WO2019030833A1 - Vibrational spectrum measurement device - Google Patents

Vibrational spectrum measurement device Download PDF

Info

Publication number
WO2019030833A1
WO2019030833A1 PCT/JP2017/028823 JP2017028823W WO2019030833A1 WO 2019030833 A1 WO2019030833 A1 WO 2019030833A1 JP 2017028823 W JP2017028823 W JP 2017028823W WO 2019030833 A1 WO2019030833 A1 WO 2019030833A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration spectrum
light
relative
optical probe
relative distance
Prior art date
Application number
PCT/JP2017/028823
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 亮
翔一 金子
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2017/028823 priority Critical patent/WO2019030833A1/en
Priority to PCT/JP2018/029591 priority patent/WO2019031499A1/en
Publication of WO2019030833A1 publication Critical patent/WO2019030833A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Definitions

  • the present invention relates to a vibration spectrum measuring apparatus.
  • optical measurement it is possible to directly observe cartilage and bone tissue in the knee joint, and various biomolecules such as collagen and sugar chain molecules which are main components of the meniscus. Therefore, component information is acquired by an optical measurement method, and a cartilage property diagnostic technique based on the acquired component information is studied.
  • a vibrational spectrum measurement method for observing a vibrational spectrum such as in Patent Document 2.
  • the skin is incised at a predetermined portal provided on the knee surface, and a thin optical probe capable of optical observation is inserted into the knee joint In some cases, access to the joint bones is required.
  • the cartilage tissue in the surface layer of the bone is illuminated with light via an optical probe, and the spectrum of signal light from the cartilage tissue (eg, Raman scattered light or diffuse reflected light from cartilage tissue) is observed, based on the spectrum. Properties can be evaluated.
  • the arthroscope has a thin outer diameter of 4 mm or less, so unlike the soft mirror, the arthroscope is not provided with a forceps channel. Therefore, the arthroscope and the optical probe for observing the spectrum of tissue such as cartilage in the joint are independent capillaries, and are inserted into the joint from separate holes (portal) created on the knee surface.
  • the signal-to-noise ratio of the vibration spectrum is It changes depending on the relative distance between the optical probe tip and the relative inclination. For example, as shown in FIG. 27A, when the relative inclination and relative distance between the object to be observed and the tip of the optical probe are relatively small, signal light from the object to be observed can be efficiently collected, and good vibration can be obtained. You can get a spectrum. On the other hand, as shown in FIG.
  • the present invention has been made in view of the above-described circumstances, and the relative inclination of the optical probe with respect to the observation target is surely set to an appropriate position when acquiring the vibration spectrum of the observation target, and then the observation target It is an object of the present invention to provide a vibration spectrum measuring apparatus capable of measuring the vibration spectrum of
  • One aspect of the present invention is a long optical probe that emits illumination light from a tip end surface toward an observation target and receives signal light generated in the observation target by irradiation of the illumination light at the tip end surface,
  • An optical probe having an illumination light path for guiding the illumination light and a focusing light path for guiding the signal light, and a physical quantity that changes according to the magnitude of relative inclination between the observation target and the optical probe
  • a relative inclination measurement unit to measure a relative inclination detection unit that detects the magnitude of the relative inclination based on the physical quantity measured by the relative inclination measurement unit, and the relative inclination detected by the relative inclination detection unit
  • a relative inclination determination unit that determines whether or not the size is within a predetermined allowable range, and the guided light path of the optical probe based on the determination result by the relative inclination determination unit.
  • It is a vibration spectrum measuring apparatus and a vibration spectrum measuring section for measuring the vibration spectrum of the signal light.
  • the illumination light guided in the illumination light path is irradiated from the tip end surface of the optical probe to the observation target, and the signal light from the observation target (for example, the illumination light from the observation target when the illumination light is excitation light) Raman scattered light and diffuse reflected light of illumination light from the observation target are condensed by the condensing optical path on the tip surface of the optical probe, and from the signal light condensed by the condensing optical path, the vibration spectrum measuring unit The vibrational spectrum is measured.
  • a physical quantity that changes according to the magnitude of the relative inclination of the optical probe with respect to the observation target is measured by the relative slope measurement unit, and the relative slope detection unit detects the magnitude of the relative inclination based on the measured physical quantity.
  • the relative tilt determining unit determines whether the magnitude of the relative tilt is within a predetermined allowable range.
  • the magnitude of the relative tilt When the magnitude of the relative tilt is appropriate for measuring the vibration spectrum, the magnitude of the relative tilt falls within a predetermined allowable range, and measurement of the vibration spectrum by the vibration spectrum measurement unit is performed.
  • the magnitude of the relative slope is not suitable for measuring the vibration spectrum, the magnitude of the relative slope deviates from a predetermined allowable range, and the measurement of the vibration spectrum by the vibration spectrum measurement unit is not performed. This makes it possible to measure the vibration spectrum of the observation target in a state in which the optical probe is reliably arranged at an appropriate relative inclination with respect to the observation target.
  • a relative distance measuring unit that measures a physical quantity that changes according to the magnitude of the relative distance between the observation target and the tip surface of the optical probe, and the physical quantity measured by the relative distance measuring unit
  • Relative distance detection unit that detects the magnitude of the relative distance based on the above, and relative distance determination that determines whether or not the magnitude of the relative distance detected by the relative distance detection unit is within a predetermined allowable range
  • the vibration spectrum measurement unit may measure the vibration spectrum of the signal light based on the determination result by the relative tilt determination unit and the determination result by the relative distance determination unit. In this way, measurement of the vibration spectrum can be performed with both the relative tilt and the relative distance being appropriate.
  • the vibration spectrum determination unit evaluates the vibration spectrum measured by the vibration spectrum measurement unit and determines success or failure of the measurement of the vibration spectrum of the observation target, and reports the determination result by the vibration spectrum determination unit And a reporting unit.
  • the reporting unit reports to the user whether or not a good vibration spectrum of the observation object has been measured. Therefore, the user can reliably obtain a good vibration spectrum of the observation target by repeating the measurement of the vibration spectrum until the report unit reports a successful measurement.
  • the measurement is performed by the vibration spectrum measurement unit based on the magnitude of the relative tilt detected by the relative tilt detection unit and / or the magnitude of the relative distance detected by the relative distance detection unit.
  • a vibration spectrum correction unit may be provided to correct the selected vibration spectrum. In this way, variations occurring in the vibration spectrum depending on relative tilt and / or variations in relative distance, for example, variations in apparent vibration spectrum intensity can be corrected by the vibration spectrum correction unit, and the relative tilt and And / or it is possible to obtain a more quantitative vibration spectrum with reduced influence of variations in relative distance.
  • the state of the light irradiated to the observation object from the illumination device that is separate from the optical probe is controlled.
  • a lighting control unit may be provided.
  • the light control unit appropriately controls the intensity and the wavelength of the light irradiated to the observation target from the illumination device by the illumination control unit to obtain a good vibration spectrum having a higher signal-to-noise ratio.
  • the relative inclination measurement unit measures the intensity of the inspection light collected by at least one of the illumination light path and the collected light path disposed on the tip surface of the optical probe
  • the relative inclination detection A unit may detect the magnitude of the relative inclination based on the intensity of the inspection light measured by the relative inclination measurement unit.
  • the relative distance measurement unit measures the intensity of the inspection light collected by at least one of the illumination light path and the collection light path disposed on the tip surface of the optical probe, and the relative distance detection unit The magnitude of the relative distance may be detected based on the intensity of the inspection light measured by the relative distance measurement unit. By doing this, the relative inclination and the relative distance can be optically detected based on the intensity of the inspection light as a physical quantity.
  • the relative inclination measurement unit has a plurality of inspection light paths provided on the optical probe and different from the illumination light path and the collection light path, and the plurality of inspection light paths are provided on the tip surface of the optical probe.
  • the intensities of the plurality of inspection lights respectively collected are measured, and the relative inclination detection unit detects the relative inclination based on the difference between the intensities of the plurality of inspection lights measured by the relative inclination measurement unit.
  • the relative distance measurement unit has a plurality of inspection light paths provided in the optical probe and different from the illumination light path and the collection light path, and the light is collected by the plurality of inspection light paths on the tip surface of the optical probe.
  • the relative distance detection unit may detect the relative distance based on the magnitude of the intensity of the plurality of inspection lights measured by the relative distance measurement unit. .
  • the intensities of the plurality of inspection lights collected by the inspection light path at a plurality of positions on the tip surface of the optical probe depend on the relative tilt and relative distance of the optical probe with respect to the observation target. Therefore, the relative inclination can be detected based on the difference between the intensities of the plurality of inspection lights, and the relative distance can be detected based on the magnitudes of the intensities of the plurality of inspection lights.
  • the optical probe has a plurality of the condensing light paths, and the relative inclination measurement unit is directed from the illumination optical path of the optical probe to an object facing the tip surface of the optical probe. Is emitted, and the intensities of the plurality of inspection lights reflected by the object and collected by the plurality of collected light paths are measured, and the relative tilt detection unit measures the plurality of measured by the relative tilt measurement unit. The relative inclination may be detected based on the difference between the intensities of the inspection light.
  • the optical probe has a plurality of condensing light paths, and the relative distance measurement unit emits inspection light toward the object facing the tip surface of the optical probe from the illumination light path of the optical probe.
  • the relative distance detection unit measures the plurality of inspection lights measured by the relative distance measurement unit The relative distance may be detected based on the magnitude of the intensity of In this way, the inspection light can be irradiated to the object using the illumination light path common to the illumination light, and the inspection light from the object is condensed using the condensing light path common to the signal light can do.
  • the optical probe has a plurality of the condensing light paths, and the inspection light is endoscope illumination light emitted from the endoscope to the observation target, and the relative inclination measurement unit And measuring the intensities of the plurality of inspection lights reflected by the observation target and collected by the plurality of collection light paths, and the relative inclination detection unit measures the plurality of inspections measured by the relative inclination measurement unit.
  • the relative tilt may be detected based on the difference between the light intensities.
  • the optical probe has a plurality of the condensing light paths, and the inspection light is endoscope illumination light irradiated from the endoscope to the observation target, and the relative distance measurement unit is the observation.
  • the intensities of the plurality of inspection lights reflected by the object and collected by the plurality of collected light paths are measured, and the relative distance detection unit measures the intensities of the plurality of inspection lights measured by the relative distance measurement unit.
  • the relative distance may be detected based on the magnitude of. In this way, endoscope illumination light of an endoscope for optically observing an observation target can be used as examination light.
  • the plurality of inspection light paths may be configured of a fiber Bragg grating (FBG).
  • FBG fiber Bragg grating
  • the vibration spectrum measurement unit may include a light source that generates the illumination light, and the inspection light may be the illumination light generated by the light source of the vibration spectrum measurement unit. By doing this, it is not necessary to add a light source for generating inspection light.
  • the vibration spectrum measurement unit includes a light detector that detects the illumination light, and the relative tilt measurement unit and / or the relative distance measurement unit is the light detector of the vibration spectrum measurement unit.
  • the intensity of the inspection light may be measured. By doing this, it is not necessary to add a light detector for measuring the inspection light.
  • the object may be the observation target.
  • the object may be a partition that is connected to the tip end surface of the optical probe via an elastic body and is applied to the observation target and reflects at least a part of the inspection light. Good.
  • the tip surface of the optical probe is brought into contact with the observation target via the partition wall, the inclination of the partition wall changes according to the relative inclination between the optical probe and the observation target, and the distance between the optical probe and the observation target
  • the position of the partition changes according to the relative distance.
  • the intensity of the inspection light reflected by the partition wall and collected in the condensing optical path changes. Therefore, based on the intensity of the inspection light, the relative tilt and relative distance between the optical probe and the observation target can be detected.
  • the partition may be a long wavelength transmission filter that transmits the illumination light and reflects the inspection light having a wavelength shorter than that of the illumination light. In this way, inspection light of a wavelength different from that of the illumination light can be used.
  • the light source of the vibration spectrum measurement unit generates excitation light for generating the Raman scattered light of the observation target as the illumination light
  • the light detector of the vibration spectrum measurement unit is the observation target
  • a Raman spectrum may be measured, and the inspection light may be the excitation light, and the photodetector may detect the inspection light.
  • the relative inclination measurement unit includes a plurality of contact pressure sensors arranged on the tip surface of the optical probe, and the relative inclination detection unit is measured by the plurality of contact pressure sensors. The magnitude of the relative inclination may be detected based on the difference between the plurality of pressures.
  • the relative distance measurement unit includes a plurality of contact pressure sensors arranged on the tip surface of the optical probe, and the relative distance detection unit includes a plurality of contacts measured by the plurality of contact pressure sensors. The relative distance may be detected based on the magnitude of pressure.
  • the pressures acting on the plurality of positions on the tip surface of the optical probe from the observation target are measured by the plurality of contact pressure sensors.
  • the pressure measured by the contact pressure sensor at each position depends on the relative tilt and relative distance.
  • relative tilt and relative distance can be detected based on the pressure at multiple locations on the tip surface of the optical probe.
  • the plurality of contact-type pressure sensors may be uniformly arranged in the circumferential direction around the illumination light path of the optical probe and the collection light path. In this way, relative tilt and relative distance can be detected more accurately based on the plurality of pressures measured by the plurality of contact pressure sensors.
  • the contact pressure sensor may be a capacitive pressure sensor or a piezoelectric sensor. By doing this, it is possible to measure a voltage having a magnitude corresponding to the pressure as a physical quantity.
  • the relative inclination measurement unit and the relative distance measurement unit emit ultrasonic waves and receive the reflected waves of the ultrasonic waves from the observation target and the optical probe, and based on the received reflected waves.
  • the ultrasonic inspection apparatus for measuring the distance to each position of the observation object and the optical probe is provided, and the relative inclination detection unit and the relative distance detection unit are the observation object and the measurement measured by the ultrasonic inspection apparatus.
  • the relative tilt and the relative distance may be detected based on the distance to each position of the optical probe.
  • the ultrasonic inspection apparatus may be attached to an endoscope for observing the observation target.
  • the position of the surface of the observation target and the surface of the optical probe can be estimated based on the distance to the observation target and the optical probe measured by the ultrasonic inspection apparatus, and the estimated observation target
  • the relative tilt and relative distance can be detected from the surface of and the position of the surface of the optical probe.
  • the relative inclination of the optical probe with respect to the observation target can be measured with the vibration spectrum of the observation target after being surely set to an appropriate arrangement when acquiring the vibration spectrum of the observation target. Play.
  • FIG. 1 It is a whole block diagram of the vibration spectrum measuring apparatus which concerns on the 1st Embodiment of this invention. It is an internal block diagram of the vibration spectrum measurement part in the vibration spectrum measuring apparatus of FIG. 1, a vibration spectrum determination part, a report part, a relative inclination determination part, and a relative distance determination part. It is a longitudinal cross-sectional view which shows the internal structure of an optical probe. It is a figure which shows arrangement
  • FIG. 5 is a diagram showing a point image array of single wavelength light collected by the collection optical path of the optical probe formed on the light receiving surface of the light detector. It is a figure which shows the point-image arrangement
  • FIG. 23 is a diagram for explaining a three-dimensional estimated peripheral model created by the relative tilt detection unit and the relative distance detection unit of the vibration spectrum measuring apparatus of FIG. 21. It is a whole block diagram of the modification of the vibration spectrum measuring apparatus which concerns on the 1st to 3rd embodiment. It is a whole block diagram of the other modification of the vibration spectrum measuring apparatus which concerns on the 1st-3rd embodiment.
  • the vibration spectrum measuring apparatus 100 is thin and long, which is inserted in a joint and emits illumination light to the observation target A and receives signal light from the observation target A.
  • the vibration spectrum measuring unit 2 for measuring the vibration spectrum of the signal light received by the optical probe 1
  • the vibration spectrum judging unit 3 for judging success or failure of the measurement of the vibration spectrum
  • the vibration spectrum judging unit 3 And a reporting unit 4 for reporting the determination result to the user.
  • FIG. 2 shows the internal configuration of the vibration spectrum measurement unit 2, the vibration spectrum determination unit 3, and the report unit 4.
  • the optical probe 1 incorporates an illumination light path 1A for guiding illumination light for illuminating the observation target A and a collection light path 1B for guiding signal light from the observation target A.
  • the signal light is, for example, Raman scattered light generated in the observation target A when the illumination light is irradiated as excitation light, or diffused reflected light reflected from tissue when the illumination light is irradiated to the observation target.
  • the illumination light path 1A and the collection light path 1B are optical fibers disposed in the optical probe 1 along the longitudinal direction, and the tip surface of each optical fiber is disposed on the tip surface of the optical probe 1. On the tip surface of the optical probe 1, as shown in FIG.
  • the plurality of collected light paths 1B are arranged at equal intervals along the circumferential direction around the illumination light path 1A.
  • the plurality of collection light paths 1B are arranged around the illumination light path 1A.
  • the plurality of focusing optical paths 1B are arranged in a line.
  • the vibration spectrum measurement unit 2 is optically connected to the illumination light path 1A and the collection light path 1B extending from the proximal end of the optical probe 1 through the coupling optical systems 22A and 22B. As shown in FIG. 2, the vibration spectrum measurement unit 2 is incident from the light source 21 that generates illumination light, the coupling optical system 22A that optically connects the light source 21 and the illumination light path 1A, and the condensing light path 1B.
  • the spectrum of the signal light separated for each wavelength by the spectroscope 23 is detected by the spectroscope 23 for separating the signal light, the coupling optical system 22B which optically connects the condensing optical path 1B and the spectroscope 23, and A light detector 24 for acquiring data of a vibration spectrum of an observation object, a storage device 25 for storing data of the vibration spectrum acquired by the light detector 24, a light source 21, a spectroscope 23, and a light detector 24 are controlled. And a control device 26.
  • the light source 21 is either a monochromatic laser light source or a laser light source capable of wavelength sweeping, and has illumination light of a wavelength according to the measurement of the vibration spectrum (for example, Raman spectrum, infrared absorption spectrum, or near infrared absorption spectrum) of the measurement object. Occur.
  • the light source 21 When the light source 21 generates excitation light for generating the Raman scattered light of the observation target A, the light source 21 is a diode laser which generates a laser beam of a single wavelength.
  • the light source 21 may be a wide wavelength band infrared light source such as a thermal light source or a supercontinuum light source.
  • the coupling optical system 22A includes, for example, one or more lenses for condensing the illumination light emitted from the light source 21 on the proximal end surface of the optical fiber constituting the illumination light path 1A.
  • the coupling optical system 22B is, for example, a signal light emitted from the proximal end of the condensing optical path 1B, and includes a pair of lenses whose focal points are disposed at the base end face of the optical fiber constituting the condensing optical path 1B and the spectroscope 23, respectively. Are imaged at the position of the strip-like entrance slit of the spectroscope 23.
  • the illumination light for exciting the Raman scattering of the observation target is removed at the middle position of the pair of lenses of the coupling optical system 22B, so it is longer than the illumination light.
  • An optical filter is provided to selectively transmit wavelength light.
  • the spectroscope 23 spatially separates the signal light incident from the condensing optical path 1 B for each wavelength, and forms an image of the obtained spectrum on the light receiving surface 24 a of the light detector 24.
  • the light detector 24 is a two-dimensional light detector such as a two-dimensional CCD image sensor, and has a light receiving surface 24 a in which a large number of photoelectric conversion elements are two-dimensionally arranged.
  • the photodetector 24 converts the light incident on the light receiving surface 24 a from the spectroscope 23 into an electrical signal by the photoelectric conversion element, and acquires data of the vibration spectrum.
  • the plurality of focusing optical paths 1 ⁇ / b> B are aligned in the same direction as the long axis of the entrance slit of the spectroscope 23.
  • inspection light of a single wavelength reflected from the observation target A is incident on the tip surface of the optical probe 1, and the inspection light is condensed by the plurality of condensing optical paths 1B.
  • the inspection light is emitted from the proximal ends of the plurality of condensing light paths 1B, and then aligned in a line and enters the entrance slit of the spectroscope 23.
  • the plurality of inspection lights emitted from the spectroscope 23 are imaged as a plurality of point images S aligned in a line on the light receiving surface 24 a of the light detector 24 as shown in FIG. 4A.
  • the horizontal axis is the wavelength channel of the light detector 24
  • the vertical axis is the position channel
  • the intensity of the point image S is the inspection light intensity.
  • the images of the inspection light condensed by the plurality of condensing optical paths 1B are spatially separated from each other on the light receiving surface 24a, whereby the intensity of the inspection light guided for each of the condensing optical paths 1B Data is acquired.
  • the signal light from the observation target A is incident on the tip surface of the optical probe 1 and the signal light is light including a plurality of wavelength components as in Raman scattered light, as shown in FIG. 4B.
  • the signal light is imaged as a point image SS aligned in the wavelength channel direction and the position channel direction on the light receiving surface 24 a of the light detector 24.
  • the signal light condensed by the plurality of condensing optical paths 1B is spatially separated from each other on the light receiving surface 24a, whereby vibration spectrum data of the signal light guided for each of the condensing optical paths 1B Is acquired.
  • vibration spectrum data for each collected light path 1B is acquired, data in which vibration spectrum data for each collected light path 1B are collectively obtained may be acquired.
  • the control device 26 mechanically controls the rotation angle of the diffraction grating built in the spectroscope 23 and the entrance slit width, and electrically controls the setting of the light detector.
  • the control device 26 detects the emitted light intensity of the light source 21, the central wavelength or the entrance slit width of the diffraction grating of the spectroscope 23, and the light detection based on the determination results by the relative inclination determination unit 7 and the relative distance determination unit 10 described later.
  • the measurement of the vibration spectrum of the observation target A is performed after changing the gain of the unit 24 and the exposure time as necessary.
  • the vibration spectrum determination unit 3 includes a storage device 3A and an arithmetic device 3B.
  • the data of the vibration spectrum is read from the storage unit 25 of the vibration spectrum measurement unit 2 and stored in the storage unit 3 A of the vibration spectrum determination unit 3.
  • a plurality of typical vibration spectra of the observation target A (for example, articular cartilage) are stored in advance as reference spectrum data.
  • FIG. 6A shows an example of the vibration spectrum measured by the vibration spectrum measurement unit 2
  • FIG. 6B shows an example of reference spectrum data.
  • Arithmetic device 3B evaluates the vibration spectrum by comparing the vibration spectrum newly stored in storage device 3A with the reference spectrum, and if the vibration spectrum is similar to the reference spectrum, the vibration spectrum of observation object A It is determined that the measurement is successful, and if the vibration spectrum is not similar to the reference spectrum, it is determined that the measurement of the vibration spectrum of the observation target A has failed.
  • the comparison between the vibration spectrum and the reference spectrum is performed based on any one or a combination of the spectrum waveform, the sum of intensities of the spectrum, the signal-to-noise ratio, or the feature quantity of the spectrum waveform. For example, as shown in FIGS. 6A and 6B, the relative intensities of specific Raman bands I, II of articular cartilage being observed A are compared.
  • the Raman band I is a Raman band of proline of collagen which is an articular cartilage component
  • the Raman band II is a Raman band of the polypeptide backbone of collagen which is an articular cartilage component.
  • the vibration spectrum determination unit 3 transmits the determination result, that is, the success or failure of measurement of the vibration spectrum to the report unit 4.
  • the reporting unit 4 includes an output device 41 such as a display for outputting a display or a speaker for outputting a sound.
  • the reporting unit 4 reports the success or failure of the spectrum measurement to the user by outputting from the output device 41 a display or a voice corresponding to the success or failure of the measurement of the vibration spectrum.
  • the vibration spectrum measuring apparatus 100 includes the relative inclination measuring unit 5, the relative inclination detecting unit 6, the relative inclination determining unit 7, the relative distance measuring unit 8, and the relative distance detecting unit 9. And the relative distance determination unit 10.
  • the relative inclination and relative distance of the optical probe 1 with respect to the observation target A relate to the success or failure of measurement of the vibration spectrum by the vibration spectrum measurement unit 2. Therefore, relative inclination measurement unit 5, relative inclination detection unit 6, and relative inclination determination unit 7 determine whether or not the relative inclination is appropriate, and relative distance measurement unit 8, relative distance detection unit 9, and relative distance The determination unit 10 determines whether the relative distance is appropriate.
  • FIG. 7A and 7B illustrate the relative tilt and relative distance of the optical probe 1 with respect to the observation target A.
  • the relative inclination is an angle ⁇ formed by the vertical line on the surface of the observation object A and the perpendicular line of the front surface of the optical probe 1 at the intersection of the perpendicular line on the front surface of the optical probe 1 and the surface of the observation object A.
  • the relative distance is the distance between the tip surface of the optical probe 1 and the surface of the observation target A.
  • FIG. 7A shows an example of the arrangement of the optical probe 1 suitable for measuring the vibration spectrum.
  • FIG. 7A when the relative inclination and the relative distance are small, when the illumination light is irradiated to the observation target A, the signal light reflected from the observation target A is efficiently collected by the condensing optical path 1B. Thus, a good vibration spectrum with a high signal to noise ratio can be obtained.
  • FIG. 7B shows an example of the arrangement of the optical probe 1 unsuitable for measurement of the vibration spectrum. As shown in FIG.
  • the relative inclination measurement unit 5 includes a light source for generating an inspection light for measuring the relative inclination, a plurality of inspection light paths for condensing and guiding the inspection light reflected by the observation target A, and a plurality of inspection light paths. And a light detector for detecting the guided inspection light.
  • the light source is the light source 21 in the vibration spectrum measuring unit 2
  • the inspection light path is the condensing light path 1 B
  • the light detector is the light detector 24 for vibration spectrum measurement mounted in the vibration spectrum measuring unit 2.
  • the illumination light for measuring the vibration spectrum of the observation target A also serves as the inspection light, and the intensities (physical quantities) of the plurality of inspection lights are detected by the light detector 24 in the same manner as the signal light.
  • the illumination light path 1A may be used, or both the illumination light path 1A and the collection light path 1B may be used.
  • the relative tilt detection unit 6 detects the magnitude of the relative tilt of the optical probe 1 with respect to the observation target A based on the differences in the intensities of the plurality of inspection lights measured by the relative tilt measurement unit 5. Specifically, as shown in FIGS. 5A and 5C, according to the relative inclination between the observation target A and the optical probe 1, the intensity distribution of the inspection light collected by the plurality of collected light paths 1B The intensity profile changes. That is, when the relative inclination of the optical probe 1 with respect to the observation target A is large and unsuitable for vibration spectrum measurement, as shown in FIG. 5A, the intensities of the plurality of inspection lights collected by the plurality of collected light paths 1B.
  • FIG. 8A shows the relationship between the relative inclination of the optical probe 1 with respect to the observation target A and the maximum intensity difference of a plurality of inspection lights.
  • the relative inclination detection unit 6 includes an arithmetic device (not shown), and detects the maximum intensity difference as the magnitude of the relative inclination from the intensities of the plurality of inspection lights by the arithmetic operation of the arithmetic device.
  • the relative inclination determination unit 7 includes a storage device 7A and an arithmetic device 7B.
  • the storage device 7A the maximum intensity difference detected by the relative inclination detection unit 6 under each of the conditions under which the relative inclination is appropriate and the conditions under which the relative inclination is inappropriate is stored in advance as reference data.
  • the arithmetic device 7B compares the maximum intensity difference detected by the relative inclination detection unit 6 with the reference data, so that the relative inclination of the optical probe 1 with respect to the current observation object A is appropriate for measuring the vibration spectrum of the observation object A. Determine if there is.
  • a range is set.
  • the relative inclination determination unit 7 determines that the relative inclination of the observation target A and the optical probe 1 is appropriate when the current maximum intensity difference is equal to or less than the threshold T1, and the maximum intensity difference of the current inspection light is the threshold T1. If the relative inclination between the observation target A and the optical probe 1 is larger, the relative inclination between the observation target A and the optical probe 1 is determined to be unsuitable.
  • the relative inclination determination unit 7 is electrically connected to the control device 26 and the report unit 4 of the vibration spectrum measurement unit 2. The determination result by the relative inclination determination unit 7 is transmitted to the control device 26 and the report unit 4 of the vibration spectrum measurement unit 2.
  • the relative distance measurement unit 8 includes a light source generating inspection light for measuring the relative distance, a plurality of inspection light paths for condensing and guiding the inspection light reflected by the observation target A, and a plurality of inspection light paths. And a light detector for detecting the guided inspection light. Similar to the relative inclination measurement unit 5, the light source is the light source 21 in the vibration spectrum measurement unit 2, the inspection light path is the condensing light path 1 B, and the light detector is for vibration spectrum measurement in the vibration spectrum measurement unit 2. It is a light detector 24.
  • the relative distance detection unit 9 detects the magnitude of the relative distance of the optical probe 1 with respect to the observation target A based on the magnitudes of the intensities of the plurality of inspection lights measured by the relative distance measurement unit 8. Specifically, as shown in FIGS. 5B and 5C, according to the relative distance between the observation target A and the optical probe 1, the magnitude of the intensity of the inspection light collected by the plurality of collected light paths 1B. Changes as a whole. That is, when the relative distance is large and unsuitable for vibration spectrum measurement, as shown in FIG. 5B, the sum of the intensities of a plurality of inspection lights condensed by a plurality of condensing optical paths 1B (all inspection light intensities) becomes smaller.
  • the relative distance detection unit 9 includes an arithmetic unit (not shown), and detects the total inspection light intensity as the magnitude of the relative distance from the intensities of the plurality of inspection lights by the arithmetic operation of the arithmetic unit.
  • the relative distance determination unit 10 includes a storage device 10A and an arithmetic device 10B.
  • the storage device 10A all inspection light intensities detected by the relative distance detection unit 9 under the conditions under which the relative distance between the observation object A and the optical probe 1 is appropriate and under conditions are stored in advance as reference data.
  • Arithmetic device 10B determines whether the current relative distance is appropriate for measuring the vibration spectrum of observation object A by comparing the total inspection light intensity detected by relative distance detection unit 9 with the reference data. .
  • the relative distance determination unit 10 determines that the relative distance between the observation target A and the optical probe 1 is appropriate when the current total inspection light intensity is equal to or greater than the threshold T2, and the current total inspection light intensity is greater than the threshold T2. If the distance between the observation target A and the optical probe 1 is too small, it is determined that the relative distance between the observation target A and the optical probe 1 is inappropriate.
  • the relative distance determination unit 10 is electrically connected to the control device 26 and the report unit 4 of the vibration spectrum measurement unit 2. The determination result by the relative distance determination unit 10 is transmitted to the control device 26 and the report unit 4 of the vibration spectrum measurement unit 2.
  • the control device 26 of the vibration spectrum measurement unit 2 has an appropriate relative tilt of the optical probe 1 with respect to the observation target A based on the determination results received from the relative tilt determination unit 7 and the relative distance determination unit 10, and the observation target Only when the relative distance of the optical probe 1 with respect to A is appropriate, measurement of the vibration spectrum of the observation object A is performed.
  • the reporting unit 4 reports or informs the user by display or sound.
  • the relative tilt and the relative distance are again determined by the determination units 7 and 10. The user repeats the adjustment of the position and tilt of the optical probe 1 until the report unit 4 reports that both the relative tilt and relative distance of the optical probe 1 are appropriate.
  • the vibration spectrum measuring apparatus 100 configured as described above will be described.
  • the vibration spectrum measuring apparatus 100 according to the present embodiment as shown in FIG. 9, relative to the observation object A of the optical probe 1 inserted in the joint prior to the measurement of the vibration spectrum of the observation object A. It is determined whether the inclination and the relative distance are appropriate (steps SA1 to SA6).
  • inspection light for measuring relative inclination and relative distance is emitted from the light source 21 by operation of the relative inclination measurement unit 5 and the relative distance measurement unit 8, and is guided in the illumination light path 1A to be observed A Irradiated.
  • the inspection light reflected on the observation target A is condensed by the plurality of condensing optical paths 1B on the tip surface of the optical probe 1, and is guided by the condensing optical path 1B, the coupling optical system 22B, and the spectroscope 23 for light detection Is detected by the sensor 24.
  • the relative inclination detection unit 6 and the relative distance detection unit 9 respectively detect the maximum intensity difference and the total inspection light intensity from the intensities of the plurality of inspection lights detected by the light detector 24 (steps SA1, SA2).
  • step SA3 In measuring the vibration spectrum of the observation object A by the relative inclination determination unit 7, whether or not the relative inclination is appropriate is determined based on the maximum intensity difference, and the relative distance determination unit 10 observes
  • step SA3 it is determined based on the total inspection light intensity whether the relative distance is appropriate (step SA3). If at least one of the relative inclination and the relative distance is not appropriate (NO in step SA4), the report unit 4 reports that effect (step SA5), and returns to step SA1. On the other hand, if both the relative inclination and the relative distance are appropriate (YES in step SA4), the report unit 4 reports that effect (step SA6), and the controller 26 of the vibration spectrum measurement unit 2 is used as needed.
  • step SA7 After setting the output light beam intensity of the light source 21, the central wavelength of the diffraction grating of the spectroscope 23, the gain of the light detector 24 and the exposure time to predetermined values, measurement of the vibration spectrum of the observation object A is started (step SA7).
  • the vibration spectrum measurement unit 2 generates illumination light from the light source 21, and the illumination light is guided to the illumination light path 1 A in the optical probe 1 and is irradiated to the observation target A.
  • Signal light such as Raman scattering light or diffuse reflection light generated in the observation target A is collected by the plurality of collection light paths 1B in the optical probe 1, dispersed by the spectroscope 23, and the spectrum of the signal light is detected by the photodetector 24 is detected.
  • the vibration spectrum of the signal light condensed by each of the condensing optical paths 1B is obtained by the photodetector 24 (step SA8).
  • step SA9 it is determined by the vibration spectrum determination unit 3 whether or not the measurement of the vibration spectrum of the observation object A is successful (step SA9). If the measurement of the vibration spectrum of the observation target A fails (NO in step SA10), the report unit 4 reports that effect (step SA11), and returns to step SA1. On the other hand, if the measurement of the vibration spectrum of the observation target A is successful (YES in step SA10), the report unit 4 reports that (step SA12), and the measurement of the vibration spectrum ends.
  • the relative inclination and the relative distance of the optical probe 1 with respect to the observation object A are detected, and in measuring the vibration spectrum, the relative inclination and It is determined whether the relative distance is appropriate.
  • the measurement of the vibrational spectrum is then performed only when both the relative tilt and the relative distance are appropriate.
  • the vibration spectrum can be measured in a state in which the optical probe 1 is disposed at an appropriate relative inclination and relative distance with respect to the observation target A, and a good vibration spectrum having a high signal-to-noise ratio can be obtained. It has the advantage of being able to
  • the relative inclination measurement unit 5 and the relative distance measurement unit 8 may be provided with the inspection light source 11 dedicated to inspection light different from the light source 21.
  • a light source switching device that switches the optical path between the coupling optical system 22A and the light sources 11 and 21 so that the illumination light and the inspection light are alternatively guided to the coupling optical system 22A and the illumination optical path 1A. 27 are provided.
  • the relative inclination measurement unit 5 and the relative distance measurement unit 8 may each include an inspection light source dedicated to relative inclination measurement and an inspection light source dedicated to relative distance measurement, instead of the common inspection light source 11.
  • the relative distance measurement unit 8, the relative distance detection unit 9, and the relative distance determination unit 10 may not necessarily be provided.
  • the control device 26 of the vibration spectrum measurement unit 2 measures the vibration spectrum based only on the determination result by the relative tilt determination unit 7.
  • the relative distance between the observation object A and the optical probe 1 can be relatively easily confirmed from the image of the arthroscope used with the optical probe 1, but the relative tilt of the observation object A and the optical probe 1
  • the relative inclination of the image in the depth direction is difficult to confirm from a two-dimensional arthroscopic image. Therefore, detection and determination of the relative tilt can effectively assist the user in properly arranging the optical probe 1 in measuring the vibration spectrum of the observation target A.
  • the relative inclination and the relative distance are measured based on the inspection light reflected by the observation target A, but instead, as shown in FIGS. 11A to 11C, the optical probe 1
  • the relative inclination and the relative distance may be measured based on the inspection light reflected by the partition 12 provided at the tip of the. That is, a partition 12 disposed opposite to the tip end surface of the optical probe 1 and placed against the observation target A, and disposed between the tip end surface of the optical probe 1 and the partition 12, An elastic body 13 connecting to the partition wall 12 is provided on the tip surface of the optical probe 1.
  • the partition 12 is placed parallel to the tip surface of the optical probe 1 as shown in FIG. 11A, and all or a part of the inspection light is reflected by the partition 12 and most components of the illumination light and signal light are the partition 12 It is supposed to be transparent.
  • elastic bodies 13 of equal thickness are evenly distributed in the circumferential direction of the optical probe 1 so that the flat surface of the partition wall 12 is parallel to the tip surface of the optical probe 1.
  • FIG. 11B a plurality of elastic bodies 13 are arranged at equal intervals in the circumferential direction, or as shown in FIG. 11C, an annular elastic body 13 is used.
  • the partition 12 is an optically transparent plate such as sapphire or quartz glass, and reflects a part of the inspection light emitted from the illumination light path 1A.
  • the inspection light reflected by the partition 12 is collected by the collection light path 1B.
  • the elastic body 13 is elastically deformed in the direction along the longitudinal axis of the optical probe 1 by the pressure from the observation target A.
  • the inclination and distance of the partition wall 12 with respect to the tip surface of the optical probe 1 change according to the relative inclination and the relative distance.
  • the relative inclination in accordance with the relative inclination, a bias occurs between the intensities of the inspection light collected by the plurality of collected light paths 1B, and the light amount of the inspection light collected by the plurality of collected light paths 1B is overall according to the relative distance. Change to Therefore, the relative inclination can be detected based on the maximum intensity difference of the inspection light, and the relative distance can be detected based on the total inspection light intensity.
  • the partition wall 12 may be a long wavelength transmission type optical filter that transmits light of a longer wavelength than the inspection light and reflects the inspection light.
  • the wavelength ⁇ 2 of the illumination light for measuring the vibration spectrum of the observation target A is set to pass through the partition 12 longer than the wavelength ⁇ 1 of the inspection light.
  • the inspection light source 11 of FIG. 10 generates inspection light of wavelength ⁇ 1
  • the light source 21 generates illumination light of wavelength ⁇ 2
  • the light source switching device 27 inspects the illumination light path 1A when measuring the relative inclination and relative distance of the optical probe 1 The light is guided, and the illumination light is guided to the illumination light path 1A at the time of vibration spectrum measurement.
  • the inspection light is irradiated to the observation target A through the illumination light path 1A provided in the optical probe 1.
  • the arthroscopic illumination light endoscope illumination light
  • the arthroscope 17 irradiates arthroscopic illumination light to the observation target A in the joint, and optically observes the observation target A.
  • the relative inclination measurement unit 5 and the relative distance measurement unit 8 are provided on the optical probe 1 and a plurality of inspection light paths 1C different from the illumination light path 1A and the collection light path 1B. May be provided.
  • the inspection light path 1C is a fiber Bragg grating (FBG).
  • the plurality of FBGs 1C are arranged circumferentially around the condensing optical path 1B.
  • the tip of the FBG 1 C is embedded in the elastic body 14. As shown in FIG.
  • the proximal end of the FBG 1C extracted from the proximal end of the optical probe 1 detects the inspection light from the inspection light source 11 generating the inspection light and the inspection light from the observation target A via the optical coupler 15 Is connected to the light detector 16.
  • the partition 12 is connected to the tip surface of the optical probe 1 via the elastic body 13, and the return light of the inspection light reflected by the partition 12 and guided in the inspection light path 1C is detected. It is also good.
  • the relative inclination detection unit 6 detects the relative inclination based on the bias of the intensity of the return light of the inspection light guided through the plurality of inspection optical paths 1C. Therefore, the inspection optical path 1C is not an FBG, but a normal light. It may be a fiber.
  • the vibration spectrum measuring apparatus 200 according to the present embodiment, a configuration different from the first embodiment will be described, and the configuration common to the first embodiment is assigned the same reference numeral and the description will be omitted.
  • the relative inclination measuring unit 51 and the relative distance measuring unit 81 respectively measure the pressure acting on the tip surface of the optical probe 1 as a physical quantity that changes according to the relative inclination and the relative distance. It differs from the first embodiment in that it measures.
  • the vibration spectrum measurement apparatus 200 includes an optical probe 1, a vibration spectrum measurement unit 2, a vibration spectrum determination unit 3, and a report unit 4 as shown in FIG. 14.
  • the vibration spectrum measuring apparatus 200 includes a relative inclination measurement unit 51, a relative inclination detection unit 61, a relative inclination determination unit 71, a relative distance measurement unit 81, a relative distance detection unit 91, and a relative distance determination unit 101. Is equipped.
  • the relative inclination measurement unit 51 includes a pressure sensor unit 51a provided on the tip surface of the optical probe 1 and having a plurality of contact pressure sensors 51c, and the pressure is measured by the pressure sensor 51c. measure.
  • the pressure sensor unit 51a is an annular member having an opening 51b through which illumination light and signal light pass at positions corresponding to the illumination light path 1A and the collection light path 1B as shown in FIG.
  • the plurality of pressure sensors 51c are arranged at equal intervals in the circumferential direction of the pressure sensor unit 51a.
  • the pressure sensor 51c is a capacitive pressure sensor, and generates a voltage according to the magnitude of the pressure acting on the pressure sensor 51c.
  • the capacitive pressure sensor 51c has a substrate 51d and electrode layers disposed on both sides of the substrate 51d, and the electrode layer is protected by an insulator 51f. It is done.
  • Each electrode layer is composed of a pair of electrodes 51e, and a wire 51g is sandwiched between the electrode layer and the insulator 51f.
  • the relative inclination detection unit 61 is individually connected to each pressure sensor 51 c via the wiring 51 g.
  • the relative inclination detection unit 61 can detect at which position in the pressure sensor unit 51a the voltage of the pressure sensor 51c has changed from the magnitude of the voltage received from each pressure sensor 51c through the wiring 51g. .
  • FIG. 15A when the relative inclination is small and the pressure sensor unit 51a is in uniform contact with the surface of the observation target A, the magnitudes of the voltages generated by all the pressure sensors 51c become substantially uniform. .
  • FIG. 15A when the relative inclination is small and the pressure sensor unit 51a is in uniform contact with the surface of the observation target A, the magnitudes of the voltages generated by all the pressure sensors 51c become substantially uniform. .
  • FIG. 15A when the relative inclination is small and the pressure sensor unit 51a is in uniform contact with the surface of the observation target A, the magnitudes of the voltages generated by all the pressure sensors 51c become substantially uniform. .
  • FIG. 15A when the relative
  • the relative inclination detection unit 61 can detect the magnitude of the relative inclination based on the deviation of the magnitude of the voltage generated by the plurality of pressure sensors 51c.
  • the relative inclination detection unit 61 detects the magnitude of the relative inclination as follows.
  • the relative inclination detection unit 61 includes a storage device (not shown) and an arithmetic device (not shown), and stores the magnitude of the voltage from each pressure sensor 51c in the storage device.
  • data of charge Q of pressure sensor 51c, dielectric constant ⁇ , electrode area S, initial electrode interval d1, and relative position coordinates (X, Y) of each pressure sensor 51c are stored in advance.
  • the arithmetic device reads the voltage of each pressure sensor 51c from the storage device, calculates the current electrode spacing d2 of each pressure sensor 51c, and calculates the difference between the initial electrode spacing d1 and the current electrode spacing d2.
  • the calculated difference represents the relative distance between the tip surface of the optical probe 1 and the observation target A at the position (X, Y) of each pressure sensor 51 c.
  • the relative inclination detection unit 61 sets the relative distance at the position of each pressure sensor 51c as the Z coordinate, and indicates the relative position coordinate (X, Y) of each pressure sensor 51c and the relative distance in a three-dimensional coordinate space Plot to and calculate the least squares plane of multiple plots.
  • the calculated least square plane is a plane which approximates the surface of the observation target A with respect to the tip surface of the optical probe 1. Therefore, an angle ⁇ formed by the normal line of the least square plane and the Z axis is the relative inclination between the tip surface of the optical probe 1 and the observation target A.
  • the relative inclination detection unit 61 detects an angle ⁇ formed by the normal line of the least square plane and the Z axis as a relative inclination.
  • the relative inclination determination unit 71 includes a storage device (not shown) and an arithmetic device (not shown). In the storage device, the allowable range of the magnitude of the relative inclination is stored in advance. The arithmetic device determines whether the magnitude of the relative inclination detected by the relative inclination detection unit 61 is within the allowable range.
  • the relative tilt determination unit 71 is electrically connected to the control device 26 and the report unit 4 of the vibration spectrum measurement unit 2, and the determination result by the relative tilt determination unit 71 is the control device 26 and the report of the vibration spectrum measurement unit 2. It is sent to the part 4.
  • the relative distance measurement unit 81 includes a pressure sensor unit 51a.
  • the relative distance detection unit 91 is individually connected to each pressure sensor 51 c via a wire 51 g. As described above, the magnitude of the voltage generated by the capacitive pressure sensor 51c is determined by the amount of change in the distance between the electrodes 51e.
  • the relative distance detection unit 91 detects the relative distance at the position of each pressure sensor 51c in the pressure sensor unit 51a from the magnitude of the voltage received from each pressure sensor 51c via the wiring 51g.
  • the relative distance determination unit 101 includes a storage device (not shown) and an arithmetic device (not shown). In the storage device, the allowable range of the relative distance size is stored in advance. The computing device determines whether the relative distance detected by the relative distance detection unit 91 is within the allowable range.
  • the relative distance determination unit 101 is electrically connected to the control device 26 and the report unit 4 of the vibration spectrum measurement unit 2, and the determination result by the relative distance determination unit 101 corresponds to the control device 26 and the report of the vibration spectrum measurement unit 2. It is sent to the part 4.
  • the relative inclination and relative distance of the optical probe 1 with respect to the observation target A can be detected based on the magnitudes of pressure acting on a plurality of positions on the tip surface of the optical probe 1 it can.
  • a capacitive pressure sensor is used as the contact pressure sensor, but instead, as shown in FIG. 20, a piezoelectric sensor 51h having a piezoelectric element 51i is used. It is also good.
  • the piezoelectric sensors 51 h are arranged at equal intervals in the circumferential direction on the tip surface of the optical probe 1 as in the capacitive pressure sensor 51 c.
  • the piezoelectric sensor 51 h includes a piezoelectric element 51 i and a pair of electrodes 51 j sandwiching the piezoelectric element 51 i.
  • the piezoelectric element 51i When the thickness of the piezoelectric element 51i changes due to the pressure acting on the piezoelectric sensor 51h, the piezoelectric element 51i generates a voltage having a magnitude corresponding to the amount of change in thickness due to the piezoelectric effect.
  • the voltage generated by the piezoelectric element 51i is measured via the wire 51g connected to the electrode 51j. Therefore, the relative inclination can be detected based on the bias of the voltage magnitudes of the plurality of piezoelectric sensors 51h, and the relative distance can be detected based on the voltage magnitudes of the plurality of piezoelectric sensors 51h.
  • the thickness of the piezoelectric element 51i may be controlled to correct the relative inclination and the relative distance by applying a voltage to the piezoelectric element 51i via the wiring 51g.
  • the vibration spectrum measuring apparatus 300 according to the present embodiment, a configuration different from the first embodiment will be described, and the configuration common to the first embodiment is assigned the same reference numeral and the description will be omitted.
  • the relative inclination measuring unit 52 and the relative distance measuring unit 82 respectively use the reflected waves of the ultrasonic waves from the optical probe 1 as physical quantities that change according to relative inclination and relative distance. It differs from the first embodiment in that it measures.
  • the vibration spectrum measurement apparatus 300 includes an optical probe 1, a vibration spectrum measurement unit 2, a vibration spectrum determination unit 3, and a report unit 4.
  • the vibration spectrum measuring apparatus 300 further includes a relative inclination measurement unit 52, a relative inclination detection unit 62, a relative inclination determination unit 72, a relative distance measurement unit 82, a relative distance detection unit 92, and a relative distance determination unit 102. Is equipped.
  • the relative inclination measuring unit 52 and the relative distance measuring unit 82 each include an ultrasonic examination device 18 mounted on the distal end of the arthroscope (endoscope) 17.
  • the ultrasonic inspection apparatus 18 radiates ultrasonic waves radially as shown in FIG. When an object is present in the irradiation range of the ultrasonic wave, the object generates a reflected wave of the ultrasonic wave.
  • the ultrasonic inspection device 18 receives the reflected wave of the ultrasonic wave, and measures the distance to the object present in the irradiation range of the ultrasonic wave for each unit solid angle based on the received reflected wave. Thereby, distances from the ultrasonic inspection apparatus 18 to each position on the surface of the observation target A and each position on the surface of the optical probe 1 are obtained.
  • the relative inclination detection unit 62 reproduces the surrounding environment of the ultrasonic inspection apparatus 18 based on the distance for each unit solid angle measured by the relative inclination measurement unit 52. Specifically, the relative inclination detection unit 62 plots the distance per unit solid angle in the space coordinate system centered on the ultrasonic inspection apparatus 18, and performs processing for complementing the gap between the plots, as shown in FIG. As shown, a three-dimensional estimated peripheral model around the ultrasound system 18 is created.
  • the relative inclination detection unit 62 determines the surface of the optical probe 1 and the surface of the observation target A from the estimated peripheral model based on the relative positional relationship between the arthroscope 17 and the ultrasonic inspection apparatus 18, and the estimated optical probe surface P1, an estimated optical probe tip surface P2, and an estimated observation target surface P3 are set.
  • the relative inclination detection unit 62 calculates the estimated optical probe optical axis Q1 from the estimated optical probe surface P1, calculates the intersection of the estimated optical probe optical axis Q1 and the estimated observation target surface P3, and estimates the observation target at the intersection.
  • the angle ⁇ formed by the normal line Q2 of the plane P3 and the estimated optical probe optical axis Q1 is calculated.
  • the calculated angle is the magnitude of the relative inclination.
  • the relative inclination determination unit 72 includes a storage device (not shown) and an arithmetic device (not shown). In the storage device, the allowable range of the magnitude of the relative inclination is stored in advance. The arithmetic device determines whether or not the magnitude of the relative inclination detected by the relative inclination detection unit 62 is within the allowable range.
  • the relative tilt determination unit 72 is electrically connected to the control device 26 and the report unit 4 of the vibration spectrum measurement unit 2, and the determination result by the relative tilt determination unit 72 corresponds to the control device 26 and the report of the vibration spectrum measurement unit 2. It is sent to the part 4.
  • the relative distance detection unit 92 Similar to the relative tilt detection unit 62, the relative distance detection unit 92 creates a three-dimensional estimated peripheral model, sets the estimated optical probe tip surface P2 and the estimated observation target surface P3, and sets the estimated optical probe optical axis Q1. calculate. Next, the relative distance detection unit 92 calculates the distance d from the estimated optical probe tip surface P2 to the intersection of the estimated optical probe optical axis Q1 and the estimated observation target surface P3. The calculated distance d is a relative distance.
  • the relative distance determination unit 102 includes a storage device (not shown) and an arithmetic device (not shown). In the storage device, an allowable range of relative distance is stored in advance. The arithmetic device determines whether the relative distance detected by the relative distance detection unit 92 is within the allowable range.
  • the relative distance determination unit 102 is electrically connected to the control device 26 and the report unit 4 of the vibration spectrum measurement unit 2, and the determination result by the relative distance determination unit 102 corresponds to the control device 26 and the report of the vibration spectrum measurement unit 2. It is sent to the part 4.
  • the distance from the ultrasonic inspection apparatus 18 to the tip of the observation target A and the optical probe 1 based on the reflection wave of the ultrasonic wave from the observation target A and the tip of the optical probe 1 can be detected by measuring
  • a vibration spectrum correction unit 19 that corrects the vibration spectrum measured by the vibration spectrum measurement unit 2 may be further provided.
  • the vibration spectrum correction unit 19 is electrically connected to the vibration spectrum measurement unit 2, the relative tilt determination unit 7, and the relative distance determination unit 10.
  • the apparent intensity of the vibration spectrum of the observation object A measured by the vibration spectrum measurement unit 2 changes depending on the relative inclination and relative distance between the optical probe 1 and the observation object A.
  • the vibration spectrum correction unit 19 includes a storage device (not shown) and an arithmetic device (not shown).
  • the vibration spectrum correction unit 19 stores the vibration spectrum of the observation object A acquired by the vibration spectrum measurement unit 2 in the storage device, and the relative tilt determination unit 7 and the relative distance determination unit 10 use the relative tilt used for the determination. And information of relative distance is received and stored in a storage device.
  • the storage device stores correction coefficient data of apparent intensity when the optical probe 1 and the observation target A are disposed at a predetermined relative inclination and a predetermined relative distance.
  • the arithmetic device corrects the apparent intensity change of the vibration spectrum by multiplying the vibration spectrum of the observation object A read out from the storage device by the correction coefficient.
  • the vibration spectrum determination unit 3 determines the success or failure of the measurement based on the vibration spectrum whose apparent intensity has been corrected. In this way, it is possible to obtain a vibration spectrum in which the change in intensity due to the relative tilt and the difference in relative distance is reduced.
  • the observation target A from the arthroscope (illumination device) 17 is A lighting control unit 20 may be further provided to control the state of the arthroscopic illumination light emitted to the light source.
  • the illumination control unit 20 is a device having a filter switching function of switching an optical filter built in the illumination unit 171 that supplies the arthroscopic illumination light to the arthroscope 17.
  • the illumination control unit 20 is electrically connected to the relative tilt determination unit 7, the relative distance determination unit 10, and the vibration spectrum measurement unit 2.
  • the illumination control unit 20 receives the information on the determination results of the relative inclination and the relative distance executed by the relative inclination determination unit 7 and the relative distance determination unit 10, and switches the optical filter of the illumination unit 171 to obtain the illumination unit 171
  • the state, eg, intensity or spectrum, of the arthroscopic illumination light supplied to the arthroscope 17 is changed.
  • the illumination control unit 20 may control an opening / closing device that opens / closes a shutter for illumination light provided in the illumination unit 171.
  • the relative inclination determination unit 7 and the relative distance determination unit 10 determine that the relative inclination and the relative distance are appropriate, transmit a signal to the illumination control unit 20.
  • the illumination control unit 20 receives the determination result (the relative distance and the relative inclination are appropriate).
  • the illumination control unit 20 also receives information on the exposure time (time T) of the light detector 24 set in the control device 26 of the vibration spectrum measurement unit 2.
  • time T the exposure time of the light detector 24 set in the control device 26 of the vibration spectrum measurement unit 2.
  • the illumination control unit 20 Prior to the start of measurement of the vibration spectrum by the vibration spectrum measurement unit 2, sets the state of the arthroscopic illumination light from the arthroscope 17 to a predetermined time t (t from start of measurement of the vibration spectrum to measurement completion). Change only during> T).
  • the intensity of the arthroscopic illumination light irradiated from the arthroscope 17 to the observation target A temporarily decreases during the time required for measurement of the vibration spectrum of the observation target A, or the spectrum shape of the arthroscopic illumination light Changes, or the arthroscopic illumination is temporarily blocked.
  • the light amount and spectrum shape of the arthroscopic illumination light are changed to reduce the influence of stray light derived from the arthroscopic illumination light superimposed on the vibration spectrum, and the vibration spectrum measuring unit 2 A high vibration spectrum of the observation object A can be obtained.
  • Vibration spectrum measuring apparatus 100, 200, 300 Vibration spectrum measuring apparatus 1
  • Optical probe 2 Vibration spectrum measuring unit 3
  • Vibration spectrum judging unit 4 Report units 5, 51, 52 Relative inclination measuring unit 6, 61, 62 Relative inclination detecting unit 7, 71, 72 Relative inclination Determination unit 8, 81, 82 Relative distance measurement unit 9, 91, 92 Relative distance detection unit 10, 101, 102 Relative distance determination unit 11
  • Examination light source 12 Partition wall 13
  • Elastic body 18
  • Arthroscope (endoscope) 18
  • vibration spectrum correction unit 20 illumination control unit

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

A vibrational spectrum measurement device (100) is provided with a long optical probe (1) for emitting illumination light toward an observation object (A) and receiving signal light generated in the observation object (A), a relative tilt measurement unit (5) for measuring a physical quantity that varies in accordance with the size of a relative tilt between the observation object (A) and the optical probe (1), a relative tilt detection unit (6) for detecting the size of the relative tilt on the basis of the physical quantity, a relative tilt determination unit (7) for determining whether the size of the relative tilt is within a predetermined allowable range, and a vibrational spectrum measurement unit (2) for measuring the vibrational spectrum of the signal light received by the optical probe (1) on the basis of the determination result.

Description

振動スペクトル測定装置Vibration spectrum measuring device
 本発明は、振動スペクトル測定装置に関するものである。 The present invention relates to a vibration spectrum measuring apparatus.
 従来、関節症や外傷による膝関節軟骨の異常は、X線画像および問診に加え、核磁気共鳴イメージング(MRI)や関節鏡視などにより診断される。しかしながら、従来の診断法は、膝関節の主要疾患である変形性膝関節症や、外傷による膝関節軟骨の損傷によって惹起される組織異常に対して、診断能力が必ずしも十分ではない。また、将来の膝関節軟骨の治療法として期待される、培養軟骨細胞移植による関節軟骨再生治療において、従来の診断法では、細胞移植後に軟骨が正常な硝子軟骨として再生しているか、または線維軟骨として再生しているかの評価が困難である。このような診断能の限界を向上させるため、関節軟骨組織の物理的または化学的特性などの性状を評価することにより、軟骨をはじめとする関節組織の状態をより詳細に診断可能な技術の必要性が高まっており、各種技術が検討されている。このような軟骨性状の評価技術として、核磁気共鳴イメージング(MRI)法や超音波計測法、または関節鏡視下での光学計測法が挙げられる。 Conventionally, abnormalities of knee joint cartilage due to arthrosis and trauma are diagnosed by nuclear magnetic resonance imaging (MRI), arthroscopy, etc. in addition to X-ray imaging and interviews. However, conventional diagnostic methods do not always have sufficient diagnostic ability for osteoarthritis of the knee, which is a major disease of the knee joint, and tissue abnormalities caused by damage to the knee joint cartilage due to trauma. In addition, in articular cartilage regeneration treatment by cultured chondrocyte transplantation, which is expected as a treatment for knee joint cartilage in the future, with conventional diagnostic methods, cartilage is regenerated as normal hyaline cartilage after cell transplantation, or fibrocartilage It is difficult to evaluate what is playing as. In order to improve the limit of such diagnostic ability, there is a need for a technology that can diagnose the condition of joint tissue including cartilage in more detail by evaluating properties such as physical or chemical characteristics of articular cartilage tissue. The nature is increasing and various technologies are being considered. As a technique for evaluating such cartilage properties, a nuclear magnetic resonance imaging (MRI) method, an ultrasonic measurement method, or an optical measurement method under arthroscopy can be mentioned.
 光学計測法によれば、膝関節内の軟骨および骨組織や、半月板の主たる成分であるコラーゲンや糖鎖分子をなどの各種生体分子を直接的に観察することが可能である。そのため、光学計測法により成分情報を取得し、取得された成分情報に基づいた軟骨性状診断技術が研究されている。光学計測法として、関節軟骨の自家蛍光スペクトルを観測する蛍光分光法や光音響法、関節軟骨のラマンスペクトル(例えば、特許文献1および非特許文献1参照。)または近赤外線吸収スペクトル(例えば、非特許文献2参照。)などの振動スペクトルを観測する振動スペクトル測定法が報告されている。 According to optical measurement, it is possible to directly observe cartilage and bone tissue in the knee joint, and various biomolecules such as collagen and sugar chain molecules which are main components of the meniscus. Therefore, component information is acquired by an optical measurement method, and a cartilage property diagnostic technique based on the acquired component information is studied. As an optical measurement method, a fluorescence spectroscopy or photoacoustic method for observing an autofluorescence spectrum of articular cartilage, a Raman spectrum of articular cartilage (see, for example, Patent Document 1 and Non-patent Document 1) or a near infrared absorption spectrum (for example, non- There is a report on a vibrational spectrum measurement method for observing a vibrational spectrum such as in Patent Document 2.).
 いずれの光学計測法を用いた場合にも、関節骨を覆う組織によって光が散乱されるために、経皮的に関節軟骨を光学観察することは困難である。そのため、図26に示されるように、膝関節内部を観察する関節鏡と同様に、膝表面に設けられる所定のポータルにおいて皮膚を切開し、光学観測が可能な細い光学プローブを膝関節へ挿入することにより、関節骨にアクセスする必要がある。光学プローブを介して骨表層の軟骨組織へ光照明し、軟骨組織からの信号光(例えば、軟骨組織からのラマン散乱光や拡散反射光)のスペクトルを観測することで、該スペクトルに基づいて軟骨性状を評価することができる。 Regardless of which optical measurement method is used, it is difficult to optically observe articular cartilage percutaneously because light is scattered by the tissue covering the articular bone. Therefore, as shown in FIG. 26, as in the arthroscope for observing the inside of the knee joint, the skin is incised at a predetermined portal provided on the knee surface, and a thin optical probe capable of optical observation is inserted into the knee joint In some cases, access to the joint bones is required. The cartilage tissue in the surface layer of the bone is illuminated with light via an optical probe, and the spectrum of signal light from the cartilage tissue (eg, Raman scattered light or diffuse reflected light from cartilage tissue) is observed, based on the spectrum. Properties can be evaluated.
 関節鏡の外径は4mm以下と細いため、軟性鏡とは異なり関節鏡には鉗子チャネルが設けられていない。そのため、関節鏡と、関節内の軟骨など組織の分光スペクトルを観測するための光学プローブはそれぞれ独立した細管であり、膝表面に作成した別々の孔(ポータル)から関節内へそれぞれ挿入される。 The arthroscope has a thin outer diameter of 4 mm or less, so unlike the soft mirror, the arthroscope is not provided with a forceps channel. Therefore, the arthroscope and the optical probe for observing the spectrum of tissue such as cartilage in the joint are independent capillaries, and are inserted into the joint from separate holes (portal) created on the knee surface.
特表2007-524833号公報Japanese Patent Publication No. 2007-524833
 膝関節内に挿入された光学プローブによって軟骨組織をはじめとする観察対象の振動スペクトル(例えばラマンスペクトルや赤外吸収スペクトル)を測定する際に、振動スペクトルの信号対雑音比は、観察対象表面と光学プローブ先端との間の相対的な距離や相対的な傾きに依存して変化する。例えば、図27Aに示されるように、観察対象と光学プローブ先端との相対傾きおよび相対距離が比較的小さい場合には、観察対象からの信号光を効率良く集光することができ、良好な振動スペクトルを取得できる。一方、図27Bに示されるように、観察対象と光学プローブ先端との相対傾きおよび相対距離が比較的大きい場合には、光学プローブにおいて観察対象からの信号光の集光効率が低下し、振動スペクトルが劣化する。したがって、分析に十分な信号対雑音比を有する観察対象の振動スペクトルを取得するためには、観察対象に対する光学プローブの相対的な傾きおよび相対的な距離に所定の制約条件が存在する。 When measuring a vibration spectrum (for example, a Raman spectrum or an infrared absorption spectrum) of an observation target including cartilage tissue by an optical probe inserted into a knee joint, the signal-to-noise ratio of the vibration spectrum is It changes depending on the relative distance between the optical probe tip and the relative inclination. For example, as shown in FIG. 27A, when the relative inclination and relative distance between the object to be observed and the tip of the optical probe are relatively small, signal light from the object to be observed can be efficiently collected, and good vibration can be obtained. You can get a spectrum. On the other hand, as shown in FIG. 27B, when the relative inclination and relative distance between the object to be observed and the tip of the optical probe are relatively large, the collection efficiency of signal light from the object to be observed in the optical probe is lowered, and the vibration spectrum is Is degraded. Therefore, in order to obtain the vibration spectrum of the observed object having a signal-to-noise ratio sufficient for analysis, predetermined constraints exist on the relative tilt and relative distance of the optical probe with respect to the observed object.
 このように、光学プローブを使用して信号対雑音比の高い良好な観察対象の振動スペクトルを測定する場合には、観察対象に対して光学プローブを精度良く位置決めする必要がある。しかしながら、膝関節内に挿入された関節鏡の関節鏡画像において、視野内の光学プローブの凡その位置を確認することは容易であるものの、平面的な関節鏡画像から、特に画像の奥行方向への光学プローブの傾きを判断することは容易ではない。そのため、観察対象に対する光学プローブの傾きおよび距離が適切であるか否かを、関節鏡画像に基づいて判断することは通常難しい。このような状況であるため、光学プローブの位置決めが恣意的である場合には、信号対雑音比が良好な振動スペクトル測定に失敗する恐れがある。 As described above, when measuring the vibration spectrum of a good observation target having a high signal-to-noise ratio using an optical probe, it is necessary to position the optical probe with respect to the observation target with high accuracy. However, in the arthroscopic image of the arthroscope inserted into the knee joint, although it is easy to confirm the approximate position of the optical probe within the field of view, it is particularly apparent from the planar arthroscopic image, particularly in the depth direction of the image. It is not easy to determine the tilt of the optical probe. Therefore, it is usually difficult to determine whether the tilt and distance of the optical probe with respect to the observation target is appropriate based on the arthroscopic image. Under these circumstances, if the positioning of the optical probe is arbitrary, the signal-to-noise ratio may fail to make a good measurement of the vibration spectrum.
 本発明は、上述した事情に鑑みてなされたものであって、観察対象に対する光学プローブの相対傾きを、観察対象の振動スペクトルを取得するにおいて適切な配置へと確実に設定した上で、観察対象の振動スペクトルを測定することができる振動スペクトル測定装置を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and the relative inclination of the optical probe with respect to the observation target is surely set to an appropriate position when acquiring the vibration spectrum of the observation target, and then the observation target It is an object of the present invention to provide a vibration spectrum measuring apparatus capable of measuring the vibration spectrum of
 上記目的を達成するため、本発明は以下の手段を提供する。
 本発明の一態様は、先端面から観察対象に向けて照明光を射出するとともに該照明光の照射によって前記観察対象において発生した信号光を前記先端面において受光する長尺の光学プローブであって、前記照明光を導光する照明光路および前記信号光を導光する集光光路を有する光学プローブと、前記観察対象と前記光学プローブとの間の相対傾きの大きさに応じて変化する物理量を計測する相対傾き計測部と、該相対傾き計測部によって計測された前記物理量に基づいて前記相対傾きの大きさを検出する相対傾き検出部と、該相対傾き検出部によって検出された前記相対傾きの大きさが所定の許容範囲内であるか否かを判定する相対傾き判定部と、該相対傾き判定部による判定結果に基づいて、前記光学プローブの前記集光光路によって導光された前記信号光の振動スペクトルを測定する振動スペクトル測定部とを備える振動スペクトル測定装置である。
In order to achieve the above object, the present invention provides the following means.
One aspect of the present invention is a long optical probe that emits illumination light from a tip end surface toward an observation target and receives signal light generated in the observation target by irradiation of the illumination light at the tip end surface, An optical probe having an illumination light path for guiding the illumination light and a focusing light path for guiding the signal light, and a physical quantity that changes according to the magnitude of relative inclination between the observation target and the optical probe A relative inclination measurement unit to measure, a relative inclination detection unit that detects the magnitude of the relative inclination based on the physical quantity measured by the relative inclination measurement unit, and the relative inclination detected by the relative inclination detection unit A relative inclination determination unit that determines whether or not the size is within a predetermined allowable range, and the guided light path of the optical probe based on the determination result by the relative inclination determination unit. It is a vibration spectrum measuring apparatus and a vibration spectrum measuring section for measuring the vibration spectrum of the signal light.
 本態様によれば、照明光路を導光された照明光が光学プローブの先端面から観察対象に照射され、観察対象からの信号光(例えば、照明光が励起光である場合の観察対象からのラマン散乱光や、観察対象からの照明光の拡散反射光)が光学プローブの先端面において集光光路によって集光され、集光光路によって集光された信号光から振動スペクトル測定部によって観察対象の振動スペクトルが測定される。 According to this aspect, the illumination light guided in the illumination light path is irradiated from the tip end surface of the optical probe to the observation target, and the signal light from the observation target (for example, the illumination light from the observation target when the illumination light is excitation light) Raman scattered light and diffuse reflected light of illumination light from the observation target are condensed by the condensing optical path on the tip surface of the optical probe, and from the signal light condensed by the condensing optical path, the vibration spectrum measuring unit The vibrational spectrum is measured.
 この場合に、観察対象に対する光学プローブの相対傾きの大きさに応じて変化する物理量が相対傾き計測部によって計測され、計測された物理量に基づいて相対傾きの大きさが相対傾き検出部によって検出され、相対傾きの大きさが所定の許容範囲内であるか否かが相対傾き判定部によって判定される。 In this case, a physical quantity that changes according to the magnitude of the relative inclination of the optical probe with respect to the observation target is measured by the relative slope measurement unit, and the relative slope detection unit detects the magnitude of the relative inclination based on the measured physical quantity. The relative tilt determining unit determines whether the magnitude of the relative tilt is within a predetermined allowable range.
 相対傾きの大きさが振動スペクトルの測定に適切であるときには、相対傾きの大きさが所定の許容範囲内となり、振動スペクトル測定部による振動スペクトルの測定が実行される。一方、相対傾きの大きさが振動スペクトルの測定に不適であるときには、相対傾きの大きさが所定の許容範囲から外れ、振動スペクトル測定部による振動スペクトルの測定が実行されない。これにより、観察対象に対して光学プローブを適切な相対傾きに確実に配置した状態で観察対象の振動スペクトルを測定することができる。 When the magnitude of the relative tilt is appropriate for measuring the vibration spectrum, the magnitude of the relative tilt falls within a predetermined allowable range, and measurement of the vibration spectrum by the vibration spectrum measurement unit is performed. On the other hand, when the magnitude of the relative slope is not suitable for measuring the vibration spectrum, the magnitude of the relative slope deviates from a predetermined allowable range, and the measurement of the vibration spectrum by the vibration spectrum measurement unit is not performed. This makes it possible to measure the vibration spectrum of the observation target in a state in which the optical probe is reliably arranged at an appropriate relative inclination with respect to the observation target.
 上記態様においては、前記観察対象と前記光学プローブの先端面との間の相対距離の大きさに応じて変化する物理量を計測する相対距離計測部と、該相対距離計測部によって計測された前記物理量に基づいて前記相対距離の大きさを検出する相対距離検出部と、該相対距離検出部によって検出された前記相対距離の大きさが所定の許容範囲内であるか否かを判定する相対距離判定部とを備え、前記振動スペクトル測定部が、前記相対傾き判定部による判定結果および前記相対距離判定部による判定結果に基づいて、前記信号光の振動スペクトルを測定してもよい。
 このようにすることで、相対傾きおよび相対距離の両方が適切な状態で振動スペクトルの測定を実行することができる。
In the above aspect, a relative distance measuring unit that measures a physical quantity that changes according to the magnitude of the relative distance between the observation target and the tip surface of the optical probe, and the physical quantity measured by the relative distance measuring unit Relative distance detection unit that detects the magnitude of the relative distance based on the above, and relative distance determination that determines whether or not the magnitude of the relative distance detected by the relative distance detection unit is within a predetermined allowable range The vibration spectrum measurement unit may measure the vibration spectrum of the signal light based on the determination result by the relative tilt determination unit and the determination result by the relative distance determination unit.
In this way, measurement of the vibration spectrum can be performed with both the relative tilt and the relative distance being appropriate.
 上記態様においては、前記振動スペクトル測定部によって測定された前記振動スペクトルを評価し、前記観察対象の振動スペクトルの測定の成否を判定する振動スペクトル判定部と、該振動スペクトル判定部による判定結果を報告する報告部とを備えていてもよい。
 このようにすることで、観察対象の良好な振動スペクトルが測定されたか否かが報告部によって使用者に報告される。したがって、使用者は、測定の成功が報告部から報告されるまで振動スペクトルの測定を繰り返すことで、観察対象の良好な振動スペクトルを確実に取得することができる。
In the above aspect, the vibration spectrum determination unit evaluates the vibration spectrum measured by the vibration spectrum measurement unit and determines success or failure of the measurement of the vibration spectrum of the observation target, and reports the determination result by the vibration spectrum determination unit And a reporting unit.
By doing this, the reporting unit reports to the user whether or not a good vibration spectrum of the observation object has been measured. Therefore, the user can reliably obtain a good vibration spectrum of the observation target by repeating the measurement of the vibration spectrum until the report unit reports a successful measurement.
 上記態様においては、前記相対傾き検出部によって検出された前記相対傾きの大きさ、および/または、前記相対距離検出部によって検出された前記相対距離の大きさ基づいて、前記振動スペクトル測定部によって測定された振動スペクトルを補正する振動スペクトル補正部を備えていてもよい。
 このようにすることで、相対傾きおよび/または相対距離のばらつきに依存して振動スペクトルに生じるばらつき、例えば見かけ上の振動スペクトル強度のばらつきを振動スペクトル補正部によって補正することができ、相対傾きおよび/または相対距離のばらつきの影響が低減されたより定量精度の高い振動スペクトルを取得することができる。
In the above aspect, the measurement is performed by the vibration spectrum measurement unit based on the magnitude of the relative tilt detected by the relative tilt detection unit and / or the magnitude of the relative distance detected by the relative distance detection unit. A vibration spectrum correction unit may be provided to correct the selected vibration spectrum.
In this way, variations occurring in the vibration spectrum depending on relative tilt and / or variations in relative distance, for example, variations in apparent vibration spectrum intensity can be corrected by the vibration spectrum correction unit, and the relative tilt and And / or it is possible to obtain a more quantitative vibration spectrum with reduced influence of variations in relative distance.
 上記態様においては、前記相対傾き判定部および/または前記相対距離判定部による判定結果に基づいて、前記光学プローブとは別体である照明装置から前記観察対象に照射される光の状態を制御する照明制御部を備えていてもよい。
 前記観察対象の振動スペクトルを測定するにおいて、観察対象が膝関節軟骨のように体内に位置し、光学プローブが観察対象上のどの領域に近接しているかが目視では分からない場合、振動スペクトルを取得するにおいて光学プローブの位置を確認または記録することが必要である。このような状況では視野が暗く、光学プローブとは別体の照明装置(関節鏡)から観察対象へ光を照射する必要がある。この条件では振動スペクトルを測定するにおいて、光学プローブから発せられる照明光以外の光は迷光となり振動スペクトルの測定結果に影響を与える。したがって、振動スペクトルの測定時には、前記照明装置から観察対象に照射される光の強度や波長を照明制御部によって適切に制御することで、信号対雑音比がより高い良好な振動スペクトルを取得することができる。
In the above aspect, based on the determination result by the relative tilt determination unit and / or the relative distance determination unit, the state of the light irradiated to the observation object from the illumination device that is separate from the optical probe is controlled. A lighting control unit may be provided.
When measuring the vibration spectrum of the observation object, acquire the vibration spectrum when the observation object is located in the body like the knee joint cartilage and where the optical probe is close to the observation object by visual observation It is necessary to confirm or record the position of the optical probe. In such a situation, the field of view is dark, and it is necessary to irradiate light to the object to be observed from an illuminator (arthroscope) separate from the optical probe. Under this condition, when measuring the vibration spectrum, light other than the illumination light emitted from the optical probe becomes stray light and affects the measurement result of the vibration spectrum. Therefore, at the time of measurement of the vibration spectrum, the light control unit appropriately controls the intensity and the wavelength of the light irradiated to the observation target from the illumination device by the illumination control unit to obtain a good vibration spectrum having a higher signal-to-noise ratio. Can.
 上記態様においては、前記相対傾き計測部が、前記光学プローブの先端面に配された前記照明光路および前記集光光路の少なくとも一方によって集光された検査光の強度を計測し、前記相対傾き検出部が、前記相対傾き計測部によって計測された前記検査光の強度に基づいて前記相対傾きの大きさを検出してもよい。また、前記相対距離計測部が、前記光学プローブの先端面に配された前記照明光路および前記集光光路の少なくとも一方によって集光された検査光の強度を計測し、前記相対距離検出部が、前記相対距離計測部によって計測された前記検査光の強度に基づいて前記相対距離の大きさを検出してもよい。
 このようにすることで、物理量としての検査光の強度に基づき、相対傾きおよび相対距離を光学的に検出することができる。
In the above aspect, the relative inclination measurement unit measures the intensity of the inspection light collected by at least one of the illumination light path and the collected light path disposed on the tip surface of the optical probe, and the relative inclination detection A unit may detect the magnitude of the relative inclination based on the intensity of the inspection light measured by the relative inclination measurement unit. Further, the relative distance measurement unit measures the intensity of the inspection light collected by at least one of the illumination light path and the collection light path disposed on the tip surface of the optical probe, and the relative distance detection unit The magnitude of the relative distance may be detected based on the intensity of the inspection light measured by the relative distance measurement unit.
By doing this, the relative inclination and the relative distance can be optically detected based on the intensity of the inspection light as a physical quantity.
 上記態様においては、前記相対傾き計測部が、前記光学プローブに設けられ前記照明光路および前記集光光路とは異なる複数の検査光路を有し、前記光学プローブの先端面において前記複数の検査光路によってそれぞれ集光される複数の検査光の強度を計測し、前記相対傾き検出部が、前記相対傾き計測部によって計測された前記複数の検査光の強度間の差に基づいて前記相対傾きを検出してもよい。また、前記相対距離計測部が、前記光学プローブに設けられ前記照明光路および前記集光光路とは異なる複数の検査光路を有し、前記光学プローブの先端面において前記複数の検査光路によってそれぞれ集光される複数の検査光の強度を計測し、前記相対距離検出部が、前記相対距離計測部によって計測された前記複数の検査光の強度の大きさに基づいて前記相対距離を検出してもよい。
 光学プローブの先端面上の複数の位置において検査光路によって集光される複数の検査光の強度は、観察対象に対する光学プローブの相対傾きおよび相対距離に依存する。したがって、複数の検査光の強度間の差に基づいて相対傾きを検出し、複数の検査光の強度の大きさに基づいて相対距離を検出することができる。
In the above aspect, the relative inclination measurement unit has a plurality of inspection light paths provided on the optical probe and different from the illumination light path and the collection light path, and the plurality of inspection light paths are provided on the tip surface of the optical probe. The intensities of the plurality of inspection lights respectively collected are measured, and the relative inclination detection unit detects the relative inclination based on the difference between the intensities of the plurality of inspection lights measured by the relative inclination measurement unit. May be Further, the relative distance measurement unit has a plurality of inspection light paths provided in the optical probe and different from the illumination light path and the collection light path, and the light is collected by the plurality of inspection light paths on the tip surface of the optical probe. The relative distance detection unit may detect the relative distance based on the magnitude of the intensity of the plurality of inspection lights measured by the relative distance measurement unit. .
The intensities of the plurality of inspection lights collected by the inspection light path at a plurality of positions on the tip surface of the optical probe depend on the relative tilt and relative distance of the optical probe with respect to the observation target. Therefore, the relative inclination can be detected based on the difference between the intensities of the plurality of inspection lights, and the relative distance can be detected based on the magnitudes of the intensities of the plurality of inspection lights.
 上記態様においては、前記光学プローブが、複数の前記集光光路を有し、前記相対傾き計測部が、前記光学プローブの前記照明光路から前記光学プローブの先端面に対向する物体に向けて検査光を射出し、前記物体によって反射され前記複数の集光光路によってそれぞれ集光される複数の前記検査光の強度を計測し、前記相対傾き検出部が、前記相対傾き計測部によって計測された前記複数の検査光の強度間の差に基づいて前記相対傾きを検出してもよい。また、前記光学プローブが、複数の前記集光光路を有し、前記相対距離計測部が、前記光学プローブの前記照明光路から前記光学プローブの先端面に対向する物体に向けて検査光を射出し、前記物体によって反射され前記複数の集光光路によってそれぞれ集光される複数の前記検査光の強度を計測し、前記相対距離検出部が、前記相対距離計測部によって計測された前記複数の検査光の強度の大きさに基づいて前記相対距離を検出してもよい。
 このようにすることで、照明光と共通の照明光路を使用して検査光を物体に照射することができるとともに、信号光と共通の集光光路を使用して物体からの検査光を集光することができる。
In the above aspect, the optical probe has a plurality of the condensing light paths, and the relative inclination measurement unit is directed from the illumination optical path of the optical probe to an object facing the tip surface of the optical probe. Is emitted, and the intensities of the plurality of inspection lights reflected by the object and collected by the plurality of collected light paths are measured, and the relative tilt detection unit measures the plurality of measured by the relative tilt measurement unit. The relative inclination may be detected based on the difference between the intensities of the inspection light. In addition, the optical probe has a plurality of condensing light paths, and the relative distance measurement unit emits inspection light toward the object facing the tip surface of the optical probe from the illumination light path of the optical probe. Measuring the intensities of the plurality of inspection lights reflected by the object and collected by the plurality of collection light paths, and the relative distance detection unit measures the plurality of inspection lights measured by the relative distance measurement unit The relative distance may be detected based on the magnitude of the intensity of
In this way, the inspection light can be irradiated to the object using the illumination light path common to the illumination light, and the inspection light from the object is condensed using the condensing light path common to the signal light can do.
 上記態様においては、前記光学プローブが、複数の前記集光光路を有し、前記検査光が、内視鏡から前記観察対象に照射される内視鏡照明光であり、前記相対傾き計測部が、前記観察対象によって反射され前記複数の集光光路によってそれぞれ集光される複数の前記検査光の強度を計測し、前記相対傾き検出部が、前記相対傾き計測部によって計測された前記複数の検査光の強度間の差に基づいて前記相対傾きを検出してもよい。また、前記光学プローブが、複数の前記集光光路を有し、前記検査光が、内視鏡から前記観察対象に照射される内視鏡照明光であり、前記相対距離計測部が、前記観察対象によって反射され前記複数の集光光路によってそれぞれ集光される複数の前記検査光の強度を計測し、前記相対距離検出部が、前記相対距離計測部によって計測された前記複数の検査光の強度の大きさに基づいて前記相対距離を検出してもよい。
 このようにすることで、検査光として、観察対象を光学的に観察するための内視鏡の内視鏡照明光を使用することができる。
In the above aspect, the optical probe has a plurality of the condensing light paths, and the inspection light is endoscope illumination light emitted from the endoscope to the observation target, and the relative inclination measurement unit And measuring the intensities of the plurality of inspection lights reflected by the observation target and collected by the plurality of collection light paths, and the relative inclination detection unit measures the plurality of inspections measured by the relative inclination measurement unit. The relative tilt may be detected based on the difference between the light intensities. In addition, the optical probe has a plurality of the condensing light paths, and the inspection light is endoscope illumination light irradiated from the endoscope to the observation target, and the relative distance measurement unit is the observation. The intensities of the plurality of inspection lights reflected by the object and collected by the plurality of collected light paths are measured, and the relative distance detection unit measures the intensities of the plurality of inspection lights measured by the relative distance measurement unit. The relative distance may be detected based on the magnitude of.
In this way, endoscope illumination light of an endoscope for optically observing an observation target can be used as examination light.
 上記態様においては、前記複数の検査光路が、ファイバブラッググレーティング(FBG)から構成されていてもよい。
 光学プローブの先端面を観察対象に当て付けたときに、FBGの先端部には相対傾きおよび相対距離に応じた歪みが生じ、FBG内を導光する検査光の強度に変化が生じる。したがって、複数のFBGによって導光された複数の検査光の強度に基づき、相対傾きおよび相対距離を検出することができる。
In the above aspect, the plurality of inspection light paths may be configured of a fiber Bragg grating (FBG).
When the tip surface of the optical probe is brought into contact with the object to be observed, distortion occurs according to the relative inclination and relative distance at the tip of the FBG, and a change occurs in the intensity of inspection light guided in the FBG. Therefore, relative inclination and relative distance can be detected based on the intensities of the plurality of inspection lights guided by the plurality of FBGs.
 上記態様においては、前記振動スペクトル測定部が、前記照明光を発生する光源を備え、前記検査光が、前記振動スペクトル測定部の前記光源が発生する前記照明光であってもよい。
 このようにすることで、検査光を発生するための光源の追加が不要である。
In the above aspect, the vibration spectrum measurement unit may include a light source that generates the illumination light, and the inspection light may be the illumination light generated by the light source of the vibration spectrum measurement unit.
By doing this, it is not necessary to add a light source for generating inspection light.
 上記態様においては、前記振動スペクトル測定部が、前記照明光を検出する光検出器を備え、前記相対傾き計測部および/または前記相対距離計測部が、前記振動スペクトル測定部の前記光検出器によって前記検査光の強度を計測してもよい。
 このようにすることで、検査光の計測のための光検出器の追加が不要である。
In the above aspect, the vibration spectrum measurement unit includes a light detector that detects the illumination light, and the relative tilt measurement unit and / or the relative distance measurement unit is the light detector of the vibration spectrum measurement unit. The intensity of the inspection light may be measured.
By doing this, it is not necessary to add a light detector for measuring the inspection light.
 上記態様においては、前記物体が、前記観察対象であってもよい。
 また、上記態様においては、前記物体が、前記光学プローブの前記先端面に弾性体を介して接続され前記観察対象に当て付けられるとともに、前記検査光の少なくとも一部を反射する隔壁であってもよい。
 光学プローブの先端面を前記隔壁を介して観察対象に当て付けたときに、光学プローブと観察対象との間の相対傾きに応じて隔壁の傾きが変化し、光学プローブと観察対象との間の相対距離に応じて隔壁の位置が変化する。この場合、隔壁によって反射され前記集光光路に集められる検査光の強度が変化する。したがって、検査光の強度に基づいて、光学プローブと観察対象との間の相対傾きおよび相対距離を検出することができる。
In the above aspect, the object may be the observation target.
In the above aspect, the object may be a partition that is connected to the tip end surface of the optical probe via an elastic body and is applied to the observation target and reflects at least a part of the inspection light. Good.
When the tip surface of the optical probe is brought into contact with the observation target via the partition wall, the inclination of the partition wall changes according to the relative inclination between the optical probe and the observation target, and the distance between the optical probe and the observation target The position of the partition changes according to the relative distance. In this case, the intensity of the inspection light reflected by the partition wall and collected in the condensing optical path changes. Therefore, based on the intensity of the inspection light, the relative tilt and relative distance between the optical probe and the observation target can be detected.
 上記態様においては、前記隔壁が、前記照明光を透過させるとともに該照明光よりも短波長の前記検査光を反射する長波長透過フィルタであってもよい。
 このようにすることで、照明光とは異なる波長の検査光を使用することができる。
In the above aspect, the partition may be a long wavelength transmission filter that transmits the illumination light and reflects the inspection light having a wavelength shorter than that of the illumination light.
In this way, inspection light of a wavelength different from that of the illumination light can be used.
 上記態様においては、前記振動スペクトル測定部の前記光源が、前記観察対象のラマン散乱光を発生させる励起光を前記照明光として発生し、前記振動スペクトル測定部の光検出器が、前記観察対象のラマンスペクトルを測定し、前記検査光が、前記励起光であって、前記光検出器が前記検査光を検出することを兼ねていてもよい。
 このようにすることで、検査光を発生するための光源と該検査光を検出するための光検出器の追加が不要である。
In the above aspect, the light source of the vibration spectrum measurement unit generates excitation light for generating the Raman scattered light of the observation target as the illumination light, and the light detector of the vibration spectrum measurement unit is the observation target A Raman spectrum may be measured, and the inspection light may be the excitation light, and the photodetector may detect the inspection light.
By doing this, it is not necessary to add a light source for generating inspection light and a light detector for detecting the inspection light.
 上記態様においては、前記相対傾き計測部が、前記光学プローブの先端面上に配列された複数の接触式圧力センサを備え、前記相対傾き検出部が、前記複数の接触式圧力センサによってそれぞれ計測された複数の圧力間の差に基づいて前記相対傾きの大きさを検出してもよい。また、前記相対距離計測部が、前記光学プローブの先端面上に配列された複数の接触式圧力センサを備え、前記相対距離検出部が、前記複数の接触式圧力センサによってそれぞれ計測された複数の圧力の大きさに基づいて前記相対距離を検出してもよい。
 このようにすることで、光学プローブの先端面を観察対象に当て付けたときに観察対象から光学プローブの先端面上の複数の位置に作用する圧力が複数の接触式圧力センサによって計測される。各位置の接触式圧力センサによって計測される圧力は、相対傾きおよび相対距離に依存する。したがって、光学プローブの先端面上の複数の位置における圧力に基づいて、相対傾きおよび相対距離を検出することができる。
In the above aspect, the relative inclination measurement unit includes a plurality of contact pressure sensors arranged on the tip surface of the optical probe, and the relative inclination detection unit is measured by the plurality of contact pressure sensors. The magnitude of the relative inclination may be detected based on the difference between the plurality of pressures. Further, the relative distance measurement unit includes a plurality of contact pressure sensors arranged on the tip surface of the optical probe, and the relative distance detection unit includes a plurality of contacts measured by the plurality of contact pressure sensors. The relative distance may be detected based on the magnitude of pressure.
By doing this, when the tip surface of the optical probe is brought into contact with the observation target, the pressures acting on the plurality of positions on the tip surface of the optical probe from the observation target are measured by the plurality of contact pressure sensors. The pressure measured by the contact pressure sensor at each position depends on the relative tilt and relative distance. Thus, relative tilt and relative distance can be detected based on the pressure at multiple locations on the tip surface of the optical probe.
 上記態様においては、前記複数の接触式圧力センサが、前記光学プローブの前記照明光路および前記集光光路の周囲に周方向に均等に配列されていてもよい。
 このようにすることで、複数の接触式圧力センサによって計測された複数の圧力に基づいて、相対傾きおよび相対距離をより正確に検出することができる。
In the above aspect, the plurality of contact-type pressure sensors may be uniformly arranged in the circumferential direction around the illumination light path of the optical probe and the collection light path.
In this way, relative tilt and relative distance can be detected more accurately based on the plurality of pressures measured by the plurality of contact pressure sensors.
 上記態様においては、前記接触式圧力センサが、静電容量式圧力センサまたは圧電センサであってもよい。
 このようにすることで、圧力に応じた大きさの電圧を物理量として計測することができる。
In the above aspect, the contact pressure sensor may be a capacitive pressure sensor or a piezoelectric sensor.
By doing this, it is possible to measure a voltage having a magnitude corresponding to the pressure as a physical quantity.
 上記態様においては、前記相対傾き計測部および前記相対距離計測部が、超音波を射出するとともに前記観察対象および前記光学プローブからの超音波の反射波を受信し、受信された反射波に基づいて前記観察対象および前記光学プローブの各位置までの距離を計測する超音波検査装置を備え、前記相対傾き検出部および前記相対距離検出部が、前記超音波検査装置によって計測された前記観察対象および前記光学プローブの各位置までの距離に基づいて、前記相対傾きおよび前記相対距離を検出してもよい。前記超音波検査装置は、前記観察対象を観察する内視鏡に取り付けられていてもよい。
 このようにすることで、超音波検査装置によって計測された観察対象および光学プローブまでの距離に基づいて、観察対象の表面および光学プローブの表面の位置を推定することができ、推定された観察対象の表面および光学プローブの表面の位置から、相対傾きおよび相対距離を検出することができる。
In the above aspect, the relative inclination measurement unit and the relative distance measurement unit emit ultrasonic waves and receive the reflected waves of the ultrasonic waves from the observation target and the optical probe, and based on the received reflected waves. The ultrasonic inspection apparatus for measuring the distance to each position of the observation object and the optical probe is provided, and the relative inclination detection unit and the relative distance detection unit are the observation object and the measurement measured by the ultrasonic inspection apparatus. The relative tilt and the relative distance may be detected based on the distance to each position of the optical probe. The ultrasonic inspection apparatus may be attached to an endoscope for observing the observation target.
By doing this, the position of the surface of the observation target and the surface of the optical probe can be estimated based on the distance to the observation target and the optical probe measured by the ultrasonic inspection apparatus, and the estimated observation target The relative tilt and relative distance can be detected from the surface of and the position of the surface of the optical probe.
 本発明によれば、観察対象に対する光学プローブの相対傾きを、観察対象の振動スペクトルを取得するにおいて適切な配置へと確実に設定した上で、観察対象の振動スペクトルを測定することができるという効果を奏する。 According to the present invention, the relative inclination of the optical probe with respect to the observation target can be measured with the vibration spectrum of the observation target after being surely set to an appropriate arrangement when acquiring the vibration spectrum of the observation target. Play.
本発明の第1の実施形態に係る振動スペクトル測定装置の全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram of the vibration spectrum measuring apparatus which concerns on the 1st Embodiment of this invention. 図1の振動スペクトル測定装置における振動スペクトル測定部、振動スペクトル判定部、報告部、相対傾き判定部および相対距離判定部の内部構成図である。It is an internal block diagram of the vibration spectrum measurement part in the vibration spectrum measuring apparatus of FIG. 1, a vibration spectrum determination part, a report part, a relative inclination determination part, and a relative distance determination part. 光学プローブの内部構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the internal structure of an optical probe. 光学プローブの先端面での照明光路および集光光路の配置を示す図である。It is a figure which shows arrangement | positioning of the illumination optical path in the front end surface of an optical probe, and a condensing optical path. 光学プローブの基端部での集光光路の配置を示す図である。It is a figure which shows arrangement | positioning of the condensing optical path in the proximal end of an optical probe. 光検出器の受光面上に形成される、光学プローブの集光光路によって集められる単一波長光の点像配列を示す図である。FIG. 5 is a diagram showing a point image array of single wavelength light collected by the collection optical path of the optical probe formed on the light receiving surface of the light detector. 光検出器の受光面上に形成される、光学プローブの集光光路によって集められる多波長光の点像配列を示す図である。It is a figure which shows the point-image arrangement | sequence of the multi-wavelength light collected by the condensing optical path of an optical probe formed on the light-receiving surface of a photodetector. 観察対象に対する光学プローブの相対傾きが、観察対象の振動スペクトルを測定するにおいて不適であるときに、光検出器によって取得される検査光の強度分布を説明する図である。It is a figure explaining the intensity distribution of the inspection light acquired by a photodetector, when the relative inclination of the optical probe to observation object is unsuitable in measuring the vibration spectrum of observation object. 観察対象に対する光学プローブの相対距離が、観察対象の振動スペクトルを測定するにおいて不適であるときに、光検出器によって取得される検査光の強度分布を説明する図である。It is a figure explaining intensity distribution of inspection light acquired by a photodetector when relative distance of an optical probe to observation object is unsuitable in measuring a vibration spectrum of observation object. 観察対象に対する光学プローブの相対傾きおよび相対距離が、観察対象の振動スペクトルを測定するにおいて適切であるときに、光検出器によって取得される検査光の強度分布を説明する図である。It is a figure explaining the intensity distribution of the inspection light acquired by a photodetector, when the relative inclination and relative distance of an optical probe to observation object are suitable in measuring the vibration spectrum of observation object. 振動スペクトル測定部によって測定された生体組織(関節軟骨)の振動スペクトルの一例である。It is an example of the vibration spectrum of the biological tissue (articular cartilage) measured by the vibration spectrum measurement part. 振動スペクトル測定部の記憶装置に記憶される生体組織(関節軟骨)の参照スペクトルデータの一例である。It is an example of reference spectrum data of a living tissue (articular cartilage) stored in the storage device of the vibration spectrum measurement unit. 観察対象に対する光学プローブの適切な配置を示す図である。It is a figure which shows the suitable arrangement | positioning of the optical probe with respect to observation object. 観察対象に対する光学プローブの不適な配置を示す図である。It is a figure which shows the unsuitable arrangement | positioning of the optical probe with respect to observation object. 観察対象に対する光学プローブの相対傾きと、相対傾き検出部によって検出される検査光の最大強度差との関係の一例を表すグラフである。It is a graph showing an example of the relation between the relative inclination of the optical probe to the observation object and the maximum intensity difference of the inspection light detected by the relative inclination detection unit. 観察対象に対する光学プローブの相対距離と、相対距離検出部によって検出される全検査光強度との関係の一例を表すグラフである。It is a graph showing an example of the relation between the relative distance of the optical probe to the observation object and the total inspection light intensity detected by the relative distance detection unit. 図1の振動スペクトル測定装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the vibration spectrum measuring apparatus of FIG. 振動スペクトル測定部、相対傾き計測部、および相対距離計測部の変形例の構成図である。It is a block diagram of the modification of a vibration spectrum measurement part, a relative inclination measurement part, and a relative distance measurement part. 先端部に弾性体および隔壁を有する光学プローブの変形例の断面図である。It is sectional drawing of the modification of the optical probe which has an elastic body and a partition in a front-end | tip part. 光学プローブの先端面における弾性体の配置の一例を示す図である。It is a figure which shows an example of arrangement | positioning of the elastic body in the front end surface of an optical probe. 光学プローブの先端面における弾性体の配置の他の例を示す図である。It is a figure which shows the other example of arrangement | positioning of the elastic body in the front end surface of an optical probe. 図1の振動スペクトル測定装置の変形例を示す図である。It is a figure which shows the modification of the vibration-spectrum measuring apparatus of FIG. ファイバブラッググレーティングが設けられた光学プローブの変形例の構成図である。It is a block diagram of the modification of the optical probe in which the fiber Bragg grating was provided. 図13Aのファイバブラッググレーティングと検査光源および光検出器との接続を示す図である。It is a figure which shows the connection of the fiber Bragg grating of FIG. 13A, a test | inspection light source, and a photodetector. ファイバブラッググレーティングが設けられた光学プローブの他の変形例の構成図である。It is a block diagram of the other modification of the optical probe in which the fiber Bragg grating was provided. 本発明の第2の実施形態に係る振動スペクトル測定装置の全体構成図である。It is a whole block diagram of the vibration spectrum measuring apparatus which concerns on the 2nd Embodiment of this invention. 図14の光学プローブの先端部の構成図である。It is a block diagram of the front-end | tip part of the optical probe of FIG. 図14の光学プローブの先端部の構成図である。It is a block diagram of the front-end | tip part of the optical probe of FIG. 図14の光学プローブの先端面に設けられる圧力センサ部の構成図である。It is a block diagram of the pressure sensor part provided in the front end surface of the optical probe of FIG. 図16の圧力センサ部の静電容量式圧力センサの構成図である。It is a block diagram of the electrostatic capacitance type pressure sensor of the pressure sensor part of FIG. 相対傾きが不適であるときに複数の圧力センサによって計測される圧力の偏りを説明する図である。It is a figure explaining the bias of pressure measured by a plurality of pressure sensors when relative inclination is unsuitable. 図14の振動スペクトル測定装置の相対傾き検出部および相対距離検出部によって算出される最小二乗平面を説明する図である。It is a figure explaining the least square plane computed by the relative inclination detection part and relative distance detection part of a vibration spectrum measuring device of FIG. 圧電センサの構成図である。It is a block diagram of a piezoelectric sensor. 本発明の第3の実施形態に係る振動スペクトル測定装置の全体構成図である。It is a whole block diagram of the vibration spectrum measuring apparatus which concerns on the 3rd Embodiment of this invention. 図21の超音波検査装置から射出される超音波を説明する図である。It is a figure explaining the ultrasonic wave inject | emitted from the ultrasonic inspection apparatus of FIG. 図21の振動スペクトル測定装置の相対傾き検出部および相対距離検出部によって作成される3次元の推定周辺モデルを説明する図である。FIG. 23 is a diagram for explaining a three-dimensional estimated peripheral model created by the relative tilt detection unit and the relative distance detection unit of the vibration spectrum measuring apparatus of FIG. 21. 第1から第3の実施形態に係る振動スペクトル測定装置の変形例の全体構成図である。It is a whole block diagram of the modification of the vibration spectrum measuring apparatus which concerns on the 1st to 3rd embodiment. 第1から第3の実施形態に係る振動スペクトル測定装置の他の変形例の全体構成図である。It is a whole block diagram of the other modification of the vibration spectrum measuring apparatus which concerns on the 1st-3rd embodiment. 膝関節内へ挿入される関節鏡および光学プローブの配置を説明する図である。It is a figure explaining arrangement | positioning of the arthroscope and optical probe which are inserted in a knee joint. 観察対象に対する光学プローブの配置の一例を示す図である。It is a figure which shows an example of arrangement | positioning of the optical probe with respect to observation object. 観察対象に対する光学プローブの配置の他の例を示す図である。It is a figure which shows the other example of arrangement | positioning of the optical probe with respect to observation object.
(第1の実施形態)
 本発明の第1の実施形態に係る振動スペクトル測定装置100について図面を参照して説明する。
 本実施形態に係る振動スペクトル測定装置100は、図1に示されるように、関節内に挿入され観察対象Aに照明光を照射するとともに観察対象Aからの信号光を受光する細径で長尺の光学プローブ1と、光学プローブ1によって受光された信号光の振動スペクトルを測定する振動スペクトル測定部2と、振動スペクトルの測定の成否を判定する振動スペクトル判定部3と、振動スペクトル判定部3による判定結果を使用者に報告する報告部4とを備えている。図2は、振動スペクトル測定部2、振動スペクトル判定部3、および報告部4の内部構成を示している。
First Embodiment
A vibration spectrum measuring apparatus 100 according to a first embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the vibration spectrum measuring apparatus 100 according to the present embodiment is thin and long, which is inserted in a joint and emits illumination light to the observation target A and receives signal light from the observation target A. Of the optical probe 1, the vibration spectrum measuring unit 2 for measuring the vibration spectrum of the signal light received by the optical probe 1, the vibration spectrum judging unit 3 for judging success or failure of the measurement of the vibration spectrum, and the vibration spectrum judging unit 3 And a reporting unit 4 for reporting the determination result to the user. FIG. 2 shows the internal configuration of the vibration spectrum measurement unit 2, the vibration spectrum determination unit 3, and the report unit 4.
 光学プローブ1は、図3Aに示されるように、観察対象Aを照明するための照明光を導光する照明光路1Aと、観察対象Aからの信号光を導光する集光光路1Bとを内蔵している。信号光は、例えば、照明光を励起光として照射するときに観察対象Aにおいて発生するラマン散乱光、または、照明光を観察対象へ照射したときに組織から反射される拡散反射光である。照明光路1Aおよび集光光路1Bは、光学プローブ1内に長手方向に沿って配置された光ファイバであり、各光ファイバの先端面は光学プローブ1の先端面に配置されている。光学プローブ1の先端面において、図3Bに示されるように、複数の集光光路1Bは、照明光路1Aの周囲に周方向に沿って等間隔に配列されている。あるいは、複数の集光光路1Bは、照明光路1Aの周囲に配列されている。光学プローブ1の基端部において、図3Cに示されるように、複数の集光光路1Bは一列に配列されている。 As shown in FIG. 3A, the optical probe 1 incorporates an illumination light path 1A for guiding illumination light for illuminating the observation target A and a collection light path 1B for guiding signal light from the observation target A. doing. The signal light is, for example, Raman scattered light generated in the observation target A when the illumination light is irradiated as excitation light, or diffused reflected light reflected from tissue when the illumination light is irradiated to the observation target. The illumination light path 1A and the collection light path 1B are optical fibers disposed in the optical probe 1 along the longitudinal direction, and the tip surface of each optical fiber is disposed on the tip surface of the optical probe 1. On the tip surface of the optical probe 1, as shown in FIG. 3B, the plurality of collected light paths 1B are arranged at equal intervals along the circumferential direction around the illumination light path 1A. Alternatively, the plurality of collection light paths 1B are arranged around the illumination light path 1A. At the proximal end of the optical probe 1, as shown in FIG. 3C, the plurality of focusing optical paths 1B are arranged in a line.
 振動スペクトル測定部2は、光学プローブ1の基端から延びる照明光路1Aおよび集光光路1Bと結合光学系22A,22Bを介して光学的に接続されている。振動スペクトル測定部2は、図2に示されるように、照明光を発生する光源21と、光源21と照明光路1Aとを光学的に接続する結合光学系22Aと、集光光路1Bから入射した信号光を分光する分光器23と、集光光路1Bと分光器23とを光学的に接続する結合光学系22Bと、分光器23によって波長毎に分離された信号光のスペクトルを検出して、観察対象の振動スペクトルのデータを取得する光検出器24と、光検出器24によって取得された振動スペクトルのデータを記憶する記憶装置25と、光源21、分光器23および光検出器24を制御する制御装置26とを備えている。 The vibration spectrum measurement unit 2 is optically connected to the illumination light path 1A and the collection light path 1B extending from the proximal end of the optical probe 1 through the coupling optical systems 22A and 22B. As shown in FIG. 2, the vibration spectrum measurement unit 2 is incident from the light source 21 that generates illumination light, the coupling optical system 22A that optically connects the light source 21 and the illumination light path 1A, and the condensing light path 1B. The spectrum of the signal light separated for each wavelength by the spectroscope 23 is detected by the spectroscope 23 for separating the signal light, the coupling optical system 22B which optically connects the condensing optical path 1B and the spectroscope 23, and A light detector 24 for acquiring data of a vibration spectrum of an observation object, a storage device 25 for storing data of the vibration spectrum acquired by the light detector 24, a light source 21, a spectroscope 23, and a light detector 24 are controlled. And a control device 26.
 光源21は、単色のレーザ光源か、または波長掃引可能なレーザ光源であり、測定対象の振動スペクトル(例えば、ラマンスペクトル、赤外線吸収スペクトル、または近赤外線吸収スペクトル)測定に応じた波長の照明光を発生する。光源21が、観察対象Aのラマン散乱光を発生させるための励起光を発生する場合、光源21は単一波長のレーザ光線を発生させるダイオードレーザである。あるいは、光源21は、熱光源やスーパーコンティニューム光源のような広波長帯域の赤外線光源であってもよい。
 結合光学系22Aは、例えば、光源21から射出された照明光を、照明光路1Aを構成する光ファイバの基端面に集光する1枚以上のレンズからなる。
The light source 21 is either a monochromatic laser light source or a laser light source capable of wavelength sweeping, and has illumination light of a wavelength according to the measurement of the vibration spectrum (for example, Raman spectrum, infrared absorption spectrum, or near infrared absorption spectrum) of the measurement object. Occur. When the light source 21 generates excitation light for generating the Raman scattered light of the observation target A, the light source 21 is a diode laser which generates a laser beam of a single wavelength. Alternatively, the light source 21 may be a wide wavelength band infrared light source such as a thermal light source or a supercontinuum light source.
The coupling optical system 22A includes, for example, one or more lenses for condensing the illumination light emitted from the light source 21 on the proximal end surface of the optical fiber constituting the illumination light path 1A.
 結合光学系22Bは、例えば、集光光路1Bを構成する光ファイバの基端面および分光器23にそれぞれ焦点が配置された一対のレンズからなり、集光光路1Bの基端から射出された信号光を分光器23の短冊状の入口スリットの位置に結像する。観察対象の振動スペクトルとしてラマンスペクトルを測定する場合には、結合光学系22Bの一対のレンズの中間位置に、観察対象のラマン散乱を励起するための照明光を除去するため、照明光よりも長波長光を選択的に透過させる光学フィルタが設けられている。
 分光器23は、集光光路1Bから入射した信号光を波長毎に空間的に分離し、得られたスペクトルを光検出器24の受光面24a上に結像する。
The coupling optical system 22B is, for example, a signal light emitted from the proximal end of the condensing optical path 1B, and includes a pair of lenses whose focal points are disposed at the base end face of the optical fiber constituting the condensing optical path 1B and the spectroscope 23, respectively. Are imaged at the position of the strip-like entrance slit of the spectroscope 23. When measuring the Raman spectrum as the vibration spectrum of the observation target, the illumination light for exciting the Raman scattering of the observation target is removed at the middle position of the pair of lenses of the coupling optical system 22B, so it is longer than the illumination light. An optical filter is provided to selectively transmit wavelength light.
The spectroscope 23 spatially separates the signal light incident from the condensing optical path 1 B for each wavelength, and forms an image of the obtained spectrum on the light receiving surface 24 a of the light detector 24.
 光検出器24は、2次元CCDイメージセンサのような2次元光検出器であり、多数の光電変換素子が2次元配列された受光面24aを有する。光検出器24は、分光器23から受光面24aに入射した光を光電変換素子によって電気信号へ変換して振動スペクトルのデータを取得する。 The light detector 24 is a two-dimensional light detector such as a two-dimensional CCD image sensor, and has a light receiving surface 24 a in which a large number of photoelectric conversion elements are two-dimensionally arranged. The photodetector 24 converts the light incident on the light receiving surface 24 a from the spectroscope 23 into an electrical signal by the photoelectric conversion element, and acquires data of the vibration spectrum.
 光学プローブ1の基端部において複数の集光光路1Bは、分光器23の入口スリットの長軸と同一方向に一列に整列している。ここで、光学プローブ1の先端面へ、観察対象Aから反射される単一波長の検査光が入射し、該検査光が複数の集光光路1Bによって集光されるとする。該検査光は複数の集光光路1Bの基端から射出された後、一列に整列して分光器23の入口スリットに入射する。分光器23から射出された複数の前記検査光は、図4Aに示されるように、光検出器24の受光面24a上において、一列に整列された複数の点像Sとして結像される。ここで、横軸は光検出器24の波長チャンネルであり、縦軸は位置チャンネルであり、点像Sの強度が検査光強度である。このように、複数の集光光路1Bによって集光された検査光の像が受光面24a上で空間的に相互に分離されることで、集光光路1B毎に導光される検査光の強度データが取得される。
 また、光学プローブ1の先端面へ観察対象Aからの信号光が入射するにおいて、該信号光がラマン散乱光のように複数の波長成分を含む光である場合には、図4Bに示されるように、信号光は光検出器24の受光面24a上において、波長チャンネル方向および位置チャンネル方向に整列する点像SSとして結像される。このように、複数の集光光路1Bによって集光された信号光が受光面24a上で空間的に相互に分離されることで、集光光路1B毎に導光される信号光の振動スペクトルデータが取得される。ここで、集光光路1B毎の振動スペクトルデータを取得しても、集光光路1B毎の振動スペクトルデータを一括にまとめたデータを取得してもよい。
At the proximal end of the optical probe 1, the plurality of focusing optical paths 1 </ b> B are aligned in the same direction as the long axis of the entrance slit of the spectroscope 23. Here, it is assumed that inspection light of a single wavelength reflected from the observation target A is incident on the tip surface of the optical probe 1, and the inspection light is condensed by the plurality of condensing optical paths 1B. The inspection light is emitted from the proximal ends of the plurality of condensing light paths 1B, and then aligned in a line and enters the entrance slit of the spectroscope 23. The plurality of inspection lights emitted from the spectroscope 23 are imaged as a plurality of point images S aligned in a line on the light receiving surface 24 a of the light detector 24 as shown in FIG. 4A. Here, the horizontal axis is the wavelength channel of the light detector 24, the vertical axis is the position channel, and the intensity of the point image S is the inspection light intensity. As described above, the images of the inspection light condensed by the plurality of condensing optical paths 1B are spatially separated from each other on the light receiving surface 24a, whereby the intensity of the inspection light guided for each of the condensing optical paths 1B Data is acquired.
In addition, when signal light from the observation target A is incident on the tip surface of the optical probe 1 and the signal light is light including a plurality of wavelength components as in Raman scattered light, as shown in FIG. 4B. The signal light is imaged as a point image SS aligned in the wavelength channel direction and the position channel direction on the light receiving surface 24 a of the light detector 24. Thus, the signal light condensed by the plurality of condensing optical paths 1B is spatially separated from each other on the light receiving surface 24a, whereby vibration spectrum data of the signal light guided for each of the condensing optical paths 1B Is acquired. Here, even if vibration spectrum data for each collected light path 1B is acquired, data in which vibration spectrum data for each collected light path 1B are collectively obtained may be acquired.
 記憶装置25には、図5Aから図5Cに示されるように、集光光路1B毎に導光される検査光の波長と集光光路1Bの位置とを対応付けたデータ(左段)と、各検査光の強度と集光光路1Bの位置とを対応付けたデータ(右段)とが記憶される。図5Aから図5Cの左段において、横軸は波長であり、縦軸は集光光路1Bの位置である。図5Aから図5Cの右段において、横軸は検査光の強度であり、縦軸は集光光路1Bの位置である。
 制御装置26は、分光器23に内蔵される回折格子の回転角や入口スリット幅を機械的に制御し、かつ光検出器の設定を電気的に制御する装置である。制御装置26は、後述する相対傾き判定部7および相対距離判定部10による判定結果に基づいて、光源21の出射光強度や、分光器23の回折格子の中心波長または入口スリット幅、および光検出器24のゲインや露光時間を必要に応じ変更させた上で、観察対象Aの振動スペクトルの測定を実行する。
In the storage device 25, as shown in FIGS. 5A to 5C, data (left row) in which the wavelength of the inspection light guided for each of the condensing optical paths 1B is associated with the position of the condensing optical path 1B; Data (right row) in which the intensity of each inspection light is associated with the position of the collected light path 1B is stored. In the left steps of FIGS. 5A to 5C, the horizontal axis is the wavelength, and the vertical axis is the position of the condensing optical path 1B. In the right steps of FIGS. 5A to 5C, the horizontal axis is the intensity of the inspection light, and the vertical axis is the position of the condensing optical path 1B.
The control device 26 mechanically controls the rotation angle of the diffraction grating built in the spectroscope 23 and the entrance slit width, and electrically controls the setting of the light detector. The control device 26 detects the emitted light intensity of the light source 21, the central wavelength or the entrance slit width of the diffraction grating of the spectroscope 23, and the light detection based on the determination results by the relative inclination determination unit 7 and the relative distance determination unit 10 described later. The measurement of the vibration spectrum of the observation target A is performed after changing the gain of the unit 24 and the exposure time as necessary.
 振動スペクトル判定部3は、図2に示されるように、記憶装置3Aと演算装置3Bとを備える。
 振動スペクトルのデータは、振動スペクトル測定部2の記憶装置25から読み出されて振動スペクトル判定部3の記憶装置3Aに記憶される。記憶装置3Aには、観察対象A(例えば、関節軟骨)の複数の典型的な振動スペクトルが、参照スペクトルデータとして予め保存されている。図6Aは、振動スペクトル測定部2によって測定された振動スペクトルの一例を示し、図6Bは、参照スペクトルデータの一例を示している。
As shown in FIG. 2, the vibration spectrum determination unit 3 includes a storage device 3A and an arithmetic device 3B.
The data of the vibration spectrum is read from the storage unit 25 of the vibration spectrum measurement unit 2 and stored in the storage unit 3 A of the vibration spectrum determination unit 3. In the storage device 3A, a plurality of typical vibration spectra of the observation target A (for example, articular cartilage) are stored in advance as reference spectrum data. FIG. 6A shows an example of the vibration spectrum measured by the vibration spectrum measurement unit 2, and FIG. 6B shows an example of reference spectrum data.
 演算装置3Bは、記憶装置3Aに新たに記憶された振動スペクトルを参照スペクトルと比較することで振動スペクトルを評価し、振動スペクトルが参照スペクトルと類似している場合には観察対象Aの振動スペクトルの測定が成功したと判定し、振動スペクトルが参照スペクトルと類似していない場合には観察対象Aの振動スペクトルの測定が失敗したと判定する。振動スペクトルと参照スペクトルとの比較は、スペクトル波形、スペクトルの強度の総和、信号対雑音比、またはスペクトル波形の特徴量のいずれか、または組合せに基づいて行われる。例えば、図6Aおよび図6Bに示されるように、観察対象Aである関節軟骨の特定のラマンバンドI,IIの相対強度が比較される。ラマンバンドIは、関節軟骨成分であるコラーゲンのプロリンのラマンバンドであり、ラマンバンドIIは、関節軟骨成分であるコラーゲンのポリペプチド骨格のラマンバンドである。振動スペクトル判定部3は、判定結果、すなわち振動スペクトルの測定の成否を報告部4に送信する。 Arithmetic device 3B evaluates the vibration spectrum by comparing the vibration spectrum newly stored in storage device 3A with the reference spectrum, and if the vibration spectrum is similar to the reference spectrum, the vibration spectrum of observation object A It is determined that the measurement is successful, and if the vibration spectrum is not similar to the reference spectrum, it is determined that the measurement of the vibration spectrum of the observation target A has failed. The comparison between the vibration spectrum and the reference spectrum is performed based on any one or a combination of the spectrum waveform, the sum of intensities of the spectrum, the signal-to-noise ratio, or the feature quantity of the spectrum waveform. For example, as shown in FIGS. 6A and 6B, the relative intensities of specific Raman bands I, II of articular cartilage being observed A are compared. The Raman band I is a Raman band of proline of collagen which is an articular cartilage component, and the Raman band II is a Raman band of the polypeptide backbone of collagen which is an articular cartilage component. The vibration spectrum determination unit 3 transmits the determination result, that is, the success or failure of measurement of the vibration spectrum to the report unit 4.
 報告部4は、図2に示されるように、表示を出力するディスプレイまたは音を出力するスピーカのような出力装置41を備えている。報告部4は、振動スペクトルの測定の成功および失敗に応じた表示または音声を出力装置41から出力することで、スペクトル測定の成否を使用者に報告する。 As shown in FIG. 2, the reporting unit 4 includes an output device 41 such as a display for outputting a display or a speaker for outputting a sound. The reporting unit 4 reports the success or failure of the spectrum measurement to the user by outputting from the output device 41 a display or a voice corresponding to the success or failure of the measurement of the vibration spectrum.
 さらに、振動スペクトル測定装置100は、図1に示されるように、相対傾き計測部5と、相対傾き検出部6と、相対傾き判定部7と、相対距離計測部8と、相対距離検出部9と、相対距離判定部10とを備えている。
 観察対象Aに対する光学プローブ1の相対傾きおよび相対距離は、振動スペクトル測定部2による振動スペクトルの測定の成否に関わる。したがって、相対傾き計測部5、相対傾き検出部6、および相対傾き判定部7によって、相対傾きが適切であるか否かが判定され、相対距離計測部8、相対距離検出部9、および相対距離判定部10によって、相対距離が適切であるか否かが判定される。
Furthermore, as shown in FIG. 1, the vibration spectrum measuring apparatus 100 includes the relative inclination measuring unit 5, the relative inclination detecting unit 6, the relative inclination determining unit 7, the relative distance measuring unit 8, and the relative distance detecting unit 9. And the relative distance determination unit 10.
The relative inclination and relative distance of the optical probe 1 with respect to the observation target A relate to the success or failure of measurement of the vibration spectrum by the vibration spectrum measurement unit 2. Therefore, relative inclination measurement unit 5, relative inclination detection unit 6, and relative inclination determination unit 7 determine whether or not the relative inclination is appropriate, and relative distance measurement unit 8, relative distance detection unit 9, and relative distance The determination unit 10 determines whether the relative distance is appropriate.
 図7Aおよび図7Bは、観察対象Aに対する光学プローブ1の相対傾きおよび相対距離を説明するものである。相対傾きとは、光学プローブ1の先端面の垂線と観察対象A表面との交点において、観察対象A表面に立てた垂線と、光学プローブ1の先端面の垂線とが成す角θである。相対距離とは、光学プローブ1の先端面と観察対象A表面との間の距離である。 7A and 7B illustrate the relative tilt and relative distance of the optical probe 1 with respect to the observation target A. FIG. The relative inclination is an angle θ formed by the vertical line on the surface of the observation object A and the perpendicular line of the front surface of the optical probe 1 at the intersection of the perpendicular line on the front surface of the optical probe 1 and the surface of the observation object A. The relative distance is the distance between the tip surface of the optical probe 1 and the surface of the observation target A.
 図7Aは、振動スペクトルの測定に適切な光学プローブ1の配置の一例を示している。図7Aに示されるように、相対傾きおよび相対距離が小さい場合には、観察対象Aへ照明光を照射したときに、観察対象Aから反射される信号光が集光光路1Bによって効率良く集められることで、信号対雑音比が高く良好な振動スペクトルが得られる。
 一方、図7Bは、振動スペクトルの測定に不適な光学プローブ1の配置の一例を示している。図7Bに示されるように、相対傾きおよび相対距離が大きい場合には、観察対象Aへ照明光を照射したときに、観察対象Aから反射される信号光の集光光路1Bによる集光効率が低下して振動スペクトルの信号対雑音比が低下するため、良好な振動スペクトルを得ることができない。
FIG. 7A shows an example of the arrangement of the optical probe 1 suitable for measuring the vibration spectrum. As shown in FIG. 7A, when the relative inclination and the relative distance are small, when the illumination light is irradiated to the observation target A, the signal light reflected from the observation target A is efficiently collected by the condensing optical path 1B. Thus, a good vibration spectrum with a high signal to noise ratio can be obtained.
On the other hand, FIG. 7B shows an example of the arrangement of the optical probe 1 unsuitable for measurement of the vibration spectrum. As shown in FIG. 7B, when the relative inclination and the relative distance are large, when the illumination light is irradiated to the observation target A, the condensing efficiency of the signal light reflected from the observation target A by the condensing optical path 1B is As the signal-to-noise ratio of the vibration spectrum is lowered, the good vibration spectrum can not be obtained.
 相対傾き計測部5は、相対傾きを計測するための検査光を発生する光源と、観察対象Aによって反射された検査光を集光して導光する複数の検査光路と、複数の検査光路によって導光された検査光を検出する光検出器とを備えている。
 光源は、振動スペクトル測定部2内の光源21であり、検査光路は集光光路1Bであり、光検出器は振動スペクトル測定部2内に搭載された振動スペクトル測定用の光検出器24である。すなわち、観察対象Aの振動スペクトルを測定するための照明光が検査光を兼ねていて、信号光と同様にして複数の検査光の強度(物理量)が光検出器24によって検出される。
 なお、検査光路として、照明光路1Aを用いてもよく、照明光路1Aおよび集光光路1Bの両方を用いてもよい。
The relative inclination measurement unit 5 includes a light source for generating an inspection light for measuring the relative inclination, a plurality of inspection light paths for condensing and guiding the inspection light reflected by the observation target A, and a plurality of inspection light paths. And a light detector for detecting the guided inspection light.
The light source is the light source 21 in the vibration spectrum measuring unit 2, the inspection light path is the condensing light path 1 B, and the light detector is the light detector 24 for vibration spectrum measurement mounted in the vibration spectrum measuring unit 2. . That is, the illumination light for measuring the vibration spectrum of the observation target A also serves as the inspection light, and the intensities (physical quantities) of the plurality of inspection lights are detected by the light detector 24 in the same manner as the signal light.
As the inspection light path, the illumination light path 1A may be used, or both the illumination light path 1A and the collection light path 1B may be used.
 相対傾き検出部6は、相対傾き計測部5によって計測された複数の検査光の強度の差に基づいて、観察対象Aに対する光学プローブ1の相対傾きの大きさを検出する。
 具体的には、図5Aおよび図5Cに示されるように、観察対象Aと光学プローブ1との間の相対傾きに応じて、複数の集光光路1Bによって集光される検査光の強度分布(強度プロファイル)が変化する。すなわち、観察対象Aに対する光学プローブ1の相対傾きが大きく振動スペクトル測定に不適である場合には、図5Aに示されるように、複数の集光光路1Bによって集光される複数の検査光の強度に偏りが生じ、複数の検査光の強度の内、最大値と最小値との差(最大強度差)が大きくなる。一方、観察対象Aに対する光学プローブ1の相対傾きが小さく、振動スペクトル測定に適切である場合には、図5Cに示されるように、全ての集光光路1Bによって集光される検査光の強度は略均等となり、最大強度差は小さくなる。図8Aは、観察対象Aに対する光学プローブ1の相対傾きと、複数の検査光の最大強度差との関係を示している。相対傾き検出部6は、演算装置(図示略)を備え、演算装置による演算によって、複数の検査光の強度から相対傾きの大きさとして最大強度差を検出する。
The relative tilt detection unit 6 detects the magnitude of the relative tilt of the optical probe 1 with respect to the observation target A based on the differences in the intensities of the plurality of inspection lights measured by the relative tilt measurement unit 5.
Specifically, as shown in FIGS. 5A and 5C, according to the relative inclination between the observation target A and the optical probe 1, the intensity distribution of the inspection light collected by the plurality of collected light paths 1B The intensity profile changes. That is, when the relative inclination of the optical probe 1 with respect to the observation target A is large and unsuitable for vibration spectrum measurement, as shown in FIG. 5A, the intensities of the plurality of inspection lights collected by the plurality of collected light paths 1B. As a result, the difference between the maximum value and the minimum value (maximum intensity difference) among the intensities of the plurality of inspection lights increases. On the other hand, when the relative inclination of the optical probe 1 with respect to the observation target A is small and appropriate for vibration spectrum measurement, the intensity of the inspection light collected by all the collection light paths 1B is as shown in FIG. 5C. It becomes almost even, and the maximum intensity difference becomes smaller. FIG. 8A shows the relationship between the relative inclination of the optical probe 1 with respect to the observation target A and the maximum intensity difference of a plurality of inspection lights. The relative inclination detection unit 6 includes an arithmetic device (not shown), and detects the maximum intensity difference as the magnitude of the relative inclination from the intensities of the plurality of inspection lights by the arithmetic operation of the arithmetic device.
 相対傾き判定部7は、図2に示されるように、記憶装置7Aと演算装置7Bとを備えている。記憶装置7Aには、相対傾きが適切である条件および不適である条件の各々において相対傾き検出部6によって検出される最大強度差が参照データとして予め記憶されている。演算装置7Bは、相対傾き検出部6によって検出された最大強度差を参照データと比較することにより、現在の観察対象Aに対する光学プローブ1の相対傾きが観察対象Aの振動スペクトルの測定に適切であるか否かを判定する。 As shown in FIG. 2, the relative inclination determination unit 7 includes a storage device 7A and an arithmetic device 7B. In the storage device 7A, the maximum intensity difference detected by the relative inclination detection unit 6 under each of the conditions under which the relative inclination is appropriate and the conditions under which the relative inclination is inappropriate is stored in advance as reference data. The arithmetic device 7B compares the maximum intensity difference detected by the relative inclination detection unit 6 with the reference data, so that the relative inclination of the optical probe 1 with respect to the current observation object A is appropriate for measuring the vibration spectrum of the observation object A. Determine if there is.
 具体的には、図8Aに示されるように、観察対象と光学プローブの相対傾きが任意値であるときにおける検査光の最大強度差のデータが予め取得されており、観察対象Aの振動スペクトルの測定に適切な相対傾きのうち、最大の相対傾きにおいて相対傾き検出部6によって検出される最大強度差(=T1)が閾値として予め設定され、相対傾きの大きさの許容範囲として閾値T1以下の範囲が設定されている。相対傾き判定部7は、現在の最大強度差が閾値T1以下である場合には観察対象Aと光学プローブ1の相対傾きが適切であると判定し、現在の検査光の最大強度差が閾値T1よりも大きい場合には観察対象Aと光学プローブ1の相対傾きが不適であると判定する。 Specifically, as shown in FIG. 8A, data of the maximum intensity difference of the inspection light when the relative inclination of the observation object and the optical probe is an arbitrary value is acquired in advance, and the vibration spectrum of the observation object A Among the relative inclinations suitable for measurement, the maximum intensity difference (= T1) detected by the relative inclination detection unit 6 at the maximum relative inclination is set in advance as a threshold, and the allowable range of the relative inclination is less than the threshold T1. A range is set. The relative inclination determination unit 7 determines that the relative inclination of the observation target A and the optical probe 1 is appropriate when the current maximum intensity difference is equal to or less than the threshold T1, and the maximum intensity difference of the current inspection light is the threshold T1. If the relative inclination between the observation target A and the optical probe 1 is larger, the relative inclination between the observation target A and the optical probe 1 is determined to be unsuitable.
 相対傾き判定部7は、振動スペクトル測定部2の制御装置26および報告部4と電気的に接続されている。相対傾き判定部7による判定結果は、振動スペクトル測定部2の制御装置26および報告部4に送信される。 The relative inclination determination unit 7 is electrically connected to the control device 26 and the report unit 4 of the vibration spectrum measurement unit 2. The determination result by the relative inclination determination unit 7 is transmitted to the control device 26 and the report unit 4 of the vibration spectrum measurement unit 2.
 相対距離計測部8は、相対距離を計測するための検査光を発生する光源と、観察対象Aによって反射された検査光を集光して導光する複数の検査光路と、複数の検査光路によって導光された検査光を検出する光検出器とを備えている。
 相対傾き計測部5と同様に、光源は、振動スペクトル測定部2内の光源21であり、検査光路は集光光路1Bであり、光検出器は振動スペクトル測定部2内の振動スペクトル測定用の光検出器24である。
The relative distance measurement unit 8 includes a light source generating inspection light for measuring the relative distance, a plurality of inspection light paths for condensing and guiding the inspection light reflected by the observation target A, and a plurality of inspection light paths. And a light detector for detecting the guided inspection light.
Similar to the relative inclination measurement unit 5, the light source is the light source 21 in the vibration spectrum measurement unit 2, the inspection light path is the condensing light path 1 B, and the light detector is for vibration spectrum measurement in the vibration spectrum measurement unit 2. It is a light detector 24.
 相対距離検出部9は、相対距離計測部8によって計測された複数の検査光の強度の大きさに基づいて、観察対象Aに対する光学プローブ1の相対距離の大きさを検出する。
 具体的には、図5Bおよび図5Cに示されるように、観察対象Aと光学プローブ1との間の相対距離に応じて、複数の集光光路1Bによって集光される検査光の強度の大きさが全体的に変化する。すなわち、相対距離が大きく振動スペクトル測定に不適である場合には、図5Bに示されるように、複数の集光光路1Bによって集光される複数の検査光の強度の和(全検査光強度)が小さくなる。一方、観察対象Aと光学プローブ1との相対距離が小さく振動スペクトル測定に適切である場合には、図5Cに示されるように、全検査光強度は大きくなる。図8Bは、相対距離と全検査光強度との関係を示している。相対距離検出部9は、演算装置(図示略)を備え、演算装置による演算によって、複数の検査光の強度から相対距離の大きさとして全検査光強度を検出する。
The relative distance detection unit 9 detects the magnitude of the relative distance of the optical probe 1 with respect to the observation target A based on the magnitudes of the intensities of the plurality of inspection lights measured by the relative distance measurement unit 8.
Specifically, as shown in FIGS. 5B and 5C, according to the relative distance between the observation target A and the optical probe 1, the magnitude of the intensity of the inspection light collected by the plurality of collected light paths 1B. Changes as a whole. That is, when the relative distance is large and unsuitable for vibration spectrum measurement, as shown in FIG. 5B, the sum of the intensities of a plurality of inspection lights condensed by a plurality of condensing optical paths 1B (all inspection light intensities) Becomes smaller. On the other hand, when the relative distance between the observation target A and the optical probe 1 is small and appropriate for vibration spectrum measurement, as shown in FIG. 5C, the total inspection light intensity is large. FIG. 8B shows the relationship between the relative distance and the total inspection light intensity. The relative distance detection unit 9 includes an arithmetic unit (not shown), and detects the total inspection light intensity as the magnitude of the relative distance from the intensities of the plurality of inspection lights by the arithmetic operation of the arithmetic unit.
 相対距離判定部10は、図2に示されるように、記憶装置10Aと演算装置10Bとを備えている。記憶装置10Aには、観察対象Aと光学プローブ1の相対距離が適切である条件および不適である条件の各々において相対距離検出部9によって検出される全検査光強度が参照データとして予め記憶されている。演算装置10Bは、相対距離検出部9によって検出された全検査光強度を参照データと比較することにより、現在の相対距離が観察対象Aの振動スペクトルの測定に適切であるか否かを判定する。 As shown in FIG. 2, the relative distance determination unit 10 includes a storage device 10A and an arithmetic device 10B. In the storage device 10A, all inspection light intensities detected by the relative distance detection unit 9 under the conditions under which the relative distance between the observation object A and the optical probe 1 is appropriate and under conditions are stored in advance as reference data. There is. Arithmetic device 10B determines whether the current relative distance is appropriate for measuring the vibration spectrum of observation object A by comparing the total inspection light intensity detected by relative distance detection unit 9 with the reference data. .
 具体的には、図8Bに示されるように、観察対象と光学プローブの相対距離が任意値であるときにおける全検査光強度のデータが予め取得されており、観察対象Aの振動スペクトルの測定に適切な相対距離のうち、最大の相対距離において相対距離検出部9によって検出される全検査光強度(=T2)が閾値として予め設定され、相対距離の大きさの許容範囲として閾値T2以上の範囲が設定されている。相対距離判定部10は、現在の全検査光強度が閾値T2以上である場合には観察対象Aと光学プローブ1の相対距離が適切であると判定し、現在の全検査光強度が閾値T2よりも小さい場合には観察対象Aと光学プローブ1の相対距離が不適であると判定する。 Specifically, as shown in FIG. 8B, data of the total inspection light intensity when the relative distance between the observation object and the optical probe is an arbitrary value is acquired in advance, and the measurement of the vibration spectrum of the observation object A is performed. Of the appropriate relative distances, all inspection light intensities (= T2) detected by the relative distance detection unit 9 at the maximum relative distance are preset as a threshold, and a range of the threshold T2 or more as an allowable range of the relative distance Is set. The relative distance determination unit 10 determines that the relative distance between the observation target A and the optical probe 1 is appropriate when the current total inspection light intensity is equal to or greater than the threshold T2, and the current total inspection light intensity is greater than the threshold T2. If the distance between the observation target A and the optical probe 1 is too small, it is determined that the relative distance between the observation target A and the optical probe 1 is inappropriate.
 相対距離判定部10は、振動スペクトル測定部2の制御装置26および報告部4と電気的に接続されている。相対距離判定部10による判定結果は、振動スペクトル測定部2の制御装置26および報告部4に送信される。 The relative distance determination unit 10 is electrically connected to the control device 26 and the report unit 4 of the vibration spectrum measurement unit 2. The determination result by the relative distance determination unit 10 is transmitted to the control device 26 and the report unit 4 of the vibration spectrum measurement unit 2.
 振動スペクトル測定部2の制御装置26は、相対傾き判定部7および相対距離判定部10から受信する判定結果に基づいて、観察対象Aに対する光学プローブ1の相対傾きが適切であり、かつ、観察対象Aに対する光学プローブ1の相対距離が適切である場合にのみ、観察対象Aの振動スペクトルの測定を実行する。 The control device 26 of the vibration spectrum measurement unit 2 has an appropriate relative tilt of the optical probe 1 with respect to the observation target A based on the determination results received from the relative tilt determination unit 7 and the relative distance determination unit 10, and the observation target Only when the relative distance of the optical probe 1 with respect to A is appropriate, measurement of the vibration spectrum of the observation object A is performed.
 報告部4は、相対傾きおよび相対距離の少なくとも一方が適切でないと判定された場合には、その旨を表示または音声によって使用者へ報告する。報告部4からの報告に応答して使用者が光学プローブ1の位置および傾きを調整した後、相対傾きおよび相対距離が判定部7,10によって再度判定される。使用者は、光学プローブ1の相対傾きおよび相対距離の両方が適切である旨の報告が報告部4によってなされるまで、光学プローブ1の位置および傾きの調整を繰り返す。 When it is determined that at least one of the relative inclination and the relative distance is not appropriate, the reporting unit 4 reports or informs the user by display or sound. After the user adjusts the position and tilt of the optical probe 1 in response to the report from the report unit 4, the relative tilt and the relative distance are again determined by the determination units 7 and 10. The user repeats the adjustment of the position and tilt of the optical probe 1 until the report unit 4 reports that both the relative tilt and relative distance of the optical probe 1 are appropriate.
 次に、このように構成された振動スペクトル測定装置100の作用について説明する。
 本実施形態に係る振動スペクトル測定装置100によれば、図9に示されるように、観察対象Aの振動スペクトルの測定の実行に先立ち、関節内に挿入された光学プローブ1の観察対象Aに対する相対傾きおよび相対距離が適切であるか否かが判定される(ステップSA1~SA6)。
Next, the operation of the vibration spectrum measuring apparatus 100 configured as described above will be described.
According to the vibration spectrum measuring apparatus 100 according to the present embodiment, as shown in FIG. 9, relative to the observation object A of the optical probe 1 inserted in the joint prior to the measurement of the vibration spectrum of the observation object A. It is determined whether the inclination and the relative distance are appropriate (steps SA1 to SA6).
 具体的には、相対傾き計測部5および相対距離計測部8の作動によって、相対傾きおよび相対距離を計測するための検査光が光源21から出射され、照明光路1Aを導光されて観察対象Aに照射される。観察対象Aにおいて反射された検査光は、光学プローブ1の先端面において複数の集光光路1Bによって集光され、集光光路1B、結合光学系22Bおよび分光器23を導光されて、光検出器24によって検出される。相対傾き検出部6および相対距離検出部9は、光検出器24によって検出された複数の検査光の強度から、最大強度差および全検査光強度をそれぞれ検出する(ステップSA1,SA2)。 Specifically, inspection light for measuring relative inclination and relative distance is emitted from the light source 21 by operation of the relative inclination measurement unit 5 and the relative distance measurement unit 8, and is guided in the illumination light path 1A to be observed A Irradiated. The inspection light reflected on the observation target A is condensed by the plurality of condensing optical paths 1B on the tip surface of the optical probe 1, and is guided by the condensing optical path 1B, the coupling optical system 22B, and the spectroscope 23 for light detection Is detected by the sensor 24. The relative inclination detection unit 6 and the relative distance detection unit 9 respectively detect the maximum intensity difference and the total inspection light intensity from the intensities of the plurality of inspection lights detected by the light detector 24 (steps SA1, SA2).
 次に、相対傾き判定部7によって、観察対象Aの振動スペクトルを測定するにおいて、相対傾きが適切であるか否かが最大強度差に基づいて判定されるとともに、相対距離判定部10によって、観察対象Aの振動スペクトルを測定するにおいて、相対距離が適切であるか否かが全検査光強度に基づいて判定される(ステップSA3)。相対傾きおよび相対距離のうち少なくとも一方が不適である場合には(ステップSA4のNO)、報告部4からその旨が報告され(ステップSA5)、ステップSA1に戻る。一方、相対傾きおよび相対距離の両方が適切である場合には(ステップSA4のYES)、報告部4からその旨が報告され(ステップSA6)、振動スペクトル測定部2の制御装置26が必要に応じて光源21の出射光線強度や、分光器23の回折格子の中心波長、および光検出器24のゲインや露光時間を所定値に設定した上で、観察対象Aの振動スペクトル測定を開始する(ステップSA7)。 Next, in measuring the vibration spectrum of the observation object A by the relative inclination determination unit 7, whether or not the relative inclination is appropriate is determined based on the maximum intensity difference, and the relative distance determination unit 10 observes In measuring the vibration spectrum of the object A, it is determined based on the total inspection light intensity whether the relative distance is appropriate (step SA3). If at least one of the relative inclination and the relative distance is not appropriate (NO in step SA4), the report unit 4 reports that effect (step SA5), and returns to step SA1. On the other hand, if both the relative inclination and the relative distance are appropriate (YES in step SA4), the report unit 4 reports that effect (step SA6), and the controller 26 of the vibration spectrum measurement unit 2 is used as needed. After setting the output light beam intensity of the light source 21, the central wavelength of the diffraction grating of the spectroscope 23, the gain of the light detector 24 and the exposure time to predetermined values, measurement of the vibration spectrum of the observation object A is started (step SA7).
 振動スペクトル測定部2は、光源21から照明光を発生させ、照明光は光学プローブ1内の照明光路1Aを導光されて観察対象Aに照射される。観察対象Aにおいて発生したラマン散乱光または拡散反射光などの信号光は、光学プローブ1内の複数の集光光路1Bによって集光され、分光器23によって分光され、信号光のスペクトルが光検出器24によって検出される。これにより、各集光光路1Bによって集光された信号光の振動スペクトルが光検出器24によって得られる(ステップSA8)。 The vibration spectrum measurement unit 2 generates illumination light from the light source 21, and the illumination light is guided to the illumination light path 1 A in the optical probe 1 and is irradiated to the observation target A. Signal light such as Raman scattering light or diffuse reflection light generated in the observation target A is collected by the plurality of collection light paths 1B in the optical probe 1, dispersed by the spectroscope 23, and the spectrum of the signal light is detected by the photodetector 24 is detected. As a result, the vibration spectrum of the signal light condensed by each of the condensing optical paths 1B is obtained by the photodetector 24 (step SA8).
 次に、振動スペクトル判定部3によって、観察対象Aの振動スペクトルの測定に成功したか否かが判定される(ステップSA9)。観察対象Aの振動スペクトルの測定に失敗した場合には(ステップSA10のNO)、報告部4からその旨が報告され(ステップSA11)、ステップSA1に戻る。一方、観察対象Aの振動スペクトルの測定に成功した場合には(ステップSA10のYES)、報告部4からその旨が報告され(ステップSA12)、振動スペクトルの測定が終了する。 Next, it is determined by the vibration spectrum determination unit 3 whether or not the measurement of the vibration spectrum of the observation object A is successful (step SA9). If the measurement of the vibration spectrum of the observation target A fails (NO in step SA10), the report unit 4 reports that effect (step SA11), and returns to step SA1. On the other hand, if the measurement of the vibration spectrum of the observation target A is successful (YES in step SA10), the report unit 4 reports that (step SA12), and the measurement of the vibration spectrum ends.
 このように、本実施形態によれば、観察対象Aの振動スペクトルの測定の実行に先立ち、観察対象Aに対する光学プローブ1の相対傾きおよび相対距離が検出され、振動スペクトルを測定するにおいて相対傾きおよび相対距離が適切であるか否かが判定される。そして、相対傾きおよび相対距離の両方が適切であるときにのみ、振動スペクトルの測定が実行される。これにより、光学プローブ1を観察対象Aに対して適切な相対傾きおよび相対距離に確実に配置した状態で振動スペクトルを測定することができ、信号対雑音比が高い良好な振動スペクトルを得ることができるという利点がある。 Thus, according to the present embodiment, prior to the measurement of the vibration spectrum of the observation object A, the relative inclination and the relative distance of the optical probe 1 with respect to the observation object A are detected, and in measuring the vibration spectrum, the relative inclination and It is determined whether the relative distance is appropriate. The measurement of the vibrational spectrum is then performed only when both the relative tilt and the relative distance are appropriate. Thereby, the vibration spectrum can be measured in a state in which the optical probe 1 is disposed at an appropriate relative inclination and relative distance with respect to the observation target A, and a good vibration spectrum having a high signal-to-noise ratio can be obtained. It has the advantage of being able to
 本実施形態においては、相対傾きおよび相対距離の計測用の検査光として、振動スペクトル測定用の照明光を用いることとしたが、これに代えて、照明光とは別の光を用いてもよい。すなわち、相対傾き計測部5および相対距離計測部8が、図10に示されるように、光源21とは異なる検査光専用の検査光源11を備えていてもよい。
 この場合には、結合光学系22Aと光源11,21との間に、照明光および検査光が択一的に結合光学系22Aおよび照明光路1Aに導光されるように光路を切り替える光源切替装置27が設けられる。
 また、相対傾き計測部5および相対距離計測部8は、共通の検査光源11ではなく、相対傾き計測専用の検査光源と、相対距離計測専用の検査光源とをそれぞれ備えていてもよい。
In the present embodiment, as the inspection light for measuring the relative inclination and the relative distance, the illumination light for measuring the vibration spectrum is used, but instead, light different from the illumination light may be used . That is, as shown in FIG. 10, the relative inclination measurement unit 5 and the relative distance measurement unit 8 may be provided with the inspection light source 11 dedicated to inspection light different from the light source 21.
In this case, a light source switching device that switches the optical path between the coupling optical system 22A and the light sources 11 and 21 so that the illumination light and the inspection light are alternatively guided to the coupling optical system 22A and the illumination optical path 1A. 27 are provided.
In addition, the relative inclination measurement unit 5 and the relative distance measurement unit 8 may each include an inspection light source dedicated to relative inclination measurement and an inspection light source dedicated to relative distance measurement, instead of the common inspection light source 11.
 本実施形態においては、相対距離計測部8、相対距離検出部9および相対距離判定部10は、必ずしも設けられていなくてもよい。この場合、振動スペクトル測定部2の制御装置26は、相対傾き判定部7による判定結果のみに基づいて振動スペクトルの測定を実行する。
 観察対象Aと光学プローブ1との間の相対距離は、光学プローブ1と共に使用される関節鏡の画像から比較的容易に確認することができるが、観察対象Aと光学プローブ1の相対傾き、特に画像の奥行き方向の相対傾きは、2次元の関節鏡画像から確認することが難しい。したがって、相対傾きの検出および判定によって、観察対象Aの振動スペクトルを測定するにおいて、使用者による光学プローブ1の適切な配置を効果的に支援することができる。
In the present embodiment, the relative distance measurement unit 8, the relative distance detection unit 9, and the relative distance determination unit 10 may not necessarily be provided. In this case, the control device 26 of the vibration spectrum measurement unit 2 measures the vibration spectrum based only on the determination result by the relative tilt determination unit 7.
The relative distance between the observation object A and the optical probe 1 can be relatively easily confirmed from the image of the arthroscope used with the optical probe 1, but the relative tilt of the observation object A and the optical probe 1 The relative inclination of the image in the depth direction is difficult to confirm from a two-dimensional arthroscopic image. Therefore, detection and determination of the relative tilt can effectively assist the user in properly arranging the optical probe 1 in measuring the vibration spectrum of the observation target A.
 本実施形態においては、観察対象Aによって反射された検査光に基づいて相対傾きおよび相対距離を計測することとしたが、これに代えて、図11Aから図11Cに示されるように、光学プローブ1の先端に設けられた隔壁12によって反射された検査光に基づいて相対傾きおよび相対距離を計測してもよい。
 すなわち、光学プローブ1の先端面と対向して配置されるとともに観察対象Aに当て付けられる隔壁12と、光学プローブ1の先端面と隔壁12との間に配置され、光学プローブ1の先端面と隔壁12とを接続する弾性体13とが、光学プローブ1の先端面に設けられる。
In the present embodiment, the relative inclination and the relative distance are measured based on the inspection light reflected by the observation target A, but instead, as shown in FIGS. 11A to 11C, the optical probe 1 The relative inclination and the relative distance may be measured based on the inspection light reflected by the partition 12 provided at the tip of the.
That is, a partition 12 disposed opposite to the tip end surface of the optical probe 1 and placed against the observation target A, and disposed between the tip end surface of the optical probe 1 and the partition 12, An elastic body 13 connecting to the partition wall 12 is provided on the tip surface of the optical probe 1.
 隔壁12は、図11Aに示されるように、光学プローブ1の先端面と平行に設置され、検査光の全部または一部分が隔壁12によって反射され、照明光および信号光のほとんどの成分が隔壁12を透過するようになっている。また、隔壁12平面が光学プローブ1の先端面と平行になるように、等しい厚みの弾性体13が光学プローブ1の周方向に均等に配される。例えば、図11Bに示されるように、複数の弾性体13が周方向に等間隔に配列されるか、または、図11Cに示されるように、環状の弾性体13が使用される。 The partition 12 is placed parallel to the tip surface of the optical probe 1 as shown in FIG. 11A, and all or a part of the inspection light is reflected by the partition 12 and most components of the illumination light and signal light are the partition 12 It is supposed to be transparent. In addition, elastic bodies 13 of equal thickness are evenly distributed in the circumferential direction of the optical probe 1 so that the flat surface of the partition wall 12 is parallel to the tip surface of the optical probe 1. For example, as shown in FIG. 11B, a plurality of elastic bodies 13 are arranged at equal intervals in the circumferential direction, or as shown in FIG. 11C, an annular elastic body 13 is used.
 隔壁12は、サファイアまたは石英ガラスのように光学的に透明な板であり、照明光路1Aから射出された検査光の一部を反射する。隔壁12によって反射された検査光は集光光路1Bによって集められる。
 隔壁12が観察対象Aに当て付けられたときに、観察対象Aからの圧力によって弾性体13が光学プローブ1の長手軸に沿う方向に弾性変形することで、光学プローブ1と観察対象Aとの相対傾きおよび相対距離に応じて、光学プローブ1の先端面に対する隔壁12の傾きおよび距離が変化する。その結果、相対傾きに応じて、複数の集光光路1Bによって集められる検査光の強度間に偏りが生じ、相対距離に応じて、複数の集光光路1Bによって集められる検査光の光量が全体的に変化する。したがって、検査光の最大強度差に基づいて相対傾きを検出し、全検査光強度に基づいて相対距離を検出することができる。
The partition 12 is an optically transparent plate such as sapphire or quartz glass, and reflects a part of the inspection light emitted from the illumination light path 1A. The inspection light reflected by the partition 12 is collected by the collection light path 1B.
When the partition wall 12 is brought into contact with the observation target A, the elastic body 13 is elastically deformed in the direction along the longitudinal axis of the optical probe 1 by the pressure from the observation target A. The inclination and distance of the partition wall 12 with respect to the tip surface of the optical probe 1 change according to the relative inclination and the relative distance. As a result, in accordance with the relative inclination, a bias occurs between the intensities of the inspection light collected by the plurality of collected light paths 1B, and the light amount of the inspection light collected by the plurality of collected light paths 1B is overall according to the relative distance. Change to Therefore, the relative inclination can be detected based on the maximum intensity difference of the inspection light, and the relative distance can be detected based on the total inspection light intensity.
 検査光の波長が照明光の波長と異なる場合、隔壁12は、検査光よりも長波長の光を透過させ、検査光を反射する長波長透過型の光学フィルタであってもよい。ここで、観察対象Aの振動スペクトル測定用の照明光の波長λ2は、検査光の波長λ1よりも長く隔壁12を透過するように設定されている。図10の検査光源11から波長λ1の検査光を発生させ、光源21から波長λ2の照明光を発生させ、光源切替え装置27によって光学プローブ1の相対傾きおよび相対距離の計測時には照明光路1Aに検査光が導光され、振動スペクトル測定時には照明光路1Aに照明光が導光されるようになっている。 When the wavelength of the inspection light is different from the wavelength of the illumination light, the partition wall 12 may be a long wavelength transmission type optical filter that transmits light of a longer wavelength than the inspection light and reflects the inspection light. Here, the wavelength λ2 of the illumination light for measuring the vibration spectrum of the observation target A is set to pass through the partition 12 longer than the wavelength λ1 of the inspection light. The inspection light source 11 of FIG. 10 generates inspection light of wavelength λ1, the light source 21 generates illumination light of wavelength λ2, and the light source switching device 27 inspects the illumination light path 1A when measuring the relative inclination and relative distance of the optical probe 1 The light is guided, and the illumination light is guided to the illumination light path 1A at the time of vibration spectrum measurement.
 本実施形態においては、光学プローブ1に設けられた照明光路1Aを介して検査光を観察対象Aに照射することとしたが、これに代えて、図12に示されるように、光学プローブ1と共に関節内に挿入される関節鏡(内視鏡)17から、関節鏡照明光(内視鏡照明光)を観察対象Aへ照明したときに、観察対象Aによって反射される関節鏡照明光を検査光として利用してもよい。
 関節鏡17は、関節内の観察対象Aに関節鏡照明光を照射し、観察対象Aを光学的に観察するものである。
In the present embodiment, the inspection light is irradiated to the observation target A through the illumination light path 1A provided in the optical probe 1. However, instead of this, as shown in FIG. When the arthroscopic illumination light (endoscope illumination light) is illuminated onto the observation target A from the arthroscope (endoscope) 17 inserted into the joint, the arthroscopic illumination light reflected by the observation target A is examined You may use as light.
The arthroscope 17 irradiates arthroscopic illumination light to the observation target A in the joint, and optically observes the observation target A.
 本実施形態においては、相対傾き計測部5および相対距離計測部8が、図13Aに示されるように、光学プローブ1に設けられ、照明光路1Aおよび集光光路1Bとは異なる複数の検査光路1Cを備えていてもよい。検査光路1Cは、ファイバブラッググレーティング(FBG)である。
 複数のFBG1Cは、集光光路1Bの周囲に周方向に配列されている。光学プローブ1先端部において、FBG1Cの先端部は弾性体14内に埋設されている。光学プローブ1の基端から引き出されたFBG1Cの基端部は、図13Bに示されるように、光カプラ15を介して、検査光を発生する検査光源11および観察対象Aからの検査光を検出する光検出器16に接続されている。
In this embodiment, as shown in FIG. 13A, the relative inclination measurement unit 5 and the relative distance measurement unit 8 are provided on the optical probe 1 and a plurality of inspection light paths 1C different from the illumination light path 1A and the collection light path 1B. May be provided. The inspection light path 1C is a fiber Bragg grating (FBG).
The plurality of FBGs 1C are arranged circumferentially around the condensing optical path 1B. At the tip of the optical probe 1, the tip of the FBG 1 C is embedded in the elastic body 14. As shown in FIG. 13B, the proximal end of the FBG 1C extracted from the proximal end of the optical probe 1 detects the inspection light from the inspection light source 11 generating the inspection light and the inspection light from the observation target A via the optical coupler 15 Is connected to the light detector 16.
 光学プローブ1の先端面と観察対象Aとの接触によって弾性体14が変形することによりFBG1Cに歪が発生し、FBG1C内を導光する検査光の戻り光の強度に変化が生じる。各FBG1Cからの検査光の戻り光の強度プロファイルから、観察対象Aに対する光学プローブ1の相対傾きの情報を得ることができる。また、弾性体14と観察対象Aとの接触によってもFBG1Cからの検査光の戻り光の強度が変化するため、相対距離(観察対象Aとの接触の有無)の情報も得ることができる。 When the elastic body 14 is deformed by the contact between the tip surface of the optical probe 1 and the observation target A, distortion occurs in the FBG 1C, and a change occurs in the intensity of the return light of the inspection light guided in the FBG 1C. Information on the relative tilt of the optical probe 1 with respect to the observation target A can be obtained from the intensity profile of the return light of the inspection light from each of the FBGs 1C. In addition, since the intensity of the return light of the inspection light from the FBG 1C is also changed by the contact between the elastic body 14 and the observation target A, information of the relative distance (presence or absence of contact with the observation target A) can also be obtained.
 あるいは、図13Cに示されるように、光学プローブ1の先端面に弾性体13を介して隔壁12が接続され、隔壁12によって反射され検査光路1Cを導光する検査光の戻り光を検出してもよい。この場合、相対傾き検出部6は、複数の検査光路1Cを導光する検査光の戻り光の強度の偏りに基づいて相対傾きを検出するので、検査光路1Cは、FBGでなく、通常の光ファイバであってもよい。 Alternatively, as shown in FIG. 13C, the partition 12 is connected to the tip surface of the optical probe 1 via the elastic body 13, and the return light of the inspection light reflected by the partition 12 and guided in the inspection light path 1C is detected. It is also good. In this case, the relative inclination detection unit 6 detects the relative inclination based on the bias of the intensity of the return light of the inspection light guided through the plurality of inspection optical paths 1C. Therefore, the inspection optical path 1C is not an FBG, but a normal light. It may be a fiber.
(第2の実施形態)
 次に、本発明の第2の実施形態に係る振動スペクトル測定装置について図面を参照して説明する。
 本実施形態においては、第1の実施形態と異なる構成について説明し、第1の実施形態と共通する構成については同一の符号を付して説明を省略する。
 本実施形態に係る振動スペクトル測定装置200は、相対傾き計測部51および相対距離計測部81が、相対傾きおよび相対距離に応じて変化する物理量としてそれぞれ、光学プローブ1の先端面に作用する圧力を計測する点において、第1の実施形態と異なっている。
Second Embodiment
Next, a vibration spectrum measuring apparatus according to a second embodiment of the present invention will be described with reference to the drawings.
In the present embodiment, a configuration different from the first embodiment will be described, and the configuration common to the first embodiment is assigned the same reference numeral and the description will be omitted.
In the vibration spectrum measuring apparatus 200 according to the present embodiment, the relative inclination measuring unit 51 and the relative distance measuring unit 81 respectively measure the pressure acting on the tip surface of the optical probe 1 as a physical quantity that changes according to the relative inclination and the relative distance. It differs from the first embodiment in that it measures.
 振動スペクトル測定装置200は、図14に示されるように、光学プローブ1と、振動スペクトル測定部2と、振動スペクトル判定部3と、報告部4とを備えている。また、振動スペクトル測定装置200は、相対傾き計測部51と、相対傾き検出部61と、相対傾き判定部71と、相対距離計測部81と、相対距離検出部91と、相対距離判定部101とを備えている。 The vibration spectrum measurement apparatus 200 includes an optical probe 1, a vibration spectrum measurement unit 2, a vibration spectrum determination unit 3, and a report unit 4 as shown in FIG. 14. In addition, the vibration spectrum measuring apparatus 200 includes a relative inclination measurement unit 51, a relative inclination detection unit 61, a relative inclination determination unit 71, a relative distance measurement unit 81, a relative distance detection unit 91, and a relative distance determination unit 101. Is equipped.
 相対傾き計測部51は、図15Aおよび図15Bに示されるように、光学プローブ1の先端面に設けられ、複数の接触式圧力センサ51cを有する圧力センサ部51aを備え、圧力センサ51cによって圧力を計測する。圧力センサ部51aは、図16に示されるように、照明光路1Aおよび集光光路1Bに対応する位置に照明光および信号光を通過させる開口部51bを有する環状の部材である。複数の圧力センサ51cは、圧力センサ部51aの周方向に等間隔に配列されている。 As shown in FIGS. 15A and 15B, the relative inclination measurement unit 51 includes a pressure sensor unit 51a provided on the tip surface of the optical probe 1 and having a plurality of contact pressure sensors 51c, and the pressure is measured by the pressure sensor 51c. measure. The pressure sensor unit 51a is an annular member having an opening 51b through which illumination light and signal light pass at positions corresponding to the illumination light path 1A and the collection light path 1B as shown in FIG. The plurality of pressure sensors 51c are arranged at equal intervals in the circumferential direction of the pressure sensor unit 51a.
 圧力センサ51cは、静電容量式圧力センサであり、圧力センサ51cに作用する圧力の大きさに応じた電圧を発生する。具体的には、静電容量式の圧力センサ51cは、図17に示されるように、基板51dと、基板51dの両側に配置された電極層とを有し、絶縁体51fによって電極層が保護されている。各電極層は一対の電極51eからなり、電極層と絶縁体51fとの間には、配線51gが挟まれている。 The pressure sensor 51c is a capacitive pressure sensor, and generates a voltage according to the magnitude of the pressure acting on the pressure sensor 51c. Specifically, as shown in FIG. 17, the capacitive pressure sensor 51c has a substrate 51d and electrode layers disposed on both sides of the substrate 51d, and the electrode layer is protected by an insulator 51f. It is done. Each electrode layer is composed of a pair of electrodes 51e, and a wire 51g is sandwiched between the electrode layer and the insulator 51f.
 電極51eにおける電荷Qと、静電容量Cと、電極51e間の電圧Vとの間には、Q=C×Vの関係が成立する。圧力センサ51cに作用する圧力に応じて一対の電極51e間の距離が狭くなったときに、静電容量Cが大きくなり、電極51e間の距離の変化量に応じた量だけ電圧Vが減少する。 A relation of Q = C × V is established between the charge Q on the electrode 51e, the electrostatic capacitance C, and the voltage V between the electrodes 51e. When the distance between the pair of electrodes 51e is narrowed according to the pressure acting on the pressure sensor 51c, the capacitance C is increased, and the voltage V is decreased by an amount according to the amount of change in the distance between the electrodes 51e. .
 相対傾き検出部61は、配線51gを介して各圧力センサ51cと個別に接続されている。相対傾き検出部61は、各圧力センサ51cから配線51gを介して受信する電圧の大きさから、圧力センサ部51a内のいずれの位置の圧力センサ51cの電圧が変化したかを検出することができる。ここで、図15Aに示されるように、相対傾きが小さく圧力センサ部51aが観察対象A表面に均等に接触しているときには、全ての圧力センサ51cが発生する電圧の大きさは略均一となる。一方、図15Bに示されるように、相対傾きが大きく圧力センサ部51aが観察対象A表面に傾いて接触しているときには、図18に示されるように、複数の圧力センサ51cが発生する電圧の大きさに偏りが生じる。複数の圧力センサ51cが周方向に等間隔に配列されている場合は、電圧の大きさの偏りがより相対傾きに応じたものになる。したがって、相対傾き検出部61は、複数の圧力センサ51cが発生する電圧の大きさの偏りに基づいて、相対傾きの大きさを検出することができる。 The relative inclination detection unit 61 is individually connected to each pressure sensor 51 c via the wiring 51 g. The relative inclination detection unit 61 can detect at which position in the pressure sensor unit 51a the voltage of the pressure sensor 51c has changed from the magnitude of the voltage received from each pressure sensor 51c through the wiring 51g. . Here, as shown in FIG. 15A, when the relative inclination is small and the pressure sensor unit 51a is in uniform contact with the surface of the observation target A, the magnitudes of the voltages generated by all the pressure sensors 51c become substantially uniform. . On the other hand, as shown in FIG. 15B, when the relative inclination is large and the pressure sensor unit 51a is inclined and in contact with the surface of the observation object A, the voltage generated by the plurality of pressure sensors 51c is shown in FIG. A bias occurs in the size. When the plurality of pressure sensors 51c are arranged at equal intervals in the circumferential direction, the bias of the magnitude of the voltage is more in accordance with the relative inclination. Therefore, the relative inclination detection unit 61 can detect the magnitude of the relative inclination based on the deviation of the magnitude of the voltage generated by the plurality of pressure sensors 51c.
 具体的には、相対傾き検出部61は、以下のようにして相対傾きの大きさを検出する。
 相対傾き検出部61は、記憶装置(図示略)と、演算装置(図示略)とを備え、各圧力センサ51cからの電圧の大きさを記憶装置に記憶する。記憶装置には、圧力センサ51cの電荷Q、誘電率ε、電極面積S、初期電極間隔d1、各圧力センサ51cの相対位置座標(X,Y)のデータが予め記憶されている。
Specifically, the relative inclination detection unit 61 detects the magnitude of the relative inclination as follows.
The relative inclination detection unit 61 includes a storage device (not shown) and an arithmetic device (not shown), and stores the magnitude of the voltage from each pressure sensor 51c in the storage device. In the storage device, data of charge Q of pressure sensor 51c, dielectric constant ε, electrode area S, initial electrode interval d1, and relative position coordinates (X, Y) of each pressure sensor 51c are stored in advance.
 一対の電極51e間の間隔d2は、下式から算出される。
 d2=ε×S×V/Q
 演算装置は、記憶装置から各圧力センサ51cの電圧を読み出し、各圧力センサ51cの現在の電極間隔d2を算出し、初期電極間隔d1と現在の電極間隔d2の差分を算出する。算出された差分は、各圧力センサ51cの位置(X,Y)における、光学プローブ1の先端面と観察対象Aとの間の相対距離を表している。
The distance d2 between the pair of electrodes 51e is calculated from the following equation.
d2 = ε × S × V / Q
The arithmetic device reads the voltage of each pressure sensor 51c from the storage device, calculates the current electrode spacing d2 of each pressure sensor 51c, and calculates the difference between the initial electrode spacing d1 and the current electrode spacing d2. The calculated difference represents the relative distance between the tip surface of the optical probe 1 and the observation target A at the position (X, Y) of each pressure sensor 51 c.
 相対傾き検出部61は、図19に示されるように、各圧力センサ51cの位置における相対距離をZ座標として、各圧力センサ51cの相対位置座標(X,Y)と相対距離を3次元座標空間にプロットし、複数のプロットの最小二乗平面を算出する。算出された最小二乗平面は、光学プローブ1の先端面に対する観察対象A表面を近似した平面である。したがって、最小二乗平面の法線とZ軸とが成す角度θが、光学プローブ1の先端面と観察対象Aとの間の相対傾きとなる。相対傾き検出部61は、最小二乗平面の法線とZ軸とが成す角度θを相対傾きとして検出する。 The relative inclination detection unit 61, as shown in FIG. 19, sets the relative distance at the position of each pressure sensor 51c as the Z coordinate, and indicates the relative position coordinate (X, Y) of each pressure sensor 51c and the relative distance in a three-dimensional coordinate space Plot to and calculate the least squares plane of multiple plots. The calculated least square plane is a plane which approximates the surface of the observation target A with respect to the tip surface of the optical probe 1. Therefore, an angle θ formed by the normal line of the least square plane and the Z axis is the relative inclination between the tip surface of the optical probe 1 and the observation target A. The relative inclination detection unit 61 detects an angle θ formed by the normal line of the least square plane and the Z axis as a relative inclination.
 相対傾き判定部71は、記憶装置(図示略)と、演算装置(図示略)とを備えている。記憶装置には、相対傾きの大きさの許容範囲が予め保存されている。演算装置は、相対傾き検出部61によって検出された相対傾きの大きさが許容範囲内であるか否かを判定する。
 相対傾き判定部71は、振動スペクトル測定部2の制御装置26および報告部4と電気的に接続されており、相対傾き判定部71による判定結果は、振動スペクトル測定部2の制御装置26および報告部4に送信される。
The relative inclination determination unit 71 includes a storage device (not shown) and an arithmetic device (not shown). In the storage device, the allowable range of the magnitude of the relative inclination is stored in advance. The arithmetic device determines whether the magnitude of the relative inclination detected by the relative inclination detection unit 61 is within the allowable range.
The relative tilt determination unit 71 is electrically connected to the control device 26 and the report unit 4 of the vibration spectrum measurement unit 2, and the determination result by the relative tilt determination unit 71 is the control device 26 and the report of the vibration spectrum measurement unit 2. It is sent to the part 4.
 相対距離計測部81は、相対傾き検出部61と同様に、圧力センサ部51aを備えている。
 相対距離検出部91は、各圧力センサ51cと配線51gを介して個別に接続されている。上述したように、静電容量式の圧力センサ51cが発生する電圧の大きさは、電極51e間の距離の変化量によって決まる。相対距離検出部91は、各圧力センサ51cから配線51gを介して受信する電圧の大きさから、圧力センサ部51a内の各圧力センサ51cの位置における相対距離を検出する。
Similar to the relative inclination detection unit 61, the relative distance measurement unit 81 includes a pressure sensor unit 51a.
The relative distance detection unit 91 is individually connected to each pressure sensor 51 c via a wire 51 g. As described above, the magnitude of the voltage generated by the capacitive pressure sensor 51c is determined by the amount of change in the distance between the electrodes 51e. The relative distance detection unit 91 detects the relative distance at the position of each pressure sensor 51c in the pressure sensor unit 51a from the magnitude of the voltage received from each pressure sensor 51c via the wiring 51g.
 相対距離判定部101は、記憶装置(図示略)と、演算装置(図示略)とを備えている。記憶装置には、相対距離の大きさの許容範囲が予め保存されている。演算装置は、相対距離検出部91によって検出された相対距離が許容範囲内であるか否かを判定する。相対距離判定部101は、振動スペクトル測定部2の制御装置26および報告部4と電気的に接続されており、相対距離判定部101による判定結果は、振動スペクトル測定部2の制御装置26および報告部4に送信される。 The relative distance determination unit 101 includes a storage device (not shown) and an arithmetic device (not shown). In the storage device, the allowable range of the relative distance size is stored in advance. The computing device determines whether the relative distance detected by the relative distance detection unit 91 is within the allowable range. The relative distance determination unit 101 is electrically connected to the control device 26 and the report unit 4 of the vibration spectrum measurement unit 2, and the determination result by the relative distance determination unit 101 corresponds to the control device 26 and the report of the vibration spectrum measurement unit 2. It is sent to the part 4.
 このように、本実施形態によれば、光学プローブ1の先端面の複数の位置に作用する圧力の大きさに基づいて、観察対象Aに対する光学プローブ1の相対傾きおよび相対距離を検出することができる。 Thus, according to the present embodiment, the relative inclination and relative distance of the optical probe 1 with respect to the observation target A can be detected based on the magnitudes of pressure acting on a plurality of positions on the tip surface of the optical probe 1 it can.
 本実施形態においては、接触式圧力センサとして、静電容量式の圧力センサを用いることとしたが、これに代えて、図20に示されるように、圧電素子51iを有する圧電センサ51hを用いてもよい。圧電センサ51hは、静電容量式の圧力センサ51cと同様に、光学プローブ1の先端面に周方向に等間隔に配列される。
 圧電センサ51hは、圧電素子51iと、圧電素子51iを挟む一対の電極51jとを備える。圧電センサ51hに作用する圧力によって圧電素子51iの厚みが変化したときに、圧電素子51iは、圧電効果によって厚みの変化量に応じた大きさの電圧を発生する。圧電素子51iの発生した電圧は、電極51jに接続された配線51gを介して計測される。したがって、複数の圧電センサ51hの電圧の大きさの偏りに基づいて相対傾きを検出することができ、複数の圧電センサ51hの電圧の大きさに基づいて相対距離を検出することができる。
 本変形例においては、配線51gを介して圧電素子51iに電圧を印加することで、圧電素子51iの厚みを制御して相対傾きおよび相対距離を補正してもよい。
In this embodiment, a capacitive pressure sensor is used as the contact pressure sensor, but instead, as shown in FIG. 20, a piezoelectric sensor 51h having a piezoelectric element 51i is used. It is also good. The piezoelectric sensors 51 h are arranged at equal intervals in the circumferential direction on the tip surface of the optical probe 1 as in the capacitive pressure sensor 51 c.
The piezoelectric sensor 51 h includes a piezoelectric element 51 i and a pair of electrodes 51 j sandwiching the piezoelectric element 51 i. When the thickness of the piezoelectric element 51i changes due to the pressure acting on the piezoelectric sensor 51h, the piezoelectric element 51i generates a voltage having a magnitude corresponding to the amount of change in thickness due to the piezoelectric effect. The voltage generated by the piezoelectric element 51i is measured via the wire 51g connected to the electrode 51j. Therefore, the relative inclination can be detected based on the bias of the voltage magnitudes of the plurality of piezoelectric sensors 51h, and the relative distance can be detected based on the voltage magnitudes of the plurality of piezoelectric sensors 51h.
In the present modification, the thickness of the piezoelectric element 51i may be controlled to correct the relative inclination and the relative distance by applying a voltage to the piezoelectric element 51i via the wiring 51g.
(第3の実施形態)
 次に、本発明の第3の実施形態に係る振動スペクトル測定装置について図面を参照して説明する。
 本実施形態においては、第1の実施形態と異なる構成について説明し、第1の実施形態と共通する構成については同一の符号を付して説明を省略する。
 本実施形態に係る振動スペクトル測定装置300は、相対傾き計測部52および相対距離計測部82が、相対傾きおよび相対距離に応じて変化する物理量としてそれぞれ、光学プローブ1からの超音波の反射波を計測する点において、第1の実施形態と異なっている。
Third Embodiment
Next, a vibration spectrum measuring apparatus according to a third embodiment of the present invention will be described with reference to the drawings.
In the present embodiment, a configuration different from the first embodiment will be described, and the configuration common to the first embodiment is assigned the same reference numeral and the description will be omitted.
In the vibration spectrum measuring apparatus 300 according to the present embodiment, the relative inclination measuring unit 52 and the relative distance measuring unit 82 respectively use the reflected waves of the ultrasonic waves from the optical probe 1 as physical quantities that change according to relative inclination and relative distance. It differs from the first embodiment in that it measures.
 振動スペクトル測定装置300は、図21に示されるように、光学プローブ1と、振動スペクトル測定部2と、振動スペクトル判定部3と、報告部4とを備えている。また、振動スペクトル測定装置300は、相対傾き計測部52と、相対傾き検出部62と、相対傾き判定部72と、相対距離計測部82と、相対距離検出部92と、相対距離判定部102とを備えている。 As shown in FIG. 21, the vibration spectrum measurement apparatus 300 includes an optical probe 1, a vibration spectrum measurement unit 2, a vibration spectrum determination unit 3, and a report unit 4. The vibration spectrum measuring apparatus 300 further includes a relative inclination measurement unit 52, a relative inclination detection unit 62, a relative inclination determination unit 72, a relative distance measurement unit 82, a relative distance detection unit 92, and a relative distance determination unit 102. Is equipped.
 相対傾き計測部52および相対距離計測部82は、関節鏡(内視鏡)17の先端部に搭載された超音波検査装置18を備える。超音波検査装置18は、図22に示されるように、超音波を放射状に射出する。超音波の照射範囲内に物体が存在する場合、物体によって超音波の反射波が発生する。超音波検査装置18は、超音波の反射波を受信し、受信された反射波に基づいて、超音波の照射範囲内に存在する物体までの距離を単位立体角毎に計測する。これにより、超音波検査装置18から観察対象Aの表面の各位置および光学プローブ1の表面の各位置までの距離が得られる。 The relative inclination measuring unit 52 and the relative distance measuring unit 82 each include an ultrasonic examination device 18 mounted on the distal end of the arthroscope (endoscope) 17. The ultrasonic inspection apparatus 18 radiates ultrasonic waves radially as shown in FIG. When an object is present in the irradiation range of the ultrasonic wave, the object generates a reflected wave of the ultrasonic wave. The ultrasonic inspection device 18 receives the reflected wave of the ultrasonic wave, and measures the distance to the object present in the irradiation range of the ultrasonic wave for each unit solid angle based on the received reflected wave. Thereby, distances from the ultrasonic inspection apparatus 18 to each position on the surface of the observation target A and each position on the surface of the optical probe 1 are obtained.
 相対傾き検出部62は、相対傾き計測部52によって計測された単位立体角毎の距離に基づいて、超音波検査装置18の周囲環境を再現する。
 具体的には、相対傾き検出部62は、超音波検査装置18を中心する空間座標系において単位立体角当りの距離をプロットし、プロット間の隙間を補完する処理を行うことで、図23に示されるように、超音波検査装置18の周辺の3次元の推定周辺モデルを作成する。次に、相対傾き検出部62は、関節鏡17と超音波検査装置18との相対位置関係に基づいて、推定周辺モデルから光学プローブ1と観察対象Aの表面とを判別し、推定光学プローブ面P1、推定光学プローブ先端面P2、および推定観察対象面P3を設定する。次に、相対傾き検出部62は、推定光学プローブ面P1から推定光学プローブ光軸Q1を算出し、推定光学プローブ光軸Q1と推定観察対象面P3との交点を算出し、交点において推定観察対象面P3の法線Q2と推定光学プローブ光軸Q1とが成す角度θを算出する。算出された角度が、相対傾きの大きさである。
The relative inclination detection unit 62 reproduces the surrounding environment of the ultrasonic inspection apparatus 18 based on the distance for each unit solid angle measured by the relative inclination measurement unit 52.
Specifically, the relative inclination detection unit 62 plots the distance per unit solid angle in the space coordinate system centered on the ultrasonic inspection apparatus 18, and performs processing for complementing the gap between the plots, as shown in FIG. As shown, a three-dimensional estimated peripheral model around the ultrasound system 18 is created. Next, the relative inclination detection unit 62 determines the surface of the optical probe 1 and the surface of the observation target A from the estimated peripheral model based on the relative positional relationship between the arthroscope 17 and the ultrasonic inspection apparatus 18, and the estimated optical probe surface P1, an estimated optical probe tip surface P2, and an estimated observation target surface P3 are set. Next, the relative inclination detection unit 62 calculates the estimated optical probe optical axis Q1 from the estimated optical probe surface P1, calculates the intersection of the estimated optical probe optical axis Q1 and the estimated observation target surface P3, and estimates the observation target at the intersection. The angle θ formed by the normal line Q2 of the plane P3 and the estimated optical probe optical axis Q1 is calculated. The calculated angle is the magnitude of the relative inclination.
 相対傾き判定部72は、記憶装置(図示略)と、演算装置(図示略)とを備えている。記憶装置には、相対傾きの大きさの許容範囲が予め保存されている。演算装置は、相対傾き検出部62によって検出された相対傾きの大きさが許容範囲内であるか否かを判定する。相対傾き判定部72は、振動スペクトル測定部2の制御装置26および報告部4と電気的に接続されており、相対傾き判定部72による判定結果は、振動スペクトル測定部2の制御装置26および報告部4に送信される。 The relative inclination determination unit 72 includes a storage device (not shown) and an arithmetic device (not shown). In the storage device, the allowable range of the magnitude of the relative inclination is stored in advance. The arithmetic device determines whether or not the magnitude of the relative inclination detected by the relative inclination detection unit 62 is within the allowable range. The relative tilt determination unit 72 is electrically connected to the control device 26 and the report unit 4 of the vibration spectrum measurement unit 2, and the determination result by the relative tilt determination unit 72 corresponds to the control device 26 and the report of the vibration spectrum measurement unit 2. It is sent to the part 4.
 相対距離検出部92は、相対傾き検出部62と同様にして、3次元の推定周辺モデルを作成し、推定光学プローブ先端面P2および推定観察対象面P3を設定し、推定光学プローブ光軸Q1を算出する。次に、相対距離検出部92は、推定光学プローブ先端面P2から、推定光学プローブ光軸Q1と推定観察対象面P3との交点までの距離dを算出する。算出された距離dが、相対距離である。 Similar to the relative tilt detection unit 62, the relative distance detection unit 92 creates a three-dimensional estimated peripheral model, sets the estimated optical probe tip surface P2 and the estimated observation target surface P3, and sets the estimated optical probe optical axis Q1. calculate. Next, the relative distance detection unit 92 calculates the distance d from the estimated optical probe tip surface P2 to the intersection of the estimated optical probe optical axis Q1 and the estimated observation target surface P3. The calculated distance d is a relative distance.
 相対距離判定部102は、記憶装置(図示略)と、演算装置(図示略)とを備えている。記憶装置には、相対距離の許容範囲が予め保存されている。演算装置は、相対距離検出部92によって検出された相対距離が許容範囲内であるか否かを判定する。相対距離判定部102は、振動スペクトル測定部2の制御装置26および報告部4と電気的に接続されており、相対距離判定部102による判定結果は、振動スペクトル測定部2の制御装置26および報告部4に送信される。 The relative distance determination unit 102 includes a storage device (not shown) and an arithmetic device (not shown). In the storage device, an allowable range of relative distance is stored in advance. The arithmetic device determines whether the relative distance detected by the relative distance detection unit 92 is within the allowable range. The relative distance determination unit 102 is electrically connected to the control device 26 and the report unit 4 of the vibration spectrum measurement unit 2, and the determination result by the relative distance determination unit 102 corresponds to the control device 26 and the report of the vibration spectrum measurement unit 2. It is sent to the part 4.
 このように、本実施形態によれば、観察対象Aおよび光学プローブ1の先端部からの超音波の反射波に基づいて超音波検査装置18から観察対象Aおよび光学プローブ1の先端部までの距離を計測することで、観察対象Aに対する光学プローブ1の相対傾きおよび相対距離を検出することができる。 Thus, according to the present embodiment, the distance from the ultrasonic inspection apparatus 18 to the tip of the observation target A and the optical probe 1 based on the reflection wave of the ultrasonic wave from the observation target A and the tip of the optical probe 1 The relative inclination and relative distance of the optical probe 1 with respect to the observation target A can be detected by measuring
 上述した第1から第3の実施形態においては、図24に示されるように、振動スペクトル測定部2によって測定された振動スペクトルを補正する振動スペクトル補正部19がさらに設けられていてもよい。振動スペクトル補正部19は、振動スペクトル測定部2、相対傾き判定部7および相対距離判定部10と電気的に接続されている。
 振動スペクトル測定部2によって測定される観察対象Aの振動スペクトルの見かけの強度は、光学プローブ1と観察対象Aとの間の相対傾きおよび相対距離に依存して変化する。
In the first to third embodiments described above, as shown in FIG. 24, a vibration spectrum correction unit 19 that corrects the vibration spectrum measured by the vibration spectrum measurement unit 2 may be further provided. The vibration spectrum correction unit 19 is electrically connected to the vibration spectrum measurement unit 2, the relative tilt determination unit 7, and the relative distance determination unit 10.
The apparent intensity of the vibration spectrum of the observation object A measured by the vibration spectrum measurement unit 2 changes depending on the relative inclination and relative distance between the optical probe 1 and the observation object A.
 振動スペクトル補正部19は、記憶装置(図示略)および演算装置(図示略)を備えている。振動スペクトル補正部19は、振動スペクトル測定部2によって取得された観察対象Aの振動スペクトルを記憶装置に記憶するとともに、相対傾き判定部7および相対距離判定部10から、判定に使用された相対傾きおよび相対距離の情報を受け取って記憶装置に記憶する。 The vibration spectrum correction unit 19 includes a storage device (not shown) and an arithmetic device (not shown). The vibration spectrum correction unit 19 stores the vibration spectrum of the observation object A acquired by the vibration spectrum measurement unit 2 in the storage device, and the relative tilt determination unit 7 and the relative distance determination unit 10 use the relative tilt used for the determination. And information of relative distance is received and stored in a storage device.
 記憶装置には、光学プローブ1と観察対象Aとが、所定の相対傾きおよび所定の相対距離に配置されているときの見かけの強度の補正係数データが記憶されている。演算装置は、記憶装置から読み出した観察対象Aの振動スペクトルに補正係数を乗算することで、振動スペクトルの見かけの強度変化を補正する。振動スペクトル判定部3は、見かけの強度が補正された振動スペクトルに基づいて測定の成否を判定する。
 このようにすることで、相対傾きおよび相対距離の差異に起因する強度の変化が低減された振動スペクトルを得ることができる。
The storage device stores correction coefficient data of apparent intensity when the optical probe 1 and the observation target A are disposed at a predetermined relative inclination and a predetermined relative distance. The arithmetic device corrects the apparent intensity change of the vibration spectrum by multiplying the vibration spectrum of the observation object A read out from the storage device by the correction coefficient. The vibration spectrum determination unit 3 determines the success or failure of the measurement based on the vibration spectrum whose apparent intensity has been corrected.
In this way, it is possible to obtain a vibration spectrum in which the change in intensity due to the relative tilt and the difference in relative distance is reduced.
 上述した第1から第3の実施形態においては、図25に示されるように、相対傾き判定部7および相対距離判定部10による判定結果に基づいて、関節鏡(照明装置)17から観察対象Aに照射される関節鏡照明光の状態を制御する照明制御部20がさらに設けられていてもよい。
 照明制御部20は、関節鏡17に関節鏡照明光を供給する照明ユニット171に内蔵される光学フィルタを切り替えるフィルタ切替機能を有する装置である。照明制御部20は、相対傾き判定部7、相対距離判定部10、および振動スペクトル測定部2と電気的に接続されている。照明制御部20は、相対傾き判定部7および相対距離判定部10によって実行される相対傾きおよび相対距離の判定結果の情報を受信し、照明ユニット171の光学フィルタを切替えることによって、照明ユニット171から関節鏡17に供給される関節鏡照明光の状態、例えば、強度またはスペクトルを変化させる。あるいは、照明制御部20は、照明ユニット171に設けられた照明光用のシャッタを開閉する開閉装置を制御してもよい。
In the first to third embodiments described above, as shown in FIG. 25, based on the determination results by the relative tilt determination unit 7 and the relative distance determination unit 10, the observation target A from the arthroscope (illumination device) 17 is A lighting control unit 20 may be further provided to control the state of the arthroscopic illumination light emitted to the light source.
The illumination control unit 20 is a device having a filter switching function of switching an optical filter built in the illumination unit 171 that supplies the arthroscopic illumination light to the arthroscope 17. The illumination control unit 20 is electrically connected to the relative tilt determination unit 7, the relative distance determination unit 10, and the vibration spectrum measurement unit 2. The illumination control unit 20 receives the information on the determination results of the relative inclination and the relative distance executed by the relative inclination determination unit 7 and the relative distance determination unit 10, and switches the optical filter of the illumination unit 171 to obtain the illumination unit 171 The state, eg, intensity or spectrum, of the arthroscopic illumination light supplied to the arthroscope 17 is changed. Alternatively, the illumination control unit 20 may control an opening / closing device that opens / closes a shutter for illumination light provided in the illumination unit 171.
 相対傾き判定部7および相対距離判定部10によって、相対傾きおよび相対距離が適切であると判定されたときに、相対傾き判定部7および相対距離判定部10から照明制御部20へ信号が送信され、照明制御部20は判定結果(相対距離および相対傾きが適切)を受信する。また、照明制御部20は、振動スペクトル測定部2の制御装置26において設定される光検出器24の露光時間(時間T)の情報を受信する。振動スペクトル測定部2による振動スペクトルの測定開始に先立って、照明制御部20は、関節鏡17からの関節鏡照明光の状態を、振動スペクトルの測定開始から測定完了までを含む一定時間t(t>T)の間だけ変化させる。これにより、観察対象Aの振動スペクトルの測定に必要な時間の間、関節鏡17から観察対象Aに照射される関節鏡照明光の強度が一時的に低下するか、関節鏡照明光のスペクトル形状が変化するか、あるいは関節鏡照明光が一時的に遮断される。このようにすることで、関節鏡照明光の光量やスペクトル形状を変化させて振動スペクトルに重畳される関節鏡照明光由来の迷光の影響を低減し、振動スペクトル測定部2によって信号対雑音比の高い観察対象Aの振動スペクトルを得ることができる。 When the relative inclination determination unit 7 and the relative distance determination unit 10 determine that the relative inclination and the relative distance are appropriate, the relative inclination determination unit 7 and the relative distance determination unit 10 transmit a signal to the illumination control unit 20. The illumination control unit 20 receives the determination result (the relative distance and the relative inclination are appropriate). The illumination control unit 20 also receives information on the exposure time (time T) of the light detector 24 set in the control device 26 of the vibration spectrum measurement unit 2. Prior to the start of measurement of the vibration spectrum by the vibration spectrum measurement unit 2, the illumination control unit 20 sets the state of the arthroscopic illumination light from the arthroscope 17 to a predetermined time t (t from start of measurement of the vibration spectrum to measurement completion). Change only during> T). Thereby, the intensity of the arthroscopic illumination light irradiated from the arthroscope 17 to the observation target A temporarily decreases during the time required for measurement of the vibration spectrum of the observation target A, or the spectrum shape of the arthroscopic illumination light Changes, or the arthroscopic illumination is temporarily blocked. By doing this, the light amount and spectrum shape of the arthroscopic illumination light are changed to reduce the influence of stray light derived from the arthroscopic illumination light superimposed on the vibration spectrum, and the vibration spectrum measuring unit 2 A high vibration spectrum of the observation object A can be obtained.
100,200,300 振動スペクトル測定装置
1 光学プローブ
2 振動スペクトル測定部
3 振動スペクトル判定部
4 報告部
5,51,52 相対傾き計測部
6,61,62 相対傾き検出部
7,71,72 相対傾き判定部
8,81,82 相対距離計測部
9,91,92 相対距離検出部
10,101,102 相対距離判定部
11 検査光源
12 隔壁
13 弾性体
17 関節鏡(内視鏡)
18 超音波検査装置
19 振動スペクトル補正部
20 照明制御部
100, 200, 300 Vibration spectrum measuring apparatus 1 Optical probe 2 Vibration spectrum measuring unit 3 Vibration spectrum judging unit 4 Report units 5, 51, 52 Relative inclination measuring unit 6, 61, 62 Relative inclination detecting unit 7, 71, 72 Relative inclination Determination unit 8, 81, 82 Relative distance measurement unit 9, 91, 92 Relative distance detection unit 10, 101, 102 Relative distance determination unit 11 Examination light source 12 Partition wall 13 Elastic body 17 Arthroscope (endoscope)
18 ultrasonic inspection apparatus 19 vibration spectrum correction unit 20 illumination control unit

Claims (29)

  1.  先端面から観察対象に向けて照明光を射出するとともに該照明光の照射によって前記観察対象において発生した信号光を前記先端面において受光する長尺の光学プローブであって、前記照明光を導光する照明光路および前記信号光を導光する集光光路を有する光学プローブと、
     前記観察対象と前記光学プローブとの間の相対傾きの大きさに応じて変化する物理量を計測する相対傾き計測部と、
     該相対傾き計測部によって計測された前記物理量に基づいて前記相対傾きの大きさを検出する相対傾き検出部と、
     該相対傾き検出部によって検出された前記相対傾きの大きさが所定の許容範囲内であるか否かを判定する相対傾き判定部と、
     該相対傾き判定部による判定結果に基づいて、前記光学プローブの前記集光光路によって導光された前記信号光の振動スペクトルを測定する振動スペクトル測定部とを備える振動スペクトル測定装置。
    It is a long optical probe which emits illumination light from a tip end surface to an observation target and receives signal light generated in the observation target by irradiation of the illumination light at the tip end surface, wherein the illumination light is guided An optical probe having an illumination light path to be guided and a collection light path for guiding the signal light;
    A relative tilt measurement unit that measures a physical quantity that changes according to the magnitude of the relative tilt between the observation target and the optical probe;
    A relative tilt detection unit that detects the magnitude of the relative tilt based on the physical quantity measured by the relative tilt measurement unit;
    A relative inclination determination unit that determines whether or not the magnitude of the relative inclination detected by the relative inclination detection unit is within a predetermined allowable range;
    A vibration spectrum measuring device comprising: a vibration spectrum measuring unit for measuring a vibration spectrum of the signal light guided by the condensed light path of the optical probe based on a judgment result by the relative tilt judging unit.
  2.  前記観察対象と前記光学プローブの先端面との間の相対距離の大きさに応じて変化する物理量を計測する相対距離計測部と、
     該相対距離計測部によって計測された前記物理量に基づいて前記相対距離の大きさを検出する相対距離検出部と、
     該相対距離検出部によって検出された前記相対距離の大きさが所定の許容範囲内であるか否かを判定する相対距離判定部とを備え、
     前記振動スペクトル測定部が、前記相対傾き判定部による判定結果および前記相対距離判定部による判定結果に基づいて、前記信号光の振動スペクトルを測定する請求項1に記載の振動スペクトル測定装置。
    A relative distance measurement unit that measures a physical quantity that changes according to the magnitude of the relative distance between the observation target and the tip surface of the optical probe;
    A relative distance detection unit that detects the magnitude of the relative distance based on the physical quantity measured by the relative distance measurement unit;
    A relative distance determination unit that determines whether or not the magnitude of the relative distance detected by the relative distance detection unit is within a predetermined allowable range;
    The vibration spectrum measuring apparatus according to claim 1, wherein the vibration spectrum measurement unit measures a vibration spectrum of the signal light based on the determination result by the relative tilt determination unit and the determination result by the relative distance determination unit.
  3.  前記振動スペクトル測定部によって測定された前記振動スペクトルを評価し、前記観察対象の振動スペクトルの測定の成否を判定する振動スペクトル判定部と、
     該振動スペクトル判定部による判定結果を報告する報告部とを備える請求項1または請求項2に記載の振動スペクトル測定装置。
    A vibration spectrum determination unit that evaluates the vibration spectrum measured by the vibration spectrum measurement unit and determines success or failure of measurement of the vibration spectrum of the observation target;
    The vibration spectrum measuring apparatus according to claim 1, further comprising: a report unit that reports the determination result by the vibration spectrum determination unit.
  4.  前記相対傾き検出部によって検出された前記相対傾きの大きさに基づいて、前記振動スペクトル測定部によって測定された振動スペクトルを補正する振動スペクトル補正部を備える請求項1に記載の振動スペクトル測定装置。 The vibration spectrum measuring apparatus according to claim 1, further comprising: a vibration spectrum correction unit configured to correct the vibration spectrum measured by the vibration spectrum measurement unit based on the magnitude of the relative tilt detected by the relative tilt detection unit.
  5.  前記相対距離検出部によって検出された前記相対距離の大きさに基づいて、前記振動スペクトル測定部によって測定された振動スペクトルを補正する振動スペクトル補正部を備える請求項2に記載の振動スペクトル測定装置。 The vibration spectrum measuring apparatus according to claim 2, further comprising: a vibration spectrum correction unit that corrects the vibration spectrum measured by the vibration spectrum measurement unit based on the magnitude of the relative distance detected by the relative distance detection unit.
  6.  前記相対傾き判定部による判定結果に基づいて、前記光学プローブとは別体である照明装置から前記観察対象に照射される光の状態を制御する照明制御部を備える請求項1に記載の振動スペクトル測定装置。 The vibration spectrum according to claim 1, further comprising: an illumination control unit configured to control a state of light emitted to the observation target from an illumination device that is separate from the optical probe based on the determination result by the relative tilt determination unit. measuring device.
  7.  前記相対距離判定部による判定結果に基づいて、前記光学プローブとは別体である照明装置から前記観察対象に照射される光の状態を制御する照明制御部を備える請求項2に記載の振動スペクトル測定装置。 The vibration spectrum according to claim 2, further comprising: an illumination control unit configured to control a state of light emitted to the observation target from an illumination device that is separate from the optical probe based on the determination result by the relative distance determination unit. measuring device.
  8.  前記相対傾き計測部が、前記光学プローブの先端面に配された前記照明光路および前記集光光路の少なくとも一方によって集光された検査光の強度を計測し、
     前記相対傾き検出部が、前記相対傾き計測部によって計測された前記検査光の強度に基づいて前記相対傾きの大きさを検出する請求項1に記載の振動スペクトル測定装置。
    The relative tilt measurement unit measures the intensity of the inspection light collected by at least one of the illumination light path and the collection light path disposed on the tip end surface of the optical probe,
    The vibration spectrum measuring apparatus according to claim 1, wherein the relative inclination detection unit detects the magnitude of the relative inclination based on the intensity of the inspection light measured by the relative inclination measurement unit.
  9.  前記相対距離計測部が、前記光学プローブの先端面に配された前記照明光路および前記集光光路の少なくとも一方によって集光された検査光の強度を計測し、
     前記相対距離検出部が、前記相対距離計測部によって計測された前記検査光の強度に基づいて前記相対距離の大きさを検出する請求項2に記載の振動スペクトル測定装置。
    The relative distance measurement unit measures the intensity of the inspection light collected by at least one of the illumination light path and the collection light path disposed on the tip surface of the optical probe,
    The vibration spectrum measuring apparatus according to claim 2, wherein the relative distance detection unit detects the magnitude of the relative distance based on the intensity of the inspection light measured by the relative distance measurement unit.
  10.  前記相対傾き計測部が、前記光学プローブに設けられ前記照明光路および前記集光光路とは異なる複数の検査光路を有し、前記光学プローブの先端面において前記複数の検査光路によってそれぞれ集光される複数の検査光の強度を計測し、
     前記相対傾き検出部が、前記相対傾き計測部によって計測された前記複数の検査光の強度間の差に基づいて前記相対傾きを検出する請求項1に記載の振動スペクトル測定装置。
    The relative tilt measurement unit has a plurality of inspection light paths provided in the optical probe and different from the illumination light path and the collection light path, and the light is condensed by the plurality of inspection light paths on the tip surface of the optical probe. Measure the intensity of multiple inspection lights,
    The vibration spectrum measuring apparatus according to claim 1, wherein the relative inclination detection unit detects the relative inclination based on a difference between the intensities of the plurality of inspection lights measured by the relative inclination measurement unit.
  11.  前記相対距離計測部が、前記光学プローブに設けられ前記照明光路および前記集光光路とは異なる複数の検査光路を有し、前記光学プローブの先端面において前記複数の検査光路によってそれぞれ集光される複数の検査光の強度を計測し、
     前記相対距離検出部が、前記相対距離計測部によって計測された前記複数の検査光の強度の大きさに基づいて前記相対距離を検出する請求項2に記載の振動スペクトル測定装置。
    The relative distance measuring unit is provided in the optical probe and has a plurality of inspection light paths different from the illumination light path and the collection light path, and is condensed by the plurality of inspection light paths on the tip surface of the optical probe Measure the intensity of multiple inspection lights,
    The vibration spectrum measuring apparatus according to claim 2, wherein the relative distance detection unit detects the relative distance based on magnitudes of intensities of the plurality of inspection lights measured by the relative distance measurement unit.
  12.  前記光学プローブが、複数の前記集光光路を有し、
     前記相対傾き計測部が、前記光学プローブの前記照明光路から前記光学プローブの先端面に対向する物体に向けて検査光を射出し、前記物体によって反射され前記複数の集光光路によってそれぞれ集光される複数の前記検査光の強度を計測し、
     前記相対傾き検出部が、前記相対傾き計測部によって計測された前記複数の検査光の強度間の差に基づいて前記相対傾きを検出する請求項8に記載の振動スペクトル測定装置。
    Said optical probe comprises a plurality of said collection paths;
    The relative tilt measurement unit emits inspection light from the illumination light path of the optical probe toward an object facing the tip surface of the optical probe, and is reflected by the object and collected by the plurality of collected light paths. Measuring the intensity of the plurality of inspection lights,
    The vibration spectrum measuring apparatus according to claim 8, wherein the relative inclination detection unit detects the relative inclination based on a difference between the intensities of the plurality of inspection lights measured by the relative inclination measurement unit.
  13.  前記光学プローブが、複数の前記集光光路を有し、
     前記相対距離計測部が、前記光学プローブの前記照明光路から前記光学プローブの先端面に対向する物体に向けて検査光を射出し、前記物体によって反射され前記複数の集光光路によってそれぞれ集光される複数の前記検査光の強度を計測し、
     前記相対距離検出部が、前記相対距離計測部によって計測された前記複数の検査光の強度の大きさに基づいて前記相対距離を検出する請求項9に記載の振動スペクトル測定装置。
    Said optical probe comprises a plurality of said collection paths;
    The relative distance measurement unit emits inspection light from the illumination light path of the optical probe toward an object facing the tip surface of the optical probe, and is reflected by the object and collected by the plurality of collected light paths. Measuring the intensity of the plurality of inspection lights,
    10. The vibration spectrum measuring apparatus according to claim 9, wherein the relative distance detection unit detects the relative distance based on magnitudes of intensities of the plurality of inspection lights measured by the relative distance measurement unit.
  14.  前記光学プローブが、複数の前記集光光路を有し、
     前記検査光が、内視鏡から前記観察対象に照射される内視鏡照明光であり、
     前記相対傾き計測部が、前記観察対象によって反射され前記複数の集光光路によってそれぞれ集光される複数の前記検査光の強度を計測し、
     前記相対傾き検出部が、前記相対傾き計測部によって計測された前記複数の検査光の強度間の差に基づいて前記相対傾きを検出する請求項8に記載の振動スペクトル測定装置。
    Said optical probe comprises a plurality of said collection paths;
    The inspection light is endoscope illumination light irradiated from an endoscope to the observation target,
    The relative inclination measurement unit measures the intensities of the plurality of inspection light beams reflected by the observation target and collected by the plurality of collection light paths,
    The vibration spectrum measuring apparatus according to claim 8, wherein the relative inclination detection unit detects the relative inclination based on a difference between the intensities of the plurality of inspection lights measured by the relative inclination measurement unit.
  15.  前記光学プローブが、複数の前記集光光路を有し、
     前記検査光が、内視鏡から前記観察対象に照射される内視鏡照明光であり、
     前記相対距離計測部が、前記観察対象によって反射され前記複数の集光光路によってそれぞれ集光される複数の前記検査光の強度を計測し、
     前記相対距離検出部が、前記相対距離計測部によって計測された前記複数の検査光の強度の大きさに基づいて前記相対距離を検出する請求項9に記載の振動スペクトル測定装置。
    Said optical probe comprises a plurality of said collection paths;
    The inspection light is endoscope illumination light irradiated from an endoscope to the observation target,
    The relative distance measurement unit measures the intensities of the plurality of inspection lights that are reflected by the observation target and collected by the plurality of collected light paths,
    10. The vibration spectrum measuring apparatus according to claim 9, wherein the relative distance detection unit detects the relative distance based on magnitudes of intensities of the plurality of inspection lights measured by the relative distance measurement unit.
  16.  前記複数の検査光路が、ファイバブラッググレーティングからなる請求項10または請求項11に記載の振動スペクトル測定装置。 The vibration spectrum measuring device according to claim 10 or 11, wherein the plurality of inspection light paths are made of a fiber Bragg grating.
  17.  前記振動スペクトル測定部が、前記照明光を発生する光源を備え、
     前記検査光が、前記振動スペクトル測定部の前記光源が発生する前記照明光である請求項12または請求項13に記載の振動スペクトル測定装置。
    The vibration spectrum measurement unit includes a light source that generates the illumination light.
    The vibration spectrum measuring apparatus according to claim 12, wherein the inspection light is the illumination light generated by the light source of the vibration spectrum measurement unit.
  18.  前記振動スペクトル測定部が、前記照明光を検出する光検出器を備え、
     前記相対傾き計測部が、前記振動スペクトル測定部の前記光検出器によって前記検査光の強度を計測する請求項14に記載の振動スペクトル測定装置。
    The vibration spectrum measurement unit includes a light detector that detects the illumination light;
    The vibration spectrum measuring apparatus according to claim 14, wherein the relative inclination measurement unit measures the intensity of the inspection light by the light detector of the vibration spectrum measurement unit.
  19.  前記振動スペクトル測定部が、前記照明光を検出する光検出器を備え、
     前記相対距離計測部が、前記振動スペクトル測定部の前記光検出器によって前記検査光の強度を計測する請求項15に記載の振動スペクトル測定装置。
    The vibration spectrum measurement unit includes a light detector that detects the illumination light;
    The vibration spectrum measuring apparatus according to claim 15, wherein the relative distance measuring unit measures the intensity of the inspection light by the light detector of the vibration spectrum measuring unit.
  20.  前記物体が、前記観察対象である請求項12または請求項13に記載の振動スペクトル測定装置。 The vibration spectrum measuring apparatus according to claim 12, wherein the object is the observation target.
  21.  前記物体が、前記光学プローブの前記先端面に弾性体を介して接続され前記観察対象に当て付けられるとともに、前記検査光の少なくとも一部を反射する隔壁である請求項12または請求項13に記載の振動スペクトル測定装置。 The partition according to claim 12 or 13, wherein the object is a partition wall connected to the tip end surface of the optical probe via an elastic body and applied to the observation target and reflecting at least a part of the inspection light. Vibration spectrum measuring device.
  22.  前記隔壁が、前記照明光を透過させるとともに該照明光よりも短波長の前記検査光を反射する長波長透過フィルタである請求項21に記載の振動スペクトル測定装置。 The vibration spectrum measuring apparatus according to claim 21, wherein the partition is a long wavelength transmission filter that transmits the illumination light and reflects the inspection light having a wavelength shorter than that of the illumination light.
  23.  前記振動スペクトル測定部の前記光源が、前記観察対象のラマン散乱光を発生させる励起光を前記照明光として発生し、
     前記検査光が、前記励起光であり、
     前記振動スペクトル測定部の光検出器が、前記観察対象のラマンスペクトルを測定するとともに前記検査光を検出する請求項17に記載の振動スペクトル測定装置。
    The light source of the vibration spectrum measurement unit generates excitation light for generating Raman scattered light of the observation target as the illumination light.
    The inspection light is the excitation light,
    The vibration spectrum measuring apparatus according to claim 17, wherein the light detector of the vibration spectrum measuring unit measures a Raman spectrum of the observation target and detects the inspection light.
  24.  前記相対傾き計測部が、前記光学プローブの先端面上に配列された複数の接触式圧力センサを備え、
     前記相対傾き検出部が、前記複数の接触式圧力センサによってそれぞれ計測された複数の圧力間の差に基づいて前記相対傾きの大きさを検出する請求項1に記載の振動スペクトル測定装置。
    The relative tilt measurement unit includes a plurality of contact-type pressure sensors arranged on the tip surface of the optical probe,
    The vibration spectrum measuring apparatus according to claim 1, wherein the relative inclination detection unit detects the magnitude of the relative inclination based on a difference between a plurality of pressures respectively measured by the plurality of contact pressure sensors.
  25.  前記相対距離計測部が、前記光学プローブの先端面上に配列された複数の接触式圧力センサを備え、
     前記相対距離検出部が、前記複数の接触式圧力センサによってそれぞれ計測された複数の圧力の大きさに基づいて前記相対距離を検出する請求項2に記載の振動スペクトル測定装置。
    The relative distance measurement unit includes a plurality of contact-type pressure sensors arranged on the tip surface of the optical probe,
    The vibration spectrum measuring apparatus according to claim 2, wherein the relative distance detection unit detects the relative distance based on magnitudes of a plurality of pressures respectively measured by the plurality of contact pressure sensors.
  26.  前記複数の接触式圧力センサが、前記光学プローブの前記照明光路および前記集光光路の周囲に周方向に均等に配列されている請求項24または請求項25に記載の振動スペクトル測定装置。 The vibration spectrum measuring apparatus according to claim 24 or 25, wherein the plurality of contact pressure sensors are arranged circumferentially equally around the illumination light path and the collection light path of the optical probe.
  27.  前記接触式圧力センサが、静電容量式圧力センサまたは圧電センサである請求項24から請求項26のいずれかに記載の振動スペクトル測定装置。 The vibration spectrum measuring device according to any one of claims 24 to 26, wherein the contact pressure sensor is a capacitance pressure sensor or a piezoelectric sensor.
  28.  前記相対傾き計測部および前記相対距離計測部が、超音波を射出するとともに前記観察対象および前記光学プローブからの超音波の反射波を受信し、受信された反射波に基づいて前記観察対象および前記光学プローブの各位置までの距離を計測する超音波検査装置を備え、
     前記相対傾き検出部および前記相対距離検出部が、前記超音波検査装置によって計測された前記観察対象および前記光学プローブの各位置までの距離に基づいて、前記相対傾きおよび前記相対距離を検出する請求項2に記載の振動スペクトル測定装置。
    The relative inclination measurement unit and the relative distance measurement unit emit ultrasonic waves and receive reflected waves of the ultrasonic waves from the observation object and the optical probe, and based on the received reflected waves, the observation object and the reflected wave. It has an ultrasonic inspection device that measures the distance to each position of the optical probe,
    The relative inclination detection unit and the relative distance detection unit detect the relative inclination and the relative distance based on the distances to the respective positions of the observation target and the optical probe measured by the ultrasonic inspection apparatus. The vibration spectrum measuring device according to Item 2.
  29.  前記超音波検査装置が、前記観察対象を観察する内視鏡に取り付けられている請求項28に記載の振動スペクトル測定装置。 The vibration spectrum measuring device according to claim 28, wherein the ultrasonic inspection device is attached to an endoscope for observing the observation target.
PCT/JP2017/028823 2017-08-08 2017-08-08 Vibrational spectrum measurement device WO2019030833A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/028823 WO2019030833A1 (en) 2017-08-08 2017-08-08 Vibrational spectrum measurement device
PCT/JP2018/029591 WO2019031499A1 (en) 2017-08-08 2018-08-07 Vibration spectrum measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/028823 WO2019030833A1 (en) 2017-08-08 2017-08-08 Vibrational spectrum measurement device

Publications (1)

Publication Number Publication Date
WO2019030833A1 true WO2019030833A1 (en) 2019-02-14

Family

ID=65271368

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/028823 WO2019030833A1 (en) 2017-08-08 2017-08-08 Vibrational spectrum measurement device
PCT/JP2018/029591 WO2019031499A1 (en) 2017-08-08 2018-08-07 Vibration spectrum measurement device

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029591 WO2019031499A1 (en) 2017-08-08 2018-08-07 Vibration spectrum measurement device

Country Status (1)

Country Link
WO (2) WO2019030833A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007524833A (en) * 2003-07-01 2007-08-30 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン Method and apparatus for diagnosing bone tissue condition
JP2011055939A (en) * 2009-09-08 2011-03-24 Hoya Corp Endoscope apparatus
WO2014042156A1 (en) * 2012-09-13 2014-03-20 オリンパス株式会社 Measurement probe and biological optical measurement system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4637643B2 (en) * 2005-05-18 2011-02-23 日本分光株式会社 Spectroscopic analyzer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007524833A (en) * 2003-07-01 2007-08-30 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン Method and apparatus for diagnosing bone tissue condition
JP2011055939A (en) * 2009-09-08 2011-03-24 Hoya Corp Endoscope apparatus
WO2014042156A1 (en) * 2012-09-13 2014-03-20 オリンパス株式会社 Measurement probe and biological optical measurement system

Also Published As

Publication number Publication date
WO2019031499A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
AU759282B2 (en) Systems and methods for optical examination of samples
JP5555277B2 (en) System and method for angle resolved low coherence interferometry with endoscope
KR101336048B1 (en) Optical tomographic imaging method and optical tomographic imaging apparatus
US8804115B2 (en) Systems and methods for performing optical spectroscopy using a self-calibrating fiber optic probe
JPWO2007034802A1 (en) Elastic viscosity measuring device
EP3281578B1 (en) System for diagnosing diseases on basis of laser
JP4939236B2 (en) SUBJECT INFORMATION ANALYSIS DEVICE, ENDOSCOPE DEVICE, AND SUBJECT INFORMATION ANALYSIS METHOD
US20150216417A1 (en) Diagnostic instrument and methods relating to raman spectroscopy
KR101243183B1 (en) Apparatus for measurement of autofluorescence of advanced glycation end products
EP2896347B1 (en) Scattered light measurement device
US20070293766A1 (en) Transmission Based Imaging for Spectroscopic Analysis
CN105491949A (en) Measuring device and measuring method for non-invasive determination of the D-glucose concentration
Schulmerich et al. Transcutaneous Raman spectroscopy of bone tissue using a non-confocal fiber optic array probe
US11406267B2 (en) Cartilage-tissue analysis device
JP4647449B2 (en) Sample analyzer
WO2015050444A1 (en) Probe, system, and method for non-invasive measurement of blood analytes
EP3448243A1 (en) An optical coherence tomography system
WO2019030833A1 (en) Vibrational spectrum measurement device
US9993158B2 (en) Apparatus for measuring condition of object
KR102146958B1 (en) Photoacoustic scan imaging apparatus
RU116328U1 (en) AUTOMATED DEVICE FOR DIAGNOSTICS OF ONCOPATOLOGIES OF THE BRONCHIAL TREE
CN114699044A (en) Skin lesion detection system based on multispectral light source in subcutaneous tissue propagation characteristics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17921124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP