WO2018150700A1 - Power storage module and method for manufacturing power storage module - Google Patents

Power storage module and method for manufacturing power storage module Download PDF

Info

Publication number
WO2018150700A1
WO2018150700A1 PCT/JP2017/044191 JP2017044191W WO2018150700A1 WO 2018150700 A1 WO2018150700 A1 WO 2018150700A1 JP 2017044191 W JP2017044191 W JP 2017044191W WO 2018150700 A1 WO2018150700 A1 WO 2018150700A1
Authority
WO
WIPO (PCT)
Prior art keywords
thickness
electrode plate
stacking direction
peripheral portion
outer peripheral
Prior art date
Application number
PCT/JP2017/044191
Other languages
French (fr)
Japanese (ja)
Inventor
田丸耕二郎
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2018150700A1 publication Critical patent/WO2018150700A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • H01G11/12Stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a power storage module and a method for manufacturing the power storage module.
  • a bipolar battery having a bipolar electrode in which a positive electrode is formed on one surface of a current collector and a negative electrode is formed on the other surface is known.
  • a plurality of bipolar electrodes are stacked in series across an electrolyte layer.
  • the electrolyte layer is held by the separator.
  • a sealing resin member is disposed on the outer peripheral portion of the separator where the electrolyte is held.
  • a sealing member is provided in order to prevent electrolyte solution, gas, and the like from flowing into adjacent cells.
  • the sealing performance of the sealing member in the bipolar battery is important. For example, if a sealing failure occurs, productivity may be reduced.
  • a power storage module in which a first seal portion that holds the peripheral portion of the electrode plate is formed and a second seal portion is formed outside the first seal portion in a direction perpendicular to the stacking direction in which the bipolar electrodes are stacked is conceivable.
  • a frame body 70 serving as a first seal portion is formed on an inner peripheral portion 71 formed on a peripheral portion 34 a of the electrode plate 34, and on the outer side of the inner peripheral portion 71.
  • a gap G can be formed between the outer peripheral portions 72 that are adjacent in the stacking direction.
  • the resin material is injected into the mold, and the second seal The part is injection molded.
  • the outer peripheral portion 72 of the frame body 70 may be deformed (for example, rolled up). Such deformation of the frame body 70 may lead to a state in which the second seal portion is not properly joined to the first seal portion, which may cause a seal failure.
  • An object of the present invention is to provide a power storage module and a method for manufacturing the power storage module that can reduce a sealing failure.
  • One embodiment of the present invention is an electricity storage in which a plurality of bipolar electrodes each including a positive electrode provided on an electrode plate and a first surface of the electrode plate and a negative electrode provided on a second surface of the electrode plate are stacked via a separator.
  • the module includes a cylindrical resin portion that extends in the stacking direction of the plurality of bipolar electrodes and accommodates the plurality of bipolar electrodes, and the resin portion is a cylindrical first member joined to the peripheral portion of the electrode plate.
  • a seal portion, and a cylindrical second seal portion provided in a sealed state with the first seal portion on the outside of the first seal portion in a direction intersecting the stacking direction.
  • the frame body joined to the peripheral portion of the electrode plate has a structure in which the frame body is laminated in the laminating direction, and the frame body is disposed on at least one surface side of the first surface or the second surface of the electrode plate, Continuously connected to the inner periphery joined to one surface and the outer periphery Vignetting, wherein an outer peripheral portion abutting on another frame adjacent to the stacking direction, the thickness of the outer peripheral portion in the stacking direction is greater than the thickness of the inner peripheral portion in the stacking direction.
  • the frame of the first seal portion has an inner peripheral portion joined to the electrode plate and an outer peripheral portion outside the inner peripheral portion.
  • the outer peripheral portion of the frame body is in contact with another frame body adjacent in the stacking direction. Since the thickness of the outer peripheral portion in the stacking direction is larger than the thickness of the inner peripheral portion in the stacking direction, the outer peripheral portions adjacent to each other in the stacking direction are in contact with each other in the stacked state, and a gap is formed between them. Hateful. Therefore, when the second seal portion is formed after the frames are stacked, the resin material of the second seal portion is suppressed from entering between the frames of the first seal portion. Thereby, it is prevented that the outer peripheral part of a frame deform
  • the thickness of the outer peripheral portion in the stacking direction may be substantially equal to the sum of the thickness of the inner peripheral portion in the stacking direction and the thickness of the electrode plate.
  • the end surface in the stacking direction of the outer peripheral portion and the end surface in the stacking direction of the inner peripheral portion tend to be flush with each other. Therefore, the outer peripheral parts and inner peripheral parts which adjoin in the lamination direction contact
  • the frames can be brought into close contact with each other, and deformation of the outer periphery of the frame is reliably prevented when the second seal portion is formed.
  • the separator is disposed between a plurality of bipolar electrodes and is compressed in the stacking direction with the positive electrode and the negative electrode being in contact with both sides in the stacking direction, and the thickness of the outer peripheral portion in the stacking direction is: It may be smaller than the sum of the thickness of the electrode plate, the thickness of the positive electrode, the thickness of the negative electrode, and the thickness of the separator before compression in the stacking direction. In this case, when a plurality of bipolar electrodes are stacked via the separator, the separator is compressed. The amount of compression of this separator can be determined by the thickness of the outer periphery of the frame.
  • the thickness of the outer peripheral portion of the frame can approximate the sum of the thickness of the electrode plate, the thickness of the positive electrode, the thickness of the negative electrode, and the thickness of the separator after compression. Thereby, a gap is not formed between the outer peripheral portions adjacent to each other in the stacking direction, and the second seal portion is appropriately joined to the first seal portion.
  • a method of manufacturing a power storage module comprising: a plurality of bipolar electrodes each including an electrode plate, a positive electrode provided on the first surface of the electrode plate, and a negative electrode provided on the second surface of the electrode plate.
  • each inner peripheral portion of the frame body is joined to at least one surface of the electrode plate, and each outer peripheral portion of the frame body protrudes outward from the peripheral portion of the electrode plate in a direction crossing the stacking direction.
  • the thickness of the outer peripheral portion forms a frame body so as to be larger than the thickness of the inner peripheral portion in the stacking direction in the stacking direction, in the laminating step, is brought into contact with the outer peripheral portion of the frame adjacent in the stacking direction.
  • sealing failure can be reduced.
  • FIG. 3A is a cross-sectional view showing a state before the bipolar battery is stacked
  • FIG. 3B is a cross-sectional view showing the peripheral structure of the resin portion in the power storage module.
  • 4 (a) to 4 (c) are diagrams showing a manufacturing procedure of the bipolar battery with a frame shown in FIG. 3 (a).
  • FIG. 5A is a cross-sectional view showing the structure of a bipolar battery with a frame in a power storage module according to a reference embodiment
  • FIG. 5B is an example of a molded state of the second seal portion in the module of FIG. It is sectional drawing shown.
  • the power storage device 10 shown in FIG. 1 is used as a battery for various vehicles such as forklifts, hybrid vehicles, and electric vehicles.
  • the power storage device 10 includes a plurality (three in the present embodiment) of power storage modules 12, but may include a single power storage module 12.
  • the power storage module 12 is a bipolar battery.
  • the power storage module 12 is a secondary battery such as a nickel hydride secondary battery or a lithium ion secondary battery, but may be an electric double layer capacitor. In the following description, a nickel metal hydride secondary battery is illustrated.
  • the plurality of power storage modules 12 can be stacked via a conductive plate 14 such as a metal plate, for example.
  • a conductive plate 14 such as a metal plate, for example.
  • the conductive plates 14 are also arranged outside the power storage modules 12 positioned at both ends in the stacking direction (Z direction) of the power storage modules 12.
  • the conductive plate 14 is electrically connected to the adjacent power storage module 12. Thereby, the some electrical storage module 12 is connected in series in the lamination direction.
  • a positive electrode terminal 24 is connected to the conductive plate 14 located at one end
  • a negative electrode terminal 26 is connected to the conductive plate 14 located at the other end.
  • the positive terminal 24 may be integrated with the conductive plate 14 to be connected.
  • the negative electrode terminal 26 may be integrated with the conductive plate 14 to be connected.
  • the positive electrode terminal 24 and the negative electrode terminal 26 extend in a direction (X direction) intersecting the stacking direction.
  • the positive and negative terminals 24 and 26 can charge and discharge the power storage device 10.
  • the conductive plate 14 can also function as a heat radiating plate for releasing heat generated in the power storage module 12.
  • a refrigerant such as air or liquid passes through the plurality of gaps 14a provided inside the conductive plate 14, heat from the power storage module 12 can be efficiently released to the outside.
  • Each gap 14a extends, for example, in a direction (Y direction) intersecting the stacking direction.
  • the conductive plate 14 is smaller than the power storage module 12, but may be the same as or larger than the power storage module 12.
  • the power storage device 10 may include a restraining member 16 that restrains the alternately stacked power storage modules 12 and conductive plates 14 in the stacking direction.
  • the restraining member 16 includes a pair of restraining plates 16A and 16B and a connecting member (bolt 18 and nut 20) for joining the restraining plates 16A and 16B to each other.
  • An insulating film 22 such as a resin film is disposed between the restraining plates 16A and 16B and the conductive plate.
  • Each restraint plate 16A, 16B is comprised, for example with metals, such as iron.
  • each of the restraining plates 16A and 16B and the insulating film 22 has, for example, a rectangular shape.
  • the insulating film 22 is larger than the conductive plate 14, and the restraining plates 16 ⁇ / b> A and 16 ⁇ / b> B are larger than the power storage module 12.
  • an insertion hole 16A1 through which the shaft portion of the bolt 18 is inserted is provided at a position on the outer side of the power storage module 12 at the edge portion of the restraint plate 16A.
  • an insertion hole 16 ⁇ / b> B ⁇ b> 1 through which the shaft part of the bolt 18 is inserted is provided at a position on the outer side of the power storage module 12 at the edge of the restraint plate 16 ⁇ / b> B when viewed from the stacking direction.
  • the insertion hole 16A1 and the insertion hole 16B1 are located at the corners of the restraint plates 16A, 16B.
  • One constraining plate 16A is abutted against the conductive plate 14 connected to the negative terminal 26 via the insulating film 22, and the other constraining plate 16B has the insulating film 22 applied to the conductive plate 14 connected to the positive terminal 24.
  • the bolt 18 is passed through the insertion hole 16A1 and the insertion hole 16B1 from the one restraint plate 16A side toward the other restraint plate 16B side.
  • a nut 20 is screwed onto the tip of the bolt 18 protruding from the other restraining plate 16B. Accordingly, the insulating film 22, the conductive plate 14, and the power storage module 12 are sandwiched and unitized, and a restraining load is applied in the stacking direction.
  • the power storage module 12 illustrated in FIG. 2 includes a stacked body 30 in which a plurality of bipolar electrodes 32 are stacked. When viewed from the stacking direction of the bipolar electrode 32, the stacked body 30 has, for example, a rectangular shape. A separator 40 may be disposed between the adjacent bipolar electrodes 32.
  • Each bipolar electrode 32 includes an electrode plate 34, a positive electrode 36 provided on the first surface 34 c of the electrode plate 34, and a negative electrode 38 provided on the second surface 34 d of the electrode plate 34.
  • the positive electrode 36 of one bipolar electrode 32 faces the negative electrode 38 of one bipolar electrode 32 adjacent in the stacking direction across the separator 40, and the negative electrode 38 of one bipolar electrode 32 connects the separator 40. It faces the positive electrode 36 of the other bipolar electrode 32 that is adjacent in the stacking direction.
  • an electrode plate 34 having a negative electrode 38 disposed on the inner surface (the lower surface in the drawing) is disposed at one end of the stacked body 30.
  • the electrode plate 34 corresponds to a negative terminal electrode.
  • an electrode plate 34 having a positive electrode 36 disposed on the inner surface (the upper surface in the drawing) is disposed at the other end of the stacked body 30.
  • This electrode plate 34 corresponds to a positive terminal electrode.
  • the negative electrode 38 of the negative electrode-side termination electrode faces the positive electrode 36 of the uppermost bipolar electrode 32 with the separator 40 interposed therebetween.
  • the positive electrode 36 of the positive terminal electrode is opposed to the negative electrode 38 of the lowermost bipolar electrode 32 with the separator 40 interposed therebetween.
  • the electrode plates 34 of these termination electrodes are connected to the adjacent conductive plates 14 (see FIG. 1).
  • the power storage module 12 includes a cylindrical resin portion 50 that extends in the stacking direction of the bipolar electrodes 32 and accommodates the stacked body 30.
  • the resin part 50 holds the peripheral edge part 34 a of the plurality of electrode plates 34.
  • the resin part 50 is configured to surround the laminated body 30.
  • the resin portion 50 has, for example, a rectangular shape when viewed from the lamination direction of the bipolar electrode 32. That is, the resin part 50 is, for example, a rectangular tube shape.
  • the resin part 50 is joined to the peripheral part 34a of the electrode plate 34, and the first seal part 52 that holds the peripheral part 34a and the first seal part 52 in the direction (X direction and Y direction) intersecting the stacking direction.
  • 2nd seal part 54 provided in the outside.
  • the second seal portion 54 is provided in a state of being sealed with the first seal portion 52.
  • the 1st seal part 52 which constitutes the inner wall of resin part 50 is provided over the perimeter of peripheral part 34a of electrode board 34 in a plurality of bipolar electrodes 32 (namely, layered product 30).
  • the first seal portion 52 is welded, for example, to the peripheral portion 34a of the electrode plate 34, and seals the peripheral portion 34a. That is, the first seal part 52 is joined to the peripheral edge part 34 a of the electrode plate 34.
  • the peripheral edge 34 a of the electrode plate 34 of each bipolar electrode 32 is held in a state of being buried in the first seal portion 52.
  • the peripheral portions 34 a of the electrode plates 34 disposed at both ends of the stacked body 30 are also held in a state of being buried in the first seal portion 52.
  • an internal space that is airtightly partitioned by the electrode plates 34 and 34 and the first seal portion 52 is formed between the electrode plates 34 and 34 adjacent in the stacking direction.
  • An electrolytic solution (not shown) made of an alkaline solution such as an aqueous potassium hydroxide solution is accommodated in the internal space.
  • the second seal part 54 constituting the outer wall of the resin part 50 covers the outer peripheral surface 52a of the first seal part 52 extending in the stacking direction of the bipolar electrodes 32.
  • the inner peripheral surface 54a of the second seal portion 54 is welded, for example, to the outer peripheral surface 52a of the first seal portion 52, and seals the outer peripheral surface 52a. That is, the second seal portion 54 is joined to the outer peripheral surface 52 a of the first seal portion 52.
  • the welding surface (joint surface) of the second seal portion 54 with respect to the first seal portion 52 forms, for example, four rectangular planes.
  • the electrode plate 34 is a rectangular metal foil made of nickel, for example.
  • the peripheral edge 34a of the electrode plate 34 is an uncoated region where the positive electrode active material and the negative electrode active material are not coated. In the uncoated region, the electrode plate 34 is exposed. The uncoated region is buried and held in the first seal portion 52 constituting the inner wall of the resin portion 50.
  • An example of the positive electrode active material constituting the positive electrode 36 is nickel hydroxide.
  • Examples of the negative electrode active material constituting the negative electrode 38 include a hydrogen storage alloy.
  • the formation region of the negative electrode 38 on the second surface 34 d of the electrode plate 34 may be slightly larger than the formation region of the positive electrode 36 on the first surface 34 c of the electrode plate 34.
  • the separator 40 is formed in a sheet shape, for example.
  • the separator 40 has a rectangular shape, for example.
  • Examples of the material forming the separator 40 include a porous film made of a polyolefin resin such as polyethylene (PE) and polypropylene (PP), and a woven fabric or a nonwoven fabric made of polypropylene.
  • the separator 40 may be reinforced with a vinylidene fluoride resin compound or the like.
  • the resin part 50 (the first seal part 52 and the second seal part 54) is formed in a rectangular cylindrical shape by, for example, injection molding using an insulating resin.
  • the resin material constituting the resin portion 50 include polypropylene (PP), polyphenylene sulfide (PPS), and modified polyphenylene ether (modified PPE).
  • the first seal portion 52 has a structure in which frame bodies 60 joined to the peripheral edge portion 34a of the electrode plate 34 are stacked in the stacking direction.
  • the frame body 60 that is a sealing component is, for example, provided on the first surface 34 c side of the electrode plate 34 and joined to the first surface 34 c and continuously provided on the outer side of the inner peripheral portion 61.
  • the outer peripheral part 62 is included.
  • the inner peripheral portion 61 and the outer peripheral portion 62 are integrated.
  • the second end surface 61 b of the inner peripheral portion 61 is joined to the first surface 34 c in the peripheral portion 34 a of the electrode plate 34.
  • the inner peripheral portion 61 forms an inner peripheral end 52c (see FIG. 2) of the first seal portion 52.
  • the outer peripheral part 62 contacts the outer peripheral part 62 of another frame 60 adjacent in the stacking direction.
  • the outer peripheral portion 62 forms the outer peripheral end 52d (that is, the outer peripheral surface 52a) of the first seal portion 52.
  • the frame 60 defines the height (thickness) in the stacking direction of the bipolar electrode 32 and the separator 40 to be stacked.
  • the first end surface 60a of the frame body 60 is in contact with the second end surface 62b of the outer peripheral portion 62 of another frame body 60 and the second surface 34d side of the peripheral edge portion 34a.
  • the first end surface 61a of the inner peripheral portion 61 and the first end surface 62a of the outer peripheral portion 62 are, for example, flush with each other.
  • the second end surface 62b of the outer peripheral portion 62 and the second surface 34d side of the peripheral edge portion 34a are, for example, flush with each other.
  • the separator 40 is disposed between the plurality of bipolar electrodes 32 and is compressed in the stacking direction with the positive electrode 36 and the negative electrode 38 being in contact with both sides in the stacking direction.
  • the thickness t2 of the outer peripheral portion 62 in the stacking direction is larger than the thickness t1 of the inner peripheral portion 61 in the stacking direction. That is, the length between the first end surface 62a and the second end surface 62b of the outer peripheral portion 62 is larger than the length of the first end surface 61a and the second end surface 61b of the inner peripheral portion 61.
  • the thickness t2 of the outer peripheral portion 62 in the stacking direction is substantially equal to the sum of the thickness t1 of the inner peripheral portion 61 and the thickness of the electrode plate 34 in the stacking direction.
  • the thickness of the outer peripheral portion 62 in the stacking direction is smaller than the sum of the thickness of the electrode plate 34, the thickness of the positive electrode 36, the thickness of the negative electrode 38, and the thickness of the separator 40 before compression in the stacking direction.
  • the second seal portion 54 is joined to the outer peripheral surface 52 a of the first seal portion 52 without entering between the frame bodies 60.
  • the positive electrode 36 is formed on the first surface 34c of the electrode plate 34, and the negative electrode 38 is formed on the second surface 34d of the electrode plate 34 to obtain the bipolar electrode 32 ( Preparation step).
  • the frame body 60 is joined to the peripheral edge 34a of the electrode plate 34 of the bipolar electrode 32 (first sealing step).
  • the frame body 60 may be welded to the peripheral edge 34 a by performing hot pressing from the upper and lower surfaces of the bipolar electrode 32.
  • the frame body 60 When the frame body 60 is welded to the peripheral edge 34a by hot pressing, the frame body 60 may be formed using a hot pressing mold.
  • the first type M1 and the second type M2 are used.
  • the inner peripheral portion 61 of the frame body 60 is pressed so as to be joined to the first surface 34c of the electrode plate 34 by the flat surface portion M1b of the first mold M1.
  • the outer peripheral portion 62 projects outward from the peripheral edge portion 34 a of the electrode plate 34, and further enters the outer peripheral side of the peripheral edge portion 34 a of the electrode plate 34.
  • the mating surface M1a of the first mold M1 and the mating surface M2a of the second mold M2 are combined, the second end surface 62b of the outer peripheral portion 62 is flush with the second surface 34d of the peripheral portion 34a.
  • the mold for hot pressing may be made of resin, for example.
  • a fluororesin mold made of PTFE (polytetrafluoroethylene), PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer), or the like may be used. In that case, mixing of the conductive foreign matter into the frame 60 can be prevented.
  • the frame body 60 is formed in which the thickness t2 of the outer peripheral portion 62 in the stacking direction is larger than the thickness t1 of the inner peripheral portion 61 in the stacking direction.
  • a plurality of bipolar electrodes 32 to which the frame body 60 is bonded are stacked via the separator 40 (see FIG. 3B) to obtain the stacked body 30 (stacking step).
  • the outer peripheral part 62 of the frame 60 abuts on the outer peripheral part 62 of another frame 60 adjacent in the stacking direction.
  • the separator 40 is more compressed in the state of the laminated body 30 (a state in which the positive electrode 36 and the negative electrode 38 are in contact with each other) than in the state before the lamination.
  • a gap is not formed between the outer peripheral portions 62 of the frame body 60 due to the relationship between the thicknesses of the respective members described above.
  • the second seal portion 54 is formed by, for example, injection molding (second seal step).
  • the second seal portion 54 can be formed by pouring a resin material of the second seal portion 54 having fluidity into the mold.
  • an electrolytic solution is injected into the resin part 50 through an injection port or the like.
  • the storage module 12 is manufactured by sealing the injection port.
  • a plurality of power storage modules 12 are stacked via the conductive plate 14.
  • a positive electrode terminal 24 and a negative electrode terminal 26 are connected in advance to the conductive plates 14 located at both ends in the stacking direction.
  • a pair of restraint plates 16A and 16B are respectively disposed at both ends in the stacking direction via the insulating film 22, and the restraint plates 16A and 16B are connected to each other using the bolt 18 and the nut 20. In this way, the power storage device 10 shown in FIG. 1 is manufactured.
  • the frame body 60 of the first seal portion 52 includes the inner peripheral portion 61 joined to the electrode plate 34 and the outer periphery outside the inner peripheral portion 61. Part 62.
  • the outer peripheral part 62 of the frame body 60 contacts another frame body 60 adjacent in the stacking direction. Since the thickness t2 of the outer peripheral portion 62 in the stacking direction is larger than the thickness t1 of the inner peripheral portion 61 in the stacking direction, the outer peripheral portions 62 adjacent to each other in the stacking direction are in contact with each other in a state where the frame bodies 60 are stacked. It is difficult to form a gap between them.
  • the resin material of the second seal portion 54 is suppressed from entering between the frame bodies 60 of the first seal portion 52.
  • the outer peripheral portion 62 of the frame body 60 is prevented from being deformed, and the second seal portion 54 is appropriately joined to the first seal portion 52. Therefore, the sealing failure can be reduced.
  • the outer peripheral portion 72 in the outermost layer can be prevented from rolling up.
  • the thickness t2 of the outer peripheral portion 62 in the stacking direction is substantially equal to the sum of the thickness of the inner peripheral portion 61 and the thickness of the electrode plate 34 in the stacking direction.
  • the first end surface 62a in the stacking direction of the outer peripheral portion 62 and the first end surface 61a in the stacking direction of the inner peripheral portion 61 are likely to be flush with each other. Therefore, the outer peripheral portions 62 and the inner peripheral portions 61 that are adjacent to each other in the stacking direction come into contact with each other in a state where the frame bodies 60 are stacked.
  • the frame bodies 60 can be brought into close contact with each other, and deformation of the outer peripheral portion 62 of the frame body 60 is reliably prevented when the second seal portion 54 is formed.
  • the thickness of the outer peripheral portion 62 in the stacking direction is smaller than the sum of the thickness of the electrode plate 34, the thickness of the positive electrode 36, the thickness of the negative electrode 38, and the thickness of the separator 40 before compression in the stacking direction.
  • the amount of compression of the separator 40 can be determined by the thickness of the outer peripheral portion 62 of the frame body 60.
  • the thickness of the outer peripheral portion 62 of the frame 60 can be approximated to the sum of the thickness of the electrode plate 34, the thickness of the positive electrode 36, the thickness of the negative electrode 38, and the thickness of the separator 40 after compression. Accordingly, no gap is formed between the outer peripheral portions 62 adjacent in the stacking direction, and the second seal portion 54 is appropriately joined to the first seal portion 52.
  • one frame body 60 is provided only on the first surface 34c side of the electrode plate 34.
  • One frame 60 may be provided only on the second surface 34 d side of the electrode plate 34.
  • one frame 60 may be welded (joined) to the second surface 34d side of the electrode plate 34 by hot pressing or the like.
  • One frame 60 may be provided on the first surface 34 c side of the electrode plate 34, and another one frame 60 may be provided on the second surface 34 d side of the electrode plate 34.
  • each frame 60 may be welded (joined) to the first surface 34c and the second surface 34d side of the electrode plate 34 by hot pressing or the like.
  • the thickness of the frame 60 satisfies the same relationship as in the above embodiment.
  • the frame body 60 is provided on each of the first surface 34c side and the second surface 34d side of one electrode plate 34, the total thickness of the two outer peripheral portions 62 and the total thickness of the two inner peripheral portions 61 are thus, the same relationship as in the above embodiment is satisfied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Cell Separators (AREA)

Abstract

This power storage module is provided with a cylindrical resin part accommodating a plurality of bipolar electrodes. The resin part has: a first seal portion which has a cylindrical shape and is bonded to a peripheral edge portion of an electrode plate; and a second seal portion which has a cylindrical shape and is provided in a state of being sealed with the first seal portion. The first seal portion has a structure in which a frame body bonded to the peripheral edge portion of the electrode plate is laminated in a lamination direction. The frame body is disposed on at least one surface among a first surface and a second surface of the electrode plate, and includes an inner peripheral portion bonded to the at least one surface and an outer peripheral portion which contacts another frame body that is adjacent in the lamination direction. The thickness of the outer peripheral portion in the lamination direction is greater than that of the inner peripheral portion in the lamination direction.

Description

蓄電モジュール及び蓄電モジュールの製造方法Power storage module and method for manufacturing power storage module
 本発明は、蓄電モジュール及び蓄電モジュールの製造方法に関する。 The present invention relates to a power storage module and a method for manufacturing the power storage module.
 特許文献1に記載されるように、集電体の一方の面に正極が形成され、他方の面に負極が形成されたバイポーラ電極を備えるバイポーラ電池が知られている。このバイポーラ電池では、電解質層を挟んで複数のバイポーラ電極が直列に積層されている。電解質層はセパレータに保持されている。セパレータにおける電解質を保持させた部分の外周部には、シール用の樹脂部材が配置されている。 As described in Patent Document 1, a bipolar battery having a bipolar electrode in which a positive electrode is formed on one surface of a current collector and a negative electrode is formed on the other surface is known. In this bipolar battery, a plurality of bipolar electrodes are stacked in series across an electrolyte layer. The electrolyte layer is held by the separator. A sealing resin member is disposed on the outer peripheral portion of the separator where the electrolyte is held.
特開2011-151016号公報JP 2011-151016 A
 上記のようなバイポーラ電池では、電解液及びガス等が隣接するセルへ流入することを防止するためにシール部材が設けられている。バイポーラ電池におけるシール部材のシール性は重要である。たとえば、シール不良が生じると、生産性の低下を招き得る。バイポーラ電池では、シール不良を低減し、確実なシールを実現する技術が求められている。 In the bipolar battery as described above, a sealing member is provided in order to prevent electrolyte solution, gas, and the like from flowing into adjacent cells. The sealing performance of the sealing member in the bipolar battery is important. For example, if a sealing failure occurs, productivity may be reduced. In the bipolar battery, there is a demand for a technique for reducing a seal failure and realizing a reliable seal.
 電極板の周縁部を保持する第1シール部が形成され、バイポーラ電極が積層される積層方向に垂直な方向において、第1シール部の外側に第2シール部が形成された蓄電モジュールが考えられる。たとえば、図5(a)に示されるように、第1シール部となる枠体70が、電極板34の周縁部34aの部分に形成された内周部71と、内周部71の外側に形成されて周縁部34aから突出する外周部72とを含む場合、積層方向に隣り合う外周部72の間には間隙Gが形成され得る。図5(b)に示されるように、枠体70付きのバイポーラ電極32が積層され、上型X1および下型X2が設けられた状態で、型の内部に樹脂材料が注入され、第2シール部が射出成型される。このとき、間隙Gには樹脂材料が入り込む余地があるため、枠体70の外周部72が変形する(たとえば、捲れ上がる)可能性がある。このような枠体70の変形は、第1シール部に対して第2シール部が適切に接合されてない状態を招き得るため、シール不良が生じ得る。 A power storage module in which a first seal portion that holds the peripheral portion of the electrode plate is formed and a second seal portion is formed outside the first seal portion in a direction perpendicular to the stacking direction in which the bipolar electrodes are stacked is conceivable. . For example, as shown in FIG. 5A, a frame body 70 serving as a first seal portion is formed on an inner peripheral portion 71 formed on a peripheral portion 34 a of the electrode plate 34, and on the outer side of the inner peripheral portion 71. In the case of including the outer peripheral portion 72 that is formed and protrudes from the peripheral edge portion 34a, a gap G can be formed between the outer peripheral portions 72 that are adjacent in the stacking direction. As shown in FIG. 5B, in the state where the bipolar electrode 32 with the frame body 70 is laminated and the upper mold X1 and the lower mold X2 are provided, the resin material is injected into the mold, and the second seal The part is injection molded. At this time, since there is room for the resin material to enter the gap G, the outer peripheral portion 72 of the frame body 70 may be deformed (for example, rolled up). Such deformation of the frame body 70 may lead to a state in which the second seal portion is not properly joined to the first seal portion, which may cause a seal failure.
 本発明は、シール不良の低減を図ることができる蓄電モジュール及び蓄電モジュールの製造方法を提供することを目的とする。 An object of the present invention is to provide a power storage module and a method for manufacturing the power storage module that can reduce a sealing failure.
 本発明の一態様は、電極板と電極板の第1面に設けられた正極と電極板の第2面に設けられた負極とをそれぞれ含む複数のバイポーラ電極がセパレータを介して積層された蓄電モジュールであって、複数のバイポーラ電極の積層方向に延在し、複数のバイポーラ電極を収容する筒状の樹脂部を備え、樹脂部は、電極板の周縁部に接合された筒状の第1シール部と、積層方向に交差する方向において第1シール部の外側に、第1シール部とシールされた状態で設けられた筒状の第2シール部と、を有し、第1シール部は、電極板の周縁部に接合された枠体が積層方向に積層された構造を有し、枠体は、電極板の第1面または第2面の少なくとも一方の面側に配置され、当該少なくとも一方の面に接合された内周部と、内周部の外側に連続して設けられ、積層方向に隣接する別の枠体に当接する外周部と、を含み、積層方向における外周部の厚みは、積層方向における内周部の厚みよりも大きい。 One embodiment of the present invention is an electricity storage in which a plurality of bipolar electrodes each including a positive electrode provided on an electrode plate and a first surface of the electrode plate and a negative electrode provided on a second surface of the electrode plate are stacked via a separator. The module includes a cylindrical resin portion that extends in the stacking direction of the plurality of bipolar electrodes and accommodates the plurality of bipolar electrodes, and the resin portion is a cylindrical first member joined to the peripheral portion of the electrode plate. A seal portion, and a cylindrical second seal portion provided in a sealed state with the first seal portion on the outside of the first seal portion in a direction intersecting the stacking direction. The frame body joined to the peripheral portion of the electrode plate has a structure in which the frame body is laminated in the laminating direction, and the frame body is disposed on at least one surface side of the first surface or the second surface of the electrode plate, Continuously connected to the inner periphery joined to one surface and the outer periphery Vignetting, wherein an outer peripheral portion abutting on another frame adjacent to the stacking direction, the thickness of the outer peripheral portion in the stacking direction is greater than the thickness of the inner peripheral portion in the stacking direction.
 この蓄電モジュールによれば、第1シール部の枠体は、電極板に接合される内周部と、内周部の外側の外周部とを有する。枠体の外周部は、積層方向に隣接する別の枠体に当接する。積層方向における外周部の厚みは、積層方向における内周部の厚みよりも大きいため、枠体が積層された状態で、積層方向に隣り合う外周部は当接し、それらの間に間隙は形成されにくい。よって、枠体が積層された後に第2シール部が形成される際、第2シール部の樹脂材料が第1シール部の枠体の間に入り込むことが抑制される。これにより、枠体の外周部が変形することが防止され、第1シール部に対して第2シール部が適切に接合される。したがって、シール不良の低減が図られる。 According to this power storage module, the frame of the first seal portion has an inner peripheral portion joined to the electrode plate and an outer peripheral portion outside the inner peripheral portion. The outer peripheral portion of the frame body is in contact with another frame body adjacent in the stacking direction. Since the thickness of the outer peripheral portion in the stacking direction is larger than the thickness of the inner peripheral portion in the stacking direction, the outer peripheral portions adjacent to each other in the stacking direction are in contact with each other in the stacked state, and a gap is formed between them. Hateful. Therefore, when the second seal portion is formed after the frames are stacked, the resin material of the second seal portion is suppressed from entering between the frames of the first seal portion. Thereby, it is prevented that the outer peripheral part of a frame deform | transforms, and a 2nd seal part is appropriately joined with respect to a 1st seal part. Therefore, the sealing failure can be reduced.
 いくつかの態様において、積層方向における外周部の厚みは、積層方向における内周部の厚みと電極板の厚みとの和に略等しくてもよい。この場合、外周部の積層方向の端面と内周部の積層方向の端面とが面一になりやすい。よって、枠体が積層された状態で、積層方向に隣り合う外周部同士および内周部同士が当接する。枠体同士を密着させることができ、第2シール部が形成される際に枠体の外周部の変形が確実に防止される。 In some embodiments, the thickness of the outer peripheral portion in the stacking direction may be substantially equal to the sum of the thickness of the inner peripheral portion in the stacking direction and the thickness of the electrode plate. In this case, the end surface in the stacking direction of the outer peripheral portion and the end surface in the stacking direction of the inner peripheral portion tend to be flush with each other. Therefore, the outer peripheral parts and inner peripheral parts which adjoin in the lamination direction contact | abut in the state in which the frame was laminated | stacked. The frames can be brought into close contact with each other, and deformation of the outer periphery of the frame is reliably prevented when the second seal portion is formed.
 いくつかの態様において、セパレータは、複数のバイポーラ電極の間に配置され積層方向の両側に正極と負極がそれぞれ当接した状態で積層方向に圧縮されており、積層方向における外周部の厚みは、積層方向における電極板の厚みと正極の厚みと負極の厚みとセパレータの圧縮前の厚みとの和より小さくてもよい。この場合、複数のバイポーラ電極がセパレータを介して積層されると、セパレータが圧縮される。このセパレータの圧縮量は、枠体の外周部の厚みによって決まり得る。言い換えれば、枠体の外周部の厚みは、電極板の厚みと正極の厚みと負極の厚みとセパレータの圧縮後の厚みとの和に近似し得る。これにより、積層方向に隣り合う外周部の間に間隙は形成されず、第1シール部に対して第2シール部が適切に接合される。 In some embodiments, the separator is disposed between a plurality of bipolar electrodes and is compressed in the stacking direction with the positive electrode and the negative electrode being in contact with both sides in the stacking direction, and the thickness of the outer peripheral portion in the stacking direction is: It may be smaller than the sum of the thickness of the electrode plate, the thickness of the positive electrode, the thickness of the negative electrode, and the thickness of the separator before compression in the stacking direction. In this case, when a plurality of bipolar electrodes are stacked via the separator, the separator is compressed. The amount of compression of this separator can be determined by the thickness of the outer periphery of the frame. In other words, the thickness of the outer peripheral portion of the frame can approximate the sum of the thickness of the electrode plate, the thickness of the positive electrode, the thickness of the negative electrode, and the thickness of the separator after compression. Thereby, a gap is not formed between the outer peripheral portions adjacent to each other in the stacking direction, and the second seal portion is appropriately joined to the first seal portion.
 本発明の別の態様に係る蓄電モジュールの製造方法は、電極板と電極板の第1面に設けられた正極と電極板の第2面に設けられた負極とをそれぞれ含む複数のバイポーラ電極を準備する準備工程と、電極板の周縁部において、第1面および第2面の少なくとも一方の面にシール部品である枠体を接合する第1シール工程と、枠体が接合された複数のバイポーラ電極を、セパレータを介して積層方向に積層する積層工程と、積層された複数のバイポーラ電極に対して、枠体の外側に第2シール部を形成する第2シール工程と、を含み、第1シール工程においては、枠体のそれぞれの内周部が電極板の少なくとも一方の面に接合し、枠体のそれぞれの外周部が積層方向に交差する方向において電極板の周縁部より外側へ突出するように枠体を設け、積層方向における外周部の厚みが積層方向における内周部の厚みよりも大きくなるように枠体を形成し、積層工程においては、積層方向において隣り合う枠体の外周部を当接させる。 According to another aspect of the present invention, there is provided a method of manufacturing a power storage module comprising: a plurality of bipolar electrodes each including an electrode plate, a positive electrode provided on the first surface of the electrode plate, and a negative electrode provided on the second surface of the electrode plate. A preparatory step of preparing, a first sealing step of joining a frame body as a sealing component to at least one of the first surface and the second surface at the peripheral edge of the electrode plate; and a plurality of bipolars in which the frame body is joined A laminating step of laminating the electrodes in the laminating direction via the separator, and a second sealing step of forming a second seal portion outside the frame body with respect to the laminated bipolar electrodes, In the sealing step, each inner peripheral portion of the frame body is joined to at least one surface of the electrode plate, and each outer peripheral portion of the frame body protrudes outward from the peripheral portion of the electrode plate in a direction crossing the stacking direction. Set the frame so that , The thickness of the outer peripheral portion forms a frame body so as to be larger than the thickness of the inner peripheral portion in the stacking direction in the stacking direction, in the laminating step, is brought into contact with the outer peripheral portion of the frame adjacent in the stacking direction.
 この蓄電モジュールの製造方法によれば、上記したのと同様の作用により、積層方向に隣り合う外周部の間に間隙は形成されにくい。よって、第2シール工程において、第2シール部の樹脂材料が第1シール部の枠体の間に入り込むことが抑制される。これにより、枠体の外周部が変形することが防止され、第1シール部に対して第2シール部が適切に接合される。したがって、シール不良の低減が図られる。 According to this method for manufacturing a power storage module, it is difficult to form a gap between the outer peripheral portions adjacent to each other in the stacking direction due to the same action as described above. Therefore, in the second sealing step, the resin material of the second seal portion is suppressed from entering between the frames of the first seal portion. Thereby, it is prevented that the outer peripheral part of a frame deform | transforms, and a 2nd seal part is appropriately joined with respect to a 1st seal part. Therefore, the sealing failure can be reduced.
 本発明のいくつかの態様によれば、シール不良の低減が図られる。 According to some aspects of the present invention, sealing failure can be reduced.
蓄電モジュールを備える蓄電装置の実施形態を示す概略断面図である。It is a schematic sectional drawing which shows embodiment of an electrical storage apparatus provided with an electrical storage module. 図1の蓄電装置を構成する蓄電モジュールを示す概略断面図である。It is a schematic sectional drawing which shows the electrical storage module which comprises the electrical storage apparatus of FIG. 図3(a)はバイポーラ電池が積層される前の状態を示す断面図、図3(b)は蓄電モジュールにおける樹脂部の周辺構造を示す断面図である。FIG. 3A is a cross-sectional view showing a state before the bipolar battery is stacked, and FIG. 3B is a cross-sectional view showing the peripheral structure of the resin portion in the power storage module. 図4(a)~図4(c)は、図3(a)に示される枠体付きのバイポーラ電池の製造手順を示す図である。4 (a) to 4 (c) are diagrams showing a manufacturing procedure of the bipolar battery with a frame shown in FIG. 3 (a). 図5(a)は参考形態に係る蓄電モジュールにおける枠体付きのバイポーラ電池の構造を示す断面図、図5(b)は図5(a)のモジュールにおける第2シール部の成形状態の一例を示す断面図である。FIG. 5A is a cross-sectional view showing the structure of a bipolar battery with a frame in a power storage module according to a reference embodiment, and FIG. 5B is an example of a molded state of the second seal portion in the module of FIG. It is sectional drawing shown.
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、図面の説明において同一要素には同一符号を付し、重複する説明は省略する。図面にはXYZ直交座標系が示される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant descriptions are omitted. In the drawing, an XYZ orthogonal coordinate system is shown.
 図1を参照して、蓄電装置の実施形態について説明する。図1に示される蓄電装置10は、例えばフォークリフト、ハイブリッド自動車、電気自動車等の各種車両のバッテリとして用いられる。蓄電装置10は、複数(本実施形態では3つ)の蓄電モジュール12を備えるが、単一の蓄電モジュール12を備えてもよい。蓄電モジュール12は、バイポーラ電池である。蓄電モジュール12は、例えばニッケル水素二次電池、リチウムイオン二次電池等の二次電池であるが、電気二重層キャパシタであってもよい。以下の説明では、ニッケル水素二次電池を例示する。 With reference to FIG. 1, an embodiment of a power storage device will be described. The power storage device 10 shown in FIG. 1 is used as a battery for various vehicles such as forklifts, hybrid vehicles, and electric vehicles. The power storage device 10 includes a plurality (three in the present embodiment) of power storage modules 12, but may include a single power storage module 12. The power storage module 12 is a bipolar battery. The power storage module 12 is a secondary battery such as a nickel hydride secondary battery or a lithium ion secondary battery, but may be an electric double layer capacitor. In the following description, a nickel metal hydride secondary battery is illustrated.
 複数の蓄電モジュール12は、例えば金属板等の導電板14を介して積層され得る。積層方向から見て、蓄電モジュール12及び導電板14は例えば矩形形状を有する。各蓄電モジュール12の詳細については後述する。導電板14は、蓄電モジュール12の積層方向(Z方向)において両端に位置する蓄電モジュール12の外側にもそれぞれ配置される。導電板14は、隣り合う蓄電モジュール12と電気的に接続される。これにより、複数の蓄電モジュール12が積層方向に直列に接続される。積層方向において、一端に位置する導電板14には正極端子24が接続されており、他端に位置する導電板14には負極端子26が接続されている。正極端子24は、接続される導電板14と一体であってもよい。負極端子26は、接続される導電板14と一体であってもよい。正極端子24及び負極端子26は、積層方向に交差する方向(X方向)に延在している。これらの正極端子24及び負極端子26により、蓄電装置10の充放電を実施できる。 The plurality of power storage modules 12 can be stacked via a conductive plate 14 such as a metal plate, for example. When viewed from the stacking direction, the power storage module 12 and the conductive plate 14 have, for example, a rectangular shape. Details of each power storage module 12 will be described later. The conductive plates 14 are also arranged outside the power storage modules 12 positioned at both ends in the stacking direction (Z direction) of the power storage modules 12. The conductive plate 14 is electrically connected to the adjacent power storage module 12. Thereby, the some electrical storage module 12 is connected in series in the lamination direction. In the stacking direction, a positive electrode terminal 24 is connected to the conductive plate 14 located at one end, and a negative electrode terminal 26 is connected to the conductive plate 14 located at the other end. The positive terminal 24 may be integrated with the conductive plate 14 to be connected. The negative electrode terminal 26 may be integrated with the conductive plate 14 to be connected. The positive electrode terminal 24 and the negative electrode terminal 26 extend in a direction (X direction) intersecting the stacking direction. The positive and negative terminals 24 and 26 can charge and discharge the power storage device 10.
 導電板14は、蓄電モジュール12において発生した熱を放出するための放熱板としても機能し得る。導電板14の内部に設けられた複数の空隙14aを空気や液体等の冷媒が通過することにより、蓄電モジュール12からの熱を効率的に外部に放出できる。各空隙14aは例えば積層方向に交差する方向(Y方向)に延在する。積層方向から見て、導電板14は、蓄電モジュール12よりも小さいが、蓄電モジュール12と同じかそれより大きくてもよい。 The conductive plate 14 can also function as a heat radiating plate for releasing heat generated in the power storage module 12. When a refrigerant such as air or liquid passes through the plurality of gaps 14a provided inside the conductive plate 14, heat from the power storage module 12 can be efficiently released to the outside. Each gap 14a extends, for example, in a direction (Y direction) intersecting the stacking direction. When viewed from the stacking direction, the conductive plate 14 is smaller than the power storage module 12, but may be the same as or larger than the power storage module 12.
 蓄電装置10は、交互に積層された蓄電モジュール12及び導電板14を積層方向に拘束する拘束部材16を備え得る。拘束部材16は、一対の拘束プレート16A,16Bと、拘束プレート16A,16B同士を連結する連結部材(ボルト18及びナット20)とを備える。各拘束プレート16A,16Bと導電板14との間には、例えば樹脂フィルム等の絶縁フィルム22が配置される。各拘束プレート16A,16Bは、例えば鉄等の金属によって構成されている。積層方向から見て、各拘束プレート16A,16B及び絶縁フィルム22は例えば矩形形状を有する。絶縁フィルム22は導電板14よりも大きくなっており、各拘束プレート16A,16Bは、蓄電モジュール12よりも大きくなっている。積層方向から見て、拘束プレート16Aの縁部には、ボルト18の軸部を挿通させる挿通孔16A1が蓄電モジュール12よりも外側となる位置に設けられている。同様に、積層方向から見て、拘束プレート16Bの縁部には、ボルト18の軸部を挿通させる挿通孔16B1が蓄電モジュール12よりも外側となる位置に設けられている。積層方向から見て各拘束プレート16A,16Bが矩形形状を有している場合、挿通孔16A1及び挿通孔16B1は、拘束プレート16A,16Bの角部に位置する。 The power storage device 10 may include a restraining member 16 that restrains the alternately stacked power storage modules 12 and conductive plates 14 in the stacking direction. The restraining member 16 includes a pair of restraining plates 16A and 16B and a connecting member (bolt 18 and nut 20) for joining the restraining plates 16A and 16B to each other. An insulating film 22 such as a resin film is disposed between the restraining plates 16A and 16B and the conductive plate. Each restraint plate 16A, 16B is comprised, for example with metals, such as iron. When viewed from the stacking direction, each of the restraining plates 16A and 16B and the insulating film 22 has, for example, a rectangular shape. The insulating film 22 is larger than the conductive plate 14, and the restraining plates 16 </ b> A and 16 </ b> B are larger than the power storage module 12. When viewed from the stacking direction, an insertion hole 16A1 through which the shaft portion of the bolt 18 is inserted is provided at a position on the outer side of the power storage module 12 at the edge portion of the restraint plate 16A. Similarly, an insertion hole 16 </ b> B <b> 1 through which the shaft part of the bolt 18 is inserted is provided at a position on the outer side of the power storage module 12 at the edge of the restraint plate 16 </ b> B when viewed from the stacking direction. When each restraint plate 16A, 16B has a rectangular shape when viewed from the stacking direction, the insertion hole 16A1 and the insertion hole 16B1 are located at the corners of the restraint plates 16A, 16B.
 一方の拘束プレート16Aは、負極端子26に接続された導電板14に絶縁フィルム22を介して突き当てられ、他方の拘束プレート16Bは、正極端子24に接続された導電板14に絶縁フィルム22を介して突き当てられている。ボルト18は、例えば一方の拘束プレート16A側から他方の拘束プレート16B側に向かって挿通孔16A1及び挿通孔16B1に通される。他方の拘束プレート16Bから突出するボルト18の先端には、ナット20が螺合されている。これにより、絶縁フィルム22、導電板14及び蓄電モジュール12が挟持されてユニット化されると共に、積層方向に拘束荷重が付加される。 One constraining plate 16A is abutted against the conductive plate 14 connected to the negative terminal 26 via the insulating film 22, and the other constraining plate 16B has the insulating film 22 applied to the conductive plate 14 connected to the positive terminal 24. Has been hit through. For example, the bolt 18 is passed through the insertion hole 16A1 and the insertion hole 16B1 from the one restraint plate 16A side toward the other restraint plate 16B side. A nut 20 is screwed onto the tip of the bolt 18 protruding from the other restraining plate 16B. Accordingly, the insulating film 22, the conductive plate 14, and the power storage module 12 are sandwiched and unitized, and a restraining load is applied in the stacking direction.
 図2を参照して、蓄電装置を構成する蓄電モジュールについて説明する。図2に示される蓄電モジュール12は、複数のバイポーラ電極32が積層された積層体30を備える。バイポーラ電極32の積層方向から見て、積層体30は、例えば矩形形状を有する。隣り合うバイポーラ電極32間にはセパレータ40が配置され得る。 With reference to FIG. 2, a power storage module constituting the power storage device will be described. The power storage module 12 illustrated in FIG. 2 includes a stacked body 30 in which a plurality of bipolar electrodes 32 are stacked. When viewed from the stacking direction of the bipolar electrode 32, the stacked body 30 has, for example, a rectangular shape. A separator 40 may be disposed between the adjacent bipolar electrodes 32.
 各バイポーラ電極32は、電極板34と、電極板34の第1面34cに設けられた正極36と、電極板34の第2面34dに設けられた負極38とを含む。積層体30において、一のバイポーラ電極32の正極36は、セパレータ40を挟んで積層方向に隣り合う一方のバイポーラ電極32の負極38と対向し、一のバイポーラ電極32の負極38は、セパレータ40を挟んで積層方向に隣り合う他方のバイポーラ電極32の正極36と対向している。 Each bipolar electrode 32 includes an electrode plate 34, a positive electrode 36 provided on the first surface 34 c of the electrode plate 34, and a negative electrode 38 provided on the second surface 34 d of the electrode plate 34. In the stacked body 30, the positive electrode 36 of one bipolar electrode 32 faces the negative electrode 38 of one bipolar electrode 32 adjacent in the stacking direction across the separator 40, and the negative electrode 38 of one bipolar electrode 32 connects the separator 40. It faces the positive electrode 36 of the other bipolar electrode 32 that is adjacent in the stacking direction.
 積層方向において、積層体30の一端には、内側面(図示下側の面)に負極38が配置された電極板34が配置される。この電極板34は負極側終端電極に相当する。積層方向において、積層体30の他端には、内側面(図示上側の面)に正極36が配置された電極板34が配置される。この電極板34は正極側終端電極に相当する。負極側終端電極の負極38は、セパレータ40を介して最上層のバイポーラ電極32の正極36と対向している。正極側終端電極の正極36は、セパレータ40を介して最下層のバイポーラ電極32の負極38と対向している。これら終端電極の電極板34はそれぞれ隣り合う導電板14(図1参照)に接続される。 In the stacking direction, an electrode plate 34 having a negative electrode 38 disposed on the inner surface (the lower surface in the drawing) is disposed at one end of the stacked body 30. The electrode plate 34 corresponds to a negative terminal electrode. In the stacking direction, an electrode plate 34 having a positive electrode 36 disposed on the inner surface (the upper surface in the drawing) is disposed at the other end of the stacked body 30. This electrode plate 34 corresponds to a positive terminal electrode. The negative electrode 38 of the negative electrode-side termination electrode faces the positive electrode 36 of the uppermost bipolar electrode 32 with the separator 40 interposed therebetween. The positive electrode 36 of the positive terminal electrode is opposed to the negative electrode 38 of the lowermost bipolar electrode 32 with the separator 40 interposed therebetween. The electrode plates 34 of these termination electrodes are connected to the adjacent conductive plates 14 (see FIG. 1).
 蓄電モジュール12は、バイポーラ電極32の積層方向に延在し、積層体30を収容する筒状の樹脂部50を備える。樹脂部50は、複数の電極板34の周縁部34aを保持する。樹脂部50は、積層体30を取り囲むように構成されている。樹脂部50は、バイポーラ電極32の積層方向から見て例えば矩形形状を有している。すなわち、樹脂部50は例えば角筒状である。 The power storage module 12 includes a cylindrical resin portion 50 that extends in the stacking direction of the bipolar electrodes 32 and accommodates the stacked body 30. The resin part 50 holds the peripheral edge part 34 a of the plurality of electrode plates 34. The resin part 50 is configured to surround the laminated body 30. The resin portion 50 has, for example, a rectangular shape when viewed from the lamination direction of the bipolar electrode 32. That is, the resin part 50 is, for example, a rectangular tube shape.
 樹脂部50は、電極板34の周縁部34aに接合されて、その周縁部34aを保持する第1シール部52と、積層方向に交差する方向(X方向及びY方向)において第1シール部52の外側に設けられた第2シール部54とを有する。第2シール部54は、第1シール部52とシールされた状態で設けられている。 The resin part 50 is joined to the peripheral part 34a of the electrode plate 34, and the first seal part 52 that holds the peripheral part 34a and the first seal part 52 in the direction (X direction and Y direction) intersecting the stacking direction. 2nd seal part 54 provided in the outside. The second seal portion 54 is provided in a state of being sealed with the first seal portion 52.
 樹脂部50の内壁を構成する第1シール部52は、複数のバイポーラ電極32(すなわち積層体30)における電極板34の周縁部34aの全周にわたって設けられている。第1シール部52は、電極板34の周縁部34aに例えば溶着されており、その周縁部34aをシールする。すなわち、第1シール部52は、電極板34の周縁部34aに接合されている。各バイポーラ電極32の電極板34の周縁部34aは、第1シール部52に埋没した状態で保持されている。積層体30の両端に配置された電極板34の周縁部34aも、第1シール部52に埋没した状態で保持されている。これにより、積層方向に隣り合う電極板34,34間には、当該電極板34,34と第1シール部52とによって気密に仕切られた内部空間が形成されている。当該内部空間には、例えば水酸化カリウム水溶液等のアルカリ溶液からなる電解液(不図示)が収容されている。 The 1st seal part 52 which constitutes the inner wall of resin part 50 is provided over the perimeter of peripheral part 34a of electrode board 34 in a plurality of bipolar electrodes 32 (namely, layered product 30). The first seal portion 52 is welded, for example, to the peripheral portion 34a of the electrode plate 34, and seals the peripheral portion 34a. That is, the first seal part 52 is joined to the peripheral edge part 34 a of the electrode plate 34. The peripheral edge 34 a of the electrode plate 34 of each bipolar electrode 32 is held in a state of being buried in the first seal portion 52. The peripheral portions 34 a of the electrode plates 34 disposed at both ends of the stacked body 30 are also held in a state of being buried in the first seal portion 52. Thus, an internal space that is airtightly partitioned by the electrode plates 34 and 34 and the first seal portion 52 is formed between the electrode plates 34 and 34 adjacent in the stacking direction. An electrolytic solution (not shown) made of an alkaline solution such as an aqueous potassium hydroxide solution is accommodated in the internal space.
 樹脂部50の外壁を構成する第2シール部54は、バイポーラ電極32の積層方向に延在する第1シール部52の外周面52aを覆っている。第2シール部54の内周面54aは、第1シール部52の外周面52aに例えば溶着されており、その外周面52aをシールする。すなわち、第2シール部54は、第1シール部52の外周面52aに接合されている。第1シール部52に対する第2シール部54の溶着面(接合面)は、例えば4つの矩形平面をなす。 The second seal part 54 constituting the outer wall of the resin part 50 covers the outer peripheral surface 52a of the first seal part 52 extending in the stacking direction of the bipolar electrodes 32. The inner peripheral surface 54a of the second seal portion 54 is welded, for example, to the outer peripheral surface 52a of the first seal portion 52, and seals the outer peripheral surface 52a. That is, the second seal portion 54 is joined to the outer peripheral surface 52 a of the first seal portion 52. The welding surface (joint surface) of the second seal portion 54 with respect to the first seal portion 52 forms, for example, four rectangular planes.
 電極板34は、例えばニッケルからなる矩形の金属箔である。電極板34の周縁部34aは、正極活物質及び負極活物質の塗工されない未塗工領域となっている。未塗工領域では、電極板34が露出している。その未塗工領域が、樹脂部50の内壁を構成する第1シール部52に埋没して保持されている。正極36を構成する正極活物質としては、例えば水酸化ニッケルが挙げられる。負極38を構成する負極活物質としては、例えば水素吸蔵合金が挙げられる。電極板34の第2面34dにおける負極38の形成領域は、電極板34の第1面34cにおける正極36の形成領域に対して一回り大きくてもよい。 The electrode plate 34 is a rectangular metal foil made of nickel, for example. The peripheral edge 34a of the electrode plate 34 is an uncoated region where the positive electrode active material and the negative electrode active material are not coated. In the uncoated region, the electrode plate 34 is exposed. The uncoated region is buried and held in the first seal portion 52 constituting the inner wall of the resin portion 50. An example of the positive electrode active material constituting the positive electrode 36 is nickel hydroxide. Examples of the negative electrode active material constituting the negative electrode 38 include a hydrogen storage alloy. The formation region of the negative electrode 38 on the second surface 34 d of the electrode plate 34 may be slightly larger than the formation region of the positive electrode 36 on the first surface 34 c of the electrode plate 34.
 セパレータ40は、例えばシート状に形成されている。セパレータ40は、例えば矩形形状を有する。セパレータ40を形成する材料としては、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂からなる多孔質フィルム、ポリプロピレン等からなる織布又は不織布等が例示される。また、セパレータ40は、フッ化ビニリデン樹脂化合物等で補強されたものであってもよい。 The separator 40 is formed in a sheet shape, for example. The separator 40 has a rectangular shape, for example. Examples of the material forming the separator 40 include a porous film made of a polyolefin resin such as polyethylene (PE) and polypropylene (PP), and a woven fabric or a nonwoven fabric made of polypropylene. The separator 40 may be reinforced with a vinylidene fluoride resin compound or the like.
 樹脂部50(第1シール部52及び第2シール部54)は、例えば絶縁性の樹脂を用いた射出成形によって矩形の筒状に形成されている。樹脂部50を構成する樹脂材料としては、例えばポリプロピレン(PP)、ポリフェニレンサルファイド(PPS)、又は変性ポリフェニレンエーテル(変性PPE)等が挙げられる。 The resin part 50 (the first seal part 52 and the second seal part 54) is formed in a rectangular cylindrical shape by, for example, injection molding using an insulating resin. Examples of the resin material constituting the resin portion 50 include polypropylene (PP), polyphenylene sulfide (PPS), and modified polyphenylene ether (modified PPE).
 続いて、図3(a)および図3(b)を参照して、樹脂部50の詳細について説明する。第1シール部52は、電極板34の周縁部34aに接合された枠体60が積層方向に積層された構造を有する。シール部品である枠体60は、たとえば、電極板34の第1面34c側に配置されて第1面34cに接合された内周部61と、内周部61の外側に連続して設けられた外周部62とを含む。内周部61と外周部62とは一体をなす。内周部61の第2端面61bが、電極板34の周縁部34aにおける第1面34cに接合されている。内周部61は第1シール部52の内周端52c(図2参照)をなす。外周部62は、積層方向に隣接する別の枠体60の外周部62に当接する。外周部62は第1シール部52の外周端52d(すなわち外周面52a)をなす。 Subsequently, the details of the resin portion 50 will be described with reference to FIGS. 3 (a) and 3 (b). The first seal portion 52 has a structure in which frame bodies 60 joined to the peripheral edge portion 34a of the electrode plate 34 are stacked in the stacking direction. The frame body 60 that is a sealing component is, for example, provided on the first surface 34 c side of the electrode plate 34 and joined to the first surface 34 c and continuously provided on the outer side of the inner peripheral portion 61. The outer peripheral part 62 is included. The inner peripheral portion 61 and the outer peripheral portion 62 are integrated. The second end surface 61 b of the inner peripheral portion 61 is joined to the first surface 34 c in the peripheral portion 34 a of the electrode plate 34. The inner peripheral portion 61 forms an inner peripheral end 52c (see FIG. 2) of the first seal portion 52. The outer peripheral part 62 contacts the outer peripheral part 62 of another frame 60 adjacent in the stacking direction. The outer peripheral portion 62 forms the outer peripheral end 52d (that is, the outer peripheral surface 52a) of the first seal portion 52.
 図3(b)に示されるように、枠体60は、積層されるバイポーラ電極32およびセパレータ40の積層方向の高さ(厚み)を規定する。枠体60の第1端面60aは、別の枠体60の外周部62の第2端面62bおよび周縁部34aの第2面34d側に当接する。内周部61の第1端面61aと外周部62の第1端面62aとは、たとえば面一である。外周部62の第2端面62bと、周縁部34aの第2面34d側とは、たとえば面一である。 3B, the frame 60 defines the height (thickness) in the stacking direction of the bipolar electrode 32 and the separator 40 to be stacked. The first end surface 60a of the frame body 60 is in contact with the second end surface 62b of the outer peripheral portion 62 of another frame body 60 and the second surface 34d side of the peripheral edge portion 34a. The first end surface 61a of the inner peripheral portion 61 and the first end surface 62a of the outer peripheral portion 62 are, for example, flush with each other. The second end surface 62b of the outer peripheral portion 62 and the second surface 34d side of the peripheral edge portion 34a are, for example, flush with each other.
 セパレータ40は、複数のバイポーラ電極32の間に配置されて、積層方向の両側に正極36と負極38がそれぞれ当接した状態で、積層方向に圧縮されている。図4(c)に示されるように、枠体60において、積層方向における外周部62の厚みt2は、積層方向における内周部61の厚みt1よりも大きい。すなわち、外周部62の第1端面62aと第2端面62bとの間の長さは、内周部61の第1端面61aと第2端面61bとの長さよりも大きい。 The separator 40 is disposed between the plurality of bipolar electrodes 32 and is compressed in the stacking direction with the positive electrode 36 and the negative electrode 38 being in contact with both sides in the stacking direction. As shown in FIG. 4C, in the frame 60, the thickness t2 of the outer peripheral portion 62 in the stacking direction is larger than the thickness t1 of the inner peripheral portion 61 in the stacking direction. That is, the length between the first end surface 62a and the second end surface 62b of the outer peripheral portion 62 is larger than the length of the first end surface 61a and the second end surface 61b of the inner peripheral portion 61.
 このように、第1シール部52を構成する枠体60において、内周部61と外周部62の厚みの関係が考慮されている。より詳細には、積層方向における外周部62の厚みt2は、積層方向における内周部61の厚みt1と電極板34の厚みとの和に略等しくなっている。さらには、積層方向における外周部62の厚みは、積層方向における電極板34の厚みと正極36の厚みと負極38の厚みとセパレータ40の圧縮前の厚みとの和よりも小さくなっている。このように厚みが調整された枠体60が積層されてなる第1シール部52では、枠体60同士の間に間隙は存在しないか、或いは間隙が存在したとしても、非常に小さい(図3(b)参照)。したがって、第2シール部54は、枠体60の間に入り込むことなく、第1シール部52の外周面52aに接合されている。 Thus, in the frame body 60 constituting the first seal portion 52, the relationship between the thicknesses of the inner peripheral portion 61 and the outer peripheral portion 62 is taken into consideration. More specifically, the thickness t2 of the outer peripheral portion 62 in the stacking direction is substantially equal to the sum of the thickness t1 of the inner peripheral portion 61 and the thickness of the electrode plate 34 in the stacking direction. Furthermore, the thickness of the outer peripheral portion 62 in the stacking direction is smaller than the sum of the thickness of the electrode plate 34, the thickness of the positive electrode 36, the thickness of the negative electrode 38, and the thickness of the separator 40 before compression in the stacking direction. In the first seal portion 52 formed by stacking the frame bodies 60 having the thicknesses adjusted in this way, there is no gap between the frame bodies 60 or even if there is a gap (FIG. 3). (See (b)). Therefore, the second seal portion 54 is joined to the outer peripheral surface 52 a of the first seal portion 52 without entering between the frame bodies 60.
 次に、図4(a)~図4(c)を参照して、蓄電モジュール12の製造方法について説明する。まず、図4(a)に示されるように、電極板34の第1面34cに正極36を形成し、電極板34の第2面34dに負極38を形成して、バイポーラ電極32を得る(準備工程)。次に、バイポーラ電極32の電極板34の周縁部34aに、枠体60を接合する(第1シール工程)。このとき、図4(b)に示されるように、バイポーラ電極32の上下面から熱プレスを行うことにより、周縁部34aに枠体60を溶着させてもよい。 Next, a method for manufacturing the power storage module 12 will be described with reference to FIGS. 4 (a) to 4 (c). First, as shown in FIG. 4A, the positive electrode 36 is formed on the first surface 34c of the electrode plate 34, and the negative electrode 38 is formed on the second surface 34d of the electrode plate 34 to obtain the bipolar electrode 32 ( Preparation step). Next, the frame body 60 is joined to the peripheral edge 34a of the electrode plate 34 of the bipolar electrode 32 (first sealing step). At this time, as shown in FIG. 4B, the frame body 60 may be welded to the peripheral edge 34 a by performing hot pressing from the upper and lower surfaces of the bipolar electrode 32.
 熱プレスによって周縁部34aに枠体60を溶着させる際、熱プレス用の型を用いて枠体60を成形してもよい。たとえば、第1型M1および第2型M2が用いられる。第1型M1の平面部M1bによって、枠体60の内周部61が電極板34の第1面34cに接合されるようにプレスされる。外周部62は、電極板34の周縁部34aより外側に突出し、電極板34の周縁部34aの更に外周側に入り込む。第1型M1の合わせ面M1aと第2型M2の合わせ面M2aとが合わさることにより、外周部62の第2端面62bが、周縁部34aの第2面34dと面一になる。 When the frame body 60 is welded to the peripheral edge 34a by hot pressing, the frame body 60 may be formed using a hot pressing mold. For example, the first type M1 and the second type M2 are used. The inner peripheral portion 61 of the frame body 60 is pressed so as to be joined to the first surface 34c of the electrode plate 34 by the flat surface portion M1b of the first mold M1. The outer peripheral portion 62 projects outward from the peripheral edge portion 34 a of the electrode plate 34, and further enters the outer peripheral side of the peripheral edge portion 34 a of the electrode plate 34. When the mating surface M1a of the first mold M1 and the mating surface M2a of the second mold M2 are combined, the second end surface 62b of the outer peripheral portion 62 is flush with the second surface 34d of the peripheral portion 34a.
 熱プレス用の型は、たとえば樹脂製であってもよい。熱プレス用の型として、PTFE(ポリテトラフルオロエチレン)やPFA(テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体)等からなるフッ素樹脂製の型が用いられてもよい。その場合、枠体60に対する導電性異物の混入を防止することができる。 The mold for hot pressing may be made of resin, for example. As a mold for hot pressing, a fluororesin mold made of PTFE (polytetrafluoroethylene), PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer), or the like may be used. In that case, mixing of the conductive foreign matter into the frame 60 can be prevented.
 そして、図4(c)に示されるように、積層方向における外周部62の厚みt2が、積層方向における内周部61の厚みt1よりも大きい枠体60が成形される。次に、セパレータ40を介して、枠体60が接合された複数のバイポーラ電極32を積層し(図3(b)参照)、積層体30を得る(積層工程)。枠体60の外周部62は、積層方向に隣接する別の枠体60の外周部62に当接する。セパレータ40は、積層体30の状態(正極36と負極38とがそれぞれ当接した状態)では、積層前の状態よりも圧縮されている。上記した各部材の厚みの関係により、枠体60の外周部62同士の間には間隙は形成されない。 Then, as shown in FIG. 4C, the frame body 60 is formed in which the thickness t2 of the outer peripheral portion 62 in the stacking direction is larger than the thickness t1 of the inner peripheral portion 61 in the stacking direction. Next, a plurality of bipolar electrodes 32 to which the frame body 60 is bonded are stacked via the separator 40 (see FIG. 3B) to obtain the stacked body 30 (stacking step). The outer peripheral part 62 of the frame 60 abuts on the outer peripheral part 62 of another frame 60 adjacent in the stacking direction. The separator 40 is more compressed in the state of the laminated body 30 (a state in which the positive electrode 36 and the negative electrode 38 are in contact with each other) than in the state before the lamination. A gap is not formed between the outer peripheral portions 62 of the frame body 60 due to the relationship between the thicknesses of the respective members described above.
 次に、第2シール部54を例えば射出成形により形成する(第2シール工程)。例えば、モールド内に、流動性を有する第2シール部54の樹脂材料を流し込むことによって、第2シール部54が形成され得る。 Next, the second seal portion 54 is formed by, for example, injection molding (second seal step). For example, the second seal portion 54 can be formed by pouring a resin material of the second seal portion 54 having fluidity into the mold.
 次に、注液口等を通じて、樹脂部50内に電解液を注入する。電解液を注入した後、注液口を封止することによって、蓄電モジュール12が製造される。その後、図1に示されるように、導電板14を介して複数の蓄電モジュール12を積層する。積層方向の両端に位置する導電板14にはそれぞれ正極端子24及び負極端子26が予め接続されている。その後、積層方向の両端に、絶縁フィルム22を介して一対の拘束プレート16A,16Bをそれぞれ配置し、ボルト18及びナット20を用いて、拘束プレート16A,16B同士を連結する。このようにして、図1に示される蓄電装置10が製造される。 Next, an electrolytic solution is injected into the resin part 50 through an injection port or the like. After injecting the electrolytic solution, the storage module 12 is manufactured by sealing the injection port. Thereafter, as shown in FIG. 1, a plurality of power storage modules 12 are stacked via the conductive plate 14. A positive electrode terminal 24 and a negative electrode terminal 26 are connected in advance to the conductive plates 14 located at both ends in the stacking direction. Then, a pair of restraint plates 16A and 16B are respectively disposed at both ends in the stacking direction via the insulating film 22, and the restraint plates 16A and 16B are connected to each other using the bolt 18 and the nut 20. In this way, the power storage device 10 shown in FIG. 1 is manufactured.
 本実施形態の蓄電モジュール12および蓄電モジュール12の製造方法によれば、第1シール部52の枠体60は、電極板34に接合される内周部61と、内周部61の外側の外周部62とを有する。枠体60の外周部62は、積層方向に隣接する別の枠体60に当接する。積層方向における外周部62の厚みt2は、積層方向における内周部61の厚みt1よりも大きいため、枠体60が積層された状態で、積層方向に隣り合う外周部62は当接し、それらの間に間隙は形成されにくい。よって、枠体60が積層された後に第2シール部54が形成される際、第2シール部54の樹脂材料が第1シール部52の枠体60の間に入り込むことが抑制される。これにより、枠体60の外周部62が変形することが防止され、第1シール部52に対して第2シール部54が適切に接合される。したがって、シール不良の低減が図られる。たとえば、図5(b)に示されるような、最外層における外周部72の捲れ上がりは防止され得る。 According to the power storage module 12 and the method for manufacturing the power storage module 12 of the present embodiment, the frame body 60 of the first seal portion 52 includes the inner peripheral portion 61 joined to the electrode plate 34 and the outer periphery outside the inner peripheral portion 61. Part 62. The outer peripheral part 62 of the frame body 60 contacts another frame body 60 adjacent in the stacking direction. Since the thickness t2 of the outer peripheral portion 62 in the stacking direction is larger than the thickness t1 of the inner peripheral portion 61 in the stacking direction, the outer peripheral portions 62 adjacent to each other in the stacking direction are in contact with each other in a state where the frame bodies 60 are stacked. It is difficult to form a gap between them. Therefore, when the second seal portion 54 is formed after the frame body 60 is laminated, the resin material of the second seal portion 54 is suppressed from entering between the frame bodies 60 of the first seal portion 52. Thereby, the outer peripheral portion 62 of the frame body 60 is prevented from being deformed, and the second seal portion 54 is appropriately joined to the first seal portion 52. Therefore, the sealing failure can be reduced. For example, as shown in FIG. 5B, the outer peripheral portion 72 in the outermost layer can be prevented from rolling up.
 積層方向における外周部62の厚みt2は、積層方向における内周部61の厚みと電極板34の厚みとの和に略等しい。外周部62の積層方向の第1端面62aと内周部61の積層方向の第1端面61aとが面一になりやすい。よって、枠体60が積層された状態で、積層方向に隣り合う外周部62同士および内周部61同士が当接する。枠体60同士を密着させることができ、第2シール部54が形成される際に枠体60の外周部62の変形が確実に防止される。 The thickness t2 of the outer peripheral portion 62 in the stacking direction is substantially equal to the sum of the thickness of the inner peripheral portion 61 and the thickness of the electrode plate 34 in the stacking direction. The first end surface 62a in the stacking direction of the outer peripheral portion 62 and the first end surface 61a in the stacking direction of the inner peripheral portion 61 are likely to be flush with each other. Therefore, the outer peripheral portions 62 and the inner peripheral portions 61 that are adjacent to each other in the stacking direction come into contact with each other in a state where the frame bodies 60 are stacked. The frame bodies 60 can be brought into close contact with each other, and deformation of the outer peripheral portion 62 of the frame body 60 is reliably prevented when the second seal portion 54 is formed.
 積層方向における外周部62の厚みは、積層方向における電極板34の厚みと正極36の厚みと負極38の厚みとセパレータ40の圧縮前の厚みとの和より小さい。複数のバイポーラ電極32がセパレータ40を介して積層されると、セパレータ40が圧縮される。このセパレータ40の圧縮量は、枠体60の外周部62の厚みによって決まり得る。言い換えれば、枠体60の外周部62の厚みは、電極板34の厚みと正極36の厚みと負極38の厚みとセパレータ40の圧縮後の厚みとの和に近似し得る。これにより、積層方向に隣り合う外周部62の間に間隙は形成されず、第1シール部52に対して第2シール部54が適切に接合される。 The thickness of the outer peripheral portion 62 in the stacking direction is smaller than the sum of the thickness of the electrode plate 34, the thickness of the positive electrode 36, the thickness of the negative electrode 38, and the thickness of the separator 40 before compression in the stacking direction. When the plurality of bipolar electrodes 32 are stacked via the separator 40, the separator 40 is compressed. The amount of compression of the separator 40 can be determined by the thickness of the outer peripheral portion 62 of the frame body 60. In other words, the thickness of the outer peripheral portion 62 of the frame 60 can be approximated to the sum of the thickness of the electrode plate 34, the thickness of the positive electrode 36, the thickness of the negative electrode 38, and the thickness of the separator 40 after compression. Accordingly, no gap is formed between the outer peripheral portions 62 adjacent in the stacking direction, and the second seal portion 54 is appropriately joined to the first seal portion 52.
 以上、本発明の実施形態について説明したが、本発明は上記の実施形態に限られない。 As mentioned above, although embodiment of this invention was described, this invention is not limited to said embodiment.
 上記実施形態では、1つの枠体60が、電極板34の第1面34c側にのみ設けられる態様について説明したが、この態様に限られない。1つの枠体60が、電極板34の第2面34d側にのみ設けられてもよい。この場合に、熱プレス等によって、1つの枠体60が、電極板34の第2面34d側に溶着(接合)されてもよい。また、1つの枠体60が電極板34の第1面34c側に設けられ、別の1つの枠体60が電極板34の第2面34d側に設けられてもよい。この場合に、熱プレス等によって、各枠体60が、電極板34の第1面34cおよび第2面34d側に溶着(接合)されてもよい。これらの態様においても、枠体60の厚みは、上記実施形態と同様の関係を満たす。1つの電極板34の第1面34c側および第2面34d側にそれぞれ枠体60が設けられる場合は、2つの外周部62の厚みの合計と、2つの内周部61の厚みの合計とで、上記実施形態と同様の関係が満たされる。 In the above embodiment, the aspect in which one frame body 60 is provided only on the first surface 34c side of the electrode plate 34 has been described, but the present invention is not limited to this aspect. One frame 60 may be provided only on the second surface 34 d side of the electrode plate 34. In this case, one frame 60 may be welded (joined) to the second surface 34d side of the electrode plate 34 by hot pressing or the like. One frame 60 may be provided on the first surface 34 c side of the electrode plate 34, and another one frame 60 may be provided on the second surface 34 d side of the electrode plate 34. In this case, each frame 60 may be welded (joined) to the first surface 34c and the second surface 34d side of the electrode plate 34 by hot pressing or the like. Also in these aspects, the thickness of the frame 60 satisfies the same relationship as in the above embodiment. When the frame body 60 is provided on each of the first surface 34c side and the second surface 34d side of one electrode plate 34, the total thickness of the two outer peripheral portions 62 and the total thickness of the two inner peripheral portions 61 are Thus, the same relationship as in the above embodiment is satisfied.
 12  蓄電モジュール
 32  バイポーラ電極
 34  電極板
 34a  周縁部
 34c  第1面
 34d  第2面
 36  正極
 38  負極
 40  セパレータ
 50  樹脂部
 52  第1シール部
 54  第2シール部
 60  枠体
 61  内周部
 62  外周部
 t1  内周部の厚み
 t2  外周部の厚み

 
DESCRIPTION OF SYMBOLS 12 Power storage module 32 Bipolar electrode 34 Electrode plate 34a Peripheral part 34c 1st surface 34d 2nd surface 36 Positive electrode 38 Negative electrode 40 Separator 50 Resin part 52 1st seal | sticker part 54 2nd seal | sticker part 60 Frame 61 Inner peripheral part 62 Outer peripheral part t1 Thickness of inner periphery t2 Thickness of outer periphery

Claims (4)

  1.  電極板と前記電極板の第1面に設けられた正極と前記電極板の第2面に設けられた負極とをそれぞれ含む複数のバイポーラ電極がセパレータを介して積層された蓄電モジュールであって、
     前記複数のバイポーラ電極の積層方向に延在し、前記複数のバイポーラ電極を収容する筒状の樹脂部を備え、
     前記樹脂部は、前記電極板の周縁部に接合された筒状の第1シール部と、前記積層方向に交差する方向において前記第1シール部の外側に、前記第1シール部とシールされた状態で設けられた筒状の第2シール部と、を有し、
     前記第1シール部は、前記電極板の前記周縁部に接合された枠体が前記積層方向に積層された構造を有し、
     前記枠体は、
     前記電極板の前記第1面および前記第2面の少なくとも一方の面側に配置され、当該少なくとも一方の面に接合された内周部と、
     前記内周部の外側に連続して設けられ、前記積層方向に隣接する別の前記枠体に当接する外周部と、を含み、
     前記積層方向における前記外周部の厚みは、前記積層方向における前記内周部の厚みよりも大きい、蓄電モジュール。
    A power storage module in which a plurality of bipolar electrodes each including an electrode plate, a positive electrode provided on the first surface of the electrode plate, and a negative electrode provided on the second surface of the electrode plate are stacked via a separator,
    Extending in the laminating direction of the plurality of bipolar electrodes, comprising a cylindrical resin portion for accommodating the plurality of bipolar electrodes;
    The resin part is sealed with the first seal part on the outer side of the first seal part in a direction intersecting the stacking direction with a cylindrical first seal part joined to the peripheral part of the electrode plate. A cylindrical second seal portion provided in a state,
    The first seal portion has a structure in which frames joined to the peripheral edge of the electrode plate are stacked in the stacking direction,
    The frame is
    An inner peripheral portion disposed on at least one surface side of the first surface and the second surface of the electrode plate and joined to the at least one surface;
    An outer peripheral part that is continuously provided on the outer side of the inner peripheral part and abuts on another frame body adjacent in the stacking direction;
    The power storage module, wherein a thickness of the outer peripheral portion in the stacking direction is larger than a thickness of the inner peripheral portion in the stacking direction.
  2.  前記積層方向における前記外周部の厚みは、前記積層方向における前記内周部の厚みと前記電極板の厚みとの和に略等しい、請求項1に記載の蓄電モジュール。 The power storage module according to claim 1, wherein a thickness of the outer peripheral portion in the stacking direction is substantially equal to a sum of a thickness of the inner peripheral portion in the stacking direction and a thickness of the electrode plate.
  3.  前記セパレータは、複数のバイポーラ電極の間に配置され前記積層方向の両側に前記正極と前記負極がそれぞれ当接した状態で前記積層方向に圧縮されており、
     前記積層方向における前記外周部の厚みは、前記積層方向における前記電極板の厚みと前記正極の厚みと前記負極の厚みと前記セパレータの圧縮前の厚みとの和よりも小さい、請求項1に記載の蓄電モジュール。
    The separator is disposed between a plurality of bipolar electrodes and compressed in the laminating direction in a state where the positive electrode and the negative electrode are in contact with both sides of the laminating direction,
    The thickness of the said outer peripheral part in the said lamination direction is smaller than the sum of the thickness of the said electrode plate in the said lamination direction, the thickness of the said positive electrode, the thickness of the said negative electrode, and the thickness before the compression of the said separator. Power storage module.
  4.  電極板と前記電極板の第1面に設けられた正極と前記電極板の第2面に設けられた負極とをそれぞれ含む複数のバイポーラ電極を準備する準備工程と、
     前記電極板の周縁部において、前記第1面および前記第2面の少なくとも一方の面にシール部品である枠体を接合する第1シール工程と、
     前記枠体が接合された複数の前記バイポーラ電極を、セパレータを介して積層方向に積層する積層工程と、
     積層された複数の前記バイポーラ電極に対して、前記枠体の外側に第2シール部を形成する第2シール工程と、を含み、
     前記第1シール工程においては、前記枠体のそれぞれの内周部が前記電極板の前記少なくとも一方の面に接合し、前記枠体のそれぞれの外周部が前記積層方向に交差する方向において前記電極板の前記周縁部より外側へ突出するように前記枠体を設け、前記積層方向における前記外周部の厚みが前記積層方向における前記内周部の厚みよりも大きくなるように前記枠体を形成し、
     前記積層工程においては、前記積層方向において隣り合う前記枠体の前記外周部同士を当接させる、蓄電モジュールの製造方法。

     
    Preparing a plurality of bipolar electrodes each including an electrode plate and a positive electrode provided on the first surface of the electrode plate and a negative electrode provided on the second surface of the electrode plate;
    A first sealing step of joining a frame, which is a sealing component, to at least one of the first surface and the second surface at a peripheral portion of the electrode plate;
    A laminating step of laminating a plurality of the bipolar electrodes joined to the frame body in a laminating direction via a separator;
    A second sealing step of forming a second seal portion on the outside of the frame body with respect to the plurality of stacked bipolar electrodes,
    In the first sealing step, each inner peripheral portion of the frame body is joined to the at least one surface of the electrode plate, and each outer peripheral portion of the frame body is in the direction intersecting the stacking direction. The frame is provided so as to protrude outward from the peripheral edge of the plate, and the frame is formed such that the thickness of the outer peripheral portion in the stacking direction is greater than the thickness of the inner peripheral portion in the stacking direction. ,
    In the said lamination process, the manufacturing method of the electrical storage module which contacts the said outer peripheral parts of the said frame body adjacent in the said lamination direction.

PCT/JP2017/044191 2017-02-16 2017-12-08 Power storage module and method for manufacturing power storage module WO2018150700A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-027129 2017-02-16
JP2017027129A JP2018133251A (en) 2017-02-16 2017-02-16 Power storge module and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2018150700A1 true WO2018150700A1 (en) 2018-08-23

Family

ID=63170267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044191 WO2018150700A1 (en) 2017-02-16 2017-12-08 Power storage module and method for manufacturing power storage module

Country Status (2)

Country Link
JP (1) JP2018133251A (en)
WO (1) WO2018150700A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020082512A (en) * 2018-11-26 2020-06-04 株式会社豊田自動織機 Method of manufacturing power storage module and power storage module
CN112448074A (en) * 2019-08-28 2021-03-05 北京好风光储能技术有限公司 Bipolar battery stack
CN113632190A (en) * 2019-03-29 2021-11-09 株式会社丰田自动织机 Electricity storage module
WO2023285553A1 (en) * 2021-07-14 2023-01-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Welded electrochemical reactor and method for the production thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7161356B2 (en) * 2018-09-25 2022-10-26 株式会社豊田自動織機 Method for manufacturing power storage module
JP7468233B2 (en) * 2020-07-31 2024-04-16 株式会社豊田自動織機 Energy Storage Module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212322A (en) * 1999-01-22 2000-08-02 Asahi Chem Ind Co Ltd Finely porous polyolefin-based membrane
JP2004134116A (en) * 2002-10-08 2004-04-30 Nissan Motor Co Ltd Bipolar battery
JP2005259379A (en) * 2004-03-09 2005-09-22 Nissan Motor Co Ltd Bipolar battery
JP2006508518A (en) * 2002-11-29 2006-03-09 ナイラー インターナショナル アーベー Bipolar battery and manufacturing method thereof
JP2012516541A (en) * 2009-01-27 2012-07-19 ジー4 シナジェティクス, インコーポレイテッド Variable volume storage for energy storage devices
JP2014013784A (en) * 2012-06-08 2014-01-23 Taiyo Yuden Co Ltd Electrochemical device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212322A (en) * 1999-01-22 2000-08-02 Asahi Chem Ind Co Ltd Finely porous polyolefin-based membrane
JP2004134116A (en) * 2002-10-08 2004-04-30 Nissan Motor Co Ltd Bipolar battery
JP2006508518A (en) * 2002-11-29 2006-03-09 ナイラー インターナショナル アーベー Bipolar battery and manufacturing method thereof
JP2005259379A (en) * 2004-03-09 2005-09-22 Nissan Motor Co Ltd Bipolar battery
JP2012516541A (en) * 2009-01-27 2012-07-19 ジー4 シナジェティクス, インコーポレイテッド Variable volume storage for energy storage devices
JP2014013784A (en) * 2012-06-08 2014-01-23 Taiyo Yuden Co Ltd Electrochemical device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020082512A (en) * 2018-11-26 2020-06-04 株式会社豊田自動織機 Method of manufacturing power storage module and power storage module
JP7087955B2 (en) 2018-11-26 2022-06-21 株式会社豊田自動織機 Manufacturing method of power storage module and power storage module
CN113632190A (en) * 2019-03-29 2021-11-09 株式会社丰田自动织机 Electricity storage module
CN113632190B (en) * 2019-03-29 2023-11-28 株式会社丰田自动织机 Power storage module
CN112448074A (en) * 2019-08-28 2021-03-05 北京好风光储能技术有限公司 Bipolar battery stack
CN112448074B (en) * 2019-08-28 2022-10-25 北京好风光储能技术有限公司 Bipolar battery stack
WO2023285553A1 (en) * 2021-07-14 2023-01-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Welded electrochemical reactor and method for the production thereof

Also Published As

Publication number Publication date
JP2018133251A (en) 2018-08-23

Similar Documents

Publication Publication Date Title
JP6586969B2 (en) Power storage module
WO2018150700A1 (en) Power storage module and method for manufacturing power storage module
US10141560B2 (en) Energy storage device including a pressing member pressing a separator toward an electrode assembly
JP2018120818A (en) Power storge module and manufacturing method thereof
WO2018123503A1 (en) Electricity storage module, and method for manufacturing electricity storage module
JP2018174079A (en) Power storage module and manufacturing method thereof
WO2018116729A1 (en) Power storage module
JP2019036514A (en) Power storage module and manufacturing method of the same
CN111201657B (en) Power storage module
WO2018123502A1 (en) Power storage module and manufacturing method for power storage module
JP2019114512A (en) Power storage device
JP2019079614A (en) Power storage module, and method for manufacturing power storage module
JP2020024820A (en) Power storage module and manufacturing method of power storage module
JP7103055B2 (en) Power storage module and manufacturing method of power storage module
JP2020119669A (en) Manufacturing method of power storage module
JP2020095909A (en) Manufacturing method of power storage module and power storage module
JP2020030962A (en) Power storage module
JP2020030983A (en) Power storage module
JP2019129070A (en) Manufacturing method of bipolar battery and the bipolar battery
JP2020030950A (en) Power storage module
JP2020030955A (en) Power storage module
JP2020053160A (en) Power storage module
JP2019200954A (en) Manufacturing method of power storage module and jig for manufacturing power storage module
JP2019079677A (en) Power storage module
JP7259261B2 (en) Storage element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896989

Country of ref document: EP

Kind code of ref document: A1