WO2019029738A1 - 探测参考信号的传输方法、装置及系统 - Google Patents

探测参考信号的传输方法、装置及系统 Download PDF

Info

Publication number
WO2019029738A1
WO2019029738A1 PCT/CN2018/100106 CN2018100106W WO2019029738A1 WO 2019029738 A1 WO2019029738 A1 WO 2019029738A1 CN 2018100106 W CN2018100106 W CN 2018100106W WO 2019029738 A1 WO2019029738 A1 WO 2019029738A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
terminal
time domain
domain resource
priority
Prior art date
Application number
PCT/CN2018/100106
Other languages
English (en)
French (fr)
Inventor
刘哲
魏冬冬
刘嘉陵
汪凡
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18844408.7A priority Critical patent/EP3573277B1/en
Publication of WO2019029738A1 publication Critical patent/WO2019029738A1/zh
Priority to US16/549,923 priority patent/US10904896B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0284Traffic management, e.g. flow control or congestion control detecting congestion or overload during communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method, an apparatus, and a system for transmitting a sounding reference signal (SRS).
  • SRS sounding reference signal
  • LTE long term evolution
  • TDD time division multiplexing
  • the LTE-release 13 supports carrier aggregation (CA) of up to 32 component carriers (CCs). Moreover, the number of configured uplink CCs cannot be greater than the number of downlink CCs, limited by the capabilities of the terminal. In this way, when TDD CC is configured, if some TDD CCs are only used for downlink transmission, the terminal cannot transmit SRS on these TDD CCs, and thus cannot perform accurate downlink transmission according to the uplink channel information measured by the SRS. In order to solve this problem, LTE-release 14 introduces SRS carrier-based switching, that is, it can switch from one CC to another to transmit SRS, so that the uplink channel information of another CC can be measured.
  • SRS carrier-based switching that is, it can switch from one CC to another to transmit SRS, so that the uplink channel information of another CC can be measured.
  • the CC before switching is recorded as switching from CC, and the CC after switching is recorded as switching to CC.
  • the switching from CC may transmit at least a physical uplink shared channel (PUSCH), a physical uplink control channel (PUCCH), a physical random access channel (PRACH), or an SRS.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • SRS SRS-RN
  • the wideband CC can be divided into multiple bandwidth parts (bandwidth parts, BP or BWP, all of which are denoted by BP below).
  • the BP that can transmit PUSCH, PUCCH, PRACH, or SRS for uplink is called uplink (UL) BP; for the uplink, only the bandwidth part of the SRS and/or PRACH (bandwidth part, BP or BWP, BP is used below) Represented) is called SRS BP.
  • the radio frequency (RF) capability of the terminal is decoupled from the system bandwidth, and the RF capability of the terminal is decoupled from the operating bandwidth of the terminal, so multiple SRS BPs may occur.
  • the terminal may switch from the uplink BP activated by the terminal to the SRS BP. At this time, how to perform SRS BP-based switching, there is no relevant solution at present.
  • the embodiment of the present application provides a method, a device, and a system for transmitting an SRS, which can implement BP-level switching of the SRS.
  • the embodiment of the present application provides the following technical solutions:
  • a method for transmitting a sounding reference signal SRS comprising: determining that a SRS on a first bandwidth portion BP and a SRS on a second BP are in a transmission conflict; discarding an SRS on the first BP, where The priority of the SRS on the first BP is lower than the priority of the SRS on the second BP. Based on the scheme, the SRS with lower priority SRS can be discarded because the SRS of the two BPs has a transmission conflict, that is, the terminal can be switched from the activated uplink BP to the higher transmission priority. On the BP of the SRS, the SRS is transmitted on the BP of the SRS with a higher priority, so that the BP level switching of the SRS can be realized.
  • the first BP is an uplink BP activated by the terminal
  • the second BP is an SRSBP of the terminal
  • the first BP and the second BP are SRSBPs of the terminal. If the first BP is the uplink BP activated by the terminal and the second BP is the SRSBP of the terminal, the terminal may switch from the first BP to the second BP, and transmit the SRS on the second BP; if the first BP and the first BP The second BP is the SRSBP of the terminal, and the terminal can switch from the activated uplink BP handover to the second BP, and transmit the SRS on the second BP.
  • the priority of the SRS on the first BP and the priority of the SRS on the second BP are related to a radio frequency RF location of the terminal.
  • the priority of the SRS on the first BP is lower than the priority of the SRS on the second BP, including: the first BP is the SRSBP in the RF of the terminal, and the second BP is the SRSBP outside the RF of the terminal. That is, considering that the uplink BP activated by the terminal is in the RF of the terminal, the terminal does not need to perform RF handover when switching from the activated uplink BP to the first BP, and the terminal needs to switch from the activated uplink BP to the second BP. Perform RF switching. Generally, the density of the SRS configuration is high on the SRS BP that does not require RF switching.
  • the SRSBP in the RF of the terminal may be discarded when a transmission collision occurs between the SRS on the SRSBP outside the RF of the terminal and the SRS on the SRSBP in the RF of the terminal.
  • the priority of the SRS on the first BP is lower than the priority of the SRS on the second BP, including: the first BP and the second BP are both SRSBP in the RF, and the transmission period of the SRS on the first BP is smaller than the transmission period of the SRS on the second BP, where the SRS on the first BP and the SRS on the second BP are both periodic SRSs Or, the SRS on the first BP and the SRS on the second BP are both semi-static SRS.
  • the SRS with a smaller transmission period has a higher probability of occurrence of SRS with a larger transmission period, and thus the transmission period can be smaller.
  • the SRS and the SRS with a large transmission period have a transmission collision, the SRS with a small transmission period is discarded, and the SRS is transmitted after the next transmission period.
  • the priority of the SRS on the first BP is lower than the priority of the SRS on the second BP, including: the first BP and the second BP are both An SRSBP outside the RF, and a transmission period of the SRS on the first BP is smaller than a transmission period of the SRS on the second BP, where the SRS on the first BP and the SRS on the second BP are periodic SRSs Or, the SRS on the first BP and the SRS on the second BP are both semi-static SRS.
  • the SRS with a smaller transmission period has a higher probability of occurrence of SRS with a larger transmission period, and thus the transmission period can be smaller.
  • the SRS and the SRS with a large transmission period have a transmission collision, the SRS with a small transmission period is discarded, and the SRS is transmitted after the next transmission period.
  • the priority of the SRS on the first BP is lower than the priority of the SRS on the second BP, including: the first BP and the second BP are both SRSBP in the RF, and the SRS on the first BP is a periodic SRS, and the SRS on the second BP is a semi-static SRS; or the SRS on the first BP is a periodic SRS, on the second BP
  • the SRS is an aperiodic SRS; or the SRS on the first BP is a semi-static SRS, and the SRS on the second BP is an aperiodic SRS.
  • the semi-static SRS appears to be more regular, but depending on the DCI trigger or termination, the periodic SRS appears regular and does not depend on external conditions.
  • the periodic SRS and the semi-static SRS have a transmission collision, the periodic SRS is discarded, and the SRS is retransmitted next time; when the transmission between the aperiodic SRS and the semi-static SRS occurs, the semi-static SRS is discarded, and so on.
  • the retransmission of the SRS occurs. That is, the priority of the aperiodic SRS > the priority of the semi-static SRS > the priority of the periodic SRS.
  • the priority of the SRS on the first BP is lower than the priority of the SRS on the second BP, including: the first BP and the second BP are both SRSBP outside the RF, and the SRS on the first BP is a periodic SRS, and the SRS on the second BP is a semi-static SRS; or the SRS on the first BP is a periodic SRS, on the second BP
  • the SRS is an aperiodic SRS; or the SRS on the first BP is a semi-static SRS, and the SRS on the second BP is an aperiodic SRS.
  • the semi-static SRS appears to be more regular, but depending on the DCI trigger or termination, the periodic SRS appears regular and does not depend on external conditions.
  • the periodic SRS and the semi-static SRS have a transmission collision, the periodic SRS is discarded, and the SRS is retransmitted next time; when the transmission between the aperiodic SRS and the semi-static SRS occurs, the semi-static SRS is discarded, and so on.
  • the retransmission of the SRS occurs. That is, the priority of the aperiodic SRS > the priority of the semi-static SRS > the priority of the periodic SRS.
  • the priority of the SRS on the first BP is lower than the priority of the SRS on the second BP, including: the transmission period of the SRS on the first BP is smaller than the transmission period of the SRS on the second BP.
  • the SRS on the first BP and the SRS on the second BP are both periodic SRSs, or both the SRS on the first BP and the SRS on the second BP are semi-static SRSs. That is to say, for the same type of SRS, considering that the SRS with a smaller transmission period has a higher probability of occurrence of SRS with a larger transmission period, it can be transmitted in an SRS with a small transmission period and an SRS with a large transmission period. In the event of a collision, the SRS with a small transmission period is discarded, and the SRS is transmitted after the next transmission period.
  • the first BP and the second BP are BPs in the same broadband member carrier CC.
  • the method further includes: receiving the configuration information of the SRS, where the configuration information of the SRS includes configuration information of the SRS on the first BP and configuration information of the SRS on the second BP, where the first BP is configured
  • the configuration information of the SRS includes a first time domain resource for transmitting the SRS on the first BP
  • the configuration information of the SRS on the second BP includes a second time domain resource for transmitting the SRS on the second BP
  • the SRS on the BP and the SRS on the second BP have a transmission conflict, including: determining, according to the first time domain resource, the second time domain resource, and the RF switching time, the SRS on the first BP and the second BP A transmission conflict occurs on the SRS. Based on the manner, it may be determined that the SRS on the first BP and the SRS on the second BP have a transmission collision.
  • determining, according to the first time domain resource, the second time domain resource, and the time of the RF handover, that the SRS on the first BP and the SRS on the second BP are in a transmission conflict including Determining, according to the first time domain resource, the second time domain resource, the first RF switching time, and the second RF switching time, when the terminal switches from the uplink BP activated by the terminal to the first BP There is an overlap between the domain resource and the time domain resource required for the terminal to switch from the uplink BP activated by the terminal to the second BP, wherein the first RF handover time is that the terminal switches from the uplink BP activated by the terminal to The time required for the first BP, the second RF switching time is the time required for the terminal to switch from the uplink BP activated by the terminal to the second BP, and the first BP and the second BP are both For the SRSBP of the terminal. Based on the manner, it may be determined that the SRS on the first BP and
  • determining, according to the first time domain resource, the second time domain resource, and the time of the RF handover, that the SRS on the first BP and the SRS on the second BP are in a transmission conflict including Determining, according to the first time domain resource, the second time domain resource, and the third RF switching time, that the time domain resource required by the terminal to switch from the first BP to the second BP includes the second time domain resource
  • the third RF switching time is a time required for the terminal to switch from the first BP to the second BP, where the first BP is an uplink BP activated by the terminal, and the second BP is the terminal SRSBP. Based on the manner, it may be determined that the SRS on the first BP and the SRS on the second BP have a transmission collision.
  • a communication device having the function of implementing the method of the first aspect described above.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • a communication device comprising: a processor and a memory; the memory is configured to store a computer execution instruction, the processor is coupled to the memory, and the processor executes the memory when the transmission device of the SRS is running The stored computer executes instructions to cause the transmission device of the SRS to perform the transmission method of the SRS as described in any of the above first aspects.
  • the communication device of the foregoing second and third aspects may be a chip or a terminal.
  • a computer readable storage medium having stored therein instructions that, when executed on a computer, cause the computer to perform the sounding reference signal of any of the above first aspects SRS transmission method.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of transmitting the sounding reference signal SRS of any of the above first aspects.
  • a chip system comprising a processor, the transmission device for supporting the sounding reference signal SRS implementing the processing functions involved in the above aspects, such as determining the sounding reference signal on the first bandwidth portion BP
  • the SRS has a transmission collision with the SRS on the second BP.
  • the chip system may further comprise a memory for storing program instructions and data necessary for the transmission device of the SRS.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • a communication system comprising a base station and a terminal as described in the above aspect.
  • FIG. 1 is a schematic diagram 1 of BP on a broadband CC according to an embodiment of the present application
  • FIG. 2 is a schematic diagram 2 of BP on a broadband CC according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a transmission system of an SRS according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of hardware of a SRS transmission apparatus according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a method for transmitting an SRS according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of BP level switching of an SRS according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of an apparatus for transmitting an SRS according to an embodiment of the present disclosure.
  • TDD mode means that the receiving and transmitting in the system are in different time slots of the same frequency channel, that is, the carrier, and the receiving and transmitting channels are separated by the guaranteed time.
  • Frequency division duplexing The FDD mode means that the receiving and transmitting in the system are on two separate symmetric frequency channels, and the guaranteed frequency band is used to separate the receiving and transmitting channels.
  • Periodic SRS Radio resource control (RRC) signaling configures time domain, frequency domain, code domain, and comb resources used by SRS transmission.
  • the time domain resources include: a period of the SRS, a slot for SRS transmission, and an orthogonal frequency division multiplexing (OFDM) symbol used for SRS transmission.
  • the SRS is sent once every SRS period according to the configured SRS period.
  • Aperiodic SRS RRC signaling configures the time domain, frequency domain, code domain, and comb resource used by SRS transmission.
  • the time domain resource used for the SRS transmission is not fixed, and the downlink control information (DCI) triggers the terminal to send the SRS irregularly.
  • DCI downlink control information
  • SPS-SRS Semi-persistent scheduling SRS
  • RRC signaling configures the time domain, frequency domain, code domain, and comb resource used by SRS transmission.
  • the time domain resources include: a period of the SRS, a slot for SRS transmission, and an OFDM symbol used for SRS transmission.
  • the DCI triggering terminal sends the SRS once every SRS period according to the configured SRS period. In addition, the DCI can also trigger the terminal to terminate the transmission of the SRS.
  • the carrier in the embodiment of the present application includes a carrier in a non-CA scenario and a CC in a CA scenario.
  • the serving cell in the CA scenario may be a primary serving cell (PCell) or a secondary serving cell (Scell).
  • PCell primary serving cell
  • Scell secondary serving cell
  • the carrier in the non-CA scenario and the CC in the CA scenario may be collectively referred to as a carrier, which is not specifically limited in this embodiment of the present application.
  • a part of a carrier or a serving cell used for uplink transmission may be understood as an uplink resource or an uplink carrier
  • a part of a carrier or a serving cell used for downlink transmission may be understood as a downlink resource or a downlink carrier.
  • a frequency domain resource used for uplink transmission on a carrier can be understood as an uplink resource or an uplink carrier; a frequency domain resource used for downlink transmission on a carrier can be understood as a downlink resource or a downlink carrier.
  • a time domain resource used for uplink transmission on a carrier may be understood as an uplink resource or an uplink carrier; a time domain resource used for downlink transmission on a carrier may be understood as a downlink resource or a downlink carrier.
  • the working bandwidth includes an uplink working bandwidth and a downlink working bandwidth.
  • the uplink working bandwidth is the uplink BP activated by the terminal, and the downlink working bandwidth, that is, the downlink BP activated by the terminal, is uniformly described herein, and is not described here.
  • Subband or BP A piece of frequency domain resource on the carrier.
  • UL BP refers to a BP that can transmit PUSCH, PUCCH, or SRS, etc., which has attributes such as bandwidth size, bandwidth position, and subcarrier spacing of bandwidth.
  • SRS BP refers to the BP that transmits only SRS and/or PRACH in the uplink.
  • the BP has attributes such as bandwidth size, bandwidth location, and subcarrier spacing of bandwidth.
  • RF retuning The RF handover in the embodiment of the present application occurs between two BPs that are not in the same RF coverage. If the two BPs that are switched are within the coverage of the same RF, no RF switching will occur. In the embodiment of the present application, the two BPs are within the coverage of the same RF, and all the frequency domain resources of the two BPs are in the same RF coverage; the two BPs are not in the same RF coverage. Internally, all the frequency domain resources of the two BPs are not covered by the same RF, and are uniformly described here, and are not described here.
  • the terminal switches from the activated uplink BP to SRS BP1 or SRS BP2, since the activated uplink BP, SRS BP1, and SRS BP2 are both within the coverage of the RF, at this time, If the terminal switches from the active uplink BP to the SRS BP3, the SRS BP3 is outside the coverage of the RF due to the RF coverage of the active uplink BP, that is, the two BPs are not in the same RF. Within the coverage, RF switching will occur. As shown in (1b) of FIG. 1, the RF covers the SRS BP3 after the RF switching occurs, and the SRS can be transmitted on the SRS BP3 at this time.
  • the RF coverage SRS BP3 occurs after the RF handover, and the SRS can be transmitted on the SRS BP3; if the terminal switches from the activated uplink BP to the SRS BP2, the RF is activated due to the uplink BP. Within the coverage, part of the SRS BP2 is within the coverage of the RF, and part of it is outside the coverage of the RF. At this time, the two BPs are also considered not to be within the coverage of the same RF, so RF switching will occur. As shown in (2c) of FIG. 2, after the RF switching occurs, the RF covers the SRS BP2, and at this time, the SRS can be transmitted on the SRS BP2.
  • the center of the RF is not aligned with the center of the SRS BP2 or the SRS BP3.
  • the center of the RF and the center of the SRS BP may be aligned.
  • the RF switching is not specifically limited in this embodiment of the present application, and the drawings are only used to exemplify the scenario of RF switching.
  • the words “first”, “second”, and the like are used to distinguish the same items or similar items whose functions and functions are substantially the same. Those skilled in the art can understand that the words “first”, “second” and the like do not limit the number and execution order, and the words “first”, “second” and the like are not necessarily limited.
  • the network architecture and the service scenario described in the embodiments of the present application are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute a limitation of the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are equally applicable to similar technical problems.
  • the communication system 30 includes an access device 301 and one or more communication devices 40 coupled to the access device 301.
  • the access device 301 refers to a device that accesses the core network, and may be, for example, an NR system or a base station in a public land mobile network (PLMN) that is evolved in the future, and a broadband network service gateway (broadband network gateway, BNG), aggregation switch or non-3rd generation partnership project (3GPP) access equipment, etc.
  • the base station may include various types of base stations, such as a macro base station, a micro base station (also referred to as a small station), a relay station, an access point, and the like, which are not specifically limited in this embodiment of the present application.
  • the communication device 40 may be a terminal, a chip, or the like, which is not specifically limited in this embodiment of the present application.
  • the terminal may be a user equipment (UE), an access terminal, a terminal unit, a terminal station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, and a wireless communication in an NR system or a future evolved PLMN.
  • the access terminal may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • a functional handheld device, a computing device, or other processing device connected to a wireless modem, an in-vehicle device, or a wearable device, etc., is not specifically limited in this embodiment.
  • FIG. 4 is a schematic diagram showing the hardware structure of a communication device 40 according to an embodiment of the present application.
  • the communication device 40 includes at least one processor 401, a communication bus 402, a memory 403, and at least one communication interface 404.
  • the processor 401 can be a general central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the execution of the program of the present application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication bus 402 can include a path for communicating information between the components described above.
  • Communication interface 404 using any type of transceiver, for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • RAN radio access network
  • WLAN wireless local area networks
  • the memory 403 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • the memory can exist independently and be connected to the processor via a bus.
  • the memory can also be integrated with the processor.
  • the memory 403 is used to store application code for executing the solution of the present application, and is controlled by the processor 401 for execution.
  • the processor 401 is configured to execute the application code stored in the memory 403, thereby implementing the transmission method of the SRS provided by the following embodiments of the present application.
  • the processor 401 may also perform processing related functions in the SRS transmission method provided by the following embodiments of the present application, and the communication interface 404 is responsible for communicating with other devices or the communication network. This embodiment of the present application does not specifically limit this.
  • the processor 401 may include one or more CPUs, such as CPU0 and CPU1 in FIG.
  • communication device 40 may include multiple processors, such as processor 401 and processor 408 in FIG. Each of these processors can be a single-CPU processor or a multi-core processor.
  • processors herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • communication device 40 may also include an output device 405 and an input device 406.
  • Output device 405 is in communication with processor 401 and can display information in a variety of ways.
  • the output device 405 can be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector. Wait.
  • Input device 406 is in communication with processor 401 and can accept user input in a variety of ways.
  • input device 406 can be a mouse, keyboard, touch screen device, or sensing device, and the like.
  • the communication device 40 provided by the embodiment of the present application may be a chip, or a terminal, or a device having a similar structure in FIG.
  • the embodiment of the present application does not limit the type of the communication device 40.
  • the following describes the transmission method of the SRS provided by the embodiment of the present application by taking the communication device as a terminal in the NR system and the access device as the base station in the NR system as an example.
  • FIG. 5 is a schematic flowchart diagram of a method for transmitting an SRS according to an embodiment of the present application.
  • the SRS transmission method if the terminal determines that the SRS on the first BP and the SRS on the second BP have a transmission conflict, the SRS on the BP with a lower priority of the SRS is discarded, so that the BP-level switching of the SRS can be implemented.
  • the method for transmitting the SRS includes the following steps:
  • the base station sends information about the configuration of the SRS to the terminal.
  • the configuration information of the SRS includes configuration information of the SRS on the first BP and configuration information of the SRS on the second BP.
  • the configuration information of the SRS on the first BP includes a first time domain resource for transmitting the SRS on the first BP
  • the configuration information of the SRS on the second BP includes a second time domain resource for transmitting the SRS on the second BP.
  • the first time domain resource in the embodiment of the present application is used to transmit the SRS on the first BP
  • the second time domain resource is used to transmit the SRS on the second BP.
  • the time domain resources herein include information such as the number and location of OFDM symbols used for SRS transmission in a time slot, which are collectively described herein, and are not described herein again.
  • the base station may send the configuration information of the SRS in the RRC signaling to the terminal, which is not specifically limited in this embodiment.
  • the first BP and the second BP in the embodiment of the present application may be determined according to at least one of an uplink BP activated by the terminal and an RF of the terminal, which is not specifically limited in this embodiment of the present application.
  • the first BP and the second BP in the embodiment of the present application may be the BP in the same CC carrier in the CA scenario, or the BP in the non-CA scenario download wave.
  • the first BP may be SRS BP1, and the second BP may be SRS BP2; or, the first BP may be SRS BP2, and the second BP may be SRS BP3; or, the first BP It may be SRS BP1 and the second BP may be SRS BP3.
  • first BP and the second BP in the embodiment of the present application may also be the BP in different CC carriers in the CA scenario, which is not specifically limited in this application.
  • the CC carrier in the embodiment of the present application may be a broadband CC carrier or a non-wideband CC carrier, which is not specifically limited in this embodiment of the present application.
  • the first BP in the embodiment of the present application may be a BP on the TDD carrier, or may be a BP on the FDD carrier; the second BP may be a BP on the TDD carrier, or may be a BP on the FDD carrier.
  • This embodiment of the present application does not specifically limit this.
  • the first BP and the second BP in the embodiment at the time of the application may be the SRS BP of the terminal.
  • the first BP may be SRS BP1, and the second BP may be SRS BP2; or, the first BP may be SRS BP2, and the second BP may be SRS BP3; or, the first BP It may be SRS BP1 and the second BP may be SRS BP3.
  • one may be an uplink BP activated by the terminal, and one is an SRS BP of the terminal.
  • one BP may be an active uplink BP, and the other BP may be SRS BP1 or SRS BP2 or SRS BP3.
  • the terminal receives configuration information of an SRS from a base station.
  • the terminal determines, according to the first time domain resource, the second time domain resource, and the RF switching time, that the SRS on the first BP and the SRS on the second BP have a transmission conflict.
  • the RF switching time in the embodiment of the present application refers to a time required when the terminal switches from one BP to another when the RF switching occurs.
  • the RF switching time t1
  • the RF switching time t1
  • the round trip time of the RF handover 2 ⁇ t1 + SRS transmission time, that is, the time and time slot corresponding to the OFDM symbols 9, 10, 11, 12, 13 of the slot N The time corresponding to OFDM symbols 0, 1, 2, 3 of N+1.
  • the RF switching time in the embodiment of the present application is related to the RF capability of the terminal. Generally, the stronger the RF capability of the terminal, the shorter the RF switching time.
  • the RF switching time may be configured in the terminal or determined by the terminal according to the RF capability of the terminal. For details, refer to the existing implementation manner, which is not specifically limited in this embodiment of the present application.
  • the terminal may also report the RF handover time to the base station, so that the base station may send the corresponding time domain resource according to the RF handover time, and specifically refer to the UE capability in the protocol 3GPP TS36.331.
  • the description of the RF switching time is not described here.
  • the transmission conflict between the SRS on the first BP and the SRS on the second BP includes the following two scenarios:
  • the first BP is the uplink BP activated by the terminal
  • the second BP is the SRS BP of the terminal, that is, there is a BP pair
  • the BP pair is composed of the first BP and the second BP:
  • the step S503 may specifically include: determining, by the terminal, the time domain resource required for the terminal to switch from the first BP to the second BP according to the first time domain resource, the second time domain resource, and the third RF switching time, and the second The time domain resource, wherein the third RF switching time is a time required for the terminal to switch from the first BP to the second BP.
  • the first BP is BP1 with a subcarrier spacing of 30 kHz
  • the second BP is BP2 with a subcarrier spacing of 30 kHz
  • the first time domain resource is OFDM for slot N.
  • the symbol 13, that is, the SRS on the first BP is transmitted on the OFDM symbol 13 of the slot N
  • the second time domain resource is the OFDM symbol 13 of the slot N, that is, the OFDM symbol 13 of the SRS on the second BP in the slot N Up transmission
  • the third RF switching time is 4 OFDM symbols.
  • the time domain resource required to switch from BP1 to BP2 is the OFDM symbol 9, 10, 11, 12, 13 of the time slot N.
  • the first BP is SRS BP
  • the second BP is SRS BP, that is, there are two BP pairs, one BP is composed of the uplink BP activated by the terminal and the first BP, and the other BP is the uplink BP activated by the terminal.
  • the second BP consists of:
  • the step S503 may specifically include: determining, by the terminal, that the terminal switches from the uplink BP activated by the terminal to the first BP according to the first time domain resource, the second time domain resource, the first RF switching time, and the second RF switching time.
  • the first RF handover time is that the terminal switches from the terminal-activated uplink BP to the first.
  • the time required for BP, the second RF switching time is the time required for the terminal to switch from the uplink BP activated by the terminal to the second BP.
  • the uplink BP activated by the terminal is BP1 with a subcarrier spacing of 30 kHZ
  • the first BP is BP2 with a subcarrier spacing of 30 kHZ
  • the second BP is a sub-BP.
  • the first time domain resource corresponding to the first BP is the OFDM symbol 13 of the slot N, that is, the SRS on the first BP is transmitted on the OFDM symbol 13 of the slot N; the second BP corresponds to the second BP.
  • the second time domain resource is the OFDM symbol 13 of the slot N, that is, the SRS on the second BP is transmitted on the OFDM symbol 13 of the slot N; the first RF switching time and the second RF switching time are both 4 OFDM symbols.
  • the time domain resources required to switch from BP1 to BP2 are the OFDM symbols 9, 10, 11, 12, 13 of the slot N and the time slot N+1. OFDM symbol 0, 1, 2, 3;
  • the time domain resource required to switch from BP1 to BP3 is OFDM symbol 2 to OFDM symbol 10 of slot N.
  • steps S501 to S503 are merely exemplary implementations for determining a transmission collision between the SRS on the first BP and the SRS on the second BP.
  • steps S501 to S503 are merely exemplary implementations for determining a transmission collision between the SRS on the first BP and the SRS on the second BP.
  • the embodiment of the present application is to solve the problem that the SRS is transmitted after the SRS conflicts between the BPs.
  • the SRS of the first BP and the SRS of the second BP are determined to be transmitted. Therefore, the embodiment of the present application does not specifically limit how to determine the transmission conflict of the SRS on the two BPs.
  • the terminal discards the SRS on the first BP.
  • the priority of the SRS on the first BP is lower than the priority of the SRS on the second BP. That is, the terminal discards the SRS on the lower priority BP of the SRS.
  • the terminal discarding the SRS on the first BP specifically means that the terminal can switch from the first BP to the second BP and transmit the SRS on the second BP. .
  • the terminal discarding the SRS on the first BP specifically means that the terminal can switch from the uplink BP activated by the terminal to the second BP, and transmit the SRS on the second BP.
  • the priority of the SRS on the first BP is lower than the priority of the SRS on the second BP by:
  • the priority of the SRS on different BPs is determined by the transmission period of the SRS. Specifically, the priority of the SRS on the first BP is lower than the priority of the SRS on the second BP, and the transmission period of the SRS on the first BP is smaller than the transmission period of the SRS on the second BP, where Both the SRS on the first BP and the SRS on the second BP are periodic SRSs; or both the SRS on the first BP and the SRS on the second BP are semi-static SRSs.
  • the SRS with a smaller transmission period has a higher probability of occurrence of SRS with a larger transmission period, it can be transmitted in an SRS with a small transmission period and an SRS with a large transmission period.
  • the SRS with a small transmission period is discarded, and the SRS is transmitted after the next transmission period.
  • the periodic SRS and the semi-static SRS refer to the preamble of the specific implementation part, and details are not described herein again.
  • the first BP is SRS BP1 in (2a) of FIG. 2, and the second BP is SRS BP3 in (2a) of FIG. 2.
  • SRS BP1 is periodic SRS, the transmission period is T1;
  • SRS BP3 is periodic SRS, and the transmission period is T2, where T1 ⁇ T2, because the priority of SRS with smaller transmission period is lower than that of SRS with larger transmission period Priority, so when the SRS on SRS BP1 and the SRS on SRS BP3 have a transmission collision, the terminal will discard the SRS on SRS BP1.
  • the terminal can switch from the uplink BP activated by the terminal to the SRS BP3 and transmit the SRS on the SRS BP3.
  • the priority of the SRS on different BPs is determined by the relative positions of the different BPs and the RF of the terminal. Specifically, the priority of the SRS on the first BP is lower than the priority of the SRS on the second BP, including: the first BP is the SRSBP in the RF of the terminal, and the second BP is the SRSBP outside the RF of the terminal. That is, considering that the uplink BP activated by the terminal is in the RF of the terminal, the terminal does not need to perform RF handover when switching from the activated uplink BP to the first BP, and the terminal needs to switch from the activated uplink BP to the second BP. Perform RF switching.
  • the density of the SRS configuration is high on the SRS BP that does not require RF switching.
  • the density of the SRS configuration is low. Therefore, in order to obtain the channel state of the entire carrier bandwidth as soon as possible, The SRSBP in the RF of the terminal may be discarded when a transmission collision occurs between the SRS on the SRSBP outside the RF of the terminal and the SRS on the SRSBP in the RF of the terminal.
  • the terminal discards the SRS on the SRS BP1. For example, the terminal can switch from the uplink BP activated by the terminal to the SRS BP2 and transmit the SRS on the SRS BP2.
  • Mode 3 Determine the priority of SRS on different BPs by the type of BP. Specifically, the priority of the SRS on the first BP is lower than the priority of the SRS on the second BP, including: the first BP is the uplink BP activated by the terminal, and the second BP is the SRSBP of the terminal. That is, it is considered that the density of the SRS configuration on the uplink BP activated by the terminal is higher than the density of the SRS configuration on the SRSBP of the terminal. Therefore, in order to acquire the channel state of the entire carrier bandwidth as soon as possible, it may be on the uplink BP activated by the terminal. When the SRS and the SRS on the SRS BP of the terminal have a transmission collision, the SRS on the uplink BP activated by the terminal is discarded.
  • the terminal discards the SRS on the activated uplink BP. For example, the terminal can switch from the uplink BP activated by the terminal to the SRS BP2 and transmit the SRS on the SRS BP2.
  • the priority of the SRS on different BPs is determined by the transmission period of the SRS and the relative position of the BP and the RF of the terminal. Specifically, the priority of the SRS on the first BP is lower than the priority of the SRS on the second BP, including: the first BP and the second BP are both SRSBPs in the RF of the terminal or SRSBPs outside the RF of the terminal. And the transmission period of the SRS on the first BP is smaller than the transmission period of the SRS on the second BP, where the SRS on the first BP and the SRS on the second BP are both periodic SRSs; or, on the first BP Both the SRS and the SRS on the second BP are semi-static SRS.
  • the SRS with a smaller transmission period has a higher probability of occurrence of SRS with a larger transmission period, and thus the transmission period can be smaller.
  • the SRS and the SRS with a large transmission period have a transmission collision, the SRS with a small transmission period is discarded, and the SRS is transmitted after the next transmission period.
  • the periodic SRS and the semi-static SRS refer to the preamble of the specific implementation part, and details are not described herein again.
  • the difference from the first method is that the relative position of the different BPs and the RF of the terminal is not considered in the first method, and only the transmission period of the SRS is considered; and in the fourth method, the first BP and the second BP are the SRSBPs in the RF of the terminal, Alternatively, the first BP and the second BP are both SRSBPs outside the RF of the terminal.
  • the first BP is SRS BP1 in (1a) of FIG. 1, and the second BP is SRS BP2 in (1a) of FIG.
  • SRS BP1 is semi-static SRS
  • the transmission period is T3
  • SRS BP2 is semi-static SRS
  • the transmission period is T4, where T3 ⁇ T4, because SRS with smaller transmission period has lower priority than SRS with larger transmission period.
  • the terminal will discard the SRS on SRS BP1. For example, the terminal can switch from the uplink BP activated by the terminal to the SRS BP2 and transmit the SRS on the SRS BP2.
  • the first BP is SRS BP2 in (2a) of FIG. 2, and the second BP is SRS BP3 in (2a) of FIG. 2.
  • SRS BP2 is periodic SRS, the transmission period is T5;
  • SRS BP3 is periodic SRS, and the transmission period is T2, where T5 ⁇ T2, the priority of SRS with smaller transmission period is lower than that of SRS with larger transmission period Priority, so when the SRS on SRS BP2 and the SRS on SRS BP3 have a transmission collision, the terminal will discard the SRS on SRS BP2.
  • the terminal can switch from the uplink BP activated by the terminal to the SRS BP3 and transmit the SRS on the SRS BP3.
  • the priority of the SRS on different BPs is determined by the type of SRS and the relative position of the BP and the RF of the terminal. Specifically, the priority of the SRS on the first BP is lower than the priority of the SRS on the second BP, and the first BP and the second BP are both SRSBPs in the RF of the terminal or are external to the RF of the terminal.
  • the SRS BP and the SRS on the first BP is a periodic SRS, and the SRS on the second BP is a semi-static SRS; or the SRS on the first BP is a periodic SRS, the second The SRS on the BP is an aperiodic SRS; or the SRS on the first BP is a semi-static SRS, and the SRS on the second BP is an aperiodic SRS. That is to say, for different types of SRS, considering that the aperiodic SRS appears more irregular, the semi-static SRS appears to be more regular, but depending on the DCI trigger or termination, the periodic SRS appears regular and does not depend on external conditions.
  • the periodic SRS and the semi-static SRS have a transmission collision
  • the periodic SRS is discarded, and the SRS is retransmitted next time; when the transmission between the aperiodic SRS and the semi-static SRS occurs, the semi-static SRS is discarded, and so on.
  • the retransmission of the SRS occurs. That is, the priority of the aperiodic SRS > the priority of the semi-static SRS > the priority of the periodic SRS.
  • the aperiodic SRS, and the semi-static SRS refer to the preamble of the specific implementation part, and details are not described herein.
  • the first BP is SRS BP1 in (1a) of FIG. 1, and the second BP is SRS BP2 in (1a) of FIG.
  • SRS BP1 is semi-static SRS
  • SRS BP2 is aperiodic SRS, since the priority of semi-static SRS is lower than that of aperiodic SRS, when SRS on SRS BP1 and SRS on SRS BP2 have transmission conflicts
  • the terminal will discard the SRS on SRS BP1. For example, the terminal can switch from the uplink BP activated by the terminal to the SRS BP2 and transmit the SRS on the SRS BP2.
  • the first BP is SRS BP2 in (2a) of FIG. 2, and the second BP is SRS BP3 in (2a) of FIG. 2.
  • SRS BP2 is a periodic SRS;
  • SRS BP3 is an aperiodic SRS, and since the priority of the periodic SRS is lower than the priority of the aperiodic SRS, when the SRS on the SRS BP2 and the SRS on the SRS BP3 have a transmission collision
  • the terminal will discard the SRS on SRS BP2.
  • the terminal can switch from the uplink BP activated by the terminal to the SRS BP3 and transmit the SRS on the SRS BP3.
  • the above examples 1 to 5 provide several ways of determining that the priority of the SRS on the first BP is lower than the priority of the SRS on the second BP, wherein in the second example, the fourth example and the fifth example, the first The priority of the SRS on the BP and the priority of the SRS on the second BP are related to the RF location of the terminal.
  • the priority of the SRS on the first BP is determined to be lower than the priority of the SRS on the second BP by other means, which is not specifically limited in this embodiment of the present application.
  • the SRSs of any two BPs may be transmitted by using the SRS transmission method provided by the embodiment of the present application.
  • the SRS transmission method provided by the embodiment of the present application.
  • the SRS on the SRS BP1 is a periodic SRS and the SRS on the SRS BP2 is a non-periodic SRS, the above may be adopted.
  • the method determines the priority of the SRS on each BP separately, and then determines the SRS that can be finally transmitted.
  • the priority of the SRS on the activated uplink BP may be determined to be lower than the priority of the SRS on the SRS BP1 by using the third method, thereby Discarding the SRS on the activated uplink BP; if the SRS on the SRS BP1 and the SRS on the SRS BP2 have a transmission collision, the priority of the SRS on the SRS BP1 may be lower than the priority of the SRS on the SRS BP2 in the fifth manner.
  • the SRS on the SRS BP1 is discarded; if the SRS on the SRS BP2 and the SRS on the SRS BP3 have a transmission collision, the priority of the SRS on the SRS BP2 is determined to be lower than the priority of the SRS on the SRS BP3 in the second manner, thereby Discard the SRS on SRS BP2.
  • the terminal can switch from the uplink BP activated by the terminal to the SRS BP3, and transmit the SRS on the SRS BP3, so that the channel measurement result of the SRS BP3 can be obtained. .
  • the SRS with a lower priority of the SRS may be discarded, that is, the terminal may be switched from the activated uplink BP.
  • the SRS is transmitted on the BP of the SRS with a higher priority, so that the BP-level switching of the SRS can be implemented.
  • the action of the terminal in the above steps S501 to S504 can be performed by the processor 401 in the communication device 40 shown in FIG. 4, and the application code stored in the memory 402 is called, which is not limited in this embodiment.
  • the above communication device includes a hardware structure and/or a software module corresponding to each function.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the embodiment of the present application may divide the function module into the communication device according to the foregoing method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 7 shows a possible structural diagram of the communication device 70 involved in the above embodiment, the communication device 70 comprising: a determining module 702 and a processing module. 701.
  • the determining module 702 is configured to determine that the SRS on the first BP has a transmission conflict with the SRS on the second BP
  • the processing module 701 is configured to discard the SRS on the first BP, where the priority of the SRS on the first BP Lower than the priority of the SRS on the second BP.
  • the communication device 70 may further include a transceiver module 703.
  • the transceiver module 703 is configured to receive configuration information of the SRS, where the configuration information of the SRS includes configuration information of the SRS on the first BP and configuration information of the SRS on the second BP, where configuration information of the SRS on the first BP is included in The first time domain resource of the SRS is transmitted on the first BP, and the configuration information of the SRS on the second BP includes the second time domain resource for transmitting the SRS on the second BP.
  • the determining module 702 is specifically configured to: determine, according to the first time domain resource, the second time domain resource, and the RF switching time, that the SRS on the first BP and the SRS on the second BP have a transmission conflict.
  • the determining module 702 is specifically configured to: determine, according to the first time domain resource, the second time domain resource, the first RF switching time, and the second RF switching time, the uplink BP switch initiated by the terminal from the terminal. There is an overlap between the time domain resources required to reach the first BP and the time domain resources required when the terminal switches from the terminal-activated uplink BP to the second BP, wherein the first RF handover time is activated by the terminal from the terminal.
  • the time required for the uplink BP to switch to the first BP, and the second RF switching time is the time required for the terminal to switch from the uplink BP activated by the terminal to the second BP.
  • the first BP and the second BP are both terminals. SRSBP.
  • the determining module 702 is specifically configured to: determine, according to the first time domain resource, the second time domain resource, and the third RF switching time, that the terminal needs to switch from the first BP to the second BP.
  • the time domain resource includes a second time domain resource, where the third RF switching time is a time required for the terminal to switch from the first BP to the second BP, the first BP is the uplink BP activated by the terminal, and the second BP is the terminal. SRSBP.
  • the communication device 70 is presented in a form that divides the various functional modules in an integrated manner.
  • a “module” herein may refer to an Application-Specific Integrated Circuit (ASIC), circuitry, a processor and memory that executes one or more software or firmware programs, integrated logic circuitry, and/or other functions that provide the functionality described above. Device.
  • ASIC Application-Specific Integrated Circuit
  • the communication device 70 can take the form shown in FIG.
  • the function/implementation process of the processing module 701, the determining module 702, and the transceiver module 703 in FIG. 7 can be implemented by the processor 401 and the memory 403 of FIG.
  • the processing module 701 can be executed by calling the application code stored in the memory 403 by the processor 401, which is not limited in this embodiment.
  • the function/implementation process of the processing module 701 and the determining module 702 in FIG. 7 may be implemented by the processor 401 of FIG. 4; the transceiver module 703 in FIG. 7 may be implemented by the communication interface 404 of FIG.
  • the embodiment of the present application does not impose any limitation on this.
  • the communication device 70 provided by the embodiment of the present application can be used to perform the foregoing SRS transmission method. Therefore, the technical effects that can be obtained by reference to the foregoing method embodiments are not described herein.
  • the communication device 70 is presented in a form that divides each functional module in an integrated manner.
  • the embodiments of the present application may also be used to divide each functional module of the communication device according to each function, which is not specifically limited in this embodiment of the present application.
  • the embodiment of the present application provides a chip system, where the chip system includes a processor, configured to support a communication device to implement the foregoing SRS transmission method, for example, determining an SRS on a first BP and an SRS on a second BP. A transmission conflict has occurred.
  • the chip system also includes a memory. The memory is used to store program instructions and data necessary for the communication device.
  • the chip system may be composed of a chip, and may also include a chip and other discrete devices. This embodiment of the present application does not specifically limit this.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, Digital Subscriber Line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device that includes one or more servers, data centers, etc. that can be integrated with the media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a Solid State Disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a Solid State Disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供探测参考信号的传输方法、装置及系统,可以实现探测参考信号的BP级切换。方法包括:确定第一带宽部分BP上的探测参考信号SRS与第二BP上的SRS发生传输冲突;丢弃该第一BP上的SRS,其中,该第一BP上的SRS的优先级低于该第二BP上的SRS的优先级。

Description

探测参考信号的传输方法、装置及系统
本申请要求于2017年08月11日提交中国专利局、申请号为201710687907.3、申请名称为“探测参考信号的传输方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及探测参考信号(sounding reference signal,SRS)的传输方法、装置及系统。
背景技术
为了进行上行信道测量,长期演进(long term evolution,LTE)系统引入了SRS。同时,在时分双工(time division multiplexing,TDD)场景下,利用上下行信道的互易性,根据SRS测量的上行信道信息还可以进行准确的下行传输。
现有技术中,LTE-版本(release)13最多支持32成员载波(component carrier,CC)的载波聚合(carrier aggregation,CA)。并且,受限于终端的能力,配置的上行CC数通常不能大于下行CC数。这样,当配置有TDDCC时,若一些TDD CC仅用于下行传输,则终端无法在这些TDD CC上传输SRS,进而无法根据SRS测量的上行信道信息进行准确的下行传输。为了解决该问题,LTE-release14引入了SRS的载波级切换(SRS carrier-based switching),即可以从一个CC切换到另一个CC上传输SRS,从而可以测量另一个CC的上行信道信息。其中,切换前的CC记作switching from CC,切换后的CC记作switching to CC。switching from CC为上行可以传输物理上行共享信道(physical uplink shared channel,PUSCH)、物理上行控制信道(Physical Uplink Control Channel,PUCCH)、物理随机接入信道(physical random access channel,PRACH)或SRS中至少一个的载波,switching to CC为上行仅传输SRS和/或PRACH的TDD载波。
类似的,在新空口(new radio,NR)支持的宽带CC中,可以将宽带CC划分为多个带宽部分(bandwidth Part,BP或BWP,以下均用BP表示)。其中,对于上行可以传输PUSCH、PUCCH、PRACH或SRS等的BP称为上行(uplink,UL)BP;对于上行仅传输SRS和/或PRACH的带宽部分(bandwidth Part,BP或BWP,以下均用BP表示)称为SRS BP。另外,由于NR设计时,终端的射频(Radio Frequency,RF)能力和系统带宽解耦,终端的RF能力和终端的工作带宽解耦,因此可能出现多个SRS BP。为了测量SRS BP的上行信道信息,终端可以从终端激活的上行BP切换到SRS BP。此时,如何进行SRS的BP级切换(SRS BP-based switching),目前并没有相关的解决方案。
发明内容
本申请实施例提供SRS的传输方法、设备及系统,可以实现SRS的BP级切换。
为达到上述目的,本申请实施例提供如下技术方案:
第一方面,提供一种探测参考信号SRS的传输方法,该方法包括:确定第一带宽部分BP上的SRS与第二BP上的SRS发生传输冲突;丢弃该第一BP上的SRS,其中,该第一BP上的SRS的优先级低于该第二BP上的SRS的优先级。基于该方案,由于在两个BP上的SRS发生传输冲突的情况下,可以丢弃SRS的优先级较低的SRS,也就是说,可以使得终端从激活的上行BP切换到传输优先级较高的SRS的BP上,在传输优先级较高的SRS的BP上传输SRS,因此可以实现SRS的BP级切换。
可选的,该第一BP为终端激活的上行BP,该第二BP为该终端的SRSBP;或者,该第一BP和该第二BP均为该终端的SRSBP。其中,若第一BP为终端激活的上行BP,该第二BP为该终端的SRSBP,则终端可以从第一BP切换到第二BP,在第二BP上传输SRS;若第一BP和第二BP均为该终端的SRSBP,则终端可以从激活的上行BP切换切换到第二BP,在第二BP上传输SRS。
可选的,该第一BP上的SRS的优先级和该第二BP上的SRS的优先级与终端的射频RF位置相关。
比如,在一种可能的设计中,该第一BP上的SRS的优先级低于该第二BP上的SRS的优先级,包括:该第一BP为终端的RF内的SRSBP,该第二BP为该终端的RF外的SRSBP。也就是说,考虑到终端激活的上行BP在终端的RF内,因此,终端从激活的上行BP切换到第一BP时不需要进行RF切换,终端从激活的上行BP切换到第二BP时需要进行RF切换。而通常在不需要进行RF切换的SRS BP上,SRS配置的密度较高;在需要进行RF切换的SRS BP上,SRS配置的密度较低,因此,为了尽快的获取整个载波带宽的信道状态,可以在终端的RF外的SRSBP上的SRS和终端的RF内的SRSBP上的SRS发生传输冲突时,丢弃终端的RF内的SRSBP。
或者,比如,在一种可能的设计中,该第一BP上的SRS的优先级低于该第二BP上的SRS的优先级,包括:该第一BP和该第二BP均为终端的RF内的SRSBP,且该第一BP上的SRS的传输周期小于该第二BP上的SRS的传输周期,其中,该第一BP上的SRS和该第二BP上的SRS均是周期性SRS,或者,该第一BP上的SRS和该第二BP上的SRS均是半静态SRS。也就是说,对于与终端的RF的相对位置相同的BP上的同类型SRS,考虑到传输周期较小的SRS相对于传输周期较大的SRS出现的概率更高,因此可以在传输周期较小的SRS和传输周期较大的SRS发生传输冲突时,丢弃传输周期较小的SRS,等下一个传输周期再传输该SRS。
或者,比如,在一种可能的设计中,该第一BP上的SRS的优先级低于该第二BP上的SRS的优先级,包括:该第一BP和该第二BP均为终端的RF外的SRSBP,且该第一BP上的SRS的传输周期小于该第二BP上的SRS的传输周期,其中,该第一BP上的SRS和该第二BP上的SRS均是周期性SRS,或者,该第一BP上的SRS和该第二BP上的SRS均是半静态SRS。也就是说,对于与终端的RF的相对位置相同的BP上的同类型SRS,考虑到传输周期较小的SRS相对于传输周期较大的SRS出现的概率更高,因此可以在传输周期较小的SRS和传输周期较大的SRS发生传输冲突时,丢弃传输周期较小的SRS,等下一个传输周期再传输该SRS。
或者,比如,在一种可能的设计中,该第一BP上的SRS的优先级低于该第二BP上的SRS的优先级,包括:该第一BP和该第二BP均为终端的RF内的SRSBP,且 该第一BP上的SRS为周期性SRS,该第二BP上的SRS为半静态SRS;或者,该第一BP上的SRS为周期性SRS,该第二BP上的SRS为非周期性SRS;或者,该第一BP上的SRS为半静态SRS,该第二BP上的SRS为非周期性SRS。也就是说,对于不同类型的SRS,考虑到非周期性SRS出现较为不规律,半静态SRS虽然出现较为规律,但是取决于DCI触发还是终止,周期性SRS出现规律,且不依赖外部条件,因此可以在周期性SRS与半静态SRS发生传输冲突时,丢弃周期性SRS,等下次出现再传输该SRS;在非周期性SRS与半静态SRS发生传输冲突时,丢弃半静态SRS,等下次出现再传输该SRS。即,非周期性SRS的优先级>半静态SRS的优先级>周期性SRS的优先级。
或者,比如,在一种可能的设计中,该第一BP上的SRS的优先级低于该第二BP上的SRS的优先级,包括:该第一BP和该第二BP均为终端的RF外的SRSBP,且该第一BP上的SRS为周期性SRS,该第二BP上的SRS为半静态SRS;或者,该第一BP上的SRS为周期性SRS,该第二BP上的SRS为非周期性SRS;或者,该第一BP上的SRS为半静态SRS,该第二BP上的SRS为非周期性SRS。也就是说,对于不同类型的SRS,考虑到非周期性SRS出现较为不规律,半静态SRS虽然出现较为规律,但是取决于DCI触发还是终止,周期性SRS出现规律,且不依赖外部条件,因此可以在周期性SRS与半静态SRS发生传输冲突时,丢弃周期性SRS,等下次出现再传输该SRS;在非周期性SRS与半静态SRS发生传输冲突时,丢弃半静态SRS,等下次出现再传输该SRS。即,非周期性SRS的优先级>半静态SRS的优先级>周期性SRS的优先级。
可选的,该第一BP上的SRS的优先级低于该第二BP上的SRS的优先级,包括:该第一BP上的SRS的传输周期小于该第二BP上的SRS的传输周期,其中,该第一BP上的SRS和该第二BP上的SRS均是周期性SRS,或者,该第一BP上的SRS和该第二BP上的SRS均是半静态SRS。也就是说,对于同类型的SRS,考虑到传输周期较小的SRS相对于传输周期较大的SRS出现的概率更高,因此可以在传输周期较小的SRS和传输周期较大的SRS发生传输冲突时,丢弃传输周期较小的SRS,等下一个传输周期再传输该SRS。
可选的,该第一BP和该第二BP为同一个宽带成员载波CC中的BP。
可选的,该方法还包括:接收SRS的配置信息,其中,该SRS的配置信息包括该第一BP上的SRS的配置信息和该第二BP上的SRS的配置信息,该第一BP上的SRS的配置信息包括在该第一BP上传输SRS的第一时域资源,该第二BP上的SRS的配置信息包括在该第二BP上传输SRS的第二时域资源;该确定第一BP上的SRS与第二BP上的SRS发生传输冲突,包括:根据该第一时域资源、该第二时域资源和RF切换时间,确定该第一BP上的SRS与该第二BP上的SRS发生传输冲突。基于该方式,可以确定第一BP上的SRS与第二BP上的SRS发生传输冲突。
在一种可能的设计中,该根据该第一时域资源、该第二时域资源和RF切换的时间,确定该第一BP上的SRS与该第二BP上的SRS发生传输冲突,包括:根据该第一时域资源、该第二时域资源、第一RF切换时间和第二RF切换时间,确定该终端从该终端激活的上行BP切换到该第一BP上时所需的时域资源和该终端从该终端激活的 上行BP切换到该第二BP上时所需的时域资源存在重叠部分,其中,该第一RF切换时间为该终端从该终端激活的上行BP切换到该第一BP上时所需的时间,该第二RF切换时间为该终端从该终端激活的上行BP切换到该第二BP上时所需的时间,该第一BP和该第二BP均为该终端的SRSBP。基于该方式,可以确定第一BP上的SRS与第二BP上的SRS发生传输冲突。
在一种可能的设计中,该根据该第一时域资源、该第二时域资源和RF切换的时间,确定该第一BP上的SRS与该第二BP上的SRS发生传输冲突,包括:根据该第一时域资源、该第二时域资源和第三RF切换时间,确定该终端从该第一BP切换到该第二BP时所需的时域资源包括该第二时域资源,其中,该第三RF切换时间为该终端从该第一BP切换到该第二BP上时所需的时间,该第一BP为该终端激活的上行BP,该第二BP为该终端的SRSBP。基于该方式,可以确定第一BP上的SRS与第二BP上的SRS发生传输冲突。
第二方面,提供了一种通信装置,该SRS的传输装置具有实现上述第一方面所述的方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第三方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机执行指令,该处理器与该存储器连接,当该SRS的传输装置运行时,该处理器执行该存储器存储的计算机执行指令,以使该SRS的传输装置执行如上述第一方面中任一所述的SRS的传输方法。
可选的,上述第二方面和第三方面的通信装置可以是芯片,也可以是终端。
第四方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第一方面中任一所述的探测参考信号SRS的传输方法。
第五方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第一方面中任一所述的探测参考信号SRS的传输方法。
第六方面,提供了一种芯片系统,该芯片系统包括处理器,用于支持探测参考信号SRS的传输装置实现上述方面中所涉及的处理功能,例如确定第一带宽部分BP上的探测参考信号SRS与第二BP上的SRS发生传输冲突。在一种可能的设计中,该芯片系统还可以包括存储器,该存储器,用于保存SRS的传输装置必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
第七方面,提供了一种通信系统,包括基站和如上述方面所述的终端。
其中,第二方面至第六方面中任一种设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为本申请实施例提供的宽带CC上的BP示意图一;
图2为本申请实施例提供的宽带CC上的BP示意图二;
图3为本申请实施例提供的SRS的传输系统的架构示意图;
图4为本申请实施例提供的SRS的传输装置的硬件结构示意图;
图5为本申请实施例提供的SRS的传输方法的流程示意图;
图6为本申请实施例提供的SRS的BP级切换的示意图;
图7为本申请实施例提供的SRS的传输装置的结构示意图。
具体实施方式
为了方便理解本申请实施例的技术方案,首先给出本申请相关技术的简要介绍如下。
TDD:TDD模式是指系统中的接收和传送是在同一频率信道即载波的不同时隙,用保证时间来分离接收与传送信道。
频分双工(frequencydivision duplexing,FDD):FDD模式是指系统中的接收和传送是在分离的两个对称频率信道上,用保证频段来分离接收与传送信道。
周期性SRS(periodic SRS,P-SRS):无线资源控制(radio resource control,RRC)信令配置SRS传输使用的时域、频域、码域和梳齿(comb)资源。其中,时域资源包括:SRS的周期、SRS发送的时隙(slot)和SRS发送使用的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。按照配置的SRS的周期,每隔SRS的周期发送一次SRS。
非周期性SRS(aperiodic SRS,A-SRS):RRC信令配置SRS传输使用的时域、频域、码域和comb资源。其中,SRS传输使用的时域资源是不固定的,由下行控制信息(downlink control information,DCI)触发终端不定期的发送SRS。
半静态SRS(semi-persistent scheduling SRS,SPS-SRS):RRC信令配置SRS传输使用的时域、频域、码域和comb资源。其中,时域资源包括:SRS的周期、SRS发送的slot和SRS发送使用的OFDM符号。DCI触发终端按照配置的SRS的周期,每隔SRS的周期发送一次SRS。此外,DCI还可以触发终端终止SRS的发送。
载波:本申请实施例中的载波包括非CA场景下的载波和CA场景下的CC。其中,CA场景下的CC可以为主CC或辅CC,CA场景下的服务小区可以为主服务小区(primary serving cell,PCell)或辅服务小区(secondary serving cell,Scell)。为了方便描述,在本申请实施例的某些场景下,可以将非CA场景下的载波和CA场景下的CC统称为载波,本申请实施例对此不作具体限定。此外,载波或服务小区用于上行传输的部分可以理解为上行资源或上行载波,载波或服务小区用于下行传输的部分可以理解为下行资源或下行载波。例如,在FDD系统中,载波上用于上行传输的频域资源可以理解为上行资源或上行载波;载波上用于下行传输的频域资源可以理解为下行资源或下行载波。或者,例如,在TDD系统中,载波上用于上行传输的时域资源可以理解为上行资源或上行载波;载波上用于下行传输的时域资源可以理解为下行资源或下行载波。
工作带宽:即终端激活的(active)BP。其中,工作带宽分包括上行工作带宽和下行工作带宽。上行工作带宽即终端激活的上行BP,下行工作带宽即终端激活的下行BP,在此进行统一说明,以下不再赘述。
子带或BP:即载波上的一段频域资源。
UL BP:指上行可以传输PUSCH、PUCCH或SRS等的BP,该BP具有带宽大小、带宽位置和带宽的子载波间隔等属性。
SRS BP:指上行仅传输SRS和/或PRACH的BP,该BP具有带宽大小、带宽位 置和带宽的子载波间隔等属性。
RF切换(retuning):本申请实施例中的RF切换发生在不在同一个RF覆盖范围内的两个BP之间。若发生切换的两个BP在同一个RF的覆盖范围内,则不会发生RF切换。其中,本申请实施例中,两个BP在同一个RF的覆盖范围内是指,这两个BP的全部频域资源均在同一个RF的覆盖范围;两个BP不在同一个RF的覆盖范围内是指,这两个BP的全部频域资源不在同一个RF的覆盖范围,在此进行统一说明,以下不再赘述。
比如,如图1中(1a)所示,若终端从激活的上行BP切换到SRS BP1或SRS BP2,则由于激活的上行BP、SRS BP1和SRS BP2均在的RF的覆盖范围内,此时不会发生RF切换;若终端从激活的上行BP切换到SRS BP3,则由于激活的上行BP在的RF的覆盖范围内,SRS BP3在的RF的覆盖范围外,即两个BP不在同一个RF的覆盖范围内,因此将发生RF切换。如图1中(1b)所示,发生RF切换后RF覆盖SRS BP3,此时可以在SRS BP3上发送SRS。
或者,如图2的(2a)所示,若终端从激活的上行BP切换到SRS BP1,则由于激活的上行BP和SRS BP1均在的RF的覆盖范围内,此时不会发生RF切换;若终端从激活的上行BP切换到SRS BP3,则由于激活的上行BP在的RF的覆盖范围内,SRS BP3在的RF的覆盖范围外,即两个BP不在同一个RF的覆盖范围内,因此将发生RF切换。如图2的(2b)所示,发生RF切换后RF覆盖SRS BP3,此时可以在SRS BP3上发送SRS;若终端从激活的上行BP切换到SRS BP2,则由于激活的上行BP在的RF的覆盖范围内,SRS BP2的一部分在的RF的覆盖范围内,一部分在的RF的覆盖范围外,此时两个BP也认为不在同一个RF的覆盖范围内,因此将发生RF切换。如图2的(2c)所示,发生RF切换后RF覆盖SRS BP2,此时可以在SRS BP2上发送SRS。
需要说明的是,图2所示的示例中,发生RF切换后,RF的中心与SRS BP2或SRS BP3的中心并未对齐,当然,也可以采用RF的中心与SRS BP的中心对齐的方式进行RF切换,本申请实施例对此不作具体限定,附图仅用于示例性说明RF切换的场景。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对 于类似的技术问题,同样适用。
如图3所示,为本申请实施例提供的一种通信系统30。该通信系统30中包括一个接入设备301,以及与该接入设备301连接的一个或多个通信装置40。
其中,接入设备301指的是接入核心网的设备,例如可以是NR系统或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,宽带网络业务网关(broadband network gateway,BNG),汇聚交换机或非第三代合作伙伴项目(3rd generation partnership project,3GPP)接入设备等。基站可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等,本申请实施例对此不作具体限定。
通信装置40可以是终端或者芯片等,本申请实施例对此不作具体限定。其中,终端可以是NR系统或者未来演进的PLMN中的用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备等,本申请实施例对此不作具体限定。
如图4所示,为本申请实施例提供的一种通信装置40的硬件结构示意图。该通信装置40包括至少一个处理器401,通信总线402,存储器403以及至少一个通信接口404。
处理器401可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信总线402可包括一通路,在上述组件之间传送信息。
通信接口404,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
存储器403可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器403用于存储执行本申请方案的应用程序代码,并由处理器401来控制执行。处理器401用于执行存储器403中存储的应用程序代码,从而实现本申请下述实施例提供的SRS的传输方法。
或者,可选的,本申请实施例中,也可以是处理器401执行本申请下述实施例提供的SRS的传输方法中的处理相关的功能,通信接口404负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器401可以包括一个或多个CPU,例如图4中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置40可以包括多个处理器,例如图4中的处理器401和处理器408。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信装置40还可以包括输出设备405和输入设备406。输出设备405和处理器401通信,可以以多种方式来显示信息。例如,输出设备405可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备406和处理器401通信,可以以多种方式接受用户的输入。例如,输入设备406可以是鼠标、键盘、触摸屏设备或传感设备等。
此外,如上所述,本申请实施例提供的通信装置40可以为芯片,或者终端,或者有图4中类似结构的设备。本申请实施例不限定通信装置40的类型。
下面以通信装置为NR系统中的一个终端,接入设备为NR系统中的基站为例,对本申请实施例提供的SRS的传输方法进行展开说明。
如图5所示,为本申请实施例提供的一种SRS的传输方法的流程示意图。该SRS的传输方法中,若终端确定第一BP上的SRS与第二BP上的SRS发生传输冲突,则丢弃SRS的优先级较低的BP上的SRS,从而可以实现SRS的BP级切换。具体的,该SRS的传输方法包括如下步骤:
S501、基站向终端发送SRS的配置的信息。
其中,本申请实施例中,SRS的配置信息包括第一BP上的SRS的配置信息和第二BP上的SRS的配置信息。该第一BP上的SRS的配置信息包括在第一BP上传输SRS的第一时域资源,该第二BP上的SRS的配置信息包括在第二BP上传输SRS的第二时域资源。
具体的,本申请实施例中的第一时域资源用于在第一BP上传输SRS,第二时域资源用于在第二BP上传输SRS。其中,这里的时域资源包括时隙内用于SRS传输的OFDM符号的个数和位置等信息,在此进行统一说明,以下不再赘述。
可选的,本申请实施例中,基站可以将SRS的配置信息携带在RRC信令中发送给终端,本申请实施例对此不作具体限定。
可选的,本申请实施例中的第一BP和第二BP可以是根据终端激活的上行BP和终端的RF中的至少一个确定的,本申请实施例对此不作具体限定。
可选的,本申请实施例中的第一BP和第二BP可以是CA场景下同一个CC载波中的BP,或者是非CA场景下载波中的BP。比如,如图1或图2所示,第一BP可以是SRS BP1,第二BP可以是SRS BP2;或者,第一BP可以是SRS BP2,第二BP可以是SRS BP3;或者,第一BP可以是SRS BP1,第二BP可以是SRS BP3。
当然,本申请实施例中的第一BP和第二BP也可以是CA场景下不同CC载波中的BP,本申请实施对此不作具体限定。
可选的,本申请实施例中CC载波可以是宽带CC载波,也可以是非宽带CC载波,本申请实施例对此不作具体限定。
需要说明的是,为了方便描述,下述实施例均以第一BP和第二BP是CA场景下同一个宽带CC载波中的BP为例进行说明,在此进行统一说明,以下不再赘述。
可选的,本申请实施例中的第一BP可以是TDD载波上的BP,也可以是FDD载波上的BP;第二BP可以是TDD载波上的BP,也可以是FDD载波上的BP,本申请实施例对此不作具体限定。
可选的,本申请时候实施例中的第一BP和第二BP均可以是终端的SRS BP。比如,如图1或图2所示,第一BP可以是SRS BP1,第二BP可以是SRS BP2;或者,第一BP可以是SRS BP2,第二BP可以是SRS BP3;或者,第一BP可以是SRS BP1,第二BP可以是SRS BP3。
当然,本申请实施例中的第一BP和第二BP中,也可以一个是终端激活的上行BP,一个是终端的SRS BP。比如,如图1或图2所示,一个BP可以是激活的上行BP,另一个BP可以是SRS BP1或者SRS BP2或者SRS BP3。
S502、终端接收来自基站的SRS的配置信息。
S503、终端根据第一时域资源、第二时域资源和RF切换时间,确定第一BP上的SRS和第二BP上的SRS发生传输冲突。
可选的,本申请实施例中的RF切换时间是指,在发生RF切换时,终端从一个BP切换到另外一个BP上时所需的时间。比如,如图6的(6a)所示,假设当终端从子载波间隔为30kHZ的BP1切换到子载波间隔为30kHZ的BP2时发生RF切换,则RF切换时间=t1,即时隙N的OFDM符号9,10,11,12所对应的时间。假设SRS在时隙N的OFDM符号13上传输,则RF切换的往返时间=2×t1+SRS的传输时间,即时隙N的OFDM符号9,10,11,12,13对应的时间以及时隙N+1的OFDM符号0,1,2,3对应的时间。
可选的,本申请实施例中的RF切换时间与终端的RF能力相关,通常,终端的RF能力越强,RF切换时间越短。此外,RF切换时间可以配置在终端中或者由终端根据终端的RF能力确定,具体可参考现有的实现方式,本申请实施例对此不作具体限定。
可选的,本申请实施例中,终端也可以将RF切换时间上报给基站,以使得基站可以根据RF切换时间下发相应的时域资源,具体可参考协议3GPP TS36.331中UE能力中关于RF切换时间的描述,在此不再赘述。
可选的,本申请实施例中,第一BP上的SRS和第二BP上的SRS发生传输冲突包括以下两种场景:
场景一,第一BP为终端激活的上行BP,第二BP为终端的SRS BP,即存在一个BP对,该BP对由第一BP和第二BP组成:
此时,步骤S503具体可以包括:终端根据第一时域资源、第二时域资源和第三RF切换时间,确定终端从第一BP切换到第二BP时所需的时域资源包括第二时域资 源,其中,第三RF切换时间为终端从第一BP切换到第二BP上时所需的时间。
示例性的,如图6的(6a)所示,假设第一BP为子载波间隔为30kHZ的BP1,第二BP为子载波间隔为30kHZ的BP2,第一时域资源为时隙N的OFDM符号13,即第一BP上的SRS在时隙N的OFDM符号13上传输;第二时域资源为时隙N的OFDM符号13,即第二BP上的SRS在时隙N的OFDM符号13上传输;第三RF切换时间为4个OFDM符号。则,根据第一时域资源、第二时域资源和第三RF切换时间可知,从BP1切换到BP2所需的时域资源为时隙N的OFDM符号9,10,11,12,13以及时隙N+1的OFDM符号0,1,2,3,包括时隙N的OFDM符号13,即与第二时域资源存在重合部分。也就是说,若在BP1上传输SRS,则无法在BP2上传输SRS;若在BP2上传输SRS,则无法在BP1上传输SRS。即,BP1上的SRS传输所需的时域资源和BP2上的SRS传输所需的时域资源发生冲突。
场景二,第一BP为SRS BP,第二BP为SRS BP,即存在两个BP对,其中一个BP对由终端激活的上行BP和第一BP组成,另外一个BP对由终端激活的上行BP和第二BP组成:
此时,步骤S503具体可以包括:终端根据第一时域资源、第二时域资源、第一RF切换时间和第二RF切换时间,确定终端从终端激活的上行BP切换到第一BP上时所需的时域资源和终端从终端激活的上行BP切换到第二BP上时所需的时域资源存在重叠部分,其中,第一RF切换时间为终端从终端激活的上行BP切换到第一BP上时所需的时间,第二RF切换时间为终端从终端激活的上行BP切换到第二BP上时所需的时间。
示例性的,如图6的(6a)和(6b)所示,假设终端激活的上行BP为子载波间隔为30kHZ的BP1,第一BP为子载波间隔为30kHZ的BP2,第二BP为子载波间隔为60kHZ的BP3,第一BP对应的第一时域资源为时隙N的OFDM符号13,即第一BP上的SRS在时隙N的OFDM符号13上传输;第二BP对应的第二时域资源为时隙N的OFDM符号13,即第二BP上的SRS在时隙N的OFDM符号13上传输;第一RF切换时间和第二RF切换时间均为4个OFDM符号。则,根据第一时域资源和第一RF切换时间可知,从BP1切换到BP2所需的时域资源为时隙N的OFDM符号9,10,11,12,13以及时隙N+1的OFDM符号0,1,2,3;根据第二时域资源和第二RF切换时间可知,从BP1切换到BP3所需的时域资源为时隙N的OFDM符号2至OFDM符号10。此时,终端从BP1切换到BP2上时所需的时域资源和终端从BP1切换到BP3上时所需的时域资源存在重叠部分,重叠部分为时隙N的OFDM符号9和10。因此,若终端从BP1切换到BP2,则无法从BP1切换到BP3;若终端从BP1切换到BP3,则无法从BP1切换到BP2,也就是说,若在BP2上传输SRS,则无法在BP3上传输SRS;若在BP3上传输SRS,则无法在BP2上传输SRS。即,BP2上的SRS传输所需的时域资源和BP3上的SRS传输所需的时域资源发生冲突。
需要说明的是,步骤S501至S503仅是示例性的给出了一种确定第一BP上的SRS和第二BP上的SRS发生传输冲突的具体实现。当然,还可能存在其他确定第一BP上的SRS和第二BP上的SRS发生传输冲突的方式。本申请实施例是为了解决在BP之间的SRS发生冲突后进行SRS传输的问题,只要确定出第一BP上的SRS和第二 BP上的SRS发生传输冲突,都可以采用本申请实施例的方案,因此本申请实施例对如何确定两个BP上的SRS发生传输冲突不作具体限定。
S504、终端丢弃第一BP上的SRS。
其中,第一BP的上的SRS的优先级低于第二BP上的SRS的优先级。也就是说,终端丢弃SRS的优先级较低的BP上的SRS。
可选的,本申请实施例中,在第一BP上的SRS和第二BP上的SRS发生传输冲突时:
若第一BP为终端激活的上行BP,第二BP为SRS BP,则终端丢弃第一BP上的SRS具体是指,终端可以从第一BP切换到第二BP,在第二BP上传输SRS。
若第一BP和第二BP均为SRS BP,则终端丢弃第一BP上的SRS具体是指,终端可以从终端激活的上行BP切换到第二BP,在第二BP上传输SRS。
可选的,本申请实施例中可以通过如下方式确定第一BP的上的SRS的优先级低于第二BP上的SRS的优先级:
方式一:通过SRS的传输周期确定不同BP上的SRS的优先级。具体的,第一BP上的SRS的优先级低于第二BP上的SRS的优先级,包括:第一BP上的SRS的传输周期小于所述第二BP上的SRS的传输周期,其中,第一BP上的SRS和第二BP上的SRS均是周期性SRS;或者,第一BP上的SRS和第二BP上的SRS均是半静态SRS。也就是说,对于同类型的SRS,考虑到传输周期较小的SRS相对于传输周期较大的SRS出现的概率更高,因此可以在传输周期较小的SRS和传输周期较大的SRS发生传输冲突时,丢弃传输周期较小的SRS,等下一个传输周期再传输该SRS。其中,周期性SRS和半静态SRS的相关描述可参考具体实施方式部分的前序部分,在此不再赘述。
示例性的,假设第一BP为图2的(2a)中的SRS BP1,第二BP为图2的(2a)中的SRS BP3。SRS BP1为周期性SRS,传输周期为T1;SRS BP3为周期性SRS,传输周期为T2,其中,T1<T2,则由于传输周期较小的SRS的优先级低于传输周期较大的SRS的优先级,因此在SRS BP1上的SRS和SRS BP3上的SRS发生传输冲突时,终端将丢弃SRS BP1上的SRS。比如,终端可以从终端激活的上行BP切换到SRS BP3,在SRS BP3上传输SRS。
方式二:通过不同BP与终端的RF的相对位置确定不同BP上的SRS的优先级。具体的,第一BP上的SRS的优先级低于第二BP上的SRS的优先级,包括:第一BP为终端的RF内的SRSBP,第二BP为终端的RF外的SRSBP。也就是说,考虑到终端激活的上行BP在终端的RF内,因此,终端从激活的上行BP切换到第一BP时不需要进行RF切换,终端从激活的上行BP切换到第二BP时需要进行RF切换。而通常在不需要进行RF切换的SRS BP上,SRS配置的密度较高;在需要进行RF切换的SRS BP上,SRS配置的密度较低,因此,为了尽快的获取整个载波带宽的信道状态,可以在终端的RF外的SRSBP上的SRS和终端的RF内的SRSBP上的SRS发生传输冲突时,丢弃终端的RF内的SRSBP。
示例性的,假设第一BP为图2的(2a)中的SRS BP1,第二BP为图2的(2a)中的SRS BP2。则由于SRS BP1在终端的RF内,SRS BP2在终端的RF外,因此在 SRS BP1上的SRS和SRS BP2上的SRS发生传输冲突时,终端将丢弃SRS BP1上的SRS。比如,终端可以从终端激活的上行BP切换到SRS BP2,在SRS BP2上传输SRS。
方式三:通过BP的类型确定不同BP上的SRS的优先级。具体的,第一BP上的SRS的优先级低于第二BP上的SRS的优先级,包括:第一BP为终端激活的上行BP,第二BP为终端的SRSBP。也就是说,考虑到终端激活的上行BP上SRS配置的密度相对终端的SRSBP上SRS配置的密度较高,因此,为了尽快的获取整个载波带宽的信道状态,可以在终端激活的上行BP上的SRS和终端的SRS BP上的SRS发生传输冲突时,丢弃终端激活的上行BP上的SRS。
示例性的,假设第一BP为图2的(2a)中的激活的上行BP,第二BP为图2的(2a)中的SRS BP2。则由于激活的上行BP的优先级低于SRS BP的优先级,因此在激活的上行BP上的SRS和SRS BP2上的SRS发生传输冲突时,终端将丢弃激活的上行BP上的SRS。比如,终端可以从终端激活的上行BP切换到SRS BP2,在SRS BP2上传输SRS。
方式四:通过SRS的传输周期以及BP与终端的RF的相对位置确定不同BP上的SRS的优先级。具体的,第一BP上的SRS的优先级低于第二BP上的SRS的优先级,包括:第一BP和第二BP均为终端的RF内的SRSBP或者均为终端的RF外的SRSBP,且第一BP上的SRS的传输周期小于第二BP上的SRS的传输周期,其中,第一BP上的SRS和第二BP上的SRS均是周期性SRS;或者,第一BP上的SRS和第二BP上的SRS均是半静态SRS。也就是说,对于与终端的RF的相对位置相同的BP上的同类型SRS,考虑到传输周期较小的SRS相对于传输周期较大的SRS出现的概率更高,因此可以在传输周期较小的SRS和传输周期较大的SRS发生传输冲突时,丢弃传输周期较小的SRS,等下一个传输周期再传输该SRS。其中,周期性SRS和半静态SRS的相关描述可参考具体实施方式部分的前序部分,在此不再赘述。
与方式一的区别在于,方式一中不考虑不同BP与终端的RF的相对位置,仅考虑SRS的传输周期;而方式四中,第一BP和第二BP均为终端的RF内的SRSBP,或者,第一BP和第二BP均为终端的RF外的SRSBP。
示例性的,假设第一BP为图1的(1a)中的SRS BP1,第二BP为图1的(1a)中的SRS BP2。SRS BP1为半静态SRS,传输周期为T3;SRS BP2为半静态SRS,传输周期为T4,其中,T3<T4,则由于由于传输周期较小的SRS的优先级低于传输周期较大的SRS的优先级,因此在SRS BP1上的SRS和SRS BP2上的SRS发生传输冲突时,终端将丢弃SRS BP1上的SRS。比如,终端可以从终端激活的上行BP切换到SRS BP2,在SRS BP2上传输SRS。
或者,示例性的,假设第一BP为图2的(2a)中的SRS BP2,第二BP为图2的(2a)中的SRS BP3。SRS BP2为周期性SRS,传输周期为T5;SRS BP3为周期性SRS,传输周期为T2,其中,T5<T2,则由于传输周期较小的SRS的优先级低于传输周期较大的SRS的优先级,因此在SRS BP2上的SRS和SRS BP3上的SRS发生传输冲突时,终端将丢弃SRS BP2上的SRS。比如,终端可以从终端激活的上行BP切换到SRS BP3,在SRS BP3上传输SRS。
方式五:通过SRS的类型以及BP与终端的RF的相对位置确定不同BP上的SRS 的优先级。具体的,第一BP上的SRS的优先级低于第二BP上的SRS的优先级,包括:第一BP和所述第二BP均为终端的RF内的SRSBP或者均为终端的RF外的SRS BP,且所述第一BP上的SRS为周期性SRS,所述第二BP上的SRS为半静态SRS;或者,所述第一BP上的SRS为周期性SRS,所述第二BP上的SRS为非周期性SRS;或者,所述第一BP上的SRS为半静态SRS,所述第二BP上的SRS为非周期性SRS。也就是说,对于不同类型的SRS,考虑到非周期性SRS出现较为不规律,半静态SRS虽然出现较为规律,但是取决于DCI触发还是终止,周期性SRS出现规律,且不依赖外部条件,因此可以在周期性SRS与半静态SRS发生传输冲突时,丢弃周期性SRS,等下次出现再传输该SRS;在非周期性SRS与半静态SRS发生传输冲突时,丢弃半静态SRS,等下次出现再传输该SRS。即,非周期性SRS的优先级>半静态SRS的优先级>周期性SRS的优先级。其中,周期性SRS、非周期性SRS和半静态SRS的相关描述可参考具体实施方式部分的前序部分,在此不再赘述。
示例性的,假设第一BP为图1的(1a)中的SRS BP1,第二BP为图1的(1a)中的SRS BP2。SRS BP1为半静态SRS;SRS BP2为非周期性SRS,则由于半静态SRS的优先级低于非周期性SRS的优先级,因此在SRS BP1上的SRS和SRS BP2上的SRS发生传输冲突时,终端将丢弃SRS BP1上的SRS。比如,终端可以从终端激活的上行BP切换到SRS BP2,在SRS BP2上传输SRS。
或者,示例性的,假设第一BP为图2的(2a)中的SRS BP2,第二BP为图2的(2a)中的SRS BP3。SRS BP2为周期性SRS;SRS BP3为非周期性SRS,则由于周期性SRS的优先级低于非周期性SRS的优先级,因此在SRS BP2上的SRS和SRS BP3上的SRS发生传输冲突时,终端将丢弃SRS BP2上的SRS。比如,终端可以从终端激活的上行BP切换到SRS BP3,在SRS BP3上传输SRS。
上述示例一至示例五中提供了几种确定第一BP的上的SRS的优先级低于第二BP上的SRS的优先级的方式,其中,在示例二、示例四和示例五中,第一BP上SRS的优先级和第二BP上的SRS的优先级与终端的RF位置相关。当然,还可以通过其它方式确定第一BP的上的SRS的优先级低于第二BP上的SRS的优先级,本申请实施例对此不作具体限定。
需要说明的是,本申请实施例中,当存在多个BP时,任意两个BP上的SRS均可以采用本申请实施例提供的SRS的传输方法进行传输。比如,对于图1的(1a)中的激活的上行BP、SRS BP1、SRS BP2和SRS BP3,若SRS BP1上的SRS为周期性SRS,SRS BP2上的SRS为非周期SRS,则可以通过上述方式分别确定各个BP上的SRS的优先级,进而确定最终可以传输的SRS。示例性的,若SRS BP1上的SRS和激活的上行BP上的SRS发生传输冲突,则可以通过方式三确定激活的上行BP上的SRS的优先级低于SRS BP1上的SRS的优先级,从而丢弃激活的上行BP上的SRS;若SRS BP1上的SRS和SRS BP2上的SRS发生传输冲突,则可以通过方式五确定SRS BP1上的SRS的优先级低于SRS BP2上的SRS的优先级,从而丢弃SRS BP1上的SRS;若SRS BP2上的SRS和SRS BP3上的SRS发生传输冲突,则可以通过方式二确定SRS BP2上的SRS的优先级低于SRS BP3上的SRS的优先级,从而丢弃SRS BP2上的SRS。 此时,若没有其他BP上的SRS与SRS BP3上的SRS发生传输冲突,则终端可以从终端激活的上行BP切换到SRS BP3,在SRS BP3上传输SRS,从而可以获得SRS BP3的信道测量结果。
本申请实施例提供的SRS的传输方法中,在两个BP上的SRS发生传输冲突的情况下,可以丢弃SRS的优先级较低的SRS,也就是说,可以使得终端从激活的上行BP切换到传输优先级较高的SRS的BP上,在传输优先级较高的SRS的BP上传输SRS,因此可以实现SRS的BP级切换。
其中,上述步骤S501至S504中终端的动作可以由图4所示的通信装置40中的处理器401调用存储器402中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,上述通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以采用集成的方式划分各个功能模块的情况下,图7示出了上述实施例中所涉及的通信装置70的一种可能的结构示意图,该通信装置70包括:确定模块702和处理模块701。该确定模块702,用于确定第一BP上的SRS与第二BP上的SRS发生传输冲突;处理模块701,用于丢弃第一BP上的SRS,其中,第一BP上的SRS的优先级低于第二BP上的SRS的优先级。
可选的,如图7所示,该通信装置70还可以包括收发模块703。收发模块703,用于接收SRS的配置信息,其中,SRS的配置信息包括第一BP上的SRS的配置信息和第二BP上的SRS的配置信息,第一BP上的SRS的配置信息包括在第一BP上传输SRS的第一时域资源,第二BP上的SRS的配置信息包括在第二BP上传输SRS的第二时域资源。确定模块702具体用于:根据第一时域资源、第二时域资源和RF切换时间,确定第一BP上的SRS与第二BP上的SRS发生传输冲突。
在一种可能的实现方式中,确定模块702具体用于:根据第一时域资源、第二时域资源、第一RF切换时间和第二RF切换时间,确定终端从终端激活的上行BP切换到第一BP上时所需的时域资源和终端从终端激活的上行BP切换到第二BP上时所需的时域资源存在重叠部分,其中,第一RF切换时间为终端从终端激活的上行BP切换到第一BP上时所需的时间,第二RF切换时间为终端从终端激活的上行BP切换到第二BP上时所需的时间,第一BP和第二BP均为终端的SRSBP。
在一种可能的实现方式中,确定模块702具体用于:根据第一时域资源、第二时域资源和第三RF切换时间,确定终端从第一BP切换到第二BP时所需的时域资源包括第二时域资源,其中,第三RF切换时间为终端从第一BP切换到第二BP上时所需的时间,第一BP为终端激活的上行BP,第二BP为终端的SRSBP。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该通信装置70以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路(Application-Specific Integrated Circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到通信装置70可以采用图4所示的形式。比如,图7中的处理模块701、确定模块702和收发模块703的功能/实现过程可以通过图4的处理器401和存储器403来实现。具体的,处理模块701可以通过由处理器401来调用存储器403中存储的应用程序代码来执行,本申请实施例对此不作任何限制。或者,可选的,图7中的处理模块701和确定模块702的功能/实现过程可以通过图4的处理器401来实现;图7中的收发模块703可以通过图4的通信接口404来实现,本申请实施例对此不作任何限制。
由于本申请实施例提供的通信装置70可用于执行上述SRS的传输方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
上述实施例中,该通信装置70以采用集成的方式划分各个功能模块的形式来呈现。当然,本申请实施例也可以对应各个功能划分通信装置的各个功能模块,本申请实施例对此不作具体限定。
可选的,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于支持通信装置实现上述的SRS的传输方法,例如确定第一BP上的SRS与第二BP上的SRS发生传输冲突。在一种可能的设计中,该芯片系统还包括存储器。该存储器,用于保存通信装置必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (22)

  1. 一种探测参考信号SRS的传输方法,其特征在于,所述方法包括:
    确定第一带宽部分BP上的SRS与第二BP上的SRS发生传输冲突;
    丢弃所述第一BP上的SRS,其中,所述第一BP上的SRS的优先级低于所述第二BP上的SRS的优先级。
  2. 根据权利要求1所述的方法,其特征在于,所述第一BP为终端激活的上行BP,所述第二BP为所述终端的SRSBP;或者,所述第一BP和所述第二BP均为所述终端的SRSBP。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一BP上的SRS的优先级和所述第二BP上的SRS的优先级与终端的射频RF位置相关。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一BP上的SRS的优先级低于所述第二BP上的SRS的优先级,包括:
    所述第一BP为终端的RF内的SRSBP,所述第二BP为所述终端的RF外的SRSBP。
  5. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一BP上的SRS的优先级低于所述第二BP上的SRS的优先级,包括:
    所述第一BP和所述第二BP均为终端的RF内的SRSBP,且所述第一BP上的SRS的传输周期小于所述第二BP上的SRS的传输周期,其中,所述第一BP上的SRS和所述第二BP上的SRS均是周期性SRS,或者,所述第一BP上的SRS和所述第二BP上的SRS均是半静态SRS。
  6. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一BP上的SRS的优先级低于所述第二BP上的SRS的优先级,包括:
    所述第一BP和所述第二BP均为终端的RF外的SRSBP,且所述第一BP上的SRS的传输周期小于所述第二BP上的SRS的传输周期,其中,所述第一BP上的SRS和所述第二BP上的SRS均是周期性SRS,或者,所述第一BP上的SRS和所述第二BP上的SRS均是半静态SRS。
  7. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一BP上的SRS的优先级低于所述第二BP上的SRS的优先级,包括:
    所述第一BP和所述第二BP均为终端的RF内的SRSBP,且所述第一BP上的SRS为周期性SRS,所述第二BP上的SRS为半静态SRS;或者,所述第一BP上的SRS为周期性SRS,所述第二BP上的SRS为非周期性SRS;或者,所述第一BP上的SRS为半静态SRS,所述第二BP上的SRS为非周期性SRS。
  8. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一BP上的SRS的优先级低于所述第二BP上的SRS的优先级,包括:
    所述第一BP和所述第二BP均为终端的RF外的SRSBP,且所述第一BP上的SRS为周期性SRS,所述第二BP上的SRS为半静态SRS;或者,所述第一BP上的SRS为周期性SRS,所述第二BP上的SRS为非周期性SRS;或者,所述第一BP上的SRS为半静态SRS,所述第二BP上的SRS为非周期性SRS。
  9. 根据权利要求1或2所述的方法,其特征在于,所述第一BP上的SRS的优先级低于所述第二BP上的SRS的优先级,包括:
    所述第一BP上的SRS的传输周期小于所述第二BP上的SRS的传输周期,其中,所述第一BP上的SRS和所述第二BP上的SRS均是周期性SRS,或者,所述第一BP上的SRS和所述第二BP上的SRS均是半静态SRS。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述第一BP和所述第二BP为同一个宽带成员载波CC中的BP。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述方法还包括:
    接收SRS的配置信息,其中,所述SRS的配置信息包括所述第一BP上的SRS的配置信息和所述第二BP上的SRS的配置信息,所述第一BP上的SRS的配置信息包括在所述第一BP上传输SRS的第一时域资源,所述第二BP上的SRS的配置信息包括在所述第二BP上传输SRS的第二时域资源;
    所述确定第一BP上的SRS与第二BP上的SRS发生传输冲突,包括:
    根据所述第一时域资源、所述第二时域资源和RF切换时间,确定所述第一BP上的SRS与所述第二BP上的SRS发生传输冲突。
  12. 根据权利要求11所述的方法,其特征在于,所述根据所述第一时域资源、所述第二时域资源和RF切换的时间,确定所述第一BP上的SRS与所述第二BP上的SRS发生传输冲突,包括:
    根据所述第一时域资源、所述第二时域资源、第一RF切换时间和第二RF切换时间,确定所述终端从所述终端激活的上行BP切换到所述第一BP上时所需的时域资源和所述终端从所述终端激活的上行BP切换到所述第二BP上时所需的时域资源存在重叠部分,其中,所述第一RF切换时间为所述终端从所述终端激活的上行BP切换到所述第一BP上时所需的时间,所述第二RF切换时间为所述终端从所述终端激活的上行BP切换到所述第二BP上时所需的时间,所述第一BP和所述第二BP均为所述终端的SRSBP。
  13. 根据权利要求11所述的方法,其特征在于,所述根据所述第一时域资源、所述第二时域资源和RF切换的时间,确定所述第一BP上的SRS与所述第二BP上的SRS发生传输冲突,包括:
    根据所述第一时域资源、所述第二时域资源和第三RF切换时间,确定所述终端从所述第一BP切换到所述第二BP时所需的时域资源包括所述第二时域资源,其中,所述第三RF切换时间为所述终端从所述第一BP切换到所述第二BP上时所需的时间,所述第一BP为所述终端激活的上行BP,所述第二BP为所述终端的SRSBP。
  14. 一种通信装置,其特征在于,所述通信装置包括:确定模块和处理模块;
    所述确定模块,用于确定第一带宽部分BP上的探测参考信号SRS与第二BP上的SRS发生传输冲突;
    所述处理模块,用于丢弃所述第一BP上的SRS,其中,所述第一BP上的SRS的优先级低于所述第二BP上的SRS的优先级。
  15. 根据权利要求14所述的通信装置,其特征在于,所述通信装置还用于实现如权利要求2-10任一项所述的SRS的传输方法。
  16. 根据权利要求14或15所述的通信装置,其特征在于,所述通信装置还包括收发模块;
    所述收发模块,用于接收SRS的配置信息,其中,所述SRS的配置信息包括所述第一BP上的SRS的配置信息和所述第二BP上的SRS的配置信息,所述第一BP上的SRS的配置信息包括在所述第一BP上传输SRS的第一时域资源,所述第二BP上的SRS的配置信息包括在所述第二BP上传输SRS的第二时域资源;
    所述确定模块具体用于:
    根据所述第一时域资源、所述第二时域资源和RF切换时间,确定所述第一BP上的SRS与所述第二BP上的SRS发生传输冲突。
  17. 根据权利要求16所述的通信装置,其特征在于,所述确定模块具体用于:
    根据所述第一时域资源、所述第二时域资源、第一RF切换时间和第二RF切换时间,确定所述终端从所述终端激活的上行BP切换到所述第一BP上时所需的时域资源和所述终端从所述终端激活的上行BP切换到所述第二BP上时所需的时域资源存在重叠部分,其中,所述第一RF切换时间为所述终端从所述终端激活的上行BP切换到所述第一BP上时所需的时间,所述第二RF切换时间为所述终端从所述终端激活的上行BP切换到所述第二BP上时所需的时间,所述第一BP和所述第二BP均为所述终端的SRSBP。
  18. 根据权利要求16所述的通信装置,其特征在于,所述确定模块具体用于:
    根据所述第一时域资源、所述第二时域资源和第三RF切换时间,确定所述终端从所述第一BP切换到所述第二BP时所需的时域资源包括所述第二时域资源,其中,所述第三RF切换时间为所述终端从所述第一BP切换到所述第二BP上时所需的时间,所述第一BP为所述终端激活的上行BP,所述第二BP为所述终端的SRSBP。
  19. 一种通信装置,其特征在于,所述装置包括:处理器和存储器;
    所述存储器用于存储计算机执行指令,所述处理器与所述存储器连接,当所述通信装置运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述通信装置执行如权利要求1-13中任意一项所述的探测参考信号SRS的传输方法。
  20. 一种终端,其特征在于,包括如权利要求14-19任一项所述的通信装置。
  21. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得所述计算机执行如权利要求1-13任意一项所述的SRS的传输方法。
  22. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得所述计算机执行如权利要求1-13任意一项所述的SRS的传输方法。
PCT/CN2018/100106 2017-08-11 2018-08-10 探测参考信号的传输方法、装置及系统 WO2019029738A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18844408.7A EP3573277B1 (en) 2017-08-11 2018-08-10 Sounding reference signal, srs, transmission method, apparatus
US16/549,923 US10904896B2 (en) 2017-08-11 2019-08-23 Sounding reference signal transmission method and apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710687907.3A CN109391447B (zh) 2017-08-11 2017-08-11 探测参考信号的传输方法、装置及系统
CN201710687907.3 2017-08-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/549,923 Continuation US10904896B2 (en) 2017-08-11 2019-08-23 Sounding reference signal transmission method and apparatus, and system

Publications (1)

Publication Number Publication Date
WO2019029738A1 true WO2019029738A1 (zh) 2019-02-14

Family

ID=65271930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100106 WO2019029738A1 (zh) 2017-08-11 2018-08-10 探测参考信号的传输方法、装置及系统

Country Status (4)

Country Link
US (1) US10904896B2 (zh)
EP (1) EP3573277B1 (zh)
CN (1) CN109391447B (zh)
WO (1) WO2019029738A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113271189A (zh) * 2020-02-14 2021-08-17 维沃移动通信有限公司 传输方法及设备
WO2022067458A1 (en) * 2020-09-29 2022-04-07 Zte Corporation Method and device for sounding reference signal indication enhancement
CN114765513A (zh) * 2021-01-15 2022-07-19 维沃移动通信有限公司 Srs传输方法、装置、设备及存储介质
US20240195564A1 (en) * 2021-09-24 2024-06-13 Apple Inc. Srs collision handling
WO2023050302A1 (en) * 2021-09-30 2023-04-06 Lenovo (Beijing) Limited Collision handling for aperiodic srs triggering

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104137465A (zh) * 2012-03-19 2014-11-05 高通股份有限公司 增强的探测参考信号(srs)操作
CN104780032A (zh) * 2015-04-14 2015-07-15 大唐移动通信设备有限公司 一种自适应的下行CoMP传输方法和装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2748164T3 (es) * 2010-06-04 2020-03-13 Lg Electronics Inc Método y UE para transmitir una señal de referencia de sondeo en base a un desencadenamiento de señal de referencia de sondeo aperiódica y para para controlar la potencia de transmisión de enlace ascendente de una señal de referencia de sondeo
WO2012060641A2 (ko) * 2010-11-05 2012-05-10 (주)팬택 비주기적 참조신호를 송수신하는 방법 및 장치
CN105210403B (zh) * 2013-01-10 2019-04-05 韩国电子通信研究院 用于增强小小区的方法
US10790949B2 (en) * 2014-06-20 2020-09-29 Qualcomm Incorporated SRS in dual connectivity
CN105812088A (zh) * 2014-12-30 2016-07-27 中兴通讯股份有限公司 探测参考信号srs发送方法、装置及接收方法、装置
US10424407B2 (en) 2016-08-10 2019-09-24 Elwha Llc Systems and methods for individual identification and authorization utilizing conformable electronics
US20180323928A1 (en) * 2017-05-05 2018-11-08 Mediatek Inc. Sounding Reference Signal Design In Mobile Communications
US11310016B2 (en) * 2017-06-12 2022-04-19 Apple Inc. Sounding reference signal sequence design
US11239981B2 (en) * 2017-06-27 2022-02-01 Intel Corporation Multiplexing of channel state information reference signals (CSI-RS)
US11277294B2 (en) * 2017-07-12 2022-03-15 Lg Electronics Inc. Method and apparatus for supporting bandwidth part switching in wireless communication system
US20200252180A1 (en) * 2017-08-10 2020-08-06 Ntt Docomo, Inc. User terminal and radio communication method
US10575217B2 (en) * 2017-08-11 2020-02-25 Qualcomm Incorporated Techniques and apparatuses for managing sounding reference signal (SRS) transmissions in a bandwidth part
WO2019030413A1 (en) * 2017-08-11 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) SRS SIGNAL JUMPING PATTERN BASED ON USER EQUIPMENT BANDWIDTH CONFIGURATION
US11729782B2 (en) * 2018-06-11 2023-08-15 Apple Inc. Enhanced uplink beam management

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104137465A (zh) * 2012-03-19 2014-11-05 高通股份有限公司 增强的探测参考信号(srs)操作
CN104780032A (zh) * 2015-04-14 2015-07-15 大唐移动通信设备有限公司 一种自适应的下行CoMP传输方法和装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Details on Collision Handling for SRS Switching", 3GPP TSG RAN WGL MEETING #86BIS RI-1608589, 14 October 2016 (2016-10-14), XP051148648 *
SAMSUNG: "SRS Collisions due to Carrier Switching", 3GPP TSG RAN WGI #86BIS RI-1609031, 14 October 2016 (2016-10-14), XP051149084 *
See also references of EP3573277A4

Also Published As

Publication number Publication date
EP3573277B1 (en) 2022-12-21
US20190380134A1 (en) 2019-12-12
CN109391447A (zh) 2019-02-26
EP3573277A1 (en) 2019-11-27
CN109391447B (zh) 2020-10-09
EP3573277A4 (en) 2020-07-08
US10904896B2 (en) 2021-01-26

Similar Documents

Publication Publication Date Title
US20190335496A1 (en) Channel listening method and apparatus
US10904896B2 (en) Sounding reference signal transmission method and apparatus, and system
TW202118323A (zh) 頻寬部分操作系統及方法
WO2018028271A1 (zh) 一种控制信息传输方法、设备以及通信系统
US11523395B2 (en) Transmission direction configuration method, device, and system
US11258476B2 (en) Frequency hopping processing method and device
US12028760B2 (en) Communication method, apparatus, and system
US11395317B2 (en) Information sending and receiving method, and information sending and receiving apparatus
US12021794B2 (en) Communications method and apparatus
US20240032087A1 (en) Enhanced Physical Uplink Shared Channel Transmission in Wireless Communications
WO2021102785A1 (en) Flexible downlink control signal monitoring in wireless communications
US20230027281A1 (en) Control messaging for multi-beam communications
US20230261723A1 (en) Apparatus, Method, and Computer Program
US20210266983A1 (en) Data Sending Method, Data Receiving Method, Device, and System
WO2022017342A1 (zh) 上行传输方法、装置及设备
JP7380907B2 (ja) Lbt失敗を指示する方法及び装置
JP7516558B2 (ja) 切り替え方法及び装置
US20230337258A1 (en) Method for channel monitoring, terminal device, and non-transitory storage medium
WO2023207785A1 (zh) 终端操作方法、装置、终端及网络侧设备
WO2021208981A1 (zh) 一种目标信息发送方法、接收方法和装置
WO2022171005A1 (zh) 信道测量方法、lbt失败上报方法、装置及设备
CN115733505A (zh) 一种通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844408

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018844408

Country of ref document: EP

Effective date: 20190820

NENP Non-entry into the national phase

Ref country code: DE