WO2019030856A1 - In-vehicle actuator - Google Patents

In-vehicle actuator Download PDF

Info

Publication number
WO2019030856A1
WO2019030856A1 PCT/JP2017/028933 JP2017028933W WO2019030856A1 WO 2019030856 A1 WO2019030856 A1 WO 2019030856A1 JP 2017028933 W JP2017028933 W JP 2017028933W WO 2019030856 A1 WO2019030856 A1 WO 2019030856A1
Authority
WO
WIPO (PCT)
Prior art keywords
output shaft
motor shaft
motor
shaft
rotary actuator
Prior art date
Application number
PCT/JP2017/028933
Other languages
French (fr)
Japanese (ja)
Inventor
將敏 春名
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/028933 priority Critical patent/WO2019030856A1/en
Priority to JP2019535505A priority patent/JP6837559B2/en
Publication of WO2019030856A1 publication Critical patent/WO2019030856A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a rotational output type in-vehicle actuator.
  • the rotary output type actuator (hereinafter referred to as a rotary actuator) operates various devices by accelerating and decelerating the rotational torque of the motor to a desired torque and rotational speed by a gear transmission mechanism.
  • the motor shaft and the output shaft are disposed in a parallel or orthogonal positional relationship via a spur gear or a worm reduction mechanism (see, for example, Patent Document 1).
  • the allowable temperature limit of the rotary actuator is determined by the allowable temperature limit of the position sensor, which is an electronic component for detecting the rotation angle of the output shaft.
  • the position sensor is located close to the heat source of the turbocharger due to the structure of the rotary actuator, so it can be used until the heat resistant temperature is reached There was a problem that time was short.
  • the output shaft in the conventional rotary actuator is disposed at a position offset in parallel or orthogonal direction from the motor axis by the distance between the axes of the speed reduction mechanism, there is a problem that the rotary actuator is large.
  • the present invention has been made to solve the problems as described above, and its object is to improve the heat resistance of a rotary actuator and to miniaturize it.
  • the on-vehicle actuator includes a motor having a hollow motor shaft, an output shaft which penetrates the inside of the motor shaft and both ends project from the motor shaft, and an end portion of the output shaft which projects from the motor shaft. It has a transmission mechanism that is disposed and transmits the rotational force of the motor shaft to the output shaft, and a position sensor that is disposed on the other end side of the output shaft protruding from the motor shaft and detects the rotation angle of the output shaft. .
  • the heat resistance of the rotary actuator can be improved by arranging the position sensor with low heat resistance at a position far from the heat source. Further, the rotary actuator can be miniaturized by coaxially arranging the motor shaft and the output shaft.
  • FIG. 1 is a cross-sectional view showing a configuration example of a rotary actuator according to Embodiment 1. It is a reference example for helping understanding of the rotary actuator according to the first embodiment, and is a cross-sectional view showing an example in which the motor shaft and the output shaft are arranged in parallel. It is a reference example for helping understanding of the rotary actuator according to the first embodiment, and is a view showing a positional relationship between a heat source and a position sensor.
  • FIG. 1 is a cross-sectional view showing a configuration example of the rotary actuator 1 according to the first embodiment.
  • the rotary actuator 1 is for rotating the lever 3 connected to the output shaft 2.
  • a variable blade (VG), an exhaust gas recirculation (EGR) valve, a waste gate (WG) valve or the like (not shown) of the turbocharger is connected to the end of the lever 3 and these are operated by the rotary actuator 1.
  • the motor 4 is a drive source that rotates the motor shaft 5.
  • the motor 4 is a brushed DC motor including a motor shaft 5, a commutator 6, a brush 7, a coil 8, a magnet 9, and a yoke 10, in a motor housing 13 made of thermoplastic resin or thermosetting resin. Be coated. Inside the motor housing 13, two bearings 11 and 12 are installed at both axial ends of the motor shaft 5, and the bearings 11 and 12 rotatably support the motor shaft 5.
  • the commutator 6, the coil 8 and the sun gear 21 of the transmission mechanism 20 are fixed to the outer peripheral surface of the motor shaft 5.
  • a brush 7 is installed on the outer peripheral side of the commutator 6 in the motor housing 13.
  • the magnet 9 and the yoke 10 are installed on the outer peripheral side of the coil 8 in the motor housing 13.
  • the motor 4 is not limited to the brushed DC motor, and may be any motor that rotates the motor shaft 5.
  • the motor shaft 5 has a hollow structure, and the output shaft 2 passes through the inside of the motor shaft 5. A space may be provided between the motor shaft 5 and the output shaft 2, and a bearing 14 may be installed. A sensor magnet 31 which is a target of the position sensor 30 is fixed to one end of the output shaft 2 which protrudes through the motor shaft 5. The carrier 22 of the transmission mechanism 20 is fixed to the other end of the output shaft 2 which protrudes through the motor shaft 5.
  • the output shaft 2 and the motor shaft 5 are made of a nonmagnetic material such as stainless steel or a magnetic material such as steel. Although the output shaft 2 and the motor shaft 5 made of nonmagnetic materials are expensive, they have characteristics such as being less susceptible to noise generated in the motor 4 and the output of the rotary actuator 1 is large. Although the output shaft 2 and the motor shaft 5 made of magnetic material are inexpensive, the output of the rotary actuator 1 is small.
  • the transmission mechanism 20 is a transmission and reception mechanism that accelerates and decelerates the rotational force of the motor shaft 5 to increase or decrease torque and transmits the torque to the output shaft 2.
  • the motor shaft 5 and the output shaft 2 can be coaxially arranged.
  • the transmission mechanism 20 is a planetary reduction mechanism including a sun gear 21 made of steel or resin, a carrier 22, a planetary gear 23, and a ring gear 24, and is covered with a gear housing 25 made of aluminum or the like.
  • the sun gear 21 is fixed to the motor shaft 5, and the carrier 22 is fixed to the output shaft 2.
  • the carrier 22 rotatably supports a planetary gear 23 engaged with the sun gear 21 and the ring gear 24.
  • the planetary gear 23 may be one or plural.
  • the ring gear 24 is formed on the inner circumferential surface of the gear housing 25. Further, a bearing 26 is installed inside the gear housing 25, and the bearing 26 rotatably supports the output shaft 2. Note that the transmission mechanism 20 is not limited to the planetary reduction mechanism, and may be a hypocycloid mechanism or a wave gear mechanism as long as the motor shaft 5 and the output shaft 2 can be coaxially disposed.
  • a sensor housing 32 made of thermoplastic resin, thermosetting resin or the like.
  • the sensor magnet 31 is fixed to this one end.
  • the sensor magnet 31 is coated with, for example, a resin, and the resin portion is fixed to one end of the output shaft 2 by press fitting, caulking, welding, or the like.
  • a position sensor 30 is installed at a position opposite to the sensor magnet 31 in the sensor housing 32.
  • the position sensor 30 detects the magnetic field of the sensor magnet 31 corresponding to the rotation angle of the output shaft 2. Since this position sensor 30 is an electronic component with low heat resistance such as a Hall IC (Integrated Circuit), as described above, the heat resistance temperature of the rotary actuator 1 is determined by the heat resistance temperature of the position sensor 30. .
  • a connector 33 is formed on the sensor housing 32.
  • the operation of the rotary actuator 1 will be described.
  • the connector 33 When the connector 33 is energized, current flows to the brush 7, the commutator 6, and the coil 8, and the motor shaft 5 rotates with the coil 8.
  • the sun gear 21 rotates with the motor shaft 5
  • the planetary gear 23 meshing with the sun gear 21 revolves around the motor shaft 5 while rotating.
  • the revolution rotation component of the planetary gear 23 is transmitted to the output shaft 2 by the carrier 22 and the lever 3 is actuated by the rotation of the output shaft 2.
  • the position sensor 30 detects the magnetic field of the sensor magnet 31 rotating with the output shaft 2, converts it to the rotation angle of the output shaft 2, and externally outputs it via the connector 33.
  • the rotation angle of the output shaft 2 detected by the position sensor 30 is used for feedback control, and the energization direction and application duty to the motor 4 are determined.
  • FIG. 2 is a reference example for helping understanding of the rotary actuator 1 according to the first embodiment, and is a cross-sectional view of the rotary actuator 100 in which the motor shaft 105 and the output shaft 102 are arranged in parallel.
  • the transmission mechanism 120 including the pinion gear 121 and the flat gears 122 and 123 is interposed between the motor shaft 105 of the motor 104 and the output shaft 102 to which the lever 103 is connected.
  • the transmission mechanism 120 decelerates the rotational force of the motor shaft 105, increases torque, and transmits the torque to the output shaft 102.
  • a position sensor 130 and a sensor magnet 131 for detecting the rotation angle of the output shaft 102 are disposed at the upper end of the output shaft 102.
  • FIG. 3 is a reference example for assisting the understanding of the rotary actuator 1 according to the first embodiment, and is a view showing the positional relationship between the heat source and the position sensor 130.
  • the turbocharger 200 includes a compressor housing 201 incorporating a compressor wheel, and a turbine housing 202 incorporating a turbine wheel. As the turbine wheel rotates using exhaust gas, the compressor wheel coupled to the turbine wheel also rotates to compress engine intake air.
  • the turbine housing 202 through which the exhaust gas flows has a high temperature and serves as a heat source.
  • the position sensor 130 in the rotary actuator 100 installed in the turbocharger 200 is disposed on the tip end side of the output shaft 102 of the transmission mechanism 120 and is disposed at a position close to the lever 103 on the heat source side. Therefore, the position sensor 130 has a short usable time to reach the heat resistant allowable temperature in the actual use environment.
  • position sensor 30 of the first embodiment is disposed on the tip end side of output shaft 102 ahead of transmission mechanism 20 and motor 4 and is on the heat source side compared to position sensor 130 in rotary actuator 100. It is disposed at a position away from the lever 3. Therefore, when the rotary actuator 1 is installed at the same position as the rotary actuator 100 shown in FIG. 3, the usable time until the heat resistance allowable temperature of the position sensor 30 is reached in an actual use environment can be extended.
  • the heat resistant allowable temperature of the rotary actuator 1 can be improved. Further, by improving the heat resistant allowable temperature of the rotary actuator 1, the current supplied to the motor 4 can be increased instead of prolonging the usable time, and the output of the rotary actuator 1 can be increased by increasing the current. Possible torque can be improved.
  • the rotary actuator 100 of the reference example shown in FIGS. 2 and 3 has a configuration in which the motor shaft 105 and the output shaft 102 are arranged in parallel, the projected area as viewed from the direction of arrow A in FIG. Is large and large.
  • the rotary actuator 1 according to the first embodiment is a coaxial deceleration system using a planetary reduction mechanism or the like, the projection area as viewed in the direction of arrow A in FIG. 1 can be reduced.
  • the actuator 1 can be miniaturized. Also, by increasing the number of planet gears 23 of the planetary reduction mechanism, the load on each planet gear 23 is reduced. Therefore, the material of each component such as the planetary gear 23 constituting the planetary reduction mechanism can be made low in strength and low in cost, and the heat treatment applied to each component can be made in low cost. Therefore, it is possible to reduce the cost of the rotary actuator 1 while improving the design freedom of the layout by miniaturizing the rotary actuator 1.
  • the rotary actuator 1 includes the motor 4 having the hollow motor shaft 5, and the output shaft 2 which penetrates the inside of the motor shaft 5 and whose both ends project from the motor shaft 5.
  • a transmission mechanism 20 disposed on one end side of the output shaft 2 protruding from the motor shaft 5 and transmitting the rotational force of the motor shaft 5 to the output shaft, and the other end side of the output shaft 2 protruding from the motor shaft 5
  • a position sensor 30 for detecting the rotation angle of the output shaft 2.
  • the output shaft 2 of the first embodiment is a nonmagnetic material, and a sensor magnet 31 which is a target of the position sensor 30 is fixed to the other end of the output shaft 2 protruding from the motor shaft 5.
  • a sensor magnet 31 which is a target of the position sensor 30 is fixed to the other end of the output shaft 2 protruding from the motor shaft 5.
  • the rotary actuator according to the present invention is improved in heat resistance, it is suitable for use in an on-vehicle actuator or the like installed near a turbocharger which is heated to a high temperature.
  • 1,100 rotary actuators (vehicle-mounted actuators), 2,102 output shafts, 3,103 levers, 4,104 motors, 5,105 motor shafts, 6 commutators, 7 brushes, 8 coils, 9 magnets, 10 yokes, 11, 12 bearings, 13 motor housings, 14 bearings, 20, 120 transmission mechanisms, 21 sun gears, 22 carriers, 23 planet gears, 24 ring gears, 25 gear housings, 26 bearings, 30, 130 position sensors, 31, 131 sensors Magnet, 32 sensor housings, 33 connectors, 121 pinion gears, 122, 123 flat gears.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Supercharger (AREA)
  • Retarders (AREA)

Abstract

A rotary actuator (1) is provided with: a motor (4) having a hollow motor shaft (5); an output shaft (2), which penetrates the inside of the motor shaft (5), and which has both end sections that are protruding from the motor shaft (5); a speed change mechanism (20), which is disposed on the side of one end section of the output shaft (2), said one end section protruding from the motor shaft (5), and which transmits rotational force of the motor shaft (5) to the output shaft (2); and a position sensor (30), which is disposed on the side of the other end section of the output shaft (2), said the other end section protruding from the motor shaft (4), and which detects the rotation angle of the output shaft (2).

Description

車載用アクチュエータAutomotive actuator
 この発明は、回転出力タイプの車載用アクチュエータに関するものである。 The present invention relates to a rotational output type in-vehicle actuator.
 回転出力タイプのアクチュエータ(以下、回転式アクチュエータと称する)は、モータの回転トルクを歯車変速機構によって所望のトルクおよび回転速度に加減速して、各種機器を作動させる。従来の回転式アクチュエータにおいて、モータ軸と出力軸とは、平ギアまたはウォーム減速機構を介して平行または直交した位置関係に配置される(例えば、特許文献1参照)。 The rotary output type actuator (hereinafter referred to as a rotary actuator) operates various devices by accelerating and decelerating the rotational torque of the motor to a desired torque and rotational speed by a gear transmission mechanism. In the conventional rotary actuator, the motor shaft and the output shaft are disposed in a parallel or orthogonal positional relationship via a spur gear or a worm reduction mechanism (see, for example, Patent Document 1).
特開2005-180456号公報JP 2005-180456 A
 回転式アクチュエータの耐熱許容温度は、出力軸の回転角度を検出するための電子部品であるポジションセンサの耐熱許容温度によって決定される。上述のような従来の回転式アクチュエータが車両に搭載された場合、回転式アクチュエータの構造上、ポジションセンサがターボチャージャの熱源に近い位置に配置されるため、耐熱許容温度に到達するまでの使用可能時間が短いという課題があった。 The allowable temperature limit of the rotary actuator is determined by the allowable temperature limit of the position sensor, which is an electronic component for detecting the rotation angle of the output shaft. When the conventional rotary actuator as described above is mounted on a vehicle, the position sensor is located close to the heat source of the turbocharger due to the structure of the rotary actuator, so it can be used until the heat resistant temperature is reached There was a problem that time was short.
 また、従来の回転式アクチュエータにおける出力軸は、減速機構の軸間距離だけモータ軸から平行または直交方向にオフセットした位置に配置されるため、回転式アクチュエータが大型であるという課題があった。 Further, since the output shaft in the conventional rotary actuator is disposed at a position offset in parallel or orthogonal direction from the motor axis by the distance between the axes of the speed reduction mechanism, there is a problem that the rotary actuator is large.
 この発明は、上記のような課題を解決するためになされたもので、回転式アクチュエータの耐熱性を向上させること、および小型化することを目的とする。 The present invention has been made to solve the problems as described above, and its object is to improve the heat resistance of a rotary actuator and to miniaturize it.
 この発明に係る車載用アクチュエータは、中空のモータ軸を有するモータと、モータ軸の内部を貫通して両端部がモータ軸から突出した出力軸と、モータ軸から突出した出力軸の一端部側に配置され、モータ軸の回転力を出力軸へ伝達する変速機構と、モータ軸から突出した出力軸の他端部側に配置され、出力軸の回転角度を検出するポジションセンサとを備えるものである。 The on-vehicle actuator according to the present invention includes a motor having a hollow motor shaft, an output shaft which penetrates the inside of the motor shaft and both ends project from the motor shaft, and an end portion of the output shaft which projects from the motor shaft. It has a transmission mechanism that is disposed and transmits the rotational force of the motor shaft to the output shaft, and a position sensor that is disposed on the other end side of the output shaft protruding from the motor shaft and detects the rotation angle of the output shaft. .
 この発明によれば、耐熱性の低いポジションセンサを熱源から遠い位置に配置することにより回転式アクチュエータの耐熱性を向上させることができる。また、モータ軸と出力軸とを同軸上に配置することにより回転式アクチュエータを小型化できる。 According to this invention, the heat resistance of the rotary actuator can be improved by arranging the position sensor with low heat resistance at a position far from the heat source. Further, the rotary actuator can be miniaturized by coaxially arranging the motor shaft and the output shaft.
実施の形態1に係る回転式アクチュエータの構成例を示す断面図である。FIG. 1 is a cross-sectional view showing a configuration example of a rotary actuator according to Embodiment 1. 実施の形態1に係る回転式アクチュエータの理解を助けるための参考例であり、モータ軸と出力軸が平行に配置された例を示す断面図である。It is a reference example for helping understanding of the rotary actuator according to the first embodiment, and is a cross-sectional view showing an example in which the motor shaft and the output shaft are arranged in parallel. 実施の形態1に係る回転式アクチュエータの理解を助けるための参考例であり、熱源とポジションセンサとの位置関係を示す図である。It is a reference example for helping understanding of the rotary actuator according to the first embodiment, and is a view showing a positional relationship between a heat source and a position sensor.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、実施の形態1に係る回転式アクチュエータ1の構成例を示す断面図である。この回転式アクチュエータ1は、出力軸2に連結されたレバー3を回転させるものである。レバー3の先には図示しないターボチャージャの可変翼(VG)、排気再循環(EGR)バルブ、またはウェイストゲート(WG)バルブ等が接続され、これらは回転式アクチュエータ1によって作動される。
Hereinafter, in order to explain the present invention in more detail, a mode for carrying out the present invention will be described according to the attached drawings.
Embodiment 1
FIG. 1 is a cross-sectional view showing a configuration example of the rotary actuator 1 according to the first embodiment. The rotary actuator 1 is for rotating the lever 3 connected to the output shaft 2. A variable blade (VG), an exhaust gas recirculation (EGR) valve, a waste gate (WG) valve or the like (not shown) of the turbocharger is connected to the end of the lever 3 and these are operated by the rotary actuator 1.
 まず、回転式アクチュエータ1の構成を説明する。
 モータ4は、モータ軸5を回転させる駆動源である。モータ4は、モータ軸5、整流子6、ブラシ7、コイル8、マグネット9、およびヨーク10を含むブラシ付きDCモータであり、熱可塑性樹脂または熱硬化性樹脂等により構成されたモータハウジング13に被覆される。モータハウジング13の内部には、モータ軸5の軸方向の両端部に2つの軸受11,12が設置され、軸受11,12はモータ軸5を回転自在に支持する。モータ軸5の外周面には整流子6、コイル8および変速機構20の太陽ギア21が固定される。モータハウジング13における整流子6の外周側には、ブラシ7が設置される。モータハウジング13におけるコイル8の外周側には、マグネット9およびヨーク10が設置される。なお、モータ4は、ブラシ付きDCモータに限定されるものでなく、モータ軸5を回転させるものであればよい。
First, the configuration of the rotary actuator 1 will be described.
The motor 4 is a drive source that rotates the motor shaft 5. The motor 4 is a brushed DC motor including a motor shaft 5, a commutator 6, a brush 7, a coil 8, a magnet 9, and a yoke 10, in a motor housing 13 made of thermoplastic resin or thermosetting resin. Be coated. Inside the motor housing 13, two bearings 11 and 12 are installed at both axial ends of the motor shaft 5, and the bearings 11 and 12 rotatably support the motor shaft 5. The commutator 6, the coil 8 and the sun gear 21 of the transmission mechanism 20 are fixed to the outer peripheral surface of the motor shaft 5. A brush 7 is installed on the outer peripheral side of the commutator 6 in the motor housing 13. The magnet 9 and the yoke 10 are installed on the outer peripheral side of the coil 8 in the motor housing 13. The motor 4 is not limited to the brushed DC motor, and may be any motor that rotates the motor shaft 5.
 モータ軸5は、中空構造であり、モータ軸5の内部を出力軸2が貫通している。モータ軸5と出力軸2との間は、空間であってもよいし、軸受14が設置されていてもよい。モータ軸5を貫通して突出した出力軸2の一端部には、ポジションセンサ30のターゲットであるセンサマグネット31が固定される。モータ軸5を貫通して突出した出力軸2の他端部には、変速機構20のキャリア22が固定される。出力軸2およびモータ軸5は、ステンレス鋼等の非磁性体またはスチール等の磁性体で構成される。非磁性体で構成された出力軸2およびモータ軸5は高価であるが、モータ4に発生するノイズの影響を受けにくい等の特性があり回転式アクチュエータ1の出力が大きい。磁性体で構成された出力軸2およびモータ軸5は安価であるが回転式アクチュエータ1の出力が小さい。 The motor shaft 5 has a hollow structure, and the output shaft 2 passes through the inside of the motor shaft 5. A space may be provided between the motor shaft 5 and the output shaft 2, and a bearing 14 may be installed. A sensor magnet 31 which is a target of the position sensor 30 is fixed to one end of the output shaft 2 which protrudes through the motor shaft 5. The carrier 22 of the transmission mechanism 20 is fixed to the other end of the output shaft 2 which protrudes through the motor shaft 5. The output shaft 2 and the motor shaft 5 are made of a nonmagnetic material such as stainless steel or a magnetic material such as steel. Although the output shaft 2 and the motor shaft 5 made of nonmagnetic materials are expensive, they have characteristics such as being less susceptible to noise generated in the motor 4 and the output of the rotary actuator 1 is large. Although the output shaft 2 and the motor shaft 5 made of magnetic material are inexpensive, the output of the rotary actuator 1 is small.
 変速機構20は、モータ軸5の回転力を加減速させ、トルクを増減させて出力軸2へ伝達する変速機構であり、モータ軸5と出力軸2とを同軸上に配置可能である。変速機構20は、スチールまたは樹脂等により構成された太陽ギア21、キャリア22、遊星ギア23、およびリングギア24を含む遊星減速機構であり、アルミ等により構成されたギアハウジング25に被覆される。太陽ギア21はモータ軸5に固定され、キャリア22は出力軸2に固定される。キャリア22は、太陽ギア21およびリングギア24に噛み合う遊星ギア23を、回転可能に支持する。なお、遊星ギア23は、1つでもよいし、複数でもよい。リングギア24は、ギアハウジング25の内周面に形成される。また、ギアハウジング25の内部には、軸受26が設置され、軸受26は出力軸2を回転自在に支持する。なお、変速機構20は、遊星減速機構に限定されるものではなく、ハイポサイクロイド機構または波動歯車機構等のモータ軸5と出力軸2とを同軸上に配置できるものであればよい。 The transmission mechanism 20 is a transmission and reception mechanism that accelerates and decelerates the rotational force of the motor shaft 5 to increase or decrease torque and transmits the torque to the output shaft 2. The motor shaft 5 and the output shaft 2 can be coaxially arranged. The transmission mechanism 20 is a planetary reduction mechanism including a sun gear 21 made of steel or resin, a carrier 22, a planetary gear 23, and a ring gear 24, and is covered with a gear housing 25 made of aluminum or the like. The sun gear 21 is fixed to the motor shaft 5, and the carrier 22 is fixed to the output shaft 2. The carrier 22 rotatably supports a planetary gear 23 engaged with the sun gear 21 and the ring gear 24. The planetary gear 23 may be one or plural. The ring gear 24 is formed on the inner circumferential surface of the gear housing 25. Further, a bearing 26 is installed inside the gear housing 25, and the bearing 26 rotatably supports the output shaft 2. Note that the transmission mechanism 20 is not limited to the planetary reduction mechanism, and may be a hypocycloid mechanism or a wave gear mechanism as long as the motor shaft 5 and the output shaft 2 can be coaxially disposed.
 モータ軸5を貫通して突出した出力軸2の一端部側は、熱可塑性樹脂または熱硬化性樹脂等により構成されたセンサハウジング32に被覆される。この一端部には、センサマグネット31が固定される。センサマグネット31は、例えば樹脂で被覆され、この樹脂部分が圧入、かしめ、または溶着等によって出力軸2の一端部に固定される。センサハウジング32におけるセンサマグネット31の対向位置には、ポジションセンサ30が設置される。ポジションセンサ30は、出力軸2の回転角度に相当するセンサマグネット31の磁界を検出する。このポジションセンサ30は、ホールIC(Integrated Circuit)等の耐熱性の低い電子部品であるため、先立って説明したようにポジションセンサ30の耐熱許容温度により回転式アクチュエータ1の耐熱許容温度が決定される。また、センサハウジング32にはコネクタ33が形成される。 One end side of the output shaft 2 which protrudes through the motor shaft 5 is covered with a sensor housing 32 made of thermoplastic resin, thermosetting resin or the like. The sensor magnet 31 is fixed to this one end. The sensor magnet 31 is coated with, for example, a resin, and the resin portion is fixed to one end of the output shaft 2 by press fitting, caulking, welding, or the like. A position sensor 30 is installed at a position opposite to the sensor magnet 31 in the sensor housing 32. The position sensor 30 detects the magnetic field of the sensor magnet 31 corresponding to the rotation angle of the output shaft 2. Since this position sensor 30 is an electronic component with low heat resistance such as a Hall IC (Integrated Circuit), as described above, the heat resistance temperature of the rotary actuator 1 is determined by the heat resistance temperature of the position sensor 30. . Further, a connector 33 is formed on the sensor housing 32.
 次に、回転式アクチュエータ1の動作を説明する。
 コネクタ33に通電されると、ブラシ7、整流子6、およびコイル8へ電流が流れ、コイル8と共にモータ軸5が回転する。モータ軸5と共に太陽ギア21が回転すると、太陽ギア21に噛み合う遊星ギア23が、自転しながらモータ軸5を中心に公転する。遊星ギア23の公転回転成分がキャリア22により出力軸2に伝達され、出力軸2が回転することによってレバー3が作動する。ポジションセンサ30は、出力軸2と共に回転するセンサマグネット31の磁界を検出して出力軸2の回転角度に変換し、コネクタ33を介して外部出力する。ポジションセンサ30が検出した出力軸2の回転角度はフィードバック制御に使用され、モータ4への通電方向および印加デューティが決定される。
Next, the operation of the rotary actuator 1 will be described.
When the connector 33 is energized, current flows to the brush 7, the commutator 6, and the coil 8, and the motor shaft 5 rotates with the coil 8. When the sun gear 21 rotates with the motor shaft 5, the planetary gear 23 meshing with the sun gear 21 revolves around the motor shaft 5 while rotating. The revolution rotation component of the planetary gear 23 is transmitted to the output shaft 2 by the carrier 22 and the lever 3 is actuated by the rotation of the output shaft 2. The position sensor 30 detects the magnetic field of the sensor magnet 31 rotating with the output shaft 2, converts it to the rotation angle of the output shaft 2, and externally outputs it via the connector 33. The rotation angle of the output shaft 2 detected by the position sensor 30 is used for feedback control, and the energization direction and application duty to the motor 4 are determined.
 次に、回転式アクチュエータ1の効果を説明する。
 図2は、実施の形態1に係る回転式アクチュエータ1の理解を助けるための参考例であり、モータ軸105と出力軸102が平行に配置された回転式アクチュエータ100の断面図である。参考例において、モータ104のモータ軸105と、レバー103が連結された出力軸102との間には、ピニオンギア121および平ギア122,123を含む変速機構120が介在する。変速機構120は、モータ軸105の回転力を減速させ、トルクを増大させて出力軸102に伝達する。出力軸102の回転角度を検出するポジションセンサ130およびセンサマグネット131は、出力軸102の上端部に配置される。
Next, the effect of the rotary actuator 1 will be described.
FIG. 2 is a reference example for helping understanding of the rotary actuator 1 according to the first embodiment, and is a cross-sectional view of the rotary actuator 100 in which the motor shaft 105 and the output shaft 102 are arranged in parallel. In the reference example, the transmission mechanism 120 including the pinion gear 121 and the flat gears 122 and 123 is interposed between the motor shaft 105 of the motor 104 and the output shaft 102 to which the lever 103 is connected. The transmission mechanism 120 decelerates the rotational force of the motor shaft 105, increases torque, and transmits the torque to the output shaft 102. A position sensor 130 and a sensor magnet 131 for detecting the rotation angle of the output shaft 102 are disposed at the upper end of the output shaft 102.
 図3は、実施の形態1に係る回転式アクチュエータ1の理解を助けるための参考例であり、熱源とポジションセンサ130との位置関係を示す図である。ターボチャージャ200は、コンプレッサホイールを内蔵したコンプレッサハウジング201と、タービンホイールを内蔵したタービンハウジング202とを備える。タービンホイールが排気ガスを利用して回転すると、タービンホイールに連結されたコンプレッサホイールも回転してエンジンの吸気を圧縮する。排気ガスが流れるタービンハウジング202は高温になり、熱源となる。ターボチャージャ200に設置された回転式アクチュエータ100におけるポジションセンサ130は、変速機構120の先の出力軸102先端側に配置されており、熱源側になるレバー103に近い位置に配置されている。そのため、ポジションセンサ130は、実使用環境において耐熱許容温度に到達するまでの使用可能時間が短い。 FIG. 3 is a reference example for assisting the understanding of the rotary actuator 1 according to the first embodiment, and is a view showing the positional relationship between the heat source and the position sensor 130. As shown in FIG. The turbocharger 200 includes a compressor housing 201 incorporating a compressor wheel, and a turbine housing 202 incorporating a turbine wheel. As the turbine wheel rotates using exhaust gas, the compressor wheel coupled to the turbine wheel also rotates to compress engine intake air. The turbine housing 202 through which the exhaust gas flows has a high temperature and serves as a heat source. The position sensor 130 in the rotary actuator 100 installed in the turbocharger 200 is disposed on the tip end side of the output shaft 102 of the transmission mechanism 120 and is disposed at a position close to the lever 103 on the heat source side. Therefore, the position sensor 130 has a short usable time to reach the heat resistant allowable temperature in the actual use environment.
 これに対し、実施の形態1のポジションセンサ30は、変速機構20とモータ4の先の出力軸102先端側に配置されており、回転式アクチュエータ100におけるポジションセンサ130に比べて、熱源側になるレバー3から離れた位置に配置されている。そのため、回転式アクチュエータ1が図3に示される回転式アクチュエータ100と同じ位置に設置された場合、実使用環境においてポジションセンサ30の耐熱許容温度に到達するまでの使用可能時間を長くすることができ、回転式アクチュエータ1の耐熱許容温度を向上させることができる。また、回転式アクチュエータ1の耐熱許容温度を向上させたことにより、使用可能時間を長くする代わりにモータ4へ供給する電流を高くすることもでき、電流を高くすることで回転式アクチュエータ1の出力可能トルクを向上させることができる。 On the other hand, position sensor 30 of the first embodiment is disposed on the tip end side of output shaft 102 ahead of transmission mechanism 20 and motor 4 and is on the heat source side compared to position sensor 130 in rotary actuator 100. It is disposed at a position away from the lever 3. Therefore, when the rotary actuator 1 is installed at the same position as the rotary actuator 100 shown in FIG. 3, the usable time until the heat resistance allowable temperature of the position sensor 30 is reached in an actual use environment can be extended. The heat resistant allowable temperature of the rotary actuator 1 can be improved. Further, by improving the heat resistant allowable temperature of the rotary actuator 1, the current supplied to the motor 4 can be increased instead of prolonging the usable time, and the output of the rotary actuator 1 can be increased by increasing the current. Possible torque can be improved.
 また、図2および図3に示される参考例の回転式アクチュエータ100は、モータ軸105と出力軸102とが平行に配置された構成であるため、図2の矢印Aの方向から見た投影面積が大きく、大型である。 Further, since the rotary actuator 100 of the reference example shown in FIGS. 2 and 3 has a configuration in which the motor shaft 105 and the output shaft 102 are arranged in parallel, the projected area as viewed from the direction of arrow A in FIG. Is large and large.
 これに対し、実施の形態1に係る回転式アクチュエータ1は、遊星減速機構等を用いた同軸減速方式であるため、図1の矢印Aの方向から見た投影面積を小さくすることができ、回転式アクチュエータ1を小型化できる。また、遊星減速機構の遊星ギア23の数を増やすことにより、遊星ギア23ひとつあたりに対する負荷は小さくなる。そのため、遊星減速機構を構成する遊星ギア23等の各部品の材質を低強度および低コストのものにすることができ、また、各部品に施す熱処理を低コストのものにすることができる。よって、回転式アクチュエータ1の小型化によるレイアウトの設計自由度向上を図りつつ、回転式アクチュエータ1のコストダウンを図ることが可能である。 On the other hand, since the rotary actuator 1 according to the first embodiment is a coaxial deceleration system using a planetary reduction mechanism or the like, the projection area as viewed in the direction of arrow A in FIG. 1 can be reduced. The actuator 1 can be miniaturized. Also, by increasing the number of planet gears 23 of the planetary reduction mechanism, the load on each planet gear 23 is reduced. Therefore, the material of each component such as the planetary gear 23 constituting the planetary reduction mechanism can be made low in strength and low in cost, and the heat treatment applied to each component can be made in low cost. Therefore, it is possible to reduce the cost of the rotary actuator 1 while improving the design freedom of the layout by miniaturizing the rotary actuator 1.
 以上のように、実施の形態1に係る回転式アクチュエータ1は、中空のモータ軸5を有するモータ4と、モータ軸5の内部を貫通して両端部がモータ軸5から突出した出力軸2と、モータ軸5から突出した出力軸2の一端部側に配置され、モータ軸5の回転力を出力軸へ伝達する変速機構20と、モータ軸5から突出した出力軸2の他端部側に配置され、出力軸2の回転角度を検出するポジションセンサ30とを備える。この構成により、耐熱性の低いポジションセンサ30を熱源から遠い位置に配置することができるので、回転式アクチュエータ1の耐熱性を向上させることができる。また、モータ軸5と出力軸2とを同軸上に配置することができるので、回転式アクチュエータ1を小型化できる。 As described above, the rotary actuator 1 according to the first embodiment includes the motor 4 having the hollow motor shaft 5, and the output shaft 2 which penetrates the inside of the motor shaft 5 and whose both ends project from the motor shaft 5. A transmission mechanism 20 disposed on one end side of the output shaft 2 protruding from the motor shaft 5 and transmitting the rotational force of the motor shaft 5 to the output shaft, and the other end side of the output shaft 2 protruding from the motor shaft 5 And a position sensor 30 for detecting the rotation angle of the output shaft 2. With this configuration, since the position sensor 30 with low heat resistance can be disposed at a position far from the heat source, the heat resistance of the rotary actuator 1 can be improved. Further, since the motor shaft 5 and the output shaft 2 can be coaxially arranged, the rotary actuator 1 can be miniaturized.
 また、実施の形態1の出力軸2は非磁性体であり、モータ軸5から突出した出力軸2の他端部には、ポジションセンサ30のターゲットであるセンサマグネット31が固定されている。出力軸2のセンサマグネット31固定部近傍を非磁性体で構成することにより、ポジションセンサ30は、モータ4が発生するノイズおよび外部磁界の影響を受けにくくなる。 The output shaft 2 of the first embodiment is a nonmagnetic material, and a sensor magnet 31 which is a target of the position sensor 30 is fixed to the other end of the output shaft 2 protruding from the motor shaft 5. By forming the vicinity of the sensor magnet 31 fixed portion of the output shaft 2 with a nonmagnetic material, the position sensor 30 is less susceptible to the noise generated by the motor 4 and the external magnetic field.
 なお、本発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、または実施の形態の任意の構成要素の省略が可能である。 In the scope of the invention, modification of any component of the embodiment or omission of any component of the embodiment is possible within the scope of the invention.
 この発明に係る回転式アクチュエータは、耐熱性を向上させるようにしたので、高温になるターボチャージャ付近に設置される車載用アクチュエータなどに用いるのに適している。 Since the rotary actuator according to the present invention is improved in heat resistance, it is suitable for use in an on-vehicle actuator or the like installed near a turbocharger which is heated to a high temperature.
 1,100 回転式アクチュエータ(車載用アクチュエータ)、2,102 出力軸、3,103 レバー、4,104 モータ、5,105 モータ軸、6 整流子、7 ブラシ、8 コイル、9 マグネット、10 ヨーク、11,12 軸受、13 モータハウジング、14 軸受、20,120 変速機構、21 太陽ギア、22 キャリア、23 遊星ギア、24 リングギア、25 ギアハウジング、26 軸受、30,130 ポジションセンサ、31,131 センサマグネット、32 センサハウジング、33 コネクタ、121 ピニオンギア、122,123 平ギア。 1,100 rotary actuators (vehicle-mounted actuators), 2,102 output shafts, 3,103 levers, 4,104 motors, 5,105 motor shafts, 6 commutators, 7 brushes, 8 coils, 9 magnets, 10 yokes, 11, 12 bearings, 13 motor housings, 14 bearings, 20, 120 transmission mechanisms, 21 sun gears, 22 carriers, 23 planet gears, 24 ring gears, 25 gear housings, 26 bearings, 30, 130 position sensors, 31, 131 sensors Magnet, 32 sensor housings, 33 connectors, 121 pinion gears, 122, 123 flat gears.

Claims (6)

  1.  中空のモータ軸を有するモータと、
     前記モータ軸の内部を貫通して両端部が前記モータ軸から突出した出力軸と、
     前記モータ軸から突出した前記出力軸の一端部側に配置され、前記モータ軸の回転力を前記出力軸へ伝達する変速機構と、
     前記モータ軸から突出した前記出力軸の他端部側に配置され、前記出力軸の回転角度を検出するポジションセンサとを備える車載用アクチュエータ。
    A motor having a hollow motor shaft,
    An output shaft which penetrates the inside of the motor shaft and both ends project from the motor shaft;
    A transmission mechanism disposed on one end side of the output shaft protruding from the motor shaft and transmitting the rotational force of the motor shaft to the output shaft;
    And a position sensor disposed on the other end side of the output shaft protruding from the motor shaft and detecting a rotation angle of the output shaft.
  2.  前記出力軸は非磁性体であり、前記モータ軸から突出した前記出力軸の他端部には、前記ポジションセンサのターゲットであるマグネットが固定されていることを特徴とする請求項1記載の車載用アクチュエータ。 The vehicle according to claim 1, wherein the output shaft is a nonmagnetic material, and a magnet serving as a target of the position sensor is fixed to the other end of the output shaft protruding from the motor shaft. Actuator.
  3.  ターボチャージャの可変翼を作動させることを特徴とする請求項1記載の車載用アクチュエータ。 The on-vehicle actuator according to claim 1, wherein a variable blade of a turbocharger is operated.
  4.  ターボチャージャの排気再循環バルブを作動させることを特徴とする請求項1記載の車載用アクチュエータ。 The on-vehicle actuator according to claim 1, wherein the exhaust gas recirculation valve of the turbocharger is operated.
  5.  ターボチャージャのウェイストゲートバルブを作動させることを特徴とする請求項1記載の車載用アクチュエータ。 The on-vehicle actuator according to claim 1, wherein the waste gate valve of the turbocharger is operated.
  6.  前記変速機構は、遊星減速機構であることを特徴とする請求項1記載の車載用アクチュエータ。 The on-vehicle actuator according to claim 1, wherein the transmission mechanism is a planetary reduction mechanism.
PCT/JP2017/028933 2017-08-09 2017-08-09 In-vehicle actuator WO2019030856A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/028933 WO2019030856A1 (en) 2017-08-09 2017-08-09 In-vehicle actuator
JP2019535505A JP6837559B2 (en) 2017-08-09 2017-08-09 In-vehicle actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/028933 WO2019030856A1 (en) 2017-08-09 2017-08-09 In-vehicle actuator

Publications (1)

Publication Number Publication Date
WO2019030856A1 true WO2019030856A1 (en) 2019-02-14

Family

ID=65271125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028933 WO2019030856A1 (en) 2017-08-09 2017-08-09 In-vehicle actuator

Country Status (2)

Country Link
JP (1) JP6837559B2 (en)
WO (1) WO2019030856A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110635640A (en) * 2019-09-26 2019-12-31 天津市泓星电动汽车动力总成有限公司 Yoke-free split disc type motor
WO2022106783A1 (en) 2020-11-20 2022-05-27 Electricfil Automotive Actuator for a land-based motor vehicle component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288370A (en) * 1988-09-24 1990-03-28 Mazda Motor Corp Rear-wheel steering device for vehicle
JP2005180456A (en) * 2005-03-04 2005-07-07 Hitachi Ltd Variable displacement turbocharger of automobile internal combustion engine with moving blade type turbine
US8975793B2 (en) * 2012-07-18 2015-03-10 Delphi Technologies, Inc. Actuator assembly with rotational position sensor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4833028B2 (en) * 2006-11-01 2011-12-07 株式会社ハーモニック・ドライブ・システムズ Actuator with wave gear reducer
JP2011172345A (en) * 2010-02-17 2011-09-01 Jtekt Corp Fixing structure of resolver sensor
JP5527171B2 (en) * 2010-11-17 2014-06-18 株式会社デンソー Internal combustion engine
JP5772274B2 (en) * 2011-06-20 2015-09-02 株式会社デンソー Intake device for internal combustion engine
JP2014181672A (en) * 2013-03-21 2014-09-29 Denso Corp Injection-quantity learning device
JP2016133076A (en) * 2015-01-20 2016-07-25 株式会社デンソー Valve device
JP6673142B2 (en) * 2015-11-30 2020-03-25 株式会社デンソー Rotary drive device and shift-by-wire system using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288370A (en) * 1988-09-24 1990-03-28 Mazda Motor Corp Rear-wheel steering device for vehicle
JP2005180456A (en) * 2005-03-04 2005-07-07 Hitachi Ltd Variable displacement turbocharger of automobile internal combustion engine with moving blade type turbine
US8975793B2 (en) * 2012-07-18 2015-03-10 Delphi Technologies, Inc. Actuator assembly with rotational position sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110635640A (en) * 2019-09-26 2019-12-31 天津市泓星电动汽车动力总成有限公司 Yoke-free split disc type motor
WO2022106783A1 (en) 2020-11-20 2022-05-27 Electricfil Automotive Actuator for a land-based motor vehicle component
FR3116579A1 (en) * 2020-11-20 2022-05-27 Electrifil Automotive Actuator for a component of a land motor vehicle

Also Published As

Publication number Publication date
JP6837559B2 (en) 2021-03-03
JPWO2019030856A1 (en) 2020-01-23

Similar Documents

Publication Publication Date Title
CN109863672B (en) Rotary actuator, rotary drive device, and shift-by-wire system using the same
CN103899833B (en) Rotating driving device
EP2474760B1 (en) Speed shift device
US9236780B2 (en) Rotary actuator with lined bearing holder
WO2013069685A1 (en) Brushless motor
JP5984898B2 (en) Range switching device
WO2016203734A1 (en) Electric actuator
JP7172823B2 (en) rotary actuator
JP7147270B2 (en) transmission and actuator
JP5692606B2 (en) Rotary actuator
WO2015173973A1 (en) Door opening and closing device
WO2017163908A1 (en) Electrically driven actuator
JP5488931B2 (en) Rotary actuator
KR20170084686A (en) Method and apparatus for transmitting torque in an actuator
WO2019030856A1 (en) In-vehicle actuator
WO2016158528A1 (en) Reactive force generation device
JP6673142B2 (en) Rotary drive device and shift-by-wire system using the same
JP7192635B2 (en) rotary actuator
JP7172824B2 (en) rotary actuator
WO2020059830A1 (en) Rotary actuator
JP2018182785A (en) Electric actuator
US11111997B2 (en) Magnetically driven harmonic drive
CN111828554B (en) Rotary actuator
JP2006311659A (en) Motor for vehicle-mounted actuator
WO2017169935A1 (en) Electric actuator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920922

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019535505

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920922

Country of ref document: EP

Kind code of ref document: A1