appropriately performed using, for example, a device intended for mixing such as a ball mill and a bead mill, or a known device such as a mixing device of revolution and rotation type.
 本実施形態の樹脂組成物は、上述したように、特に熱伝導性に優れているため、シート状成形体への用途に供することがとりわけ好ましい。 Since the resin composition of the present embodiment is particularly excellent in thermal conductivity as described above, it is particularly preferable to use it for application to a sheet-like molded body.
〔硬化物〕
 本実施形態の硬化物は、本実施形態の樹脂組成物を硬化させてなるものである。硬化物の製造方法としては、特に限定されないが、例えば、樹脂組成物を溶融又は溶媒に溶解させた後、型内に流し込み、熱や光などを用いて通常の条件で硬化させることにより得ることができる。熱硬化の場合、硬化温度は、特に限定されないが、硬化が効率的に進み、かつ得られる硬化物の劣化を防止する観点から、120℃から300℃の範囲内が好ましい。光硬化の場合、光の波長領域は、特に限定されないが、光重合開始剤等により効率的に硬化が進む100nmから500nmの範囲で硬化させることが好ましい。
[Cured product]
The cured product of the present embodiment is obtained by curing the resin composition of the present embodiment. The method for producing the cured product is not particularly limited. For example, after the resin composition is melted or dissolved in a solvent, it is poured into a mold and obtained by curing under normal conditions using heat or light. Can. In the case of heat curing, the curing temperature is not particularly limited, but is preferably in the range of 120 ° C. to 300 ° C. from the viewpoint of efficient curing and prevention of deterioration of the obtained cured product. In the case of photocuring, the wavelength range of light is not particularly limited, but it is preferable to cure in the range of 100 nm to 500 nm in which curing proceeds efficiently by a photopolymerization initiator or the like.
 本実施形態の樹脂組成物は、プリプレグ、単層樹脂シート、積層樹脂シート、金属箔張積層板、プリント配線板、及び半導体パッケージの構成材料として用いることができる。例えば、本実施形態の樹脂組成物を溶剤に溶解させた溶液を基材に含浸又は塗布し乾燥することでプリプレグを得ることができる。
 また、支持体として剥離可能なプラスチックフィルムを用い、本実施形態の樹脂組成物を溶剤に溶解させた溶液を、そのプラスチックフィルムに塗布し乾燥することでビルドアップ用フィルム又はドライフィルムソルダーレジストを得ることができる。ここで、溶剤は、20℃~150℃の温度で1~90分間乾燥することで除去することができる。
 また、本実施形態の樹脂組成物は溶剤を除去した状態(未硬化の状態)で使用することもできるし、必要に応じて半硬化(Bステージ化)の状態にして使用することもできる。
The resin composition of the present embodiment can be used as a constituent material of a prepreg, a single layer resin sheet, a laminated resin sheet, a metal foil-clad laminate, a printed wiring board, and a semiconductor package. For example, a prepreg can be obtained by impregnating or coating a base material with a solution in which the resin composition of the present embodiment is dissolved in a solvent, and drying.
In addition, a film obtained by dissolving the resin composition of the present embodiment in a solvent is applied to a plastic film and dried using a peelable plastic film as a support to obtain a build-up film or a dry film solder resist. be able to. Here, the solvent can be removed by drying at a temperature of 20 ° C. to 150 ° C. for 1 to 90 minutes.
Moreover, the resin composition of this embodiment can also be used in the state which removed the solvent (non-hardened state), and can also be used in the state of semi-hardening (B stage formation) as needed.
〔樹脂シート〕
 本実施形態の積層樹脂シートは、支持体と、該支持体の片面又は両面に配された上記樹脂組成物と、を有する。積層樹脂シートの製造方法は、常法にしたがって行うことができ、特に限定されない。例えば、上記の本実施形態の樹脂組成物を溶剤に溶解させた溶液を支持体に塗布し乾燥することで得ることができる。
[Resin sheet]
The laminated resin sheet of the present embodiment has a support and the above-described resin composition disposed on one side or both sides of the support. The method for producing the laminated resin sheet can be performed according to a conventional method, and is not particularly limited. For example, it can be obtained by applying a solution obtained by dissolving the resin composition of the present embodiment described above in a solvent to a support and drying it.
 ここで用いる支持体としては、特に限定されないが、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリカーボネートフィルム、ポリエチレンテレフタレートフィルム、エチレンテトラフルオロエチレン共重合体フィルム、並びにこれらのフィルムの表面に離型剤を塗布した離型フィルム、ポリイミドフィルム等の有機系のフィルム基材、銅箔、アルミ箔等の導体箔、ガラス板、SUS板、FRP等の板状のものが挙げられるが、これらに特に限定されない。 The support used herein is not particularly limited. For example, a polyethylene film, a polypropylene film, a polycarbonate film, a polyethylene terephthalate film, an ethylene tetrafluoroethylene copolymer film, and a surface of these films are coated with a release agent. An organic film substrate such as a mold release film and a polyimide film, a conductor foil such as copper foil and aluminum foil, a glass plate, a SUS plate, and a plate such as FRP are exemplified, but not limited thereto.
 塗布方法としては、例えば、本実施形態の樹脂組成物を溶剤に溶解させた溶液を、バーコーター、ダイコーター、ドクターブレード、ベーカーアプリケーター等で支持体上に塗布する方法が挙げられる。 Examples of the coating method include a method of coating a solution obtained by dissolving the resin composition of the present embodiment in a solvent on a support with a bar coater, a die coater, a doctor blade, a baker applicator, or the like.
 また、本実施形態の単層樹脂シートは、上記樹脂組成物をシート状に成形してなるものである。単層樹脂シートの製造方法は、常法にしたがって行うことができ、特に限定されない。例えば、上記積層樹脂シートの製法において、本実施形態の樹脂組成物を溶剤に溶解させた溶液を支持体上に塗布して乾燥させた後に、積層樹脂シートから支持体を剥離又はエッチングする方法が挙げられる。なお、上記の本実施形態の樹脂組成物を溶剤に溶解させた溶液を、シート状のキャビティを有する金型内に供給し乾燥する等してシート状に成形することで、支持体を用いることなく単層樹脂シート(樹脂シート)を得ることもできる。 Moreover, the single layer resin sheet of this embodiment is formed by shaping | molding the said resin composition in a sheet form. The manufacturing method of a single layer resin sheet can be performed according to a conventional method, and is not particularly limited. For example, in the method of producing the laminated resin sheet, a method is available in which a solution obtained by dissolving the resin composition of the present embodiment in a solvent is applied onto a support and dried, and then the support is peeled or etched from the laminated resin sheet. It can be mentioned. In addition, using a support by forming in a sheet shape by supplying a solution obtained by dissolving the resin composition of the present embodiment in the above-described embodiment in a solvent into a mold having a sheet-like cavity and drying. It is also possible to obtain a single layer resin sheet (resin sheet).
 なお、本実施形態の単層樹脂シート又は積層樹脂シートの作製において、溶剤を除去する際の乾燥条件は、特に限定されないが、低温であると樹脂組成物中に溶剤が残り易く、高温であると樹脂組成物の硬化が進行することから、20℃~170℃の温度で1~90分間が好ましい。 In addition, in preparation of the single layer resin sheet or laminated resin sheet of this embodiment, although the drying conditions at the time of removing a solvent are not specifically limited, A solvent tends to remain in a resin composition as it is low temperature, It is high temperature And a temperature of 20 ° C. to 170 ° C. for 1 to 90 minutes, since curing of the resin composition proceeds.
 また、本実施形態の単層或いは積層シートの樹脂層の厚みは、本実施形態の樹脂組成物の溶液の濃度と塗布厚みにより調整することができ、特に限定されないが、一般的には塗布厚みが厚くなると乾燥時に溶剤が残り易くなることから、0.1~500μmが好ましい。 In addition, the thickness of the resin layer of the single layer or the laminated sheet of the present embodiment can be adjusted by the concentration of the solution of the resin composition of the present embodiment and the application thickness, and is not particularly limited. When the thickness is larger, the solvent tends to remain at the time of drying, and the thickness is preferably 0.1 to 500 μm.
 以下、本実施形態のプリプレグについて詳述する。本実施形態のプリプレグは、基材と、該基材に含浸又は塗布された上記樹脂組成物とを有するものである。本実施形態のプリプレグの製造方法は、本実施形態の樹脂組成物と基材とを組み合わせてプリプレグを製造する方法であれば、特に限定されない。具体的には、本実施形態の樹脂組成物を基材に含浸又は塗布させた後、120~220℃の乾燥機中で、2~15分程度乾燥させる方法等によって半硬化させることで、本実施形態のプリプレグを製造することができる。このとき、基材に対する樹脂組成物の付着量、すなわち半硬化後のプリプレグの総量に対する樹脂組成物の含有量(充填材を含む。)は、20~99質量%の範囲であることが好ましい。 Hereinafter, the prepreg of the present embodiment will be described in detail. The prepreg of the present embodiment has a substrate and the above-described resin composition impregnated or coated on the substrate. The method for producing the prepreg of the present embodiment is not particularly limited as long as it is a method of producing a prepreg by combining the resin composition of the present embodiment and a substrate. Specifically, after impregnating or applying the resin composition of the present embodiment to a substrate, the resin composition is semi-cured by a method such as drying in a dryer at 120 to 220 ° C. for about 2 to 15 minutes. The prepreg of the embodiment can be manufactured. At this time, the adhesion amount of the resin composition to the base material, that is, the content of the resin composition (including the filler) with respect to the total amount of the semi-cured prepreg is preferably in the range of 20 to 99% by mass.
 本実施形態のプリプレグを製造する際に用いられる基材としては、各種プリント配線板材料に用いられている公知のものであってもよい。そのような基材としては、例えば、ガラス繊維、クォーツ等のガラス以外の無機繊維、ポリイミド、ポリアミド、ポリエステル等の有機繊維、液晶ポリエステル等の織布が挙げられるが、これらに特に限定されるものではない。基材の形状としては、織布、不織布、ロービング、チョップドストランドマット、及びサーフェシングマット等が知られており、これらのいずれであってもよい。基材は、1種を単独で又は2種以上を適宜組み合わせて用いることができる。織布の中では、特に超開繊処理や目詰め処理を施した織布が、寸法安定性の観点から好適である。さらに、液晶ポリエステル織布は、電気特性の面から好ましい。さらに、基材の厚さは、特に限定されないが、積層板用途であれば、0.01~0.2mmの範囲が好ましい。 As a base material used when manufacturing the prepreg of this embodiment, the well-known thing used for various printed wiring board materials may be used. Examples of such a substrate include glass fibers, inorganic fibers other than glass such as quartz, organic fibers such as polyimide, polyamide and polyester, and woven fabrics such as liquid crystal polyester, but are particularly limited thereto. is not. As the shape of the substrate, woven fabrics, non-woven fabrics, rovings, chopped strand mats, surfacing mats and the like are known, and any of these may be used. A base material can be used individually by 1 type or in combination of 2 or more types as appropriate. Among the woven fabrics, in particular, woven fabrics which have been subjected to super-opening treatment and filling treatment are preferable from the viewpoint of dimensional stability. Furthermore, a liquid crystalline polyester woven fabric is preferable from the viewpoint of electrical properties. Furthermore, the thickness of the substrate is not particularly limited, but in the case of laminated plate applications, the range of 0.01 to 0.2 mm is preferable.
 本実施形態の金属箔張積層板は、本実施形態の単層樹脂シート、本実施形態の積層樹脂シート、及び、本実施形態のプリプレグからなる群より選ばれる少なくとも1種と、前記単層樹脂シート、前記積層樹脂シート及び前記プリプレグからなる群より選ばれる少なくとも1種の片面又は両面に配された金属箔と、を有し、前記単層樹脂シート、前記積層樹脂シート及び前記プリプレグからなる群より選ばれる少なくとも1種に含まれる樹脂組成物の硬化物を含むものである。プリプレグを用いる場合の具体例としては、前述のプリプレグ1枚に対して、又はプリプレグを複数枚重ねたものに対して、その片面又は両面に銅やアルミニウムなどの金属箔を配置して、積層成形することにより作製することができる。ここで用いられる金属箔は、プリント配線板材料に用いられているものであれば、特に限定されないが、圧延銅箔及び電解銅箔等の銅箔が好ましい。また、金属箔の厚さは、特に限定されないが、2~70μmであると好ましく、3~35μmであるとより好ましい。成形条件としては、通常のプリント配線板用積層板及び多層板の作製時に用いられる手法を採用できる。例えば、多段プレス機、多段真空プレス機、連続成形機、又はオートクレーブ成形機などを用い、温度180~350℃、加熱時間100~300分、面圧20~100kg/cmの条件で積層成形することにより本実施形態の金属箔張積層板を製造することができる。また、上記のプリプレグと、別途作製した内層用の配線板とを組み合わせて積層成形することにより、多層板を作製することもできる。多層板の製造方法としては、例えば、上述したプリプレグ1枚の両面に35μmの銅箔を配置し、上記条件にて積層形成した後、内層回路を形成し、この回路に黒化処理を実施して内層回路板を形成する。さらに、この内層回路板と上記のプリプレグとを交互に1枚ずつ配置し、さらに最外層に銅箔を配置して、上記条件にて好ましくは真空下で積層成形する。こうして、多層板を作製することができる。 The metal foil tension laminate sheet of the present embodiment includes at least one selected from the group consisting of the single layer resin sheet of the present embodiment, the laminated resin sheet of the present embodiment, and the prepreg of the present embodiment, and the single layer resin A sheet, at least one metal foil selected from the group consisting of the laminated resin sheet and the prepreg, and a group consisting of the single-layer resin sheet, the laminated resin sheet, and the prepreg It contains the cured product of the resin composition contained in at least one selected from the above. As a specific example in the case of using a prepreg, a metal foil such as copper or aluminum is disposed on one side or both sides of one prepreg or a laminate of a plurality of prepregs as described above, and a lamination molding is performed. It can be produced by The metal foil used here is not particularly limited as long as it is used for a printed wiring board material, but a copper foil such as a rolled copper foil and an electrolytic copper foil is preferable. The thickness of the metal foil is not particularly limited, but is preferably 2 to 70 μm, and more preferably 3 to 35 μm. As a molding condition, a method used at the time of producing a laminate for a general printed wiring board and a multilayer board can be adopted. For example, using a multi-stage press, multi-stage vacuum press, continuous molding machine, autoclave molding machine, etc., laminate molding is performed under conditions of temperature 180 to 350 ° C., heating time 100 to 300 minutes, and surface pressure 20 to 100 kg / cm 2 Thus, the metal foil-clad laminate of the present embodiment can be manufactured. A multilayer board can also be produced by laminating and molding the above-mentioned prepreg and a wiring board for the inner layer prepared separately. As a method of manufacturing a multilayer board, for example, copper foils of 35 μm are disposed on both sides of one of the prepregs described above, and laminated under the above conditions, an inner layer circuit is formed, and the circuit is blackened. Forming an inner layer circuit board. Further, the inner layer circuit board and the above-mentioned prepreg are alternately arranged one by one, and a copper foil is further arranged as the outermost layer, and laminated and formed preferably under vacuum under the above conditions. Thus, a multilayer board can be produced.
 本実施形態の金属箔張積層板は、更にパターン形成することにより、プリント配線板として好適に用いることができる。プリント配線板は、常法に従って製造することができ、その製造方法は特に限定されない。以下、プリント配線板の製造方法の一例を示す。まず、上述した金属箔張積層板を用意する。次に、金属箔張積層板の表面にエッチング処理を施して内層回路を形成することにより、内層基板を作製する。この内層基板の内層回路表面に、必要に応じて接着強度を高めるための表面処理を施し、次いで、その内層回路表面に上述したプリプレグを所要枚数重ねる。さらに、その外側に外層回路用の金属箔を積層し、加熱加圧して一体成形する。このようにして、内層回路と外層回路用の金属箔との間に、基材及び熱硬化性樹脂組成物の硬化物からなる絶縁層が形成された多層の積層板が製造される。次いで、この多層の積層板にスルーホールやバイアホール用の穴あけ加工を施した後、この穴の壁面に内層回路と外層回路用の金属箔とを導通させるめっき金属皮膜を形成する。さらに、外層回路用の金属箔にエッチング処理を施して外層回路を形成することで、プリント配線板が製造される。 The metal foil-clad laminate of this embodiment can be suitably used as a printed wiring board by further forming a pattern. The printed wiring board can be manufactured according to a conventional method, and the manufacturing method is not particularly limited. Hereinafter, an example of the manufacturing method of a printed wiring board is shown. First, the metal foil-clad laminate described above is prepared. Next, the surface of the metal foil-clad laminate is subjected to etching to form an inner circuit, whereby an inner substrate is produced. If necessary, the inner layer circuit surface of the inner layer substrate is subjected to a surface treatment to increase the adhesive strength, and then, the required number of the above-described prepregs is superimposed on the inner layer circuit surface. Furthermore, a metal foil for the outer layer circuit is laminated on the outer side, and heat and pressure are integrally molded. In this manner, a multilayer laminate is produced in which an insulating layer made of a cured product of a base material and a thermosetting resin composition is formed between the inner layer circuit and the metal foil for the outer layer circuit. Then, after drilling the through holes and via holes in the multilayer laminate, a plated metal film is formed on the wall surfaces of the holes so that the inner layer circuit and the outer layer circuit metal foil are conducted. Furthermore, the printed wiring board is manufactured by etching the metal foil for the outer layer circuit to form the outer layer circuit.
 上記の製造例で得られるプリント配線板は、絶縁層と、この絶縁層の片面又は両面に形成された導体層とを有し、絶縁層が上述した本実施形態の樹脂組成物を含む構成となる。例えば、上述した本実施形態のプリプレグ(基材及びこれに含浸又は塗布された本実施形態の樹脂組成物)、上述した本実施形態の金属箔張積層板の樹脂組成物の層(本実施形態の樹脂組成物からなる層)が、本実施形態の樹脂組成物を含む絶縁層を構成するものとすることができる。 The printed wiring board obtained in the above production example has a configuration including an insulating layer and a conductor layer formed on one side or both sides of the insulating layer, and the insulating layer includes the resin composition of the above-described embodiment. Become. For example, the prepreg of the present embodiment described above (the base material and the resin composition of the present embodiment impregnated or coated with the same), the layer of the resin composition of the metal foil-clad laminate of the present embodiment described above (the present embodiment The layer made of the resin composition of the present invention can constitute an insulating layer containing the resin composition of the present embodiment.
〔封止用材料〕
 本実施形態の封止用材料は、本実施形態の樹脂組成物を含む。封止用材料の製造方法としては、一般に公知の方法を適宜適用でき、特に限定されない。例えば、上記した樹脂組成物と、封止材料用途で一般的に用いられる各種公知の添加剤或いは溶媒等を、公知のミキサーを用いて混合することで封止用材料を製造することができる。なお、混合の際の、シアン酸エステル化合物、各種添加剤、溶媒の添加方法は、一般に公知の方法を適宜適用でき、特に限定されない。
[Sealing material]
The sealing material of the present embodiment includes the resin composition of the present embodiment. As a method for producing the sealing material, generally known methods can be appropriately applied, and are not particularly limited. For example, the sealing material can be produced by mixing the above-described resin composition and various known additives or solvents generally used in sealing material applications using a known mixer. In addition, the method of adding a cyanate ester compound, various additives, and a solvent at the time of mixing can apply a generally known method suitably, and is not particularly limited.
〔繊維強化複合材料〕
 本実施形態の繊維強化複合材料は、本実施形態の樹脂組成物と、強化繊維とを含む。強化繊維としては、一般的に公知のものを用いることができ、特に限定されない。その具体例としては、Eガラス、Dガラス、Lガラス、Sガラス、Tガラス、Qガラス、UNガラス、NEガラス、球状ガラス等のガラス繊維、炭素繊維、アラミド繊維、ボロン繊維、PBO繊維、高強力ポリエチレン繊維、アルミナ繊維、及び炭化ケイ素繊維などが挙げられる。強化繊維の形態や配列については、特に限定されず、織物、不織布、マット、ニット、組み紐、一方向ストランド、ロービング、チョップド等から適宜選択できる。また、強化繊維の形態としてプリフォーム(強化繊維からなる織物基布を積層したもの、又はこれをステッチ糸により縫合一体化したもの、あるいは立体織物や編組物などの繊維構造物)を適用することもできる。
[Fiber-reinforced composite material]
The fiber-reinforced composite material of the present embodiment includes the resin composition of the present embodiment and reinforcing fibers. As the reinforcing fiber, a generally known one can be used, and it is not particularly limited. Specific examples thereof include glass fibers such as E glass, D glass, L glass, S glass, T glass, Q glass, UN glass, NE glass, spherical glass, carbon fibers, aramid fibers, boron fibers, PBO fibers, high Examples include strong polyethylene fibers, alumina fibers, and silicon carbide fibers. The form and arrangement of the reinforcing fibers are not particularly limited, and may be suitably selected from woven fabric, non-woven fabric, mat, knit, braid, unidirectional strand, roving, chopped and the like. In addition, as a form of reinforcing fiber, applying a preform (a laminated fabric base made of reinforcing fiber, or one obtained by integrally stitching the same with a stitch yarn, or a fiber structure such as a three-dimensional woven fabric or a braid) You can also.
 これら繊維強化複合材料の製造方法としては、一般に公知の方法を適宜適用でき、特に限定されない。その具体例としては、リキッド・コンポジット・モールディング法、レジン・フィルム・インフュージョン法、フィラメント・ワインディング法、ハンド・レイアップ法、プルトルージョン法等が挙げられる。このなかでも、リキッド・コンポジット・モールディング法の一つであるレジン・トランスファー・モールディング法は、金属板、フォームコア、ハニカムコア等、プリフォーム以外の素材を成形型内に予めセットしておくことができることから、種々の用途に対応可能であるため、比較的、形状が複雑な複合材料を短時間で大量生産する場合に好ましく用いられる。 Generally as a manufacturing method of these fiber reinforced composite materials, a publicly known method can be applied suitably, and it is not limited in particular. Specific examples thereof include a liquid composite molding method, a resin film infusion method, a filament winding method, a hand layup method, and a pultrusion method. Among these, the resin transfer molding method, which is one of the liquid composite molding methods, requires that materials other than preforms, such as metal sheets, foam cores, honeycomb cores, etc., be set in advance in the mold. Since it can correspond to various applications from what it can, it is preferably used when mass-producing relatively complex composite materials in a short time.
〔接着剤〕
 本実施形態の接着剤は、本実施形態の樹脂組成物を含む。接着剤の製造方法としては、一般に公知の方法を適宜適用でき、特に限定されない。例えば、上記した樹脂組成物と、接着剤用途で一般的に用いられる各種公知の添加剤或いは溶媒等を、公知のミキサーを用いて混合することで接着剤を製造することができる。なお、混合の際の、シアン酸エステル化合物、各種添加剤、溶媒の添加方法は、一般に公知の方法を適宜適用でき、特に限定されない。
〔adhesive〕
The adhesive of the present embodiment includes the resin composition of the present embodiment. As a method for producing an adhesive, generally known methods can be applied as appropriate, and are not particularly limited. For example, an adhesive agent can be manufactured by mixing the above-mentioned resin composition, and various well-known additives or solvents etc. which are generally used by adhesive application using a known mixer. In addition, the method of adding a cyanate ester compound, various additives, and a solvent at the time of mixing can apply a generally known method suitably, and is not particularly limited.
 以下、実施例及び比較例を示し、本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of Examples and Comparative Examples, but the present invention is not limited thereto.
[合成例1]ジフェニルシクロヘキセン型シアン酸エステル化合物(以下、DPCCNと略記する。)の合成
 下記式(1B)で表されるシアン酸エステル化合物DPCCNを後述のようにして合成した。
Figure JPOXMLDOC01-appb-C000034
Synthesis Example 1 Synthesis of diphenylcyclohexene-type cyanate ester compound (hereinafter abbreviated as DPCCN) A cyanate ester compound DPCCN represented by the following formula (1B) was synthesized as described below.
Figure JPOXMLDOC01-appb-C000034
<1,4,4-トリス(4-ヒドロキシフェニル)シクロヘキサンの合成>
 下記式(14)で表される1,4,4-トリス(4-ヒドロキシフェニル)シクロヘキサンを下記の方法にて合成した。
Figure JPOXMLDOC01-appb-C000035
<Synthesis of 1,4,4-tris (4-hydroxyphenyl) cyclohexane>
1,4,4-Tris (4-hydroxyphenyl) cyclohexane represented by the following formula (14) was synthesized by the following method.
Figure JPOXMLDOC01-appb-C000035
 窒素吹き込み口、温度計を備えた1Lセパラブルフラスコに、フェノール282.33g(3.0mol)、35%塩酸46.80gを加え、窒素フローしながら55℃に加熱した。4-(4-ヒドロキシフェニル)シクロヘキサノン114.14g(0.60mol)、フェノール282.33g(3.0mol)の混合物を3時間かけて添加し、全量添加した後55℃で4時間攪拌した。16%水酸化ナトリウム水溶液を加えて反応液のpHを6に調整した後、室温まで冷却した。トルエン1000Lを加えて、析出物を吸引ろ過で回収した。トルエン350mLで3回洗浄後に乾燥し、純度90%の1,4,4-トリス(4-ヒドロキシフェニル)シクロヘキサン185.35gを得た。
 1,4,4-トリス(4-ヒドロキシフェニル)シクロヘキサンのH-NMRの帰属を以下に示す。 
In a 1-L separable flask equipped with a nitrogen blowing port and a thermometer, 282.33 g (3.0 mol) of phenol and 46.80 g of 35% hydrochloric acid were added and heated to 55 ° C. while flowing nitrogen. A mixture of 114.14 g (0.60 mol) of 4- (4-hydroxyphenyl) cyclohexanone and 282.33 g (3.0 mol) of phenol was added over 3 hours, and the whole was added and then stirred at 55 ° C. for 4 hours. The reaction mixture was adjusted to pH 6 by adding a 16% aqueous sodium hydroxide solution, and then cooled to room temperature. 1000 L of toluene was added, and the precipitate was collected by suction filtration. After washing three times with 350 mL of toluene, it was dried to obtain 185.35 g of 90% pure 1,4,4-tris (4-hydroxyphenyl) cyclohexane.
The assignments of 1 H-NMR for 1,4,4-tris (4-hydroxyphenyl) cyclohexane are shown below.
 H-NMR(500MHz、DMSO-d6)δ(ppm):9.18(s、1H、-OH)、9.07(d、2H、-OH)、7.18(d、2H、ArH)、6.98(d、2H、ArH)、6.83(d、2H、ArH)、6.71(d、2H、ArH)、6.60(m、4H、ArH)、2.68(d、2H、cyclohexyl)、2.55(m、1H、cyclohexyl)、1.87(t、2H、cyclohexyl)、1.69(d、2H、cyclohexyl)、1.44(dd、2H、cyclohexyl) 1 H-NMR (500 MHz, DMSO-d6) δ (ppm): 9.18 (s, 1 H, -OH), 9.07 (d, 2 H, -OH), 7.18 (d, 2 H, ArH) 6.98 (d, 2H, ArH), 6.83 (d, 2H, ArH), 6.71 (d, 2H, ArH), 6.60 (m, 4H, ArH), 2.68 (d 2H, cyclohexyl), 2.55 (m, 1H, cyclohexyl), 1.87 (t, 2H, cyclohexyl), 1.69 (d, 2H, cyclohexyl), 1.44 (dd, 2H, cyclohexyl)
<ジフェニルシクロヘキセン型ビスフェノール(以下、「DPCOH」と略記する。)の合成>
 下記式(9B)で表されるDPCOHを下記の方法にて合成した。
Figure JPOXMLDOC01-appb-C000036
<Synthesis of diphenylcyclohexene-type bisphenol (hereinafter abbreviated as “DPCOH”)>
DPCOH represented by the following formula (9B) was synthesized by the following method.
Figure JPOXMLDOC01-appb-C000036
 窒素吹き込み口、温度計を備えた500mL三口フラスコに、上記方法で得られた1,4,4-トリス(4-ヒドロキシフェニル)シクロヘキサン45.15g(0.125mol)、48%水酸化ナトリウム水溶液1.18g、テトラエチレングリコール22.65gを加え、反応容器内を窒素置換した。攪拌しながら反応容器内を100mmHgまで減圧し、210℃で5時間熱分解を行い、フェノールを留去した。室温まで冷却した後、大気開放し、50%酢酸水溶液を加えて反応液のpHを6に調整した。水100mLを加えて攪拌し、析出物を吸引ろ過で回収した。水50mLで3回洗浄した後に乾燥し、粗成生物を得た。粗生成物をメタノールで再結晶し、DPCOH21.41gを得た。
 DPCOHのH-NMRの帰属を以下に示す。
In a 500 mL three-necked flask equipped with a nitrogen inlet and a thermometer, 45.15 g (0.125 mol) of 1,4,4-tris (4-hydroxyphenyl) cyclohexane obtained by the above method, 48% aqueous sodium hydroxide solution 1 The reaction vessel was purged with nitrogen by adding .18 g and 22.65 g of tetraethylene glycol. The pressure in the reaction vessel was reduced to 100 mmHg while stirring, and thermal decomposition was performed at 210 ° C. for 5 hours to distill off phenol. The reaction solution was cooled to room temperature, opened to the air, and adjusted to pH 6 by adding 50% aqueous acetic acid solution. 100 mL of water was added and stirred, and the precipitate was collected by suction filtration. After washing three times with 50 mL of water, it was dried to obtain a crude product. The crude product was recrystallized with methanol to give 21.41 g of DPCOH.
The assignments of 1 H-NMR for DPCOH are shown below.
 H-NMR(500MHz、DMSO-d6)δ(ppm):9.35(s、1H、-OH)、9.15(s、1H、-OH)、7.25(d、2H、ArH)、7.06(d、2H、ArH)、6.70(dd、4H、ArH)、6.05(m、1H、-CH=)、2.68(m、1H、-CH-)、2.44(m、2H、-CH-)、2.36(m、1H、-CH-)、2.19(m、1H、-CH-)、1.93(m、1H、-CH-)、1.75(m、1H、-CH-) 1 H-NMR (500 MHz, DMSO-d6) δ (ppm): 9.35 (s, 1 H, -OH), 9.15 (s, 1 H, -OH), 7.25 (d, 2 H, ArH) , 7.06 (d, 2H, ArH), 6.70 (dd, 4H, ArH), 6.05 (m, 1H, -CH =), 2.68 (m, 1H, -CH-), 2 .44 (m, 2H, -CH 2 -), 2.36 (m, 1H, -CH 2 -), 2.19 (m, 1H, -CH 2 -), 1.93 (m, 1H, - CH 2- ), 1.75 (m, 1 H, -CH 2- )
<DPCCNの合成>
 アルゴン吹き込み口、温度計を備えた2L四口フラスコに、アルゴン気流下、上記方法で得られたDPCOH40.0g(0.15mol)、テトラヒドロフラン800mLを加えた。更に臭化シアン44.5g(0.42mol)を添加した後、ドライアイス・アセトンバスで内温を-10℃に調整した。内温が-5℃を超えないようにトリエチルアミン45.5g(0.45mol)を20分かけて滴下し、-5℃で2時間攪拌した。途中、テトラヒドロフラン400mLを追加した。室温まで昇温した後、反応溶液をろ過した。得られたろ液を減圧濃縮し、得られた固体をクロロホルム800mLに溶解した。クロロホルム溶液を2.5%食塩水400mLで3回、水400mLで1回洗浄した後、減圧濃縮し、固体を得た。得られた固体にヘキサン600mLを加え、懸濁攪拌した後、固体をろ過回収して乾燥し、目的とするシアン酸エステル化合物DPCCN45.4gを得た。得られたシアン酸エステル化合物DPCCNのIRスペクトルは2252cm-1及び2287cm-1(シアン酸エステル基)の吸収を示し、且つ、ヒドロキシ基の吸収は示さなかった。IRチャートを図1に示す。
 シアン酸エステル化合物DPCCNのH-NMRの帰属を以下に示す。H-NMRチャートを図2に示す。
<Synthesis of DPCCN>
To a 2 L four-necked flask equipped with an argon inlet and a thermometer, 40.0 g (0.15 mol) of DPCOH obtained by the above method and 800 mL of tetrahydrofuran were added under an argon stream. Further, 44.5 g (0.42 mol) of cyanogen bromide was added, and then the internal temperature was adjusted to −10 ° C. with a dry ice / acetone bath. Triethylamine 45.5 g (0.45 mol) was added dropwise over 20 minutes so that the internal temperature did not exceed -5.degree. C., and the mixture was stirred at -5.degree. C. for 2 hours. Along the way, 400 mL of tetrahydrofuran was added. After the temperature was raised to room temperature, the reaction solution was filtered. The obtained filtrate was concentrated under reduced pressure, and the obtained solid was dissolved in 800 mL of chloroform. The chloroform solution was washed three times with 400 mL of 2.5% brine and once with 400 mL of water, and then concentrated under reduced pressure to obtain a solid. After 600 mL of hexane was added to the obtained solid and suspended and stirred, the solid was collected by filtration and dried to obtain 45.4 g of the target cyanate ester compound DPCCN. The IR spectrum of the resulting cyanate ester compound DPCCN showed absorptions at 2252 cm -1 and 2287 cm -1 (cyanate groups) and no absorption at the hydroxy group. The IR chart is shown in FIG.
The assignments of 1 H-NMR for the cyanate ester compound DPCCN are shown below. The 1 H-NMR chart is shown in FIG.
H-NMR(400MHz、DMSO-d6)δ(ppm):7.34(m、8H、ArH)、6.20(m、1H、-CH=)、2.93(m、1H、-CH-)、2.55(m、3H、-CH-)、2.33(m、1H、-CH-)、2.11(m、1H、-CH-)、1.90(m、1H、-CH-) 1 H-NMR (400 MHz, DMSO-d6) δ (ppm): 7.34 (m, 8 H, ArH), 6.20 (m, 1 H, -CH =), 2.93 (m, 1 H, -CH) -), 2.55 (m, 3H , -CH 2 -), 2.33 (m, 1H, -CH 2 -), 2.11 (m, 1H, -CH 2 -), 1.90 (m , 1H, -CH 2- )
 シアン酸エステル化合物DPCCNの13C-NMRの帰属を以下に示す。13C-NMRチャートを図3に示す。 The attributions of 13 C-NMR for cyanate ester compound DPCCN are shown below. The 13 C-NMR chart is shown in FIG.
13C-NMR(100MHz、DMSO-d6)δ(ppm):151.59、151.18、145.27、140.71、128.68、126.83、124.97、115.20、114.99、108.87、108.76、77.32、77.00、76.69、38.73、33.75、29.81、27.69 13 C-NMR (100 MHz, DMSO-d6) δ (ppm): 151.59, 151.18, 145.27, 140.71, 128.68, 126.83, 124.97, 115.20, 114. 99, 108.87, 108.67, 67.32, 77.00, 76.69, 38.73, 33.75, 29.81, 27.69
[合成例2]メチル付加ジフェニルシクロヘキセン型シアン酸エステル化合物(以下、DPCMeCNと略記する。)の合成
 下記式(1C)で表されるシアン酸エステル化合物DPCCNを後述のようにして合成した。
Figure JPOXMLDOC01-appb-C000037
Synthesis Example 2 Synthesis of methyl-added diphenylcyclohexene type cyanate ester compound (hereinafter abbreviated as DPCMeCN) A cyanate ester compound DPCCN represented by the following formula (1C) was synthesized as described below.
Figure JPOXMLDOC01-appb-C000037
<1-(4-ヒドロキシフェニル)-4,4-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサンの合成>
 下記式(15)で表される1-(4-ヒドロキシフェニル)-4,4-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサンを下記の方法にて合成した。
Figure JPOXMLDOC01-appb-C000038
<Synthesis of 1- (4-hydroxyphenyl) -4,4-bis (3-methyl-4-hydroxyphenyl) cyclohexane>
1- (4-hydroxyphenyl) -4,4-bis (3-methyl-4-hydroxyphenyl) cyclohexane represented by the following formula (15) was synthesized by the following method.
Figure JPOXMLDOC01-appb-C000038
 5Lセパラブルフラスコに、o-クレゾール1080g(10.0mol)、35%塩酸78gを加え、50℃に加熱した。4-(4-ヒドロキシフェニル)シクロヘキサノン190g(1.00mol)を2時間かけて添加し、全量添加した後50℃で4時間攪拌した。16%水酸化ナトリウム水溶液を加えて反応液のpHを6に調整した後、室温まで冷却した。トルエン1080gを加えて、析出物を吸引ろ過で回収した。得られた固体を乾燥し、純度90%の1-(4-ヒドロキシフェニル)-4,4-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサン299gを得た。
 1-(4-ヒドロキシフェニル)-4,4-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサンのH-NMRの帰属を以下に示す。
In a 5 L separable flask, 1080 g (10.0 mol) of o-cresol and 78 g of 35% hydrochloric acid were added and heated to 50 ° C. After adding 190 g (1.00 mol) of 4- (4-hydroxyphenyl) cyclohexanone over 2 hours and adding the whole amount, the mixture was stirred at 50 ° C. for 4 hours. The reaction mixture was adjusted to pH 6 by adding a 16% aqueous sodium hydroxide solution, and then cooled to room temperature. Toluene (1080 g) was added, and the precipitate was collected by suction filtration. The resulting solid was dried to give 299 g of 90% pure 1- (4-hydroxyphenyl) -4,4-bis (3-methyl-4-hydroxyphenyl) cyclohexane.
The 1 H-NMR assignments of 1- (4-hydroxyphenyl) -4,4-bis (3-methyl-4-hydroxyphenyl) cyclohexane are shown below.
 H-NMR(400MHz、DMSO-d6)δ(ppm):9.05(s、3H、-OH)、7.0-6.6(m、12H、ArH)、2.69(d、2H、cyclohexyl)、2.09(d、6H、-CH)、1.84(m、2H、cyclohexyl)、1.67(m、2H、cyclohexyl)、1.47(d、2H、cyclohexyl) 1 H-NMR (400 MHz, DMSO-d6) δ (ppm): 9.05 (s, 3 H, -OH), 7.0-6.6 (m, 12 H, ArH), 2.69 (d, 2 H) , Cyclohexyl), 2.09 (d, 6 H, -CH 3 ), 1.84 (m, 2 H, cyclohexyl), 1.67 (m, 2 H, cyclohexyl), 1.47 (d, 2 H, cyclohexyl)
<メチル付加ジフェニルシクロヘキセン型ビスフェノール(以下、「DPCMeOH」と略記する。)の合成>
 下記式(9C)で表されるDPCMeOHを下記の方法にて合成した。
Figure JPOXMLDOC01-appb-C000039
<Synthesis of methyl-added diphenylcyclohexene type bisphenol (hereinafter abbreviated as “DPCMeOH”)>
DPCMeOH represented by the following formula (9C) was synthesized by the following method.
Figure JPOXMLDOC01-appb-C000039
 2Lセパラブルフラスコに、上記方法で得られた1-(4-ヒドロキシフェニル)-4,4-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサン299g(0.770mol)、50%水酸化ナトリウム水溶液3.0g、テトラエチレングリコール90.0gを加え、反応容器内を5Paまで減圧し、210℃で5時間熱分解を行い、o-クレゾール。室温まで冷却した後、大気開放し、メチルイソブチルケトン(1.5L)を加え、攪拌し固体を溶解した。この溶液を5Lポリ容器に移し、メチルイソブチルケトン(1.5L)と蒸留水(1.5L)を加えて攪拌し、さらに50%酢酸水溶液を加えて反応液のpHを6に調整した。5L分液ロートに移し、水層を除去後、有機層を蒸留水(1.5L)で3回洗浄した後、減圧濃縮した。得られた固体にトルエン(2L)を加え、懸濁洗浄した後、吸引ろ過で回収した。回収固体を減圧乾燥し、DPCMeOH158gを得た。
 DPCMeOHのH-NMRの帰属を以下に示す。
299 g (0.770 mol) of 1- (4-hydroxyphenyl) -4,4-bis (3-methyl-4-hydroxyphenyl) cyclohexane obtained by the above method in a 2 L separable flask, 50% aqueous solution of sodium hydroxide 3.0 g and 90.0 g of tetraethylene glycol were added, the pressure in the reaction vessel was reduced to 5 Pa, and thermal decomposition was performed at 210 ° C. for 5 hours, to obtain o-cresol. After cooling to room temperature, the atmosphere was released, methyl isobutyl ketone (1.5 L) was added, and stirring was performed to dissolve the solid. The solution was transferred to a 5 L poly container, methyl isobutyl ketone (1.5 L) and distilled water (1.5 L) were added and stirred, and then the pH of the reaction solution was adjusted to 6 by addition of a 50% aqueous acetic acid solution. The mixture was transferred to a 5-L separatory funnel, the aqueous layer was removed, and the organic layer was washed three times with distilled water (1.5 L) and concentrated under reduced pressure. Toluene (2 L) was added to the obtained solid, and after suspension washing, it was recovered by suction filtration. The collected solid was dried under reduced pressure to obtain 158 g of DPCMeOH.
The assignments of 1 H-NMR for DPCMeOH are shown below.
 H-NMR(400MHz、DMSO-d6)δ(ppm):9.20(s、2H、-OH)、7.08(m、4H、ArH)、6.71(m、3H、ArH)、6.03(m、1H、-CH=)、2.67(m、1H、-CH-)、2.44(m、5H、-CH-)、2.11(s、3H、-CH)、1.91(m、1H、-CH-)、1.74(m、1H、-CH-) 1 H-NMR (400 MHz, DMSO-d6) δ (ppm): 9.20 (s, 2 H, -OH), 7.08 (m, 4 H, ArH), 6.71 (m, 3 H, ArH), 6.03 (m, 1H, -CH = ), 2.67 (m, 1H, -CH -), 2.44 (m, 5H, -CH 2 -), 2.11 (s, 3H, -CH 3), 1.91 (m, 1H , -CH 2 -), 1.74 (m, 1H, -CH 2 -)
<DPCMeCNの合成>
 アルゴン吹き込み口、温度計を備えた500mL四口フラスコに、アルゴン気流下、上記方法で得られたDPCMeOH10.0g(35.7mmol)、テトラヒドロフラン300mLを加えた。更に臭化シアン10.6g(100mmol)を添加した後、ドライアイス・アセトンバスで内温を-30℃に調整した。内温が-10℃を超えないようにトリエチルアミン10.8g(107mmol)を20分かけて滴下し、-10℃で2時間攪拌した。室温まで昇温した後、反応溶液をろ過した。得られたろ液を減圧濃縮し、得られた固体をクロロホルム200mLに溶解した。クロロホルム溶液を2.5%食塩水100mLで3回、水100mLで1回洗浄した後、減圧濃縮し、固体を得た。得られた固体にヘキサン300mLを加え、懸濁攪拌した後、固体をろ過回収して乾燥し、目的とするシアン酸エステル化合物DPCMeCN11.0gを得た。得られたシアン酸エステル化合物DPCMeCNのIRスペクトルは2244cm-1及び2269cm-1(シアン酸エステル基)の吸収を示し、且つ、ヒドロキシ基の吸収は示さなかった。IRチャートを図4に示す。
 シアン酸エステル化合物DPCMeCNのH-NMRの帰属を以下に示す。H-NMRチャートを図5に示す。
<Synthesis of DPCMeCN>
To a 500 mL four-necked flask equipped with an argon inlet and a thermometer, 10.0 g (35.7 mmol) of DPCMeOH obtained by the above method and 300 mL of tetrahydrofuran were added under an argon stream. After further adding 10.6 g (100 mmol) of cyanogen bromide, the internal temperature was adjusted to −30 ° C. with a dry ice / acetone bath. 10.8 g (107 mmol) of triethylamine was added dropwise over 20 minutes so that the internal temperature did not exceed -10.degree. C., and the mixture was stirred at -10.degree. C. for 2 hours. After the temperature was raised to room temperature, the reaction solution was filtered. The obtained filtrate was concentrated under reduced pressure, and the obtained solid was dissolved in 200 mL of chloroform. The chloroform solution was washed three times with 100 mL of 2.5% brine and once with 100 mL of water, and then concentrated under reduced pressure to obtain a solid. To the obtained solid, 300 mL of hexane was added and suspended and stirred, and then the solid was collected by filtration and dried to obtain 11.0 g of the target cyanate ester compound DPCMeCN. The IR spectrum of the resulting cyanate ester compound DPCMeCN showed absorptions at 2244 cm -1 and 2269 cm -1 (cyanate group) and no absorption at the hydroxy group. The IR chart is shown in FIG.
The assignments of 1 H-NMR for the cyanate ester compound DPCMeCN are shown below. The 1 H-NMR chart is shown in FIG.
H-NMR(400MHz、CDCl)δ(ppm): 7.26(m、7H、ArH)、6.18(m、1H、-CH=)、2.93(m、1H、-CH-)、2.54(m、3H、-CH-)、2.27(m、4H、-CH3、-CH-)、2.12(m、1H、-CH-)、1.91(m、1H、-CH-) 1 H-NMR (400 MHz, CDCl 3 ) δ (ppm): 7.26 (m, 7 H, ArH), 6.18 (m, 1 H, -CH =), 2.93 (m, 1 H, -CH- ), 2.54 (m, 3H, -CH 2- ), 2.27 (m, 4H, -CH 3, -CH 2- ), 2.12 (m, 1 H, -CH 2- ), 91 (m, 1 H, -CH 2- )
[合成例3]ターフェニル型シアン酸エステル化合物(以下、TPMeCNと略記する。)の合成
 下記式(16)で表されるTPMeCNを後述のようにして合成した。
Synthesis Example 3 Synthesis of Terphenyl Cyanate Ester Compound (hereinafter abbreviated as TPMeCN) TPMeCN represented by the following formula (16) was synthesized as described below.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
<TPMeCNの合成>
 下記式(17)で表されるTPMeOH237g及びトリエチルアミン164.3g(1.62mol)(ヒドロキシ基1モルに対して1.0モル)をテトラヒドロフラン1540gに溶解させ、これを溶液1とした。
<Composition of TPMeCN>
Solution 1 was prepared by dissolving 237 g of TPMeOH represented by the following formula (17) and 164.3 g (1.62 mol) of triethylamine (1.0 mol per 1 hydroxyl group) in 1540 g of tetrahydrofuran.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 上記式(17)で表されるヒドロキシ置換芳香族化合物は、次のようにして合成した。
 窒素吹き込み口及び滴下ロートを備えた1L四口フラスコに、フェノール100gと35%塩酸16.0gを仕込み、攪拌しつつ液温を55℃まで昇温した。次いで、別途加熱調製した4-(4-ヒドロキシフェニル)シクロヘキサノン38.2gとフェノール94.0gの混合溶液を3時間かけて滴下し、滴下後55℃で4時間攪拌した。反応終了後、55℃において反応混合物を攪拌しながら、16%水酸化ナトリウム水溶液39.1gを加えて中和した。さらに、トルエン190gを加えた後、析出した結晶を室温で吸引ろ過後、乾燥させて1,4,4-トリス(4-ヒドロキシフェニル)シクロヘキサンを得た。
 上記で得られた1,4,4-トリス(4-ヒドロキシフェニル)シクロヘキサン49.7gを300mL四口フラスコ)に仕込み、48%水酸化ナトリウム水溶液0.3gとテトラエチレングリコール26.0gをフラスコ内へ加えた。フラスコ内を窒素置換した後、反応容器内を圧力50mmHgまで減圧し、210℃に加熱しておよそ4時間、熱分解反応を行った。反応終了は留出物の留出がなくなった時点を終点とした。反応終了後、得られた反応混合物に50%酢酸水溶液を加えて中和後、オイル状の含水混合物66.0gを得た。
 上記オイル状の含水混合物66.0gにα-メチルスチレン60.0gおよび5%パラジウム/カーボン担持触媒(50質量%含水品)3.5gを追加で添加した。反応器内を窒素置換した後、温度165℃に昇温して、攪拌下に3時間反応させた。
 上記反応の終了後、得られた反応混合物にジメチルホルムアミド50gを加えた後、この混合物からパラジウム担持触媒を濾別した。溶媒を蒸留により溜去し、メタノールを加えて残渣を溶解させた後、水を加えた。晶析濾過後、得られた固体を乾燥させて4,4”-ジヒドロキシ-3”-メチルターフェニル29.7gを白色結晶として得た。
The hydroxy-substituted aromatic compound represented by the above formula (17) was synthesized as follows.
100 g of phenol and 16.0 g of 35% hydrochloric acid were charged into a 1 L four-necked flask equipped with a nitrogen blowing port and a dropping funnel, and the liquid temperature was raised to 55 ° C. while stirring. Then, a mixed solution of 38.2 g of 4- (4-hydroxyphenyl) cyclohexanone and 94.0 g of phenol separately prepared by heating was added dropwise over 3 hours, and after the addition, the mixture was stirred at 55 ° C. for 4 hours. After completion of the reaction, the reaction mixture was stirred at 55 ° C., and 39.1 g of a 16% aqueous solution of sodium hydroxide was added for neutralization. Further, 190 g of toluene was added, and the precipitated crystals were suction filtered at room temperature and then dried to obtain 1,4,4-tris (4-hydroxyphenyl) cyclohexane.
49.7 g of 1,4,4-tris (4-hydroxyphenyl) cyclohexane obtained above is charged in a 300 mL four-necked flask), and 0.3 g of a 48% aqueous solution of sodium hydroxide and 26.0 g of tetraethylene glycol are contained in the flask Added to. After the inside of the flask was purged with nitrogen, the pressure in the reaction vessel was reduced to 50 mmHg, and the temperature was raised to 210 ° C. to carry out a thermal decomposition reaction for about 4 hours. The end of the reaction was determined as the point at which distillation of the distillate ceased. After completion of the reaction, 50% aqueous acetic acid solution was added to the obtained reaction mixture for neutralization to obtain 66.0 g of an oily water-containing mixture.
60.0 g of α-methylstyrene and 3.5 g of a 5% palladium / carbon-supported catalyst (50 mass% water-containing product) were additionally added to 66.0 g of the above water-containing oil mixture. After the inside of the reactor was purged with nitrogen, the temperature was raised to 165 ° C., and reaction was performed for 3 hours with stirring.
After completion of the above reaction, 50 g of dimethylformamide was added to the obtained reaction mixture, and the palladium-supported catalyst was separated by filtration from this mixture. The solvent was distilled off and methanol was added to dissolve the residue, and then water was added. After crystallization filtration, the obtained solid was dried to obtain 29.7 g of 4,4 ′ ′-dihydroxy-3 ′ ′-methylterphenyl as white crystals.
 塩化シアン249.5g(4.06mol)(ヒドロキシ基1モルに対して2.5モル)、ジクロロメタン453.3gを、撹拌下、液温-7~-1℃に保ちながら、溶液1を180分かけて注下した。溶液1注下終了後、同温度にて30分撹拌した後、トリエチルアミン230.0g(2.27mol)(ヒドロキシ基1モルに対して1.0モル)をジクロロメタン230gに溶解させた溶液(溶液2)を120分かけて注下した。溶液2注下終了後、同温度にて30分撹拌して反応を完結させた。
 その後、トリエチルアミンの塩酸塩をろ別し、得られたろ液を0.15N塩酸2Lにより洗浄した後、水2Lで4回洗浄した。水洗4回目の廃水の電気伝導度は45μS/cmであり、水による洗浄により、除去できるイオン性化合物は十分に除去されたことを確認した。
 水洗後の有機相を減圧下で濃縮し、90℃で1時間濃縮乾固させて、薄橙色の固体305gを得た。得られた固体を、メチルエチルケトン(MEK)435g、テトラヒドロフラン430g及びn-ヘキサン113gに80℃で溶解させた後、再結晶を行った。得られた結晶をn-ヘキサン1Lにて洗浄した後、減圧乾燥することにより、目的とするシアン酸エステル化合物TPMeCN(薄橙色結晶)86gを得た。得られたシアン酸エステル化合物TPMeCNのIRスペクトルは2237cm-1及び2283cm-1(シアン酸エステル基)の吸収を示し、且つ、ヒドロキシ基の吸収は示さなかった。IRチャートを図6に示す。
While maintaining 249.5 g (4.06 mol) (2.5 mol per 1 hydroxyl group) of cyanogen chloride and 453.3 g of dichloromethane at a liquid temperature of -7 to -1 ° C while stirring, Solution 1 for 180 minutes I poured it over. Solution 1 After completion of the injection, after stirring for 30 minutes at the same temperature, a solution in which 230.0 g (2.27 mol) of triethylamine (1.0 mol per 1 hydroxyl group) is dissolved in 230 g of dichloromethane (solution 2 ) Was poured over 120 minutes. After completion of solution 2 injection, the reaction was completed by stirring for 30 minutes at the same temperature.
Thereafter, the hydrochloride of triethylamine was filtered off, and the obtained filtrate was washed with 2 liters of 0.15 N hydrochloric acid and then washed 4 times with 2 liters of water. The electric conductivity of the 4th water washing with water was 45 μS / cm, and it was confirmed by the water washing that the removable ionic compounds were sufficiently removed.
The organic phase after washing with water was concentrated under reduced pressure and concentrated to dryness at 90 ° C. for 1 hour to obtain 305 g of a light orange solid. The obtained solid was dissolved in 435 g of methyl ethyl ketone (MEK), 430 g of tetrahydrofuran and 113 g of n-hexane at 80 ° C. and then recrystallized. The resulting crystals were washed with 1 L of n-hexane and then dried under reduced pressure to obtain 86 g of the target cyanate ester compound TPMeCN (light orange crystals). The IR spectrum of the resulting cyanate ester compound TPMeCN showed absorptions of 2237 cm -1 and 2283 cm -1 (cyanate group) and no absorption of hydroxy group. The IR chart is shown in FIG.
<充填材含有硬化物の作製>
 以下に充填材含有硬化物の作製に用いた充填材を示す。
・FAN-f50:窒化アルミニウム粒子、古河電子株式会社製、熱伝導率200W/m・K
・AA-18:アルミナ粒子、住友化学株式会社製、熱伝導率30W/m・K
・AA-3:アルミナ粒子、住友化学株式会社製、熱伝導率30W/m・K
・AA-03:アルミナ粒子、住友化学株式会社製、熱伝導率30W/m・K
・AZ35-75:アルミナ粒子、新日鉄住金マテリアル株式会社マイクロンカンパニー製、熱伝導率30W/m・K
・AZ10-75:アルミナ粒子、新日鉄住金マテリアル株式会社マイクロンカンパニー製、熱伝導率30W/m・K
・PT110:窒化ホウ素粒子、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、熱伝導率200W/m・K
・FB-940:溶融シリカ粒子、デンカ株式会社製、熱伝導率1W/m・K
<Preparation of filler-containing cured product>
The filler used for preparation of a filler containing hardened | cured material below is shown.
・ FAN-f50: Aluminum nitride particles, manufactured by Furukawa Electronics Co., Ltd., thermal conductivity 200 W / m · K
· AA-18: Alumina particles, manufactured by Sumitomo Chemical Co., Ltd., thermal conductivity 30 W / m · K
· AA-3: alumina particles, manufactured by Sumitomo Chemical Co., Ltd., thermal conductivity 30 W / m · K
· AA-03: Alumina particles, manufactured by Sumitomo Chemical Co., Ltd., thermal conductivity 30 W / m · K
・ AZ 35-75: Alumina particles, manufactured by Nippon Steel & Sumikin Materials Co., Ltd. Micron Company, thermal conductivity 30 W / m K
・ AZ 10-75: Alumina particles, manufactured by Nippon Steel & Sumikin Materials Co., Ltd. Micron Company, thermal conductivity 30 W / m K
· PT 110: boron nitride particles, manufactured by Momentive Performance Materials Japan Ltd., thermal conductivity 200 W / m · K
· FB-940: Fused silica particles, manufactured by Denka Co., thermal conductivity 1 W / m · K
[実施例1]
 合成例1で得られたシアン酸エステル化合物DPCCN100.0質量部、オクチル酸亜鉛(日本化学産業株式会社製、商標ニッカオクチックス亜鉛、金属含有量18%)0.05質量部、窒化アルミニウム粒子(古河電子株式会社製、FAN-f50)570.0質量部、アルミナ粒子(住友化学株式会社製、AA-18)88.3質量部、アルミナ粒子(住友化学株式会社製、AA-3)88.3質量部、アルミナ粒子(住友化学株式会社製、AA-03)88.3質量部、3-グリシドキシプロピルトリメトキシシラン(信越化学工業株式会社、LS-2940)8.3質量部を混合し、メチルエチルケトン(和光純薬工業株式会社、試薬特級)で希釈してワニスを作製した。
 作製したワニスを、アプリケーターを用いて銅箔(三井金属鉱業株式会社製、3EC-VLP、厚さ18μm)粗面に塗工し、130℃で10分間乾燥してBステージ樹脂組成物付銅箔を得た。粗面が樹脂組成物に向くよう銅箔(三井金属鉱業株式会社製、3EC-VLP、厚さ18μm)をBステージ樹脂組成物付銅箔に重ね、真空熱プレス(220℃、90分間、プレス圧力20MPa)により両面銅箔付硬化物を作製した。両面銅箔付硬化物から両面の銅箔を剥離し、充填材含有硬化物(充填材75体積%含有)を得た。
Example 1
100.0 parts by mass of cyanate ester compound DPCCN obtained in Synthesis Example 1, 0.05 parts by mass of zinc octylate (Nihon Kagaku Sangyo Co., Ltd., trade mark zinc with a nickel content of 18%), aluminum nitride particles ( 57. 0 parts by mass of Furukawa Electronics Co., Ltd., FAN-f50, 88.3 parts by mass of alumina particles (AA-18, manufactured by Sumitomo Chemical Co., Ltd.), alumina particles (AA-3, manufactured by Sumitomo Chemical Co., Ltd.) 88. 3 parts by mass, 88.3 parts by mass of alumina particles (manufactured by Sumitomo Chemical Co., Ltd., AA-03), and 8.3 parts by mass of 3-glycidoxypropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., LS-2940) And diluted with methyl ethyl ketone (Wako Pure Chemical Industries, Ltd., special grade reagent) to prepare a varnish.
The varnish produced is coated on a rough surface of copper foil (3EC-VLP, 18 μm thick, manufactured by Mitsui Mining & Smelting Co., Ltd.) using an applicator, and dried at 130 ° C. for 10 minutes to obtain a copper foil with a B-stage resin composition. I got Copper foil (3EC-VLP, manufactured by Mitsui Mining & Smelting Co., Ltd., 18 μm thick) is overlaid on the copper foil with B-stage resin composition so that the rough surface faces the resin composition, and vacuum heat press (220 ° C, 90 minutes, press) A cured product with double-sided copper foil was produced by a pressure of 20 MPa. The copper foil on both sides was peeled off from the cured product with double-sided copper foil, to obtain a filler-containing cured product (containing 75 volume% of filler).
[実施例2]
 合成例1で得られたシアン酸エステル化合物DPCCN100.0質量部、オクチル酸亜鉛(日本化学産業株式会社製、商標ニッカオクチックス亜鉛、金属含有量18%)0.05質量部、窒化ホウ素粒子(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、PT110)290.0質量部、フェニルトリメトキシシラン(東京化成工業製)4.4質量部を混合し、メチルエチルケトン(和光純薬工業株式会社、試薬特級)で希釈してワニスを作製した。
 作製したワニスを、アプリケーターを用いて銅箔(三井金属鉱業株式会社製、3EC-VLP、厚さ18μm)粗面に塗工し、130℃で10分間乾燥してBステージ樹脂組成物付銅箔を得た。Bステージ樹脂組成物を銅箔から剥離し、乳鉢で粉砕した。得られた樹脂組成物粉末を粉体成形用ダイス(エヌピーエーシステム株式会社製、DT5025-1525)に充填し、手動油圧ポンプ(理研精機株式会社製、P-16B)を用いて50MPaに加圧してペレットを作製した。得られたペレットを真空熱プレス(220℃、90分間、プレス圧力10MPa)し、充填材含有硬化物(充填材61体積%含有)を得た。
Example 2
100.0 parts by mass of cyanate ester compound DPCCN obtained in Synthesis Example 1, 0.05 parts by mass of zinc octylate (manufactured by Nippon Kagaku Sangyo Co., Ltd., trade name zinc with a trademark of 18% of metal content), boron nitride particles ( 290.0 parts by mass of Momentive Performance Materials Japan Ltd. (PT 110) and 4.4 parts by mass of phenyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) are mixed, and methyl ethyl ketone (Wako Pure Chemical Industries, Ltd., special grade reagent) To make a varnish.
The varnish produced is coated on a rough surface of copper foil (3EC-VLP, 18 μm thick, manufactured by Mitsui Mining & Smelting Co., Ltd.) using an applicator, and dried at 130 ° C. for 10 minutes to obtain a copper foil with a B-stage resin composition. I got The B-stage resin composition was peeled off from the copper foil and ground in a mortar. The obtained resin composition powder is filled in a die for powder molding (DT 5025-1525, manufactured by NP System Co., Ltd.) and pressurized to 50 MPa using a manual hydraulic pump (P-16B, manufactured by Riken Seiki Co., Ltd.) The pellet was made. The obtained pellet was vacuum hot pressed (220 ° C., 90 minutes, pressing pressure 10 MPa) to obtain a filler-containing cured product (containing 61 volume% of filler).
[実施例3]
 合成例2で得られたシアン酸エステル化合物DPCMeCN100.0質量部、オクチル酸亜鉛(日本化学産業株式会社製、商標ニッカオクチックス亜鉛、金属含有量18%)0.05質量部、窒化ホウ素粒子(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、PT110)294.7質量部、フェニルトリメトキシシラン(東京化成工業製)4.4質量部を混合し、メチルエチルケトン(和光純薬工業株式会社、試薬特級)で希釈してワニスを作製した。
 作製したワニスを、アプリケーターを用いて銅箔(三井金属鉱業株式会社製、3EC-VLP、厚さ18μm)粗面に塗工し、130℃で10分間乾燥してBステージ樹脂組成物付銅箔を得た。Bステージ樹脂組成物を銅箔から剥離し、乳鉢で粉砕した。得られた樹脂組成物粉末を粉体成形用ダイス(エヌピーエーシステム株式会社製、DT5025-1525)に充填し、手動油圧ポンプ(理研精機株式会社製、P-16B)を用いて50MPaに加圧してペレットを作製した。得られたペレットを真空熱プレス(220℃、90分間、プレス圧力10MPa)し、充填材含有硬化物(充填材61体積%含有)を得た。
[Example 3]
100.0 parts by mass of cyanate ester compound DPCMeCN obtained in Synthesis Example 2, 0.05 parts by mass of zinc octylate (Nihon Kagaku Sangyo Co., Ltd., trade name zinc with a trademark of 18% of metal content), boron nitride particles ( 294.7 parts by mass of Momentive Performance Materials Japan Ltd. (PT 110) and 4.4 parts by mass of phenyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) are mixed, and methyl ethyl ketone (Wako Pure Chemical Industries, Ltd., special grade reagent) To make a varnish.
The varnish produced is coated on a rough surface of copper foil (3EC-VLP, 18 μm thick, manufactured by Mitsui Mining & Smelting Co., Ltd.) using an applicator, and dried at 130 ° C. for 10 minutes to obtain a copper foil with a B-stage resin composition. I got The B-stage resin composition was peeled off from the copper foil and ground in a mortar. The obtained resin composition powder is filled in a die for powder molding (DT 5025-1525, manufactured by NP System Co., Ltd.) and pressurized to 50 MPa using a manual hydraulic pump (P-16B, manufactured by Riken Seiki Co., Ltd.) The pellet was made. The obtained pellet was vacuum hot pressed (220 ° C., 90 minutes, pressing pressure 10 MPa) to obtain a filler-containing cured product (containing 61 volume% of filler).
[実施例4]
 合成例1で得られたシアン酸エステル化合物DPCCN100.0質量部、オクチル酸亜鉛(日本化学産業株式会社製、商標ニッカオクチックス亜鉛、金属含有量18%)0.05質量部、アルミナ粒子(新日鉄住金マテリアル株式会社マイクロンカンパニー製、AZ35-75)190.7質量部、アルミナ粒子(新日鉄住金マテリアル株式会社マイクロンカンパニー製、AZ10-75)190.7質量部、アルミナ粒子(住友化学株式会社製、AA-03)95.3質量部、3-グリシドキシプロピルトリメトキシシラン(信越化学工業株式会社、LS-2940)4.8質量部を混合し、メチルエチルケトン(和光純薬工業株式会社、試薬特級)で希釈してワニスを作製した。
 作製したワニスを、アプリケーターを用いて銅箔(三井金属鉱業株式会社製、3EC-VLP、厚さ18μm)粗面に塗工し、130℃で10分間乾燥してBステージ樹脂組成物付銅箔を得た。Bステージ樹脂組成物を銅箔から剥離し、乳鉢で粉砕した。得られた樹脂組成物粉末を金型に充填し、真空熱プレス(220℃、90分間、プレス圧力10MPa)により充填材含有硬化物(充填材60体積%含有)を得た。
Example 4
100.0 parts by mass of cyanate ester compound DPCCN obtained in Synthesis Example 1, 0.05 parts by mass of zinc octylate (Nihon Kagaku Sangyo Co., Ltd., trade name zinc with a nickel content of 18%), alumina particles (Nippon Iron Corp. 190.7 parts by mass of Sumikin Material Co., Ltd. manufactured by Micron Company, AZ 35-75, 190.7 parts by mass of alumina particles (manufactured by Nippon Steel & Sumikin Material Co., Ltd., manufactured by Micron Company, AZ 10-75), Alumina particles (manufactured by Sumitomo Chemical Co., Ltd., AA -03) 95.3 parts by mass, 4.8 parts by mass of 3-glycidoxypropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., LS-2940) are mixed, and methyl ethyl ketone (Wako Pure Chemical Industries, Ltd., special grade reagent) The varnish was prepared by dilution with
The varnish produced is coated on a rough surface of copper foil (3EC-VLP, 18 μm thick, manufactured by Mitsui Mining & Smelting Co., Ltd.) using an applicator, and dried at 130 ° C. for 10 minutes to obtain a copper foil with a B-stage resin composition. I got The B-stage resin composition was peeled off from the copper foil and ground in a mortar. The obtained resin composition powder was filled in a mold, and a filler-containing cured product (containing 60 volume% of filler) was obtained by a vacuum heat press (220 ° C., 90 minutes, press pressure 10 MPa).
[実施例5]
 合成例1で得られたシアン酸エステル化合物DPCCN100.0質量部、オクチル酸亜鉛(日本化学産業株式会社製、商標ニッカオクチックス亜鉛、金属含有量18%)0.05質量部、アルミナ粒子(新日鉄住金マテリアル株式会社マイクロンカンパニー製、AZ35-75)127.3質量部、アルミナ粒子(新日鉄住金マテリアル株式会社マイクロンカンパニー製、AZ10-75)127.3質量部、アルミナ粒子(住友化学株式会社製、AA-03)63.6質量部、3-グリシドキシプロピルトリメトキシシラン(信越化学工業株式会社、LS-2940)3.2質量部を混合し、メチルエチルケトン(和光純薬工業株式会社、試薬特級)で希釈してワニスを作製した。
 作製したワニスを、アプリケーターを用いて銅箔(三井金属鉱業株式会社製、3EC-VLP、厚さ18μm)粗面に塗工し、130℃で10分間乾燥してBステージ樹脂組成物付銅箔を得た。Bステージ樹脂組成物を銅箔から剥離し、乳鉢で粉砕した。得られた樹脂組成物粉末を金型に充填し、真空熱プレス(220℃、90分間、プレス圧力10MPa)により充填材含有硬化物(充填材50体積%含有)を得た。
[Example 5]
100.0 parts by mass of cyanate ester compound DPCCN obtained in Synthesis Example 1, 0.05 parts by mass of zinc octylate (Nihon Kagaku Sangyo Co., Ltd., trade name zinc with a nickel content of 18%), alumina particles (Nippon Iron Corp. 127.3 parts by mass of Sumikin Material Co., Ltd. manufactured by Micron Company, AZ 35-75, 127.3 parts by mass of alumina particles (manufactured by Nippon Steel & Sumikin Material Co., Ltd. manufactured by Micron Company, AZ 10-75), Alumina particles (manufactured by Sumitomo Chemical Co., Ltd., AA -03) 63.6 parts by mass, 3.2 parts by mass of 3-glycidoxypropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., LS-2940) are mixed, and methyl ethyl ketone (Wako Pure Chemical Industries, Ltd., special grade reagent) The varnish was prepared by dilution with
The varnish produced is coated on a rough surface of copper foil (3EC-VLP, 18 μm thick, manufactured by Mitsui Mining & Smelting Co., Ltd.) using an applicator, and dried at 130 ° C. for 10 minutes to obtain a copper foil with a B-stage resin composition. I got The B-stage resin composition was peeled off from the copper foil and ground in a mortar. The obtained resin composition powder was filled in a mold, and a filler-containing cured product (containing 50 volume% of filler) was obtained by vacuum heat press (220 ° C., 90 minutes, press pressure 10 MPa).
[実施例6]
 合成例2で得られたシアン酸エステル化合物DPCMeCN100.0質量部、オクチル酸亜鉛(日本化学産業株式会社製、商標ニッカオクチックス亜鉛、金属含有量18%)0.05質量部、アルミナ粒子(新日鉄住金マテリアル株式会社マイクロンカンパニー製、AZ35-75)194.0質量部、アルミナ粒子(新日鉄住金マテリアル株式会社マイクロンカンパニー製、AZ10-75)194.0質量部、アルミナ粒子(住友化学株式会社製、AA-03)97.0質量部、3-グリシドキシプロピルトリメトキシシラン(信越化学工業株式会社、LS-2940)4.9質量部を混合し、メチルエチルケトン(和光純薬工業株式会社、試薬特級)で希釈してワニスを作製した。
 作製したワニスを、アプリケーターを用いて銅箔(三井金属鉱業株式会社製、3EC-VLP、厚さ18μm)粗面に塗工し、130℃で10分間乾燥してBステージ樹脂組成物付銅箔を得た。Bステージ樹脂組成物を銅箔から剥離し、乳鉢で粉砕した。得られた樹脂組成物粉末を金型に充填し、真空熱プレス(220℃、90分間、プレス圧力10MPa)により充填材含有硬化物(充填材60体積%含有)を得た。
[Example 6]
100.0 parts by mass of cyanate ester compound DPCMeCN obtained in Synthesis Example 2, 0.05 parts by mass of zinc octylate (manufactured by Nippon Kagaku Sangyo Co., Ltd., trade name zinc with a trademark of 18% of metal content), alumina particles (Nippon Iron Corp. 194.0 parts by mass of Sumikin Material Co., Ltd. Micron Company, AZ 35-75, 194.0 parts by mass of alumina particles (Nippon Steel & Sumikin Material Co., Ltd. Micron Company, AZ 10-75), alumina particles (Sumitomo Chemical Co., Ltd., AA -03) 97.0 parts by mass, 4.9 parts by mass of 3-glycidoxypropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., LS-2940) are mixed, and methyl ethyl ketone (Wako Pure Chemical Industries, Ltd., special grade reagent) The varnish was prepared by dilution with
The varnish produced is coated on a rough surface of copper foil (3EC-VLP, 18 μm thick, manufactured by Mitsui Mining & Smelting Co., Ltd.) using an applicator, and dried at 130 ° C. for 10 minutes to obtain a copper foil with a B-stage resin composition. I got The B-stage resin composition was peeled off from the copper foil and ground in a mortar. The obtained resin composition powder was filled in a mold, and a filler-containing cured product (containing 60 volume% of filler) was obtained by a vacuum heat press (220 ° C., 90 minutes, press pressure 10 MPa).
[実施例7]
 合成例2で得られたシアン酸エステル化合物DPCMeCN100.0質量部、オクチル酸亜鉛(日本化学産業株式会社製、商標ニッカオクチックス亜鉛、金属含有量18%)0.05質量部、アルミナ粒子(新日鉄住金マテリアル株式会社マイクロンカンパニー製、AZ35-75)129.5質量部、アルミナ粒子(新日鉄住金マテリアル株式会社マイクロンカンパニー製、AZ10-75)129.5質量部、アルミナ粒子(住友化学株式会社製、AA-03)64.8質量部、3-グリシドキシプロピルトリメトキシシラン(信越化学工業株式会社、LS-2940)3.2質量部を混合し、メチルエチルケトン(和光純薬工業株式会社、試薬特級)で希釈してワニスを作製した。
 作製したワニスを、アプリケーターを用いて銅箔(三井金属鉱業株式会社製、3EC-VLP、厚さ18μm)粗面に塗工し、130℃で10分間乾燥してBステージ樹脂組成物付銅箔を得た。Bステージ樹脂組成物を銅箔から剥離し、乳鉢で粉砕した。得られた樹脂組成物粉末を金型に充填し、真空熱プレス(220℃、90分間、プレス圧力10MPa)により充填材含有硬化物(充填材50体積%含有)を得た。
[Example 7]
100.0 parts by mass of cyanate ester compound DPCMeCN obtained in Synthesis Example 2, 0.05 parts by mass of zinc octylate (manufactured by Nippon Kagaku Sangyo Co., Ltd., trade name zinc with a trademark of 18% of metal content), alumina particles (Nippon Iron Corp. 129.5 parts by mass of Sumikin Material Co., Ltd. manufactured by Micron Company, AZ 35-75, 129.5 parts by mass of alumina particles (Nippon Steel & Sumikin Material Co., Ltd. manufactured by Micron Company, AZ 10-75), Alumina particles (manufactured by Sumitomo Chemical Co., Ltd., AA -03) 64.8 parts by mass, 3.2 parts by mass of 3-glycidoxypropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., LS-2940) are mixed, and methyl ethyl ketone (Wako Pure Chemical Industries, Ltd., special grade reagent) The varnish was prepared by dilution with
The varnish produced is coated on a rough surface of copper foil (3EC-VLP, 18 μm thick, manufactured by Mitsui Mining & Smelting Co., Ltd.) using an applicator, and dried at 130 ° C. for 10 minutes to obtain a copper foil with a B-stage resin composition. I got The B-stage resin composition was peeled off from the copper foil and ground in a mortar. The obtained resin composition powder was filled in a mold, and a filler-containing cured product (containing 50 volume% of filler) was obtained by vacuum heat press (220 ° C., 90 minutes, press pressure 10 MPa).
[比較例1]
 合成例3で得られたTPMeCN47.8質量部、フェニルメタンマレイミド(大和化成工業株式会社製、BMI-2300)52.2質量部、オクチル酸亜鉛(日本化学産業株式会社製、商標ニッカオクチックス亜鉛、金属含有量18%)0.1質量部、窒化アルミニウム粒子(古河電子株式会社製、FAN-f50)550.0質量部、アルミナ粒子(住友化学株式会社製、AA-18)85.3質量部、アルミナ粒子(住友化学株式会社製、AA-3)85.3質量部、アルミナ粒子(住友化学株式会社製、AA-03)85.3質量部、3-グリシドキシプロピルトリメトキシシラン(信越化学工業株式会社製、LS-2940)8.0質量部を混合し、メチルエチルケトン(和光純薬工業株式会社製、試薬特級)で希釈してワニスを作製した。
 作製したワニスを、アプリケーターを用いて銅箔(三井金属鉱業株式会社製、3EC-VLP、厚さ18μm)粗面に塗工し、100℃で10分間乾燥してBステージ樹脂組成物付銅箔を得た。粗面が樹脂組成物に向くよう銅箔(三井金属鉱業株式会社製、3EC-VLP、厚さ18μm)をBステージ樹脂組成物付銅箔に重ね、真空熱プレス(220℃、90分間、プレス圧力30MPa)により両面銅箔付硬化物を作製した。両面銅箔付硬化物から両面の銅箔を剥離し、充填材含有硬化物(充填材75体積%含有)を得た。
Comparative Example 1
47.8 parts by mass of TPMeCN obtained in Synthesis Example 3, 52.2 parts by mass of phenylmethane maleimide (BMI-2300, manufactured by Daiwa Kasei Kogyo Co., Ltd.), zinc octylate (manufactured by Nippon Kagaku Sangyo Co., Ltd., trade name: Nickomatics Zinc) Metal content: 18%) 0.1 parts by mass, aluminum nitride particles (Furukawa Electronics Co., Ltd., FAN-f50) 550.0 parts by mass, alumina particles (Sumitomo Chemical Co., Ltd., AA-18) 85.3 mass Parts, 85.3 parts by mass of alumina particles (manufactured by Sumitomo Chemical Co., Ltd., AA-3), 85.3 parts by mass of alumina particles (manufactured by Sumitomo Chemical Co., Ltd., AA-03), 3-glycidoxypropyltrimethoxysilane ( Shin-Etsu Chemical Co., Ltd. product, LS-2940) 8.0 parts by mass is mixed, diluted with methyl ethyl ketone (Wako Pure Chemical Industries, Ltd., reagent special grade) and varnished It was produced.
The varnish produced is coated on a rough surface of copper foil (3EC-VLP, 18 μm thick, manufactured by Mitsui Mining & Smelting Co., Ltd.) using an applicator, and dried at 100 ° C. for 10 minutes to obtain a copper foil with a B-stage resin composition. I got Copper foil (3EC-VLP, manufactured by Mitsui Mining & Smelting Co., Ltd., 18 μm thick) is overlaid on the copper foil with B-stage resin composition so that the rough surface faces the resin composition, and vacuum heat press (220 ° C, 90 minutes, press) A cured product with double-sided copper foil was produced by a pressure of 30 MPa. The copper foil on both sides was peeled off from the cured product with double-sided copper foil, to obtain a filler-containing cured product (containing 75 volume% of filler).
[比較例2]
 2,2-ビス(4-シアナトフェニル)プロパン(三菱ガス化学株式会社製、以下TAと略記)43.8質量部、フェニルメタンマレイミド(大和化成工業株式会社製、BMI-2300)56.2質量部、オクチル酸亜鉛(日本化学産業株式会社製、商標ニッカオクチックス亜鉛、金属含有量18%)0.1質量部、窒化アルミニウム粒子(古河電子株式会社製、FAN-f50)557.5質量部、アルミナ粒子(住友化学株式会社製、AA-18)86.4質量部、アルミナ粒子(住友化学株式会社製、AA-3)86.4質量部、アルミナ粒子(住友化学株式会社製、AA-03)86.4質量部、3-グリシドキシプロピルトリメトキシシラン(信越化学工業株式会社製、LS-2940)8.1質量部を混合し、メチルエチルケトン(和光純薬工業株式会社製、試薬特級)で希釈してワニスを作製した。
 作製したワニスを、アプリケーターを用いて銅箔(三井金属鉱業株式会社製、3EC-VLP、厚さ18μm)粗面に塗工し、100℃で10分間乾燥してBステージ樹脂組成物付銅箔を得た。Bステージ樹脂組成物を銅箔から剥離し、乳鉢で粉砕した。得られた樹脂組成物粉末を金型に充填し、真空熱プレス(220℃、90分間、プレス圧力5MPa)により充填材含有硬化物(充填材75体積%含有)を得た。
Comparative Example 2
2,8-bis (4-cyanatophenyl) propane (manufactured by Mitsubishi Gas Chemical Co., Ltd., hereinafter abbreviated as TA) 43.8 parts by mass, phenylmethane maleimide (manufactured by Daiwa Kasei Kogyo Co., Ltd., BMI-2300) 56.2 0.1 parts by mass, zinc octylate (manufactured by Nippon Kagaku Sangyo Co., Ltd., trade name: zinc nicks with a metal content of 18%), 0.1 parts by mass, aluminum nitride particles (Furukawa Electronics Co., Ltd., FAN-f50) 557.5 parts Parts, 86.4 parts by mass of alumina particles (manufactured by Sumitomo Chemical Co., Ltd., AA-18), 86.4 parts by mass of alumina particles (manufactured by Sumitomo Chemical Co., Ltd., AA-3), alumina particles (manufactured by Sumitomo Chemical Co., Ltd., AA -03) 86.4 parts by mass, 8.1 parts by mass of 3-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., LS-2940) are mixed, and methyl ethyl carbonate is mixed. Emissions (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade) was diluted with to prepare a varnish.
The varnish produced is coated on a rough surface of copper foil (3EC-VLP, 18 μm thick, manufactured by Mitsui Mining & Smelting Co., Ltd.) using an applicator, and dried at 100 ° C. for 10 minutes to obtain a copper foil with a B-stage resin composition. I got The B-stage resin composition was peeled off from the copper foil and ground in a mortar. The obtained resin composition powder was filled in a mold, and a filler-containing cured product (containing 75 volume% of filler) was obtained by a vacuum heat press (220 ° C., 90 minutes, press pressure 5 MPa).
[比較例3]
合成例1で得られたシアン酸エステル化合物DPCCN100.0質量部、オクチル酸亜鉛(日本化学産業株式会社製、商標ニッカオクチックス亜鉛、金属含有量18%)0.05質量部、溶融シリカ粒子(デンカ株式会社製、FB-940)526.7質量部、3-グリシドキシプロピルトリメトキシシラン(信越化学工業株式会社製、LS-2940)5.3質量部を混合し、メチルエチルケトン(和光純薬工業株式会社製、試薬特級)で希釈してワニスを作製した。
 作製したワニスを、アプリケーターを用いて銅箔(三井金属鉱業株式会社製、3EC-VLP、厚さ18μm)粗面に塗工し、130℃で10分間乾燥してBステージ樹脂組成物付銅箔を得た。Bステージ樹脂組成物を銅箔から剥離し、乳鉢で粉砕した。得られた樹脂組成物粉末を金型に充填し、真空熱プレス(220℃、90分間、プレス圧力10MPa)により充填材含有硬化物(充填材75体積%含有)を得た。
Comparative Example 3
100.0 parts by mass of cyanate ester compound DPCCN obtained in Synthesis Example 1, 0.05 parts by mass of zinc octylate (manufactured by Nippon Kagaku Sangyo Co., Ltd., trade name zinc with a nickel content of 18%), fused silica particles ( Denka Co., Ltd., FB-940) 526.7 parts by mass, 3-glycidoxypropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., LS-2940) 5.3 parts by mass are mixed, and methyl ethyl ketone (Wako Pure Chemical Industries, Ltd.) The varnish was prepared by diluting with a reagent grader (manufactured by Kogyo Co., Ltd.).
The varnish produced is coated on a rough surface of copper foil (3EC-VLP, 18 μm thick, manufactured by Mitsui Mining & Smelting Co., Ltd.) using an applicator, and dried at 130 ° C. for 10 minutes to obtain a copper foil with a B-stage resin composition. I got The B-stage resin composition was peeled off from the copper foil and ground in a mortar. The obtained resin composition powder was filled in a mold, and a filler-containing cured product (containing 75 vol% of filler) was obtained by vacuum heat press (220 ° C., 90 minutes, press pressure 10 MPa).
[比較例4]
トリフェニルメタン型エポキシ樹脂(日本化薬株式会社製、EPPN-501H)61.4質量部、フェノールノボラック樹脂(明和化成株式会社製、DL-92)38.6質量部、テトラフェニルホスホニウムテトラフェニルボレート(和光純薬工業株式会社製)0.06質量部、窒化ホウ素粒子(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、PT110)305.9質量部、フェニルトリメトキシシラン(東京化成工業製)4.6質量部を混合し、メチルエチルケトン(和光純薬工業株式会社、試薬特級)で希釈してワニスを作製した。
 作製したワニスを、アプリケーターを用いて銅箔(三井金属鉱業株式会社製、3EC-VLP、厚さ18μm)粗面に塗工し、130℃で10分間乾燥してBステージ樹脂組成物付銅箔を得た。Bステージ樹脂組成物を銅箔から剥離し、乳鉢で粉砕した。得られた樹脂組成物粉末を粉体成形用ダイス(エヌピーエーシステム株式会社製、DT5025-1525)に充填し、手動油圧ポンプ(理研精機株式会社製、P-16B)を用いて50MPaに加圧してペレットを作製した。得られたペレットを真空熱プレス(220℃、90分間、プレス圧力10MPa)し、充填材含有硬化物(充填材61体積%含有)を得た。
Comparative Example 4
61.4 parts by mass of triphenylmethane type epoxy resin (Nippon Kayaku Co., Ltd., EPPN-501H), 38.6 parts by mass of phenol novolac resin (Miwa Kasei Co., Ltd., DL-92), tetraphenylphosphonium tetraphenylborate 0.06 parts by mass (manufactured by Wako Pure Chemical Industries, Ltd.), 305.9 parts by mass of boron nitride particles (manufactured by Momentive Performance Materials Japan LLC, PT 110), phenyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) 4 6 parts by mass was mixed and diluted with methyl ethyl ketone (Wako Pure Chemical Industries, Ltd., special grade reagent) to prepare a varnish.
The varnish produced is coated on a rough surface of copper foil (3EC-VLP, 18 μm thick, manufactured by Mitsui Mining & Smelting Co., Ltd.) using an applicator, and dried at 130 ° C. for 10 minutes to obtain a copper foil with a B-stage resin composition. I got The B-stage resin composition was peeled off from the copper foil and ground in a mortar. The obtained resin composition powder is filled in a die for powder molding (DT 5025-1525, manufactured by NP System Co., Ltd.) and pressurized to 50 MPa using a manual hydraulic pump (P-16B, manufactured by Riken Seiki Co., Ltd.) The pellet was made. The obtained pellet was vacuum hot pressed (220 ° C., 90 minutes, pressing pressure 10 MPa) to obtain a filler-containing cured product (containing 61 volume% of filler).
[比較例5]
 ビスフェノールA型エポキシ樹脂(DIC株式会社製、850-S)64.3質量部、フェノールノボラック樹脂(明和化成工業株式会社製、DL-92)35.7質量部、2-フェニルイミダゾール(和光純薬工業株式会社製)0.2質量部、アルミナ粒子(住友化学株式会社製、AA-3)400質量部、3-グリシドキシプロピルトリメトキシシラン(信越化学工業株式会社製、LS-2940)4.0質量部を混合し、メチルエチルケトン(和光純薬工業株式会社製、試薬特級)で希釈してワニスを作製した。
 作製したワニスを、アプリケーターを用いて銅箔(三井金属鉱業株式会社製、3EC-VLP、厚さ18μm)粗面に塗工し、120℃で20分間乾燥してBステージ樹脂組成物付銅箔を得た。粗面が樹脂組成物に向くよう銅箔(三井金属鉱業株式会社製、3EC-VLP、厚さ18μm)をBステージ樹脂組成物付銅箔に重ね、真空熱プレス(190℃、30分間、プレス圧力5MPa)により両面銅箔付硬化物を作製した。両面銅箔付硬化物から両面の銅箔を剥離し、充填材含有硬化物(充填材55体積%含有)を得た。
Comparative Example 5
Bisphenol A type epoxy resin (manufactured by DIC Corporation, 850-S) 64.3 parts by mass, Phenolic novolak resin (manufactured by Meiwa Kasei Kogyo Co., Ltd., DL-92) 35.7 parts by mass, 2-phenylimidazole (Wako Pure Chemical Industries, Ltd. 0.2 parts by mass, manufactured by Kogyo Co., Ltd., 400 parts by mass of alumina particles (manufactured by Sumitomo Chemical Co., Ltd., AA-3), 3-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., LS-2940) 4 0 parts by mass was mixed and diluted with methyl ethyl ketone (reagent special grade manufactured by Wako Pure Chemical Industries, Ltd.) to prepare a varnish.
The varnish produced is coated on a rough surface of a copper foil (3EC-VLP, 18 μm thick, made by Mitsui Metal Mining Co., Ltd.) using an applicator, and dried at 120 ° C. for 20 minutes to obtain a copper foil with a B-stage resin composition. I got Copper foil (3EC-VLP, manufactured by Mitsui Mining & Smelting Co., Ltd., 18 μm thick) is overlaid on the copper foil with B-stage resin composition so that the rough surface faces the resin composition, and vacuum heat press (190 ° C, 30 minutes, press) A cured product with double-sided copper foil was produced by a pressure of 5 MPa. The copper foils on both sides were peeled off from the cured product with double-sided copper foil to obtain a filler-containing cured product (containing 55 volume% of filler).
[比較例6]
ビスフェノールA型エポキシ樹脂(DIC株式会社製、850-S)64.3質量部、フェノールノボラック樹脂(明和化成工業株式会社製、DL-92)35.7質量部、2-フェニルイミダゾール(和光純薬工業株式会社製)0.2質量部、アルミナ粒子(住友化学株式会社製、AA-3)233.3質量部、3-グリシドキシプロピルトリメトキシシラン(信越化学工業株式会社製、LS-2940)2.3質量部を混合し、メチルエチルケトン(和光純薬工業株式会社製、試薬特級)で希釈してワニスを作製した。
 作製したワニスを、アプリケーターを用いて銅箔(三井金属鉱業株式会社製、3EC-VLP、厚さ18μm)粗面に塗工し、120℃で20分間乾燥してBステージ樹脂組成物付銅箔を得た。粗面が樹脂組成物に向くよう銅箔(三井金属鉱業株式会社製、3EC-VLP、厚さ18μm)をBステージ樹脂組成物付銅箔に重ね、真空熱プレス(190℃、30分間、プレス圧力5MPa)により両面銅箔付硬化物を作製した。両面銅箔付硬化物から両面の銅箔を剥離し、充填材含有硬化物(充填材41体積%含有)を得た。
Comparative Example 6
Bisphenol A type epoxy resin (manufactured by DIC Corporation, 850-S) 64.3 parts by mass, Phenolic novolak resin (manufactured by Meiwa Kasei Kogyo Co., Ltd., DL-92) 35.7 parts by mass, 2-phenylimidazole (Wako Pure Chemical Industries, Ltd. 0.2 parts by mass, manufactured by Kogyo Co., Ltd., 233.3 parts by mass of alumina particles (manufactured by Sumitomo Chemical Co., Ltd., AA-3), 3-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., LS-2940) 2.3 parts by mass were mixed and diluted with methyl ethyl ketone (reagent special grade manufactured by Wako Pure Chemical Industries, Ltd.) to prepare a varnish.
The varnish produced is coated on a rough surface of a copper foil (3EC-VLP, 18 μm thick, made by Mitsui Metal Mining Co., Ltd.) using an applicator, and dried at 120 ° C. for 20 minutes to obtain a copper foil with a B-stage resin composition. I got Copper foil (3EC-VLP, manufactured by Mitsui Mining & Smelting Co., Ltd., 18 μm thick) is overlaid on the copper foil with B-stage resin composition so that the rough surface faces the resin composition, and vacuum heat press (190 ° C, 30 minutes, press) A cured product with double-sided copper foil was produced by a pressure of 5 MPa. The copper foils on both sides were peeled off from the cured product with double-sided copper foil to obtain a filler-containing cured product (containing 41 volume% of filler).
<樹脂硬化物の作成>
[比較例7]
 合成例1で得られたシアン酸エステル化合物DPCCN100.0質量部、オクチル酸亜鉛(日本化学産業株式会社製、商標ニッカオクチックス亜鉛、金属含有量18%)0.05質量部とを加熱溶融して、硬化性樹脂組成物を得た。
 得られた硬化性樹脂組成物を金型に充填し、真空熱プレス(220℃、90分間、プレス圧力10MPa)により樹脂硬化物を作製した。
<Creation of cured resin>
Comparative Example 7
100.0 parts by mass of cyanate ester compound DPCCN obtained in Synthesis Example 1 and 0.05 parts by mass of zinc octylate (manufactured by Nippon Chemical Industrial Co., Ltd., trade name zinc with a trademark of 18% metal content) Thus, a curable resin composition was obtained.
The obtained curable resin composition was filled in a mold, and a cured resin was produced by a vacuum heat press (220 ° C., 90 minutes, press pressure 10 MPa).
[比較例8]
 合成例2で得られたシアン酸エステル化合物DPCMeCN100.0質量部、オクチル酸亜鉛(日本化学産業株式会社製、商標ニッカオクチックス亜鉛、金属含有量18%)0.05質量部とを加熱溶融して、硬化性樹脂組成物を得た。
 得られた硬化性樹脂組成物を金型に充填し、真空熱プレス(220℃、90分間、プレス圧力10MPa)により樹脂硬化物を作製した。
Comparative Example 8
100.0 parts by mass of cyanate ester compound DPCMeCN obtained in Synthesis Example 2 and 0.05 parts by mass of zinc octylate (Nihon Kagaku Sangyo Co., Ltd., trade name zinc with a trademark of 18% of metal content) are heated and melted. Thus, a curable resin composition was obtained.
The obtained curable resin composition was filled in a mold, and a cured resin was produced by a vacuum heat press (220 ° C., 90 minutes, press pressure 10 MPa).
[比較例9]
 ビスフェノールA型エポキシ樹脂(DIC株式会社製、850-S)64.3質量部、フェノールノボラック樹脂(明和化成工業株式会社製、DL-92)35.7質量部、2-フェニルイミダゾール(和光純薬工業株式会社製)0.2質量部とを加熱溶融して、硬化性樹脂組成物を得た。
 得られた硬化性樹脂組成物を金型に充填し、真空熱プレス(190℃、30分間、プレス圧力2MPa)により樹脂硬化物を作製した。
Comparative Example 9
Bisphenol A type epoxy resin (manufactured by DIC Corporation, 850-S) 64.3 parts by mass, Phenolic novolak resin (manufactured by Meiwa Kasei Kogyo Co., Ltd., DL-92) It heat-melted (made by Kogyo Co., Ltd. make) 0.2 mass part, and obtained curable resin composition.
The obtained curable resin composition was filled in a mold, and a cured resin was produced by vacuum heat press (190 ° C., 30 minutes, press pressure 2 MPa).
<充填材含有硬化物及び当該硬化物の樹脂部分の熱伝導率評価>
 上記のようにして得られた充填材含有硬化物、および樹脂硬化物の特性を、以下の方法により評価した。
 熱拡散係数:1cm角の大きさに加工した硬化物をキセノンフラッシュ法熱拡散率測定装置(NETZSCH製、LFA447 NanoFlash)中の試料ホルダにセットし、25℃、大気中の条件下で測定を行うことによって求めた。
 比熱:DSC(セイコーインスツル株式会社製、EXSTAR6000 DSC6220)を用い、JIS K7123(プラスチックの比熱容量測定方法)に従って求めた。
 密度:水中置換法により、密度測定機(メトラー・トレド株式会社製、MS-DNY-43)を用いて求めた。
 熱伝導率:求めた熱拡散係数、比熱、密度から、硬化物の熱伝導率を下式により求めた。
式:λ=α・Cp・ρ
〔λ:熱伝導率(W/m・K)、α:熱拡散係数(m/s)、Cp:比熱(J/g・K)、ρ:密度(kg/m)〕
<Evaluation of thermal conductivity of filler-containing cured product and resin part of the cured product>
The characteristics of the filler-containing cured product and the resin cured product obtained as described above were evaluated by the following methods.
Thermal diffusion coefficient: A cured product processed to a size of 1 cm square is set in a sample holder in a xenon flash thermal diffusivity measurement device (manufactured by NETZSCH, LFA 447 NanoFlash), and measurement is performed at 25 ° C. in the atmosphere. It asked by.
Specific heat: Determined according to JIS K 7123 (method of measuring specific heat capacity of plastic) using DSC (manufactured by Seiko Instruments Inc., EXSTAR 6000 DSC 6220).
Density: It was determined by a water displacement method using a densitometer (MS-DNY-43, manufactured by METTLER TOLEDO Co., Ltd.).
Thermal conductivity: The thermal conductivity of the cured product was determined by the following equation from the determined thermal diffusion coefficient, specific heat, and density.
Formula: λ = α · Cp · ρ
[Λ: thermal conductivity (W / m · K), α: thermal diffusion coefficient (m 2 / s), Cp: specific heat (J / g · K), ρ: density (kg / m 3 )]
また、上記実施例4、実施例5、実施例6、実施例7、比較例5、及び比較例6で得られた充填材含有硬化物の熱伝導率から、充填材含有硬化物における樹脂部分の熱伝導率を、下式(X)を用いて換算して求めた。
 式(X):1-φ=[(λc-λf)/(λm-λf)]×(λm/λc)1/3
〔φ:フィラーの体積充填率(体積%)、λc:充填材含有硬化物の熱伝導率(W/m・K)、λf:アルミナの熱伝導率(30W/m・K)、λm:充填材含有硬化物における樹脂部分の熱伝導率(W/m・K)〕
Further, from the thermal conductivity of the filler-containing cured product obtained in the above-described Example 4, Example 5, Example 6, Example 7, Comparative Example 5, and Comparative Example 6, the resin portion in the filler-containing cured product The thermal conductivity of was calculated using the following equation (X).
Formula (X): 1-phi = [(lambda c-lambda f) / (lambda m-lambda f)] x (lambda m / lambda c) 1/3
[Φ: volume filling ratio of filler (volume%), λc: thermal conductivity of cured material containing filler (W / m · K), λf: thermal conductivity of alumina (30 W / m · K), λm: filling Conductivity (W / m · K) of resin part in hardened material containing material
 評価結果は、下記の表1~表3に示される通りであった。なお表1~表3中、「-」の記載部分は該当する原料の配合がないことを意味する。 The evaluation results were as shown in Tables 1 to 3 below. In Tables 1 to 3, the description of “-” means that there is no blending of the corresponding raw materials.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
 表1からも明らかなように、本実施形態の一態様に係る、式(1)で表されるシアン酸エステル化合物と、熱伝導率が3W/(m・K)以上である窒化アルミニウム及びアルミナとを含む本実施形態の樹脂組成物は、優れた熱伝導性を示した。 As apparent from Table 1, the cyanate ester compound represented by the formula (1) according to one aspect of the present embodiment, and aluminum nitride and alumina having a thermal conductivity of 3 W / (m · K) or more The resin composition of the present embodiment containing the above showed excellent thermal conductivity.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
 表2からも明らかなように、本実施形態の一態様に係る、式(1)で表されるシアン酸エステル化合物と、熱伝導率が3W/(m・K)以上である窒化ホウ素とを含む樹脂組成物は、優れた熱伝導性を示した。 As apparent from Table 2, according to one aspect of the present embodiment, the cyanate ester compound represented by the formula (1) and boron nitride having a thermal conductivity of 3 W / (m · K) or more The resin composition contained showed excellent thermal conductivity.
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
 表3からも明らかなように、本実施形態の樹脂組成物により構成される充填材含有硬化物から換算される樹脂部分の熱伝導率は、充填材を含まない樹脂硬化物(比較例7,8参照)の熱伝導率よりも高い値を示した。一方、汎用のエポキシ樹脂を用いた比較例5及び比較例6から換算される樹脂部分の熱伝導率は、充填材を含まない樹脂硬化物(比較例9参照)と同等であった。以上の結果から、式(1)で表されるシアン酸エステル化合物は、熱伝導率が3W/(m・K)以上である充填材の存在下、熱伝導性が向上することが証明された。実施例4、実施例5、実施例6、実施例7、比較例5及び比較例6における充填材体積充填率と充填材含有硬化物熱伝導率の関係を図7に示す。 As apparent from Table 3, the thermal conductivity of the resin portion converted from the filler-containing cured product constituted of the resin composition of the present embodiment is the resin cured product containing no filler (Comparative Example 7, It showed a higher value than the thermal conductivity of 8). On the other hand, the thermal conductivity of the resin part converted from Comparative Example 5 and Comparative Example 6 using a general-purpose epoxy resin was equivalent to that of a cured resin containing no filler (see Comparative Example 9). From the above results, it was proved that the cyanate ester compound represented by the formula (1) has improved thermal conductivity in the presence of a filler having a thermal conductivity of 3 W / (m · K) or more . The relationship between the filler volume filling ratio and the filler-containing cured product thermal conductivity in Example 4, Example 5, Example 6, Example 7, Comparative Example 5 and Comparative Example 6 is shown in FIG.
 本出願は、2017年8月8日に日本国特許庁へ出願された日本特許出願(特願2017-153275)に基づくものであり、それらの内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application (Japanese Patent Application No. 2017-153275) filed on Aug. 8, 2017 to the Japanese Patent Office, the contents of which are incorporated herein by reference.

Claims (14)

  1.  下記式(1)で表されるシアン酸エステル化合物と、熱伝導率が3W/(m・K)以上である充填材と、を含む、樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Ar及びArはそれぞれ同一又は相異なって、下記式(2)で表される二価基を示し、Arは下記式(3)又は(4)で表される二価基を示す。)
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    (式(2)、式(3)及び式(4)中、R及びRは一価の置換基を示し、各々独立に水素原子、炭素数1~6の直鎖状もしくは分枝状のアルキル基、又はハロゲン原子を示す。nは1~4の整数を示し、mは1~8の整数を示す。)
    The resin composition containing the cyanate ester compound represented by following formula (1), and the filler whose thermal conductivity is 3 W / (m * K) or more.
    Figure JPOXMLDOC01-appb-C000001
    (In Formula (1), Ar 1 and Ar 3 are the same or different and each represents a divalent group represented by the following Formula (2), Ar 2 is represented by the following Formula (3) or (4) (Indicating a divalent group))
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    (In the formula (2), the formula (3) and the formula (4), R 1 and R 2 each represent a monovalent substituent, each independently a hydrogen atom, a linear or branched C 1 to C 6 chain Or an alkyl group of 1 to 4 or a halogen atom, n is an integer of 1 to 4 and m is an integer of 1 to 8)
  2.  前記Ar及びArが、各々独立に下記式(5)又は(6)で表される、請求項1に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    The resin composition according to claim 1, wherein Ar 1 and Ar 3 are each independently represented by the following formula (5) or (6).
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
  3.  前記Arが下記式(7)又は(8)で表される、請求項1又は2に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    The resin composition according to claim 1, wherein Ar 2 is represented by the following formula (7) or (8).
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
  4.  前記シアン酸エステル化合物以外のシアン酸エステル化合物(A)、マレイミド化合物、フェノール樹脂、エポキシ樹脂、オキセタン樹脂、ベンゾオキサジン化合物、及び重合可能な不飽和基を有する化合物からなる群より選択される1種以上をさらに含む、請求項1~3のいずれか一項に記載の樹脂組成物。 1 type selected from the group consisting of cyanate ester compounds (A) other than the above-mentioned cyanate ester compounds, maleimide compounds, phenol resins, epoxy resins, oxetane resins, benzoxazine compounds, and compounds having a polymerizable unsaturated group The resin composition according to any one of claims 1 to 3, further comprising the above.
  5.  シート状成形体用である、請求項1~4のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, which is for a sheet-like shaped body.
  6.  請求項1~5のいずれか一項に記載の樹脂組成物を硬化させてなる、硬化物。 A cured product obtained by curing the resin composition according to any one of claims 1 to 5.
  7.  請求項1~4のいずれか一項に記載の樹脂組成物をシート状に成形してなる、単層樹脂シート。 A single-layer resin sheet obtained by forming the resin composition according to any one of claims 1 to 4 into a sheet.
  8.  支持体と、
     前記支持体の片面又は両面に配された、請求項1~4のいずれか一項に記載の樹脂組成物と、
     を有する、積層樹脂シート。
    A support,
    The resin composition according to any one of claims 1 to 4, which is disposed on one side or both sides of the support.
    Having a laminated resin sheet.
  9.  基材と、
     前記基材に含浸又は塗布された、請求項1~4のいずれか一項に記載の樹脂組成物と、
     を有する、プリプレグ。
    A substrate,
    The resin composition according to any one of claims 1 to 4, which is impregnated or applied to the substrate.
    Have a prepreg.
  10.  請求項7に記載の単層樹脂シート、請求項8に記載の積層樹脂シート、及び、請求項9に記載のプリプレグからなる群より選ばれる少なくとも1種と、
     前記単層樹脂シート、前記積層樹脂シート及び前記プリプレグからなる群より選ばれる少なくとも1種の片面又は両面に配された金属箔と、
     を有し、
     前記単層樹脂シート、前記樹脂シート及び前記プリプレグからなる群より選ばれる少なくとも1種に含まれる樹脂組成物の硬化物を含む、金属箔張積層板。
    A single-layer resin sheet according to claim 7, a laminated resin sheet according to claim 8, and at least one selected from the group consisting of a prepreg according to claim 9.
    At least one metal foil disposed on one side or both sides selected from the group consisting of the single-layer resin sheet, the laminated resin sheet, and the prepreg;
    Have
    The metal foil tension laminate board containing the hardened material of the resin composition contained in at least one sort chosen from the group which consists of the single layer resin sheet, the resin sheet, and the pre-preg.
  11.  絶縁層と、
     前記絶縁層の片面又は両面に形成された導体層と、
     を有し、
     前記絶縁層が、請求項1~4のいずれか一項に記載の樹脂組成物を含む、プリント配線板。
    An insulating layer,
    A conductor layer formed on one side or both sides of the insulating layer;
    Have
    A printed wiring board, wherein the insulating layer comprises the resin composition according to any one of claims 1 to 4.
  12.  請求項1~4のいずれか一項に記載の樹脂組成物を含む、封止用材料。 A sealing material comprising the resin composition according to any one of claims 1 to 4.
  13.  請求項1~4のいずれか一項に記載の樹脂組成物と、強化繊維と、を含む、繊維強化複合材料。 A fiber-reinforced composite material comprising the resin composition according to any one of claims 1 to 4 and a reinforcing fiber.
  14.  請求項1~4のいずれか一項に記載の樹脂組成物を含む、接着剤。 An adhesive comprising the resin composition according to any one of claims 1 to 4.
PCT/JP2018/027009 2017-08-08 2018-07-19 Resin composition, cured product, single-layer resin sheet, laminated resin sheet, prepreg, metal-foiled laminate sheet, printed circuit board, sealing material, fiber reinforced composite material, and adhesive agent WO2019031178A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019535058A JP7052797B2 (en) 2017-08-08 2018-07-19 Resin composition, cured product, single-layer resin sheet, laminated resin sheet, prepreg, metal leaf-clad laminated board, printed wiring board, sealing material, fiber-reinforced composite material and adhesive

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-153275 2017-08-08
JP2017153275 2017-08-08

Publications (1)

Publication Number Publication Date
WO2019031178A1 true WO2019031178A1 (en) 2019-02-14

Family

ID=65272147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027009 WO2019031178A1 (en) 2017-08-08 2018-07-19 Resin composition, cured product, single-layer resin sheet, laminated resin sheet, prepreg, metal-foiled laminate sheet, printed circuit board, sealing material, fiber reinforced composite material, and adhesive agent

Country Status (3)

Country Link
JP (1) JP7052797B2 (en)
TW (1) TW201910429A (en)
WO (1) WO2019031178A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032537A1 (en) * 2021-09-03 2023-03-09 株式会社Adeka Composition and cured product

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI543209B (en) 2009-09-18 2016-07-21 Bundled soft circuit cable

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03148250A (en) * 1989-07-17 1991-06-25 Dow Chem Co:The Polycyanate in mesogen form
JP2009249300A (en) * 2008-04-02 2009-10-29 Sumitomo Chemical Co Ltd Method for producing diepoxy compound
WO2012105547A1 (en) * 2011-02-04 2012-08-09 三菱瓦斯化学株式会社 Curable resin composition and cured product thereof
WO2017122350A1 (en) * 2016-01-15 2017-07-20 日立化成株式会社 Epoxy resin composition, heat conductive material precursor, b-stage sheet, prepreg, heat dissipation material, laminated plate, metal substrate, and printed wiring board
JP2018070553A (en) * 2016-11-02 2018-05-10 三菱瓦斯化学株式会社 Cyanate compound, method for producing cyanate compound, resin composition, cured product, monolayer resin sheet, laminate resin sheet, prepreg, metal foil-clad laminate, printed wiring board, sealing material, fiber-reinforced composite material and adhesive

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0877081B8 (en) 1995-12-27 2009-12-02 Chisso Corporation Microorganisms culture medium
JP2001163972A (en) 1999-12-03 2001-06-19 Sumitomo Chem Co Ltd Production method for cyanate prepolymer
JP4108946B2 (en) 2001-02-08 2008-06-25 本州化学工業株式会社 Novel 1,4-bis (4-hydroxyphenyl) -1-cyclohexenes
US9453126B2 (en) 2010-10-29 2016-09-27 Mitsubishi Gas Chemical Company, Inc. Cyanate ester compound, curable resin composition containing cyanate ester compound, and cured product thereof
CN104379545B (en) 2012-05-14 2016-08-24 本州化学工业株式会社 The manufacture method of 4,4 "-dihydroxy-meta-terphenyl class

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03148250A (en) * 1989-07-17 1991-06-25 Dow Chem Co:The Polycyanate in mesogen form
JP2009249300A (en) * 2008-04-02 2009-10-29 Sumitomo Chemical Co Ltd Method for producing diepoxy compound
WO2012105547A1 (en) * 2011-02-04 2012-08-09 三菱瓦斯化学株式会社 Curable resin composition and cured product thereof
WO2017122350A1 (en) * 2016-01-15 2017-07-20 日立化成株式会社 Epoxy resin composition, heat conductive material precursor, b-stage sheet, prepreg, heat dissipation material, laminated plate, metal substrate, and printed wiring board
JP2018070553A (en) * 2016-11-02 2018-05-10 三菱瓦斯化学株式会社 Cyanate compound, method for producing cyanate compound, resin composition, cured product, monolayer resin sheet, laminate resin sheet, prepreg, metal foil-clad laminate, printed wiring board, sealing material, fiber-reinforced composite material and adhesive

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032537A1 (en) * 2021-09-03 2023-03-09 株式会社Adeka Composition and cured product

Also Published As

Publication number Publication date
TW201910429A (en) 2019-03-16
JP7052797B2 (en) 2022-04-12
JPWO2019031178A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
JP6468465B2 (en) Resin composition, prepreg, resin sheet, and metal foil-clad laminate
JP6879451B2 (en) Cyanic acid ester compound, method for producing cyanic acid ester compound, resin composition, cured product, single-layer resin sheet, laminated resin sheet, prepreg, metal foil-clad laminate, printed wiring board, sealing material, fiber-reinforced composite material And adhesive
JP7026887B2 (en) Resin composition, cured product, single-layer resin sheet, laminated resin sheet, prepreg, metal leaf-clad laminated board, printed wiring board, sealing material, fiber-reinforced composite material and adhesive
WO2017170375A1 (en) Cyanic acid ester compound and method for producing same, resin composition, cured article, prepreg, sealing material, fiber-reinforced composite material, adhesive agent, metal foil-clad laminate plate, resin sheet, and printed wiring board
JP6090684B1 (en) Resin composition for printed wiring board, prepreg, resin composite sheet and metal foil-clad laminate
JP7046602B2 (en) Resin composition, prepreg, metal leaf-clad laminate, resin sheet, and printed wiring board
KR102099545B1 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
WO2020059476A1 (en) Cyanic acid ester compound, method for producing same, resin composition, cured product, single-layer resin sheet, multilayer resin sheet, prepreg, metal foil-clad laminate, printed wiring board, sealing material, fiber-reinforced composite material, adhesive and semiconductor device
KR101762102B1 (en) Resin composition, prepreg, metal-foil-clad laminate, resin composite sheet, and printed wiring board
WO2015060266A1 (en) Resin composition, prepreg, laminated sheet, and metal-foil-clad laminated board
JP7052797B2 (en) Resin composition, cured product, single-layer resin sheet, laminated resin sheet, prepreg, metal leaf-clad laminated board, printed wiring board, sealing material, fiber-reinforced composite material and adhesive
JP6827645B2 (en) Cyanic acid ester compound, method for producing cyanic acid ester compound, resin composition, cured product, single layer resin sheet, laminated resin sheet, prepreg, metal foil-clad laminate, printed wiring board, sealing material, fiber reinforced composite material And adhesive
JP6699076B2 (en) Resin composition, prepreg, resin sheet, metal foil-clad laminate and printed wiring board
JP6796276B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP7305108B2 (en) Cyanate ester compounds, resin compositions, cured products, single-layer resin sheets, laminated resin sheets, prepregs, metal foil-clad laminates, printed wiring boards, sealing materials, fiber-reinforced composite materials, and adhesives
KR101981440B1 (en) Resin composition, prepreg, metal foil clad laminate, resin sheet and printed wiring board
JP7154479B2 (en) Resin compositions, cured products, single-layer resin sheets, laminated resin sheets, prepregs, metal foil-clad laminates, printed wiring boards, sealing materials, fiber-reinforced composite materials, and adhesives
JP2020045429A (en) Resin composition, cured product, single layer resin sheet, laminate resin sheet, prepreg, metal foil-clad laminate, printed wiring board, sealing material, fiber-reinforced composite material and adhesive
JP6829808B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
WO2019198550A1 (en) Cyanic acid ester compound and method for producing same, resin composition, cured article, single-layer resin sheet, laminated resin sheet, prepreg, metal-foil-clad laminated plate, printed wiring board, sealing material, fiber-reinforced composite material, and adhesive agent
JP6761573B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18843820

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019535058

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18843820

Country of ref document: EP

Kind code of ref document: A1