WO2019030934A1 - User device and measurement method - Google Patents

User device and measurement method Download PDF

Info

Publication number
WO2019030934A1
WO2019030934A1 PCT/JP2017/029229 JP2017029229W WO2019030934A1 WO 2019030934 A1 WO2019030934 A1 WO 2019030934A1 JP 2017029229 W JP2017029229 W JP 2017029229W WO 2019030934 A1 WO2019030934 A1 WO 2019030934A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
base station
user apparatus
cell
imr
Prior art date
Application number
PCT/JP2017/029229
Other languages
French (fr)
Japanese (ja)
Inventor
真平 安川
聡 永田
シャオツェン グオ
シン ワン
ギョウリン コウ
スウネイ ナ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2017/029229 priority Critical patent/WO2019030934A1/en
Publication of WO2019030934A1 publication Critical patent/WO2019030934A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to a user equipment in a wireless communication system.
  • NR next-generation communication standard
  • LTE Long Term Evolution
  • LTE-Advanced the next-generation communication standard
  • a flexible duplex is studied, which flexibly controls resources used for DL communication and UL communication according to downlink (DL) traffic and uplink (UL) traffic generated.
  • DL downlink
  • UL uplink
  • TDD Time Division Duplex
  • DL and UL transmission directions are dynamically changed at certain time intervals such as subframes, slots and minislots. That is, as shown in FIG. 1A, in static TDD applied in LTE, a preset DL / UL configuration (configuration) common among cells is used. On the other hand, in dynamic TDD, as shown in FIG. 1B, individual DL / UL configurations are utilized in each cell. In dynamic TDD, DL / UL configuration is changed to semi-static or flexible.
  • UL communication in another cell interferes with DL communication in a certain cell (victim cell)
  • victim cell There may be a case where the user equipment in the victim cell can not properly receive the signal from the base station.
  • each base station can reduce the influence from other cells / reduce the influence to other cells, It is conceivable to determine the DL / UL configuration of the own cell.
  • the user equipment in one cell measures the reception power (eg, RSRP, RSSI) of the signal transmitted from the user equipment in another cell and reports it to the base station Conceivable. This measurement is called UE-to-UE measurement (inter-user equipment measurement).
  • RSRP reception power
  • RSSI the reception power of the signal transmitted from the user equipment in another cell
  • UE-to-UE measurement inter-user equipment measurement
  • the present invention has been made in view of the above, and it is an object of the present invention to provide a technology that enables a user device to appropriately perform measurement between user devices and report of measurement results.
  • a user equipment in a wireless communication system A configuration information management unit that holds configuration information of a plurality of measurement processes that can be used for interference measurement; A measurement unit that performs measurement using measurement resources of all or part of the plurality of measurement processes; And a signal transmission unit that reports all or part of the measurement results of the measurement unit to a base station.
  • a technology that enables a user device to appropriately perform measurement between user devices and report of measurement results.
  • FIG. 2 is a diagram showing an example of a functional configuration of a user device 100.
  • FIG. 2 is a diagram showing an example of a functional configuration of a base station 200. It is a figure which shows an example of the hardware constitutions of the user apparatus 100 and the base station 200.
  • FIG. 1 is a diagram showing an example of a functional configuration of a user device 100.
  • FIG. 2 is a diagram showing an example of a functional configuration of a base station 200. It is a figure which shows an example of the hardware constitutions of the user apparatus 100 and the base station 200.
  • the radio communication system according to the present embodiment is assumed to support at least the LTE communication scheme. Therefore, when the wireless communication system operates, the existing technology defined by the existing LTE can be used as appropriate. However, the existing technology is not limited to LTE. Also, “LTE” used in this specification has a broad meaning including LTE-Advanced and LTE-Advanced and later, unless otherwise specified. The present invention is also applicable to communication systems other than LTE.
  • FIG. 2 is a block diagram of the wireless communication system 10 in the present embodiment.
  • radio communication system 10 in the present embodiment includes user apparatuses 101, 102 and 103 (hereinafter collectively referred to as user apparatus 100) and base stations 201, 202 and 203 (hereinafter base station 200).
  • user apparatus 100 user apparatuses 101, 102 and 103
  • base stations 201, 202 and 203 hereinafter base station 200.
  • base station 200 base station
  • the wireless communication system 10 supports dynamic TDD that can control UL and DL individually for each cell.
  • the user device 100 is a communication device provided with a wireless communication function such as a smartphone, a mobile phone, a tablet, a wearable terminal, a communication module for M2M (Machine-to-Machine), etc. Use various communication services provided by 10.
  • the user equipment may for example be called "UE”.
  • the base station 200 is a communication device that provides one or more cells and performs wireless communication with the user device 100.
  • three base stations 201, 202, 203 are illustrated as an example, but in general, a large number of base stations 200 are arranged to cover the service area of the wireless communication system 10.
  • the base station may be called, for example, "gNB".
  • both UL and DL may be OFDMA similar to DL of existing LTE, and UL / DL is the same as that of existing LTE.
  • SC-FDMA / OFDMA similar to UL / DL may be used, or other signal waveforms may be used.
  • the base stations are connected by a communication line (referred to as a backhaul), and information can be transmitted and received between the base stations using, for example, an X2 interface.
  • the base stations are synchronized.
  • base stations may be asynchronous. In the case of non-synchronization, for example, time shift information is exchanged between base stations, and substantially synchronous operation is possible.
  • UL communication and DL communication are performed by several UL / DL patterns. However, it is not limited to these.
  • time interval here is the width of one square frame in FIG. 3A (the same applies to B and C) (the width described as “E. g., Subframe, slot or Mini-slot”. ). This "time interval” may be referred to as TTI.
  • the UL / DL transmission direction is fixedly set in a part of time intervals, and only the set communication direction is permitted in the relevant time intervals.
  • a partial time interval and a section within the time interval (in the illustrated example, the sections at both ends within the time interval are fixedly set to DL and UL)
  • UL / DL is fixedly set, and only the set transmission direction is permitted in the relevant time interval.
  • UL communication / DL communication is possible at other time intervals.
  • FIG. 4 is a diagram showing the frame configuration according to the pattern 3 shown in FIG. 3C in more detail.
  • the above-mentioned "time interval" is called a slot.
  • the slots used in the following may be replaced with TTI (transmission time interval), unit time frame, subframe, minislot.
  • TTI transmission time interval
  • the slot time length may be a fixed time length that does not change with the passage of time, or may be a time length that changes with packet size or the like.
  • one slot has a leading time interval (DL control channel interval) for the downlink control channel, a time interval for data communication (data interval), and an uplink control channel. It may have a last time interval (UL control channel interval).
  • DL control channel interval leading time interval
  • data interval time interval for data communication
  • UL control channel interval last time interval
  • GP guard period
  • UL control CH may be transmitted in a short time (eg, 1 symbol). Such a short time UL control CH is called Short PUCCH.
  • the UE-to-UE interference assumed in the present embodiment will be described with reference to FIG.
  • the cell of the base station 201 and the cell of the base station 203 are victim cells, and the cell of the base station 202 is an aggressor cell.
  • the UL signal from the user device 102 of the aggressor cell is an interference with the user devices 101 and 103 of the victim cell.
  • This interference is an example of DL and UL cross-link interference, and its influence is large, for example, the UL data channel becomes interference to the DL control channel of the victim cell.
  • the effect becomes large.
  • an area where the distance between the user devices is short is regarded as a cluster, and UE-to-UE interference measurement is performed in the cluster. , And UE-to-UE interference reduction control may be performed.
  • a time / frequency resource for interference measurement (hereinafter, IMR (Interference Measurement Resource)) is set, and the user apparatus 100 of a certain cell is a multiple user apparatus of another cell (one or more).
  • IMR Interference Measurement Resource
  • the user apparatus 100 of a certain cell is a multiple user apparatus of another cell (one or more).
  • Measure the aggregated (aggregated) crosslink interference level eg, RSSI (Received Signal Strength Indicator)
  • RSSI Receiveived Signal Strength Indicator
  • the RSSI is an example, and another quantity (eg, RSRP) may be measured.
  • an IMR is set in the user apparatus 101 of the aggressor cell, and the user apparatus 101 receives the received power of the signal transmitted from the user apparatus 102 (including multiple user apparatuses) in the IMR (e.g. Measure the RSSI) of The user apparatus 101 transmits the measurement result to the base station 201.
  • the base station 201 adjusts the communication direction in the own cell in order to reduce interference, for example, when it is understood that the interference from the aggressor cell of the base station 202 is large based on the measurement result received from the user apparatus 101. Do. Alternatively, the measurement result is transmitted to the base station 202 of the aggressor cell, and the base station 202 of the aggressor cell is caused to adjust the transmission direction.
  • FIG. 6 is a diagram for describing a basic operation example between the base station 200 and the user apparatus 100 located in the cell (serving cell) of the base station 200.
  • the base station 200 transmits setting information to the user apparatus 100.
  • the setting information includes, for example, information specifying an IMR (example: resource position, resource size, cycle, etc.), a method of reporting measurement results (report cycle, time offset, etc.), an IM (Interference measurement) process described later Configuration information (e.g., information for specifying an IMR), or any one or any plurality or all of them.
  • Transmission of configuration information is performed using any one or more of broadcast information (system information), UE dedicated RRC signaling (for example, non-patent document 1), MAC CE, and PDCCH.
  • system information system information
  • UE dedicated RRC signaling for example, non-patent document 1
  • MAC CE for example, MAC CE
  • PDCCH Physical Downlink Control Channel
  • the user apparatus 100 measures the received power in the IMR.
  • the user apparatus 100 reports the measurement result to the base station 200 in S103.
  • CL-RSSI cross link RSSI
  • the CL-RSSI is, for example, “total received power (W) observed by the user equipment from all interference sources in different transmission directions only at the set measurement resource in the measurement bandwidth across N resource blocks. Linear average of the total received power (in [W]) observed only in the configured measurement resource and in the measurement bandwidth over N number of resource blocks, by the UE from all interfering sources with different transmission direction. It is defined as).
  • Example 1 Specific measurement methods will be described as Examples 1 and 2, and an example related to a method of reporting measurement results will be described as Example 3.
  • Example 1 In the first embodiment, it is assumed that the user apparatus 101 shown in FIG. 5 performs measurement as an example. Also, as an example, it is assumed that the assumed UL interference source is the cell 2 (the cell in which the user apparatus 102 is present) illustrated in FIG.
  • FIG. 7A shows an example of the IMR set in the user apparatus 101 in the embodiment 1-1.
  • two resource elements (2 OFDM symbols ⁇ 1 subcarrier) in a data area in a slot (measurement slot) in which DL is set are set as an IMR.
  • UL is set in the data area of the slot (measured slot) in the cell 2 corresponding to the Measurement slot, and there is a possibility that a plurality of user apparatuses may perform UL data communication (PUSCH / DMRS) in the data area. .
  • PUSCH / DMRS UL data communication
  • the base station 201 of the serving cell of the user apparatus 101 is notified of the information of UL / DL configuration from the base station 202 of the cell 2, and the base station 201 illustrated resources in the slot set to UL in the cell 2.
  • the information on the IMR corresponding to the measurement is set in the user apparatus 101.
  • the IMR shown in FIG. 7A is an example in which the resources of ZP CSI-RS defined in LTE are applied.
  • IMRs are set on CSI-RS candidate positions.
  • the type of resource element of IMR in the resource block is the same as that of CSI-RS, and as shown in FIG. 7A, the frequency direction is one subcarrier and the time direction is two OFDM symbols.
  • the IMR may be configured differently to the resources of the ZP CSI-RS.
  • the base station 201 can set the IMR to any resource to which PUSCH / DMRS can be transmitted in a neighbor cell (neighbor cell).
  • the resource size of the IMR is arbitrary (flexible). For example, as the IMR, a resource in which the frequency direction is one subcarrier and the time direction is an OFDM symbol larger than 2 may be set. Also, as the IMR, a resource in which the frequency direction is a plurality of subcarriers and the time direction is one OFDM symbol may be set.
  • Example 1-1 when the data communication of UL is actually performed in the cell 2, the reception power measured by the user apparatus 101 by the IMR becomes large.
  • Example 1-1 shows an example in which a part of uplink transmission resources such as PUSCH is set to non-transmission in one cell (Cell # b) among a plurality of neighboring cells of the base station 201 (FIG. 8 (c)).
  • part of the PUSCH transmission resource is not transmitted by higher layer signaling or L1 / L2 signaling (PDCCH or the like), and Rate matching is applied.
  • the setting may be in units of cells or in units of UEs.
  • the presence or absence of uplink transmission can be switched by the cell or user apparatus for a certain measurement target resource, so by setting a plurality of IM processes (or IMRs) described later.
  • the base station 201 may notify another base station of no transmission setting of uplink transmission resource by backhaul signaling. A plurality of non-transmission setting information may be notified. Also, the base station 201 performs measurement setting based on non-transmission setting information received from another base station, or notifies an appropriate base station of an interference level based on the measurement result reported from the user apparatus. It can be done.
  • Example 1-2 An example of the IMR set to the user apparatus 101 in the embodiment 1-2 is shown in FIG. 9 (a).
  • the IMR is set in the resource in which the SRS is set in the cell 2.
  • IMR is set to the symbol in which transmission of SRS is performed from the user apparatus of the cell 2.
  • the base station 201 of the serving cell of the user apparatus 101 is notified of the SRS configuration information from the base station 202 of the cell 2, and the base station 201 uses the resource to which the SRS is transmitted in the cell 2 as the IMR.
  • the IMR may be set, for example, to overlap with Comb (the comb tooth-like frequency resource to which SRS is transmitted) in SRS setting in cell 2, or the frequency in the symbol in which SRS is transmitted. It may be set to the whole (example in FIG. 9A).
  • Example 1-2 even when UL data communication is not performed in the cell 2 very much, the reception power measured by the IMR becomes large.
  • Option 1 the base station 201 sets the IMR to cell specific for the subordinate user apparatuses.
  • GC Group-common
  • RRC Radio Resource Control
  • the same IMR is configured for all user devices in the cell.
  • Option 1 has the advantage of very low IMR overhead.
  • Option 2 the base station 201 sets the IMR to UE specific for the subordinate user equipment.
  • RRC signaling is used.
  • option 2 in order to reduce overhead, for example, the number of user equipments performing inter-user equipment measurements may be limited.
  • whether to perform inter-user apparatus measurement is set from the base station 201 for the user apparatus.
  • the execution requirement of the inter-user-device measurement is set for a user device whose DL RSRP (DL RSRP reported from the user device to the base station 201) is smaller than a threshold. The reason is that when DL RSRP is small, it is susceptible to cross link interference.
  • the first embodiment enables the user apparatus 100 to appropriately measure interference from neighboring cells.
  • Example 2 Next, Example 2 will be described. Also in the second embodiment, as an example, it is assumed that the user device 101 shown in FIG. 5 performs the measurement.
  • an Interference Measurement process (hereinafter, an IM process) is defined.
  • the interference measurement process may be referred to as a measurement process.
  • the IM process is an IMR in the case of assuming a specific interference situation from a plurality of neighboring cells. Such an IM process setup makes it possible to measure different assumed crosslink interferences due to dynamic DL / DL changes. A specific example will be described later.
  • a plurality of IM processes are set in the user apparatus 101 from the base station 201.
  • the user device 101 measures received power (RSSI) at IMRs in multiple IM processes.
  • RSSI received power
  • the IMR is different between different IM processes.
  • the IMRs between different IM processes may be identical or may partially overlap.
  • the non-transmission cell and its resource information described above in the setting in the IM process may be included.
  • the setting of the IMR in an IM process is a setting that can measure interference in the hypothesis of UL transmission (crosslink interference) in neighboring cells corresponding to the IM process.
  • FIG. 10 is a diagram for explaining an example of the IMR process.
  • Cell 1 to cell 3 on the horizontal axis of FIG. 10 are, for example, cell 1 to cell 3 in the cluster shown in FIG. A to G on the vertical axis of FIG. 10 indicate IMR.
  • each row in FIG. 10 shows the assumption of UL transmission of each cell at the same time (eg, a certain slot).
  • One row IMR and corresponding UL transmission assumption for each cell
  • IMR in one row may be considered as one IM process.
  • the IMR in FIG. 10 indicates that cell 1 is “ZP CSI-RS” means that there is no UL transmission of cell 1 in IMR-B.
  • the fact that cell 2 is “PUSCH / DMRS / SRS” means that it is assumed that there is UL transmission (PUSCH or DMRS or SRS) of cell 2 in IMR-B, and cell 3 is “PUSCH / DMRS “/ SRS” indicates that it is assumed that there is UL transmission (PUSCH or DMRS or SRS) of cell 3 in IMR-B.
  • the base station 201 of the cell 1 (the cell of the base station 201 in FIG. 5) sets IMR-A, B, C, D for the user apparatus 101, and the user apparatus 101 performs IMR-A, B , C and D respectively.
  • the IM process corresponding to IMR-A is IM process A
  • the IM process corresponding to IMR-B is IM process B
  • the IM process corresponding to IMR-C is IM process C
  • IMR-D is compatible.
  • “set IMR-A, B, C, D” may be considered as synonymous with “set IM process A, B, C, D”.
  • the user device 101 obtains the following measurement results as an example.
  • the base station 202 of the cell 2 sets IMR-A, C, E, F for the user apparatus 102.
  • the base station 203 of the cell 3 sets IMR-A, D, E, and G for the user apparatus 103.
  • the base station of each cell can create the information of the table shown in FIG. 10 by exchanging, for example, UL / DL configuration information with the base station of the neighboring cell. Further, since the status of UL transmission / non-transmission of each cell corresponding to each IMR changes with the passage of time, the assumed contents shown in FIG. 10 may change with the passage of time.
  • Each base station may, for example, set an IM process based on the assumption of UL transmission of each cell after change to a subordinate user apparatus at predetermined time intervals.
  • the user apparatus 100 can appropriately grasp crosslink interference from neighboring cells by using the IMR according to the situation of crosslink interference from neighboring cells.
  • Example 3 In the third embodiment, as described in the second embodiment, an example of a method of measurement report (measurement report) performed by the user device 101 when a plurality of IM processes are set in the user device 101 will be described. Examples 3-1 to 3-4 will be described below. In the following description, an example in which the user apparatus 101 mainly performs reporting will be described.
  • Example 3-1 the user apparatus 101 separately reports the measurement results of a plurality of IM processes (or one IM process) set in the user apparatus 101 to the base station 201 separately for each IM process.
  • the base station 201 performs, for example, transmission direction adjustment for cross link interference reduction, based on the measurement result reported from the user apparatus 101 (and other user apparatuses).
  • the user apparatus 101 reports, to the base station 201, measurement results of all IM processes in a plurality of IM processes set in the user apparatus 101.
  • the base station 201 can determine the cross link interference situation based on the measurement report.
  • base station 201 performs UL transmission in cell 3 Although it is assumed, the resulting crosslink interference is small, so it can be determined not to adjust the transmission direction.
  • base station 201 when the measurement result (received power) in the process of IMR-D is large (for example, larger than predetermined threshold B), base station 201 is caused by UL transmission in cell 2. It can be determined that the adjustment of the transmission direction is to be performed because the crosslink interference to be performed is large. In this example, for example, the base station 201 can perform adjustment to align the transmission direction with the cell 2 in the corresponding slot.
  • the user apparatus 101 may report the measurement results of some IM processes (one or more IM processes) among the plurality of IM processes set in the user apparatus 101 to the base station 201. .
  • the user apparatus 101 transmits, to the base station 201, a measurement result larger than a predetermined threshold C among measurement results in a plurality of IM processes set in the user apparatus 101.
  • the measurement result not larger than the predetermined threshold C is not reported to the base station 201.
  • the base station 201 can determine the content of the crosslink interference based on the reported measurement result under the assumption of the corresponding IM process.
  • the base station 201 can determine that there is no crosslink interference from the cell under the assumption of the corresponding IM process with respect to the measurement result that has not received the report. For example, in the case shown in FIG. 10, when the base station 201 does not receive the measurement result of the IM process of IMR-C from the user apparatus 101, the base station 201 assumes UL transmission in the cell 3, but It can be determined that crosslink interference is small.
  • Example 3-2 the user apparatus 101 jointly reports the measurement result of the IM process and the DL measurement result set in the user apparatus 101 to the base station 201.
  • the user apparatus 101 performs measurement of an IM process (that is, measurement using IMR) and measurement of DL.
  • the measurement method of DL although not limited to a particular method, for example, the DL reception power of the serving cell is measured in a slot where IMR is configured.
  • the received power of DL may be RSSI or RSRP.
  • the IMR shown in FIG. 7A when the IMR shown in FIG. 7A is set, measurement is performed using a predetermined DL resource (for example, a resource of a DL reference signal of a serving cell) of a slot in which the IMR is set.
  • a predetermined DL resource for example, a resource of a DL reference signal of a serving cell
  • the IM process may include the measurement of IMR and the measurement of DL.
  • the base station 201 that receives the measurement results of the multiple IM process and the DL measurement together collectively has, for example, a DL for the user apparatus in its own cell in a slot with large DL reception power and large interference. Adjustments can be made to avoid scheduling. Further, inter-base station adjustment similar to that of the embodiment 3-1 can also be performed.
  • Variations of the reporting method are the same as in Example 3-1. That is, for example, the user apparatus 101 reports, to the base station 201, the integrated measurement results (measurement results of IMR and DL measurement results) of all IM processes in a plurality of IM processes set in the user apparatus 101.
  • the base station 201 can determine the cross link interference situation based on the comprehensive measurement report.
  • the user apparatus 101 reports, to the base station 201, an overall measurement result of part of IM processes (one or more IM processes) in the plurality of IM processes set in the user apparatus 101. It is also good.
  • the user apparatus 101 transmits, to the base station 201, an overall measurement result having an IMR measurement result larger than a predetermined threshold D among the overall measurement results in the plurality of IM processes set in the user apparatus 101.
  • the user apparatus 101 may measure the IM process (that is, measurement using the IMR) and perform interference measurement of the DL and report these.
  • the DL interference measurement method is not limited to a particular method, but for example, it is assumed that DL communication in another cell is performed in the slot (or some other slot) in which IMR is set (eg: A DL data resource of another cell or a resource of a DL reference signal is set as a DL measurement resource (eg, a resource similar to ZP CSI RS), and the reception power is measured by the DL measurement resource.
  • the received power here may be RSSI or RSRP.
  • the IM process may include IMR measurement and DL interference measurement.
  • the base station 201 that receives the measurement results of multiple IM processes and the DL interference measurement together collectively, for example, performs DL scheduling for user apparatuses in its own cell or other cells in a slot with large interference. Can be implemented to avoid Further, inter-base station adjustment similar to that of the embodiment 3-1 can also be performed.
  • Variations of the reporting method are the same as in Example 3-1. That is, for example, the user apparatus 101 reports, to the base station 201, the integrated measurement results (measurement results of IMR and DL interference measurement results) of all IM processes in a plurality of IM processes set in the user apparatus 101.
  • the base station 201 can determine the interference status based on the comprehensive measurement report.
  • the user apparatus 101 may report, to the base station 201, an integrated measurement result of part of IM processes (one or more IM processes) among a plurality of IM processes set in the user apparatus 101.
  • the user apparatus 101 is an integrated measurement in which the sum (or an average) of the IMR measurement result and the DL interference measurement result among the integrated measurement results in the plurality of IM processes set in the user apparatus 101 is larger than a predetermined threshold E. The result is sent to the base station 201.
  • Example 3-3 In the description of Example 3-3 and Example 3-4 below, the description “IM process / IMR” may apply the process to the IM process described in Example 2, and will be described in Example 1. Indicates that it may be applied to the IMR.
  • the IMR described in the first embodiment may be interpreted as "IM process”.
  • the user apparatus 101 may select a subset of IM processes / IMRs set from the base station 201 to perform measurement and reporting.
  • the N IM processes are, for example, IM processes on all neighboring cells (nearby base stations) that can cooperate with the base station 201.
  • M may be a predetermined value, a value signaled in the upper layer, or a value determined based on UE capability.
  • the measurement and the report from the user apparatus 101 do not need to be concerned with DL measurement / measurement between UEs.
  • the configuration from the base station 201 may not be UE specific but UE group common or Cell specific. Each user device can select a subset according to their capabilities.
  • the base station 201 can easily operate since it can set IM processes corresponding to all cooperable peripheral cells without considering the interference level and / or the UE capability. In addition, since it becomes possible to notify the setting from the base station 201 by broadcast information or the like, the signaling overhead can be reduced.
  • the user apparatus 101 may report the ID of the IM process of the selected subset along with the measurement result.
  • the user apparatus 101 may report, to the base station 201, the ID of the IM process of the selected subset separately from the measurement result.
  • the base station 201 that has received the report may request the user apparatus 101 to report measurement results for IM processes / IMRs not included in the subset selected by the user apparatus 101.
  • the user apparatus 101 may report a result indicating unmeasured or low interference to the base station 201.
  • the recognition of the subset can be coordinated between the user apparatus and the base station. Also, robust operation can be performed without the base station having to recognize the selected subset.
  • the user apparatus 101 may determine the subset based on the detection result or measurement result of DL.
  • the user apparatus 101 may determine the subset based on any one or more of a measurement result of a neighboring cell, a cell ID of a detected neighboring cell, a detected beam ID, and broadcast information. it can.
  • IM process / IMR set from the base station 201 to the user apparatus 101
  • one or more corresponding cell IDs and / or beam IDs and / or thresholds for reporting are set, and the user apparatus 101 , IM process / IMR, measure and report only when the set conditions are met.
  • the user apparatus 101 measures the IM process / IMR included in the subset, and uses the detection of the event that satisfies the above conditions as a trigger to measure the IM process / IMR corresponding to the condition as the base station 201. You may report to
  • the target of measurement / report can be limited to a specific one. Overhead ⁇ Complexity can be lowered.
  • the time range of the measurement of the IM process / IMR performed by the user apparatus 101 may be determined based on the setting of the report in an IM process / IMR.
  • the time range to be measured may be determined according to the time for making a report and / or the time for receiving a request for a report.
  • the user apparatus 101 periodically reporting a measurement result of an IM process / IMR based on the setting from the base station 201 (e.g., report in the Kth slot every 20 ms) is the user apparatus 101.
  • the user apparatus 101 measures the measurement using the IM process / IMR in a time range of M subframes from the (K + 1) th subframe (referred to as measurement 1), and the next M
  • the measurement (measurement 2) is also performed in the time range of the number of subframes. For example, in each of these time ranges, the measurement based on the periodically arriving IMR is performed a plurality of times, and the average is a measurement result.
  • the measurement result of measurement 1 and the measurement result of measurement 2 are reported.
  • the measurement at the measurement time of measurement 1 corresponds to the assumption of IMR-B
  • the measurement at the measurement time of measurement 2 corresponds to the assumption of IMR-C.
  • the user apparatus 101 receives from the base station 201 a report request of measurement results of a certain IM process / IMR at each of time points A, B, C, and D. .
  • the measurement time range is from the time of receiving the report request (A) to the time of receiving the next report request (B), and the measurement results measured in this measurement time range are reported from the report request (B) , To the base station 201 before receiving the next report request (C).
  • the measurement in A to B shown in FIG. 11 corresponds to the IMR-B assumption
  • the measurement in B to C corresponds to the IMR-C assumption
  • C-D may correspond to the IMR-D assumption. That is, using one IM process / IMR, measurements based on multiple types of assumptions can be performed in a time-division manner, enabling efficient measurement.
  • a report period is set, and in each report period, the measurement result measured in the previous report period is reported. You may do it.
  • the correspondence between the time range for performing measurement and the reporting time / reporting request is set, for example, in the upper layer (eg, setting by RRC signaling from the base station 201). Further, as shown in FIG. 12, when the user apparatus 101 receives a report request (Reporting request) from the base station 201, the user apparatus 101 can receive a report request in the latest measurement period in the past compared to when the report request is received. The measurement results may be reported.
  • a report request Reporting request
  • Example 3-4 by defining the time range of measurement / average in one IM process / IMR (that is, without changing the resources and sequences to be measured), it is possible to effectively single out a large number of measurements. It becomes possible to implement one IM process / IMR.
  • Example 1 In addition, you may implement combining any two of Example 1, Example 2, and Example 3, and you may implement combining all.
  • Each of user apparatus 100 and the base station 200 has all the functions described in the present embodiment. However, each of the user apparatus 100 and the base station 200 may be provided with a part of all the functions described in the present embodiment. For example, each of the user apparatus 100 and the base station 200 may have all the functions of the function of performing the first embodiment, the function of performing the second embodiment, and the function of performing the third embodiment; Any one or more of them or any one of the functions may be provided.
  • FIG. 13 is a diagram showing an example of a functional configuration of the user apparatus 100.
  • the user apparatus 100 includes a signal transmission unit 110, a signal reception unit 120, and a setting information management unit 130.
  • the signal receiving unit 120 includes a measuring unit 140.
  • the measuring unit 140 may be provided outside the signal receiving unit 120.
  • the functional configuration shown in FIG. 13 is merely an example. As long as the operation according to the present embodiment can be performed, the function classification and the name of the functional unit may be arbitrary.
  • the signal transmission unit 110 is configured to generate a signal of the lower layer from the information of the upper layer, and wirelessly transmit the signal.
  • the signal receiving unit 120 is configured to wirelessly receive various signals and acquire information of the upper layer from the received signals.
  • the measurement unit 140 measures (calculates) received power (eg, RSSI, RSRP).
  • the setting information management unit 130 has a storage unit that stores setting information set in advance and setting information dynamically and / or semi-statically transmitted from the base station 200 or the like.
  • the setting information management unit 130 holds setting information of a plurality of measurement processes usable for interference measurement, and the measurement unit 140 measures measurement resources of all or part of the plurality of measurement processes.
  • the signal transmission unit 110 reports all or part of the measurement result by the measurement unit 140 to the base station. For example, among the measurement results by the measurement unit 140, the signal transmission unit 110 reports a measurement result larger than a predetermined threshold to the base station.
  • the measurement unit 140 selects one or more measurement processes as a subset from the plurality of measurement processes set by the setting information, and performs measurement using the measurement resource of the measurement process of the subset. I do.
  • the measurement unit 140 may determine the subset based on detection results of neighboring cells or measurement results of neighboring cells. Also, for example, the measurement unit 140 determines a time range in which measurement is to be performed, based on the time of reporting of the measurement result by the signal transmission unit.
  • FIG. 14 is a diagram showing an example of a functional configuration of the base station 200.
  • the base station 200 includes a signal transmission unit 210, a signal reception unit 220, a scheduling unit 230, a setting information management unit 240, and an NW communication unit 250.
  • the functional configuration shown in FIG. 14 is merely an example. As long as the operation according to the present embodiment can be performed, the function classification and the name of the functional unit may be arbitrary.
  • the signal transmission unit 210 is configured to generate a signal of the lower layer from the information of the upper layer and wirelessly transmit the signal.
  • the signal reception unit 220 is configured to wirelessly receive various signals and acquire information of the upper layer from the received signals.
  • the scheduling unit 230 performs resource assignment to the user apparatus 100 and the like. For example, based on the measurement result from the user apparatus 100 received by the signal receiving unit 220, the scheduling unit 230 performs scheduling to avoid interference.
  • the scheduling unit 230 can also perform non-transmission scheduling as shown in FIG. 8C.
  • the setting information management unit 240 includes a storage unit, stores the preset setting information, and has a function of determining and holding the setting information to be set to the user apparatus 100 dynamically and / or semi-statically.
  • the NW communication unit 250 transmits and receives, for example, UL / DL configuration information, cross link interference information, setting information of reference signals, and the like with other base stations.
  • each functional block may be realized by one device physically and / or logically connected to a plurality of elements, or directly and two or more physically and / or logically separated devices. And / or indirectly (for example, wired and / or wirelessly) connected, and may be realized by the plurality of devices.
  • both the user apparatus 100 and the base station 200 in the embodiment of the present invention may function as a computer that performs the process according to the present embodiment.
  • FIG. 15 is a diagram showing an example of a hardware configuration of user apparatus 100 and base station 200 according to the present embodiment.
  • Each of the above-described user device 100 and base station 200 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “device” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the user apparatus 100 and the base station 200 may be configured to include one or more of the devices indicated by 1001 to 1006 shown in the figure, or may be configured without including some devices. May be
  • Each function in the user apparatus 100 and the base station 200 causes the processor 1001 to perform an operation by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and the communication by the communication apparatus 1004, the memory 1002 And by controlling the reading and / or writing of data in the storage 1003.
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU Central Processing Unit
  • the processor 1001 reads a program (program code), a software module or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processing according to these.
  • a program a program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the signal transmission unit 110, the signal reception unit 120, the setting information management unit 130, and the measurement unit 140 of the user apparatus 100 illustrated in FIG. 13 may be realized by a control program stored in the memory 1002 and operated by the processor 1001. Good.
  • control program operating at 1001.
  • the various processes described above have been described to be executed by one processor 1001, but may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer readable recording medium, and includes, for example, at least one of a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically Erasable Programmable ROM), and a RAM (Random Access Memory). It may be done.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device) or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to execute the process according to the embodiment of the present invention.
  • the storage 1003 is a computer readable recording medium, and for example, an optical disc such as a CD-ROM (Compact Disc ROM), a hard disc drive, a flexible disc, a magneto-optical disc (eg, a compact disc, a digital versatile disc, a Blu-ray A (registered trademark) disk, a smart card, a flash memory (for example, a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, and the like may be used.
  • the storage 1003 may be called an auxiliary storage device.
  • the above-mentioned storage medium may be, for example, a database including the memory 1002 and / or the storage 1003, a server or any other suitable medium.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the signal transmission unit 110 and the signal reception unit 120 of the user apparatus 100 may be realized by the communication apparatus 1004.
  • the signal transmission unit 210 and the signal reception unit 220 of the base station 200 may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured by a single bus or may be configured by different buses among the devices.
  • the user apparatus 100 and the base station 200 each include a microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FPGA), etc. It may be configured to include hardware, and part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented in at least one of these hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a setting information management unit that holds setting information of a plurality of measurement processes that can be used for interference measurement, which is a user apparatus in a wireless communication system;
  • a measurement unit that performs measurement using measurement resources of all or part of the measurement processes in the measurement process, and a signal transmission unit that reports all or a part of the measurement results by the measurement unit to the base station;
  • a user device is provided, characterized in that it comprises. This configuration enables the user device to appropriately perform inter-user device measurement and measurement result reporting.
  • the signal transmission unit may report only the measurement result larger than a predetermined threshold to the base station among the measurement results by the measurement unit. With this configuration, overhead can be reduced, and the base station can obtain measurement results necessary for interference coordination reduction processing and the like.
  • the user equipment according to claim 1 characterized in that:
  • the measurement unit may select one or more measurement processes as a subset from the plurality of measurement processes set by the setting information, and may perform measurement using measurement resources of the measurement process of the subset. Good. This configuration can reduce signaling overhead because the base station can set a common measurement process for user apparatuses in a cell without considering the capabilities of individual user apparatuses and the like.
  • the measurement unit may determine the subset based on detection results of neighboring cells or measurement results of neighboring cells. This configuration enables the measurement to be performed using a measurement process that requires measurement.
  • the measurement unit may determine a time range in which the measurement is performed based on a time of reporting of the measurement result by the signal transmission unit. According to this configuration, it is possible to measure substantially a plurality of measurement processes in one measurement process.
  • the operations of multiple functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by multiple components.
  • the order of processing may be changed as long as there is no contradiction.
  • the user apparatus 100 and the base station 200 have been described using functional block diagrams for the convenience of the processing description, such an apparatus may be realized in hardware, software or a combination thereof.
  • the software operated by the processor of the user apparatus 100 according to the embodiment of the present invention and the software operated by the processor of the base station 200 according to the embodiment of the present invention are random access memory (RAM), flash memory, read only It may be stored in memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
  • notification of information is not limited to the aspect / embodiment described herein, and may be performed by other methods.
  • notification of information may be physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • Each aspect / embodiment described in the present specification is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA (Registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-Wide Band),
  • the present invention may be applied to a system utilizing Bluetooth (registered trademark), other appropriate systems, and / or an advanced next-generation system based on these.
  • the specific operation supposed to be performed by the base station 200 in this specification may be performed by the upper node in some cases.
  • various operations performed for communication with the user equipment 100 may be performed by the base station 200 and / or other than the base station 200. It is clear that it may be done by a network node (for example but not limited to MME or S-GW etc).
  • a network node for example but not limited to MME or S-GW etc.
  • MME Mobility Management Entity
  • the user equipment 100 may be a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, by those skilled in the art. It may also be called a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable term.
  • Base station 200 may also be referred to by those skilled in the art in terms of NB (Node B), eNB (enhanced Node B), Base Station, or some other suitable terminology.
  • NB Node B
  • eNB enhanced Node B
  • Base Station or some other suitable terminology.
  • determining may encompass a wide variety of operations.
  • “Judgment”, “decision” are, for example, judging, calculating, calculating, processing, processing, deriving, investigating, looking up (for example, a table) (Searching in a database or another data structure), ascertaining may be regarded as “decision”, “decision”, etc.
  • “determination” and “determination” are receiving (e.g. receiving information), transmitting (e.g. transmitting information), input (input), output (output), access (Accessing) (for example, accessing data in a memory) may be regarded as “judged” or “decided”.
  • the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • 100 user apparatus 110 signal transmitting unit 120 signal receiving unit 130 setting information managing unit 140 measuring unit 200 base station 210 signal transmitting unit 220 signal receiving unit 230 scheduling unit 240 setting information managing unit 250 NW communication unit 1001 processor 1002 memory 1003 storage 1004 communication Device 1005 Input Device 1006 Output Device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This user device which makes up part of a wireless communication system comprises: a setting information management unit which holds setting information for a plurality of measurement processes which can be used to measure interference; a measurement unit which performs measurement using measurement resources for all or some of plurality of measurement processes; and a signal transmission unit which reports, to a base station, some or all of the measurement results obtained by the measurement unit.

Description

ユーザ装置、及び測定方法User device and measurement method
 本発明は、無線通信システムにおけるユーザ装置に関連するものである。 The present invention relates to a user equipment in a wireless communication system.
 3GPP(Third Generation Partnership Project)において、LTE(Long Term Evolution)及びLTE-Advancedの次世代の通信規格(NR(5Gとも呼ばれる))が議論されている。NRシステムでは、発生するダウンリンク(以下、DL)トラフィック及びアップリンク(以下、UL)トラフィックに応じて、DL通信及びUL通信に使用されるリソースをフレキシブルに制御するフレキシブルDuplexが検討されている。フレキシブルDuplexとして、例えば、時間領域でULリソース及びDLリソースを動的に切り替えるTDD(Time Division Duplex)方式(以降、ダイナミックTDDと呼ぶ)がある。 In 3GPP (Third Generation Partnership Project), the next-generation communication standard (NR (also called 5G)) of LTE (Long Term Evolution) and LTE-Advanced is being discussed. In the NR system, a flexible duplex is studied, which flexibly controls resources used for DL communication and UL communication according to downlink (DL) traffic and uplink (UL) traffic generated. As a flexible duplex, for example, there is a TDD (Time Division Duplex) scheme (hereinafter, referred to as dynamic TDD) in which UL resources and DL resources are dynamically switched in a time domain.
 典型的には、小さなセルでは大きなセルと比較して、DLトラフィックとULトラフィックとの偏りが大きくなることが想定される。このため、各セルにおいて独立してダイナミックTDDを利用してDL通信とUL通信とを制御することによって、トラフィックをより効率的に収容することが可能になる。 Typically, it is assumed that the smaller the cell, the greater the bias between DL traffic and UL traffic compared to the larger cell. For this reason, it becomes possible to accommodate traffic more efficiently by controlling DL communication and UL communication using dynamic TDD independently in each cell.
 ダイナミックTDDでは、サブフレーム、スロット、ミニスロット等のある時間間隔でDL及びULの送信方向が動的に変更される。すなわち、図1Aに示されるように、LTEにおいて適用されているスタティックTDDでは、セル間で共通する予め設定されたDL/UL構成(configuration)が利用される。他方、ダイナミックTDDでは、図1Bに示されるように、各セルで個別のDL/UL構成が利用される。ダイナミックTDDでは、DL/UL構成は、セミスタティックあるいはフレキシブルに変更される。 In dynamic TDD, DL and UL transmission directions are dynamically changed at certain time intervals such as subframes, slots and minislots. That is, as shown in FIG. 1A, in static TDD applied in LTE, a preset DL / UL configuration (configuration) common among cells is used. On the other hand, in dynamic TDD, as shown in FIG. 1B, individual DL / UL configurations are utilized in each cell. In dynamic TDD, DL / UL configuration is changed to semi-static or flexible.
 上記のように、DL/UL構成をセル毎に個別に適用する方式を採用した場合、例えば、あるセル(victim cell)におけるDL通信に対し、他のセル(aggressor cell)におけるUL通信が干渉となり、victim cellにおけるユーザ装置が基地局からの信号を適切に受信できない場合が発生し得る。 As described above, when adopting a method of individually applying the DL / UL configuration to each cell, for example, UL communication in another cell (aggressor cell) interferes with DL communication in a certain cell (victim cell) There may be a case where the user equipment in the victim cell can not properly receive the signal from the base station.
 上記のような問題を解消するために、基地局間でDL/UL構成を送受信することで、各基地局が、他セルからの影響を少なくする/他セルへの影響を少なくするように、自セルのDL/UL構成を決定することが考えられる。これを実現するためには、例えば、あるセルのユーザ装置が、他セルのユーザ装置から送信される信号の受信電力(例:RSRP、RSSI)を測定し、それを基地局に報告することが考えられる。この測定はUE-to-UE measurement(ユーザ装置間測定)と呼ばれる
 しかし、従来技術では、DL/UL構成をセル毎に個別に適用する方式を採用した無線通信システムで、多数のユーザ装置が存在し得る各セルにおいて、ユーザ装置間測定を適切に実施し、測定結果を適切に基地局に報告するための具体的な技術は存在しなかった。
In order to solve the above problems, by transmitting and receiving DL / UL configurations between base stations, each base station can reduce the influence from other cells / reduce the influence to other cells, It is conceivable to determine the DL / UL configuration of the own cell. In order to realize this, for example, the user equipment in one cell measures the reception power (eg, RSRP, RSSI) of the signal transmitted from the user equipment in another cell and reports it to the base station Conceivable. This measurement is called UE-to-UE measurement (inter-user equipment measurement). However, in the prior art, there is a large number of user equipments in a radio communication system adopting a method of individually applying DL / UL configuration to each cell. In each possible cell, there has been no specific technique for appropriately performing inter-user-device measurement and appropriately reporting the measurement result to the base station.
 本発明は上記の点に鑑みてなされたものであり、ユーザ装置が適切にユーザ装置間測定、及び測定結果の報告を行うことを可能とする技術を提供することを目的とする。 The present invention has been made in view of the above, and it is an object of the present invention to provide a technology that enables a user device to appropriately perform measurement between user devices and report of measurement results.
 開示の技術によれば、無線通信システムにおけるユーザ装置であって、
 干渉の測定に使用可能な複数の測定プロセスの設定情報を保持する設定情報管理部と、
 前記複数の測定プロセスのうちの全部又は一部の測定プロセスの測定リソースを用いて測定を行う測定部と、
 前記測定部による測定結果のうちの全部又は一部を基地局に報告する信号送信部と
 を備えることを特徴とするユーザ装置が提供される。
According to the disclosed technology, a user equipment in a wireless communication system,
A configuration information management unit that holds configuration information of a plurality of measurement processes that can be used for interference measurement;
A measurement unit that performs measurement using measurement resources of all or part of the plurality of measurement processes;
And a signal transmission unit that reports all or part of the measurement results of the measurement unit to a base station.
 開示の技術によれば、ユーザ装置が適切にユーザ装置間測定、及び測定結果の報告を行うことを可能とする技術が提供される。 According to the disclosed technology, a technology is provided that enables a user device to appropriately perform measurement between user devices and report of measurement results.
スタティックTDDを説明するための図である。It is a figure for demonstrating static TDD. ダイナミックTDDを説明するための図である。It is a figure for demonstrating dynamic TDD. 本発明の実施の形態における無線通信システムを示す図である。It is a figure which shows the radio | wireless communications system in embodiment of this invention. ダイナミックTDDにおけるDL/ULパターンの例を示す図である。It is a figure which shows the example of DL / UL pattern in dynamic TDD. ダイナミックTDDにおけるDL/ULパターンの例を示す図である。It is a figure which shows the example of DL / UL pattern in dynamic TDD. ダイナミックTDDにおけるDL/ULパターンの例を示す図である。It is a figure which shows the example of DL / UL pattern in dynamic TDD. ダイナミックTDDのフレーム構成の例を示す図である。It is a figure which shows the example of a frame structure of dynamic TDD. DLの干渉パターンを説明するための図である。It is a figure for demonstrating the interference pattern of DL. 基本的な動作例を説明するための図である。It is a figure for demonstrating a basic operation example. IMRの設定例を説明するための図である。It is a figure for demonstrating the setting example of IMR. IMRの設定例を説明するための図である。It is a figure for demonstrating the setting example of IMR. IMRの設定例を説明するための図である。It is a figure for demonstrating the setting example of IMR. IMプロセスの例を説明するための図である。It is a figure for demonstrating the example of IM process. 測定報告の例を説明するための図である。It is a figure for demonstrating the example of a measurement report. 測定報告の例を説明するための図である。It is a figure for demonstrating the example of a measurement report. ユーザ装置100の機能構成の一例を示す図である。FIG. 2 is a diagram showing an example of a functional configuration of a user device 100. 基地局200の機能構成の一例を示す図である。FIG. 2 is a diagram showing an example of a functional configuration of a base station 200. ユーザ装置100と基地局200のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware constitutions of the user apparatus 100 and the base station 200. FIG.
 以下、図面を参照して本発明の実施の形態(本実施の形態)を説明する。なお、以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the embodiments described below are merely examples, and the embodiments to which the present invention is applied are not limited to the following embodiments.
 本実施の形態の無線通信システムは、少なくともLTEの通信方式をサポートしていることを想定している。よって、無線通信システムが動作するにあたっては、適宜、既存のLTEで規定された既存技術を使用できる。ただし、当該既存技術はLTEに限られない。また、本明細書で使用する「LTE」は、特に断らない限り、LTE-Advanced、及び、LTE-Advanced以降の方式を含む広い意味を有するものとする。また、本発明は、LTE以外の通信方式にも適用可能である。 The radio communication system according to the present embodiment is assumed to support at least the LTE communication scheme. Therefore, when the wireless communication system operates, the existing technology defined by the existing LTE can be used as appropriate. However, the existing technology is not limited to LTE. Also, “LTE” used in this specification has a broad meaning including LTE-Advanced and LTE-Advanced and later, unless otherwise specified. The present invention is also applicable to communication systems other than LTE.
 以下で説明する実施の形態では、既存のLTEで使用されているSRS、PUSCH、RRC、DCI等の用語を使用しているが、これは記載の便宜上のためであり、これらと同様のチャネル、信号、機能等が他の名称で呼ばれてもよい。 In the embodiments described below, the terms SRS, PUSCH, RRC, DCI, etc. used in the existing LTE are used, but this is for the convenience of description, and similar channels to these, Signals, functions, etc. may be referred to by other names.
 (無線通信システムの構成)
 図2は、本実施の形態における無線通信システム10の構成図である。図2に示すように、本実施の形態における無線通信システム10は、ユーザ装置101、102、103(以降、ユーザ装置100として総称されうる)及び基地局201、202、203(以降、基地局200として総称されうる)を含む。以下の実施の形態では、無線通信システム10は、前述したように、UL及びDLを各セル個別に制御可能なダイナミックTDDをサポートする。
(Configuration of wireless communication system)
FIG. 2 is a block diagram of the wireless communication system 10 in the present embodiment. As shown in FIG. 2, radio communication system 10 in the present embodiment includes user apparatuses 101, 102 and 103 (hereinafter collectively referred to as user apparatus 100) and base stations 201, 202 and 203 (hereinafter base station 200). Can be collectively referred to as In the following embodiment, as described above, the wireless communication system 10 supports dynamic TDD that can control UL and DL individually for each cell.
 ユーザ装置100は、スマートフォン、携帯電話、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュールなどの無線通信機能を備えた通信装置であり、基地局200に無線接続し、無線通信システム10により提供される各種通信サービスを利用する。ユーザ装置を例えば「UE」と呼んでもよい。 The user device 100 is a communication device provided with a wireless communication function such as a smartphone, a mobile phone, a tablet, a wearable terminal, a communication module for M2M (Machine-to-Machine), etc. Use various communication services provided by 10. The user equipment may for example be called "UE".
 基地局200は、1つ以上のセルを提供し、ユーザ装置100と無線通信する通信装置である。図示された例では、例示として3つの基地局201、202、203を示すが、一般には、無線通信システム10のサービスエリアをカバーするよう多数の基地局200が配置される。基地局を、例えば「gNB」と呼んでもよい。 The base station 200 is a communication device that provides one or more cells and performs wireless communication with the user device 100. In the illustrated example, three base stations 201, 202, 203 are illustrated as an example, but in general, a large number of base stations 200 are arranged to cover the service area of the wireless communication system 10. The base station may be called, for example, "gNB".
 また、本実施の形態の無線通信システムで使用される信号波形は、例えば、UL、DLともに、既存のLTEのDLと同様のOFDMAであってもよいし、UL/DLが、既存のLTEのUL/DLと同様のSC-FDMA/OFDMAであってもよいし、これら以外の信号波形であってもよい。 Also, for the signal waveform used in the radio communication system of the present embodiment, for example, both UL and DL may be OFDMA similar to DL of existing LTE, and UL / DL is the same as that of existing LTE. SC-FDMA / OFDMA similar to UL / DL may be used, or other signal waveforms may be used.
 また、基地局間は通信回線(バックホールと呼ぶ)で接続されており、基地局間で例えばX2インタフェースで情報の送受信が可能である。また、本実施の形態では、基地局間は同期している。ただし、基地局間が非同期であってもよい。非同期の場合は、例えば、基地局間で時間ずれ情報が交換され、実質的に同期動作が可能である。 Further, the base stations are connected by a communication line (referred to as a backhaul), and information can be transmitted and received between the base stations using, for example, an X2 interface. Further, in the present embodiment, the base stations are synchronized. However, base stations may be asynchronous. In the case of non-synchronization, for example, time shift information is exchanged between base stations, and substantially synchronous operation is possible.
 (ダイナミックTDDの構成について)
 前述したように、本実施の形態では、ダイナミックTDDを使用することから、ダイナミックTDDの構成例について説明する。
(About the configuration of Dynamic TDD)
As described above, in the present embodiment, since dynamic TDD is used, a configuration example of dynamic TDD will be described.
 本実施の形態に係るダイナミックTDDでは、例えば、図3A~3Cに示されるように、いくつかのUL/DLパターンによってUL通信及びDL通信が行われる。ただし、これらに限定されるものではない。 In dynamic TDD according to the present embodiment, for example, as shown in FIGS. 3A to 3C, UL communication and DL communication are performed by several UL / DL patterns. However, it is not limited to these.
 図3Aのパターン1では、全ての時間間隔でUL通信/DL通信が可能である。なお、ここでの「時間間隔」は、図3A(B、Cも同様)における1つの四角の枠の時間幅(「E.g., subframe, slot or Mini-slot」と記載されている幅)である。この「時間間隔」をTTIと称してもよい。 In pattern 1 of FIG. 3A, UL communication / DL communication is possible at all time intervals. The “time interval” here is the width of one square frame in FIG. 3A (the same applies to B and C) (the width described as “E. g., Subframe, slot or Mini-slot”. ). This "time interval" may be referred to as TTI.
 図3Bに示すパターン2では、一部の時間間隔ではUL/DL送信方向が固定的に設定され、当該時間間隔では設定された通信方向しか許容されない。他方、その他の時間間隔では、UL/DLを切り替えて実施することが可能である。図3Cに示すパターン3では、一部の時間間隔と、時間間隔内のある区間(図示された例では、時間間隔内の両エンドの区間がDL及びULに固定的に設定されている)ではUL/DLが固定的に設定され、当該時間間隔では設定された送信方向しか許容されない。他方、その他の時間間隔では、UL通信/DL通信が可能である。 In the pattern 2 shown in FIG. 3B, the UL / DL transmission direction is fixedly set in a part of time intervals, and only the set communication direction is permitted in the relevant time intervals. On the other hand, it is possible to switch UL / DL and carry out in other time intervals. In the pattern 3 shown in FIG. 3C, a partial time interval and a section within the time interval (in the illustrated example, the sections at both ends within the time interval are fixedly set to DL and UL) UL / DL is fixedly set, and only the set transmission direction is permitted in the relevant time interval. On the other hand, UL communication / DL communication is possible at other time intervals.
 図4は、図3Cに示したパターン3に係るフレーム構成をより詳細に示す図である。以下では、説明の便宜上、上述した「時間間隔」をスロットと呼ぶ。ただし、以下で使用するスロットを、TTI(送信時間間隔)、単位時間長フレーム、サブフレーム、ミニスロットに置き換えても良い。スロットの時間長は、時間の経過によって変化しない固定的な時間長であってもよいし、パケットサイズ等により変化する時間長であってもよい。 FIG. 4 is a diagram showing the frame configuration according to the pattern 3 shown in FIG. 3C in more detail. Below, for convenience of explanation, the above-mentioned "time interval" is called a slot. However, the slots used in the following may be replaced with TTI (transmission time interval), unit time frame, subframe, minislot. The slot time length may be a fixed time length that does not change with the passage of time, or may be a time length that changes with packet size or the like.
 図4に示すように、本例において、1つのスロットは、下りの制御チャネル用の先頭の時間区間(DL制御チャネル区間)、データ通信用の時間区間(データ区間)、上りの制御チャネル用の末尾の時間区間(UL制御チャネル区間)を有することができる。必要に応じて下りの制御チャネル用の先頭の時間区間(DL制御チャネル区間)、及びデータ通信用の時間区間(データ区間)の構成を取るなど、必要なチャネルのみで構成されたスロット構成での送信が可能であってもよい。また、DLとULとの境には、切り替えのためのガード区間(GP:guard period)が設けられる。 As shown in FIG. 4, in this example, one slot has a leading time interval (DL control channel interval) for the downlink control channel, a time interval for data communication (data interval), and an uplink control channel. It may have a last time interval (UL control channel interval). In the slot configuration configured with only necessary channels, such as taking the configuration of the leading time interval (DL control channel interval) for the downlink control channel and the time interval (data interval) for data communication as necessary Transmission may be possible. Also, at the boundary between DL and UL, a guard period (GP: guard period) for switching is provided.
 一例として、UL control CHは、短い時間(例:1シンボル)で送信されてもよい。このような短い時間のUL control CHはShort PUCCHと呼ばれる。 As an example, UL control CH may be transmitted in a short time (eg, 1 symbol). Such a short time UL control CH is called Short PUCCH.
 (干渉パターンについて)
 本実施の形態において想定しているUE-to―UEの干渉について図5を参照して説明する。図5において、ユーザ装置102に着目すると、基地局201のセル、及び基地局203のセルがvictim cellであり、基地局202のセルはaggressor cellになる。図5に示すとおり、victim cellのユーザ装置101、103に対し、aggressor cellのユーザ装置102からのUL信号が干渉となっている。この干渉は、DLとULのクロスリンク干渉の例であり、例えば、ULデータチャネルがvictim cellのDL制御チャネルに対する干渉になる等、その影響は大きい。特に、ユーザ装置間の距離が短い場合にその影響が大きくなるため、例えば、図5に示すように、ユーザ装置間の距離が短いエリアをクラスタとし、そのクラスタ内でUE-to―UE干渉測定、及びUE-to―UE干渉低減制御を行うことが考えられる。
(About interference pattern)
The UE-to-UE interference assumed in the present embodiment will be described with reference to FIG. In FIG. 5, when focusing on the user apparatus 102, the cell of the base station 201 and the cell of the base station 203 are victim cells, and the cell of the base station 202 is an aggressor cell. As shown in FIG. 5, the UL signal from the user device 102 of the aggressor cell is an interference with the user devices 101 and 103 of the victim cell. This interference is an example of DL and UL cross-link interference, and its influence is large, for example, the UL data channel becomes interference to the DL control channel of the victim cell. In particular, when the distance between the user devices is short, the effect becomes large. For example, as shown in FIG. 5, an area where the distance between the user devices is short is regarded as a cluster, and UE-to-UE interference measurement is performed in the cluster. , And UE-to-UE interference reduction control may be performed.
 (基本的な動作例)
 一般に、セル内のユーザ装置100の数は非常に大きいため、各ユーザ装置ペアのユーザ装置間測定は非効率であり、オーバーヘッドも大きくなる。そこで、本実施の形態では、干渉測定用の時間・周波数リソース(以下、IMR(Interference Measurement Resource))を設定し、あるセルのユーザ装置100が、他セル(1つ又は複数)の複数ユーザ装置からの集約された(アグリゲートされた)クロスリンク干渉レベル(例:RSSI(Received Signal Strength Indicator))を測定する。測定結果はサービングセルの基地局200に報告され、セル間(基地局間)で干渉低減のための動作がなされる。ただし、RSSIは一例であり、他の量(例:RSRP)を測定してもよい。
(Basic operation example)
In general, since the number of user apparatuses 100 in a cell is very large, inter-user measurement of each user apparatus pair is inefficient and the overhead is also large. Therefore, in the present embodiment, a time / frequency resource for interference measurement (hereinafter, IMR (Interference Measurement Resource)) is set, and the user apparatus 100 of a certain cell is a multiple user apparatus of another cell (one or more). Measure the aggregated (aggregated) crosslink interference level (eg, RSSI (Received Signal Strength Indicator)) from The measurement results are reported to the base station 200 of the serving cell, and an operation for interference reduction is performed between the cells (between the base stations). However, the RSSI is an example, and another quantity (eg, RSRP) may be measured.
 例えば図5に示す構成において、aggressor cellのユーザ装置101にIMRを設定し、ユーザ装置101が当該IMRにおいて、ユーザ装置102(を含む複数ユーザ装置)から送信される信号の受信電力(例:上記のRSSI)を測定する。ユーザ装置101は、測定結果を基地局201に送信する。 For example, in the configuration shown in FIG. 5, an IMR is set in the user apparatus 101 of the aggressor cell, and the user apparatus 101 receives the received power of the signal transmitted from the user apparatus 102 (including multiple user apparatuses) in the IMR (e.g. Measure the RSSI) of The user apparatus 101 transmits the measurement result to the base station 201.
 基地局201は、ユーザ装置101から受信する測定結果に基づいて、例えば、基地局202のaggressor cellからの干渉が大きいことを把握すると、干渉を低減するために、自セルでの通信方向を調整する。あるいは、aggressor cellの基地局202に測定結果を送信し、aggressor cellの基地局202に送信方向を調整させる。 The base station 201 adjusts the communication direction in the own cell in order to reduce interference, for example, when it is understood that the interference from the aggressor cell of the base station 202 is large based on the measurement result received from the user apparatus 101. Do. Alternatively, the measurement result is transmitted to the base station 202 of the aggressor cell, and the base station 202 of the aggressor cell is caused to adjust the transmission direction.
 図6は、基地局200と、当該基地局200のセル(サービングセル)に在圏するユーザ装置100との間の基本的な動作例を説明するための図である。 FIG. 6 is a diagram for describing a basic operation example between the base station 200 and the user apparatus 100 located in the cell (serving cell) of the base station 200.
 S(ステップ)101において、基地局200はユーザ装置100に対し、設定情報を送信する。当該設定情報は、例えば、IMRを指定する情報(例:リソースの位置、リソースのサイズ、周期等)、測定結果の報告方法(報告の周期、時間オフセット等)、後述するIM(Interference measurement)プロセスの設定情報(例:IMRを指定する情報)、のいずれか1つ又はいずれか複数又は全部が含まれる。設定情報の送信は、ブロードキャスト情報(システム情報)、UE個別RRCシグナリング(例えば非特許文献1)、MAC CE、PDCCHのうちのいずれか1つ又はいずれか複数を使用して行われる。ただし、これらは例であり、その他の方法で設定情報が送信されてもよい。また、設定情報の全部又は一部がユーザ装置100に事前設定(preconfigured)されていてもよい。 In S (step) 101, the base station 200 transmits setting information to the user apparatus 100. The setting information includes, for example, information specifying an IMR (example: resource position, resource size, cycle, etc.), a method of reporting measurement results (report cycle, time offset, etc.), an IM (Interference measurement) process described later Configuration information (e.g., information for specifying an IMR), or any one or any plurality or all of them. Transmission of configuration information is performed using any one or more of broadcast information (system information), UE dedicated RRC signaling (for example, non-patent document 1), MAC CE, and PDCCH. However, these are examples, and setting information may be transmitted by other methods. In addition, all or part of the setting information may be preconfigured in the user device 100.
 S102において、ユーザ装置100は、IMRにおける受信電力の測定を行う。S103においてユーザ装置100は測定結果を基地局200に報告する。 In S102, the user apparatus 100 measures the received power in the IMR. The user apparatus 100 reports the measurement result to the base station 200 in S103.
 本実施の形態で想定される測定量であるRSSIは、CL-RSSI(cross link RSSI)と呼ばれてもよい。CL-RSSIは、例えば、「N個リソースブロックにわたる測定帯域幅における、設定された測定リソースのみにおいて、異なる送信方向の全ての干渉ソースからの、ユーザ装置により観測された、トータル受信電力(W)の線形平均」(the linear average of the total received power (in [W]) observed only in the configured measurement resource and in the measurement bandwidth over N number of resource blocks, by the UE from all interfering sources with different transmission direction.)と定義される。 RSSI which is a measurement quantity assumed in the present embodiment may be called CL-RSSI (cross link RSSI). The CL-RSSI is, for example, “total received power (W) observed by the user equipment from all interference sources in different transmission directions only at the set measurement resource in the measurement bandwidth across N resource blocks. Linear average of the total received power (in [W]) observed only in the configured measurement resource and in the measurement bandwidth over N number of resource blocks, by the UE from all interfering sources with different transmission direction. It is defined as).
 以下、具体的な測定方法について実施例1、2として説明し、測定結果の報告方法に関連する実施例を実施例3として説明する。 Hereinafter, specific measurement methods will be described as Examples 1 and 2, and an example related to a method of reporting measurement results will be described as Example 3.
 (実施例1)
 実施例1では、例として、図5に示したユーザ装置101が測定を行うものとする。また、一例として、想定されるUL干渉ソースが、図5に示したセル2(ユーザ装置102が存在するセル)であるとする。
Example 1
In the first embodiment, it is assumed that the user apparatus 101 shown in FIG. 5 performs measurement as an example. Also, as an example, it is assumed that the assumed UL interference source is the cell 2 (the cell in which the user apparatus 102 is present) illustrated in FIG.
 <実施例1-1>
 実施例1-1において、ユーザ装置101に設定されるIMRの例を図7(a)に示す。この例では、DLが設定されたスロット(Measurement slot)の中のデータ領域における2リソースエレメント(2OFDMシンボル×1サブキャリア)がIMRとして設定されている。Measurement slotに対応するセル2におけるスロット(Measured slot)のデータ領域には、ULが設定されており、当該データ領域において、複数のユーザ装置がULデータ通信(PUSCH/DMRS)をする可能性がある。
Example 1-1
FIG. 7A shows an example of the IMR set in the user apparatus 101 in the embodiment 1-1. In this example, two resource elements (2 OFDM symbols × 1 subcarrier) in a data area in a slot (measurement slot) in which DL is set are set as an IMR. UL is set in the data area of the slot (measured slot) in the cell 2 corresponding to the Measurement slot, and there is a possibility that a plurality of user apparatuses may perform UL data communication (PUSCH / DMRS) in the data area. .
 例えば、ユーザ装置101のサービングセルの基地局201は、セル2の基地局202からUL/DL構成の情報を通知されており、基地局201は、セル2においてULに設定されるスロットにおける図示のリソースで測定を行うことに対応するIMRの情報をユーザ装置101に設定する。 For example, the base station 201 of the serving cell of the user apparatus 101 is notified of the information of UL / DL configuration from the base station 202 of the cell 2, and the base station 201 illustrated resources in the slot set to UL in the cell 2. The information on the IMR corresponding to the measurement is set in the user apparatus 101.
 図7(a)に示すIMRは、LTEにおいて規定されているZP CSI-RSのリソースを適用した例である。ZP CSI-RSのリソースを適用する場合、IMRは、CSI-RSの候補位置上に設定される。また、リソースブロックにおけるIMRのリソースエレメントのタイプは、CSI-RSと同じであり、図7(a)に示したとおり、周波数方向が1サブキャリアであり、時間方向が2OFDMシンボルである。 The IMR shown in FIG. 7A is an example in which the resources of ZP CSI-RS defined in LTE are applied. When applying ZP CSI-RS resources, IMRs are set on CSI-RS candidate positions. Further, the type of resource element of IMR in the resource block is the same as that of CSI-RS, and as shown in FIG. 7A, the frequency direction is one subcarrier and the time direction is two OFDM symbols.
 IMRは、ZP CSI-RSのリソースと異なる設定としてもよい。例えば、基地局201は、IMRを、周辺セル(neighbor cell)においてPUSCH/DMRSが送信され得る任意のリソースに設定することができる。また、IMRのリソースサイズについても任意(フレキシブル)である。例えば、IMRとして、周波数方向が1サブキャリアであり、時間方向が2よりも大きなOFDMシンボルであるリソースを設定してもよい。また、IMRとして、周波数方向が複数サブキャリアであり、時間方向が1OFDMシンボルであるリソースを設定してもよい。 The IMR may be configured differently to the resources of the ZP CSI-RS. For example, the base station 201 can set the IMR to any resource to which PUSCH / DMRS can be transmitted in a neighbor cell (neighbor cell). Also, the resource size of the IMR is arbitrary (flexible). For example, as the IMR, a resource in which the frequency direction is one subcarrier and the time direction is an OFDM symbol larger than 2 may be set. Also, as the IMR, a resource in which the frequency direction is a plurality of subcarriers and the time direction is one OFDM symbol may be set.
 実施例1-1では、セル2においてULのデータ通信が実際に行われる場合に、ユーザ装置101がIMRで測定する受信電力が大きくなる。 In Example 1-1, when the data communication of UL is actually performed in the cell 2, the reception power measured by the user apparatus 101 by the IMR becomes large.
 実施例1-1の更なる例を図8に示す。図8は、基地局201の複数周辺セルのうちの1つのセル(Cell#b)において、PUSCH等上り送信リソースの一部を無送信に設定した例を示している(図8(c))。当該セルでは、例えばPUSCH送信リソースの一部を上位レイヤシグナリングもしくはL1/L2シグナリング(PDCCH等)で無送信にしてRate matchingを適用する。設定はセル単位でもよいしUE単位でもよい。この例に示した方法によれば、ある測定対象のリソースに対して、セルもしくはユーザ装置によって上り送信の有無を切り替えることができるため、後述する複数のIMプロセス(あるいはIMR)を設定することで干渉源(与干渉セルもしくは与干渉ユーザ装置)の特定が可能となる。基地局201は、上り送信リソースの無送信設定をバックホールシグナリングで他の基地局に通知してもよい。複数の無送信設定情報を通知してもよい。また、基地局201は、他の基地局から受信した無送信設定情報に基づいて測定設定を行ったり、ユーザ装置から報告された測定結果にもとづいて適切な基地局に対して干渉レベルの通知を行なったりすることができる。 A further example of Example 1-1 is shown in FIG. FIG. 8 shows an example in which a part of uplink transmission resources such as PUSCH is set to non-transmission in one cell (Cell # b) among a plurality of neighboring cells of the base station 201 (FIG. 8 (c)). . In the cell, for example, part of the PUSCH transmission resource is not transmitted by higher layer signaling or L1 / L2 signaling (PDCCH or the like), and Rate matching is applied. The setting may be in units of cells or in units of UEs. According to the method shown in this example, the presence or absence of uplink transmission can be switched by the cell or user apparatus for a certain measurement target resource, so by setting a plurality of IM processes (or IMRs) described later. It becomes possible to identify the interference source (interfering cell or interfering user apparatus). The base station 201 may notify another base station of no transmission setting of uplink transmission resource by backhaul signaling. A plurality of non-transmission setting information may be notified. Also, the base station 201 performs measurement setting based on non-transmission setting information received from another base station, or notifies an appropriate base station of an interference level based on the measurement result reported from the user apparatus. It can be done.
 <実施例1-2>
 実施例1-2においてユーザ装置101に設定されるIMRの例を図9(a)に示す。実施例1-2では、DLが設定されたスロット(Measurement slot)において、セル2でSRSが設定されるリソースにIMRが設定される。
Example 1-2
An example of the IMR set to the user apparatus 101 in the embodiment 1-2 is shown in FIG. 9 (a). In Example 1-2, in the slot (Measurement slot) in which the DL is set, the IMR is set in the resource in which the SRS is set in the cell 2.
 すなわち、図9(b)に示すようにセル2のユーザ装置からSRSの送信が行われるシンボルにIMRが設定される。 That is, as shown in FIG.9 (b), IMR is set to the symbol in which transmission of SRS is performed from the user apparatus of the cell 2. FIG.
 例えば、ユーザ装置101のサービングセルの基地局201は、セル2の基地局202からSRSの設定情報を通知されており、基地局201は、セル2においてSRSが送信されるリソースをIMRとしてユーザ装置101に設定する。また、当該IMRは、例えば、セル2でのSRS設定におけるComb(SRSが送信される櫛の歯状の周波数リソース)と重複するように設定されてもよいし、SRSが送信されるシンボルにおける周波数全体(図9(a)の例)に設定されてもよい。 For example, the base station 201 of the serving cell of the user apparatus 101 is notified of the SRS configuration information from the base station 202 of the cell 2, and the base station 201 uses the resource to which the SRS is transmitted in the cell 2 as the IMR. Set to Also, the IMR may be set, for example, to overlap with Comb (the comb tooth-like frequency resource to which SRS is transmitted) in SRS setting in cell 2, or the frequency in the symbol in which SRS is transmitted. It may be set to the whole (example in FIG. 9A).
 実施例1-2では、セル2においてULデータ通信があまり行われない場合でも、IMRで測定した受信電力は大きくなる。 In Example 1-2, even when UL data communication is not performed in the cell 2 very much, the reception power measured by the IMR becomes large.
 <IMRの設定方法について>
 以下、基地局201から配下のユーザ装置(ユーザ装置101等)にIMRを設定する場合を例にとって、設定方法のバリエーションを説明する。
<About the setting method of IMR>
Hereinafter, variations of the setting method will be described by taking an example in which the IMR is set from the base station 201 to a subordinate user apparatus (user apparatus 101 or the like).
 (1)オプション1
 オプション1では、基地局201は、配下のユーザ装置に対し、IMRをセル固有(cell specific)に設定する。この例では、例えば、GC(Group-common)-PDCCH、あるいはRRCシグナリングが使用される。オプション1では、セル内の全てのユーザ装置に同じIMRが設定される。オプション1ではIMRに係るオーバーヘッドが非常に小さいという利点がある。
(1) Option 1
In Option 1, the base station 201 sets the IMR to cell specific for the subordinate user apparatuses. In this example, for example, GC (Group-common) -PDCCH or RRC signaling is used. In Option 1, the same IMR is configured for all user devices in the cell. Option 1 has the advantage of very low IMR overhead.
 (2)オプション2
 オプション2では、基地局201は、配下のユーザ装置に対し、IMRをUE固有(UE specific)に設定する。この例では、例えば、RRCシグナリングが使用される。オプション2において、オーバーヘッドを削減するために、例えば、ユーザ装置間測定を行うユーザ装置の数が制限されてもよい。
(2) Option 2
In Option 2, the base station 201 sets the IMR to UE specific for the subordinate user equipment. In this example, for example, RRC signaling is used. In option 2, in order to reduce overhead, for example, the number of user equipments performing inter-user equipment measurements may be limited.
 例えば、ユーザ装置に対し、基地局201から、ユーザ装置間測定の実行要否が設定される。一例として、DL RSRP(ユーザ装置から基地局201に報告されるDL RSRP)が閾値よりも小さなユーザ装置に対し、ユーザ装置間測定の実行要が設定される。その理由は、DL RSRPが小さい場合、クロスリンク干渉を受け易いからである。 For example, whether to perform inter-user apparatus measurement is set from the base station 201 for the user apparatus. As an example, the execution requirement of the inter-user-device measurement is set for a user device whose DL RSRP (DL RSRP reported from the user device to the base station 201) is smaller than a threshold. The reason is that when DL RSRP is small, it is susceptible to cross link interference.
 実施例1により、ユーザ装置100は、周辺セルからの干渉を適切に測定できるようになる。 The first embodiment enables the user apparatus 100 to appropriately measure interference from neighboring cells.
 (実施例2)
 次に、実施例2を説明する。実施例2おいても、例として、図5に示したユーザ装置101が測定を行うものとする。
(Example 2)
Next, Example 2 will be described. Also in the second embodiment, as an example, it is assumed that the user device 101 shown in FIG. 5 performs the measurement.
 実施例2では、干渉測定(Interference Measurement)プロセス(以下、IMプロセス)が定義される。なお、干渉測定プロセスを、測定プロセスと称してもよい。IMプロセスとは、複数の隣接セルからの特定の干渉状況を想定した場合におけるIMRのことである。このようなIMプロセスの設定により、ダイナミックなDL/DL変更に起因する異なる想定のクロスリンク干渉を測定することが可能となる。具体例は後述する。 In Example 2, an Interference Measurement process (hereinafter, an IM process) is defined. The interference measurement process may be referred to as a measurement process. The IM process is an IMR in the case of assuming a specific interference situation from a plurality of neighboring cells. Such an IM process setup makes it possible to measure different assumed crosslink interferences due to dynamic DL / DL changes. A specific example will be described later.
 ユーザ装置101には、例えば複数のIMプロセスが基地局201から設定される。ユーザ装置101は、複数のIMプロセスにおけるIMRで受信電力(RSSI)を測定する。なお、通常、異なるIMプロセス間でのIMRは異なる。ただし、異なるIMプロセス間でのIMRが全く同じであってもよいし、一部が重なってもよい。また、後述するように、時間分割で、1つのIMプロセスで、複数のIMプロセス分の測定を行うことも可能である。また、IMプロセスにおける設定において前述した無送信とするセル及びそのリソース情報が含まれても良い。 For example, a plurality of IM processes are set in the user apparatus 101 from the base station 201. The user device 101 measures received power (RSSI) at IMRs in multiple IM processes. Note that, usually, the IMR is different between different IM processes. However, the IMRs between different IM processes may be identical or may partially overlap. In addition, as described later, it is also possible to perform measurement for a plurality of IM processes in one IM process by time division. Also, the non-transmission cell and its resource information described above in the setting in the IM process may be included.
 あるIMプロセスにおけるIMRの設定は、当該IMプロセスに対応する、周辺セルにおけるUL送信(クロスリンク干渉)の状況の想定(hypothesis)において、干渉を測定できるような設定である。 The setting of the IMR in an IM process is a setting that can measure interference in the hypothesis of UL transmission (crosslink interference) in neighboring cells corresponding to the IM process.
 図10は、IMRプロセスの例を説明するための図である。図10の横軸におけるセル1~セル3は、例えば、図5に示したクラスタ内のセル1~セル3である。図10の縦軸におけるA~Gは、IMRを示す。また、図10における各行は、同一時刻(例:あるスロット)における各セルのUL送信の想定を示している。1つの行(IMRと、それに対応する各セルのUL送信の想定)が1つのIMプロセスであると考えてよい。また、1つの行におけるIMRが、1つのIMプロセスであると考えてもよい。 FIG. 10 is a diagram for explaining an example of the IMR process. Cell 1 to cell 3 on the horizontal axis of FIG. 10 are, for example, cell 1 to cell 3 in the cluster shown in FIG. A to G on the vertical axis of FIG. 10 indicate IMR. Further, each row in FIG. 10 shows the assumption of UL transmission of each cell at the same time (eg, a certain slot). One row (IMR and corresponding UL transmission assumption for each cell) may be considered as one IM process. Also, IMR in one row may be considered as one IM process.
 例えば、図10におけるIMRがB(IMR-B)の行において、セル1が「ZP CSI-RS」であるとは、IMR-Bにおいて、セル1のUL送信がないと想定されることを示し、セル2が「PUSCH/DMRS/SRS」であるとは、IMR-Bにおいて、セル2のUL送信(PUSCH又はDMRS又はSRS)があると想定されることを示し、セル3が「PUSCH/DMRS/SRS」であるとは、IMR-Bにおいて、セル3のUL送信(PUSCH又はDMRS又はSRS)があると想定されることを示している。 For example, in the row of B (IMR-B), the IMR in FIG. 10 indicates that cell 1 is “ZP CSI-RS” means that there is no UL transmission of cell 1 in IMR-B. The fact that cell 2 is “PUSCH / DMRS / SRS” means that it is assumed that there is UL transmission (PUSCH or DMRS or SRS) of cell 2 in IMR-B, and cell 3 is “PUSCH / DMRS “/ SRS” indicates that it is assumed that there is UL transmission (PUSCH or DMRS or SRS) of cell 3 in IMR-B.
 一例として、セル1(図5の基地局201のセル)の基地局201は、ユーザ装置101に対してIMR-A、B、C、Dを設定し、ユーザ装置101は、IMR-A、B、C、Dのそれぞれで測定を実施する。 As an example, the base station 201 of the cell 1 (the cell of the base station 201 in FIG. 5) sets IMR-A, B, C, D for the user apparatus 101, and the user apparatus 101 performs IMR-A, B , C and D respectively.
 なお、IMR-Aに対応するIMプロセスをIMプロセスAとし、IMR-Bに対応するIMプロセスをIMプロセスBとし、IMR-Cに対応するIMプロセスをIMプロセスCとし、IMR-Dに対応するIMプロセスをIMプロセスDとした場合において、「IMR-A、B、C、Dを設定する」とは、「IMプロセスA、B、C、Dを設定する」ことと同義と考えてよい。ユーザ装置101は、一例として下記の測定結果を得る。 The IM process corresponding to IMR-A is IM process A, the IM process corresponding to IMR-B is IM process B, the IM process corresponding to IMR-C is IM process C, and IMR-D is compatible. When the IM process is set to IM process D, “set IMR-A, B, C, D” may be considered as synonymous with “set IM process A, B, C, D”. The user device 101 obtains the following measurement results as an example.
 IMR-Aにおける測定により、セル2とセル3のいずれにおいてもUL送信(クロスリンク送信)がなされないという想定に対応する測定結果(例:受信電力=小)が得られる。IMR-Bにおける測定により、セル2とセル3のいずれにおいてもUL送信がなされるという想定に対応する測定結果(例:受信電力=大)が得られる。IMR-Cにおける測定により、セル2においてUL送信がなされず、セル3においてUL送信がなされるという想定に対応する測定結果(例:受信電力=中)が得られる。IMR-Dにおける測定により、セル3においてUL送信がなされず、セル2においてUL送信がなされるという想定に対応する測定結果(例:受信電力=中)が得られる。 As a result of the measurement in IMR-A, a measurement result (for example, received power = low) corresponding to the assumption that UL transmission (crosslink transmission) is not performed in any of cell 2 and cell 3 is obtained. By the measurement in IMR-B, the measurement result (for example, received power = high) corresponding to the assumption that UL transmission is performed in both cell 2 and cell 3 is obtained. The measurement in IMR-C gives a measurement result (eg, reception power = medium) corresponding to the assumption that UL transmission is not performed in cell 2 and UL transmission is performed in cell 3. The measurement in IMR-D gives a measurement result (eg, reception power = medium) corresponding to the assumption that UL transmission is not performed in cell 3 but UL transmission is performed in cell 2.
 上記と同様に、図10の想定の場合において、例えば、セル2の基地局202は、ユーザ装置102に対してIMR-A、C、E、Fを設定する。また、例えば、セル3の基地局203は、ユーザ装置103に対してIMR-A、D、E、Gを設定する。 Similarly to the above, in the case of the assumption of FIG. 10, for example, the base station 202 of the cell 2 sets IMR-A, C, E, F for the user apparatus 102. Also, for example, the base station 203 of the cell 3 sets IMR-A, D, E, and G for the user apparatus 103.
 なお、各セルの基地局は、周辺セルの基地局との間で、例えばUL/DLの構成情報を交換することで、図10に示す表の情報を作成することができる。また、各IMRに対応する各セルのUL送信有無の状況は、時間の経過により変わるため、図10に示す想定内容は、時間の経過により変わり得る。各基地局は、例えば、所定の時間間隔で、変更後の各セルのUL送信の想定に基づくIMプロセスを配下のユーザ装置に設定することとしてもよい。 Note that the base station of each cell can create the information of the table shown in FIG. 10 by exchanging, for example, UL / DL configuration information with the base station of the neighboring cell. Further, since the status of UL transmission / non-transmission of each cell corresponding to each IMR changes with the passage of time, the assumed contents shown in FIG. 10 may change with the passage of time. Each base station may, for example, set an IM process based on the assumption of UL transmission of each cell after change to a subordinate user apparatus at predetermined time intervals.
 実施例2により、ユーザ装置100は、周辺セルからのクロスリンク干渉の状況に応じたIMRを使用することで、周辺セルからのクロスリンク干渉を適切に把握することが可能となる。 According to the second embodiment, the user apparatus 100 can appropriately grasp crosslink interference from neighboring cells by using the IMR according to the situation of crosslink interference from neighboring cells.
 (実施例3)
 実施例3は、実施例2で説明したように、複数IMプロセスがユーザ装置101に設定される場合において、ユーザ装置101が実施する測定報告(measurement report)の方法の例について説明する。以下、実施例3-1~3-4を説明する。なお、以下の説明では、主にユーザ装置101が報告を行う例を説明する。
(Example 3)
In the third embodiment, as described in the second embodiment, an example of a method of measurement report (measurement report) performed by the user device 101 when a plurality of IM processes are set in the user device 101 will be described. Examples 3-1 to 3-4 will be described below. In the following description, an example in which the user apparatus 101 mainly performs reporting will be described.
 <実施例3-1>
 実施例3-1において、ユーザ装置101は、ユーザ装置101に設定された複数IMプロセス(1つのIMプロセスでもよい)の測定結果を、IMプロセス毎に、別々に基地局201に報告する。基地局201は、ユーザ装置101(及びその他のユーザ装置)から報告された測定結果に基づいて、例えば、クロスリンク干渉低減のための送信方向調整等を行う。
Example 3-1
In Example 3-1, the user apparatus 101 separately reports the measurement results of a plurality of IM processes (or one IM process) set in the user apparatus 101 to the base station 201 separately for each IM process. The base station 201 performs, for example, transmission direction adjustment for cross link interference reduction, based on the measurement result reported from the user apparatus 101 (and other user apparatuses).
 より具体的には、例えば、ユーザ装置101は、ユーザ装置101に設定された複数IMプロセスにおける全てのIMプロセスの測定結果を基地局201に報告する。基地局201は、当該測定報告に基づいて、クロスリンク干渉状況を判断することができる。 More specifically, for example, the user apparatus 101 reports, to the base station 201, measurement results of all IM processes in a plurality of IM processes set in the user apparatus 101. The base station 201 can determine the cross link interference situation based on the measurement report.
 一例として、図10に示す想定の下、IMR-Cのプロセスにおける測定結果(受信電力)が小さい場合(例:所定の閾値Aよりも小さい場合)、基地局201は、セル3においてUL送信が想定されるものの、それによるクロスリンク干渉は小さいので、送信方向の調整を行わないことを判断できる。 As an example, under the assumption shown in FIG. 10, when the measurement result (received power) in the process of IMR-C is small (eg, smaller than predetermined threshold A), base station 201 performs UL transmission in cell 3 Although it is assumed, the resulting crosslink interference is small, so it can be determined not to adjust the transmission direction.
 また、図10に示す想定の下、IMR-Dのプロセスにおける測定結果(受信電力)が大きい場合(例:所定の閾値Bよりも大きい場合)、基地局201は、セル2におけるUL送信に起因するクロスリンク干渉が大きいので、送信方向の調整を行うと判断できる。この例では、例えば、基地局201は、該当のスロットにおいて、セル2と送信方向を揃える調整を行うことができる。 Further, under the assumption shown in FIG. 10, when the measurement result (received power) in the process of IMR-D is large (for example, larger than predetermined threshold B), base station 201 is caused by UL transmission in cell 2. It can be determined that the adjustment of the transmission direction is to be performed because the crosslink interference to be performed is large. In this example, for example, the base station 201 can perform adjustment to align the transmission direction with the cell 2 in the corresponding slot.
 また、例えば、ユーザ装置101は、ユーザ装置101に設定された複数IMプロセスの中の一部のIMプロセス(1つ又は複数のIMプロセス)の測定結果を基地局201に報告することとしてもよい。一例として、ユーザ装置101は、ユーザ装置101に設定された複数IMプロセスにおける測定結果のうち、所定の閾値Cよりも大きな測定結果を基地局201に送信する。ユーザ装置101に設定された複数IMプロセスにおける測定結果のうち、所定の閾値Cよりも大きくない測定結果については、基地局201に報告しない。 Also, for example, the user apparatus 101 may report the measurement results of some IM processes (one or more IM processes) among the plurality of IM processes set in the user apparatus 101 to the base station 201. . As an example, the user apparatus 101 transmits, to the base station 201, a measurement result larger than a predetermined threshold C among measurement results in a plurality of IM processes set in the user apparatus 101. Among the measurement results in the plurality of IM processes set in the user apparatus 101, the measurement result not larger than the predetermined threshold C is not reported to the base station 201.
 基地局201は、報告を受けた測定結果に基づき、対応するIMプロセスの想定の下で、クロスリンク干渉の内容を判断できる。基地局201は、報告を受けなかった測定結果に関しては、対応するIMプロセスの想定の下でのセルからのクロスリンク干渉がないと判断できる。例えば、図10に示す想定において、基地局201が、ユーザ装置101からIMR-CのIMプロセスの測定結果を受信しない場合、基地局201は、セル3においてUL送信が想定されるものの、それによるクロスリンク干渉は小さいと判断できる。 The base station 201 can determine the content of the crosslink interference based on the reported measurement result under the assumption of the corresponding IM process. The base station 201 can determine that there is no crosslink interference from the cell under the assumption of the corresponding IM process with respect to the measurement result that has not received the report. For example, in the case shown in FIG. 10, when the base station 201 does not receive the measurement result of the IM process of IMR-C from the user apparatus 101, the base station 201 assumes UL transmission in the cell 3, but It can be determined that crosslink interference is small.
 <実施例3-2>
 実施例3-2では、ユーザ装置101は、ユーザ装置101に設定されたIMプロセスの測定結果とDL測定結果とをまとめて(jointly)基地局201に報告する。この例では、ユーザ装置101は、IMプロセスの測定(つまりIMRを利用した測定)と、DLの測定を行う。DLの測定方法に関して、特定の方法に限定されないが、例えば、IMRの設定されるスロットにおいて、サービングセルのDLの受信電力を測定する。DLの受信電力はRSSIでもよいし、RSRPでもよい。
Example 3-2
In Example 3-2, the user apparatus 101 jointly reports the measurement result of the IM process and the DL measurement result set in the user apparatus 101 to the base station 201. In this example, the user apparatus 101 performs measurement of an IM process (that is, measurement using IMR) and measurement of DL. With regard to the measurement method of DL, although not limited to a particular method, for example, the DL reception power of the serving cell is measured in a slot where IMR is configured. The received power of DL may be RSSI or RSRP.
 一例として、図7(a)に示すIMRが設定されている場合において、当該IMRが設定されているスロットの所定のDLリソース(例:サービングセルのDL参照信号のリソース)で測定を行う。実施例3-2では、IMプロセスが、IMRの測定とDL測定を含むこととしてよい。 As an example, when the IMR shown in FIG. 7A is set, measurement is performed using a predetermined DL resource (for example, a resource of a DL reference signal of a serving cell) of a slot in which the IMR is set. In Example 3-2, the IM process may include the measurement of IMR and the measurement of DL.
 複数IMプロセスの測定結果とDL測定結果とをまとめて受信する基地局201は、受信した測定結果に基づいて、例えば、DL受信電力が弱く、干渉の大きなスロットにおいて、自セルのユーザ装置に対するDLスケジューリングを行わないような調整を実施することができる。また、実施例3-1と同様の基地局間調整を行うこともできる。 Based on the received measurement results, the base station 201 that receives the measurement results of the multiple IM process and the DL measurement together collectively has, for example, a DL for the user apparatus in its own cell in a slot with large DL reception power and large interference. Adjustments can be made to avoid scheduling. Further, inter-base station adjustment similar to that of the embodiment 3-1 can also be performed.
 報告方法のバリエーションは実施例3-1と同様である。すなわち、例えば、ユーザ装置101は、ユーザ装置101に設定された複数IMプロセスにおける全てのIMプロセスの総合測定結果(IMRの測定結果とDL測定結果)を基地局201に報告する。基地局201は、当該総合測定報告に基づいて、クロスリンク干渉状況を判断することができる。 Variations of the reporting method are the same as in Example 3-1. That is, for example, the user apparatus 101 reports, to the base station 201, the integrated measurement results (measurement results of IMR and DL measurement results) of all IM processes in a plurality of IM processes set in the user apparatus 101. The base station 201 can determine the cross link interference situation based on the comprehensive measurement report.
 また、例えば、ユーザ装置101は、ユーザ装置101に設定された複数IMプロセスの中の一部のIMプロセス(1つ又は複数のIMプロセス)についての総合測定結果を基地局201に報告することとしてもよい。一例として、ユーザ装置101は、ユーザ装置101に設定された複数IMプロセスにおける総合測定結果のうち、所定の閾値Dよりも大きなIMR測定結果を持つ総合測定結果を基地局201に送信する。 Also, for example, as the user apparatus 101 reports, to the base station 201, an overall measurement result of part of IM processes (one or more IM processes) in the plurality of IM processes set in the user apparatus 101. It is also good. As an example, the user apparatus 101 transmits, to the base station 201, an overall measurement result having an IMR measurement result larger than a predetermined threshold D among the overall measurement results in the plurality of IM processes set in the user apparatus 101.
 また、実施例3-2において、ユーザ装置101は、IMプロセスの測定(つまりIMRを利用した測定)と、DLの干渉測定を行って、これらを報告することとしてもよい。DLの干渉測定方法に関して、特定の方法に限定されないが、例えば、IMRの設定されるスロット(あるはその他のスロット)において、他セルでのDL通信が行われることが想定されるリソース(例:他セルのDLデータリソース、あるいはDL参照信号のリソース)をDL測定用リソース(例:ZP CSI RSと同様のリソース)として設定し、当該DL測定用リソースで受信電力を測定する。ここでの受信電力はRSSIでもよいし、RSRPでもよい。また、IMプロセスは、IMR測定とDL干渉測定を含むこととしてよい。 In Example 3-2, the user apparatus 101 may measure the IM process (that is, measurement using the IMR) and perform interference measurement of the DL and report these. The DL interference measurement method is not limited to a particular method, but for example, it is assumed that DL communication in another cell is performed in the slot (or some other slot) in which IMR is set (eg: A DL data resource of another cell or a resource of a DL reference signal is set as a DL measurement resource (eg, a resource similar to ZP CSI RS), and the reception power is measured by the DL measurement resource. The received power here may be RSSI or RSRP. Also, the IM process may include IMR measurement and DL interference measurement.
 複数IMプロセスの測定結果と、DL干渉測定結果とをまとめて受信する基地局201は、受信した測定結果に基づいて、例えば、干渉の大きなスロットにおいて、自セルあるいは他セルのユーザ装置に対するDLスケジューリングを行わないような調整を実施することができる。また、実施例3-1と同様の基地局間調整を行うこともできる。 Based on the received measurement results, the base station 201 that receives the measurement results of multiple IM processes and the DL interference measurement together collectively, for example, performs DL scheduling for user apparatuses in its own cell or other cells in a slot with large interference. Can be implemented to avoid Further, inter-base station adjustment similar to that of the embodiment 3-1 can also be performed.
 報告方法のバリエーションは実施例3-1と同様である。すなわち、例えば、ユーザ装置101は、ユーザ装置101に設定された複数IMプロセスにおける全てのIMプロセスの総合測定結果(IMRの測定結果とDL干渉測定結果)を基地局201に報告する。基地局201は、当該総合測定報告に基づいて、干渉状況を判断することができる。 Variations of the reporting method are the same as in Example 3-1. That is, for example, the user apparatus 101 reports, to the base station 201, the integrated measurement results (measurement results of IMR and DL interference measurement results) of all IM processes in a plurality of IM processes set in the user apparatus 101. The base station 201 can determine the interference status based on the comprehensive measurement report.
 また、例えば、ユーザ装置101は、ユーザ装置101に設定された複数IMプロセスの中の一部のIMプロセス(1つ又は複数のIMプロセス)の総合測定結果を基地局201に報告することとしてもよい。一例として、ユーザ装置101は、ユーザ装置101に設定された複数IMプロセスにおける総合測定結果のうち、IMR測定結果とDL干渉測定結果の合計(平均でもよい)が所定の閾値Eよりも大きな総合測定結果を基地局201に送信する。 Also, for example, the user apparatus 101 may report, to the base station 201, an integrated measurement result of part of IM processes (one or more IM processes) among a plurality of IM processes set in the user apparatus 101. Good. As an example, the user apparatus 101 is an integrated measurement in which the sum (or an average) of the IMR measurement result and the DL interference measurement result among the integrated measurement results in the plurality of IM processes set in the user apparatus 101 is larger than a predetermined threshold E. The result is sent to the base station 201.
  <実施例3-3>
 以下の実施例3-3及び実施例3-4の説明において、「IMプロセス/IMR」という記載は、処理を実施例2で説明したIMプロセスに適用してもよいし、実施例1で説明したIMRに適用してもよいことを示す。なお、実施例1で説明したIMRを「IMプロセス」と解釈してもよい。
Example 3-3
In the description of Example 3-3 and Example 3-4 below, the description “IM process / IMR” may apply the process to the IM process described in Example 2, and will be described in Example 1. Indicates that it may be applied to the IMR. The IMR described in the first embodiment may be interpreted as "IM process".
 ユーザ装置101は、基地局201から設定されたIMプロセス/IMRのサブセットを選択して、測定及び報告を行うこととしてもよい。 The user apparatus 101 may select a subset of IM processes / IMRs set from the base station 201 to perform measurement and reporting.
 例えば、基地局201がN(Nは1以上の整数)個のIMプロセスをユーザ装置101に設定した場合において、ユーザ装置101はM(<=N)個のIMプロセスを選択して測定・報告を行う。N個のIMプロセスは、例えば、基地局201と協調可能な全ての周辺セル(周辺基地局)に関するIMプロセスである。Mは予め定められた値でも良いし、上位レイヤでシグナリングされた値でもよいし、UE capabilityに基づいて決まる値でもよい。なお、ユーザ装置101からの測定・報告はDL測定/UE間測定に関わらなくてもよい。 For example, when the base station 201 sets N (N is an integer of 1 or more) IM processes to the user apparatus 101, the user apparatus 101 selects M (<= N) IM processes to measure and report I do. The N IM processes are, for example, IM processes on all neighboring cells (nearby base stations) that can cooperate with the base station 201. M may be a predetermined value, a value signaled in the upper layer, or a value determined based on UE capability. In addition, the measurement and the report from the user apparatus 101 do not need to be concerned with DL measurement / measurement between UEs.
 また、基地局201からの設定は、UE specificでなくUE group commonもしくはCell specificであってもよい。各ユーザ装置はそれぞれの能力などに応じてサブセットを選択することが可能である。 Also, the configuration from the base station 201 may not be UE specific but UE group common or Cell specific. Each user device can select a subset according to their capabilities.
 実施例3-3では、基地局201は、干渉レベル及び/又はUE能力を考慮せずに、協調可能な全ての周辺セルに対応するIMプロセスを設定することができるため運用が容易になる。また、基地局201からの設定をブロードキャスト情報などで通知することも可能になるため、シグナリングオーバーヘッドを削減できる。 In the embodiment 3-3, the base station 201 can easily operate since it can set IM processes corresponding to all cooperable peripheral cells without considering the interference level and / or the UE capability. In addition, since it becomes possible to notify the setting from the base station 201 by broadcast information or the like, the signaling overhead can be reduced.
 また、ユーザ装置101は、基地局201への報告において、測定結果とともに、選択したサブセットのIMプロセスのIDを報告することとしてもよい。なお、ユーザ装置101は、基地局201に対し、測定結果とは別に、選択したサブセットのIMプロセスのIDを報告してもよい。 In addition, in the report to the base station 201, the user apparatus 101 may report the ID of the IM process of the selected subset along with the measurement result. The user apparatus 101 may report, to the base station 201, the ID of the IM process of the selected subset separately from the measurement result.
 また、上記報告を受けた基地局201が、ユーザ装置101により選択されたサブセットに含まれないIMプロセス/IMRに対する測定結果の報告をユーザ装置101に要求してもよい。ユーザ装置101は、当該要求を受けた場合、未測定あるいは低干渉などを示す結果を基地局201に報告するとしてもよい。 Also, the base station 201 that has received the report may request the user apparatus 101 to report measurement results for IM processes / IMRs not included in the subset selected by the user apparatus 101. When the user apparatus 101 receives the request, the user apparatus 101 may report a result indicating unmeasured or low interference to the base station 201.
 上記のようにサブセットの報告を行うことで、サブセットの認識をユーザ装置/基地局間で合わせることができる。また、選択されたサブセットを基地局が認識する必要のないロバストな運用が可能となる。 By reporting the subset as described above, the recognition of the subset can be coordinated between the user apparatus and the base station. Also, robust operation can be performed without the base station having to recognize the selected subset.
 サブセットの選択方法に関して、ユーザ装置101は、DLの検出結果あるいは測定結果に基づいてサブセットを決定してもよい。 Regarding the subset selection method, the user apparatus 101 may determine the subset based on the detection result or measurement result of DL.
 例えば、ユーザ装置101は、周辺セルの測定結果、検出された周辺セルのセルID、検出したビームID、及びブロードキャスト情報のうちのいずれか1つ又はいずれか複数に基づいてサブセットを決定することができる。 For example, the user apparatus 101 may determine the subset based on any one or more of a measurement result of a neighboring cell, a cell ID of a detected neighboring cell, a detected beam ID, and broadcast information. it can.
 この場合、基地局201からユーザ装置101に設定されるIMプロセス/IMRには、対応する一つ以上のセルID及び/又はビームID及び/又は報告用の閾値などが設定され、ユーザ装置101は、IMプロセス/IMRごとに、設定された条件を満たした場合にのみ、測定及び報告を行う。ユーザ装置101に設定されたあるIMプロセス(IMプロセスAとする)を例にとって説明する。例えば、IMプロセスAに、「セルID=C」が設定されていた場合、これは、セルID=Cのセルを検出したときにIMプロセスAの測定及び報告を行うことを意味する。よって、ユーザ装置101は、DL検出の結果、セルID=Cのセルを検出した場合にIMプロセスAの測定及び報告を行う。 In this case, in the IM process / IMR set from the base station 201 to the user apparatus 101, one or more corresponding cell IDs and / or beam IDs and / or thresholds for reporting are set, and the user apparatus 101 , IM process / IMR, measure and report only when the set conditions are met. An IM process (referred to as an IM process A) set in the user device 101 will be described as an example. For example, if “cell ID = C” is set in IM process A, this means that IM process A measurement and reporting are performed when a cell with cell ID = C is detected. Therefore, the user apparatus 101 measures and reports the IM process A when it detects a cell of cell ID = C as a result of DL detection.
 また、例えば、IMプロセスAに、「セルID=C、閾値=受信電力C」が設定されていた場合、これは、セルID=Cのセルを検出し、そのセルの測定結果が受信電力Cよりも大きい場合に、IMプロセスAの測定及び報告を行うことを意味する。よって、ユーザ装置101は、DL検出/測定の結果、セルID=Cのセルを検出し、そのセルの測定結果が受信電力Cよりも大きいことを検出した場合に、IMプロセスAの測定及び報告を行う。 Also, for example, when “cell ID = C, threshold = received power C” is set in IM process A, this detects a cell with cell ID = C, and the measurement result of that cell is the received power C. When larger, it means performing IM process A measurement and reporting. Therefore, when user apparatus 101 detects a cell of cell ID = C as a result of DL detection / measurement and detects that the measurement result of the cell is larger than reception power C, the measurement and report of IM process A I do.
 また、ユーザ装置101は、サブセットに含まれるIMプロセス/IMRの測定を行って、上記の条件を満たす事象を検出したことをトリガとして、条件に対応するIMプロセス/IMRの測定結果を基地局201に報告してもよい。 Also, the user apparatus 101 measures the IM process / IMR included in the subset, and uses the detection of the event that satisfies the above conditions as a trigger to measure the IM process / IMR corresponding to the condition as the base station 201. You may report to
 近傍セルほどUE間干渉が強くなる傾向があるため、上記のようなDL検出/測定に基づく測定/報告を行うことで、測定/報告の対象を特定のものに限定できるので、UE間測定のオーバーヘッド・Complexityを下げることができる。 Since there is a tendency for UE-to-UE interference to become stronger as the neighboring cells are taken, by performing measurement / reporting based on DL detection / measurement as described above, the target of measurement / report can be limited to a specific one. Overhead · Complexity can be lowered.
 <実施例3-4>
 あるIMプロセス/IMRにおける報告の設定に基づき、ユーザ装置101が実施する当該IMプロセス/IMRの測定の時間範囲が決定されるようにしてもよい。例えば、報告を行う時間及び/又は報告の要求を受信した時間に応じて測定対象の時間範囲が定まるようにすることとしてよい。
Example 3-4
The time range of the measurement of the IM process / IMR performed by the user apparatus 101 may be determined based on the setting of the report in an IM process / IMR. For example, the time range to be measured may be determined according to the time for making a report and / or the time for receiving a request for a report.
 具体的には、例えば、基地局201からの設定に基づいて、あるIMプロセス/IMRの測定結果の報告を周期的に行うこと(例:20ms毎にK番のスロットで報告)がユーザ装置101に設定されたとする。このとき、例えば、ユーザ装置101は、当該IMプロセス/IMRを使用した測定を、K+1番のサブフレームからM個分のサブフレームの時間範囲で測定(測定1とする)するとともに、次のM個分のサブフレームの時間範囲でも測定(測定2)を行う。例えば、これら時間範囲のそれぞれで、周期的に到来するIMRによる測定が複数回行われ、それを平均したものが測定結果になる。そして、報告タイミングでは、測定1の測定結果と、測定2の測定結果を報告する。例えば、図10の例を使用すると、測定1の測定時間における測定は、IMR-Bの想定に対応し、測定2の測定時間における測定はIMR-Cの想定に対応する。 Specifically, for example, periodically reporting a measurement result of an IM process / IMR based on the setting from the base station 201 (e.g., report in the Kth slot every 20 ms) is the user apparatus 101. Suppose that it is set to. At this time, for example, the user apparatus 101 measures the measurement using the IM process / IMR in a time range of M subframes from the (K + 1) th subframe (referred to as measurement 1), and the next M The measurement (measurement 2) is also performed in the time range of the number of subframes. For example, in each of these time ranges, the measurement based on the periodically arriving IMR is performed a plurality of times, and the average is a measurement result. Then, at the report timing, the measurement result of measurement 1 and the measurement result of measurement 2 are reported. For example, using the example of FIG. 10, the measurement at the measurement time of measurement 1 corresponds to the assumption of IMR-B, and the measurement at the measurement time of measurement 2 corresponds to the assumption of IMR-C.
 上記の処理により、1つのIMプロセス/IMRを用いて、複数種類の想定に基づく測定を時分割で実施することができる。つまり、複数IMプロセス/IMR分の測定を1つのIMプロセス/IMRを用いて行うことができ、効率的な測定が可能となる。 According to the above process, it is possible to perform measurement based on a plurality of types of assumptions in a time division manner using one IM process / IMR. That is, measurement of multiple IM processes / IMR can be performed using one IM process / IMR, which enables efficient measurement.
 また、図11に示す例では、Aの時点、Bの時点、Cの時点、Dの時点のそれぞれでユーザ装置101が基地局201から、あるIMプロセス/IMRの測定結果の報告要求を受信する。この例では、報告要求(A)を受けた時点から次の報告要求(B)を受けた時点までが測定時間範囲であり、この測定時間範囲で測定した測定結果を、報告要求(B)から、次の報告要求(C)を受けるまでに基地局201に報告する。この例でも、図10の想定例を使用すると、例えば、図11に示すA~Bでの測定はIMR-Bの想定に対応し、B~Cでの測定はIMR-Cの想定に対応し、C~Dでの測定はIMR-Dの想定に対応し得る。すなわち、1つのIMプロセス/IMRを用いて、複数種類の想定に基づく測定を時分割で実施することができ、効率的な測定が可能となる。 Further, in the example illustrated in FIG. 11, the user apparatus 101 receives from the base station 201 a report request of measurement results of a certain IM process / IMR at each of time points A, B, C, and D. . In this example, the measurement time range is from the time of receiving the report request (A) to the time of receiving the next report request (B), and the measurement results measured in this measurement time range are reported from the report request (B) , To the base station 201 before receiving the next report request (C). Also in this example, using the assumed example of FIG. 10, for example, the measurement in A to B shown in FIG. 11 corresponds to the IMR-B assumption, and the measurement in B to C corresponds to the IMR-C assumption , C-D may correspond to the IMR-D assumption. That is, using one IM process / IMR, measurements based on multiple types of assumptions can be performed in a time-division manner, enabling efficient measurement.
 また、図11において、報告要求を受信するのではなく、E、F、Gに示すように、報告期間が設定されていて、各報告期間において、その前の報告期間で測定した測定結果を報告するようにしてもよい。 Also, in FIG. 11, instead of receiving a report request, as shown by E, F, and G, a report period is set, and in each report period, the measurement result measured in the previous report period is reported. You may do it.
 測定を実施する時間範囲と、報告時間/報告要求との対応は、例えば、上位レイヤで設定される(例:基地局201からのRRCシグナリングによる設定)。また、図12に示すように、ユーザ装置101が報告要求(Reporting request)を基地局201から受信した場合に、ユーザ装置101は、当該報告要求を受信した時点よりも過去の最新の測定期間における測定結果を報告することとしてもよい。 The correspondence between the time range for performing measurement and the reporting time / reporting request is set, for example, in the upper layer (eg, setting by RRC signaling from the base station 201). Further, as shown in FIG. 12, when the user apparatus 101 receives a report request (Reporting request) from the base station 201, the user apparatus 101 can receive a report request in the latest measurement period in the past compared to when the report request is received. The measurement results may be reported.
 実施例3-4では、1つのIMプロセス/IMRにおいて(つまり、測定対象になるリソース及び系列は変更することなく)、測定/平均化の時間範囲を定めることで実効的に多数の測定を単一IMプロセス/IMRで実施することが可能になる。 In Example 3-4, by defining the time range of measurement / average in one IM process / IMR (that is, without changing the resources and sequences to be measured), it is possible to effectively single out a large number of measurements. It becomes possible to implement one IM process / IMR.
 以上説明した実施例3により、周辺セルの状況を考慮した適切な測定を行うとともに、適切に測定結果を報告できるようになる。 According to the third embodiment described above, it is possible to perform appropriate measurement in consideration of the conditions of neighboring cells and to appropriately report the measurement result.
 なお、実施例1、実施例2、実施例3のうちのいずれか2つを組み合わせて実施してもよいし、全部を組み合わせて実施してもよい。 In addition, you may implement combining any two of Example 1, Example 2, and Example 3, and you may implement combining all.
 (装置構成)
 以上説明した実施の形態の動作を実行するユーザ装置100及び基地局200の機能構成例を説明する。ユーザ装置100及び基地局200はそれぞれ、本実施の形態で説明した全ての機能を備える。ただし、ユーザ装置100及び基地局200はそれぞれ、本実施の形態で説明した全ての機能の中の一部の機能を備えることとしてもよい。例えば、ユーザ装置100及び基地局200はそれぞれ、実施例1を実施する機能、実施例2を実施する機能、実施例3を実施する機能のうちの全部の機能を備えても良いし、これらのうちのいずれか複数又はいずれか1つの機能を備えてもよい。
(Device configuration)
A functional configuration example of the user apparatus 100 and the base station 200 that execute the operation of the embodiment described above will be described. Each of user apparatus 100 and base station 200 has all the functions described in the present embodiment. However, each of the user apparatus 100 and the base station 200 may be provided with a part of all the functions described in the present embodiment. For example, each of the user apparatus 100 and the base station 200 may have all the functions of the function of performing the first embodiment, the function of performing the second embodiment, and the function of performing the third embodiment; Any one or more of them or any one of the functions may be provided.
 <ユーザ装置100>
 図13は、ユーザ装置100の機能構成の一例を示す図である。図13に示すように、ユーザ装置100は、信号送信部110と、信号受信部120と、設定情報管理部130を含む。信号受信部120は、測定部140を含む。ただし、測定部140が、信号受信部120の外部に備えられてもよい。図13に示す機能構成は一例に過ぎない。本実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
<User device 100>
FIG. 13 is a diagram showing an example of a functional configuration of the user apparatus 100. As shown in FIG. As shown in FIG. 13, the user apparatus 100 includes a signal transmission unit 110, a signal reception unit 120, and a setting information management unit 130. The signal receiving unit 120 includes a measuring unit 140. However, the measuring unit 140 may be provided outside the signal receiving unit 120. The functional configuration shown in FIG. 13 is merely an example. As long as the operation according to the present embodiment can be performed, the function classification and the name of the functional unit may be arbitrary.
 信号送信部110は、上位レイヤの情報から下位レイヤの信号を生成し、当該信号を無線で送信するように構成されている。信号受信部120は、各種の信号を無線受信し、受信した信号から上位レイヤの情報を取得するように構成されている。また、測定部140は、受信電力(例:RSSI、RSRP)の測定(算出)を行う。 The signal transmission unit 110 is configured to generate a signal of the lower layer from the information of the upper layer, and wirelessly transmit the signal. The signal receiving unit 120 is configured to wirelessly receive various signals and acquire information of the upper layer from the received signals. Also, the measurement unit 140 measures (calculates) received power (eg, RSSI, RSRP).
 設定情報管理部130は、予め設定される設定情報と、ダイナミック及び/又はセミスタティックに基地局200等から送信される設定情報とを格納する記憶部を有する。 The setting information management unit 130 has a storage unit that stores setting information set in advance and setting information dynamically and / or semi-statically transmitted from the base station 200 or the like.
 例えば、設定情報管理部130は、干渉の測定に使用可能な複数の測定プロセスの設定情報を保持し、測定部140が、前記複数の測定プロセスのうちの全部又は一部の測定プロセスの測定リソースを用いて測定を行し、信号送信部110が、前記測定部140による測定結果のうちの全部又は一部を基地局に報告する。前記信号送信部110は、例えば、前記測定部140による測定結果のうち、所定の閾値よりも大きい測定結果を前記基地局に報告する。また、例えば、前記測定部140は、前記設定情報により設定されている前記複数の測定プロセスから、1つ又は複数の測定プロセスをサブセットとして選択し、当該サブセットの測定プロセスの測定リソースを用いて測定を行う。前記測定部140は、周辺セルの検出結果又は周辺セルの測定結果に基づいて、前記サブセットを決定することとしてもよい。また、例えば前記測定部140は、前記信号送信部による測定結果の報告の時間に基づいて、測定を行う時間範囲を決定する。 For example, the setting information management unit 130 holds setting information of a plurality of measurement processes usable for interference measurement, and the measurement unit 140 measures measurement resources of all or part of the plurality of measurement processes. The signal transmission unit 110 reports all or part of the measurement result by the measurement unit 140 to the base station. For example, among the measurement results by the measurement unit 140, the signal transmission unit 110 reports a measurement result larger than a predetermined threshold to the base station. Also, for example, the measurement unit 140 selects one or more measurement processes as a subset from the plurality of measurement processes set by the setting information, and performs measurement using the measurement resource of the measurement process of the subset. I do. The measurement unit 140 may determine the subset based on detection results of neighboring cells or measurement results of neighboring cells. Also, for example, the measurement unit 140 determines a time range in which measurement is to be performed, based on the time of reporting of the measurement result by the signal transmission unit.
 <基地局200>
 図14は、基地局200の機能構成の一例を示す図である。図14に示すように、基地局200は、信号送信部210と、信号受信部220と、スケジューリング部230と、設定情報管理部240、NW通信部250を含む。
<Base station 200>
FIG. 14 is a diagram showing an example of a functional configuration of the base station 200. As shown in FIG. As shown in FIG. 14, the base station 200 includes a signal transmission unit 210, a signal reception unit 220, a scheduling unit 230, a setting information management unit 240, and an NW communication unit 250.
 図14に示す機能構成は一例に過ぎない。本実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。 The functional configuration shown in FIG. 14 is merely an example. As long as the operation according to the present embodiment can be performed, the function classification and the name of the functional unit may be arbitrary.
 信号送信部210は、上位レイヤの情報から下位レイヤの信号を生成し、当該信号を無線で送信するように構成されている。信号受信部220は、各種の信号を無線受信し、受信した信号から上位レイヤの情報を取得するように構成されている。 The signal transmission unit 210 is configured to generate a signal of the lower layer from the information of the upper layer and wirelessly transmit the signal. The signal reception unit 220 is configured to wirelessly receive various signals and acquire information of the upper layer from the received signals.
 スケジューリング部230は、ユーザ装置100へのリソース割り当て等を行う。例えば、スケジューリング部230は、信号受信部220により受信したユーザ装置100からの測定結果に基づき、干渉を回避するようなスケジューリングを実施する。また、スケジューリング部230は、図8(c)に示したような無送信のスケジューリングを行うこともできる。 The scheduling unit 230 performs resource assignment to the user apparatus 100 and the like. For example, based on the measurement result from the user apparatus 100 received by the signal receiving unit 220, the scheduling unit 230 performs scheduling to avoid interference. The scheduling unit 230 can also perform non-transmission scheduling as shown in FIG. 8C.
 設定情報管理部240は記憶部を含み、予め設定される設定情報を格納するとともに、ダイナミック及び/又はセミスタティックにユーザ装置100に対して設定する設定情報を決定し、保持する機能を含む。NW通信部250は、例えばUL/DL構成情報、クロスリンク干渉情報、参照信号の設定情報等を他の基地局との間で送受信する。 The setting information management unit 240 includes a storage unit, stores the preset setting information, and has a function of determining and holding the setting information to be set to the user apparatus 100 dynamically and / or semi-statically. The NW communication unit 250 transmits and receives, for example, UL / DL configuration information, cross link interference information, setting information of reference signals, and the like with other base stations.
 <ハードウェア構成>
 上記実施の形態の説明に用いたブロック図(図13~図14)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に複数要素が結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
<Hardware configuration>
The block diagrams (FIGS. 13 to 14) used in the description of the above embodiment show blocks in functional units. These functional blocks (components) are realized by any combination of hardware and / or software. Moreover, the implementation means of each functional block is not particularly limited. That is, each functional block may be realized by one device physically and / or logically connected to a plurality of elements, or directly and two or more physically and / or logically separated devices. And / or indirectly (for example, wired and / or wirelessly) connected, and may be realized by the plurality of devices.
 また、例えば、本発明の一実施の形態におけるユーザ装置100と基地局200はいずれも、本実施の形態に係る処理を行うコンピュータとして機能してもよい。図15は、本実施の形態に係るユーザ装置100と基地局200のハードウェア構成の一例を示す図である。上述のユーザ装置100と基地局200はそれぞれ、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 Also, for example, both the user apparatus 100 and the base station 200 in the embodiment of the present invention may function as a computer that performs the process according to the present embodiment. FIG. 15 is a diagram showing an example of a hardware configuration of user apparatus 100 and base station 200 according to the present embodiment. Each of the above-described user device 100 and base station 200 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。ユーザ装置100と基地局200のハードウェア構成は、図に示した1001~1006で示される各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following description, the term "device" can be read as a circuit, a device, a unit, or the like. The hardware configuration of the user apparatus 100 and the base station 200 may be configured to include one or more of the devices indicated by 1001 to 1006 shown in the figure, or may be configured without including some devices. May be
 ユーザ装置100と基地局200における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。 Each function in the user apparatus 100 and the base station 200 causes the processor 1001 to perform an operation by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and the communication by the communication apparatus 1004, the memory 1002 And by controlling the reading and / or writing of data in the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。 The processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図13に示したユーザ装置100の信号送信部110、信号受信部120、設定情報管理部130、測定部140は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図14に示した基地局200の信号送信部210と、信号受信部220と、スケジューリング部230と、設定情報管理部240と、NW通信部250は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。 Also, the processor 1001 reads a program (program code), a software module or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processing according to these. As a program, a program that causes a computer to execute at least a part of the operations described in the above embodiments is used. For example, the signal transmission unit 110, the signal reception unit 120, the setting information management unit 130, and the measurement unit 140 of the user apparatus 100 illustrated in FIG. 13 may be realized by a control program stored in the memory 1002 and operated by the processor 1001. Good. Further, for example, the signal transmission unit 210, the signal reception unit 220, the scheduling unit 230, the setting information management unit 240, and the NW communication unit 250 of the base station 200 illustrated in FIG. It may be realized by a control program operating at 1001. The various processes described above have been described to be executed by one processor 1001, but may be executed simultaneously or sequentially by two or more processors 1001. The processor 1001 may be implemented by one or more chips. The program may be transmitted from the network via a telecommunication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施の形態に係る処理を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer readable recording medium, and includes, for example, at least one of a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically Erasable Programmable ROM), and a RAM (Random Access Memory). It may be done. The memory 1002 may be called a register, a cache, a main memory (main storage device) or the like. The memory 1002 can store a program (program code), a software module, and the like that can be executed to execute the process according to the embodiment of the present invention.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及び/又はストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer readable recording medium, and for example, an optical disc such as a CD-ROM (Compact Disc ROM), a hard disc drive, a flexible disc, a magneto-optical disc (eg, a compact disc, a digital versatile disc, a Blu-ray A (registered trademark) disk, a smart card, a flash memory (for example, a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, and the like may be used. The storage 1003 may be called an auxiliary storage device. The above-mentioned storage medium may be, for example, a database including the memory 1002 and / or the storage 1003, a server or any other suitable medium.
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、ユーザ装置100の信号送信部110及び信号受信部120は、通信装置1004で実現されてもよい。また、基地局200の信号送信部210及び信号受信部220は、通信装置1004で実現されてもよい。 The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like. For example, the signal transmission unit 110 and the signal reception unit 120 of the user apparatus 100 may be realized by the communication apparatus 1004. Also, the signal transmission unit 210 and the signal reception unit 220 of the base station 200 may be realized by the communication device 1004.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. The input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。 Also, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured by a single bus or may be configured by different buses among the devices.
 また、ユーザ装置100と基地局200はそれぞれ、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。 The user apparatus 100 and the base station 200 each include a microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FPGA), etc. It may be configured to include hardware, and part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented in at least one of these hardware.
 (実施の形態のまとめ)
 以上、説明したように、本実施の形態によれば、無線通信システムにおけるユーザ装置であって、干渉の測定に使用可能な複数の測定プロセスの設定情報を保持する設定情報管理部と、前記複数の測定プロセスのうちの全部又は一部の測定プロセスの測定リソースを用いて測定を行う測定部と、前記測定部による測定結果のうちの全部又は一部を基地局に報告する信号送信部とを備えることを特徴とするユーザ装置が提供される。この構成により、ユーザ装置が適切にユーザ装置間測定、及び測定結果の報告を行うことが可能となる。
(Summary of the embodiment)
As described above, according to the present embodiment, according to the present embodiment, there is provided a setting information management unit that holds setting information of a plurality of measurement processes that can be used for interference measurement, which is a user apparatus in a wireless communication system; A measurement unit that performs measurement using measurement resources of all or part of the measurement processes in the measurement process, and a signal transmission unit that reports all or a part of the measurement results by the measurement unit to the base station; A user device is provided, characterized in that it comprises. This configuration enables the user device to appropriately perform inter-user device measurement and measurement result reporting.
 前記信号送信部は、前記測定部による測定結果のうち、所定の閾値よりも大きい測定結果のみを前記基地局に報告することとしてもよい。この構成により、オーバーヘッドを削減して、基地局は、干渉協調低減処理等に必要な測定結果を得ることができる。 The signal transmission unit may report only the measurement result larger than a predetermined threshold to the base station among the measurement results by the measurement unit. With this configuration, overhead can be reduced, and the base station can obtain measurement results necessary for interference coordination reduction processing and the like.
 ことを特徴とする請求項1に記載のユーザ装置。 The user equipment according to claim 1, characterized in that:
 前記測定部は、前記設定情報により設定されている前記複数の測定プロセスから、1つ又は複数の測定プロセスをサブセットとして選択し、当該サブセットの測定プロセスの測定リソースを用いて測定を行うこととしてもよい。この構成により、基地局は、個々のユーザ装置の能力等を考慮せずに、セル内のユーザ装置に共通の測定プロセスを設定できるので、シグナリングオーバヘッドを削減できる。 The measurement unit may select one or more measurement processes as a subset from the plurality of measurement processes set by the setting information, and may perform measurement using measurement resources of the measurement process of the subset. Good. This configuration can reduce signaling overhead because the base station can set a common measurement process for user apparatuses in a cell without considering the capabilities of individual user apparatuses and the like.
 前記測定部は、周辺セルの検出結果又は周辺セルの測定結果に基づいて、前記サブセットを決定することとしてもよい。この構成により、測定が必要な測定プロセスを使用して測定を行うことが可能となる。 The measurement unit may determine the subset based on detection results of neighboring cells or measurement results of neighboring cells. This configuration enables the measurement to be performed using a measurement process that requires measurement.
 前記測定部は、前記信号送信部による測定結果の報告の時間に基づいて、測定を行う時間範囲を決定することとしてもよい。この構成により、1つの測定プロセスで実質的に複数の測定プロセス分の測定を行うことができる。 The measurement unit may determine a time range in which the measurement is performed based on a time of reporting of the measurement result by the signal transmission unit. According to this configuration, it is possible to measure substantially a plurality of measurement processes in one measurement process.
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、ユーザ装置100と基地局200は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従ってユーザ装置100が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って基地局200が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
(Supplement of the embodiment)
Although the embodiments of the present invention have been described above, the disclosed invention is not limited to such embodiments, and those skilled in the art should understand various modifications, modifications, alternatives, replacements, and the like. I will. Although specific numerical examples are used to facilitate understanding of the invention, unless otherwise noted, those numerical values are merely examples and any appropriate values may be used. The division of items in the above description is not essential to the present invention, and the items described in two or more items may be used in combination as necessary, and the items described in one item may be used in another item. It may be applied to the matters described in (unless contradictory). The boundaries of the functional units or processing units in the functional block diagram do not necessarily correspond to the boundaries of physical parts. The operations of multiple functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by multiple components. With regard to the processing procedures described in the embodiment, the order of processing may be changed as long as there is no contradiction. Although the user apparatus 100 and the base station 200 have been described using functional block diagrams for the convenience of the processing description, such an apparatus may be realized in hardware, software or a combination thereof. The software operated by the processor of the user apparatus 100 according to the embodiment of the present invention and the software operated by the processor of the base station 200 according to the embodiment of the present invention are random access memory (RAM), flash memory, read only It may be stored in memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
 また、情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 In addition, notification of information is not limited to the aspect / embodiment described herein, and may be performed by other methods. For example, notification of information may be physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof. Also, RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。 Each aspect / embodiment described in the present specification is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA (Registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-Wide Band), The present invention may be applied to a system utilizing Bluetooth (registered trademark), other appropriate systems, and / or an advanced next-generation system based on these.
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。 As long as there is no contradiction, the processing procedure, sequence, flow chart, etc. of each aspect / embodiment described in this specification may be reversed. For example, for the methods described herein, elements of the various steps are presented in an exemplary order and are not limited to the particular order presented.
 本明細書において基地局200によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局200を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、ユーザ装置100との通信のために行われる様々な動作は、基地局200および/または基地局200以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)によって行われ得ることは明らかである。上記において基地局200以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MMEおよびS-GW)であってもよい。 The specific operation supposed to be performed by the base station 200 in this specification may be performed by the upper node in some cases. In a network of one or more network nodes having a base station 200, various operations performed for communication with the user equipment 100 may be performed by the base station 200 and / or other than the base station 200. It is clear that it may be done by a network node (for example but not limited to MME or S-GW etc). Although the case where one other network node other than the base station 200 has been illustrated above is illustrated, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。 Each aspect / embodiment described in this specification may be used alone, may be used in combination, and may be switched and used along with execution.
 ユーザ装置100は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。 The user equipment 100 may be a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, by those skilled in the art. It may also be called a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable term.
 基地局200は、当業者によって、NB(NodeB)、eNB(enhanced NodeB)、ベースステーション(Base Station)、またはいくつかの他の適切な用語で呼ばれる場合もある。 Base station 200 may also be referred to by those skilled in the art in terms of NB (Node B), eNB (enhanced Node B), Base Station, or some other suitable terminology.
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。 The terms "determining", "determining" as used herein may encompass a wide variety of operations. "Judgment", "decision" are, for example, judging, calculating, calculating, processing, processing, deriving, investigating, looking up (for example, a table) (Searching in a database or another data structure), ascertaining may be regarded as “decision”, “decision”, etc. Also, "determination" and "determination" are receiving (e.g. receiving information), transmitting (e.g. transmitting information), input (input), output (output), access (Accessing) (for example, accessing data in a memory) may be regarded as “judged” or “decided”. Also, "judgement" and "decision" are to be considered as "judgement" and "decision" that they have resolved (resolving), selecting (selecting), choosing (choosing), establishing (establishing), etc. May be included. That is, "judgment" "decision" may include considering that some action is "judged" "decision".
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used herein, the phrase "based on" does not mean "based only on," unless expressly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 「含む(include)」、「含んでいる(including)」、およびそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 As long as "includes", "including", and variations thereof are used in the present specification or claims, these terms as well as the term "comprising" Is intended to be comprehensive. Further, it is intended that the term "or" as used in the present specification or in the claims is not an exclusive OR.
 本開示の全体において、例えば、英語でのa,an,及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含み得る。 Throughout the present disclosure, when articles are added by translation, such as, for example, a, an, and the in English, these articles are not clearly indicated by the context: May contain multiple things.
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。 Although the present invention has been described above in detail, it is apparent to those skilled in the art that the present invention is not limited to the embodiments described herein. The present invention can be embodied as modifications and alterations without departing from the spirit and scope of the present invention defined by the description of the claims. Accordingly, the description in the present specification is for the purpose of illustration and does not have any limiting meaning on the present invention.
100 ユーザ装置
110 信号送信部
120 信号受信部
130 設定情報管理部
140 測定部
200 基地局
210 信号送信部
220 信号受信部
230 スケジューリング部
240 設定情報管理部
250 NW通信部
1001 プロセッサ
1002 メモリ
1003 ストレージ
1004 通信装置
1005 入力装置
1006 出力装置
100 user apparatus 110 signal transmitting unit 120 signal receiving unit 130 setting information managing unit 140 measuring unit 200 base station 210 signal transmitting unit 220 signal receiving unit 230 scheduling unit 240 setting information managing unit 250 NW communication unit 1001 processor 1002 memory 1003 storage 1004 communication Device 1005 Input Device 1006 Output Device

Claims (6)

  1.  無線通信システムにおけるユーザ装置であって、
     干渉の測定に使用可能な複数の測定プロセスの設定情報を保持する設定情報管理部と、
     前記複数の測定プロセスのうちの全部又は一部の測定プロセスの測定リソースを用いて測定を行う測定部と、
     前記測定部による測定結果のうちの全部又は一部を基地局に報告する信号送信部と
     を備えることを特徴とするユーザ装置。
    A user equipment in a wireless communication system,
    A configuration information management unit that holds configuration information of a plurality of measurement processes that can be used for interference measurement;
    A measurement unit that performs measurement using measurement resources of all or part of the plurality of measurement processes;
    And a signal transmission unit that reports all or part of the measurement results by the measurement unit to a base station.
  2.  前記信号送信部は、前記測定部による測定結果のうち、所定の閾値よりも大きい測定結果を前記基地局に報告する
     ことを特徴とする請求項1に記載のユーザ装置。
    The user apparatus according to claim 1, wherein the signal transmission unit reports, to the base station, a measurement result larger than a predetermined threshold among measurement results by the measurement unit.
  3.  前記測定部は、前記設定情報により設定されている前記複数の測定プロセスから、1つ又は複数の測定プロセスをサブセットとして選択し、当該サブセットの測定プロセスの測定リソースを用いて測定を行う
     ことを特徴とする請求項1又は2に記載のユーザ装置。
    The measurement unit selects one or more measurement processes as a subset from the plurality of measurement processes set by the setting information, and performs measurement using a measurement resource of the measurement process of the subset. The user apparatus according to claim 1 or 2.
  4.  前記測定部は、周辺セルの検出結果又は周辺セルの測定結果に基づいて、前記サブセットを決定する
     ことを特徴とする請求項3に記載のユーザ装置。
    The user apparatus according to claim 3, wherein the measurement unit determines the subset based on a detection result of a neighboring cell or a measurement result of a neighboring cell.
  5.  前記測定部は、前記信号送信部による測定結果の報告の時間に基づいて、測定を行う時間範囲を決定する
     ことを特徴とする請求項1ないし4のうちいずれか1項に記載のユーザ装置。
    The user apparatus according to any one of claims 1 to 4, wherein the measurement unit determines a time range in which measurement is performed based on a time of reporting of a measurement result by the signal transmission unit.
  6.  無線通信システムにおけるユーザ装置が実行する測定方法であって、
     前記ユーザ装置は、干渉の測定に使用可能な複数の測定プロセスの設定情報を設定情報管理部に保持しており、
     前記複数の測定プロセスのうちの全部又は一部の測定プロセスの測定リソースを用いて測定を行う測定ステップと、
     前記測定ステップによる測定結果のうちの全部又は一部を基地局に報告する送信ステップと
     を備えることを特徴とする測定方法。
    A measurement method performed by a user apparatus in a wireless communication system, comprising:
    The user apparatus holds setting information of a plurality of measurement processes that can be used for interference measurement in a setting information management unit.
    Performing a measurement using measurement resources of all or part of the plurality of measurement processes;
    A transmitting step of reporting all or a part of the measurement result of the measuring step to a base station.
PCT/JP2017/029229 2017-08-10 2017-08-10 User device and measurement method WO2019030934A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/029229 WO2019030934A1 (en) 2017-08-10 2017-08-10 User device and measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/029229 WO2019030934A1 (en) 2017-08-10 2017-08-10 User device and measurement method

Publications (1)

Publication Number Publication Date
WO2019030934A1 true WO2019030934A1 (en) 2019-02-14

Family

ID=65272195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029229 WO2019030934A1 (en) 2017-08-10 2017-08-10 User device and measurement method

Country Status (1)

Country Link
WO (1) WO2019030934A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021183612A1 (en) * 2020-03-13 2021-09-16 Qualcomm Incorporated Measuring cross link interference

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012525022A (en) * 2009-04-27 2012-10-18 パナソニック株式会社 Method and system for installing a reference signal in a wireless communication system
WO2014181446A1 (en) * 2013-05-09 2014-11-13 富士通株式会社 Communications system, control device, and control method
WO2014192632A1 (en) * 2013-05-29 2014-12-04 京セラ株式会社 Base station, user terminal, and processor
JP2016532365A (en) * 2013-07-29 2016-10-13 エルジー エレクトロニクス インコーポレイティド NIB CoMP method and apparatus in wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012525022A (en) * 2009-04-27 2012-10-18 パナソニック株式会社 Method and system for installing a reference signal in a wireless communication system
WO2014181446A1 (en) * 2013-05-09 2014-11-13 富士通株式会社 Communications system, control device, and control method
WO2014192632A1 (en) * 2013-05-29 2014-12-04 京セラ株式会社 Base station, user terminal, and processor
JP2016532365A (en) * 2013-07-29 2016-10-13 エルジー エレクトロニクス インコーポレイティド NIB CoMP method and apparatus in wireless communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021183612A1 (en) * 2020-03-13 2021-09-16 Qualcomm Incorporated Measuring cross link interference
US11689945B2 (en) 2020-03-13 2023-06-27 Qualcomm Incorporated Measuring cross link interference

Similar Documents

Publication Publication Date Title
US11039454B2 (en) User terminal and radio communication method
AU2018379172B2 (en) User terminal and radio communication method
US20190190572A1 (en) User terminal and radio communication method
US20190174462A1 (en) User terminal and radio communication method
US11115945B2 (en) User terminal and radio communication method
JP7249944B2 (en) Terminal, system and measurement method
KR20180079404A (en) Wireless device, wireless network node and method for performing signaling in a wireless communication network
US20200195399A1 (en) Radio communication system and reference signal transmission method
EP3641383B1 (en) User terminal and radio communication method
JP6239299B2 (en) Radio base station, user terminal, and radio communication method
US20190116570A1 (en) User terminal and radio communication method
JPWO2018030098A1 (en) Base station and signal transmission method
JPWO2018203399A1 (en) User terminal and wireless communication method
US10869285B2 (en) User terminal and radio communication method
JP7144420B2 (en) Terminal, wireless communication method and system
WO2018230735A1 (en) User device and method for measuring inteference
WO2019030934A1 (en) User device and measurement method
EP4149041A1 (en) User terminal and radio communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP