WO2019031138A1 - Electroconductive film for transfer - Google Patents

Electroconductive film for transfer Download PDF

Info

Publication number
WO2019031138A1
WO2019031138A1 PCT/JP2018/026008 JP2018026008W WO2019031138A1 WO 2019031138 A1 WO2019031138 A1 WO 2019031138A1 JP 2018026008 W JP2018026008 W JP 2018026008W WO 2019031138 A1 WO2019031138 A1 WO 2019031138A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
liquid crystal
film
conductive layer
crystal layer
Prior art date
Application number
PCT/JP2018/026008
Other languages
French (fr)
Japanese (ja)
Inventor
一裕 中島
菅原 英男
豪彦 安藤
武田 健太郎
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020207002113A priority Critical patent/KR20200018689A/en
Priority to CN201880051261.2A priority patent/CN110997310A/en
Publication of WO2019031138A1 publication Critical patent/WO2019031138A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a conductive film for transfer.
  • ITO layer indium tin complex oxide layer
  • a transparent resin film for example, PET film, cycloolefin film
  • the transparent conductive film in which the metal oxide layer (conductive layer) of these was formed is used abundantly.
  • a transparent conductive film provided with a conductive layer composed of a conductive polymer, a metal nanowire or the like instead of the metal oxide layer susceptible to cracking is being studied. Have problems with gender and transparency, and have not been fully introduced.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a conductive film for transfer, which is capable of producing an optical laminate having a conductive layer and being excellent in bending resistance. It is.
  • the conductive film for transfer of the present invention includes a temporary support, a liquid crystal layer provided so as to be peelable from the temporary support, and a conductive layer in this order.
  • the conductive layer is directly laminated to the liquid crystal layer.
  • the refractive index characteristics of the liquid crystal layer exhibit a relationship of nz> nx ⁇ ny.
  • the thickness of the liquid crystal layer is 0.1 ⁇ m to 10 ⁇ m.
  • the conductive layer is composed of a metal oxide.
  • the conductive layer is patterned. According to another aspect of the present invention, an optical laminate is provided.
  • the optical laminate includes an optical member, a pressure-sensitive adhesive layer, the conductive layer, and the liquid crystal layer in this order, and the conductive layer is directly laminated on the liquid crystal layer.
  • the optical member is a polarizing plate.
  • the optical member is a circularly polarizing plate, and the circularly polarizing plate includes a polarizer and a retardation layer functioning as a ⁇ / 4 plate, and the polarizer includes the retardation. It is arranged on the side of the layer opposite to the conductive layer.
  • the optical laminate further includes another optical member on the side opposite to the conductive layer of the liquid crystal layer.
  • the other optical member is a circularly polarizing plate
  • the circularly polarizing plate includes a polarizer and a retardation layer functioning as a ⁇ / 4 plate
  • the polarizer includes the polarizer. It is disposed on the side opposite to the liquid crystal layer of the retardation layer.
  • a touch device is provided.
  • the touch device comprises the optical laminate.
  • a method of manufacturing an optical laminate includes transferring a laminate including the liquid crystal layer and the conductive layer to an optical member from the conductive film for transfer.
  • the conductive film for transfer of the present invention has a temporary support, a liquid crystal layer and a conductive layer in this order. If the conductive film for transfer having such a configuration is used, a laminate comprising a liquid crystal layer and a conductive layer can be transferred to another optical member to form an optical laminate.
  • the obtained optical laminate is excellent in bending resistance because it does not have a rigid base (a base necessary for forming a conductive layer). Further, the conductive film for transfer of the present invention is excellent in conductivity and light transmittance since the conductive layer is composed of a metal oxide.
  • FIG. 1 is a schematic cross-sectional view of an optical laminate according to an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of an optical laminate according to another embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of an optical laminate according to another embodiment of the present invention. It is a graph which shows the result of the bending tolerance test of Example 1 and Comparative Example 1 and Comparative Example 2.
  • Refractive index (nx, ny, nz) “Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the direction orthogonal to the slow axis in the plane (ie, the fast axis direction) And “nz” is the refractive index in the thickness direction.
  • Refractive index (nx, ny, nz) “Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the direction orthogonal to the slow axis in the plane (ie, the fast axis direction)
  • nz is the refractive index in the thickness direction.
  • In-plane retardation (Re) “Re (550)” is an in-plane retardation measured with light having a wavelength of 550 nm at 23 ° C.
  • Re (450) is an in-plane retardation measured with light of wavelength 450 nm at 23 ° C.
  • Retardation in the thickness direction (Rth) is a thickness direction retardation measured with light having a wavelength of 550 nm at 23 ° C.
  • Rth (450) is the retardation in the thickness direction measured with light of wavelength 450 nm at 23 ° C.
  • FIG. 1 is a schematic cross-sectional view of a transfer conductive film according to an embodiment of the present invention.
  • the conductive film for transfer 10 includes a temporary support 11, a liquid crystal layer 12 provided so as to be peelable from the temporary support 11, and a conductive layer 13 in this order.
  • the conductive layer 13 is preferably laminated directly on the liquid crystal layer 12 (that is, without via an adhesive layer or the like).
  • the conductive film for transfer 10 can be used when applying a conductive layer to the optical laminate. More specifically, the surface on the conductive layer 13 side is attached to another optical member (for example, an image element (for example, liquid crystal panel, organic EL panel), an optical film (for example, retardation film), a polarizing plate, etc.) Thereafter, the temporary support 11 is peeled off, and the laminate A including the liquid crystal layer 12 and the conductive layer 13 is transferred, whereby the conductive layer can be applied to the optical laminate.
  • the conductive layer is applied to the optical laminate in a state of being formed on the substrate, and the optical laminate includes the substrate, but if the conductive film for transfer of the present invention is used, the conductive layer is formed.
  • the base material is rigid since it functions as a support, but an optical laminate not including such a base material is excellent in flexibility.
  • the optical laminate that does not include the base material when bent, the load on the conductive layer is small, and the conductive layer is unlikely to be damaged.
  • a rigid substrate is excluded even in an optical laminate including an optical member that is easily damaged during processing (for example, heat treatment) for forming a conductive layer.
  • processing for example, heat treatment
  • the polarizing plate is damaged, but when the conductive film for transfer of the present invention is used, the polarizing plate is not damaged.
  • An optical laminate can be formed.
  • the conductive layer can function as an electrode of a touch device.
  • the conductive layer is composed of a metal oxide.
  • the metal oxide include indium oxide, tin oxide, zinc oxide, indium-tin complex oxide, tin-antimony complex oxide, zinc-aluminum complex oxide, indium-zinc complex oxide and the like.
  • ITO indium-tin complex oxide
  • the conductive layer may be a layer containing a conductive polymer, a conductive filler, a metal nanowire and / or a metal mesh.
  • the conductive layer preferably has optical transparency.
  • the total light transmittance of the conductive layer is preferably 80% or more, more preferably 85% or more, and still more preferably 90% or more.
  • the surface resistance value of the conductive layer is preferably 0.1 ⁇ / ⁇ to 1000 ⁇ / ⁇ , more preferably 0.5 ⁇ / ⁇ to 500 ⁇ / ⁇ , and particularly preferably 1 ⁇ / ⁇ to 250 ⁇ / ⁇ . .
  • the conductive layer is formed directly on the liquid crystal layer.
  • a metal oxide layer is formed on the liquid crystal layer by any appropriate film forming method (for example, a vacuum evaporation method, a sputtering method, a CVD method, an ion plating method, a spray method, etc.) Are formed to obtain a conductive layer.
  • the metal oxide layer may be used as it is as a conductive layer, or may be further heated to crystallize the metal oxide. The heating temperature is, for example, 120 ° C. to 200 ° C.
  • the thickness of the conductive layer is preferably 50 nm or less, more preferably 40 nm or less. If it is such a range, the conductive layer which is excellent in light transmittance can be obtained.
  • the lower limit of the thickness of the conductive layer is preferably 1 nm, more preferably 5 nm.
  • the conductive layer may be patterned.
  • any appropriate method may be adopted depending on the form of the conductive layer.
  • it may be patterned by an etching method, a laser method or the like.
  • the shape of the pattern of the conductive layer may be any suitable shape depending on the application.
  • the patterns described in JP-A-2011-511357, JP-A-2010-164938, JP-A-2008-310550, JP-A-2003-511799 and JP-A-2010-541109 can be mentioned.
  • the liquid crystal layer comprises any suitable liquid crystal compound.
  • the conductive layer is formed on the liquid crystal layer, and the liquid crystal layer is disposed between the conductive layer and the temporary support.
  • the laminate A configured can be transferred to another optical member. It is one of the achievements of the present invention that both a liquid crystal layer and a conductive layer having a predetermined function can be introduced into an optical laminate excluding rigid substrates.
  • the liquid crystal layer exhibits a refractive index characteristic of nz> nx ⁇ ny.
  • the thickness direction retardation Rth (550) of the liquid crystal layer is preferably ⁇ 260 nm to ⁇ 10 nm, more preferably ⁇ 230 nm to ⁇ 15 nm, and still more preferably ⁇ 215 nm to ⁇ 20 nm.
  • the liquid crystal layer has a refractive index of nx> ny.
  • the in-plane retardation Re (550) of the liquid crystal layer is preferably 10 nm to 150 nm, more preferably 10 nm to 80 nm.
  • the liquid crystal layer is a liquid crystal layer fixed in homeotropic alignment.
  • the liquid crystal material (liquid crystal compound) which can be homeotropically aligned may be a liquid crystal monomer or a liquid crystal polymer.
  • Specific examples of the liquid crystal compound and the method of forming the liquid crystal layer include the liquid crystal compound and the forming method described in [0020] to [0042] of JP-A-2002-333642.
  • the thickness of the liquid crystal layer is preferably 0.1 ⁇ m to 10 ⁇ m, more preferably 0.1 ⁇ m to 5 ⁇ m, and still more preferably 0.2 ⁇ m to 3 ⁇ m. If it is such a range, a desired optical laminated body can be obtained, and the electroconductive film for transfer which is excellent in the peelability of the laminated body A can be obtained.
  • the total light transmittance of the liquid crystal layer is preferably 80% or more, more preferably 85% or more, and still more preferably 90% or more.
  • any appropriate resin can be used as long as the effects of the present invention can be obtained.
  • the resin constituting the temporary support include cycloolefin resins, polyimide resins, polyvinylidene chloride resins, polyvinyl chloride resins, polyethylene terephthalate resins, polyethylene naphthalate resins, and the like.
  • the thickness of the temporary support is preferably 8 ⁇ m to 500 ⁇ m, more preferably 50 ⁇ m to 250 ⁇ m.
  • the tackiness of the temporary support to the liquid crystal layer at 23 ° C. is preferably 0.01 N / 25 mm to 1 N / 25 mm, more preferably 0.01 N / 25 mm to 0.7 N / 25 mm. If it is such a range, the electroconductive film for transfer which can transfer the laminated body A easily can be obtained.
  • the adhesive strength is measured by a method according to JIS Z 0237: 2000, and the adhesive strength measured by peeling the temporary support at a tensile speed of 300 mm / min and a peeling angle of 180 ° from the manufactured conductive film for transfer.
  • a release layer may be provided on the surface of the temporary support on the liquid crystal layer side in order to facilitate peeling from the liquid crystal layer.
  • the release layer may be a layer composed of any appropriate material as long as the above-mentioned adhesive force can be exhibited, and is formed by, for example, a known release treatment (eg, application of a silicone-based release agent).
  • Layer may be provided to enhance the alignment of the liquid crystal layer.
  • the optical laminate of the present invention includes the laminate A (a laminate including a liquid crystal layer and a conductive layer) transferred from the conductive film for transfer.
  • a touch device comprising the optical stack is provided.
  • the conductive layer functions as an electrode.
  • the touch device is excellent in flexibility and is also useful in that it is difficult for the conductive layer to be damaged even when it is bent.
  • FIG. 2 is a schematic cross-sectional view of an optical laminate according to one embodiment of the present invention.
  • the optical laminate 100 includes an optical member 20, a conductive layer 13, and a liquid crystal layer 12 in this order.
  • the optical member 20 and the conductive layer 13 are laminated via the adhesive layer 30, and the adhesive layer 30 is in contact with the optical member 20 and the conductive layer 13.
  • a laminate A composed of the conductive layer 13 and the liquid crystal layer 12 is a laminate transferred from the conductive film for transfer.
  • the conductive layer 13 is laminated directly on the liquid crystal layer 12 (that is, without interposing an adhesive layer or the like).
  • FIG. 3 is a schematic cross-sectional view of an optical laminate according to another embodiment of the present invention.
  • the optical laminate 200 includes an optical member 20, a conductive layer 13, a liquid crystal layer 12, and another optical member 40 in this order.
  • the optical member 20 and the conductive layer 13 are laminated via the adhesive layer 30, and the adhesive layer 30 is in contact with the optical member 20 and the conductive layer 13.
  • the liquid crystal layer 12 and another optical member 40 are laminated via the adhesive layer 30, and the adhesive layer 30 is in contact with the liquid crystal layer 12 and another optical member 40.
  • optical member 20 and another optical member 40 examples include an image element (for example, a liquid crystal panel, an organic EL panel), an optical film (for example, a retardation film), a polarizing plate, a circularly polarizing plate, and the like.
  • image element for example, a liquid crystal panel, an organic EL panel
  • optical film for example, a retardation film
  • polarizing plate for example, a polarizing plate
  • circularly polarizing plate a circularly polarizing plate
  • a polarizing plate or a circularly polarizing plate is used as the optical member 20.
  • a polarizing plate or a circularly polarizing plate is used as another optical member 40.
  • the optical laminate When applied to an image display device (for example, a touch device), the optical laminate may be disposed such that the conductive layer is on the viewing side of the polarizing plate or the circularly polarizing plate, and the conductive layer is the polarizing plate or the circular plate. You may be arrange
  • an optical laminate in which a polarizer is used as an optical member or another optical member that is, an optical laminate comprising a polarizer, a conductive layer, and a liquid crystal layer in this order, or There is provided an optical laminate comprising a conductive layer, a liquid crystal layer, and a polarizing plate in this order.
  • a conductive layer is directly formed on a film including a polarizing plate by a conductive layer applying process such as sputtering, problems such as the polarizing plate being damaged during the conductive layer applying process may occur. If a conductive film is used, an optical layered product can be formed without damaging the polarizing plate.
  • the example of the polarizing plate used for the said optical laminated body is demonstrated below.
  • the polarizing plate comprises a polarizer.
  • the polarizing plate preferably further comprises a protective film on one side or both sides of the polarizer.
  • the thickness in particular of the said polarizer is not restrict
  • the thickness is typically about 1 ⁇ m to 80 ⁇ m.
  • a thin polarizer is used, and the thickness of the polarizer is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, still more preferably 10 ⁇ m or less, particularly preferably 6 ⁇ m or less It is. By using such a thin polarizer, a thin optical laminate can be obtained.
  • the above-mentioned polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm.
  • the single transmittance of the polarizer is preferably 40.0% or more, more preferably 41.0% or more, still more preferably 42.0% or more, and particularly preferably 43.0% or more.
  • the polarization degree of the polarizer is preferably 99.8% or more, more preferably 99.9% or more, and still more preferably 99.95% or more.
  • the polarizer is an iodine-based polarizer.
  • the said polarizer may be comprised from the polyvinyl alcohol-type resin (It is hereafter called "PVA-type resin") film containing an iodine.
  • PVA system resin which forms the above-mentioned PVA system resin film.
  • polyvinyl alcohol and ethylene-vinyl alcohol copolymer can be mentioned.
  • Polyvinyl alcohol is obtained by saponifying polyvinyl acetate.
  • the ethylene-vinyl alcohol copolymer is obtained by saponifying an ethylene-vinyl acetate copolymer.
  • the saponification degree of the PVA-based resin is usually 85% by mole to 100% by mole, preferably 95.0% by mole to 99.95% by mole, and more preferably 99.0% by mole to 99.93% by mole It is.
  • the degree of saponification can be determined according to JIS K 6726-1994. By using a PVA resin having such a degree of saponification, a polarizer having excellent durability can be obtained. If the degree of saponification is too high, gelation may occur.
  • the average degree of polymerization of the PVA-based resin can be appropriately selected depending on the purpose.
  • the average degree of polymerization is usually 1000 to 10000, preferably 1200 to 5000, and more preferably 1500 to 4500.
  • the average degree of polymerization can be determined according to JIS K 6726-1994.
  • a method for producing the above-mentioned polarizer for example, a method (I) of stretching and dyeing a PVA-based resin film alone, a method of stretching and dyeing a laminate (i) having a resin substrate and a polyvinyl alcohol-based resin layer II) and the like. Since the method (I) is a method well known and used in the art, the detailed description is omitted.
  • a laminate (i) having a resin base and a polyvinyl alcohol-based resin layer formed on one side of the resin base is stretched and dyed to form a resin base. And the process of producing a polarizer.
  • the laminate (i) may be formed by applying and drying a coating liquid containing a polyvinyl alcohol resin on a resin base material.
  • the laminate (i) may be formed by transferring a polyvinyl alcohol-based resin film onto a resin substrate.
  • the details of the above production method (II) are described, for example, in JP-A-2012-73580, which is incorporated herein by reference.
  • any appropriate resin film may be employed as the protective film.
  • materials for forming the protective film include polyester resins such as polyethylene terephthalate (PET), cellulose resins such as triacetyl cellulose (TAC), cycloolefin resins such as norbornene resins, and olefin resins such as polyethylene and polypropylene.
  • Resin, (meth) acrylic resin, etc. are mentioned.
  • polyethylene terephthalate (PET) is preferred.
  • a (meth) acrylic resin having a glutarimide structure is used as the (meth) acrylic resin.
  • the protective film and the polarizer are laminated via any appropriate adhesive layer.
  • the resin base material used at the time of polarizer production may be exfoliated before or after laminating the protective film and the polarizer.
  • the thickness of the protective film is preferably 5 ⁇ m to 55 ⁇ m, more preferably 10 ⁇ m to 50 ⁇ m, and still more preferably 15 ⁇ m to 45 ⁇ m.
  • FIG. 4 is a schematic cross-sectional view of an optical laminate according to one embodiment of the present invention.
  • the optical laminate 110 includes a circularly polarizing plate 21 as an optical member.
  • the circularly polarizing plate 21 includes a polarizer 1 and a retardation layer 2.
  • the polarizer 1 is preferably disposed on the side opposite to the laminate A of the retardation layer 2 (that is, the conductive layer).
  • the circularly polarizing plate 21 and the laminate A are laminated via the pressure-sensitive adhesive layer 30, and the pressure-sensitive adhesive layer 30 is in contact with the retardation layer 2 and the conductive layer 13.
  • a circularly polarizing plate is used as another optical member, and an optical laminate including an optical member, a conductive layer, a liquid crystal layer, and a circularly polarizing plate (retardation layer / polarizer) in this order Body is provided. Also in this embodiment, the polarizer is preferably disposed on the side opposite to the laminate A of the retardation layer (that is, the liquid crystal layer).
  • the circularly polarizing plate further comprises a protective film on the side of the polarizer opposite to the retardation layer (not shown).
  • the circularly polarizing plate may be provided with another protective film (also referred to as an inner protective film: not shown) between the polarizer and the retardation layer.
  • an inner protective film also referred to as an inner protective film: not shown
  • the polarizer and the protective film those described in the above section B-1 can be used.
  • the retardation layer can function as a ⁇ / 4 plate.
  • the in-plane retardation Re (550) of such a retardation layer is preferably 120 nm to 160 nm, more preferably 135 nm to 155 nm.
  • the retardation layer typically has a refractive index ellipsoid of nx> ny ⁇ nz.
  • the Rth (550) of the retardation layer is preferably 120 nm to 300 nm, more preferably 135 nm to 260 nm.
  • the Nz coefficient of the retardation layer is, for example, 0.9 to 2, preferably 1 to 1.8, and more preferably 1 to 1.7.
  • the polarizer and the retardation layer are laminated such that the absorption axis of the polarizer and the slow axis of the retardation layer form a predetermined angle.
  • the angle between the absorption axis of the polarizer and the slow axis of the retardation layer is preferably 35 ° to 55 °, more preferably 38 ° to 52 °, and still more preferably 40 ° to 50 °. More preferably, it is 42 ° to 48 °, and particularly preferably 44 ° to 46 °. If the angle is in such a range, a desired circular polarization function can be realized.
  • the angle includes angles in both clockwise and counterclockwise directions unless otherwise specified.
  • the thickness of the retardation layer may be set to most appropriately function as a ⁇ / 4 plate. In other words, the thickness can be set to obtain a desired in-plane retardation. Specifically, the thickness of the retardation layer is preferably 10 ⁇ m to 80 ⁇ m, more preferably 10 ⁇ m to 60 ⁇ m, and most preferably 30 ⁇ m to 50 ⁇ m.
  • the retardation layer may have an inverse dispersion wavelength characteristic in which the retardation value increases in accordance with the wavelength of the measurement light, or may indicate a positive wavelength dispersion characteristic in which the retardation value decreases in accordance with the wavelength of the measurement light. It may well exhibit flat wavelength dispersion characteristics in which the retardation value hardly changes depending on the wavelength of the measurement light.
  • the ⁇ / 4 plate is preferably a stretched film of a polymer film.
  • a ⁇ / 4 plate can be obtained by appropriately selecting the type of polymer and stretching treatment (eg, stretching method, stretching temperature, stretch ratio, stretching direction).
  • any appropriate resin may be used as the resin for forming the polymer film.
  • resins constituting a positive birefringence film such as cycloolefin resins such as polynorbornene, polycarbonate resins, cellulose resins, polyvinyl alcohol resins, and polysulfone resins. Among them, norbornene resins and polycarbonate resins are preferable.
  • the details of the resin forming the polymer film are described, for example, in JP-A-2014-010291. The description is incorporated herein by reference.
  • Examples of the stretching method include transverse uniaxial stretching, fixed end biaxial stretching, and sequential biaxial stretching.
  • As a specific example of the fixed end biaxial stretching there is a method of stretching in the short direction (lateral direction) while traveling the polymer film in the longitudinal direction. This method may be apparently transverse uniaxial stretching.
  • oblique stretching can be employed. By adopting oblique stretching, it is possible to obtain a long stretched film having an alignment axis (slow axis) at a predetermined angle with respect to the width direction.
  • the thickness of the stretched film is typically 5 ⁇ m to 80 ⁇ m, preferably 15 ⁇ m to 60 ⁇ m, and more preferably 25 ⁇ m to 45 ⁇ m.
  • the pressure-sensitive adhesive layer is formed of any appropriate pressure-sensitive adhesive.
  • the pressure-sensitive adhesive contains a tacky resin, and examples of the resin include acrylic resins, acrylic urethane resins, urethane resins, silicone resins and the like. Among them, preferred is an acrylic pressure-sensitive adhesive containing an acrylic resin.
  • the pressure-sensitive adhesive may further contain any appropriate additive, as needed.
  • the additive include a crosslinking agent, a tackifier, a plasticizer, a pigment, a dye, a filler, an antiaging agent, a conductive material, an ultraviolet absorber, a light stabilizer, a release regulator, a softener, and a surfactant. Flame retardants, antioxidants, etc.
  • an isocyanate type crosslinking agent an epoxy type crosslinking agent, a peroxide type crosslinking agent, a melamine type crosslinking agent, a urea type crosslinking agent, a metal alkoxide type crosslinking agent, a metal chelate type crosslinking agent, a metal salt type crosslinking agent, A carbodiimide type crosslinking agent, an oxazoline type crosslinking agent, an aziridine type crosslinking agent, an amine type crosslinking agent etc. are mentioned.
  • the thickness of the pressure-sensitive adhesive layer is preferably 5 ⁇ m to 100 ⁇ m, more preferably 10 ⁇ m to 50 ⁇ m.
  • the optical laminate may be provided with any appropriate other layer, as needed.
  • a hard-coat layer As said other layer, a hard-coat layer, an anti glare layer, an anti-reflective layer, a color filter layer etc. are mentioned, for example.
  • the method of producing an optical laminate of the present invention comprises transferring a laminate A including a liquid crystal layer and a conductive layer to an optical member from the conductive film for transfer.
  • the conductive layer and the optical member are laminated via an adhesive layer.
  • the conductive film for transfer the optical member and the pressure-sensitive adhesive layer, those described in the above section A and section B can be used.
  • another optical member may be laminated on the liquid crystal layer of the laminate A via the pressure-sensitive adhesive layer.
  • the thickness was measured using a digital gauge cordless type “DG-205” manufactured by Ozaki Mfg.
  • Example 1 A liquid crystal layer was formed by the following method on a polyethylene terephthalate film (trade name "Panapeel", thickness: 38 ⁇ m, manufactured by PANAC Co., Ltd.) subjected to release treatment as a temporary support.
  • a polyethylene terephthalate film trade name "Panapeel", thickness: 38 ⁇ m, manufactured by PANAC Co., Ltd.
  • a side chain-type liquid crystal polymer represented by the following chemical formula (I) (numbers 65 and 35 in the formula indicate mole% of monomer units and is represented by a block polymer for convenience: weight average molecular weight 5000) 80 parts by weight of a polymerizable liquid crystal (manufactured by BASF: trade name: Paliocolor LC 242) exhibiting a nematic liquid crystal phase and 5 parts by weight of a photopolymerization initiator (Cibas Specialty Chemicals: trade name: Irgacure 907) dissolved in 200 parts by weight of cyclopentanone Thus, a liquid crystal coating liquid was prepared.
  • a side chain-type liquid crystal polymer represented by the following chemical formula (I) (numbers 65 and 35 in the formula indicate mole% of monomer units and is represented by a block polymer for convenience: weight average molecular weight 5000)
  • a polymerizable liquid crystal manufactured by BASF: trade name: Paliocolor LC 242
  • the coating solution was applied by a bar coater to the release-treated surface of a PET film (temporary support), and the liquid crystal was oriented by heating and drying at 80 ° C. for 4 minutes.
  • the liquid crystal layer was irradiated with ultraviolet rays to cure the liquid crystal layer, whereby a liquid crystal solidified layer (thickness: 0.58 ⁇ m) was formed on the PET film (temporary support).
  • the in-plane retardation Re (550) of this liquid crystal layer is 0 nm, and the retardation Rth (550) in the thickness direction is -71 nm (nx: 1.5326, ny: 1.5326, nz: 1.6550), nz
  • the refractive index characteristic of> nx ny was shown.
  • the laminate composed of the temporary support and the liquid crystal layer was put into a sputtering apparatus, and an amorphous indium tin oxide layer with a thickness of 30 nm was formed on the surface of the liquid crystal layer. Thereafter, the indium tin oxide was converted from amorphous to crystalline by heat treatment at 130 ° C. for 90 minutes to obtain a conductive film for transfer (conductive layer / liquid crystal layer / temporary support).
  • a laminate A composed of a temporary support, a conductive layer and a liquid crystal layer, and a pressure-sensitive adhesive layer containing an acrylic pressure-sensitive adhesive are used to form a PET film (thickness: 23 ⁇ m)
  • the temporary support was peeled off to obtain a sample for evaluation of bending resistance (liquid crystal layer / conductive layer / pressure-sensitive adhesive layer / PET substrate).
  • PET polyethylene terephthalate
  • the PET film with a transparent dielectric layer was introduced into a take-up type sputtering apparatus, and an indium tin oxide layer (thickness: 30 nm) was formed on the surface of the transparent dielectric layer as a conductive layer.
  • Sputtering was performed using a sintered body consisting of 97% by weight of indium oxide and 3% by weight of tin oxide in an atmosphere of 0.4 Pa consisting of 98% argon gas and 2% oxygen.
  • the laminate obtained as described above is attached to a PET film (thickness: 23 ⁇ m) via a pressure-sensitive adhesive layer containing an acrylic pressure-sensitive adhesive, and a sample for evaluating bending resistance (PET base material / dielectric material Layer / conductive layer / adhesive layer / PET substrate) was obtained.
  • Comparative Example 2 0.16 parts by weight of a plurality of monodispersed particles (manufactured by Soken Chemical Co., Ltd., trade name “MX180-TAN”, refractive index: 1.495) having an average particle diameter of 1.8 ⁇ m, and a binder resin (manufactured by DIC, trade name) Coating composition A containing 100 parts by weight of UNIDIC ", refractive index: 1.51) and a solvent (ethyl acetate) was prepared.
  • a binder resin manufactured by DIC, trade name
  • the thickness of the flat portion after drying of the above-mentioned coating composition A using a gravure coater is 1.0 ⁇ m
  • the coating was dried by heating at 80 ° C.
  • the antiblocking layer was formed by irradiating the ultraviolet-ray of 250 mJ / cm ⁇ 2 > of integrated light quantity with a high pressure mercury lamp.
  • a coating composition B was prepared by diluting a binder resin (manufactured by DIC, trade name "UNIDIC”, refractive index 1.51) with ethyl acetate.
  • Coating composition B is applied to the surface of the long base film opposite to the antiblocking layer using a gravure coater so that the thickness of the flat part after drying is 1.0 ⁇ m, and heated at 80 ° C. The coating was dried by Then, the hard coat layer was formed by irradiating the ultraviolet-ray of 250 mJ / cm ⁇ 2 > of accumulated light quantities with a high pressure mercury lamp.
  • an organic-inorganic composite material comprising a refractive index modifier (trade name "Opster Z7412” manufactured by JSR Corporation, zirconia particles having a median diameter of 40 nm as an inorganic component and a refractive index of 1.62 ) was applied using a gravure coater, and the coating was dried by heating at 60.degree. After that, ultraviolet rays of 250 mJ / cm 2 of integrated light quantity were irradiated with a high pressure mercury lamp to perform curing treatment, thereby forming an optical adjustment layer having a thickness of 115 nm and a refractive index of 1.62.
  • a refractive index modifier trade name "Opster Z7412” manufactured by JSR Corporation, zirconia particles having a median diameter of 40 nm as an inorganic component and a refractive index of 1.62
  • a long base film having an antiblocking layer, a hard coat layer, and an optical adjustment layer laminate is introduced into a take-up type sputtering apparatus, and an indium tin oxide layer (a conductive layer) is formed on the surface of the COP base. Thickness: 30 nm).
  • Sputtering was performed using a sintered body consisting of 97% by weight of indium oxide and 3% by weight of tin oxide in an atmosphere of 0.4 Pa consisting of 98% argon gas and 2% oxygen.
  • the laminate obtained as described above is attached to a PET film (thickness: 23 ⁇ m) via a pressure-sensitive adhesive layer containing an acrylic pressure-sensitive adhesive, and a sample for evaluating bending resistance (COP base material / optical adjustment A layered long substrate film / conductive layer / adhesive layer / PET substrate) was obtained.
  • Example 1 The evaluation samples obtained in Example 1 and Comparative Examples 1 and 2 were subjected to a bending tolerance test. The results are shown in Table 1.
  • the test method of the bending resistance test is as follows. The resistance value change after the bending test of each evaluation sample was measured using an automatic bending tester manufactured by Yuasa System Instruments Co., Ltd. and a resistance value tester to evaluate the bending resistance. Regarding the bending test, the test diameter was 5 mm in diameter, and the bending was performed so that the PET substrate side bonded via the pressure-sensitive adhesive was on the bending outer surface side.
  • Example 2 (Preparation of polarizer) After a long polyvinyl alcohol film is dyed in an aqueous solution containing iodine, it is uniaxially stretched 6 times between rolls having different speed ratios in an aqueous solution containing boric acid, and a long sheet having an absorption axis in the longitudinal direction -Shaped polarizer (thickness: 12 ⁇ m) was obtained. The elongated polarizer was stretched and then wound to form a wound body.
  • a protective film As a protective film, a long triacetyl cellulose film (thickness 40 ⁇ m, manufactured by Konica Minolta, trade name: KC4UYW) was used. This protective film was prepared as a wound body.
  • the in-plane retardation Re (550) of the protective film was 5 nm, and the retardation Rth (550) in the thickness direction was 45 nm.
  • the liquid crystal layer side of the said optical laminated body was stuck to the organic electroluminescent panel, and the optical characteristic at the time of the panel non-lighting of the optical laminated body was confirmed.
  • the conductive layer laminated on the liquid crystal layer can enjoy the reflection preventing effect of the circularly polarizing plate, and can realize excellent blackness.
  • Comparative Example 3 In the same manner as Comparative Example 1, a laminate provided with a PET substrate, a dielectric layer and a conductive layer in this order was obtained. The PET substrate side of this laminate was attached to the same protective film of the circularly polarizing plate as in Example 2 via the pressure-sensitive adhesive layer containing an acrylic pressure-sensitive adhesive. Furthermore, the liquid crystal coating liquid prepared in Example 1 is applied to the retardation film side of the circularly polarizing plate by the same method as in Example 1 to form a liquid crystal layer, and an optical laminate (conductive layer A dielectric layer / PET base material / circularly polarizing plate (protective film / polarizer / retardation layer) / liquid crystal layer) was obtained. The optical laminate had a total thickness of 135 ⁇ m. Furthermore, the liquid crystal layer side of the said optical laminated body was stuck on the organic electroluminescent panel, and the reflection preventing ability of the optical laminated body was confirmed. In the optical laminate, the reflection of light by the conductive layer was significantly confirmed.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

Provided is an electroconductive film for transfer which enables the manufacture of an optical laminate that comprises an electroconductive layer and has exceptional bend resistance. This electroconductive film for transfer includes, in the following order, a temporary support body, a liquid crystal layer provided so as to be peelable from the temporary support body, and an electroconductive layer. According to one embodiment, the electroconductive layer is directly laminated on the liquid crystal layer. According to one embodiment, the refractive index of the liquid crystal layer exhibits the relationship nz > nx ≥ ny.

Description

転写用導電性フィルムConductive film for transfer
 本発明は、転写用導電性フィルムに関する。 The present invention relates to a conductive film for transfer.
 従来、モバイル機器等に採用されるタッチセンサーの電極、電磁波シールド等として、透明樹脂フィルム(例えば、PETフィルム、シクロオレフィンフィルム)等の基材に、インジウム・スズ複合酸化物層(ITO層)等の金属酸化物層(導電層)が形成された透明導電性フィルムが多用されている。 Conventionally, indium tin complex oxide layer (ITO layer) or the like as a substrate of a transparent resin film (for example, PET film, cycloolefin film) or the like as an electrode of a touch sensor, electromagnetic wave shield or the like employed in mobile devices etc. The transparent conductive film in which the metal oxide layer (conductive layer) of these was formed is used abundantly.
 一方、近年、ウエアラブルデバイス、フォルダブルデバイス等の登場に伴い、よりフレシキブルで、屈曲耐性の高い透明導電性フィルム、より具体的には屈曲しても導電層が損傷しがたい透明導電性フィルムが求められている。屈曲耐性向上の手段としては、基材を薄膜化して導電層にかかる応力を低減させるという手段が考えられる。しかしながら、ハンドリング等の観点から、基材を構成する透明樹脂フィルムの薄膜には限界があり、透明樹脂フィルムの限界厚みが、屈曲耐性向上の障壁となっている。また、屈曲耐性向上の別の手段として、クラックの生じやすい金属酸化物層に代えて、導電高分子、金属ナノワイヤ等から構成される導電層を備える透明導電性フィルムも検討されているが、導電性、透明性に課題を有し、本格的な導入には至っていない。 On the other hand, in recent years, with the appearance of wearable devices, foldable devices, etc., it is more flexible and has a high bending resistance transparent conductive film, more specifically, a transparent conductive film in which the conductive layer is difficult to damage even when bent. It has been demanded. As means for improving the bending resistance, it is conceivable to reduce the stress applied to the conductive layer by thinning the substrate. However, from the viewpoint of handling etc., there is a limit to the thin film of the transparent resin film constituting the substrate, and the limit thickness of the transparent resin film is a barrier for improving the bending resistance. Also, as another means of improving the bending resistance, a transparent conductive film provided with a conductive layer composed of a conductive polymer, a metal nanowire or the like instead of the metal oxide layer susceptible to cracking is being studied. Have problems with gender and transparency, and have not been fully introduced.
特許第4893867号Patent No. 4893867
 本発明は上記の課題を解決するためになされたものであり、その目的とするところは、導電層を備え、屈曲耐性に優れる光学積層体の製造を可能とする転写用導電性フィルムを提供することにある。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a conductive film for transfer, which is capable of producing an optical laminate having a conductive layer and being excellent in bending resistance. It is.
 本発明の転写用導電性フィルムは、仮支持体と、該仮支持体から剥離可能に設けられた液晶層と、導電層とをこの順に含む。
 1つの実施形態においては、上記導電層が、上記液晶層に、直接積層されている。
 1つの実施形態においては、上記液晶層の屈折率特性が、nz>nx≧nyの関係を示す。
 1つの実施形態においては、上記液晶層の厚みが、0.1μm~10μmである。
 1つの実施形態においては、上記導電層が、金属酸化物から構成される。
 1つの実施形態においては、上記導電層が、パターン化されている。
 本発明の別の局面によれば、光学積層体が提供される。この光学積層体は、光学部材と、粘着剤層と、上記導電層と、上記液晶層とをこの順に備え、該導電層が、該液晶層に直接積層されている。
 1つの実施形態においては、上記光学部材が、偏光板である。
 1つの実施形態においては、上記光学部材が、円偏光板であり、該円偏光板が、偏光子と、λ/4板として機能する位相差層とを含み、該偏光子が、該位相差層の前記導電層とは反対側に配置される。
 1つの実施形態においては、上記光学積層体は、上記液晶層の導電層と反対側に、別の光学部材をさらに備える。
 1つの実施形態においては、上記別の光学部材が、円偏光板であり、該円偏光板が、偏光子と、λ/4板として機能する位相差層とを含み、該偏光子が、該位相差層の前記液晶層とは反対側に配置される。
 本発明の別の局面によれば、タッチデバイスが提供される。このタッチデバイスは、上記光学積層体を備える。
 本発明の別の局面によれば、光学積層体の製造方法が提供される。この製造方法は、上記転写用導電性フィルムから、光学部材に上記液晶層と上記導電層とを含む積層体を転写することを含む。
The conductive film for transfer of the present invention includes a temporary support, a liquid crystal layer provided so as to be peelable from the temporary support, and a conductive layer in this order.
In one embodiment, the conductive layer is directly laminated to the liquid crystal layer.
In one embodiment, the refractive index characteristics of the liquid crystal layer exhibit a relationship of nz> nx ≧ ny.
In one embodiment, the thickness of the liquid crystal layer is 0.1 μm to 10 μm.
In one embodiment, the conductive layer is composed of a metal oxide.
In one embodiment, the conductive layer is patterned.
According to another aspect of the present invention, an optical laminate is provided. The optical laminate includes an optical member, a pressure-sensitive adhesive layer, the conductive layer, and the liquid crystal layer in this order, and the conductive layer is directly laminated on the liquid crystal layer.
In one embodiment, the optical member is a polarizing plate.
In one embodiment, the optical member is a circularly polarizing plate, and the circularly polarizing plate includes a polarizer and a retardation layer functioning as a λ / 4 plate, and the polarizer includes the retardation. It is arranged on the side of the layer opposite to the conductive layer.
In one embodiment, the optical laminate further includes another optical member on the side opposite to the conductive layer of the liquid crystal layer.
In one embodiment, the other optical member is a circularly polarizing plate, and the circularly polarizing plate includes a polarizer and a retardation layer functioning as a λ / 4 plate, and the polarizer includes the polarizer. It is disposed on the side opposite to the liquid crystal layer of the retardation layer.
According to another aspect of the present invention, a touch device is provided. The touch device comprises the optical laminate.
According to another aspect of the present invention, there is provided a method of manufacturing an optical laminate. This manufacturing method includes transferring a laminate including the liquid crystal layer and the conductive layer to an optical member from the conductive film for transfer.
 本発明の転写用導電性フィルムは、仮支持体と、液晶層と、導電層とをこの順に有する。このような構成の転写用導電性フィルムを用いれば、液晶層と導電層とからなる積層体を他の光学部材に転写して、光学積層体を形成することができる。得られた光学積層体は、剛直な基材(導電層を形成する際に必要な基材)を備えていないため、屈曲耐性に優れる。また、本発明の転写用導電性フィルムは、導電層が金属酸化物から構成されているため、導電性および光透過性に優れる。 The conductive film for transfer of the present invention has a temporary support, a liquid crystal layer and a conductive layer in this order. If the conductive film for transfer having such a configuration is used, a laminate comprising a liquid crystal layer and a conductive layer can be transferred to another optical member to form an optical laminate. The obtained optical laminate is excellent in bending resistance because it does not have a rigid base (a base necessary for forming a conductive layer). Further, the conductive film for transfer of the present invention is excellent in conductivity and light transmittance since the conductive layer is composed of a metal oxide.
本発明の1つの実施形態による転写用導電性フィルムの概略断面図である。It is a schematic sectional drawing of the electroconductive film for transcription | transfer by one embodiment of this invention. 本発明の1つの実施形態による光学積層体の概略断面図である。FIG. 1 is a schematic cross-sectional view of an optical laminate according to an embodiment of the present invention. 本発明の別の実施形態による光学積層体の概略断面図である。FIG. 5 is a schematic cross-sectional view of an optical laminate according to another embodiment of the present invention. 本発明の別の実施形態による光学積層体の概略断面図である。FIG. 5 is a schematic cross-sectional view of an optical laminate according to another embodiment of the present invention. 実施例1、比較例1および比較例2の屈曲耐性試験の結果を示すグラフ図である。It is a graph which shows the result of the bending tolerance test of Example 1 and Comparative Example 1 and Comparative Example 2.
(用語および記号の定義)
 本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
 「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
 「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(550)は、層(フィルム)の厚みをd(nm)としたとき、式:Re=(nx-ny)×dによって求められる。なお、「Re(450)」は、23℃における波長450nmの光で測定した面内位相差である。
(3)厚み方向の位相差(Rth)
 「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(550)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth=(nx-nz)×dによって求められる。なお、「Rth(450)」は、23℃における波長450nmの光で測定した厚み方向の位相差である。
(4)Nz係数
 Nz係数は、Nz=Rth/Reによって求められる。
(Definition of terms and symbols)
The definitions of terms and symbols in the present specification are as follows.
(1) Refractive index (nx, ny, nz)
“Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the direction orthogonal to the slow axis in the plane (ie, the fast axis direction) And “nz” is the refractive index in the thickness direction.
(2) In-plane retardation (Re)
“Re (550)” is an in-plane retardation measured with light having a wavelength of 550 nm at 23 ° C. Re (550) is obtained by the formula: Re = (nx−ny) × d, where d (nm) is the thickness of the layer (film). Note that “Re (450)” is an in-plane retardation measured with light of wavelength 450 nm at 23 ° C.
(3) Retardation in the thickness direction (Rth)
“Rth (550)” is a thickness direction retardation measured with light having a wavelength of 550 nm at 23 ° C. Rth (550) is obtained by the formula: Rth = (nx−nz) × d, where d (nm) is the thickness of the layer (film). “Rth (450)” is the retardation in the thickness direction measured with light of wavelength 450 nm at 23 ° C.
(4) Nz coefficient The Nz coefficient is determined by Nz = Rth / Re.
A.転写用導電性フィルムの全体構成
 図1は、本発明の1つの実施形態による転写用導電性フィルムの概略断面図である。この転写用導電性フィルム10は、仮支持体11と、仮支持体11から剥離可能に設けられた液晶層12と、導電層13とをこの順に備える。導電層13は、液晶層12に直接(すなわち、粘着剤層等を介することなく)、積層されていることが好ましい。
A. General Configuration of Transfer Conductive Film FIG. 1 is a schematic cross-sectional view of a transfer conductive film according to an embodiment of the present invention. The conductive film for transfer 10 includes a temporary support 11, a liquid crystal layer 12 provided so as to be peelable from the temporary support 11, and a conductive layer 13 in this order. The conductive layer 13 is preferably laminated directly on the liquid crystal layer 12 (that is, without via an adhesive layer or the like).
 転写用導電性フィルム10は、光学積層体に導電層を付与する際に用いられ得る。より詳細には、導電層13側の面を他の光学部材(例えば、画像素子(例えば、液晶パネル、有機ELパネル)、光学フィルム(例えば、位相差フィルム)、偏光板等)に貼着した後、仮支持体11を剥離するようにして、液晶層12と導電層13とから構成される積層体Aを転写することにより、光学積層体に導電層を付与することができる。従来、導電層は基材上に形成された状態で光学積層体に付与され、当該光学積層体には基材が含まれるが、本発明の転写用導電性フィルムを用いれば、導電層を形成する際に必要な基材を含まない光学積層体を形成することができる。通常、当該基材は支持体として機能するため剛直であるが、このような基材を含まない光学積層体は、屈曲性に優れる。また、当該基材を含まない光学積層体においては、屈曲させた際、導電層にかかる負荷が少なく導電層が損傷しがたい。 The conductive film for transfer 10 can be used when applying a conductive layer to the optical laminate. More specifically, the surface on the conductive layer 13 side is attached to another optical member (for example, an image element (for example, liquid crystal panel, organic EL panel), an optical film (for example, retardation film), a polarizing plate, etc.) Thereafter, the temporary support 11 is peeled off, and the laminate A including the liquid crystal layer 12 and the conductive layer 13 is transferred, whereby the conductive layer can be applied to the optical laminate. Conventionally, the conductive layer is applied to the optical laminate in a state of being formed on the substrate, and the optical laminate includes the substrate, but if the conductive film for transfer of the present invention is used, the conductive layer is formed. It is possible to form an optical laminate which does not contain a substrate necessary for the preparation. Usually, the base material is rigid since it functions as a support, but an optical laminate not including such a base material is excellent in flexibility. In addition, in the optical laminate that does not include the base material, when bent, the load on the conductive layer is small, and the conductive layer is unlikely to be damaged.
 さらに、本発明の転写用導電性フィルムを用いれば、導電層を形成する処理(例えば、加熱処理)の際にダメージを受けやすい光学部材を含む光学積層体においても、剛直な基材を排除することができる。例えば、偏光板を含むフィルムに、直接、スパッタリング等の処理を行うと、偏光板がダメージを受けてしまうが、本発明の転写用導電性フィルムを用いれば、偏光板にダメージを与えることなく、光学積層体を形成することができる。 Furthermore, when the conductive film for transfer of the present invention is used, a rigid substrate is excluded even in an optical laminate including an optical member that is easily damaged during processing (for example, heat treatment) for forming a conductive layer. be able to. For example, when processing such as sputtering is directly performed on a film including a polarizing plate, the polarizing plate is damaged, but when the conductive film for transfer of the present invention is used, the polarizing plate is not damaged. An optical laminate can be formed.
A-1.導電層
 1つの実施形態においては、上記導電層は、タッチデバイスの電極として機能し得る。
A-1. Conductive Layer In one embodiment, the conductive layer can function as an electrode of a touch device.
 好ましくは、上記導電層は、金属酸化物から構成される。上記金属酸化物としては、例えば、酸化インジウム、酸化スズ、酸化亜鉛、インジウム-スズ複合酸化物、スズ-アンチモン複合酸化物、亜鉛-アルミニウム複合酸化物、インジウム-亜鉛複合酸化物等が挙げられる。なかでも好ましくは、インジウム-スズ複合酸化物(ITO)である。また、上記導電層は、導電性高分子、導電性フィラー、金属ナノワイヤおよび/または金属メッシュを含む層であってもよい。 Preferably, the conductive layer is composed of a metal oxide. Examples of the metal oxide include indium oxide, tin oxide, zinc oxide, indium-tin complex oxide, tin-antimony complex oxide, zinc-aluminum complex oxide, indium-zinc complex oxide and the like. Among these, indium-tin complex oxide (ITO) is preferable. Also, the conductive layer may be a layer containing a conductive polymer, a conductive filler, a metal nanowire and / or a metal mesh.
 導電層は光透過性を有することが好ましい。導電層の全光線透過率は、好ましくは80%以上であり、さらに好ましくは85%以上であり、さらに好ましくは90%以上である。上記金属酸化物から導電層を構成することにより、光透過率が高い導電層を形成することができる。 The conductive layer preferably has optical transparency. The total light transmittance of the conductive layer is preferably 80% or more, more preferably 85% or more, and still more preferably 90% or more. By forming the conductive layer from the metal oxide, a conductive layer with high light transmittance can be formed.
 上記導電層の表面抵抗値は、好ましくは0.1Ω/□~1000Ω/□であり、より好ましくは0.5Ω/□~500Ω/□であり、特に好ましくは1Ω/□~250Ω/□である。 The surface resistance value of the conductive layer is preferably 0.1 Ω / □ to 1000 Ω / □, more preferably 0.5 Ω / □ to 500 Ω / □, and particularly preferably 1 Ω / □ to 250 Ω / □. .
 1つの実施形態においては、上記導電層は、上記液晶層上に、直接、形成される。本実施形態の具体例としては、上記液晶層上に、任意の適切な成膜方法(例えば、真空蒸着法、スパッタリング法、CVD法、イオンプレーティング法、スプレー法等)により、金属酸化物層を形成して、導電層を得る方法が挙げられる。該金属酸化物層は、そのまま導電層としてもよく、さらに加熱し金属酸化物を結晶化させてもよい。該加熱時の温度は、例えば、120℃~200℃である。 In one embodiment, the conductive layer is formed directly on the liquid crystal layer. As a specific example of the present embodiment, a metal oxide layer is formed on the liquid crystal layer by any appropriate film forming method (for example, a vacuum evaporation method, a sputtering method, a CVD method, an ion plating method, a spray method, etc.) Are formed to obtain a conductive layer. The metal oxide layer may be used as it is as a conductive layer, or may be further heated to crystallize the metal oxide. The heating temperature is, for example, 120 ° C. to 200 ° C.
 上記導電層の厚みは、好ましくは50nm以下であり、さらに好ましくは40nm以下である。このような範囲であれば、光透過性に優れる導電層を得ることができる。上記導電層の厚みの下限は、好ましくは1nmであり、より好ましくは5nmである。 The thickness of the conductive layer is preferably 50 nm or less, more preferably 40 nm or less. If it is such a range, the conductive layer which is excellent in light transmittance can be obtained. The lower limit of the thickness of the conductive layer is preferably 1 nm, more preferably 5 nm.
 上記導電層はパターン化されていてもよい。パターン化の方法としては、導電層の形態に応じて、任意の適切な方法が採用され得る。例えば、エッチング法、レーザー法等によりパターン化され得る。導電層のパターンの形状は、用途に応じて任意の適切な形状であり得る。例えば、特表2011-511357号公報、特開2010-164938号公報、特開2008-310550号公報、特表2003-511799号公報、特表2010-541109号公報に記載のパターンが挙げられる。 The conductive layer may be patterned. As a method of patterning, any appropriate method may be adopted depending on the form of the conductive layer. For example, it may be patterned by an etching method, a laser method or the like. The shape of the pattern of the conductive layer may be any suitable shape depending on the application. For example, the patterns described in JP-A-2011-511357, JP-A-2010-164938, JP-A-2008-310550, JP-A-2003-511799 and JP-A-2010-541109 can be mentioned.
A-2.液晶層
 液晶層は、任意の適切な液晶化合物を含む。本発明の転写用導電性フィルムにおいては、液晶層上に導電層を形成し、導電層と仮支持体との間に液晶層が配置された構成であることにより、導電層と液晶層とから構成される積層体Aを別の光学部材に転写させることができる。所定の機能を有する液晶層と導電層の両方を、剛直な基材を排除して、光学積層体に導入できることは、本発明の成果のひとつである。
A-2. Liquid Crystal Layer The liquid crystal layer comprises any suitable liquid crystal compound. In the conductive film for transfer of the present invention, the conductive layer is formed on the liquid crystal layer, and the liquid crystal layer is disposed between the conductive layer and the temporary support. The laminate A configured can be transferred to another optical member. It is one of the achievements of the present invention that both a liquid crystal layer and a conductive layer having a predetermined function can be introduced into an optical laminate excluding rigid substrates.
 1つの実施形態においては、上記液晶層は、屈折率特性がnz>nx≧nyの関係を示す。このような液晶層を備えることにより、上記積層体Aを、光学機能を有する積層体とすることができる。 In one embodiment, the liquid crystal layer exhibits a refractive index characteristic of nz> nx ≧ ny. By providing such a liquid crystal layer, the laminate A can be made into a laminate having an optical function.
 上記液晶層の厚み方向の位相差Rth(550)は、好ましくは-260nm~-10nm、より好ましくは-230nm~-15nm、さらに好ましくは-215nm~-20nmである。 The thickness direction retardation Rth (550) of the liquid crystal layer is preferably −260 nm to −10 nm, more preferably −230 nm to −15 nm, and still more preferably −215 nm to −20 nm.
 1つの実施形態においては、上記液晶層は、その屈折率がnx=nyの関係を示す。ここで、「nx=ny」は、nxとnyが厳密に等しい場合のみならず、nxとnyが実質的に等しい場合も包含する。具体的には、Re(550)が10nm未満であることをいう。別の実施形態においては、液晶層は、その屈折率がnx>nyの関係を示す。この場合、液晶層の面内位相差Re(550)は、好ましくは10nm~150nmであり、より好ましくは10nm~80nmである。 In one embodiment, the liquid crystal layer has a refractive index of nx = ny. Here, “nx = ny” includes not only when nx and ny are exactly equal but also when nx and ny are substantially equal. Specifically, it means that Re (550) is less than 10 nm. In another embodiment, the liquid crystal layer has a refractive index of nx> ny. In this case, the in-plane retardation Re (550) of the liquid crystal layer is preferably 10 nm to 150 nm, more preferably 10 nm to 80 nm.
 上記液晶層は、ホメオトロピック配向に固定された液晶層である。ホメオトロピック配向させることができる液晶材料(液晶化合物)は、液晶モノマーであっても液晶ポリマーであってもよい。当該液晶化合物および当該液晶層の形成方法の具体例としては、特開2002-333642号公報の[0020]~[0042]に記載の液晶化合物および形成方法が挙げられる。 The liquid crystal layer is a liquid crystal layer fixed in homeotropic alignment. The liquid crystal material (liquid crystal compound) which can be homeotropically aligned may be a liquid crystal monomer or a liquid crystal polymer. Specific examples of the liquid crystal compound and the method of forming the liquid crystal layer include the liquid crystal compound and the forming method described in [0020] to [0042] of JP-A-2002-333642.
 上記液晶層の厚みは、好ましくは0.1μm~10μmであり、より好ましくは0.1μm~5μmであり、さらに好ましくは0.2μm~3μmである。このような範囲であれば、所望の光学積層体を得ることができ、かつ、積層体Aの剥離性に優れる転写用導電性フィルムを得ることができる。 The thickness of the liquid crystal layer is preferably 0.1 μm to 10 μm, more preferably 0.1 μm to 5 μm, and still more preferably 0.2 μm to 3 μm. If it is such a range, a desired optical laminated body can be obtained, and the electroconductive film for transfer which is excellent in the peelability of the laminated body A can be obtained.
 上記液晶層の全光線透過率は、好ましくは80%以上であり、さらに好ましくは85%以上であり、さらに好ましくは90%以上である。 The total light transmittance of the liquid crystal layer is preferably 80% or more, more preferably 85% or more, and still more preferably 90% or more.
A-3.仮支持体
 上記仮支持体を構成する樹脂としては、本発明の効果が得られる限り、任意の適切な樹脂が用いられ得る。仮支持体を構成する樹脂としては、例えば、シクロオレフィン系樹脂、ポリイミド系樹脂、ポリ塩化ビニリデン系樹脂、ポリ塩化ビニル系樹脂、ポリエチレンテレフタレート系樹脂、ポリエチレンナフタレート系樹脂等が挙げられる。
A-3. Temporary Support As the resin constituting the temporary support, any appropriate resin can be used as long as the effects of the present invention can be obtained. Examples of the resin constituting the temporary support include cycloolefin resins, polyimide resins, polyvinylidene chloride resins, polyvinyl chloride resins, polyethylene terephthalate resins, polyethylene naphthalate resins, and the like.
 上記仮支持体の厚みは、好ましくは8μm~500μmであり、より好ましくは50μm~250μmである。 The thickness of the temporary support is preferably 8 μm to 500 μm, more preferably 50 μm to 250 μm.
 上記仮支持体の上記液晶層に対する23℃における粘着力は、好ましくは0.01N/25mm~1N/25mmであり、より好ましくは0.01N/25mm~0.7N/25mmである。このような範囲であれば、積層体Aを容易に転写し得る転写用導電性フィルムを得ることができる。粘着力は、JIS Z 0237:2000に準じた方法で測定され、製造された転写用導電性フィルムから、仮支持体を引張速度300mm/min、剥離角度180°で剥離して、測定した粘着力をいう。 The tackiness of the temporary support to the liquid crystal layer at 23 ° C. is preferably 0.01 N / 25 mm to 1 N / 25 mm, more preferably 0.01 N / 25 mm to 0.7 N / 25 mm. If it is such a range, the electroconductive film for transfer which can transfer the laminated body A easily can be obtained. The adhesive strength is measured by a method according to JIS Z 0237: 2000, and the adhesive strength measured by peeling the temporary support at a tensile speed of 300 mm / min and a peeling angle of 180 ° from the manufactured conductive film for transfer. Say
 必要に応じて、上記仮支持体に対して各種表面処理を行ってもよい。表面処理は目的に応じて任意の適切な方法が採用される。1つの実施形態においては、液晶層からの剥離を容易とするために、仮支持体の液晶層側の面に離型層が設けられ得る。剥離層は、上記粘着力を発現し得る限り、任意の適切な材料から構成された層とすることができ、例えば、周知の剥離処理(例えば、シリコーン系離型剤の塗布など)により形成された層である。また、液晶層の配向性を高めるために配向層を設けてもよい。 If necessary, various surface treatments may be performed on the temporary support. As the surface treatment, any appropriate method may be adopted depending on the purpose. In one embodiment, a release layer may be provided on the surface of the temporary support on the liquid crystal layer side in order to facilitate peeling from the liquid crystal layer. The release layer may be a layer composed of any appropriate material as long as the above-mentioned adhesive force can be exhibited, and is formed by, for example, a known release treatment (eg, application of a silicone-based release agent). Layer. In addition, an alignment layer may be provided to enhance the alignment of the liquid crystal layer.
B.光学積層体
 本発明の光学積層体は、上記転写用導電性フィルムから転写された積層体A(液晶層と導電層とを含む積層体)を含む。1つの実施形態においては、該光学積層体を備えるタッチデバイスが提供される。該タッチデバイスにおいては、上記導電層が電極として機能する。上記タッチデバイスは、屈曲性に優れ、また、屈曲しても導電層が損傷しがたい点でも有用である。
B. Optical Laminate The optical laminate of the present invention includes the laminate A (a laminate including a liquid crystal layer and a conductive layer) transferred from the conductive film for transfer. In one embodiment, a touch device comprising the optical stack is provided. In the touch device, the conductive layer functions as an electrode. The touch device is excellent in flexibility and is also useful in that it is difficult for the conductive layer to be damaged even when it is bent.
 図2は、本発明の1つの実施形態による光学積層体の概略断面図である。この光学積層体100は、光学部材20と、導電層13と、液晶層12とをこの順に備える。1つの実施形態においては、光学部材20と導電層13とは、粘着剤層30を介して積層され、粘着剤層30は、光学部材20および導電層13に接している。 FIG. 2 is a schematic cross-sectional view of an optical laminate according to one embodiment of the present invention. The optical laminate 100 includes an optical member 20, a conductive layer 13, and a liquid crystal layer 12 in this order. In one embodiment, the optical member 20 and the conductive layer 13 are laminated via the adhesive layer 30, and the adhesive layer 30 is in contact with the optical member 20 and the conductive layer 13.
 光学積層体100において、導電層13と液晶層12とから構成される積層体Aは、上記転写用導電性フィルムから転写された積層体である。導電層13は、液晶層12に直接(すなわち、粘着剤層等を介することなく)積層されている。 In the optical laminate 100, a laminate A composed of the conductive layer 13 and the liquid crystal layer 12 is a laminate transferred from the conductive film for transfer. The conductive layer 13 is laminated directly on the liquid crystal layer 12 (that is, without interposing an adhesive layer or the like).
 図3は、本発明の別の実施形態による光学積層体の概略断面図である。この光学積層体200は、光学部材20と、導電層13と、液晶層12と、別の光学部材40とをこの順に備える。1つの実施形態においては、光学部材20と導電層13とは、粘着剤層30を介して積層され、粘着剤層30は光学部材20と導電層13に接している。また、1つの実施形態においては、液晶層12と別の光学部材40とは粘着剤層30を介して積層され、粘着剤層30は液晶層12と別の光学部材40と接している。 FIG. 3 is a schematic cross-sectional view of an optical laminate according to another embodiment of the present invention. The optical laminate 200 includes an optical member 20, a conductive layer 13, a liquid crystal layer 12, and another optical member 40 in this order. In one embodiment, the optical member 20 and the conductive layer 13 are laminated via the adhesive layer 30, and the adhesive layer 30 is in contact with the optical member 20 and the conductive layer 13. In one embodiment, the liquid crystal layer 12 and another optical member 40 are laminated via the adhesive layer 30, and the adhesive layer 30 is in contact with the liquid crystal layer 12 and another optical member 40.
 光学部材20および別の光学部材40としては、例えば、画像素子(例えば、液晶パネル、有機ELパネル)、光学フィルム(例えば、位相差フィルム)、偏光板、円偏光板等が挙げられる。 Examples of the optical member 20 and another optical member 40 include an image element (for example, a liquid crystal panel, an organic EL panel), an optical film (for example, a retardation film), a polarizing plate, a circularly polarizing plate, and the like.
 1つの実施形態においては、光学部材20として、偏光板または円偏光板が用いられる。別の実施形態によれば、別の光学部材40として、偏光板または円偏光板が用いられる。光学積層体は、画像表示装置(例えば、タッチデバイス)に適用される際、導電層が偏光板または円偏光板よりも視認側となるように配置されてもよく、導電層が偏光板または円偏光板より内側(視認側とは反対側)となるように配置されてもよい。 In one embodiment, a polarizing plate or a circularly polarizing plate is used as the optical member 20. According to another embodiment, a polarizing plate or a circularly polarizing plate is used as another optical member 40. When applied to an image display device (for example, a touch device), the optical laminate may be disposed such that the conductive layer is on the viewing side of the polarizing plate or the circularly polarizing plate, and the conductive layer is the polarizing plate or the circular plate. You may be arrange | positioned so that it may become inner side (opposite to a visual recognition side) rather than a polarizing plate.
B-1.偏光板
 1つの実施形態においては、光学部材または別の光学部材として偏光板が用いられた光学積層体、すなわち、偏光板と、導電層と、液晶層とをこの順に備える光学積層体、あるいは、導電層と、液晶層と、偏光板とをこの順に備える光学積層体が提供される。従来、偏光板を含むフィルムに、スパッタリング等の導電層付与処理により、直接、導電層を形成する場合、導電層付与処理時に偏光板がダメージを受ける等の問題が生じるが、本発明の転写用導電性フィルムを用いれば、偏光板にダメージを与えることなく、光学積層体を形成することができる。当該光学積層体に用いられる偏光板の例を以下に説明する。
B-1. Polarizer In one embodiment, an optical laminate in which a polarizer is used as an optical member or another optical member, that is, an optical laminate comprising a polarizer, a conductive layer, and a liquid crystal layer in this order, or There is provided an optical laminate comprising a conductive layer, a liquid crystal layer, and a polarizing plate in this order. Conventionally, when a conductive layer is directly formed on a film including a polarizing plate by a conductive layer applying process such as sputtering, problems such as the polarizing plate being damaged during the conductive layer applying process may occur. If a conductive film is used, an optical layered product can be formed without damaging the polarizing plate. The example of the polarizing plate used for the said optical laminated body is demonstrated below.
 上記偏光板は、偏光子を備える。上記偏光板は、好ましくは、偏光子の片側または両側に保護フィルムをさらに備える。 The polarizing plate comprises a polarizer. The polarizing plate preferably further comprises a protective film on one side or both sides of the polarizer.
 上記偏光子の厚みは特に制限されず、目的に応じて適切な厚みが採用され得る。当該厚みは、代表的には、1μm~80μm程度である。1つの実施形態においては、薄型の偏光子が用いられ、当該偏光子の厚みは、好ましくは20μm以下であり、より好ましくは15μm以下であり、さらに好ましくは10μm以下であり、特に好ましくは6μm以下である。このように薄い偏光子を用いることにより、薄型の光学積層体を得ることができる。 The thickness in particular of the said polarizer is not restrict | limited, According to the objective, appropriate thickness may be employ | adopted. The thickness is typically about 1 μm to 80 μm. In one embodiment, a thin polarizer is used, and the thickness of the polarizer is preferably 20 μm or less, more preferably 15 μm or less, still more preferably 10 μm or less, particularly preferably 6 μm or less It is. By using such a thin polarizer, a thin optical laminate can be obtained.
 上記偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率は、好ましくは40.0%以上、より好ましくは41.0%以上、さらに好ましくは42.0%以上、特に好ましくは43.0%以上である。偏光子の偏光度は、好ましくは99.8%以上であり、より好ましくは99.9%以上であり、さらに好ましくは99.95%以上である。 The above-mentioned polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm. The single transmittance of the polarizer is preferably 40.0% or more, more preferably 41.0% or more, still more preferably 42.0% or more, and particularly preferably 43.0% or more. The polarization degree of the polarizer is preferably 99.8% or more, more preferably 99.9% or more, and still more preferably 99.95% or more.
 好ましくは、上記偏光子は、ヨウ素系偏光子である。より詳細には、上記偏光子は、ヨウ素を含むポリビニルアルコール系樹脂(以下、「PVA系樹脂」と称する)フィルムから構成され得る。 Preferably, the polarizer is an iodine-based polarizer. In more detail, the said polarizer may be comprised from the polyvinyl alcohol-type resin (It is hereafter called "PVA-type resin") film containing an iodine.
 上記PVA系樹脂フィルムを形成するPVA系樹脂としては、任意の適切な樹脂が採用され得る。例えば、ポリビニルアルコール、エチレン-ビニルアルコール共重合体が挙げられる。ポリビニルアルコールは、ポリ酢酸ビニルをケン化することにより得られる。エチレン-ビニルアルコール共重合体は、エチレン-酢酸ビニル共重合体をケン化することにより得られる。PVA系樹脂のケン化度は、通常85モル%~100モル%であり、好ましくは95.0モル%~99.95モル%であり、さらに好ましくは99.0モル%~99.93モル%である。ケン化度は、JIS K 6726-1994に準じて求めることができる。このようなケン化度のPVA系樹脂を用いることによって、耐久性に優れた偏光子が得られ得る。ケン化度が高すぎる場合には、ゲル化してしまうおそれがある。 Arbitrary suitable resin may be adopted as PVA system resin which forms the above-mentioned PVA system resin film. For example, polyvinyl alcohol and ethylene-vinyl alcohol copolymer can be mentioned. Polyvinyl alcohol is obtained by saponifying polyvinyl acetate. The ethylene-vinyl alcohol copolymer is obtained by saponifying an ethylene-vinyl acetate copolymer. The saponification degree of the PVA-based resin is usually 85% by mole to 100% by mole, preferably 95.0% by mole to 99.95% by mole, and more preferably 99.0% by mole to 99.93% by mole It is. The degree of saponification can be determined according to JIS K 6726-1994. By using a PVA resin having such a degree of saponification, a polarizer having excellent durability can be obtained. If the degree of saponification is too high, gelation may occur.
 PVA系樹脂の平均重合度は、目的に応じて適切に選択され得る。平均重合度は、通常1000~10000であり、好ましくは1200~5000であり、さらに好ましくは1500~4500である。なお、平均重合度は、JIS K 6726-1994に準じて求めることができる。 The average degree of polymerization of the PVA-based resin can be appropriately selected depending on the purpose. The average degree of polymerization is usually 1000 to 10000, preferably 1200 to 5000, and more preferably 1500 to 4500. The average degree of polymerization can be determined according to JIS K 6726-1994.
 上記偏光子の製造方法としては、例えば、PVA系樹脂フィルム単体を延伸、染色する方法(I)、樹脂基材とポリビニルアルコール系樹脂層とを有する積層体(i)を延伸、染色する方法(II)等が挙げられる。方法(I)は、当業界で周知慣用の方法であるため、詳細な説明は省略する。上記製造方法(II)は、好ましくは、樹脂基材と該樹脂基材の片側に形成されたポリビニルアルコール系樹脂層とを有する積層体(i)を延伸、染色して、該樹脂基材上に偏光子を作製する工程を含む。積層体(i)は、樹脂基材上にポリビニルアルコール系樹脂を含む塗布液を塗布・乾燥して形成され得る。また、積層体(i)は、ポリビニルアルコール系樹脂膜を樹脂基材上に転写して形成されてもよい。上記製造方法(II)の詳細は、例えば、特開2012-73580号公報に記載されており、この公報は、本明細書に参考として援用される。 As a method for producing the above-mentioned polarizer, for example, a method (I) of stretching and dyeing a PVA-based resin film alone, a method of stretching and dyeing a laminate (i) having a resin substrate and a polyvinyl alcohol-based resin layer II) and the like. Since the method (I) is a method well known and used in the art, the detailed description is omitted. In the above production method (II), preferably, a laminate (i) having a resin base and a polyvinyl alcohol-based resin layer formed on one side of the resin base is stretched and dyed to form a resin base. And the process of producing a polarizer. The laminate (i) may be formed by applying and drying a coating liquid containing a polyvinyl alcohol resin on a resin base material. In addition, the laminate (i) may be formed by transferring a polyvinyl alcohol-based resin film onto a resin substrate. The details of the above production method (II) are described, for example, in JP-A-2012-73580, which is incorporated herein by reference.
 上記保護フィルムとしては、任意の適切な樹脂フィルムが採用され得る。保護フィルムの形成材料としては、例えば、ポリエチレンテレフタレート(PET)等のポリエステル系樹脂、トリアセチルセルロース(TAC)等のセルロース系樹脂、ノルボルネン系樹脂等のシクロオレフィン系樹脂、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、(メタ)アクリル系樹脂等が挙げられる。なかでも好ましくは、ポリエチレンテレフタレート(PET)である。 Any appropriate resin film may be employed as the protective film. Examples of materials for forming the protective film include polyester resins such as polyethylene terephthalate (PET), cellulose resins such as triacetyl cellulose (TAC), cycloolefin resins such as norbornene resins, and olefin resins such as polyethylene and polypropylene. Resin, (meth) acrylic resin, etc. are mentioned. Among them, polyethylene terephthalate (PET) is preferred.
 1つの実施形態においては、上記(メタ)アクリル系樹脂として、グルタルイミド構造を有する(メタ)アクリル系樹脂が用いられる。 In one embodiment, a (meth) acrylic resin having a glutarimide structure is used as the (meth) acrylic resin.
 上記保護フィルムと上記偏光子とは、任意の適切な接着剤層を介して積層される。偏光子作製時に用いた樹脂基材は、保護フィルムと偏光子とを積層する前、あるいは、積層した後に、剥離され得る。 The protective film and the polarizer are laminated via any appropriate adhesive layer. The resin base material used at the time of polarizer production may be exfoliated before or after laminating the protective film and the polarizer.
 上記保護フィルムの厚みは、好ましくは5μm~55μmであり、より好ましくは10μm~50μmであり、さらに好ましくは15μm~45μmである。 The thickness of the protective film is preferably 5 μm to 55 μm, more preferably 10 μm to 50 μm, and still more preferably 15 μm to 45 μm.
B-2.円偏光板
 図4は、本発明の1つの実施形態による光学積層体の概略断面図である。光学積層体110は、光学部材として、円偏光板21を備える。円偏光板21は、偏光子1と、位相差層2とを備える。1つの実施形態においては、偏光子1は、位相差層2の積層体A(すなわち、導電層)とは反対側に配置されることが好ましい。また、円偏光板21と積層体Aとは、粘着剤層30を介して積層され、粘着剤層30は位相差層2および導電層13に接している。別の実施形態においては、別の光学部材として、円偏光板が用いられ、光学部材と、導電層と、液晶層と、円偏光板(位相差層/偏光子)とをこの順に備える光学積層体が提供される。この実施形態においても、偏光子は、位相差層の積層体A(すなわち、液晶層)とは反対側に配置されることが好ましい。
B-2. Circularly Polarizing Plate FIG. 4 is a schematic cross-sectional view of an optical laminate according to one embodiment of the present invention. The optical laminate 110 includes a circularly polarizing plate 21 as an optical member. The circularly polarizing plate 21 includes a polarizer 1 and a retardation layer 2. In one embodiment, the polarizer 1 is preferably disposed on the side opposite to the laminate A of the retardation layer 2 (that is, the conductive layer). The circularly polarizing plate 21 and the laminate A are laminated via the pressure-sensitive adhesive layer 30, and the pressure-sensitive adhesive layer 30 is in contact with the retardation layer 2 and the conductive layer 13. In another embodiment, a circularly polarizing plate is used as another optical member, and an optical laminate including an optical member, a conductive layer, a liquid crystal layer, and a circularly polarizing plate (retardation layer / polarizer) in this order Body is provided. Also in this embodiment, the polarizer is preferably disposed on the side opposite to the laminate A of the retardation layer (that is, the liquid crystal layer).
 1つの実施形態においては、円偏光板は、偏光子の位相差層とは反対側の面に保護フィルムをさらに備える(図示せず)。また、円偏光板は、偏光子と位相差層との間に別の保護フィルム(内側保護フィルムとも称する:図示せず)を備えてもよい。偏光子および保護フィルムとしては、上記B-1項で説明したものが用いられ得る。 In one embodiment, the circularly polarizing plate further comprises a protective film on the side of the polarizer opposite to the retardation layer (not shown). In addition, the circularly polarizing plate may be provided with another protective film (also referred to as an inner protective film: not shown) between the polarizer and the retardation layer. As the polarizer and the protective film, those described in the above section B-1 can be used.
 上記位相差層は、λ/4板として機能し得る。このような位相差層の面内位相差Re(550)は、好ましくは120nm~160nmであり、より好ましくは135nm~155nmである。位相差層は、代表的にはnx>ny≧nzの屈折率楕円体を有する。 The retardation layer can function as a λ / 4 plate. The in-plane retardation Re (550) of such a retardation layer is preferably 120 nm to 160 nm, more preferably 135 nm to 155 nm. The retardation layer typically has a refractive index ellipsoid of nx> ny ≧ nz.
 上記位相差層のRth(550)は、好ましくは120nm~300nmであり、より好ましくは135nm~260nmである。 The Rth (550) of the retardation layer is preferably 120 nm to 300 nm, more preferably 135 nm to 260 nm.
 上記位相差層のNz係数は、例えば0.9~2であり、好ましくは1~1.8であり、より好ましくは1~1.7である。 The Nz coefficient of the retardation layer is, for example, 0.9 to 2, preferably 1 to 1.8, and more preferably 1 to 1.7.
 上記偏光子と位相差層とは、偏光子の吸収軸と位相差層の遅相軸とが所定の角度をなすように積層される。偏光子の吸収軸と位相差層の遅相軸とのなす角度は、好ましくは35°~55°であり、より好ましくは38°~52°であり、さらに好ましくは40°~50°であり、さらに好ましくは42°~48°であり、特に好ましくは44°~46°である。当該角度がこのような範囲であれば、所望の円偏光機能が実現され得る。なお、本明細書において角度に言及するときは、特に明記しない限り、当該角度は時計回りおよび反時計回りの両方の方向の角度を包含する。 The polarizer and the retardation layer are laminated such that the absorption axis of the polarizer and the slow axis of the retardation layer form a predetermined angle. The angle between the absorption axis of the polarizer and the slow axis of the retardation layer is preferably 35 ° to 55 °, more preferably 38 ° to 52 °, and still more preferably 40 ° to 50 °. More preferably, it is 42 ° to 48 °, and particularly preferably 44 ° to 46 °. If the angle is in such a range, a desired circular polarization function can be realized. In addition, when an angle is referred to in the present specification, the angle includes angles in both clockwise and counterclockwise directions unless otherwise specified.
 上記位相差層の厚みは、λ/4板として最も適切に機能し得るように設定され得る。言い換えれば、厚みは、所望の面内位相差が得られるように設定され得る。具体的には、位相差層の厚みは、好ましくは10μm~80μmであり、さらに好ましくは10μm~60μmであり、最も好ましくは30μm~50μmである。 The thickness of the retardation layer may be set to most appropriately function as a λ / 4 plate. In other words, the thickness can be set to obtain a desired in-plane retardation. Specifically, the thickness of the retardation layer is preferably 10 μm to 80 μm, more preferably 10 μm to 60 μm, and most preferably 30 μm to 50 μm.
 位相差層は、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示してもよく、位相差値が測定光の波長に応じて小さくなる正の波長分散特性を示してもよく、位相差値が測定光の波長によってもほとんど変化しないフラットな波長分散特性を示してもよい。 The retardation layer may have an inverse dispersion wavelength characteristic in which the retardation value increases in accordance with the wavelength of the measurement light, or may indicate a positive wavelength dispersion characteristic in which the retardation value decreases in accordance with the wavelength of the measurement light. It may well exhibit flat wavelength dispersion characteristics in which the retardation value hardly changes depending on the wavelength of the measurement light.
 上記λ/4板は、好ましくは、高分子フィルムの延伸フィルムである。具体的には、ポリマーの種類、延伸処理(例えば、延伸方法、延伸温度、延伸倍率、延伸方向)を適切に選択することにより、λ/4板が得られる。 The λ / 4 plate is preferably a stretched film of a polymer film. Specifically, a λ / 4 plate can be obtained by appropriately selecting the type of polymer and stretching treatment (eg, stretching method, stretching temperature, stretch ratio, stretching direction).
 上記高分子フィルムを形成する樹脂としては、任意の適切な樹脂が用いられる。具体例としては、ポリノルボルネン等のシクロオレフィン系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、ポリビニルアルコール系樹脂、ポリスルホン系樹脂等の正の複屈折フィルムを構成する樹脂が挙げられる。中でも、ノルボルネン系樹脂、ポリカーボネート系樹脂が好ましい。なお、高分子フィルムを形成する樹脂の詳細は、例えば、特開2014-010291に記載されている。当該記載は、参考として本明細書に援用される。 Any appropriate resin may be used as the resin for forming the polymer film. Specific examples thereof include resins constituting a positive birefringence film such as cycloolefin resins such as polynorbornene, polycarbonate resins, cellulose resins, polyvinyl alcohol resins, and polysulfone resins. Among them, norbornene resins and polycarbonate resins are preferable. The details of the resin forming the polymer film are described, for example, in JP-A-2014-010291. The description is incorporated herein by reference.
 上記ポリノルボルネンとしては、種々の製品が市販されている。具体例としては、日本ゼオン社製の商品名「ゼオネックス」、「ゼオノア」、JSR社製の商品名「アートン(Arton)」、TICONA社製の商品名「トーパス」、三井化学社製の商品名「APEL」が挙げられる。 Various products are marketed as said polynorbornene. As a specific example, trade name "Zeonex" manufactured by Nippon Zeon Co., "Zeonor" trade name "Arton" manufactured by JSR, trade name "Topath" manufactured by TICONA, trade name manufactured by Mitsui Chemicals, Inc. "APEL" is mentioned.
 延伸方法としては、例えば、横一軸延伸、固定端二軸延伸、逐次二軸延伸が挙げられる。固定端二軸延伸の具体例としては、高分子フィルムを長手方向に走行させながら、短手方向(横方向)に延伸させる方法が挙げられる。この方法は、見かけ上は横一軸延伸であり得る。また、斜め延伸も採用することができる。斜め延伸を採用することにより、幅方向に対して所定の角度の配向軸(遅相軸)を有する長尺状の延伸フィルムを得ることができる。 Examples of the stretching method include transverse uniaxial stretching, fixed end biaxial stretching, and sequential biaxial stretching. As a specific example of the fixed end biaxial stretching, there is a method of stretching in the short direction (lateral direction) while traveling the polymer film in the longitudinal direction. This method may be apparently transverse uniaxial stretching. Also, oblique stretching can be employed. By adopting oblique stretching, it is possible to obtain a long stretched film having an alignment axis (slow axis) at a predetermined angle with respect to the width direction.
 上記延伸フィルムの厚みは、代表的には5μm~80μm、好ましくは15μm~60μm、さらに好ましくは25μm~45μmである。 The thickness of the stretched film is typically 5 μm to 80 μm, preferably 15 μm to 60 μm, and more preferably 25 μm to 45 μm.
B-3.粘着剤層
 上記粘着剤層は、任意の適切な粘着剤により形成される。1つの実施形態においては、該粘着剤は、粘着性の樹脂を含み、該樹脂としては、アクリル系樹脂、アクリルウレタン系樹脂、ウレタン系樹脂、シリコーン系樹脂等が挙げられる。なかでも好ましくは、アクリル系樹脂を含むアクリル系粘着剤である。
B-3. Pressure-Sensitive Adhesive Layer The pressure-sensitive adhesive layer is formed of any appropriate pressure-sensitive adhesive. In one embodiment, the pressure-sensitive adhesive contains a tacky resin, and examples of the resin include acrylic resins, acrylic urethane resins, urethane resins, silicone resins and the like. Among them, preferred is an acrylic pressure-sensitive adhesive containing an acrylic resin.
 上記粘着剤は、必要に応じて、任意の適切な添加剤をさらに含み得る。該添加剤としては、例えば、架橋剤、粘着付与剤、可塑剤、顔料、染料、充填剤、老化防止剤、導電材、紫外線吸収剤、光安定剤、剥離調整剤、軟化剤、界面活性剤、難燃剤、酸化防止剤等が挙げられる。架橋剤としては、イソシアネート系架橋剤、エポキシ系架橋剤、過酸化物系架橋剤、メラミン系架橋剤、尿素系架橋剤、金属アルコキシド系架橋剤、金属キレート系架橋剤、金属塩系架橋剤、カルボジイミド系架橋剤、オキサゾリン系架橋剤、アジリジン系架橋剤、アミン系架橋剤等が挙げられる。 The pressure-sensitive adhesive may further contain any appropriate additive, as needed. Examples of the additive include a crosslinking agent, a tackifier, a plasticizer, a pigment, a dye, a filler, an antiaging agent, a conductive material, an ultraviolet absorber, a light stabilizer, a release regulator, a softener, and a surfactant. Flame retardants, antioxidants, etc. As a crosslinking agent, an isocyanate type crosslinking agent, an epoxy type crosslinking agent, a peroxide type crosslinking agent, a melamine type crosslinking agent, a urea type crosslinking agent, a metal alkoxide type crosslinking agent, a metal chelate type crosslinking agent, a metal salt type crosslinking agent, A carbodiimide type crosslinking agent, an oxazoline type crosslinking agent, an aziridine type crosslinking agent, an amine type crosslinking agent etc. are mentioned.
 上記粘着剤層の厚みは、好ましくは5μm~100μmあり、より好ましくは10μm~50μmである。 The thickness of the pressure-sensitive adhesive layer is preferably 5 μm to 100 μm, more preferably 10 μm to 50 μm.
B-4.その他の層
 上記光学積層体は、必要に応じて、任意の適切なその他の層を備え得る。上記その他の層としては、例えば、ハードコート層、アンチグレア層、反射防止層、カラーフィルター層等が挙げられる。
B-4. Other Layers The optical laminate may be provided with any appropriate other layer, as needed. As said other layer, a hard-coat layer, an anti glare layer, an anti-reflective layer, a color filter layer etc. are mentioned, for example.
C.光学積層体の製造方法
 本発明の光学積層体の製造方法は、上記転写用導電性フィルムから、光学部材に液晶層と導電層とを含む積層体Aを転写することを含む。1つの実施形態においては、この製造方法においては、導電層と光学部材を、粘着剤層を介して、積層する。転写用導電性フィルム、光学部材および粘着剤層は、上記A項およびB項で説明したものが用いられる。
C. Method of Producing Optical Laminate The method of producing an optical laminate of the present invention comprises transferring a laminate A including a liquid crystal layer and a conductive layer to an optical member from the conductive film for transfer. In one embodiment, in this manufacturing method, the conductive layer and the optical member are laminated via an adhesive layer. As the conductive film for transfer, the optical member and the pressure-sensitive adhesive layer, those described in the above section A and section B can be used.
 光学部材に積層体Aを転写した後、積層体Aの液晶層に、粘着剤層を介して、別の光学部材を積層してもよい。 After transferring the laminate A to the optical member, another optical member may be laminated on the liquid crystal layer of the laminate A via the pressure-sensitive adhesive layer.
 以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例になんら限定されるものではない。なお、厚みは尾崎製作所製ピーコック精密測定機器 デジタルゲージコードレスタイプ「DG-205」を使用して測定した。 EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples. The thickness was measured using a digital gauge cordless type “DG-205” manufactured by Ozaki Mfg.
[実施例1]
 仮支持体としての剥離処理を施したポリエチレンテレフタレートフィルム(パナック社製、商品名「パナピール」、厚み:38μm)上に、下記の方法により液晶層を形成した。
 下記化学式(I)(式中の数字65および35はモノマーユニットのモル%を示し、便宜的にブロックポリマー体で表している:重量平均分子量5000)で示される側鎖型液晶ポリマー20重量部、ネマチック液晶相を示す重合性液晶(BASF社製:商品名PaliocolorLC242)80重量部および光重合開始剤(チバスペシャリティーケミカルズ社製:商品名イルガキュア907)5重量部をシクロペンタノン200重量部に溶解して液晶塗工液を調製した。そして、PETフィルム(仮支持体)の離型処理面に当該塗工液をバーコーターにより塗工した後、80℃で4分間加熱乾燥することによって液晶を配向させた。この液晶層に紫外線を照射し、液晶層を硬化させることにより、PETフィルム(仮支持体)に液晶固化層(厚み:0.58μm)を形成した。この液晶層の面内位相差Re(550)は0nm、厚み方向の位相差Rth(550)は-71nmであり(nx:1.5326、ny:1.5326、nz:1.6550)、nz>nx=nyの屈折率特性を示した。
Example 1
A liquid crystal layer was formed by the following method on a polyethylene terephthalate film (trade name "Panapeel", thickness: 38 μm, manufactured by PANAC Co., Ltd.) subjected to release treatment as a temporary support.
20 parts by weight of a side chain-type liquid crystal polymer represented by the following chemical formula (I) (numbers 65 and 35 in the formula indicate mole% of monomer units and is represented by a block polymer for convenience: weight average molecular weight 5000) 80 parts by weight of a polymerizable liquid crystal (manufactured by BASF: trade name: Paliocolor LC 242) exhibiting a nematic liquid crystal phase and 5 parts by weight of a photopolymerization initiator (Cibas Specialty Chemicals: trade name: Irgacure 907) dissolved in 200 parts by weight of cyclopentanone Thus, a liquid crystal coating liquid was prepared. Then, the coating solution was applied by a bar coater to the release-treated surface of a PET film (temporary support), and the liquid crystal was oriented by heating and drying at 80 ° C. for 4 minutes. The liquid crystal layer was irradiated with ultraviolet rays to cure the liquid crystal layer, whereby a liquid crystal solidified layer (thickness: 0.58 μm) was formed on the PET film (temporary support). The in-plane retardation Re (550) of this liquid crystal layer is 0 nm, and the retardation Rth (550) in the thickness direction is -71 nm (nx: 1.5326, ny: 1.5326, nz: 1.6550), nz The refractive index characteristic of> nx = ny was shown.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 次いで、上記仮支持体と液晶層とから構成される積層体を、スパッタ装置に投入し、該液晶層の表面に、厚みが30nmの非晶質のインジウム・スズ酸化物層を形成した。その後、130℃で90分間の加熱処理により、インジウム・スズ酸化物を非晶質から結晶質に転化させ、転写用導電性フィルム(導電層/液晶層/仮支持体)を得た。
 得られた転写用導電性フィルムを用い、仮支持体から導電層と液晶層とから構成される積層体Aを、アクリル系粘着剤を含む粘着剤層を介して、PETフィルム(厚み:23μm)に転写し、仮支持体を剥離して、屈曲耐性評価用サンプル(液晶層/導電層/粘着剤層/PET基材)を得た。
Then, the laminate composed of the temporary support and the liquid crystal layer was put into a sputtering apparatus, and an amorphous indium tin oxide layer with a thickness of 30 nm was formed on the surface of the liquid crystal layer. Thereafter, the indium tin oxide was converted from amorphous to crystalline by heat treatment at 130 ° C. for 90 minutes to obtain a conductive film for transfer (conductive layer / liquid crystal layer / temporary support).
Using the obtained conductive film for transfer, a laminate A composed of a temporary support, a conductive layer and a liquid crystal layer, and a pressure-sensitive adhesive layer containing an acrylic pressure-sensitive adhesive are used to form a PET film (thickness: 23 μm) Then, the temporary support was peeled off to obtain a sample for evaluation of bending resistance (liquid crystal layer / conductive layer / pressure-sensitive adhesive layer / PET substrate).
[比較例1]
 ポリエチレンテレフタレート(PET)フィルム(三菱ケミカル社製、商品名「ダイアホイル」、厚み:23μm)の一方の面に、メラミン樹脂、アルキド樹脂および有機シラン縮合物からなる熱硬化型樹脂(メラミン樹脂:アルキド樹脂:有機シラン縮合物(重量比)=2:2:1)を塗布し、硬化させて、厚み35nmの透明誘電体層(屈折率:1.54)を形成した。
 その後、透明誘電体層付きのPETフィルムを、巻き取り式スパッタ装置に投入し、透明誘電体層の表面に、導電層として、インジウム・スズ酸化物層(厚み:30nm)を形成した。スパッタ処理は、アルゴンガス98%と酸素2%とからなる0.4Paの雰囲気中で、酸化インジウム97重量%-酸化スズ3重量%とからなる焼結体を用いて行った。
 上記のようにして得られた積層体を、アクリル系粘着剤を含む粘着剤層を介して、PETフィルム(厚み:23μm)に貼着して、屈曲耐性評価用サンプル(PET基材/誘電体層/導電層/粘着剤層/PET基材)を得た。
Comparative Example 1
Thermosetting resin (melamine resin: alkyd) comprising a melamine resin, an alkyd resin and an organic silane condensate on one surface of a polyethylene terephthalate (PET) film (Mitsubishi Chemical Co., Ltd., trade name "Diafoil", thickness: 23 μm) Resin: organic silane condensate (weight ratio) = 2: 2: 1) was applied and cured to form a 35 nm thick transparent dielectric layer (refractive index: 1.54).
Then, the PET film with a transparent dielectric layer was introduced into a take-up type sputtering apparatus, and an indium tin oxide layer (thickness: 30 nm) was formed on the surface of the transparent dielectric layer as a conductive layer. Sputtering was performed using a sintered body consisting of 97% by weight of indium oxide and 3% by weight of tin oxide in an atmosphere of 0.4 Pa consisting of 98% argon gas and 2% oxygen.
The laminate obtained as described above is attached to a PET film (thickness: 23 μm) via a pressure-sensitive adhesive layer containing an acrylic pressure-sensitive adhesive, and a sample for evaluating bending resistance (PET base material / dielectric material Layer / conductive layer / adhesive layer / PET substrate) was obtained.
[比較例2]
 平均粒子径1.8μmの複数個の単分散粒子(綜研化学社製、商品名「MX180-TAN」、屈折率:1.495)0.16重量部とバインダー樹脂(DIC社製、商品名「UNIDIC」、屈折率:1.51)100重量部と溶媒(酢酸エチル)とを含むコーティング組成物Aを準備した。次いで、長尺基材フィルム(日本ゼオン社製、商品名「ZEONOR」、厚み:40μm)の片面に、上記コーティング組成物Aをグラビアコーターを用いて乾燥後の平坦部の厚みが1.0μmとなるように塗布し、80℃で加熱することにより塗膜を乾燥させた。その後、高圧水銀ランプにて、積算光量250mJ/cmの紫外線を照射することで、アンチブロッキング層を形成した。
 続いて、バインダー樹脂(DIC社製、商品名「UNIDIC」、屈折率1.51)を酢酸エチルにて希釈したコーティング組成物Bを準備した。上記長尺基材フィルムのアンチブロッキング層とは反対面に、コーティング組成物Bをグラビアコーターを用いて乾燥後の平坦部の厚みが1.0μmとなるように塗布し、80℃で加熱することにより塗膜を乾燥させた。その後、高圧水銀ランプにて、積算光量250mJ/cmの紫外線を照射することで、ハードコート層を形成した。
 次に、ハードコート層の表面に、屈折率調整剤(JSR社製、商品名「オプスターZ7412」、無機成分としてメジアン径40nmの酸化ジルコニア粒子を含み、屈折率が1.62の有機無機複合材料)をグラビアコーターを用いて塗布し、60℃で加熱することにより塗膜を乾燥させた。その後、高圧水銀ランプにて、積算光量250mJ/cmの紫外線を照射して硬化処理を施すことで、厚さ115nm、屈折率1.62の光学調整層を形成した。
 その後、アンチブロッキング層、ハードコート層、光学調整層積層体を有する長尺基材フィルムを巻き取り式スパッタ装置に投入し、COP基材の表面に、導電層として、インジウム・スズ酸化物層(厚み:30nm)を形成した。スパッタ処理は、アルゴンガス98%と酸素2%とからなる0.4Paの雰囲気中で、酸化インジウム97重量%-酸化スズ3重量%とからなる焼結体を用いて行った。
 上記のようにして得られた積層体を、アクリル系粘着剤を含む粘着剤層を介して、PETフィルム(厚み:23μm)に貼着して、屈曲耐性評価用サンプル(COP基材/光学調整層付き長尺基材フィルム/導電層/粘着剤層/PET基材)を得た。
Comparative Example 2
0.16 parts by weight of a plurality of monodispersed particles (manufactured by Soken Chemical Co., Ltd., trade name “MX180-TAN”, refractive index: 1.495) having an average particle diameter of 1.8 μm, and a binder resin (manufactured by DIC, trade name) Coating composition A containing 100 parts by weight of UNIDIC ", refractive index: 1.51) and a solvent (ethyl acetate) was prepared. Then, on one side of a long base film (Nippon Zeon Co., Ltd., trade name "ZEONOR", thickness: 40 μm), the thickness of the flat portion after drying of the above-mentioned coating composition A using a gravure coater is 1.0 μm The coating was dried by heating at 80 ° C. Then, the antiblocking layer was formed by irradiating the ultraviolet-ray of 250 mJ / cm < 2 > of integrated light quantity with a high pressure mercury lamp.
Subsequently, a coating composition B was prepared by diluting a binder resin (manufactured by DIC, trade name "UNIDIC", refractive index 1.51) with ethyl acetate. Coating composition B is applied to the surface of the long base film opposite to the antiblocking layer using a gravure coater so that the thickness of the flat part after drying is 1.0 μm, and heated at 80 ° C. The coating was dried by Then, the hard coat layer was formed by irradiating the ultraviolet-ray of 250 mJ / cm < 2 > of accumulated light quantities with a high pressure mercury lamp.
Next, on the surface of the hard coat layer, an organic-inorganic composite material comprising a refractive index modifier (trade name "Opster Z7412" manufactured by JSR Corporation, zirconia particles having a median diameter of 40 nm as an inorganic component and a refractive index of 1.62 ) Was applied using a gravure coater, and the coating was dried by heating at 60.degree. After that, ultraviolet rays of 250 mJ / cm 2 of integrated light quantity were irradiated with a high pressure mercury lamp to perform curing treatment, thereby forming an optical adjustment layer having a thickness of 115 nm and a refractive index of 1.62.
Thereafter, a long base film having an antiblocking layer, a hard coat layer, and an optical adjustment layer laminate is introduced into a take-up type sputtering apparatus, and an indium tin oxide layer (a conductive layer) is formed on the surface of the COP base. Thickness: 30 nm). Sputtering was performed using a sintered body consisting of 97% by weight of indium oxide and 3% by weight of tin oxide in an atmosphere of 0.4 Pa consisting of 98% argon gas and 2% oxygen.
The laminate obtained as described above is attached to a PET film (thickness: 23 μm) via a pressure-sensitive adhesive layer containing an acrylic pressure-sensitive adhesive, and a sample for evaluating bending resistance (COP base material / optical adjustment A layered long substrate film / conductive layer / adhesive layer / PET substrate) was obtained.
<評価1>
(屈曲耐性試験)
 実施例1、比較例1および比較例2で得られた評価用サンプルを屈曲耐性試験に供した。結果を表1に示す。屈曲耐性試験の試験方法は以下のとおりである。
 ユアサシステム機器株式会社製の自動屈曲試験機と、抵抗値テスターを用いて、各評価用サンプルの屈曲試験後の抵抗値変化を測定し、屈曲耐性を評価した。
 屈曲試験に関して、試験径は直径5mmφとし、粘着剤を介して貼り合わせたPET基材側が屈曲外面側となるように屈曲を実施した。
 上記試験の結果、実施例1では20万回の屈曲を経ても、抵抗値に変化が見られなかったのに対し、比較例1および比較例2ではそれに満たない回数の屈曲により抵抗値が大きく変化することを確認した。結果のグラフ図を図5に示す。
<Evaluation 1>
(Bending resistance test)
The evaluation samples obtained in Example 1 and Comparative Examples 1 and 2 were subjected to a bending tolerance test. The results are shown in Table 1. The test method of the bending resistance test is as follows.
The resistance value change after the bending test of each evaluation sample was measured using an automatic bending tester manufactured by Yuasa System Instruments Co., Ltd. and a resistance value tester to evaluate the bending resistance.
Regarding the bending test, the test diameter was 5 mm in diameter, and the bending was performed so that the PET substrate side bonded via the pressure-sensitive adhesive was on the bending outer surface side.
As a result of the above-mentioned test, although the change in the resistance value was not observed even after the bending of 200,000 times in Example 1, the resistance value was large in the comparative example 1 and the comparative example 2 due to the bending less than that number. It confirmed that it changed. A graph of the results is shown in FIG.
[実施例2]
(偏光子の作製)
 長尺状のポリビニルアルコールフィルムを、ヨウ素を含む水溶液中で染色した後、ホウ酸を含む水溶液中で速比の異なるロール間にて6倍に一軸延伸し、長手方向に吸収軸を有する長尺状の偏光子(厚み:12μm)を得た。この長尺状の偏光子は延伸後、巻き取って巻回体とした。
Example 2
(Preparation of polarizer)
After a long polyvinyl alcohol film is dyed in an aqueous solution containing iodine, it is uniaxially stretched 6 times between rolls having different speed ratios in an aqueous solution containing boric acid, and a long sheet having an absorption axis in the longitudinal direction -Shaped polarizer (thickness: 12 μm) was obtained. The elongated polarizer was stretched and then wound to form a wound body.
(保護フィルムの準備)
 保護フィルムとして、長尺状のトリアセチルセルロースフィルム(厚み40μm、コニカミノルタ社製、商品名:KC4UYW)を用いた。この保護フィルムは巻回体として用意した。なお、この保護フィルムの面内位相差Re(550)は5nmであり、厚み方向の位相差Rth(550)は45nmであった。
(Preparation of protective film)
As a protective film, a long triacetyl cellulose film (thickness 40 μm, manufactured by Konica Minolta, trade name: KC4UYW) was used. This protective film was prepared as a wound body. The in-plane retardation Re (550) of the protective film was 5 nm, and the retardation Rth (550) in the thickness direction was 45 nm.
(位相差フィルムの準備)
 逆分散の波長依存性を示す市販の位相差フィルム(帝人社製、商品名「ピュアエースWR」、厚み:51μm)を用いた。この位相差フィルムの面内位相差Re(550)は147nmであり、Re(450)/Re(550)は0.89であった。
(Preparation of retardation film)
A commercially available retardation film (trade name “Pure Ace WR”, thickness: 51 μm, manufactured by Teijin Ltd.) showing wavelength dependency of reverse dispersion was used. The in-plane retardation Re (550) of this retardation film was 147 nm, and Re (450) / Re (550) was 0.89.
(円偏光板の作製)
 上記偏光子、保護フィルム、および位相差フィルムを、それぞれ200mm×300mmに切り出した。偏光子と保護フィルムとをポリビニルアルコール系接着剤を介して貼り合わせた。偏光子/保護フィルムの積層体と位相差フィルムとを、アクリル系粘着剤層を介して偏光子と位相差フィルムとが隣接するようにして貼り合わせ、保護フィルム/偏光子/位相差層の構成を有する円偏光板(厚み:105μm)を作製した。なお、位相差フィルムは、貼り合わせた際に、その遅相軸と偏光子の吸収軸とが45°の角度をなすように配置した。
(Preparation of circularly polarizing plate)
The said polarizer, protective film, and retardation film were respectively cut out to 200 mm x 300 mm. The polarizer and the protective film were attached to each other via a polyvinyl alcohol-based adhesive. The laminate of the polarizer / protective film and the retardation film are pasted so that the polarizer and the retardation film are adjacent via the acrylic pressure-sensitive adhesive layer, and the constitution of the protective film / polarizer / retardation layer A circularly polarizing plate (thickness: 105 μm) was produced. The retardation film was placed so that its slow axis and the absorption axis of the polarizer make an angle of 45 ° when they were laminated.
(光学積層体の作製)
 実施例1と同様にして、転写用導電性フィルムを得た。この転写用導電性フィルムを用い、仮支持体から、導電層と液晶層とから構成される積層体Aを、アクリル系粘着剤を含む粘着剤層を介して、上記円偏光板の位相差フィルム側に転写して光学積層体(円偏光板(保護フィルム/偏光子/位相差層)/粘着剤層/導電層/液晶層)を得た。この光学積層体は、総厚が110μmと薄型であり、各層を損傷させることなく屈曲可能であった。
 さらに、当該光学積層体の液晶層側を、有機ELパネルに貼着し、光学積層体のパネル非点灯時の光学特性を確認した。本構成では液晶層に積層した導電層が、円偏光板の反射防止効果を享受することが出来、優れた黒味が実現出来ていることを確認した。
(Production of optical laminate)
In the same manner as in Example 1, a conductive film for transfer was obtained. Using the conductive film for transfer, from the temporary support, the laminate A composed of the conductive layer and the liquid crystal layer, through the pressure-sensitive adhesive layer containing an acrylic pressure-sensitive adhesive, the retardation film of the circularly polarizing plate Transfer to the side to obtain an optical laminate (circularly polarizing plate (protective film / polarizer / retardation layer) / adhesive layer / conductive layer / liquid crystal layer). This optical laminate was as thin as 110 μm in total thickness, and was bendable without damaging each layer.
Furthermore, the liquid crystal layer side of the said optical laminated body was stuck to the organic electroluminescent panel, and the optical characteristic at the time of the panel non-lighting of the optical laminated body was confirmed. In this configuration, it was confirmed that the conductive layer laminated on the liquid crystal layer can enjoy the reflection preventing effect of the circularly polarizing plate, and can realize excellent blackness.
[比較例3]
 比較例1と同様にして、PET基材、誘電体層および導電層をこの順に備える積層体を得た。この積層体のPET基材側を、アクリル系粘着剤を含む粘着剤層を介して、実施例2と同様の円偏光板の保護フィルムに貼着した。さらに、当該円偏光板の位相差フィルム側に、実施例1で調製した液晶塗工液を実施例1と同様の方法で塗工して、液晶層を形成し、光学積層体(導電層/誘電体層/PET基材/円偏光板(保護フィルム/偏光子/位相差層)/液晶層)を得た。この光学積層体は、総厚が135μmであった。
 さらに、当該光学積層体の液晶層側を、有機ELパネルに貼着し、光学積層体の反射防止能を確認した。当該光学積層体は、導電層による光の反射が顕著に確認された。
Comparative Example 3
In the same manner as Comparative Example 1, a laminate provided with a PET substrate, a dielectric layer and a conductive layer in this order was obtained. The PET substrate side of this laminate was attached to the same protective film of the circularly polarizing plate as in Example 2 via the pressure-sensitive adhesive layer containing an acrylic pressure-sensitive adhesive. Furthermore, the liquid crystal coating liquid prepared in Example 1 is applied to the retardation film side of the circularly polarizing plate by the same method as in Example 1 to form a liquid crystal layer, and an optical laminate (conductive layer A dielectric layer / PET base material / circularly polarizing plate (protective film / polarizer / retardation layer) / liquid crystal layer) was obtained. The optical laminate had a total thickness of 135 μm.
Furthermore, the liquid crystal layer side of the said optical laminated body was stuck on the organic electroluminescent panel, and the reflection preventing ability of the optical laminated body was confirmed. In the optical laminate, the reflection of light by the conductive layer was significantly confirmed.
[参考例1]
 比較例2と同様にして、COP基材、光学調整層付き長尺基材フィルムおよび導電層をこの順に備える積層体を得た。
 実施例2と同様の円偏光板の位相差フィルム側に、実施例1で調製した液晶塗工液を実施例1と同様の方法で塗工して、液晶層を形成した。
 次いで、上記積層体の導電層側を、アクリル系粘着剤を含む粘着剤層を介して、上記液晶層に貼着して、光学積層体(円偏光板(保護フィルム/偏光子/位相差層)/液晶層/導電層/光学調整層付き長尺基材フィルム/COP基材)を得た。この光学積層体は、総厚が150μmであった。
 当該光学積層体の液晶層側を、有機ELパネルに貼着し、光学積層体の反射防止能を確認した。当該光学積層体は、反射防止能を発揮した。
[Reference Example 1]
In the same manner as in Comparative Example 2, a laminate provided with a COP substrate, a long base film with an optical adjustment layer, and a conductive layer in this order was obtained.
The liquid crystal coating liquid prepared in Example 1 was coated on the retardation film side of the same circularly polarizing plate as in Example 2 in the same manner as in Example 1 to form a liquid crystal layer.
Next, the conductive layer side of the laminate is attached to the liquid crystal layer through the pressure-sensitive adhesive layer containing an acrylic pressure-sensitive adhesive, and the optical laminate (circularly polarizing plate (circular film (protective film / polarizer / retardation layer)) ) / Liquid crystal layer / conductive layer / long base film with optical adjustment layer / COP base material). The optical laminate had a total thickness of 150 μm.
The liquid crystal layer side of the optical laminate was attached to the organic EL panel, and the antireflection performance of the optical laminate was confirmed. The optical laminate exhibited antireflective ability.
 10  転写用導電性フィルム
 11  仮支持体
 12  液晶層
 13  導電層
 20  光学部材
 

 
10 Conductive Film for Transfer 11 Temporary Support 12 Liquid Crystal Layer 13 Conductive Layer 20 Optical Member

Claims (13)

  1.  仮支持体と、該仮支持体から剥離可能に設けられた液晶層と、導電層とをこの順に含む、転写用導電性フィルム。 A conductive film for transfer, comprising a temporary support, a liquid crystal layer provided so as to be removable from the temporary support, and a conductive layer in this order.
  2.  前記導電層が、前記液晶層に、直接積層されている、請求項1に記載の転写用導電性フィルム。 The conductive film for transfer according to claim 1, wherein the conductive layer is directly laminated on the liquid crystal layer.
  3.  前記液晶層の屈折率特性が、nz>nx≧nyの関係を示す請求項1に記載の転写用導電性フィルム。 The conductive film for transfer according to claim 1, wherein the refractive index characteristic of the liquid crystal layer shows a relationship of nz> nx ≧ ny.
  4.  前記液晶層の厚みが、0.1μm~10μmである、請求項1に記載の転写用導電性フィルム。 The conductive film for transfer according to claim 1, wherein the liquid crystal layer has a thickness of 0.1 μm to 10 μm.
  5.  前記導電層が、金属酸化物から構成される、請求項1に記載の転写用導電性フィルム。 The conductive film for transfer according to claim 1, wherein the conductive layer is composed of a metal oxide.
  6.  前記導電層が、パターン化されている、請求項1に記載の転写用導電性フィルム。 The conductive film for transfer according to claim 1, wherein the conductive layer is patterned.
  7.  光学部材と、粘着剤層と、請求項1、5または6に記載の導電層と、請求項1、3または4に記載の液晶層とをこの順に備え、
     該導電層が、該液晶層に直接積層されている、
     光学積層体。
    An optical member, a pressure-sensitive adhesive layer, a conductive layer according to claim 1, 5 or 6, and a liquid crystal layer according to claim 1, 3 or 4 in this order,
    The conductive layer is directly laminated on the liquid crystal layer,
    Optical laminate.
  8.  前記光学部材が、偏光板である、請求項7に記載の光学積層体。 The optical laminated body of Claim 7 whose said optical member is a polarizing plate.
  9.  前記光学部材が、円偏光板であり、
     該円偏光板が、偏光子と、λ/4板として機能する位相差層とを含み、
     該偏光子が、該位相差層の前記導電層とは反対側に配置される、
     請求項7に記載の光学積層体。
    The optical member is a circularly polarizing plate,
    The circularly polarizing plate includes a polarizer and a retardation layer functioning as a λ / 4 plate,
    The polarizer is disposed on the opposite side of the retardation layer to the conductive layer.
    The optical laminated body of Claim 7.
  10.  前記液晶層の導電層と反対側に、別の光学部材をさらに備える、請求項7に記載の光学積層体。 The optical laminate according to claim 7, further comprising another optical member on the side opposite to the conductive layer of the liquid crystal layer.
  11.  前記別の光学部材が、円偏光板であり、
     該円偏光板が、偏光子と、λ/4板として機能する位相差層とを含み、
     該偏光子が、該位相差層の前記液晶層とは反対側に配置される、
     請求項10に記載の光学積層体。
    The other optical member is a circularly polarizing plate,
    The circularly polarizing plate includes a polarizer and a retardation layer functioning as a λ / 4 plate,
    The polarizer is disposed on the opposite side of the retardation layer to the liquid crystal layer.
    The optical laminated body of Claim 10.
  12.  請求項7に記載の光学積層体を備える、タッチデバイス。 A touch device comprising the optical laminate according to claim 7.
  13.  請求項1に記載の転写用導電性フィルムから、光学部材に前記液晶層と前記導電層とを含む積層体Aを転写することを含む、光学積層体の製造方法。
     
    A method for producing an optical laminate, comprising transferring the laminate A including the liquid crystal layer and the conductive layer to an optical member from the conductive film for transfer according to claim 1.
PCT/JP2018/026008 2017-08-09 2018-07-10 Electroconductive film for transfer WO2019031138A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207002113A KR20200018689A (en) 2017-08-09 2018-07-10 Conductive Film for Transfer
CN201880051261.2A CN110997310A (en) 2017-08-09 2018-07-10 Conductive film for transfer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-154366 2017-08-09
JP2017154366A JP2019031040A (en) 2017-08-09 2017-08-09 Conductive film for thermal transfer

Publications (1)

Publication Number Publication Date
WO2019031138A1 true WO2019031138A1 (en) 2019-02-14

Family

ID=65272366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026008 WO2019031138A1 (en) 2017-08-09 2018-07-10 Electroconductive film for transfer

Country Status (5)

Country Link
JP (1) JP2019031040A (en)
KR (1) KR20200018689A (en)
CN (1) CN110997310A (en)
TW (1) TW201931386A (en)
WO (1) WO2019031138A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03168613A (en) * 1989-11-29 1991-07-22 Dainippon Printing Co Ltd Production of transfer sheet and liquid crystal display element
JPH0875924A (en) * 1994-07-06 1996-03-22 Dainippon Ink & Chem Inc Production of substrate having optical anysotropy
JP2000147478A (en) * 1998-11-11 2000-05-26 Nec Corp Liquid crystal optical element and its production
JP2007193089A (en) * 2006-01-19 2007-08-02 Fujifilm Corp Transfer material, substrate for liquid crystal cell, its manufacturing method and liquid crystal display apparatus
WO2017057103A1 (en) * 2015-09-29 2017-04-06 日東電工株式会社 Liquid crystal panel with touch sensing function and liquid crystal display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2613328B1 (en) 2011-02-23 2016-12-14 Dexerials Corporation Transparent electroconductive film, information input device, and electronic instrument

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03168613A (en) * 1989-11-29 1991-07-22 Dainippon Printing Co Ltd Production of transfer sheet and liquid crystal display element
JPH0875924A (en) * 1994-07-06 1996-03-22 Dainippon Ink & Chem Inc Production of substrate having optical anysotropy
JP2000147478A (en) * 1998-11-11 2000-05-26 Nec Corp Liquid crystal optical element and its production
JP2007193089A (en) * 2006-01-19 2007-08-02 Fujifilm Corp Transfer material, substrate for liquid crystal cell, its manufacturing method and liquid crystal display apparatus
WO2017057103A1 (en) * 2015-09-29 2017-04-06 日東電工株式会社 Liquid crystal panel with touch sensing function and liquid crystal display device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUBOZONO, TATSUYA: "Technologies for Optical Films in Liquid Crystal Displays", JOURNAL OF THE JAPAN SOCIETY OF PRECISION ENGINEERING, vol. 73, no. 1, 3 June 2009 (2009-06-03), pages 66 - 69, Retrieved from the Internet <URL:URL:https://www.jstage.jst.go.jp/article/jjspe/73/l/73_1_66/_article/-char/ja/,<DOI:https://doi.org/10.2493/jjspe.73.66> [retrieved on 20180920] *

Also Published As

Publication number Publication date
JP2019031040A (en) 2019-02-28
CN110997310A (en) 2020-04-10
KR20200018689A (en) 2020-02-19
TW201931386A (en) 2019-08-01

Similar Documents

Publication Publication Date Title
CN110192130B (en) Polarizing plate with optical compensation layer and organic EL panel using the same
KR102060795B1 (en) Anti-reflection layer and anti-mirroring layer-attached polarizing plate and manufacturing method thereof
JP2024007555A (en) Polarizing plate having retardation layer and picture display unit using the same
WO2021024544A1 (en) Retardation-layer-equipped polarizing plate, and image display device using same
JP6966315B2 (en) Phase difference film, polarizing plate with optical compensation layer, image display device, and image display device with touch panel
JP6649106B2 (en) Optical laminate and image display device using the optical laminate
WO2019031138A1 (en) Electroconductive film for transfer
KR102377099B1 (en) conductive film for transfer
KR102601679B1 (en) Laminate, a polarizing plate including thereof and preparing method for the same
CN113785228A (en) Method for producing polarizing plate with phase difference layer and hard coat layer
KR20200042396A (en) Polarizing plate with retardation layer and image display using the same
CN114174876B (en) Optical laminate and image display device comprising phase difference layer-equipped polarizing plate of the optical laminate
WO2022181188A1 (en) Laminate and method for manufacturing image display panel
TWI840616B (en) Retardation plate, and circularly polarizing plate, liquid crystal display, and organic el display including the same
WO2022074872A1 (en) Method for manufacturing phase difference layer-equipped polarizing plate
JP7288465B2 (en) Polarizing plate, manufacturing method thereof, and image display device using the polarizing plate
JP7258829B2 (en) Polarizing plate with retardation layer and image display device using the same
JP2022106205A (en) Laminate and method for manufacturing polarizing plate with retardation layer
KR20200042395A (en) Polarizing plate with retardation layer and image display using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18843594

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207002113

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18843594

Country of ref document: EP

Kind code of ref document: A1