WO2019031087A1 - Electricity storage module and method for manufacturing electricity storage module - Google Patents

Electricity storage module and method for manufacturing electricity storage module Download PDF

Info

Publication number
WO2019031087A1
WO2019031087A1 PCT/JP2018/024205 JP2018024205W WO2019031087A1 WO 2019031087 A1 WO2019031087 A1 WO 2019031087A1 JP 2018024205 W JP2018024205 W JP 2018024205W WO 2019031087 A1 WO2019031087 A1 WO 2019031087A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
storage module
electrode plate
electrode
separator
Prior art date
Application number
PCT/JP2018/024205
Other languages
French (fr)
Japanese (ja)
Inventor
中村 知広
祐貴 中條
正博 山田
貴之 弘瀬
耕二郎 田丸
伸烈 芳賀
素宜 奥村
卓郎 菊池
秀典 ▲高▼橋
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017202103A external-priority patent/JP6933549B2/en
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2019031087A1 publication Critical patent/WO2019031087A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • One aspect of the present invention relates to a storage module and a method of manufacturing the storage module.
  • a bipolar battery described in Patent Document 1 As a secondary battery, a bipolar battery described in Patent Document 1 is known.
  • a positive electrode is formed on one surface of a current collector, and a bipolar electrode having a negative electrode formed on the other surface is laminated via an electrolyte layer. Between the current collectors, a seal made of resin is provided.
  • the separator contained in the electrolyte layer can permeate the electrolytic solution, and is disposed between adjacent current collectors (electrode plates) to prevent a short circuit therebetween.
  • a gap may exist between the separator and the resin seal portion (frame) in the direction intersecting the stacking direction. If this gap exists, there is a possibility that a short circuit of the adjacent electrode plate may occur through the gap when the electrode plate is deformed due to some factor. Such deformation of the electrode plate can occur both when molding the frame and when internal pressure fluctuations occur during use of the battery.
  • the resin pressed by the heat press may extend sideways to form a protrusion in the vicinity of the stepped portion.
  • the height of the step portion can not be controlled with high accuracy because the step portion is increased by the amount of the protrusion.
  • An object of one aspect of the present invention is to provide a storage module capable of controlling the height of a stepped portion with high accuracy and a method of manufacturing the storage module.
  • a storage module includes a cylindrical resin portion that extends in the stacking direction of a plurality of bipolar electrodes stacked through a separator and the plurality of bipolar electrodes, and accommodates the plurality of bipolar electrodes.
  • each of the plurality of bipolar electrodes includes an electrode plate, a positive electrode provided on the first surface of the electrode plate, and a negative electrode provided on the second surface of the electrode plate, and the resin portion is A sealing portion including a plurality of frames stacked in the stacking direction, each of the plurality of frames being joined to a peripheral portion of the electrode plate, and at least one of the plurality of frames; A first frame joined to the peripheral edge of the electrode plate, and a second frame disposed on the first frame, the inner circumferential end of the first frame and the first frame In the direction in which the inner peripheral ends of the two frames cross the stacking direction, Stepped portions by in a position is formed, on the step portion, the separator is arranged.
  • the step portion is formed by the first frame and the second frame, the step portion can be formed without using a heat press. Therefore, when forming the stepped portion, the height of the stepped portion hardly changes, so that the height of the stepped portion can be controlled with high accuracy.
  • the inner peripheral end of the first frame may be disposed inside the inner peripheral end of the second frame.
  • the separator in the state where the frame is joined to the peripheral portion of the electrode plate, the separator can be easily disposed in the stepped portion since there is no obstacle when placing the separator on the first frame.
  • An internal space is formed between the plurality of bipolar electrodes and the resin portion, and the second frame penetrates the second frame in a direction intersecting the stacking direction, and the internal space is formed in the second frame.
  • a communicating opening may be formed.
  • a pressure control valve that operates according to the pressure in the internal space can be connected to the opening of the second frame.
  • the first frame may include a thermoplastic elastomer. In this case, the sealability between the peripheral portion of the electrode plate and the first frame is improved.
  • the Young's modulus of the second frame may be greater than the Young's modulus of the first frame. In this case, the handleability of the second frame is improved.
  • the seal portion is a first seal portion, and the resin portion has a second seal portion provided outside the first seal portion in a direction intersecting the stacking direction, and the second seal portion is configured.
  • the material to be formed may be the same as the material constituting the second frame. In this case, the kind of material which comprises a resin part can be decreased.
  • the linear expansion coefficient of the first frame may be smaller than the linear expansion coefficient of the second frame.
  • the linear expansion coefficient of the first frame is reduced, the difference in linear expansion coefficient between the electrode plate and the first frame can be reduced. As a result, the warpage of the first frame can be reduced.
  • the first frame may have a resin member and a member having a linear expansion coefficient smaller than the linear expansion coefficient of the resin member. Thereby, the linear expansion coefficient of the first frame can be made smaller than the linear expansion coefficient of the second frame.
  • the member having a linear expansion coefficient smaller than the linear expansion coefficient of the resin member may be a non-woven fabric.
  • the resin material having the largest mass percentage among the resin materials constituting the first frame may be the same as the resin material having the largest mass percentage among the resin materials constituting the second frame.
  • the base material of the first frame and the base material of the second frame are the same.
  • the mass percentage is calculated based on the mass of the entire resin material constituting the first frame or the second frame (100% by mass).
  • a method of manufacturing a storage module is a method of manufacturing a storage module including a plurality of bipolar electrodes stacked via a separator, wherein each of the plurality of bipolar electrodes includes an electrode plate and the electrode plate.
  • the manufacturing method is a step of preparing a plurality of electrode units, each of the plurality of electrode units being a positive electrode provided on the first surface of the electrode and a negative electrode provided on the second surface of the electrode plate And one of the plurality of bipolar electrodes, a first frame joined to a peripheral portion of the electrode plate, a second frame disposed on the first frame, and the separator.
  • the inner peripheral end of the first frame and the inner peripheral end of the second frame are different from each other in a direction intersecting the thickness direction of the electrode plate.
  • a stepped portion is formed by being in the position, and the separator is disposed in the stepped portion.
  • the step portion is formed by the first frame and the second frame, the step portion can be formed without using a heat press. Therefore, when forming the stepped portion, the height of the stepped portion hardly changes, so that the height of the stepped portion can be controlled with high accuracy.
  • a storage module and a method of manufacturing the storage module capable of controlling the height of the stepped portion with high accuracy.
  • FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. 2 and corresponds to the embodiment shown in FIG. 3; It is sectional drawing which shows each process of the manufacturing method of the electrical storage module which concerns on embodiment. It is sectional drawing which shows 1 process of the manufacturing method of the electrical storage module which concerns on embodiment. It is sectional drawing which shows a part of electrical storage module which concerns on a 1st modification. It is sectional drawing which shows a part of electrical storage module which concerns on a 2nd modification. It is sectional drawing which shows a part of electrical storage module which concerns on a 3rd modification.
  • Power storage device 10 shown in FIG. 1 is used, for example, as a battery of various vehicles such as a forklift, a hybrid car, and an electric car.
  • the storage device 10 includes a plurality of (three in the present embodiment) storage modules 12, but may include a single storage module 12.
  • the storage module 12 is a bipolar battery.
  • the storage module 12 is, for example, a secondary battery such as a nickel hydrogen secondary battery or a lithium ion secondary battery, but may be an electric double layer capacitor.
  • the following description exemplifies a nickel-hydrogen secondary battery.
  • the plurality of storage modules 12 may be stacked via a conductive plate 14 such as a metal plate, for example. As viewed from the stacking direction, the storage module 12 and the conductive plate 14 have, for example, a rectangular shape. Details of each storage module 12 will be described later.
  • the conductive plates 14 are also disposed outside the storage modules 12 positioned at both ends in the stacking direction (Z direction) of the storage modules 12. Conductive plate 14 is electrically connected to adjacent power storage module 12. Thereby, the plurality of power storage modules 12 are connected in series in the stacking direction. In the stacking direction, the positive electrode terminal 24 is connected to the conductive plate 14 located at one end, and the negative electrode terminal 26 is connected to the conductive plate 14 located at the other end.
  • the positive electrode terminal 24 may be integral with the conductive plate 14 to be connected.
  • the negative electrode terminal 26 may be integral with the conductive plate 14 to be connected.
  • the positive electrode terminal 24 and the negative electrode terminal 26 extend in the direction (X direction) intersecting the stacking direction. The charge and discharge of the power storage device 10 can be performed by the positive electrode terminal 24 and the negative electrode terminal 26.
  • Conductive plate 14 can also function as a heat sink for releasing the heat generated in storage module 12. By passing a refrigerant such as air through the plurality of air gaps 14 a provided inside the conductive plate 14, the heat from the storage module 12 can be efficiently released to the outside.
  • Each void 14a extends, for example, in a direction (Y direction) intersecting the stacking direction. When viewed in the stacking direction, conductive plate 14 is smaller than storage module 12, but may be the same as or larger than storage module 12.
  • the storage device 10 may include a restraint member 16 for restraining the storage modules 12 and the conductive plates 14 stacked alternately in the stacking direction.
  • the constraining member 16 includes a pair of constraining plates 16A and 16B and a connecting member (bolt 18 and nut 20) that interconnects the constraining plates 16A and 16B.
  • An insulating film 22 such as a resin film, for example, is disposed between the restraint plates 16A and 16B and the conductive plate 14.
  • Each restraint plate 16A, 16B is made of, for example, a metal such as iron. When viewed from the stacking direction, each of the restraint plates 16A, 16B and the insulating film 22 has, for example, a rectangular shape.
  • the insulating film 22 is larger than the conductive plate 14, and the restraint plates 16 ⁇ / b> A and 16 ⁇ / b> B are larger than the storage module 12.
  • an insertion hole 16A1 for inserting the shaft of the bolt 18 is provided at a position outside the storage module 12 at the edge of the restraint plate 16A.
  • an insertion hole 16B1 for inserting the shaft of the bolt 18 is provided at a position outside the storage module 12 at the edge of the restraint plate 16B.
  • the insertion holes 16A1 and the insertion holes 16B1 are located at the corners of the restraint plates 16A and 16B.
  • One restraint plate 16A is abutted against the conductive plate 14 connected to the negative electrode terminal 26 via the insulating film 22, and the other restraint plate 16B is attached to the conductive plate 14 connected to the positive electrode terminal 24. It is hit through.
  • the bolt 18 is passed through the insertion hole 16A1 and the insertion hole 16B1 from, for example, one restraint plate 16A to the other restraint plate 16B.
  • a nut 20 is screwed into the tip of a bolt 18 projecting from the other restraint plate 16B.
  • the storage module 12 shown in FIG. 2 includes a stacked body 30 including a plurality of stacked bipolar electrodes 32. As viewed from the stacking direction of the bipolar electrodes 32, the stacked body 30 has, for example, a rectangular shape. A separator 40 may be disposed between adjacent bipolar electrodes 32.
  • Each bipolar electrode 32 includes an electrode plate 34, a positive electrode 36 provided on a first surface 34c of the electrode plate 34, and a negative electrode 38 provided on a second surface 34d of the electrode plate 34.
  • the positive electrode 36 of one bipolar electrode 32 faces the negative electrode 38 of one bipolar electrode 32 adjacent in the stacking direction with the separator 40 interposed therebetween, and the negative electrode 38 of one bipolar electrode 32 It opposes the positive electrode 36 of the other bipolar electrode 32 which adjoins in the lamination direction on both sides.
  • an electrode plate 34 in which the negative electrode 38 is disposed on the inner side surface (the lower surface in the drawing) is disposed.
  • the electrode plate 34 corresponds to a negative electrode side terminal electrode.
  • an electrode plate 34 in which the positive electrode 36 is disposed on the inner side surface (upper surface in the drawing) is disposed.
  • the electrode plate 34 corresponds to a positive electrode side terminal electrode.
  • the negative electrode 38 of the negative electrode side termination electrode faces the positive electrode 36 of the uppermost bipolar electrode 32 via the separator 40.
  • the positive electrode 36 of the positive electrode side termination electrode faces the negative electrode 38 of the lowermost bipolar electrode 32 via the separator 40.
  • the electrode plates 34 of these terminal electrodes are connected to the adjacent conductive plates 14 (see FIG. 1).
  • the storage module 12 includes a cylindrical resin portion 50 that extends in the stacking direction of the bipolar electrode 32 and accommodates the stacked body 30.
  • the resin portion 50 holds the peripheral portions 34 a of the plurality of electrode plates 34.
  • the resin portion 50 is configured to surround the stacked body 30.
  • the resin portion 50 has, for example, a rectangular shape when viewed from the stacking direction of the bipolar electrode 32. That is, the resin part 50 is, for example, a square tube.
  • the resin portion 50 is joined to the peripheral portion 34a of the electrode plate 34, and the first seal portion 52 which holds the peripheral portion 34a, and the first seal portion 52 in the direction (X direction and Y direction) intersecting the laminating direction.
  • a second seal portion 54 provided on the outside of the
  • the first seal portion 52 constituting the inner wall of the resin portion 50 is provided over the entire circumference of the peripheral portion 34 a of the electrode plate 34 in the plurality of bipolar electrodes 32 (or the stacked body 30).
  • the first seal portion 52 is welded, for example, to the peripheral portion 34 a of the electrode plate 34, and seals the peripheral portion 34 a. That is, the first seal portion 52 is joined to the peripheral portion 34 a of the electrode plate 34.
  • the peripheral portion 34 a of the electrode plate 34 of each bipolar electrode 32 is held in a state of being buried in the first seal portion 52.
  • the peripheral portions 34 a of the electrode plates 34 disposed at both ends of the stacked body 30 are also held in a state of being buried in the first seal portion 52.
  • an internal space V airtightly partitioned by the electrode plates 34 and 34 and the first seal portion 52 is formed between the electrode plates 34 and 34 adjacent in the stacking direction.
  • An internal space V is formed between the bipolar electrode 32 and the resin portion 50.
  • an electrolytic solution (not shown) containing an alkaline solution such as a potassium hydroxide aqueous solution is accommodated.
  • the second seal portion 54 constituting the outer wall of the resin portion 50 covers the outer peripheral surface 52 a of the first seal portion 52 extending in the stacking direction of the bipolar electrode 32.
  • the inner peripheral surface 54a of the second seal portion 54 is welded, for example, to the outer peripheral surface 52a of the first seal portion 52, and seals the outer peripheral surface 52a.
  • the second seal portion 54 is joined to the outer peripheral surface 52 a of the first seal portion 52.
  • the welding surface (bonding surface) of the second seal portion 54 with respect to the first seal portion 52 has, for example, four rectangular flat surfaces.
  • the electrode plate 34 is, for example, a rectangular metal foil containing nickel.
  • the peripheral portion 34 a of the electrode plate 34 is an uncoated region where the positive electrode active material and the negative electrode active material are not coated.
  • the electrode plate 34 is exposed in the uncoated area.
  • the uncoated area is embedded in and held by the first seal portion 52 that constitutes the inner wall of the resin portion 50.
  • a positive electrode active material which comprises the positive electrode 36 nickel hydroxide is mentioned, for example.
  • a negative electrode active material which comprises the negative electrode 38 a hydrogen storage alloy is mentioned, for example.
  • the formation region of the negative electrode 38 in the second surface 34 d of the electrode plate 34 may be one size larger than the formation region of the positive electrode 36 in the first surface 34 c of the electrode plate 34.
  • the separator 40 is formed, for example, in a sheet shape.
  • the separator 40 has, for example, a rectangular shape.
  • a material for forming the separator 40 a porous film, a woven fabric, a non-woven fabric or the like containing a polyolefin resin such as polyethylene (PE) or polypropylene (PP) is exemplified.
  • the separator 40 may be a separator reinforced with a vinylidene fluoride resin compound.
  • the separator 40 is not limited to a sheet, and a bag-shaped separator may be used.
  • the resin portion 50 (the first seal portion 52 and the second seal portion 54) is formed in a rectangular cylindrical shape, for example, by injection molding using an insulating resin.
  • the resin material constituting the resin portion 50 include polypropylene (PP), polyphenylene sulfide (PPS), modified polyphenylene ether (modified PPE), and polyphenylene ether (PPE).
  • the first seal portion 52 of the resin portion 50 is a seal portion including a plurality of frames 60 stacked in the stacking direction. Each frame 60 is joined to the peripheral edge 34 a of the electrode plate 34.
  • the frame 60 has a thickness greater than the thickness of the separator 40 in the stacking direction. More specifically, the frame 60 has a thickness greater than the sum of the thickness of the electrode plate 34 and the thickness of the separator 40 in the stacking direction.
  • the frame 60 abuts on the peripheral portion 34 a of the electrode plate 34 and abuts on another frame 60 adjacent in the stacking direction.
  • the frame 60 defines the height of the internal space V formed between the electrode plates 34 adjacent in the stacking direction. In other words, the frame 60 defines the height of one cell in the storage module 12.
  • the “thickness” of the separator 40 here is the thickness of the separator 40 in the storage module 12.
  • the thickness of the separator 40 in the storage module 12 may be smaller than the thickness of the separator 40 before the storage module 12 is assembled. That is, the separator 40 can be compressed by being sandwiched between the positive electrode 36 and the negative electrode 38.
  • the “thickness” of the separator 40 means the thickness after compression.
  • the frame 60 has a first frame 61 joined to the peripheral edge portion 34 a of the electrode plate 34 and a second frame 62 disposed on the first frame 61.
  • the first frame 61 is joined to the peripheral portion 34 a by welding, for example. In the stacking direction, the first frames 61 and the second frames 62 are alternately arranged.
  • the first frame 61 is joined to the first surface 34 c of the electrode plate 34 and abuts on the outer peripheral end 34 e of the electrode plate 34.
  • the outer peripheral end 34e of the electrode plate 34 connects the first surface 34c and the second surface 34d.
  • the second frame 62 is disposed on the upper surface 61 a (the surface opposite to the surface joined to the first surface 34 c) of the first frame 61.
  • the lower surface 62 b of the second frame 62 is in contact with the upper surface 61 a of the first frame 61.
  • the upper surface 62 a of the second frame 62 is in contact with the lower surface 61 b of the adjacent first frame 61.
  • the first frame 61 and the second frame 62 may be connected to each other, for example, by partial welding, but the space between the first frame 61 and the second frame 62 may not be sealed. This is because the second seal portion 54 keeps the internal space V airtight.
  • a step portion 68 is formed in the frame 60 by the inner peripheral end 61 c of the first frame 61 and the inner peripheral end 62 c of the second frame 62 being at mutually different positions in the direction intersecting the stacking direction. .
  • the stepped portion 68 is constituted by the inner peripheral end 61 c and the upper surface 61 a of the first frame 61 and the inner peripheral end 62 c of the second frame 62.
  • the inner peripheral end 61 c of the first frame 61 is disposed inside the inner peripheral end 62 c of the second frame 62. Therefore, the inner peripheral end 61 c of the first frame 61 corresponds to the inner peripheral end 52 c (see FIG. 2) of the first seal portion 52.
  • the outer peripheral end 61 d of the first frame 61 and the outer peripheral end 62 d of the second frame 62 correspond to the outer peripheral end 52 d (i.e., the outer peripheral surface 52 a) of the first seal portion 52.
  • the height H of the step portion 68 in the stacking direction is the thickness of the second frame 62 (the distance between the upper surface 62 a and the lower surface 62 b).
  • the height H of the step portion 68 is larger than the thickness of the separator 40.
  • a peripheral portion 40a including the outer peripheral end 40d of the separator 40 is disposed. That is, the step portion 68 formed in the frame 60 faces the inner side of the frame 60, and provides a space for arranging the outer peripheral end 40d of the separator 40 in the first seal portion 52. .
  • the peripheral portion 40 a of the separator 40 is in contact with the upper surface 61 a of the first frame 61.
  • the separator 40 can be compressed in the stacking direction in the region where the positive electrode 36 and the negative electrode 38 are provided.
  • the separator 40 does not receive the pressing force in the stacking direction and is not compressed in the stacking direction in the region facing the uncoated region and the region disposed inside the first seal portion 52.
  • the separator 40 has play (free movement) in the stacking direction in the area facing the uncoated area and in the area disposed inside the first seal portion 52.
  • the magnitude relationship between the size of the separator 40 and the size of the electrode plate 34 may be any relationship.
  • the separator 40 is smaller than the electrode plate 34 when viewed in the stacking direction, but may be the same as or larger than the electrode plate 34.
  • the linear expansion coefficient of the first frame 61 may be smaller than the linear expansion coefficient of the second frame 62.
  • the linear expansion coefficient of the electrode plate 34 is smaller than the linear expansion coefficient of the first frame 61, but by reducing the linear expansion coefficient of the first frame 61, the electrode plate 34 and the first frame 61 may be separated. The difference in linear expansion coefficient can be reduced. As a result, the warpage of the first frame 61 can be reduced.
  • the first frame 51 includes a resin member and a member having a linear expansion coefficient smaller than the linear expansion coefficient of the resin member. Examples of the resin material constituting the resin member include polypropylene (PP), polyphenylene sulfide (PPS), and modified polyphenylene ether (modified PPE) as described above.
  • the resin material having the largest mass percentage among the resin materials constituting the first frame 61 may be the same as the resin material having the largest mass percentage among the resin materials constituting the second frame 62.
  • a resin material for example, polypropylene (PP), polyphenylene sulfide (PPS), or modified polyphenylene ether (modified PPE), etc. may be mentioned.
  • PP polypropylene
  • PPS polyphenylene sulfide
  • modified PPE modified polyphenylene ether
  • the base material (resin member) of the first frame 61 and the base material (resin member) of the second frame 62 are the same.
  • the first frame 61 may include a thermoplastic elastomer.
  • the sealability between the peripheral portion 34 a of the electrode plate 34 and the first frame 61 is improved.
  • the electrolytic solution containing an alkaline solution such as an aqueous solution of potassium hydroxide exudes to the outer surface side of the electrode plate through the gap between the electrode plate which is the negative electrode side termination electrode and the frame due to a so-called alkaline creep phenomenon.
  • an alkaline solution such as an aqueous solution of potassium hydroxide
  • the mixture of a polypropylene and EPDM ethylene propylene rubber
  • the mixture of a polypropylene and a styrene rubber, etc. are mentioned, for example.
  • the surface of the peripheral portion 34 a of the electrode plate 34 may be roughened.
  • the entire surface of the electrode plate 34 may be roughened.
  • the surface of the electrode plate 34 is roughened by, for example, forming a plurality of protrusions by electrolytic plating.
  • a recess in which the first frame 61 fluidized by heat is formed by the roughening. Go inside and anchor effect is exhibited.
  • the protrusion has, for example, a shape that becomes thicker in the direction from the proximal side to the distal side. In this case, the cross-sectional shape between the adjacent protrusions is an undercut shape, and an anchor effect is likely to occur.
  • the Young's modulus (bending elastic modulus) of the second frame 62 may be larger than the Young's modulus of the first frame 61. In this case, the handleability of the second frame 62 is improved. As a result, the second frame 62 can be easily placed on the first frame 61.
  • the second frame 62 may contain, for example, polypropylene (PP), polyphenylene ether (PPE), polyphenylene sulfide (PPS), or modified polyphenylene ether (modified PPE), a thermoplastic elastomer, or the like.
  • the ratio of the mass of rubber to the mass of the entire thermoplastic elastomer in the thermoplastic elastomer constituting the second frame 62 is the thermoplastic elastomer constituting the first frame 61 It may be smaller than the ratio of the mass of rubber to the mass of the whole thermoplastic elastomer in. Thereby, the Young's modulus of the second frame 62 can be made larger than the Young's modulus of the first frame 61.
  • the first frame 61 and the second frame 62 have a film shape, and the thickness of the second frame 62 may be smaller than the thickness of the first frame 61. As described above, even when the thickness of the second frame 62 is thin, the handling property of the second frame 62 can be improved by increasing the Young's modulus of the second frame 62.
  • the material forming the second seal portion 54 may have compatibility with the material forming the second frame 62, and may be the same as the material forming the second frame 62. If the material is the same, the types of materials constituting the resin portion 50 can be reduced.
  • the second seal portion 54 contains, for example, modified polyphenylene ether (modified PPE) in order to obtain high rigidity. In this case, when the second frame 62 also contains the modified polyphenylene ether (modified PPE), the types of materials constituting the resin portion 50 can be reduced.
  • the first frame 61 and the second frame 62 are ring-shaped.
  • the second frame 62 may have an opening 62 h penetrating the second frame 62 in a direction intersecting the stacking direction and communicating with the internal space V (see FIG. 2).
  • the opening 62 h communicates with the opening 54 h formed in the second seal portion 54.
  • a pressure control valve 70 is fitted in the opening 54 h.
  • the pressure control valve 70 is connected to the opening 62 h.
  • the pressure control valve 70 can be opened when the pressure in the internal space V becomes equal to or higher than a predetermined value, and the gas in the internal space V can be discharged to the outside of the storage module 12.
  • the peripheral portion 40 a of the separator 40 overlaps the area where the first seal portion 52 is provided.
  • these projected images overlap (that is, overlap).
  • the separator 40 reaches the area where the first seal portion 52 is provided.
  • the outer peripheral end 40 d of the separator 40 is located between the outer peripheral end 52 d and the inner peripheral end 52 c of the first seal portion 52.
  • a portion of the separator 40 is shown as broken so that the configuration of the first seal portion 52 can be easily understood.
  • the separator 40 is provided between two adjacent electrode plates 34, so the uncoated regions of the adjacent electrode plates 34 do not directly face each other. In two adjacent electrode plates 34, a separator 40 is always present between one uncoated region and the other uncoated region.
  • the separator 40 provided so as to overlap the first seal portion 52 prevents the occurrence of a short circuit due to contact between two adjacent electrode plates 34 (in particular, an uncoated region).
  • the outer peripheral end 40 d may be located between the outer peripheral end 52 d and the inner peripheral end 52 c of the first seal portion 52 all around the separator 40.
  • the outer circumferential end 40 d may be located between the outer circumferential end 52 d and the inner circumferential end 52 c of the first seal portion 52. As the separator 40 overlaps the first seal portion 52 in a large range in the circumferential direction of the separator 40, the occurrence of a short circuit can be more reliably prevented.
  • the stepped portion 68 is formed by the first frame 61 and the second frame 62. Therefore, the stepped portion 68 can be formed without using a heat press. Therefore, when forming the stepped portion 68, the height H of the stepped portion 68 is unlikely to change, so the height H of the stepped portion 68 can be controlled with high accuracy. As a result, the distance between adjacent electrode plates 34 can be controlled with high accuracy.
  • the frame 60 is joined to the peripheral edge 34 a of the electrode plate 34.
  • the separator 40 can be easily disposed in the step portion 68.
  • the above-described storage module 12 can be manufactured by this method.
  • the electrode unit U is prepared, for example, as follows. First, as shown in FIG. 5A, the positive electrode 36 is formed on the first surface 34c of the electrode plate 34, and the negative electrode 38 is formed on the second surface 34d of the electrode plate 34 to obtain the bipolar electrode 32. . Next, as shown in (a) of FIG. 5, the first frame 61 is joined to the peripheral portion 34 a of the electrode plate 34. The first frame 61 is welded to the first surface 34 c of the electrode plate 34 by, for example, pressing the heat plate against the second surface 34 d of the electrode plate 34 and performing heat pressing. Thereby, the space between the first frame 61 and the peripheral portion 34 a of the electrode plate 34 is sealed. Next, as shown in (b) of FIG.
  • the second frame 62 is placed on the first frame 61. Thereby, the stepped portion 68 is formed.
  • the second frame 62 is partially welded to the first frame 61, but the space between the first frame 61 and the second frame 62 is not sealed.
  • the separator 40 is disposed at the stepped portion 68.
  • the first frame 61 may be joined to the peripheral edge 34 a of the electrode plate 34.
  • the step portion 68 is formed before the first frame 61 is joined to the peripheral portion 34 a of the electrode plate 34.
  • the electrode unit U is stacked such that the plurality of bipolar electrodes 32 are stacked via the separator 40.
  • the first frame 61 of the adjacent electrode unit U is placed on the second frame 62 of one electrode unit U.
  • the first frame 61 and the second frame 62 alternately stacked in the stacking direction constitute a first seal portion 52.
  • the second seal portion 54 is formed on the outer side of the outer peripheral end 52 d of the first seal portion 52.
  • the second seal portion 54 is joined to the first frame 61 and seals between the adjacent first frames 61.
  • the second seal portion 54 is also joined to the second frame 62, but may not be joined to the second frame 62.
  • the second seal portion 54 is formed by, for example, injection molding.
  • the second seal portion 54 can be formed by pouring the resin material of the second seal portion 54 having fluidity into the mold.
  • the second seal portion 54 may be formed, for example, by welding a cylindrical resin member to the outer peripheral end 52 d of the first seal portion 52. In welding, for example, after the first seal portion 52 and the second seal portion 54 are heated with the heat plate interposed between the first seal portion 52 and the second seal portion 54, the heat plate is removed and the first seal portion 52 is removed. And the second seal portion 54 are welded.
  • an electrolytic solution is injected into the resin portion 50 through a liquid injection port or the like.
  • the storage port 12 is manufactured by sealing the liquid injection port.
  • the plurality of storage modules 12 are stacked via the conductive plate 14.
  • the positive electrode terminal 24 and the negative electrode terminal 26 are connected in advance to the conductive plates 14 positioned at both ends in the stacking direction.
  • a pair of restraint plates 16A and 16B are disposed at both ends in the stacking direction via the insulating film 22, and the restraint plates 16A and 16B are connected to each other using the bolts 18 and the nuts 20.
  • power storage device 10 shown in FIG. 1 is manufactured.
  • the step portion 68 is formed by the first frame 61 and the second frame 62, the step portion 68 can be formed without using a heat press. Therefore, when forming the stepped portion 68, the height H of the stepped portion 68 is unlikely to change, so the height H of the stepped portion 68 can be controlled with high accuracy.
  • FIG. 7 is a cross-sectional view showing a part of a storage module according to a first modification.
  • the storage module 12A shown in FIG. 7 is the same as the storage module 12A in FIG. 3 except that a space V1 is formed between the first frame 61, the outer peripheral end 34e of the electrode plate 34 and the upper surface 62a of the second frame 62. It has the same configuration as the storage module 12 shown.
  • the first frame 61 is joined to the first surface 34c of the electrode plate 34, but is not in contact with the outer peripheral end 34e of the electrode plate 34.
  • the lower surface 61b of the first frame 61 is in contact with the upper surface 62a of the second frame 62, but may not be in contact with the upper surface 62a.
  • the resin material constituting the first frame 61 melts and sags downward.
  • the first frame 61 has a protrusion 61 p that protrudes downward.
  • FIG. 8 is a cross-sectional view showing a part of a storage module according to a second modification.
  • the storage module 12B shown in FIG. 8 is different from the storage module 12 shown in FIG. 3 in that the first frame 161 and the second frame 162 are provided instead of the first frame 61 and the second frame 62. It has the same configuration.
  • the first frame 161 and the second frame 162 constitute a frame 160.
  • the inner peripheral end 161c of the first frame 161 is disposed outside the inner peripheral end 162c of the second frame 162. Accordingly, the inner peripheral end 162c of the second frame body 162 corresponds to the inner peripheral end 52c (see FIG. 2) of the first seal portion 52.
  • a stepped portion 168 is formed in the frame 160 by the first frame 161 and the second frame 162.
  • the stepped portion 168 is constituted by the inner peripheral end 161 c of the first frame 161, the lower surface 162 b of the second frame 162, and the inner peripheral end 162 c of the second frame 162.
  • a separator 40 is disposed at the stepped portion 168.
  • the height H1 of the step portion 168 in the stacking direction is the distance from the first surface 34c of the electrode plate 34 to the lower surface 162b of the second frame 162.
  • the height H 1 of the step portion 168 is larger than the thickness of the separator 40.
  • a peripheral portion 40a including the outer peripheral end 40d of the separator 40 is disposed in the stepped portion 168. That is, the step portion 168 formed in the frame 160 faces the inside of the frame 160 and provides a space for arranging the outer peripheral end 40 d of the separator 40 in the first seal portion 52. .
  • the peripheral portion 40 a of the separator 40 is in contact with the lower surface 162 b of the second frame 162.
  • the outer peripheral end 40d of the separator 40 is inserted between the electrode plate 34 and the second frame 162 in a state where the frame 160 is joined to the peripheral portion 34a of the electrode plate 34.
  • FIG. 9 is a cross-sectional view showing a part of a storage module according to a third modification.
  • the storage module 12C shown in FIG. 9 has the same configuration as the storage module 12 shown in FIG. 3 except that a second seal part 154 is provided instead of the second seal part 54.
  • the second seal portion 154 is formed, for example, by welding the outer peripheral end 61 d of the first frame 61 and the outer peripheral end 62 d of the second frame 62 to each other. Examples of the welding method include hot plate welding, hot air welding, laser welding and the like. In the heat plate welding, for example, the second seal portion 154 is formed by pressing the heat plate against the outer peripheral end 61 d of the first frame 61 and the outer peripheral end 62 d of the second frame 62.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

This electricity storage module is provided with: a plurality of bipolar electrodes which are laminated together with a separator therebetween; and a tubular resin portion which extends in a laminated direction of the plurality of bipolar electrodes and which houses the plurality of bipolar electrodes. Each of the plurality of bipolar electrodes includes an electrode plate, a positive electrode disposed on a first surface of the electrode plate, and a negative electrode disposed on a second surface of the electrode plate. The resin portion includes a seal portion comprising a plurality of frame bodies laminated in the laminated direction. Each of the plurality of frame bodies is joined to a peripheral portion of the electrode plate. At least one of the plurality of frame bodies includes a first frame body joined to the peripheral portion of the electrode plate, and a second frame body disposed on the first frame body. A step portion is formed due to an inner peripheral end of the first frame body and an inner peripheral end of the second frame body being located at different positions in a direction intersecting the laminated direction. The separator is disposed at the step portion.

Description

蓄電モジュール及び蓄電モジュールの製造方法Power storage module and method of manufacturing power storage module
 本発明の一側面は、蓄電モジュール及び蓄電モジュールの製造方法に関する。 One aspect of the present invention relates to a storage module and a method of manufacturing the storage module.
 二次電池として、特許文献1に記載されたバイポーラ電池が知られている。このバイポーラ電池では、集電体の一方の面に正極が形成され、他方の面に負極が形成されたバイポーラ電極が、電解質層を介して積層されている。集電体同士の間には、樹脂製のシール部が設けられている。 As a secondary battery, a bipolar battery described in Patent Document 1 is known. In this bipolar battery, a positive electrode is formed on one surface of a current collector, and a bipolar electrode having a negative electrode formed on the other surface is laminated via an electrolyte layer. Between the current collectors, a seal made of resin is provided.
特開2006-86049号公報JP, 2006-86049, A
 電解質層に含まれるセパレータは、電解液を透過させ得る一方、隣り合う集電体(電極板)の間に配置されて、これらの短絡を防止する。セパレータと樹脂製のシール部(枠体)との間には、積層方向に交差する方向において、隙間が存在し得る。この隙間が存在すると、電極板が何らかの要因により変形した場合に、隙間を通じて、隣り合う電極板の短絡が発生する虞がある。そのような電極板の変形は、枠体を成形する際、及び、電池の使用中に内圧変動が生じた際の両方において発生し得る。 The separator contained in the electrolyte layer can permeate the electrolytic solution, and is disposed between adjacent current collectors (electrode plates) to prevent a short circuit therebetween. A gap may exist between the separator and the resin seal portion (frame) in the direction intersecting the stacking direction. If this gap exists, there is a possibility that a short circuit of the adjacent electrode plate may occur through the gap when the electrode plate is deformed due to some factor. Such deformation of the electrode plate can occur both when molding the frame and when internal pressure fluctuations occur during use of the battery.
 そこで、熱プレスにより枠体に段差部を形成し、その段差部にセパレータの周縁部を配置することを検討する。この場合、積層方向においてセパレータが枠体にオーバーラップするので、隣り合う電極板の短絡を防止できる。 Therefore, it is considered to form a stepped portion in the frame by heat pressing, and to arrange the peripheral portion of the separator in the stepped portion. In this case, since the separators overlap the frame in the stacking direction, it is possible to prevent a short circuit between adjacent electrode plates.
 しかしながら、熱プレスにより段差部を形成する場合、熱プレスの条件が不適切であると、熱プレスによって押圧された樹脂が横にはみ出して段差部の近傍に突起を形成する虞がある。この場合、突起の分だけ段差部が高くなってしまうので、段差部の高さを高精度に制御できない。 However, in the case of forming the stepped portion by heat press, if the conditions of the heat press are not appropriate, the resin pressed by the heat press may extend sideways to form a protrusion in the vicinity of the stepped portion. In this case, the height of the step portion can not be controlled with high accuracy because the step portion is increased by the amount of the protrusion.
 本発明の一側面は、段差部の高さを高精度に制御できる蓄電モジュール及び蓄電モジュールの製造方法を提供することを目的とする。 An object of one aspect of the present invention is to provide a storage module capable of controlling the height of a stepped portion with high accuracy and a method of manufacturing the storage module.
 本発明の一側面に係る蓄電モジュールは、セパレータを介して積層された複数のバイポーラ電極と、前記複数のバイポーラ電極の積層方向に延在し、前記複数のバイポーラ電極を収容する筒状の樹脂部と、を備え、前記複数のバイポーラ電極のそれぞれが、電極板と前記電極板の第1面に設けられた正極と前記電極板の第2面に設けられた負極とを含み、前記樹脂部は、前記積層方向に積層された複数の枠体を含むシール部を有し、前記複数の枠体のそれぞれが前記電極板の周縁部に接合され、前記複数の枠体のうち少なくとも1つの枠体は、前記電極板の前記周縁部に接合された第1枠体と、前記第1枠体上に配置された第2枠体とを有し、前記第1枠体の内周端と前記第2枠体の内周端とが前記積層方向に交差する方向において互いに異なる位置にあることによって段差部が形成されており、前記段差部には、前記セパレータが配置される。 A storage module according to one aspect of the present invention includes a cylindrical resin portion that extends in the stacking direction of a plurality of bipolar electrodes stacked through a separator and the plurality of bipolar electrodes, and accommodates the plurality of bipolar electrodes. And each of the plurality of bipolar electrodes includes an electrode plate, a positive electrode provided on the first surface of the electrode plate, and a negative electrode provided on the second surface of the electrode plate, and the resin portion is A sealing portion including a plurality of frames stacked in the stacking direction, each of the plurality of frames being joined to a peripheral portion of the electrode plate, and at least one of the plurality of frames; A first frame joined to the peripheral edge of the electrode plate, and a second frame disposed on the first frame, the inner circumferential end of the first frame and the first frame In the direction in which the inner peripheral ends of the two frames cross the stacking direction, Stepped portions by in a position is formed, on the step portion, the separator is arranged.
 この蓄電モジュールによれば、第1枠体及び第2枠体によって段差部が形成されるので、熱プレスを用いずに段差部を形成することができる。そのため、段差部を形成する際に段差部の高さが変動し難いので、段差部の高さを高精度に制御できる。 According to this storage module, since the step portion is formed by the first frame and the second frame, the step portion can be formed without using a heat press. Therefore, when forming the stepped portion, the height of the stepped portion hardly changes, so that the height of the stepped portion can be controlled with high accuracy.
 前記第1枠体の前記内周端が、前記第2枠体の前記内周端よりも内側に配置されてもよい。この場合、枠体が電極板の周縁部に接合された状態において、セパレータを第1枠体上に載置する際に障害物がないので、セパレータを段差部に容易に配置することができる。 The inner peripheral end of the first frame may be disposed inside the inner peripheral end of the second frame. In this case, in the state where the frame is joined to the peripheral portion of the electrode plate, the separator can be easily disposed in the stepped portion since there is no obstacle when placing the separator on the first frame.
 前記複数のバイポーラ電極と前記樹脂部との間に内部空間が形成されており、前記第2枠体には、前記積層方向に交差する方向に前記第2枠体を貫通し、前記内部空間と連通する開口が形成されてもよい。この場合、第2枠体の開口に、内部空間の圧力に応じて動作する圧力調整弁を接続することができる。圧力調整弁を用いると、内部空間の圧力が所定の値以上となった場合に圧力調整弁が開いて、内部空間のガスを蓄電モジュールの外部に放出することができる。 An internal space is formed between the plurality of bipolar electrodes and the resin portion, and the second frame penetrates the second frame in a direction intersecting the stacking direction, and the internal space is formed in the second frame. A communicating opening may be formed. In this case, a pressure control valve that operates according to the pressure in the internal space can be connected to the opening of the second frame. When the pressure control valve is used, when the pressure in the internal space reaches a predetermined value or more, the pressure control valve is opened, and the gas in the internal space can be discharged to the outside of the storage module.
 前記第1枠体は、熱可塑性エラストマーを含んでもよい。この場合、電極板の周縁部と第1枠体との間のシール性が向上する。 The first frame may include a thermoplastic elastomer. In this case, the sealability between the peripheral portion of the electrode plate and the first frame is improved.
 前記第2枠体のヤング率は、前記第1枠体のヤング率よりも大きくてもよい。この場合、第2枠体のハンドリング性が向上する。 The Young's modulus of the second frame may be greater than the Young's modulus of the first frame. In this case, the handleability of the second frame is improved.
 前記シール部は第1シール部であり、前記樹脂部は、前記積層方向に交差する方向において前記第1シール部の外側に設けられた第2シール部を有し、前記第2シール部を構成する材料は、前記第2枠体を構成する材料と同じであってもよい。この場合、樹脂部を構成する材料の種類を少なくすることができる。 The seal portion is a first seal portion, and the resin portion has a second seal portion provided outside the first seal portion in a direction intersecting the stacking direction, and the second seal portion is configured. The material to be formed may be the same as the material constituting the second frame. In this case, the kind of material which comprises a resin part can be decreased.
 前記第1枠体の線膨張係数は、前記第2枠体の線膨張係数よりも小さくてもよい。第1枠体の線膨張係数を小さくすると、電極板と第1枠体との間で線膨張係数の差を小さくできる。その結果、第1枠体の反りを低減することができる。 The linear expansion coefficient of the first frame may be smaller than the linear expansion coefficient of the second frame. When the linear expansion coefficient of the first frame is reduced, the difference in linear expansion coefficient between the electrode plate and the first frame can be reduced. As a result, the warpage of the first frame can be reduced.
 前記第1枠体は、樹脂部材と、前記樹脂部材の線膨張係数よりも小さい線膨張係数を有する部材とを有してもよい。これにより、第1枠体の線膨張係数を第2枠体の線膨張係数よりも小さくできる。前記樹脂部材の線膨張係数よりも小さい線膨張係数を有する前記部材は不織布であってもよい。 The first frame may have a resin member and a member having a linear expansion coefficient smaller than the linear expansion coefficient of the resin member. Thereby, the linear expansion coefficient of the first frame can be made smaller than the linear expansion coefficient of the second frame. The member having a linear expansion coefficient smaller than the linear expansion coefficient of the resin member may be a non-woven fabric.
 前記第1枠体を構成する樹脂材料のうち最大の質量百分率を有する樹脂材料が、前記第2枠体を構成する樹脂材料のうち最大の質量百分率を有する樹脂材料と同じであってもよい。この場合、第1枠体の母材と第2枠体の母材が同じになる。質量百分率は、第1枠体又は第2枠体を構成する樹脂材料全体の質量を基準(100質量%)として算出される。 The resin material having the largest mass percentage among the resin materials constituting the first frame may be the same as the resin material having the largest mass percentage among the resin materials constituting the second frame. In this case, the base material of the first frame and the base material of the second frame are the same. The mass percentage is calculated based on the mass of the entire resin material constituting the first frame or the second frame (100% by mass).
 本発明の一側面に係る蓄電モジュールの製造方法は、セパレータを介して積層された複数のバイポーラ電極を含む蓄電モジュールの製造方法であって、複数のバイポーラ電極のそれぞれが、電極板と前記電極板の第1面に設けられた正極と前記電極板の第2面に設けられた負極とを含み、前記製造方法は、複数の電極ユニットを準備する工程であり、前記複数の電極ユニットのそれぞれが、前記複数のバイポーラ電極のうち1つのバイポーラ電極と、前記電極板の周縁部に接合された第1枠体と、前記第1枠体上に配置された第2枠体と、前記セパレータとを有する、前記工程と、前記複数のバイポーラ電極が前記セパレータを介して積層されるように、前記複数の電極ユニットを積層する工程と、隣り合う前記第1枠体間をシールする工程と、を含み、前記複数の電極ユニットを準備する工程では、前記第1枠体の内周端と前記第2枠体の内周端とが前記電極板の厚み方向に交差する方向において互いに異なる位置にあることによって段差部が形成されており、前記段差部には、前記セパレータが配置される。 A method of manufacturing a storage module according to one aspect of the present invention is a method of manufacturing a storage module including a plurality of bipolar electrodes stacked via a separator, wherein each of the plurality of bipolar electrodes includes an electrode plate and the electrode plate. The manufacturing method is a step of preparing a plurality of electrode units, each of the plurality of electrode units being a positive electrode provided on the first surface of the electrode and a negative electrode provided on the second surface of the electrode plate And one of the plurality of bipolar electrodes, a first frame joined to a peripheral portion of the electrode plate, a second frame disposed on the first frame, and the separator. And laminating the plurality of electrode units such that the plurality of bipolar electrodes are stacked via the separator, and sealing between the adjacent first frames. And in the step of preparing the plurality of electrode units, the inner peripheral end of the first frame and the inner peripheral end of the second frame are different from each other in a direction intersecting the thickness direction of the electrode plate. A stepped portion is formed by being in the position, and the separator is disposed in the stepped portion.
 この蓄電モジュールの製造方法によれば、第1枠体及び第2枠体によって段差部が形成されるので、熱プレスを用いずに段差部を形成することができる。そのため、段差部を形成する際に段差部の高さが変動し難いので、段差部の高さを高精度に制御できる。 According to the method of manufacturing the storage module, since the step portion is formed by the first frame and the second frame, the step portion can be formed without using a heat press. Therefore, when forming the stepped portion, the height of the stepped portion hardly changes, so that the height of the stepped portion can be controlled with high accuracy.
 本発明の一側面によれば、段差部の高さを高精度に制御できる蓄電モジュール及び蓄電モジュールの製造方法が提供され得る。 According to one aspect of the present invention, there can be provided a storage module and a method of manufacturing the storage module capable of controlling the height of the stepped portion with high accuracy.
蓄電モジュールを備える蓄電装置の実施形態を示す概略断面図である。It is a schematic sectional drawing which shows embodiment of an electrical storage apparatus provided with an electrical storage module. 図1の蓄電装置を構成する蓄電モジュールを示す概略断面図である。It is a schematic sectional drawing which shows the electrical storage module which comprises the electrical storage apparatus of FIG. 実施形態における樹脂部の周辺構造を示す断面図である。It is sectional drawing which shows the periphery structure of the resin part in embodiment. 図2のIV-IV線に沿う断面図であり、図3に示される実施形態に対応する図である。FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. 2 and corresponds to the embodiment shown in FIG. 3; 実施形態に係る蓄電モジュールの製造方法の各工程を示す断面図である。It is sectional drawing which shows each process of the manufacturing method of the electrical storage module which concerns on embodiment. 実施形態に係る蓄電モジュールの製造方法の一工程を示す断面図である。It is sectional drawing which shows 1 process of the manufacturing method of the electrical storage module which concerns on embodiment. 第1変形例に係る蓄電モジュールの一部を示す断面図である。It is sectional drawing which shows a part of electrical storage module which concerns on a 1st modification. 第2変形例に係る蓄電モジュールの一部を示す断面図である。It is sectional drawing which shows a part of electrical storage module which concerns on a 2nd modification. 第3変形例に係る蓄電モジュールの一部を示す断面図である。It is sectional drawing which shows a part of electrical storage module which concerns on a 3rd modification.
 以下、添付図面を参照しながら本発明の実施形態が詳細に説明される。図面の説明において、同一又は同等の要素には同一符号が用いられ、重複する説明は省略される。図面には必要に応じてXYZ直交座標系が示される。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same reference numerals are used for the same or equivalent elements, and the overlapping description is omitted. In the drawings, an XYZ orthogonal coordinate system is shown as needed.
 図1を参照して、蓄電装置の実施形態について説明する。図1に示される蓄電装置10は、例えばフォークリフト、ハイブリッド自動車、電気自動車等の各種車両のバッテリとして用いられる。蓄電装置10は、複数(本実施形態では3つ)の蓄電モジュール12を備えるが、単一の蓄電モジュール12を備えてもよい。蓄電モジュール12は、バイポーラ電池である。蓄電モジュール12は、例えばニッケル水素二次電池、リチウムイオン二次電池等の二次電池であるが、電気二重層キャパシタであってもよい。以下の説明では、ニッケル水素二次電池を例示する。 An embodiment of a power storage device will be described with reference to FIG. Power storage device 10 shown in FIG. 1 is used, for example, as a battery of various vehicles such as a forklift, a hybrid car, and an electric car. The storage device 10 includes a plurality of (three in the present embodiment) storage modules 12, but may include a single storage module 12. The storage module 12 is a bipolar battery. The storage module 12 is, for example, a secondary battery such as a nickel hydrogen secondary battery or a lithium ion secondary battery, but may be an electric double layer capacitor. The following description exemplifies a nickel-hydrogen secondary battery.
 複数の蓄電モジュール12は、例えば金属板等の導電板14を介して積層され得る。積層方向から見て、蓄電モジュール12及び導電板14は例えば矩形形状を有する。各蓄電モジュール12の詳細については後述する。導電板14は、蓄電モジュール12の積層方向(Z方向)において両端に位置する蓄電モジュール12の外側にもそれぞれ配置される。導電板14は、隣り合う蓄電モジュール12と電気的に接続される。これにより、複数の蓄電モジュール12が積層方向に直列に接続される。積層方向において、一端に位置する導電板14には正極端子24が接続されており、他端に位置する導電板14には負極端子26が接続されている。正極端子24は、接続される導電板14と一体であってもよい。負極端子26は、接続される導電板14と一体であってもよい。正極端子24及び負極端子26は、積層方向に交差する方向(X方向)に延在している。これらの正極端子24及び負極端子26により、蓄電装置10の充放電を実施できる。 The plurality of storage modules 12 may be stacked via a conductive plate 14 such as a metal plate, for example. As viewed from the stacking direction, the storage module 12 and the conductive plate 14 have, for example, a rectangular shape. Details of each storage module 12 will be described later. The conductive plates 14 are also disposed outside the storage modules 12 positioned at both ends in the stacking direction (Z direction) of the storage modules 12. Conductive plate 14 is electrically connected to adjacent power storage module 12. Thereby, the plurality of power storage modules 12 are connected in series in the stacking direction. In the stacking direction, the positive electrode terminal 24 is connected to the conductive plate 14 located at one end, and the negative electrode terminal 26 is connected to the conductive plate 14 located at the other end. The positive electrode terminal 24 may be integral with the conductive plate 14 to be connected. The negative electrode terminal 26 may be integral with the conductive plate 14 to be connected. The positive electrode terminal 24 and the negative electrode terminal 26 extend in the direction (X direction) intersecting the stacking direction. The charge and discharge of the power storage device 10 can be performed by the positive electrode terminal 24 and the negative electrode terminal 26.
 導電板14は、蓄電モジュール12において発生した熱を放出するための放熱板としても機能し得る。導電板14の内部に設けられた複数の空隙14aを空気等の冷媒が通過することにより、蓄電モジュール12からの熱を効率的に外部に放出できる。各空隙14aは例えば積層方向に交差する方向(Y方向)に延在する。積層方向から見て、導電板14は、蓄電モジュール12よりも小さいが、蓄電モジュール12と同じかそれより大きくてもよい。 Conductive plate 14 can also function as a heat sink for releasing the heat generated in storage module 12. By passing a refrigerant such as air through the plurality of air gaps 14 a provided inside the conductive plate 14, the heat from the storage module 12 can be efficiently released to the outside. Each void 14a extends, for example, in a direction (Y direction) intersecting the stacking direction. When viewed in the stacking direction, conductive plate 14 is smaller than storage module 12, but may be the same as or larger than storage module 12.
 蓄電装置10は、交互に積層された蓄電モジュール12及び導電板14を積層方向に拘束する拘束部材16を備え得る。拘束部材16は、一対の拘束プレート16A,16Bと、拘束プレート16A,16B同士を連結する連結部材(ボルト18及びナット20)とを備える。各拘束プレート16A,16Bと導電板14との間には、例えば樹脂フィルム等の絶縁フィルム22が配置される。各拘束プレート16A,16Bは、例えば鉄等の金属によって構成されている。積層方向から見て、各拘束プレート16A,16B及び絶縁フィルム22は例えば矩形形状を有する。絶縁フィルム22は導電板14よりも大きくなっており、各拘束プレート16A,16Bは、蓄電モジュール12よりも大きくなっている。積層方向から見て、拘束プレート16Aの縁部には、ボルト18の軸部を挿通させる挿通孔16A1が蓄電モジュール12よりも外側となる位置に設けられている。同様に、積層方向から見て、拘束プレート16Bの縁部には、ボルト18の軸部を挿通させる挿通孔16B1が蓄電モジュール12よりも外側となる位置に設けられている。積層方向から見て各拘束プレート16A,16Bが矩形形状を有している場合、挿通孔16A1及び挿通孔16B1は、拘束プレート16A,16Bの角部に位置する。 The storage device 10 may include a restraint member 16 for restraining the storage modules 12 and the conductive plates 14 stacked alternately in the stacking direction. The constraining member 16 includes a pair of constraining plates 16A and 16B and a connecting member (bolt 18 and nut 20) that interconnects the constraining plates 16A and 16B. An insulating film 22 such as a resin film, for example, is disposed between the restraint plates 16A and 16B and the conductive plate 14. Each restraint plate 16A, 16B is made of, for example, a metal such as iron. When viewed from the stacking direction, each of the restraint plates 16A, 16B and the insulating film 22 has, for example, a rectangular shape. The insulating film 22 is larger than the conductive plate 14, and the restraint plates 16 </ b> A and 16 </ b> B are larger than the storage module 12. As viewed in the stacking direction, an insertion hole 16A1 for inserting the shaft of the bolt 18 is provided at a position outside the storage module 12 at the edge of the restraint plate 16A. Similarly, as viewed in the stacking direction, an insertion hole 16B1 for inserting the shaft of the bolt 18 is provided at a position outside the storage module 12 at the edge of the restraint plate 16B. When the restraint plates 16A and 16B have a rectangular shape when viewed from the stacking direction, the insertion holes 16A1 and the insertion holes 16B1 are located at the corners of the restraint plates 16A and 16B.
 一方の拘束プレート16Aは、負極端子26に接続された導電板14に絶縁フィルム22を介して突き当てられ、他方の拘束プレート16Bは、正極端子24に接続された導電板14に絶縁フィルム22を介して突き当てられている。ボルト18は、例えば一方の拘束プレート16A側から他方の拘束プレート16B側に向かって挿通孔16A1及び挿通孔16B1に通される。他方の拘束プレート16Bから突出するボルト18の先端には、ナット20が螺合されている。これにより、絶縁フィルム22、導電板14及び蓄電モジュール12が挟持されてユニット化されると共に、積層方向に拘束荷重が付加される。 One restraint plate 16A is abutted against the conductive plate 14 connected to the negative electrode terminal 26 via the insulating film 22, and the other restraint plate 16B is attached to the conductive plate 14 connected to the positive electrode terminal 24. It is hit through. The bolt 18 is passed through the insertion hole 16A1 and the insertion hole 16B1 from, for example, one restraint plate 16A to the other restraint plate 16B. A nut 20 is screwed into the tip of a bolt 18 projecting from the other restraint plate 16B. Thus, the insulating film 22, the conductive plate 14, and the storage module 12 are sandwiched to form a unit, and a restraint load is applied in the stacking direction.
 図2を参照して、蓄電装置を構成する蓄電モジュールについて説明する。図2に示される蓄電モジュール12は、積層された複数のバイポーラ電極32を含む積層体30を備える。バイポーラ電極32の積層方向から見て、積層体30は、例えば矩形形状を有する。隣り合うバイポーラ電極32間にはセパレータ40が配置され得る。 With reference to FIG. 2, a power storage module constituting the power storage device will be described. The storage module 12 shown in FIG. 2 includes a stacked body 30 including a plurality of stacked bipolar electrodes 32. As viewed from the stacking direction of the bipolar electrodes 32, the stacked body 30 has, for example, a rectangular shape. A separator 40 may be disposed between adjacent bipolar electrodes 32.
 各バイポーラ電極32は、電極板34と、電極板34の第1面34cに設けられた正極36と、電極板34の第2面34dに設けられた負極38とを含む。積層体30において、一のバイポーラ電極32の正極36は、セパレータ40を挟んで積層方向に隣り合う一方のバイポーラ電極32の負極38と対向し、一のバイポーラ電極32の負極38は、セパレータ40を挟んで積層方向に隣り合う他方のバイポーラ電極32の正極36と対向している。 Each bipolar electrode 32 includes an electrode plate 34, a positive electrode 36 provided on a first surface 34c of the electrode plate 34, and a negative electrode 38 provided on a second surface 34d of the electrode plate 34. In the laminated body 30, the positive electrode 36 of one bipolar electrode 32 faces the negative electrode 38 of one bipolar electrode 32 adjacent in the stacking direction with the separator 40 interposed therebetween, and the negative electrode 38 of one bipolar electrode 32 It opposes the positive electrode 36 of the other bipolar electrode 32 which adjoins in the lamination direction on both sides.
 積層方向において、積層体30の一端には、内側面(図示下側の面)に負極38が配置された電極板34が配置される。この電極板34は負極側終端電極に相当する。積層方向において、積層体30の他端には、内側面(図示上側の面)に正極36が配置された電極板34が配置される。この電極板34は正極側終端電極に相当する。負極側終端電極の負極38は、セパレータ40を介して最上層のバイポーラ電極32の正極36と対向している。正極側終端電極の正極36は、セパレータ40を介して最下層のバイポーラ電極32の負極38と対向している。これら終端電極の電極板34はそれぞれ隣り合う導電板14(図1参照)に接続される。 In the stacking direction, at one end of the stacked body 30, an electrode plate 34 in which the negative electrode 38 is disposed on the inner side surface (the lower surface in the drawing) is disposed. The electrode plate 34 corresponds to a negative electrode side terminal electrode. In the stacking direction, at the other end of the stacked body 30, an electrode plate 34 in which the positive electrode 36 is disposed on the inner side surface (upper surface in the drawing) is disposed. The electrode plate 34 corresponds to a positive electrode side terminal electrode. The negative electrode 38 of the negative electrode side termination electrode faces the positive electrode 36 of the uppermost bipolar electrode 32 via the separator 40. The positive electrode 36 of the positive electrode side termination electrode faces the negative electrode 38 of the lowermost bipolar electrode 32 via the separator 40. The electrode plates 34 of these terminal electrodes are connected to the adjacent conductive plates 14 (see FIG. 1).
 蓄電モジュール12は、バイポーラ電極32の積層方向に延在し、積層体30を収容する筒状の樹脂部50を備える。樹脂部50は、複数の電極板34の周縁部34aを保持する。樹脂部50は、積層体30を取り囲むように構成されている。樹脂部50は、バイポーラ電極32の積層方向から見て例えば矩形形状を有している。すなわち、樹脂部50は例えば角筒状である。 The storage module 12 includes a cylindrical resin portion 50 that extends in the stacking direction of the bipolar electrode 32 and accommodates the stacked body 30. The resin portion 50 holds the peripheral portions 34 a of the plurality of electrode plates 34. The resin portion 50 is configured to surround the stacked body 30. The resin portion 50 has, for example, a rectangular shape when viewed from the stacking direction of the bipolar electrode 32. That is, the resin part 50 is, for example, a square tube.
 樹脂部50は、電極板34の周縁部34aに接合されて、その周縁部34aを保持する第1シール部52と、積層方向に交差する方向(X方向及びY方向)において第1シール部52の外側に設けられた第2シール部54とを有する。 The resin portion 50 is joined to the peripheral portion 34a of the electrode plate 34, and the first seal portion 52 which holds the peripheral portion 34a, and the first seal portion 52 in the direction (X direction and Y direction) intersecting the laminating direction. And a second seal portion 54 provided on the outside of the
 樹脂部50の内壁を構成する第1シール部52は、複数のバイポーラ電極32(又は積層体30)における電極板34の周縁部34aの全周にわたって設けられている。第1シール部52は、電極板34の周縁部34aに例えば溶着されており、その周縁部34aをシールする。すなわち、第1シール部52は、電極板34の周縁部34aに接合されている。各バイポーラ電極32の電極板34の周縁部34aは、第1シール部52に埋没した状態で保持されている。積層体30の両端に配置された電極板34の周縁部34aも、第1シール部52に埋没した状態で保持されている。これにより、積層方向に隣り合う電極板34,34間には、当該電極板34,34と第1シール部52とによって気密に仕切られた内部空間Vが形成されている。内部空間Vはバイポーラ電極32と樹脂部50との間に形成されている。内部空間Vには、例えば水酸化カリウム水溶液等のアルカリ溶液を含む電解液(不図示)が収容されている。 The first seal portion 52 constituting the inner wall of the resin portion 50 is provided over the entire circumference of the peripheral portion 34 a of the electrode plate 34 in the plurality of bipolar electrodes 32 (or the stacked body 30). The first seal portion 52 is welded, for example, to the peripheral portion 34 a of the electrode plate 34, and seals the peripheral portion 34 a. That is, the first seal portion 52 is joined to the peripheral portion 34 a of the electrode plate 34. The peripheral portion 34 a of the electrode plate 34 of each bipolar electrode 32 is held in a state of being buried in the first seal portion 52. The peripheral portions 34 a of the electrode plates 34 disposed at both ends of the stacked body 30 are also held in a state of being buried in the first seal portion 52. Thus, an internal space V airtightly partitioned by the electrode plates 34 and 34 and the first seal portion 52 is formed between the electrode plates 34 and 34 adjacent in the stacking direction. An internal space V is formed between the bipolar electrode 32 and the resin portion 50. In the internal space V, for example, an electrolytic solution (not shown) containing an alkaline solution such as a potassium hydroxide aqueous solution is accommodated.
 樹脂部50の外壁を構成する第2シール部54は、バイポーラ電極32の積層方向に延在する第1シール部52の外周面52aを覆っている。第2シール部54の内周面54aは、第1シール部52の外周面52aに例えば溶着されており、その外周面52aをシールする。第2シール部54は、第1シール部52の外周面52aに接合されている。第1シール部52に対する第2シール部54の溶着面(接合面)は、例えば4つの矩形平面をなす。 The second seal portion 54 constituting the outer wall of the resin portion 50 covers the outer peripheral surface 52 a of the first seal portion 52 extending in the stacking direction of the bipolar electrode 32. The inner peripheral surface 54a of the second seal portion 54 is welded, for example, to the outer peripheral surface 52a of the first seal portion 52, and seals the outer peripheral surface 52a. The second seal portion 54 is joined to the outer peripheral surface 52 a of the first seal portion 52. The welding surface (bonding surface) of the second seal portion 54 with respect to the first seal portion 52 has, for example, four rectangular flat surfaces.
 電極板34は、例えばニッケルを含む矩形の金属箔である。電極板34の周縁部34aは、正極活物質及び負極活物質の塗工されない未塗工領域となっている。未塗工領域では、電極板34が露出している。その未塗工領域が、樹脂部50の内壁を構成する第1シール部52に埋没して保持されている。正極36を構成する正極活物質としては、例えば水酸化ニッケルが挙げられる。負極38を構成する負極活物質としては、例えば水素吸蔵合金が挙げられる。電極板34の第2面34dにおける負極38の形成領域は、電極板34の第1面34cにおける正極36の形成領域に対して一回り大きくてもよい。 The electrode plate 34 is, for example, a rectangular metal foil containing nickel. The peripheral portion 34 a of the electrode plate 34 is an uncoated region where the positive electrode active material and the negative electrode active material are not coated. The electrode plate 34 is exposed in the uncoated area. The uncoated area is embedded in and held by the first seal portion 52 that constitutes the inner wall of the resin portion 50. As a positive electrode active material which comprises the positive electrode 36, nickel hydroxide is mentioned, for example. As a negative electrode active material which comprises the negative electrode 38, a hydrogen storage alloy is mentioned, for example. The formation region of the negative electrode 38 in the second surface 34 d of the electrode plate 34 may be one size larger than the formation region of the positive electrode 36 in the first surface 34 c of the electrode plate 34.
 セパレータ40は、例えばシート状に形成されている。セパレータ40は、例えば矩形形状を有する。セパレータ40を形成する材料としては、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂を含む多孔質フィルム、織布又は不織布等が例示される。セパレータ40は、フッ化ビニリデン樹脂化合物で補強されたセパレータであってもよい。セパレータ40は、シート状に限られず、袋状のセパレータを用いてもよい。 The separator 40 is formed, for example, in a sheet shape. The separator 40 has, for example, a rectangular shape. As a material for forming the separator 40, a porous film, a woven fabric, a non-woven fabric or the like containing a polyolefin resin such as polyethylene (PE) or polypropylene (PP) is exemplified. The separator 40 may be a separator reinforced with a vinylidene fluoride resin compound. The separator 40 is not limited to a sheet, and a bag-shaped separator may be used.
 樹脂部50(第1シール部52及び第2シール部54)は、例えば絶縁性の樹脂を用いた射出成形によって矩形の筒状に形成されている。樹脂部50を構成する樹脂材料としては、例えばポリプロピレン(PP)、ポリフェニレンサルファイド(PPS)、変性ポリフェニレンエーテル(変性PPE)、又はポリフェニレンエーテル(PPE)等が挙げられる。 The resin portion 50 (the first seal portion 52 and the second seal portion 54) is formed in a rectangular cylindrical shape, for example, by injection molding using an insulating resin. Examples of the resin material constituting the resin portion 50 include polypropylene (PP), polyphenylene sulfide (PPS), modified polyphenylene ether (modified PPE), and polyphenylene ether (PPE).
 図3及び図4を参照して、実施形態における樹脂部50と、バイポーラ電極32及びセパレータ40との構造について説明する。図3に示されるように、樹脂部50の第1シール部52は、積層方向に積層された複数の枠体60を含むシール部である。各枠体60は、電極板34の周縁部34aに接合される。 The structures of the resin portion 50 and the bipolar electrode 32 and the separator 40 in the embodiment will be described with reference to FIGS. 3 and 4. As shown in FIG. 3, the first seal portion 52 of the resin portion 50 is a seal portion including a plurality of frames 60 stacked in the stacking direction. Each frame 60 is joined to the peripheral edge 34 a of the electrode plate 34.
 枠体60は、積層方向において、セパレータ40の厚みよりも大きい厚みを有する。より詳しくは、枠体60は、積層方向において、電極板34の厚みとセパレータ40の厚みとの合計よりも大きい厚みを有する。枠体60は、電極板34の周縁部34aに当接すると共に、積層方向に隣り合う別の枠体60に当接する。枠体60と別の枠体60とが当接することにより、枠体60は、積層方向に隣り合う電極板34,34間に形成される内部空間Vの高さを規定している。言い換えれば、枠体60は、蓄電モジュール12における1つのセルの高さを規定している。 The frame 60 has a thickness greater than the thickness of the separator 40 in the stacking direction. More specifically, the frame 60 has a thickness greater than the sum of the thickness of the electrode plate 34 and the thickness of the separator 40 in the stacking direction. The frame 60 abuts on the peripheral portion 34 a of the electrode plate 34 and abuts on another frame 60 adjacent in the stacking direction. When the frame 60 and another frame 60 abut on each other, the frame 60 defines the height of the internal space V formed between the electrode plates 34 adjacent in the stacking direction. In other words, the frame 60 defines the height of one cell in the storage module 12.
 ここでいうセパレータ40の「厚み」とは、蓄電モジュール12におけるセパレータ40の厚みである。蓄電モジュール12におけるセパレータ40の厚みは、蓄電モジュール12が組み立てられる前のセパレータ40の厚みよりも小さくなり得る。すなわち、セパレータ40は、正極36と負極38とによって挟まれることにより圧縮され得る。セパレータ40の「厚み」は、圧縮後の厚みを意味する。 The “thickness” of the separator 40 here is the thickness of the separator 40 in the storage module 12. The thickness of the separator 40 in the storage module 12 may be smaller than the thickness of the separator 40 before the storage module 12 is assembled. That is, the separator 40 can be compressed by being sandwiched between the positive electrode 36 and the negative electrode 38. The “thickness” of the separator 40 means the thickness after compression.
 枠体60は、電極板34の周縁部34aに接合された第1枠体61と、第1枠体61上に配置された第2枠体62とを有する。第1枠体61は例えば溶着により周縁部34aに接合される。積層方向において、第1枠体61と第2枠体62とは交互に配置される。第1枠体61は、電極板34の第1面34cに接合され、電極板34の外周端34eに当接している。電極板34の外周端34eは、第1面34cと第2面34dとを繋ぐ。第2枠体62は、第1枠体61の上面61a(第1面34cに接合されているのとは反対の面)上に配置される。第2枠体62の下面62bは第1枠体61の上面61aに当接している。第2枠体62の上面62aは、隣の第1枠体61の下面61bに当接している。第1枠体61及び第2枠体62は、例えば部分的な溶着により互いに接続されてもよいが、第1枠体61と第2枠体62との間はシールされなくてもよい。これは、第2シール部54によって内部空間Vが気密に保たれるからである。 The frame 60 has a first frame 61 joined to the peripheral edge portion 34 a of the electrode plate 34 and a second frame 62 disposed on the first frame 61. The first frame 61 is joined to the peripheral portion 34 a by welding, for example. In the stacking direction, the first frames 61 and the second frames 62 are alternately arranged. The first frame 61 is joined to the first surface 34 c of the electrode plate 34 and abuts on the outer peripheral end 34 e of the electrode plate 34. The outer peripheral end 34e of the electrode plate 34 connects the first surface 34c and the second surface 34d. The second frame 62 is disposed on the upper surface 61 a (the surface opposite to the surface joined to the first surface 34 c) of the first frame 61. The lower surface 62 b of the second frame 62 is in contact with the upper surface 61 a of the first frame 61. The upper surface 62 a of the second frame 62 is in contact with the lower surface 61 b of the adjacent first frame 61. The first frame 61 and the second frame 62 may be connected to each other, for example, by partial welding, but the space between the first frame 61 and the second frame 62 may not be sealed. This is because the second seal portion 54 keeps the internal space V airtight.
 第1枠体61の内周端61cと第2枠体62の内周端62cとが積層方向に交差する方向において互いに異なる位置にあることによって枠体60には段差部68が形成されている。段差部68は、第1枠体61の内周端61c及び上面61aと第2枠体62の内周端62cとによって構成される。本実施形態では、第1枠体61の内周端61cが、第2枠体62の内周端62cよりも内側に配置されている。よって、第1枠体61の内周端61cが第1シール部52の内周端52c(図2参照)に相当する。第1枠体61の外周端61d及び第2枠体62の外周端62dは、第1シール部52の外周端52d(すなわち外周面52a)に相当する。 A step portion 68 is formed in the frame 60 by the inner peripheral end 61 c of the first frame 61 and the inner peripheral end 62 c of the second frame 62 being at mutually different positions in the direction intersecting the stacking direction. . The stepped portion 68 is constituted by the inner peripheral end 61 c and the upper surface 61 a of the first frame 61 and the inner peripheral end 62 c of the second frame 62. In the present embodiment, the inner peripheral end 61 c of the first frame 61 is disposed inside the inner peripheral end 62 c of the second frame 62. Therefore, the inner peripheral end 61 c of the first frame 61 corresponds to the inner peripheral end 52 c (see FIG. 2) of the first seal portion 52. The outer peripheral end 61 d of the first frame 61 and the outer peripheral end 62 d of the second frame 62 correspond to the outer peripheral end 52 d (i.e., the outer peripheral surface 52 a) of the first seal portion 52.
 積層方向における段差部68の高さHは、第2枠体62の厚み(上面62aと下面62bとの間の距離)になる。段差部68の高さHは、セパレータ40の厚みよりも大きい。段差部68には、セパレータ40の外周端40dを含む周縁部40aが配置される。すなわち、枠体60に形成された段差部68は、枠体60の内方に面しており、セパレータ40の外周端40dを第1シール部52内に配置するための空間を提供している。第1枠体61の上面61aには例えばセパレータ40の周縁部40aが当接している。 The height H of the step portion 68 in the stacking direction is the thickness of the second frame 62 (the distance between the upper surface 62 a and the lower surface 62 b). The height H of the step portion 68 is larger than the thickness of the separator 40. In the step portion 68, a peripheral portion 40a including the outer peripheral end 40d of the separator 40 is disposed. That is, the step portion 68 formed in the frame 60 faces the inner side of the frame 60, and provides a space for arranging the outer peripheral end 40d of the separator 40 in the first seal portion 52. . For example, the peripheral portion 40 a of the separator 40 is in contact with the upper surface 61 a of the first frame 61.
 蓄電モジュール12においては、セパレータ40は、正極36及び負極38が設けられた領域で積層方向に圧縮され得る。一方、セパレータ40は、未塗工領域に対面する領域、及び、第1シール部52の内部に配置された領域では、積層方向の押圧力を受けておらず、積層方向に圧縮されていない。言い換えれば、セパレータ40は、未塗工領域に対面する領域、及び、第1シール部52の内部に配置された領域では、積層方向において遊びをもっている(自由に動ける)。この構成により、セパレータ40の圧縮部を最小限に抑えることができ、セパレータ40の圧縮反力を最小限にすることができる。その結果、拘束部材16における拘束荷重を小さくできる。また、セパレータ40の空隙を不用意に潰すことがないため、内部空間Vが大きくとれる。その結果、内圧上昇を抑えることができる。 In the storage module 12, the separator 40 can be compressed in the stacking direction in the region where the positive electrode 36 and the negative electrode 38 are provided. On the other hand, the separator 40 does not receive the pressing force in the stacking direction and is not compressed in the stacking direction in the region facing the uncoated region and the region disposed inside the first seal portion 52. In other words, the separator 40 has play (free movement) in the stacking direction in the area facing the uncoated area and in the area disposed inside the first seal portion 52. With this configuration, the compression portion of the separator 40 can be minimized, and the compression reaction force of the separator 40 can be minimized. As a result, the restraint load on the restraint member 16 can be reduced. In addition, since the air gap of the separator 40 is not crushed carelessly, the internal space V can be made large. As a result, an increase in internal pressure can be suppressed.
 セパレータ40の大きさと、電極板34の大きさとの大小関係はどのような関係であってもよい。図3において、セパレータ40は、積層方向から見て電極板34より小さいが、電極板34と同じかそれより大きくてもよい。 The magnitude relationship between the size of the separator 40 and the size of the electrode plate 34 may be any relationship. In FIG. 3, the separator 40 is smaller than the electrode plate 34 when viewed in the stacking direction, but may be the same as or larger than the electrode plate 34.
 第1枠体61の線膨張係数は、第2枠体62の線膨張係数よりも小さくてもよい。電極板34の線膨張係数は第1枠体61の線膨張係数よりも小さいが、第1枠体61の線膨張係数を小さくすることによって、電極板34と第1枠体61との間で線膨張係数の差を小さくできる。その結果、第1枠体61の反りを低減することができる。例えば、第1枠体51は、樹脂部材と、樹脂部材の線膨張係数よりも小さい線膨張係数を有する部材とを有する。樹脂部材を構成する樹脂材料としては、上述のように、例えばポリプロピレン(PP)、ポリフェニレンサルファイド(PPS)、又は変性ポリフェニレンエーテル(変性PPE)等が挙げられる。樹脂部材の線膨張係数よりも小さい線膨張係数を有する部材としては、例えば不織布、金属、セラミック等が挙げられる。第1枠体61を構成する樹脂材料のうち最大の質量百分率を有する樹脂材料は、第2枠体62を構成する樹脂材料のうち最大の質量百分率を有する樹脂材料と同じであってもよい。そのような樹脂材料としては、例えばポリプロピレン(PP)、ポリフェニレンサルファイド(PPS)、又は変性ポリフェニレンエーテル(変性PPE)等が挙げられる。この場合、第1枠体61の母材(樹脂部材)と第2枠体62の母材(樹脂部材)が同じになる。 The linear expansion coefficient of the first frame 61 may be smaller than the linear expansion coefficient of the second frame 62. The linear expansion coefficient of the electrode plate 34 is smaller than the linear expansion coefficient of the first frame 61, but by reducing the linear expansion coefficient of the first frame 61, the electrode plate 34 and the first frame 61 may be separated. The difference in linear expansion coefficient can be reduced. As a result, the warpage of the first frame 61 can be reduced. For example, the first frame 51 includes a resin member and a member having a linear expansion coefficient smaller than the linear expansion coefficient of the resin member. Examples of the resin material constituting the resin member include polypropylene (PP), polyphenylene sulfide (PPS), and modified polyphenylene ether (modified PPE) as described above. As a member which has a linear expansion coefficient smaller than the linear expansion coefficient of a resin member, a nonwoven fabric, a metal, a ceramic etc. are mentioned, for example. The resin material having the largest mass percentage among the resin materials constituting the first frame 61 may be the same as the resin material having the largest mass percentage among the resin materials constituting the second frame 62. As such a resin material, for example, polypropylene (PP), polyphenylene sulfide (PPS), or modified polyphenylene ether (modified PPE), etc. may be mentioned. In this case, the base material (resin member) of the first frame 61 and the base material (resin member) of the second frame 62 are the same.
 第1枠体61は、熱可塑性エラストマーを含んでもよい。この場合、電極板34の周縁部34aと第1枠体61との間のシール性が向上する。その結果、例えば水酸化カリウム水溶液等のアルカリ溶液を含む電解液が、いわゆるアルカリクリープ現象により、負極側終端電極である電極板と枠体との間を通って電極板の外面側に滲み出ることを抑制できる。熱可塑性エラストマーとしては、例えばポリプロピレン及びEPDM(エチレンプロピレンゴム)の混合物、ポリプロピレン及びスチレンゴムの混合物等が挙げられる。 The first frame 61 may include a thermoplastic elastomer. In this case, the sealability between the peripheral portion 34 a of the electrode plate 34 and the first frame 61 is improved. As a result, for example, the electrolytic solution containing an alkaline solution such as an aqueous solution of potassium hydroxide exudes to the outer surface side of the electrode plate through the gap between the electrode plate which is the negative electrode side termination electrode and the frame due to a so-called alkaline creep phenomenon. Can be suppressed. As a thermoplastic elastomer, the mixture of a polypropylene and EPDM (ethylene propylene rubber), the mixture of a polypropylene and a styrene rubber, etc. are mentioned, for example.
 電極板34の周縁部34aの表面は粗面化されてもよい。例えば、電極板34の表面全体が粗面化されてもよい。電極板34の表面は、例えば、電解メッキ処理で複数の突起が形成されることにより、粗面化されている。このように電極板34が粗面化されている場合、電極板34と第1枠体61との接合界面では、熱により流動化された第1枠体61が粗面化により形成された凹部内に入り込み、アンカー効果が発揮される。これにより、電極板34と第1枠体61との結合力を向上させることができる。突起は、例えば、基端側から先端側に向かって先太りとなる形状を有している。この場合、隣り合う突起の間の断面形状はアンダーカット形状となり、アンカー効果が生じ易い。 The surface of the peripheral portion 34 a of the electrode plate 34 may be roughened. For example, the entire surface of the electrode plate 34 may be roughened. The surface of the electrode plate 34 is roughened by, for example, forming a plurality of protrusions by electrolytic plating. As described above, when the electrode plate 34 is roughened, at the bonding interface between the electrode plate 34 and the first frame 61, a recess in which the first frame 61 fluidized by heat is formed by the roughening. Go inside and anchor effect is exhibited. Thereby, the coupling force between the electrode plate 34 and the first frame 61 can be improved. The protrusion has, for example, a shape that becomes thicker in the direction from the proximal side to the distal side. In this case, the cross-sectional shape between the adjacent protrusions is an undercut shape, and an anchor effect is likely to occur.
 第2枠体62のヤング率(曲げ弾性率)は、第1枠体61のヤング率よりも大きくてもよい。この場合、第2枠体62のハンドリング性が向上する。その結果、第1枠体61上に第2枠体62を容易に載置することができる。第2枠体62は、例えばポリプロピレン(PP)、ポリフェニレンエーテル(PPE)、ポリフェニレンサルファイド(PPS)、又は変性ポリフェニレンエーテル(変性PPE)、熱可塑性エラストマー等を含んでもよい。第2枠体62が熱可塑性エラストマーを含む場合、第2枠体62を構成する熱可塑性エラストマーにおける熱可塑性エラストマー全体の質量に対するゴムの質量の比率は、第1枠体61を構成する熱可塑性エラストマーにおける熱可塑性エラストマー全体の質量に対するゴムの質量の比率よりも小さくてもよい。これにより、第2枠体62のヤング率を第1枠体61のヤング率よりも大きくできる。 The Young's modulus (bending elastic modulus) of the second frame 62 may be larger than the Young's modulus of the first frame 61. In this case, the handleability of the second frame 62 is improved. As a result, the second frame 62 can be easily placed on the first frame 61. The second frame 62 may contain, for example, polypropylene (PP), polyphenylene ether (PPE), polyphenylene sulfide (PPS), or modified polyphenylene ether (modified PPE), a thermoplastic elastomer, or the like. When the second frame 62 includes a thermoplastic elastomer, the ratio of the mass of rubber to the mass of the entire thermoplastic elastomer in the thermoplastic elastomer constituting the second frame 62 is the thermoplastic elastomer constituting the first frame 61 It may be smaller than the ratio of the mass of rubber to the mass of the whole thermoplastic elastomer in. Thereby, the Young's modulus of the second frame 62 can be made larger than the Young's modulus of the first frame 61.
 第1枠体61及び第2枠体62はフィルム形状を有しており、第2枠体62の厚みは第1枠体61の厚みよりも小さくてもよい。このように第2枠体62の厚みが薄い場合であっても、第2枠体62のヤング率を大きくすることによって、第2枠体62のハンドリング性を向上させることができる。 The first frame 61 and the second frame 62 have a film shape, and the thickness of the second frame 62 may be smaller than the thickness of the first frame 61. As described above, even when the thickness of the second frame 62 is thin, the handling property of the second frame 62 can be improved by increasing the Young's modulus of the second frame 62.
 第2シール部54を構成する材料は、第2枠体62を構成する材料に対して相溶性を有してもよく、第2枠体62を構成する材料と同じであってもよい。材料が同じであると、樹脂部50を構成する材料の種類を少なくすることができる。第2シール部54は、高い剛性を得るために、例えば変性ポリフェニレンエーテル(変性PPE)を含む。この場合、第2枠体62もまた変性ポリフェニレンエーテル(変性PPE)を含んでいると、樹脂部50を構成する材料の種類を少なくすることができる。 The material forming the second seal portion 54 may have compatibility with the material forming the second frame 62, and may be the same as the material forming the second frame 62. If the material is the same, the types of materials constituting the resin portion 50 can be reduced. The second seal portion 54 contains, for example, modified polyphenylene ether (modified PPE) in order to obtain high rigidity. In this case, when the second frame 62 also contains the modified polyphenylene ether (modified PPE), the types of materials constituting the resin portion 50 can be reduced.
 図4に示されるように、第1枠体61及び第2枠体62はリング状である。第2枠体62には、積層方向に交差する方向に第2枠体62を貫通し、内部空間V(図2参照)と連通する開口62hが形成され得る。開口62hは、第2シール部54に形成された開口54hと連通している。開口54hには圧力調整弁70が嵌合されている。その結果、圧力調整弁70は、開口62hと接続される。圧力調整弁70を用いると、内部空間Vの圧力が所定の値以上となった場合に圧力調整弁70が開いて、内部空間Vのガスを蓄電モジュール12の外部に放出することができる。 As shown in FIG. 4, the first frame 61 and the second frame 62 are ring-shaped. The second frame 62 may have an opening 62 h penetrating the second frame 62 in a direction intersecting the stacking direction and communicating with the internal space V (see FIG. 2). The opening 62 h communicates with the opening 54 h formed in the second seal portion 54. A pressure control valve 70 is fitted in the opening 54 h. As a result, the pressure control valve 70 is connected to the opening 62 h. When the pressure control valve 70 is used, the pressure control valve 70 can be opened when the pressure in the internal space V becomes equal to or higher than a predetermined value, and the gas in the internal space V can be discharged to the outside of the storage module 12.
 図4に示されるように、積層方向から見て、セパレータ40の周縁部40aは、第1シール部52が設けられた領域に重なっている。言い換えれば、積層方向に垂直な平面(XY平面)に、セパレータ40及び第1シール部52が積層方向に投影された場合、これらの投影像は重なる(すなわちオーバーラップする)。セパレータ40は、第1シール部52が設けられた領域に達している。セパレータ40の外周端40dは、第1シール部52の外周端52dと内周端52cとの間に位置している。図4では、第1シール部52の構成が容易に理解されるよう、セパレータ40の一部が破断されたように示されている。 As shown in FIG. 4, when viewed in the stacking direction, the peripheral portion 40 a of the separator 40 overlaps the area where the first seal portion 52 is provided. In other words, when the separator 40 and the first seal portion 52 are projected in the stacking direction on a plane (XY plane) perpendicular to the stacking direction, these projected images overlap (that is, overlap). The separator 40 reaches the area where the first seal portion 52 is provided. The outer peripheral end 40 d of the separator 40 is located between the outer peripheral end 52 d and the inner peripheral end 52 c of the first seal portion 52. In FIG. 4, a portion of the separator 40 is shown as broken so that the configuration of the first seal portion 52 can be easily understood.
 電極板34の第1シール部52付近の領域においても、隣り合う2つの電極板34の間にセパレータ40が設けられているため、隣り合う電極板34の未塗工領域は直接に対面しない。隣り合う2つの電極板34において、一方の未塗工領域と、他方の未塗工領域との間に、常にセパレータ40が存在する。第1シール部52に重なるように設けられたセパレータ40は、隣り合う2つの電極板34(特に未塗工領域)が接触して短絡が発生することを防止する。セパレータ40の全周にわたって、外周端40dが、第1シール部52の外周端52dと内周端52cとの間に位置してもよい。セパレータ40の周方向の一部において、外周端40dが、第1シール部52の外周端52dと内周端52cとの間に位置してもよい。セパレータ40の周方向において、セパレータ40が第1シール部52に大きな範囲で重なっているほど、短絡の発生がより確実に防止され得る。 Also in the region near the first seal portion 52 of the electrode plate 34, the separator 40 is provided between two adjacent electrode plates 34, so the uncoated regions of the adjacent electrode plates 34 do not directly face each other. In two adjacent electrode plates 34, a separator 40 is always present between one uncoated region and the other uncoated region. The separator 40 provided so as to overlap the first seal portion 52 prevents the occurrence of a short circuit due to contact between two adjacent electrode plates 34 (in particular, an uncoated region). The outer peripheral end 40 d may be located between the outer peripheral end 52 d and the inner peripheral end 52 c of the first seal portion 52 all around the separator 40. In a part of the separator 40 in the circumferential direction, the outer circumferential end 40 d may be located between the outer circumferential end 52 d and the inner circumferential end 52 c of the first seal portion 52. As the separator 40 overlaps the first seal portion 52 in a large range in the circumferential direction of the separator 40, the occurrence of a short circuit can be more reliably prevented.
 以上説明したように、蓄電モジュール12によれば、第1枠体61及び第2枠体62によって段差部68が形成されるので、熱プレスを用いずに段差部68を形成することができる。そのため、段差部68を形成する際に段差部68の高さHが変動し難いので、段差部68の高さHを高精度に制御できる。その結果、隣り合う電極板34間の距離を高精度に制御できる。 As described above, according to the storage module 12, the stepped portion 68 is formed by the first frame 61 and the second frame 62. Therefore, the stepped portion 68 can be formed without using a heat press. Therefore, when forming the stepped portion 68, the height H of the stepped portion 68 is unlikely to change, so the height H of the stepped portion 68 can be controlled with high accuracy. As a result, the distance between adjacent electrode plates 34 can be controlled with high accuracy.
 また、第1枠体61の内周端61cが第2枠体62の内周端62cよりも内側に配置されているので、枠体60が電極板34の周縁部34aに接合された状態において、セパレータ40を第1枠体61上に載置する際に障害物がない。そのため、セパレータ40を段差部68に容易に配置することができる。 In addition, since the inner peripheral end 61 c of the first frame 61 is disposed on the inner side than the inner peripheral end 62 c of the second frame 62, the frame 60 is joined to the peripheral edge 34 a of the electrode plate 34. When placing the separator 40 on the first frame 61, there is no obstacle. Therefore, the separator 40 can be easily disposed in the step portion 68.
 次に、図5及び図6を参照して、実施形態に係る蓄電モジュールの製造方法について説明する。この方法により、上述の蓄電モジュール12を製造することができる。 Next, with reference to FIG. 5 and FIG. 6, the manufacturing method of the electrical storage module which concerns on embodiment is demonstrated. The above-described storage module 12 can be manufactured by this method.
(準備工程)
 まず、図5の(a)~(c)に示されるように、バイポーラ電極32と、電極板34の周縁部34aに接合された第1枠体61と、第1枠体61上に配置された第2枠体62と、セパレータ40とを有する電極ユニットUを準備する。第1枠体61の内周端61cと第2枠体62の内周端62cとが電極板34の厚み方向(積層方向)に交差する方向において互いに異なる位置にあることによって段差部68が形成されている。段差部68には、セパレータ40が配置される。本工程では複数の電極ユニットUが準備される。
(Preparation process)
First, as shown in (a) to (c) of FIG. 5, the bipolar electrode 32, the first frame 61 joined to the peripheral edge portion 34a of the electrode plate 34, and the first frame 61 are disposed. An electrode unit U having the second frame 62 and the separator 40 is prepared. The step portion 68 is formed by the inner peripheral end 61 c of the first frame 61 and the inner peripheral end 62 c of the second frame 62 being at mutually different positions in the direction intersecting the thickness direction (stacking direction) of the electrode plate 34. It is done. A separator 40 is disposed at the stepped portion 68. A plurality of electrode units U are prepared in this process.
 電極ユニットUは例えば以下のように準備される。まず、図5の(a)に示されるように、電極板34の第1面34cに正極36を形成し、電極板34の第2面34dに負極38を形成して、バイポーラ電極32を得る。次に、図5の(a)に示されるように、電極板34の周縁部34aに第1枠体61を接合する。第1枠体61は、例えば電極板34の第2面34dに熱板を押し付けて熱プレスすることによって、電極板34の第1面34cに溶着される。これにより、第1枠体61と電極板34の周縁部34aとの間がシールされる。次に、図5の(b)に示されるように、第1枠体61上に第2枠体62を載置する。これにより、段差部68が形成される。第2枠体62は、部分的に第1枠体61に溶着されるが、第1枠体61と第2枠体62との間はシールされていない。第2枠体62が第1枠体61に固定されることによって、第2枠体62が第1枠体61に対して位置ずれすることが抑制される。次に、図5の(c)に示されるように、セパレータ40を段差部68に配置する。 The electrode unit U is prepared, for example, as follows. First, as shown in FIG. 5A, the positive electrode 36 is formed on the first surface 34c of the electrode plate 34, and the negative electrode 38 is formed on the second surface 34d of the electrode plate 34 to obtain the bipolar electrode 32. . Next, as shown in (a) of FIG. 5, the first frame 61 is joined to the peripheral portion 34 a of the electrode plate 34. The first frame 61 is welded to the first surface 34 c of the electrode plate 34 by, for example, pressing the heat plate against the second surface 34 d of the electrode plate 34 and performing heat pressing. Thereby, the space between the first frame 61 and the peripheral portion 34 a of the electrode plate 34 is sealed. Next, as shown in (b) of FIG. 5, the second frame 62 is placed on the first frame 61. Thereby, the stepped portion 68 is formed. The second frame 62 is partially welded to the first frame 61, but the space between the first frame 61 and the second frame 62 is not sealed. By fixing the second frame 62 to the first frame 61, displacement of the second frame 62 relative to the first frame 61 is suppressed. Next, as shown in (c) of FIG. 5, the separator 40 is disposed at the stepped portion 68.
 第2枠体62を第1枠体61上に載置した後、第1枠体61を電極板34の周縁部34aに接合してもよい。この場合、第1枠体61を電極板34の周縁部34aに接合する前に段差部68が形成される。 After the second frame 62 is placed on the first frame 61, the first frame 61 may be joined to the peripheral edge 34 a of the electrode plate 34. In this case, the step portion 68 is formed before the first frame 61 is joined to the peripheral portion 34 a of the electrode plate 34.
(積層工程)
 次に、図6に示されるように、複数のバイポーラ電極32がセパレータ40を介して積層されるように、電極ユニットUを積層する。これにより、1つの電極ユニットUの第2枠体62上に隣の電極ユニットUの第1枠体61が載置される。積層方向において交互に積層された第1枠体61及び第2枠体62は、第1シール部52を構成する。
(Lamination process)
Next, as shown in FIG. 6, the electrode unit U is stacked such that the plurality of bipolar electrodes 32 are stacked via the separator 40. Thereby, the first frame 61 of the adjacent electrode unit U is placed on the second frame 62 of one electrode unit U. The first frame 61 and the second frame 62 alternately stacked in the stacking direction constitute a first seal portion 52.
(シール工程)
 次に、図3に示されるように、隣り合う第1枠体61間をシールする。本実施形態では、第1シール部52の外周端52dの外側に第2シール部54を形成する。第2シール部54は、第1枠体61に接合され、隣り合う第1枠体61間をシールする。第2シール部54は、第2枠体62にも接合されるが、第2枠体62に接合されなくてもよい。第2シール部54は、例えば射出成形等により形成される。例えば、モールド内に、流動性を有する第2シール部54の樹脂材料を流し込むことによって、第2シール部54が形成され得る。第2シール部54は、例えば筒状の樹脂部材を第1シール部52の外周端52dに溶着することによって形成されてもよい。溶着では、例えば第1シール部52と第2シール部54との間に熱板を挟んで第1シール部52及び第2シール部54を加熱した後、熱板を抜いて第1シール部52と第2シール部54とが溶着される。
(Sealing process)
Next, as shown in FIG. 3, the adjacent first frames 61 are sealed. In the present embodiment, the second seal portion 54 is formed on the outer side of the outer peripheral end 52 d of the first seal portion 52. The second seal portion 54 is joined to the first frame 61 and seals between the adjacent first frames 61. The second seal portion 54 is also joined to the second frame 62, but may not be joined to the second frame 62. The second seal portion 54 is formed by, for example, injection molding. For example, the second seal portion 54 can be formed by pouring the resin material of the second seal portion 54 having fluidity into the mold. The second seal portion 54 may be formed, for example, by welding a cylindrical resin member to the outer peripheral end 52 d of the first seal portion 52. In welding, for example, after the first seal portion 52 and the second seal portion 54 are heated with the heat plate interposed between the first seal portion 52 and the second seal portion 54, the heat plate is removed and the first seal portion 52 is removed. And the second seal portion 54 are welded.
(注液及び封止工程)
 次に、注液口等を通じて、樹脂部50内に電解液を注入する。電解液を注入した後、注液口を封止することによって、蓄電モジュール12が製造される。
(Injection and sealing process)
Next, an electrolytic solution is injected into the resin portion 50 through a liquid injection port or the like. After injecting the electrolytic solution, the storage port 12 is manufactured by sealing the liquid injection port.
 その後、図1に示されるように、導電板14を介して複数の蓄電モジュール12を積層する。積層方向の両端に位置する導電板14にはそれぞれ正極端子24及び負極端子26が予め接続されている。その後、積層方向の両端に、絶縁フィルム22を介して一対の拘束プレート16A,16Bをそれぞれ配置し、ボルト18及びナット20を用いて、拘束プレート16A,16B同士を連結する。このようにして、図1に示される蓄電装置10が製造される。 Thereafter, as shown in FIG. 1, the plurality of storage modules 12 are stacked via the conductive plate 14. The positive electrode terminal 24 and the negative electrode terminal 26 are connected in advance to the conductive plates 14 positioned at both ends in the stacking direction. Thereafter, a pair of restraint plates 16A and 16B are disposed at both ends in the stacking direction via the insulating film 22, and the restraint plates 16A and 16B are connected to each other using the bolts 18 and the nuts 20. Thus, power storage device 10 shown in FIG. 1 is manufactured.
 上述の蓄電モジュール12の製造方法によれば、第1枠体61及び第2枠体62によって段差部68が形成されるので、熱プレスを用いずに段差部68を形成することができる。そのため、段差部68を形成する際に段差部68の高さHが変動し難いので、段差部68の高さHを高精度に制御できる。 According to the method of manufacturing the storage module 12 described above, since the step portion 68 is formed by the first frame 61 and the second frame 62, the step portion 68 can be formed without using a heat press. Therefore, when forming the stepped portion 68, the height H of the stepped portion 68 is unlikely to change, so the height H of the stepped portion 68 can be controlled with high accuracy.
 図7は、第1変形例に係る蓄電モジュールの一部を示す断面図である。図7に示される蓄電モジュール12Aは、第1枠体61と電極板34の外周端34eと第2枠体62の上面62aとの間に空隙V1が形成されていること以外は、図3に示される蓄電モジュール12と同じ構成を備える。蓄電モジュール12Aでは、第1枠体61は電極板34の第1面34cに接合されているが、電極板34の外周端34eに当接していない。第1枠体61の下面61bは第2枠体62の上面62aに当接しているが、当接しなくてもよい。第1枠体61が例えば熱溶着によって電極板34の周縁部34aに接合される際に、第1枠体61を構成する樹脂材料は溶けて下方に垂れる。その結果、第1枠体61は下方に突出する突起61pを有する。 FIG. 7 is a cross-sectional view showing a part of a storage module according to a first modification. The storage module 12A shown in FIG. 7 is the same as the storage module 12A in FIG. 3 except that a space V1 is formed between the first frame 61, the outer peripheral end 34e of the electrode plate 34 and the upper surface 62a of the second frame 62. It has the same configuration as the storage module 12 shown. In the storage module 12A, the first frame 61 is joined to the first surface 34c of the electrode plate 34, but is not in contact with the outer peripheral end 34e of the electrode plate 34. The lower surface 61b of the first frame 61 is in contact with the upper surface 62a of the second frame 62, but may not be in contact with the upper surface 62a. When the first frame 61 is joined to the peripheral portion 34 a of the electrode plate 34 by, for example, thermal welding, the resin material constituting the first frame 61 melts and sags downward. As a result, the first frame 61 has a protrusion 61 p that protrudes downward.
 図8は、第2変形例に係る蓄電モジュールの一部を示す断面図である。図8に示される蓄電モジュール12Bは、第1枠体61及び第2枠体62に代えて第1枠体161及び第2枠体162を備えること以外は、図3に示される蓄電モジュール12と同じ構成を備える。第1枠体161及び第2枠体162は枠体160を構成している。蓄電モジュール12Bでは、第1枠体161の内周端161cが、第2枠体162の内周端162cよりも外側に配置される。よって、第2枠体162の内周端162cが第1シール部52の内周端52c(図2参照)に相当する。第1枠体161及び第2枠体162によって、枠体160には段差部168が形成されている。段差部168は、第1枠体161の内周端161c及び第2枠体162の下面162bと第2枠体162の内周端162cとによって構成される。段差部168には、セパレータ40が配置される。 FIG. 8 is a cross-sectional view showing a part of a storage module according to a second modification. The storage module 12B shown in FIG. 8 is different from the storage module 12 shown in FIG. 3 in that the first frame 161 and the second frame 162 are provided instead of the first frame 61 and the second frame 62. It has the same configuration. The first frame 161 and the second frame 162 constitute a frame 160. In the storage module 12B, the inner peripheral end 161c of the first frame 161 is disposed outside the inner peripheral end 162c of the second frame 162. Accordingly, the inner peripheral end 162c of the second frame body 162 corresponds to the inner peripheral end 52c (see FIG. 2) of the first seal portion 52. A stepped portion 168 is formed in the frame 160 by the first frame 161 and the second frame 162. The stepped portion 168 is constituted by the inner peripheral end 161 c of the first frame 161, the lower surface 162 b of the second frame 162, and the inner peripheral end 162 c of the second frame 162. A separator 40 is disposed at the stepped portion 168.
 積層方向における段差部168の高さH1は、電極板34の第1面34cから第2枠体162の下面162bまでの距離になる。段差部168の高さH1は、セパレータ40の厚みよりも大きい。段差部168には、セパレータ40の外周端40dを含む周縁部40aが配置される。すなわち、枠体160に形成された段差部168は、枠体160の内方に面しており、セパレータ40の外周端40dを第1シール部52内に配置するための空間を提供している。第2枠体162の下面162bには例えばセパレータ40の周縁部40aが当接している。 The height H1 of the step portion 168 in the stacking direction is the distance from the first surface 34c of the electrode plate 34 to the lower surface 162b of the second frame 162. The height H 1 of the step portion 168 is larger than the thickness of the separator 40. In the stepped portion 168, a peripheral portion 40a including the outer peripheral end 40d of the separator 40 is disposed. That is, the step portion 168 formed in the frame 160 faces the inside of the frame 160 and provides a space for arranging the outer peripheral end 40 d of the separator 40 in the first seal portion 52. . For example, the peripheral portion 40 a of the separator 40 is in contact with the lower surface 162 b of the second frame 162.
 蓄電モジュール12Bでは、電極板34の周縁部34aに枠体160が接合された状態において、セパレータ40の外周端40dは電極板34と第2枠体162との間に挿入される。 In the storage module 12B, the outer peripheral end 40d of the separator 40 is inserted between the electrode plate 34 and the second frame 162 in a state where the frame 160 is joined to the peripheral portion 34a of the electrode plate 34.
 図9は、第3変形例に係る蓄電モジュールの一部を示す断面図である。図9に示される蓄電モジュール12Cは、第2シール部54に代えて第2シール部154を備えること以外は、図3に示される蓄電モジュール12と同じ構成を備える。第2シール部154は、例えば第1枠体61の外周端61d及び第2枠体62の外周端62dが互いに溶着されることによって形成される。溶着方法としては、例えば熱板溶着、熱風溶着、レーザ溶着等が挙げられる。熱板溶着では、例えば第1枠体61の外周端61d及び第2枠体62の外周端62dに熱板を押し付けることによって、第2シール部154が形成される。 FIG. 9 is a cross-sectional view showing a part of a storage module according to a third modification. The storage module 12C shown in FIG. 9 has the same configuration as the storage module 12 shown in FIG. 3 except that a second seal part 154 is provided instead of the second seal part 54. The second seal portion 154 is formed, for example, by welding the outer peripheral end 61 d of the first frame 61 and the outer peripheral end 62 d of the second frame 62 to each other. Examples of the welding method include hot plate welding, hot air welding, laser welding and the like. In the heat plate welding, for example, the second seal portion 154 is formed by pressing the heat plate against the outer peripheral end 61 d of the first frame 61 and the outer peripheral end 62 d of the second frame 62.
 以上、本発明の好適な実施形態について詳細に説明されたが、本発明は上記実施形態に限定されない。実施形態及び各変形例の構成同士は任意に組み合わされ得る。 The preferred embodiments of the present invention have been described above in detail, but the present invention is not limited to the above embodiments. The configurations of the embodiment and each modification may be combined arbitrarily.
 12,12A,12B,12C…蓄電モジュール、32…バイポーラ電極、34…電極板、34a…周縁部、34c…第1面、34d…第2面、36…正極、38…負極、40…セパレータ、50…樹脂部、52…第1シール部、60,160…枠体、61,161…第1枠体、61c,161c…内周端、62,162…第2枠体、62c,162c…内周端、62h…開口、68,168…段差部、U…電極ユニット、V…内部空間。 12, 12A, 12B, 12C: storage module, 32: bipolar electrode, 34: electrode plate, 34a: peripheral portion, 34c: first surface, 34d: second surface, 36: positive electrode, 38: negative electrode, 40: separator, DESCRIPTION OF SYMBOLS 50 ... Resin part, 52 ... 1st seal part, 60, 160 ... Frame, 61, 161 ... 1st frame, 61c, 161c ... Inner peripheral end, 62, 162 ... 2nd frame, 62c, 162c ... Inside Peripheral end, 62 h ... opening, 68, 168 ... stepped portion, U ... electrode unit, V ... internal space.

Claims (11)

  1.  セパレータを介して積層された複数のバイポーラ電極と、
     前記複数のバイポーラ電極の積層方向に延在し、前記複数のバイポーラ電極を収容する筒状の樹脂部と、
    を備え、
     前記複数のバイポーラ電極のそれぞれが、電極板と前記電極板の第1面に設けられた正極と前記電極板の第2面に設けられた負極とを含み、
     前記樹脂部は、前記積層方向に積層された複数の枠体を含むシール部を有し、前記複数の枠体のそれぞれが前記電極板の周縁部に接合され、
     前記複数の枠体のうち少なくとも1つの枠体は、前記電極板の前記周縁部に接合された第1枠体と、前記第1枠体上に配置された第2枠体とを有し、
     前記第1枠体の内周端と前記第2枠体の内周端とが前記積層方向に交差する方向において互いに異なる位置にあることによって段差部が形成されており、
     前記段差部には、前記セパレータが配置される、蓄電モジュール。
    A plurality of bipolar electrodes stacked via a separator,
    A tubular resin portion extending in the stacking direction of the plurality of bipolar electrodes and accommodating the plurality of bipolar electrodes;
    Equipped with
    Each of the plurality of bipolar electrodes includes an electrode plate, a positive electrode provided on a first surface of the electrode plate, and a negative electrode provided on a second surface of the electrode plate,
    The resin portion has a seal portion including a plurality of frames stacked in the stacking direction, and each of the plurality of frames is joined to a peripheral portion of the electrode plate.
    At least one frame of the plurality of frames includes a first frame joined to the peripheral edge of the electrode plate and a second frame disposed on the first frame.
    A stepped portion is formed by the inner circumferential end of the first frame and the inner circumferential end of the second frame being at mutually different positions in the direction intersecting the stacking direction,
    A storage module, wherein the separator is disposed at the stepped portion.
  2.  前記第1枠体の前記内周端が、前記第2枠体の前記内周端よりも内側に配置されている、請求項1に記載の蓄電モジュール。 The power storage module according to claim 1, wherein the inner peripheral end of the first frame is disposed inside the inner peripheral end of the second frame.
  3.  前記複数のバイポーラ電極と前記樹脂部との間に内部空間が形成されており、
     前記第2枠体には、前記積層方向に交差する方向に前記第2枠体を貫通し、前記内部空間と連通する開口が形成されている、請求項1又は2に記載の蓄電モジュール。
    An internal space is formed between the plurality of bipolar electrodes and the resin portion,
    The power storage module according to claim 1, wherein an opening communicating with the internal space is formed in the second frame through the second frame in a direction intersecting the stacking direction.
  4.  前記第1枠体は、熱可塑性エラストマーを含む、請求項1~3のいずれか一項に記載の蓄電モジュール。 The power storage module according to any one of claims 1 to 3, wherein the first frame includes a thermoplastic elastomer.
  5.  前記第2枠体のヤング率は、前記第1枠体のヤング率よりも大きい、請求項1~4のいずれか一項に記載の蓄電モジュール。 The power storage module according to any one of claims 1 to 4, wherein a Young's modulus of the second frame is larger than a Young's modulus of the first frame.
  6.  前記シール部は第1シール部であり、
     前記樹脂部は、前記積層方向に交差する方向において前記第1シール部の外側に設けられた第2シール部を有し、
     前記第2シール部を構成する材料は、前記第2枠体を構成する材料と同じである、請求項1~5のいずれか一項に記載の蓄電モジュール。
    The seal portion is a first seal portion,
    The resin portion has a second seal portion provided on the outer side of the first seal portion in a direction intersecting the stacking direction,
    The power storage module according to any one of claims 1 to 5, wherein a material forming the second seal portion is the same as a material forming the second frame.
  7.  前記第1枠体の線膨張係数は、前記第2枠体の線膨張係数よりも小さい、請求項1~3のいずれか一項に記載の蓄電モジュール。 The power storage module according to any one of claims 1 to 3, wherein a linear expansion coefficient of the first frame is smaller than a linear expansion coefficient of the second frame.
  8.  前記第1枠体は、樹脂部材と、前記樹脂部材の線膨張係数よりも小さい線膨張係数を有する部材とを有する、請求項7に記載の蓄電モジュール。 The power storage module according to claim 7, wherein the first frame body includes a resin member and a member having a linear expansion coefficient smaller than a linear expansion coefficient of the resin member.
  9.  前記樹脂部材の線膨張係数よりも小さい線膨張係数を有する前記部材は不織布である、請求項8に記載の蓄電モジュール。 The power storage module according to claim 8, wherein the member having a linear expansion coefficient smaller than a linear expansion coefficient of the resin member is a non-woven fabric.
  10.  前記第1枠体を構成する樹脂材料のうち最大の質量百分率を有する樹脂材料が、前記第2枠体を構成する樹脂材料のうち最大の質量百分率を有する樹脂材料と同じである、請求項1~9のいずれか一項に記載の蓄電モジュール。 The resin material having the largest mass percentage of the resin materials constituting the first frame is the same as the resin material having the largest mass percentage of the resin materials constituting the second frame. The storage module according to any one of to 9.
  11.  セパレータを介して積層された複数のバイポーラ電極を含む蓄電モジュールの製造方法であって、
     複数のバイポーラ電極のそれぞれが、電極板と前記電極板の第1面に設けられた正極と前記電極板の第2面に設けられた負極とを含み、
     前記製造方法は、
     複数の電極ユニットを準備する工程であり、前記複数の電極ユニットのそれぞれが、前記複数のバイポーラ電極のうち1つのバイポーラ電極と、前記電極板の周縁部に接合された第1枠体と、前記第1枠体上に配置された第2枠体と、前記セパレータとを有する、前記工程と、
     前記複数のバイポーラ電極が前記セパレータを介して積層されるように、前記複数の電極ユニットを積層する工程と、
     隣り合う前記第1枠体間をシールする工程と、
    を含み、
     前記複数の電極ユニットを準備する工程では、前記第1枠体の内周端と前記第2枠体の内周端とが前記電極板の厚み方向に交差する方向において互いに異なる位置にあることによって段差部が形成されており、前記段差部には、前記セパレータが配置される、蓄電モジュールの製造方法。
    A method of manufacturing a storage module including a plurality of bipolar electrodes stacked via a separator, comprising:
    Each of the plurality of bipolar electrodes includes an electrode plate, a positive electrode provided on the first surface of the electrode plate, and a negative electrode provided on the second surface of the electrode plate,
    The manufacturing method is
    The step of preparing a plurality of electrode units, wherein each of the plurality of electrode units is one bipolar electrode of the plurality of bipolar electrodes, a first frame joined to the peripheral portion of the electrode plate, and A second frame disposed on the first frame, and the separator,
    Laminating the plurality of electrode units such that the plurality of bipolar electrodes are stacked via the separator;
    Sealing between the adjacent first frames;
    Including
    In the step of preparing the plurality of electrode units, the inner peripheral end of the first frame and the inner peripheral end of the second frame are at mutually different positions in the direction intersecting the thickness direction of the electrode plate. A method of manufacturing a storage module, wherein a stepped portion is formed, and the separator is disposed in the stepped portion.
PCT/JP2018/024205 2017-08-10 2018-06-26 Electricity storage module and method for manufacturing electricity storage module WO2019031087A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017155323 2017-08-10
JP2017-155323 2017-08-10
JP2017202103A JP6933549B2 (en) 2017-08-10 2017-10-18 Power storage module
JP2017-202103 2017-10-18

Publications (1)

Publication Number Publication Date
WO2019031087A1 true WO2019031087A1 (en) 2019-02-14

Family

ID=65271138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024205 WO2019031087A1 (en) 2017-08-10 2018-06-26 Electricity storage module and method for manufacturing electricity storage module

Country Status (1)

Country Link
WO (1) WO2019031087A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020135933A (en) * 2019-02-13 2020-08-31 株式会社豊田自動織機 Electrode unit and manufacturing method of electrode unit
CN113394494A (en) * 2020-03-13 2021-09-14 本田技研工业株式会社 Solid-state power storage device and method for manufacturing same
WO2023068111A1 (en) * 2021-10-21 2023-04-27 古河電気工業株式会社 Bipolar storage battery
WO2023145294A1 (en) * 2022-01-28 2023-08-03 株式会社豊田自動織機 Electric power storage module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251465A (en) * 2004-03-02 2005-09-15 Nissan Motor Co Ltd Bipolar battery
JP2005259379A (en) * 2004-03-09 2005-09-22 Nissan Motor Co Ltd Bipolar battery
EP2613381A1 (en) * 2012-01-04 2013-07-10 Centurion Bipolair B.V. A method of manufacturing a bipolar cell and a bipolar battery
WO2018055858A1 (en) * 2016-09-21 2018-03-29 株式会社豊田自動織機 Electricity storage device and method for manufacturing electricity storage device
JP2018101599A (en) * 2016-12-20 2018-06-28 株式会社豊田自動織機 Power storage module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251465A (en) * 2004-03-02 2005-09-15 Nissan Motor Co Ltd Bipolar battery
JP2005259379A (en) * 2004-03-09 2005-09-22 Nissan Motor Co Ltd Bipolar battery
EP2613381A1 (en) * 2012-01-04 2013-07-10 Centurion Bipolair B.V. A method of manufacturing a bipolar cell and a bipolar battery
WO2018055858A1 (en) * 2016-09-21 2018-03-29 株式会社豊田自動織機 Electricity storage device and method for manufacturing electricity storage device
JP2018101599A (en) * 2016-12-20 2018-06-28 株式会社豊田自動織機 Power storage module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020135933A (en) * 2019-02-13 2020-08-31 株式会社豊田自動織機 Electrode unit and manufacturing method of electrode unit
JP7156071B2 (en) 2019-02-13 2022-10-19 株式会社豊田自動織機 ELECTRODE UNIT AND METHOD FOR MANUFACTURING ELECTRODE UNIT
CN113394494A (en) * 2020-03-13 2021-09-14 本田技研工业株式会社 Solid-state power storage device and method for manufacturing same
CN113394494B (en) * 2020-03-13 2024-03-01 本田技研工业株式会社 Solid-state power storage device and method for manufacturing same
WO2023068111A1 (en) * 2021-10-21 2023-04-27 古河電気工業株式会社 Bipolar storage battery
WO2023145294A1 (en) * 2022-01-28 2023-08-03 株式会社豊田自動織機 Electric power storage module

Similar Documents

Publication Publication Date Title
JP6586969B2 (en) Power storage module
WO2019031087A1 (en) Electricity storage module and method for manufacturing electricity storage module
JP2019016459A (en) Power storage device and manufacturing method thereof
JP6933549B2 (en) Power storage module
WO2019151193A1 (en) Power storage module and method for manufacturing power storage module
WO2018150700A1 (en) Power storage module and method for manufacturing power storage module
JP7226269B2 (en) Pressure regulating valve structure and power storage module
JP2019185947A (en) Power storage module
CN111201657B (en) Power storage module
JP6959514B2 (en) Power storage module, manufacturing method of power storage module, and manufacturing method of power storage device
WO2018116729A1 (en) Power storage module
JP7123687B2 (en) BIPOLAR BATTERY AND METHOD OF MANUFACTURING BIPOLAR BATTERY
WO2019073717A1 (en) Power storage module
JP2020024820A (en) Power storage module and manufacturing method of power storage module
JP2020035665A (en) Supply device
JP2019121450A (en) Power-storage module and manufacturing method thereof
JP6986501B2 (en) Power storage module
JP7042193B2 (en) Power storage module
JP7100537B2 (en) Power storage module
WO2019194288A1 (en) Power storage module
JP2020053160A (en) Power storage module
JP2020077534A (en) Power storage module
JP2020102412A (en) Power storage device
JP2019200954A (en) Manufacturing method of power storage module and jig for manufacturing power storage module
JP2019117757A (en) Power-storage module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18845081

Country of ref document: EP

Kind code of ref document: A1