WO2019029729A1 - 一种上报网络性能参数的方法及设备 - Google Patents

一种上报网络性能参数的方法及设备 Download PDF

Info

Publication number
WO2019029729A1
WO2019029729A1 PCT/CN2018/100074 CN2018100074W WO2019029729A1 WO 2019029729 A1 WO2019029729 A1 WO 2019029729A1 CN 2018100074 W CN2018100074 W CN 2018100074W WO 2019029729 A1 WO2019029729 A1 WO 2019029729A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
sampling
network device
period
reporting
Prior art date
Application number
PCT/CN2018/100074
Other languages
English (en)
French (fr)
Inventor
贾晓倩
陈君
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18843662.0A priority Critical patent/EP3661254A4/en
Publication of WO2019029729A1 publication Critical patent/WO2019029729A1/zh
Priority to US16/786,123 priority patent/US11109389B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method and a device for reporting network performance parameters.
  • the network management network element can create a measurement task about the network performance parameters and send the task to the base station.
  • the base station reports the parameters used to characterize the network performance to the network management network element according to the configuration requirements in the measurement task.
  • the network management network element monitors and evaluates the network according to the parameters reported by the base station.
  • Parameters used to characterize network performance may include physical resource block utilization (PRB Usage), air interface transmission rate, and the like.
  • the physical resource block utilization rate is an indicator for measuring the air interface resource of the base station.
  • the air interface transmission rate directly affects the user experience.
  • the network management network element can monitor the PRB usage of each cell to help operators and equipment vendors discover the problem of limited network resources and high user load.
  • the air interface transmission rate changes with the location of the terminal and the fluctuation of the channel quality.
  • the network management network element can monitor the air interface transmission rate of each terminal to prevent the air interface transmission rate from being too low and the user experience is poor.
  • the measurement task of the PRB Usage and the air interface transmission rate established by the network management network element usually requires the base station to report the PRB according to the reporting period of the minute or hour (for example, 5 minutes, 15 minutes, 30 minutes, 1 hour, etc.).
  • the average of the Usage and air interface transmission rates over a reporting period usually requires the base station to report the PRB according to the reporting period of the minute or hour (for example, 5 minutes, 15 minutes, 30 minutes, 1 hour, etc.).
  • the average of the Usage and air interface transmission rates over a reporting period usually requires the base station to report the PRB according to the reporting period of the minute or hour (for example, 5 minutes, 15 minutes, 30 minutes, 1 hour, etc.).
  • the average of the Usage and air interface transmission rates over a reporting period may occur, resulting in higher PRB Usage, limited resources, or lower air interface transmission rates.
  • the average reported by the base station cannot reflect these short-term bursts, which is not conducive to the evaluation of network performance by the network management network element.
  • the present application provides a method and a device for reporting network performance parameters, which are used to implement network performance parameters reported by a network device, which can reflect the integrity and burstiness of network performance in a corresponding time period.
  • the application provides a method for reporting network performance parameters, including:
  • the first network device acquires the sampling information, the reporting information, and the preset information of the at least one parameter value interval, where the sampling information is used to indicate a sampling period, the reporting information is used to indicate a reporting period, and the reporting period is the sampling N times the period, N is an integer greater than or equal to 1, the information of the at least one parameter value interval is used to indicate a parameter value range corresponding to each parameter value interval; the first network device performs in N sampling periods respectively Sampling to obtain N pieces of first parameter information; the first network device determines distribution information of the N first parameters in the at least one parameter value interval; the first network device uses the distribution situation information Send to the second network device.
  • the range of the first parameter is divided into sections, and the first network device performs sampling according to a preset sampling period, and the N first parameters obtained in the N sampling periods are in a preset interval.
  • the distribution is reported to the second network device, so that the second network device evaluates the network performance according to the distribution. Due to the distribution of the first parameter in the preset interval, the average performance and burstiness of the network performance in the N sampling periods are more reflected than the average value reported in the prior art, which is helpful for the second network device according to the distribution.
  • the network performance evaluation is performed, a more accurate network performance evaluation result is obtained.
  • At least one of the sampling information, the reporting information, and the information of the at least one parameter value interval is sent by the second network device to the first network device.
  • the first network device may receive the measurement task sent by the second network device, where the measurement task may include information of the first parameter, a sampling period, a reporting period, and information of a parameter value interval, and the first network device The first parameter is sampled and reported according to the measurement task.
  • the second network device since the various information may be sent by the second network device to the first network device, the second network device may indicate different sampling periods, reporting periods, or parameter interval information according to changes in the network environment.
  • At least one of the sampling information and the information of the at least one parameter value interval is preset information.
  • the first network device samples and reports the first parameter according to the sampling information pre-stored in the memory and the information of the at least one parameter value interval.
  • the determining, by the first network device, the distribution information of the N first parameters in the at least one parameter value interval including: determining that the N first parameters respectively fall into The number of each of the parameter value intervals.
  • the first network device reports the determined number of the first parameter corresponding to each parameter value interval to the second network device, which is helpful to the second network compared to the prior art that only the average value is reported to the second network.
  • the device can more fully understand the network performance in the N sampling periods, and the burst situation occurring in the time period corresponding to the N sampling periods is not reflected by the average value.
  • the determining, by the first network device, the distribution information of the N first parameters in the at least one parameter value interval including: determining that the N first parameters respectively fall into a quantity of each of the parameter value intervals; determining a ratio of the number of first parameters corresponding to each of the parameter value intervals to N.
  • the first network device reports the determined ratio of the number of the first parameter and the value of the N to the second network device, and compares the average value to the second network in the prior art.
  • the second network device can more fully understand the network performance in the N sampling periods, and the burst condition occurring in the time period corresponding to the N sampling periods is not reflected by the average value.
  • the first parameter includes at least one of a physical resource block utilization rate and an air interface transmission rate.
  • the sampling period includes k sampling sub-periods, and k is an integer greater than or equal to 1;
  • the first network device performs sampling in N sampling periods to obtain N first parameter information, including:
  • the first network device performs sampling in each sampling sub-period of the first sampling period, and obtains a quantity of physical resource blocks corresponding to the sampling sub-period for transmission, where the first sampling period is Describe any one of the N sampling periods;
  • the first network device determines a physical resource block utilization rate corresponding to the first sampling period according to the following formula:
  • M represents the physical resource block utilization corresponding to the first sampling period
  • M1 represents the number of physical resource blocks used for transmission
  • P represents the number of physical resource blocks available for transmission.
  • the first network device performs sampling in N sampling periods to obtain N first parameter information, including:
  • the first network device acquires, in a first sampling period, a data amount of each data packet transmitted and a transmission duration of each data packet, where the first sampling period is any one of the N sampling periods cycle;
  • the first network device determines an air interface transmission rate corresponding to the first sampling period according to the following formula:
  • Ipthroughput represents the air interface transmission rate
  • L represents that L packets are transmitted in the first sampling period
  • ThpVolDl(i) represents the data amount of the transmitted i-th packet
  • ThpTimeDl(i) represents the ith transmission.
  • the transmission duration of the data packet, i is an integer greater than or equal to 1 and less than or equal to L.
  • the application provides a method for reporting network performance parameters, including:
  • the first network device acquires at least one of sampling information and report information, where the sampling information is used to indicate a sampling period, and the reporting information is used to indicate a reporting period, where the reporting period is N times of the sampling period, N An integer that is greater than or equal to 1; the first network device performs sampling in the N sampling periods included in the reporting period to obtain N first parameter information, where N is an integer greater than or equal to 1; the first network The device sends the N first parameter information to the second network device.
  • the first network device performs sampling in the N sampling periods in a reporting period to obtain N first parameter information, and reports the N first parameter information to the second network device, so that the first network device
  • the network device evaluates the network performance according to the N first parameter information, and reflects the integrity and burstiness of the network performance in the N sampling periods more than the average value reported in the prior art.
  • the network device performs network performance evaluation, it obtains more accurate network performance evaluation results.
  • At least one of the foregoing sampling information and the reporting information is sent by the second network device to the first network device.
  • the first network device may receive the measurement task sent by the second network device, where the measurement task may include information of the first parameter, sampling information, and report information, where the first network device is configured according to the measurement task. One parameter is sampled and reported.
  • At least one of the sampling information and the reporting information is preset information.
  • the first network device samples and reports the first parameter according to the sampling information and the report information pre-stored in the memory.
  • the application provides a network device, where the network device can serve as a first network device, including: a processor, a memory and a transmitter respectively connected to the processor;
  • the processor is configured to invoke a computer program pre-stored in the memory to execute:
  • the sampling information is used to indicate a sampling period
  • the reporting information is used to indicate a reporting period
  • the reporting period is N times the sampling period, N is an integer greater than or equal to 1
  • the information of the parameter value interval is used to indicate a range of parameter values corresponding to each parameter value interval; sampling is performed in N sampling periods to obtain N firsts. Parameter information; determining distribution information of the N first parameters in the at least one parameter value interval;
  • the transmitter is configured to send the distribution situation information to a second network device.
  • At least one of the sampling information, the reporting information, and the information of the at least one parameter value interval is sent by the second network device to the first network device.
  • At least one of the sampling information and the information of the at least one parameter value interval is preset information.
  • the processor is specifically configured to: when determining a distribution of the N first parameters in the at least one parameter value interval:
  • the processor is specifically configured to: when determining a distribution of the N first parameters in the at least one parameter value interval:
  • the first parameter information includes at least one of a physical resource block utilization rate and an air interface transmission rate.
  • the processor when sampling in N sampling periods and obtaining N first parameter information, is specifically used to:
  • Sampling is performed in each sampling sub-period of the first sampling period, and the number of physical resource blocks for transmission corresponding to each sampling sub-period is obtained, where the first sampling period is in the N sampling periods. Any sampling period;
  • the physical resource block utilization rate corresponding to the first sampling period is determined according to the following formula:
  • M represents the physical resource block utilization corresponding to the first sampling period
  • M1 represents the number of physical resource blocks used for transmission
  • P represents the number of physical resource blocks available for transmission.
  • the processor when sampling in N sampling periods and obtaining N first parameter information, is specifically used to:
  • the air interface transmission rate corresponding to the first sampling period is determined according to the following formula:
  • Ipthroughput represents the air interface transmission rate
  • L represents that L packets are transmitted in the first sampling period
  • ThpVolDl(i) represents the data amount of the transmitted i-th packet
  • ThpTimeD1(i) represents the i-th packet.
  • the transmission duration, i is an integer greater than or equal to 1 and less than or equal to L.
  • the application provides a network device, where the network device can serve as a first network device, including: a processor, a memory and a transmitter respectively connected to the processor;
  • the processor is configured to invoke a computer program pre-stored in the memory to execute:
  • sampling information is used to indicate a sampling period
  • reporting information is used to indicate a reporting period
  • the reporting period is N times of the sampling period, and N is greater than or equal to 1
  • the integers are respectively sampled in the N sampling periods included in the reporting period to obtain N first parameter information, where N is an integer greater than or equal to 1;
  • the transmitter is configured to send the N first parameter information to a second network device.
  • At least one of the foregoing sampling information and the reporting information is sent by the second network device to the first network device.
  • the first network device may receive the measurement task sent by the second network device, where the measurement task may include information of the first parameter, sampling information, and report information, where the first network device is configured according to the measurement task. One parameter is sampled and reported.
  • At least one of the sampling information and the reporting information is preset information.
  • the first network device samples and reports the first parameter according to the sampling information and the report information pre-stored in the memory.
  • the present application provides a computer readable storage medium having stored therein computer instructions that, when executed on a computer, cause the computer to perform the first aspect or the second The method described in the aspects.
  • the application provides a network device, the network device being operative to perform the method described in the first aspect above.
  • the network device may include an obtaining module, a sampling module, a determining module, and a sending module.
  • the acquiring module is configured to acquire at least one of sampling information, reporting information, and preset information of at least one parameter value interval, where the sampling information is used to indicate a sampling period, and the reporting information is used to indicate a reporting period.
  • the reporting period is N times of the sampling period, and N is an integer greater than or equal to 1, and the information of the parameter value interval is used to indicate a range of parameter values corresponding to each parameter value interval;
  • a sampling module configured to respectively sample in N sampling periods to obtain N first parameter information
  • a determining module configured to determine distribution information of the N first parameters in the at least one parameter value interval
  • a sending module configured to send the distribution situation information to the second network device.
  • FIG. 1 is a schematic flowchart of a method for reporting network performance parameters according to the present application
  • FIG. 2 is a schematic diagram of partitioning a parameter value interval of a physical resource block utilization ratio provided by the present application
  • FIG. 3 is a schematic diagram of partitioning a parameter value interval of an air interface transmission rate provided by the present application.
  • FIG. 4 is a schematic flowchart diagram of another method for reporting network performance parameters according to the present application.
  • FIG. 5 is a schematic structural diagram of a network device according to the present application.
  • FIG. 6 is a second schematic structural diagram of a network device according to the present application.
  • FIG. 7 is a schematic structural diagram of another network device provided by the present application.
  • FIG. 8 is a second schematic structural diagram of another network device provided by the present application.
  • the office of strategic services can create a measurement task and send the measurement task to the base station.
  • the base station measures the measurement quantity configured in the measurement task and reports the measurement result to the OSS.
  • the base station obtains the average value of the physical resource block utilization rate in the period T, and reports the average value to the OSS, and the OSS performs network performance according to the average value reported by the base station. Evaluation.
  • the period T is usually taken as 5 minutes, 15 minutes, or 30 minutes or even longer. Therefore, the average value of the utilization rate of the physical resource blocks in the period T can represent the overall situation of the utilization of the physical resource block of the period T.
  • the physical resource block utilization suddenly rises to a larger value, but the physical resource block utilization rate at other times in the period T is generally higher. Low, so that the value is still low after the average is obtained, and the situation at the sudden moment cannot be reflected.
  • the measurement amount configured in the measurement task is the air interface transmission rate.
  • the OSS evaluates the network performance according to the measurement parameters reported by the base station, the evaluation result may be inaccurate, and the network may not be effectively regulated.
  • the present application provides a method for reporting network performance parameters, which is used to implement the reported network performance parameters, which can reflect the integrity of the network performance in the corresponding time period, and can reflect the burstiness of the network performance.
  • the first network device represents a device for reporting network performance parameters, such as a base station, and the like;
  • the second network device represents a device for receiving network performance parameters, such as a network management device such as an OSS.
  • FIG. 1 is a schematic flowchart of a method for reporting network performance parameters provided by the present application. As shown in the figure, the method may include the following steps:
  • Step 101 The first network device acquires sampling information, reporting information, and preset information of at least one parameter value interval.
  • the sampling information may be information for indicating a sampling period.
  • the sampling information may be a sampling period; or, since there is a predetermined mathematical relationship between the sampling period and the sampling frequency, the sampling information may also be a sampling frequency.
  • the first network device samples according to a sampling period.
  • the reporting information may be information indicating a reporting period, and the reporting period is usually N times the sampling period, and N is an integer greater than or equal to 1.
  • the reporting information may be a reporting period, or may be a reporting frequency, or may also be a value of N.
  • the first network device may determine a reporting period according to the sampling period and the value of N. The first network device reports the collected first parameter information or the processed first parameter information to the second network device according to the reporting period.
  • the sampling information indicates that the sampling period is 1 second
  • the reporting information indicates that the reporting period is 5 minutes
  • N is 300
  • the first network device acquires a first parameter information every 1 second, and obtains 300 first every 5 minutes.
  • the parameter information is processed, and the processing result is reported to the second network device.
  • the preset information of at least one parameter value interval is used to indicate a parameter value range corresponding to each parameter value interval.
  • the information of the parameter value interval may be the width of each parameter value interval, for example, the first parameter is a physical resource block utilization, and the preset parameter value is The intervals are [0%, 20%], (20%, 40%), (40%, 60%), (60%, 80%), and (81%, 100%), as shown in Figure 2.
  • the width of each interval is 20%. Therefore, the information of the parameter value interval can be 20%, then the first network device can equally divide the value range of the physical resource block utilization, and each interval after the equal division. The width is 20% to obtain the range of each parameter value range described above.
  • the information of the parameter value interval may also be the value range of each interval.
  • the information of the parameter value interval may include the value range of each interval.
  • the first parameter is the air interface transmission rate. Since the transmission rate is mostly concentrated between 0 and 1 Mbps, the divided parameter value intervals can be [0, 1], (1, 5), (5, respectively). , 10], (10, 15], (15, 20], (20, + ⁇ ) (in Mbps), as shown in Figure 3.
  • the distribution and change of the parameter values can be more accurately reflected.
  • the statistics of the first network device increase, and the reported content information increases accordingly. If the number of divided parameter value intervals is small, the statistics of the first network device are reduced, and the reported content information is correspondingly reduced, but the integrity and burstiness of the parameter values in the period T may not be accurately reflected. Therefore, when the parameter value interval is divided, the value range of the plurality of first parameters that have been collected may be referred to, and the value range of the first parameter when the network performance is better or worse.
  • the first parameter has a value range of [0, 100%], and the value range of the first parameter can be divided into several equal parts, for example, five equal parts.
  • the parameter value interval is [0%, 20%], (20%, 40%], (40%, 60%], (60%, 80%), and (81%, 100%); or, it can be combined
  • the correspondence between the value of the first parameter and the network performance is divided into sections.
  • the partitioned parameter value intervals are [0%, 20%], (20%, 70%), and (70%, 100%, respectively).
  • the value of the first parameter falls within the (70%, 100%) interval, it indicates that the physical resource block utilization rate is high at this time, and the network load is large, if the value of the first parameter falls (20%) In the interval of 70%], the utilization rate of the physical resource block is moderate and the network load is moderate. If the value of the first parameter falls within the interval of [0%, 20%], the utilization rate of the physical resource block is higher. Low, a lot of physical resources are idle.
  • the sampling information, the reporting information, and the information of the at least one parameter value interval are at least one of the preset information.
  • One or more of sampling information, reporting information, and information of at least one parameter value interval may be pre-stored in the memory of the first network device.
  • information of a sampling period, a reporting period, and a preset at least one parameter value interval may be defined, and then a sampling period, a reporting period, and a preset are pre-stored in a memory of the first network device.
  • the information of the at least one parameter value interval, the first network device may read the sampling period, the reporting period, and the preset information of the at least one parameter value interval from the memory.
  • At least one of the foregoing sampling information, the reporting period, and the preset at least one parameter value interval is sent by the second network device to the first network device.
  • the sampling period, the reporting period, and the parameter value interval of the first parameter of the first network device may be determined according to actual requirements, and the information is carried in the measurement task and sent to the measurement task.
  • the first network device determines the sampling period and the information of the parameter value interval according to the measurement task sent by the second network device.
  • the foregoing two implementation manners may be combined, that is, the sampling information, the reporting information, or the preset information of the at least one parameter value interval, the default value is pre-agreed, and the second network device sends the information to the first network device.
  • the sampling information, the reporting information, or the information of the parameter value interval the first network device determines the sampling period, the reporting period, and the range of each parameter value interval according to the sampling information, the reporting information, or the parameter value interval information sent by the second network device. If the second network device does not send the sampling information, the reporting information, or the parameter value interval information to the first network device, the first network device determines the sampling period, the reporting period, and each parameter value interval according to the pre-agreed default value. range.
  • Step 102 The first network device performs sampling in N sampling periods to obtain N first parameter information.
  • the first network device when the first network device samples in each sampling period, it may perform sampling at a certain time in the period, and determine a first parameter of the sampling period according to the parameter obtained by sampling at the time. information.
  • the physical resource block utilization rate corresponding to the sampling period can be calculated according to formula (1):
  • M represents the uplink (or downlink, or uplink, and downlink) physical resource block utilization in one sampling period
  • M1 represents the number of physical resource blocks used in the uplink transmission (or downlink transmission, or uplink transmission and downlink transmission).
  • P denotes the number of all physical resource blocks available for uplink transmission (or downlink transmission, or uplink transmission and downlink transmission).
  • the formula (1) adopts a rounding down algorithm, and it should be understood that the rounding down in the formula (1) can also be converted to rounding up.
  • a total of L data packets are transmitted, L is an integer greater than or equal to 1, and the first network device acquires the data amount ThpVolDl(i) of each data packet and the transmission duration of each data packet ThpTimeDl. (i), then determine the air interface transmission rate Ipthroughput for the period according to the following formula:
  • i is an integer greater than or equal to 1 and less than or equal to L.
  • the data amount of each data packet is in kilobits (kbits)
  • the transmission duration of each data packet is in ms
  • the air interface transmission rate can be multiplied by 1000 on the basis of formula (2) to transmit the air interface.
  • the unit of rate is converted to kbits/s to suit the application.
  • the transmission duration of each data packet is usually in ms, that is, a time transmission interval (TTI), and when calculating the transmission duration of one data packet, it can be obtained by subtracting the transmission start time from the transmission end time. Therefore, if a smaller packet completes transmission within one TTI, the time at which the transmission ends minus the start of transmission is zero. If each data packet is transmitted within one TTI in one sampling period, that is, if the value on the denominator in equation (2) is 0, then the air interface transmission rate on the sampling period is considered to be zero.
  • TTI time transmission interval
  • the first network device may further perform sampling multiple times in a sampling period, and determine first parameter information in the period according to the multiple sampling result.
  • the sampling period is further divided into k sampling sub-periods, and the first network device performs sampling on k sampling sub-periods, and obtains the physical resource block utilization rate of each sampling sub-period according to formula (1), or according to a formula.
  • (2) Obtain the air interface transmission rate of each sampling sub-cycle, and then average the physical resource block utilization rate or the air interface transmission rate of the k sub-cycles to obtain the physical resource block utilization rate or the air interface transmission rate in the sampling period.
  • Step 103 The first network device determines distribution information of the N first parameters in the at least one parameter value interval.
  • the first network device determines, for the at least one parameter value interval, that the number of the N first parameters respectively falls within each parameter value interval.
  • the first parameter is the physical resource block utilization rate and the parameter value interval are [0%, 20%], (20%, 40%], (40%, 60%), (60%, 80%), and
  • the first network device determines, for each parameter value interval, a quantity that the N first parameters respectively fall into each parameter value interval, and further determines a corresponding number of each parameter value interval. The ratio of the number of parameters to N.
  • the first parameter is the physical resource block utilization rate and the parameter value interval are [0%, 20%], (20%, 40%], (40%, 60%), (60%, 80%), and
  • the first network device then further determines the ratio of n 1 to N, the ratio of n 2 to N, the ratio of n 3 to N, the ratio of n 4 to N, and the ratio of n 5 to N.
  • Step 104 The first network device sends the determined distribution information to the second network device.
  • the first network device reports the quantity of the first parameter corresponding to each parameter value interval.
  • the first network device can send [n 1 , n 2 , n 3 , n 4 , n 5 ] to the second network device.
  • N 300, that is, the maximum number of first parameters corresponding to each parameter value interval is 300, which can be represented by 9 bits.
  • the distribution information reported by the first network device in one reporting period can be represented by 45 bits, and the signaling overhead and resource overhead are not large.
  • the first network device sets the number of the first parameter corresponding to each parameter value interval.
  • the ratio to N is reported to the second network device.
  • the first network device may send [n 1 /N,n 2 /N,n 3 /N,n 4 /N,n 5 /N] to the second network. device.
  • the second network device Compared with the prior art, only the average value is reported to the second network device, and the number of the first parameter corresponding to each parameter value interval is reported to the second network device, or the corresponding parameter value interval is The ratio of the number of the parameters to the value of the N is reported to the second network device, which helps the second network device to more fully understand the network performance in the N sampling periods, which occurs during the time period corresponding to the N sampling periods. Unexpected situations will not be reflected by the average.
  • the second network device may analyze the overall situation of the network performance in the N sampling periods, for example, analyzing the maximum number of the first parameters in the N sampling periods.
  • the parameter value interval may also be analyzed for the burst situation in the N sampling periods, for example, the number of the first parameter corresponding to the parameter value interval with a larger or smaller value is analyzed.
  • the value range of the first parameter is divided into sections, and the first network device performs sampling according to a preset sampling period, and reports the distribution information of the N sampling periods in the preset interval to the second network. And a device, so that the second network device evaluates network performance according to the distribution situation information. Because the distribution information of the first parameter in the preset interval is more than the average value reported in the prior art, the integrity and burstiness of the network performance in the N sampling periods are reflected, which is helpful to the second network device according to When the distribution information is used for network performance evaluation, a more accurate network performance evaluation result is obtained.
  • the present application further provides a method for reporting network performance parameters, which is used to implement the reported network performance parameters, which can reflect the integrity of the network performance in the corresponding time period, and can reflect the network performance. Sudden.
  • FIG. 4 is a schematic flowchart of a method for reporting network performance parameters provided by the present application. As shown in the figure, the method may include the following steps:
  • Step 401 The first network device acquires at least one of sampling information and reporting information.
  • the sampling information is used to indicate a sampling period
  • the reporting information is used to indicate a reporting period
  • the reporting period is N times the sampling period, and N is an integer greater than or equal to 1.
  • the reporting information may also be a value of N
  • the first network device may further determine the reporting period according to the sampling period and the value of N.
  • At least one of the sampling information and the reporting information is preset information.
  • the sampling period and the reporting period may be defined. Then, the sampling period and the reporting period may be pre-stored in the memory of the first network device, and the first network device may read the sampling period and the reporting period from the memory. .
  • At least one of the sampling information and the reporting information is sent by the second network device to the first network device.
  • the sampling period and the reporting period of the first network device may be determined according to actual requirements, and the information is carried in the measurement task and sent to the first network device, where the first network device is configured according to the first network device.
  • the measurement task delivered by the second network device determines a sampling period and a reporting period.
  • the foregoing two implementation manners may be combined, that is, the default value of the sampling information and the reporting information is pre-stored in the memory of the first network device, if the second network device sends the sampling information to the first network device or If the information is reported, the first network device determines, according to the sampling information or the report information sent by the second network device, the sampling period, the reporting period, and the range of each parameter value interval; if the second network device does not send the sampling information to the first network device, When the information is reported, the first network device determines the sampling period and the reporting period according to the pre-stored default value.
  • Step 402 The first network device performs sampling in the N sampling periods included in the reporting period to obtain N first parameter information.
  • the first network device when the first network device samples in each sampling period, it may perform sampling at a certain time in the sampling period, and determine the first of the sampling period according to the parameter obtained by sampling at the time. Parameter information.
  • the first network device may further perform sampling in the sampling period, and determine the first parameter information in the sampling period by using the multiple sampling result.
  • Step 403 The first network device sends the foregoing N first parameter information to the second network device.
  • the second network device may analyze the overall situation of the network performance in the N sampling periods. For example, the second network device may collect the N first The average value of the parameters; the burst situation in the N sampling periods may also be analyzed. For example, the second network device may count the number and distribution of the larger or smaller values of the N first parameters.
  • the first network device performs sampling in the N sampling periods in a reporting period to obtain N first parameter information, and reports the N first parameter information to the second network device, so that the first network device
  • the network device evaluates the network performance according to the N first parameters, which is more than the average value reported in the prior art, and reflects the integrity and burstiness of the network performance in the N sampling periods, and the second network device can obtain the network performance. More information about network performance helps the second network device to obtain more accurate network performance evaluation results when performing network performance evaluation.
  • FIG. 5 is a schematic structural diagram of a network device according to an embodiment of the present disclosure. As shown in the figure, the network device includes: an obtaining module 501, a sampling module 502, a determining module 503, and a sending module 504.
  • the obtaining module 501 is configured to acquire at least one of sampling information, reporting information, and preset information of at least one parameter value interval, where the sampling information is used to indicate a sampling period, and the reporting information is used to indicate reporting
  • the period of the reporting period is N times the sampling period, and N is an integer greater than or equal to 1.
  • the information of the parameter value interval is used to indicate a range of parameter values corresponding to each parameter value interval.
  • the sampling module 502 is configured to perform sampling in N sampling periods respectively to obtain N first parameter information.
  • the determining module 503 is configured to determine distribution information of the N first parameters in the at least one parameter value interval.
  • the sending module 504 is configured to send the distribution situation information to the second network device.
  • At least one of the sampling information, the reporting information, and the information of the at least one parameter value interval is sent by the second network device to the first network device.
  • At least one of the sampling information and the information of the at least one parameter value interval is preset information.
  • the determining module 503 is specifically configured to: when determining a distribution of the N first parameters in the at least one parameter value interval:
  • the determining module 503 is specifically configured to: when determining a distribution of the N first parameters in the at least one parameter value interval:
  • the first parameter information includes at least one of a physical resource block utilization rate and an air interface transmission rate.
  • the sampling module 502 performs sampling in N sampling periods to obtain N first parameter information, and is specifically used to:
  • Sampling is performed in each sampling sub-period of the first sampling period, and the number of physical resource blocks for transmission corresponding to each sampling sub-period is obtained, where the first sampling period is in the N sampling periods. Any sampling period;
  • the physical resource block utilization rate corresponding to the first sampling period is determined according to the above formula (1).
  • the sampling module 502 performs sampling in N sampling periods to obtain N first parameter information, and is specifically used to:
  • the air interface transmission rate corresponding to the first sampling period is determined according to the above formula (2).
  • FIG. 6 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • the network device includes: a processor 601, a memory 602 and a transmitter 603 respectively connected to the processor 601.
  • the processor 601 is configured to invoke a computer program pre-stored in the memory 602 to execute:
  • the sampling information is used to indicate a sampling period
  • the reporting information is used to indicate a reporting period
  • the reporting period is N times the sampling period, N is an integer greater than or equal to 1
  • the information of the parameter value interval is used to indicate a range of parameter values corresponding to each parameter value interval; sampling is performed in N sampling periods to obtain N firsts. Parameter information; determining distribution information of the N first parameters in the at least one parameter value interval;
  • the transmitter 603 is configured to send the distribution situation information to the second network device.
  • At least one of the sampling information, the reporting information, and the information of the at least one parameter value interval is sent by the second network device to the first network device.
  • At least one of the sampling information and the information of the at least one parameter value interval is preset information.
  • the processor 601 is specifically configured to: when determining a distribution of the N first parameters in the at least one parameter value interval:
  • the processor 601 is specifically configured to: when determining a distribution of the N first parameters in the at least one parameter value interval:
  • the first parameter information includes at least one of a physical resource block utilization rate and an air interface transmission rate.
  • the processor 601 performs sampling in N sampling periods to obtain N first parameter information, and is specifically used to:
  • Sampling is performed in each sampling sub-period of the first sampling period, and the number of physical resource blocks for transmission corresponding to each sampling sub-period is obtained, where the first sampling period is in the N sampling periods. Any sampling period;
  • the physical resource block utilization rate corresponding to the first sampling period is determined according to the above formula (1).
  • the processor 601 performs sampling in N sampling periods to obtain N first parameter information, and is specifically used to:
  • the air interface transmission rate corresponding to the first sampling period is determined according to the above formula (2).
  • FIG. 7 is a schematic structural diagram of a network device according to an embodiment of the present disclosure. As shown in the figure, the network device includes: an obtaining module 701, a sampling module 702, and a sending module 703.
  • the obtaining module 701 is configured to acquire at least one of sampling information and the reporting information, where the sampling information is used to indicate a sampling period, the reporting information is used to indicate a reporting period, and the reporting period is the sampling period. N times, N is an integer greater than or equal to 1.
  • the sampling module 702 is configured to perform sampling in the N sampling periods included in the reporting period to obtain N first parameter information, where N is an integer greater than or equal to 1.
  • the sending module 703 is configured to send the N first parameter information to the second network device.
  • At least one of the foregoing sampling information and the reporting information is sent by the second network device to the first network device.
  • the first network device may receive the measurement task sent by the second network device, where the measurement task may include information of the first parameter, sampling information, and report information, where the first network device is configured according to the measurement task. One parameter is sampled and reported.
  • At least one of the sampling information and the reporting information is preset information.
  • the first network device samples and reports the first parameter according to the sampling information and the report information pre-stored in the memory.
  • FIG. 8 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • the network device includes: a processor 801, and a memory 802 and a transmitter 803 respectively connected to the processor 801.
  • the processor 801 is configured to invoke a computer program pre-stored in the memory 802 to execute:
  • sampling information is used to indicate a sampling period
  • reporting information is used to indicate a reporting period
  • the reporting period is N times of the sampling period, and N is greater than or equal to 1
  • the integers are respectively sampled in the N sampling periods included in the reporting period to obtain N first parameter information, where N is an integer greater than or equal to 1;
  • the transmitter 803 is configured to send the N first parameter information to the second network device.
  • At least one of the foregoing sampling information and the reporting information is sent by the second network device to the first network device.
  • the first network device may receive the measurement task sent by the second network device, where the measurement task may include information of the first parameter, sampling information, and report information, where the first network device is configured according to the measurement task. One parameter is sampled and reported.
  • At least one of the sampling information and the reporting information is preset information.
  • the first network device samples and reports the first parameter according to the sampling information and the report information pre-stored in the memory.
  • the embodiment of the present application further provides a computer readable storage medium, where the computer readable storage medium stores computer instructions, and when the instructions are run on a computer, causes the computer to execute the above method embodiments.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种上报网络性能参数的方法及设备。该方法中,第一网络设备获取采样信息和上报信息中的至少一种,所述采样信息用于指示采样周期,所述上报信息用于指示上报周期,所述上报周期是所述采样周期的N倍,N为大于等于1的整数;所述第一网络设备分别在上报周期包括的N个采样周期中进行采样,得到N个第一参数信息;所述第一网络设备将所述N个第一参数信息发送给第二网络设备。

Description

一种上报网络性能参数的方法及设备
本申请要求在2017年8月11日提交中国专利局、申请号为201710685419.9、发明名称为《一种上报网络性能参数的方法及设备》的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种上报网络性能参数的方法及设备。
背景技术
网管网元可以创建关于网络性能参数的测量任务,并将任务下发给基站。基站根据测量任务中的配置要求将用于表征网络性能的参数上报给网管网元。网管网元根据基站上报的参数对网络进行监测和评估。用于表征网络性能的参数可以包括物理资源块利用率(PRB Usage)、空口传输速率等。物理资源块利用率是度量基站空口资源的指标,空口传输速率的高低直接影响着用户体验。
由于长期演进(long term evolution,LTE)网络是自干扰系统,若PRB Usage过高,会导致频谱效率降低,运营商流量增速下降。因此网管网元可以监测各小区的PRB Usage,以帮助运营商和设备商及时发现网络资源受限、用户负载过高的问题。
空口传输速率会随着终端的位置变化以及信道质量的波动而改变,网管网元可以通过监测各终端的空口传输速率,来避免空口传输速率过低造成用户体验不佳。
在现有技术中,网管网元建立的关于PRB Usage、空口传输速率的测量任务,通常要求基站按照分钟或小时级的上报周期(例如5分钟、15分钟、30分钟、1小时等)上报PRB Usage和空口传输速率在一个上报周期内的平均值。然而,在很多场景下,会出现短时的业务突发现象或信道质量波动的现象,导致PRB Usage在短时间较高、资源受限,或者空口传输速率较低。而基站上报的平均值无法反映出这些短时突发现象,不利于网管网元对网络性能的评估。
发明内容
本申请提供一种上报网络性能参数的方法及设备,用于实现网络设备上报的网络性能参数能够反映出相应时间段内网络性能的整体性和突发性。
第一方面,本申请提供了一种上报网络性能参数的方法,包括:
第一网络设备获取采样信息、上报信息以及预设的至少一个参数值区间的信息,所述采样信息用于指示采样周期,所述上报信息用于指示上报周期,所述上报周期是所述采样周期的N倍,N为大于等于1的整数,所述至少一个参数值区间的信息用于指示每个参数值区间对应的参数值范围;所述第一网络设备分别在N个采样周期中进行采样,得到N个第一参数信息;所述第一网络设备确定所述N个第一参数在所述至少一个参数值区间内的分布情况信息;所述第一网络设备将所述分布情况信息发送给第二网络设备。
在上述方法中,预先对第一参数的取值范围进行区间划分,第一网络设备按照预设的采样周期进行采样,并将在N个采样周期获得的N个第一参数在预设区间的分布情况上报 给第二网络设备,以使第二网络设备根据所述分布情况对网络性能进行评估。由于第一参数在预设区间上的分布情况,比现有技术中上报的平均值更能反映出N个采样周期内网络性能的整体性和突发性,有助于第二网络设备根据分布情况进行网络性能评估时,得到更加准确的网络性能评估结果。
在一种可能的实现方式中,上述采样信息、上报信息和所述至少一个参数值区间的信息,至少一个是由第二网络设备发送给第一网络设备的。在一个具体实施例中,第一网络设备可以接收第二网络设备发送的测量任务,该测量任务中可以包括第一参数的信息、采样周期、上报周期以及参数值区间的信息,第一网络设备根据该测量任务对第一参数进行采样、上报。
在上述方法中,由于各种信息可以是由第二网络设备发送给第一网络设备的,因此,第二网络设备可以根据网络环境的变化,指示不同的采样周期、上报周期或参数区间信息。
在一种可能的实现方式中,上述采样信息以及所述至少一个参数值区间的信息,至少一个是预设信息。在一个具体的实施例中,第一网络设备根据存储器中预先存储的采样信息和至少一个参数值区间的信息对第一参数进行采样、上报。
在上述方法中,由于各种信息可以被预先设置,不必再由其他设备通知,节省了信令开销。
在一种可能的实现方式中,上述第一网络设备确定所述N个第一参数在所述至少一个参数值区间内的分布情况信息,包括:确定得到所述N个第一参数分别落入每个所述参数值区间的数量。
第一网络设备将确定出的每个参数值区间对应的第一参数的数量上报给第二网络设备,与现有技术中仅将平均值上报给第二网络相比,有助于第二网络设备可以更全面了解该N个采样周期中网络性能的情况,对于该N个采样周期对应的时间段内发生的突发状况,也不会由于求取平均值而无法体现。
在一种可能的实现方式中,所述第一网络设备确定所述N个第一参数在所述至少一个参数值区间内的分布情况信息,包括:确定所述N个第一参数分别落入每个所述参数值区间的数量;确定每个所述参数值区间所对应的第一参数的数量与N的比值。
第一网络设备将确定出的每个参数值区间对应的第一参数的数量与N的比值上报给第二网络设备,与现有技术中仅将平均值上报给第二网络相比,有助于第二网络设备可以更全面了解该N个采样周期中网络性能的情况,对于该N个采样周期对应的时间段内发生的突发状况,也不会由于求取平均值而无法体现。
在一种可能的实现方式中,所述第一参数包括物理资源块利用率和空口传输速率中的至少一种。
在一种可能的实现方式中,所述采样周期包括k个采样子周期,k为大于等于1的整数;
所述第一网络设备分别在N个采样周期中进行采样,得到N个第一参数信息,包括:
所述第一网络设备在第一采样周期中的每个采样子周期内进行采样,得到与所述每个采样子周期对应的用于传输的物理资源块数量,所述第一采样周期为所述N个采样周期中的任一采样周期;
所述第一网络设备根据下述公式确定与所述第一采样周期对应的物理资源块利用率:
Figure PCTCN2018100074-appb-000001
其中,M表示与所述第一采样周期对应的物理资源块利用率,M1表示用于传输的物理资源块数量,P表示可用于传输的物理资源块的数量。
在一种可能的实现方式中,所述第一网络设备分别在N个采样周期中进行采样,得到N个第一参数信息,包括:
所述第一网络设备在第一采样周期内,获取传输的每个数据包的数据量以及每个数据包的传输时长,所述第一采样周期为所述N个采样周期中的任一采样周期;
所述第一网络设备根据下述公式确定与所述第一采样周期对应的空口传输速率:
Figure PCTCN2018100074-appb-000002
其中,Ipthroughput表示空口传输速率,L表示所述第一采样周期内传输了L个数据包,ThpVolDl(i)表示传输的第i个数据包的数据量,ThpTimeDl(i)表示传输的第i个数据包的传输时长,i为大于等于1且小于等于L的整数。
第二方面,本申请提供了一种上报网络性能参数的方法,包括:
第一网络设备获取采样信息和上报信息中的至少一种,所述采样信息用于指示采样周期,所述上报信息用于指示上报周期,所述上报周期是所述采样周期的N倍,N为大于等于1的整数;所述第一网络设备分别在上报周期包括的N个采样周期中进行采样,得到N个第一参数信息,所述N为大于等于1的整数;所述第一网络设备将所述N个第一参数信息发送给第二网络设备。
在上述方法中,第一网络设备分别在一个上报周期中的N个采样周期中进行采样得到N个第一参数信息,并将该N个第一参数信息上报给第二网络设备,以使第二网络设备根据该N个第一参数信息对网络性能进行评估,比现有技术中上报的平均值更能反映出N个采样周期内网络性能的整体性和突发性,有助于第二网络设备进行网络性能评估时,得到更加准确的网络性能评估结果。
在一种可能的实现方式中,上述采样信息和上报信息,至少一个是由第二网络设备发送给第一网络设备的。在一个具体实施例中,第一网络设备可以接收第二网络设备发送的测量任务,该测量任务中可以包括第一参数的信息、采样信息以及上报信息,第一网络设备根据该测量任务对第一参数进行采样、上报。
在一种可能的实现方式中,上述采样信息和上报信息,至少一个是预设信息。在一个具体的实施例中,第一网络设备根据存储器中预先存储的采样信息和上报信息对第一参数进行采样、上报。
第三方面,本申请提供了一种网络设备,该网络设备可作为第一网络设备,包括:处理器,分别与所述处理器连接的存储器和发送器;
所述处理器,用于调用所述存储器中预先存储的计算机程序执行:
获取采样信息、上报信息以及预设的至少一个参数值区间的信息中的至少一种,所述采样信息用于指示采样周期,所述上报信息用于指示上报周期,所述上报周期是所述采样周期的N倍,N为大于等于1的整数,所述参数值区间的信息用于指示每个参数值区间对应的参数值范围;分别在N个采样周期中进行采样,得到N个第一参数信息;确定所述N 个第一参数在所述至少一个参数值区间内的分布情况信息;
所述发送器,用于将所述分布情况信息发送给第二网络设备。
在一种可能的实现方式中,所述采样信息、上报信息和所述至少一个参数值区间的信息,至少一个是由第二网络设备发送给第一网络设备的。
在一种可能的实现方式中,所述采样信息以及所述至少一个参数值区间的信息,至少一个是预设信息。
在一种可能的实现方式中,所述处理器,在确定所述N个第一参数在所述至少一个参数值区间内的分布情况时,具体用于:
确定得到所述N个第一参数分别落入每个所述参数值区间的数量。
在一种可能的实现方式中,所述处理器,在确定所述N个第一参数在所述至少一个参数值区间内的分布情况时,具体用于:
确定得到所述N个第一参数分别落入每个所述参数值区间的数量;
确定每个所述参数值区间所对应的第一参数的数量与N的比值。
在一种可能的实现方式中,所述第一参数信息包括物理资源块利用率和空口传输速率中的至少一种。
在一种可能的实现方式中,所述处理器,分别在N个采样周期中进行采样,得到N个第一参数信息时,具体用于:
在第一采样周期中的每个采样子周期内进行采样,得到与所述每个采样子周期对应的用于传输的物理资源块数量,所述第一采样周期为所述N个采样周期中的任一采样周期;
根据下述公式确定与所述第一采样周期对应的物理资源块利用率:
Figure PCTCN2018100074-appb-000003
其中,M表示与所述第一采样周期对应的物理资源块利用率,M1表示用于传输的物理资源块数量,P表示可用于传输的物理资源块的数量。
在一种可能的实现方式中,所述处理器,分别在N个采样周期中进行采样,得到N个第一参数信息时,具体用于:
在第一采样周期内,获取传输的每个数据包的数据量以及每个数据包的传输时长,所述第一采样周期为所述N个采样周期中的任一采样周期;
根据下述公式确定与所述第一采样周期对应的空口传输速率:
Figure PCTCN2018100074-appb-000004
其中,Ipthroughput表示空口传输速率,L表示所述第一采样周期内传输了L个数据包,ThpVolDl(i)表示传输的第i个数据包的数据量,ThpTimeDl(i)表示第i个数据包的传输时长,i为大于等于1且小于等于L的整数。
第四方面,本申请提供了一种网络设备,该网络设备可作为第一网络设备,包括:处理器,分别与所述处理器连接的存储器和发送器;
所述处理器,用于调用所述存储器中预先存储的计算机程序执行:
获取采样信息和上报信息中的至少一种,所述采样信息用于指示采样周期,所述上报信息用于指示上报周期,所述上报周期是所述采样周期的N倍,N为大于等于1的整数; 分别在上报周期包括的N个采样周期中进行采样,得到N个第一参数信息,所述N为大于等于1的整数;
所述发送器,用于将所述N个第一参数信息发送给第二网络设备。
在一种可能的实现方式中,上述采样信息和上报信息,至少一个是由第二网络设备发送给第一网络设备的。在一个具体实施例中,第一网络设备可以接收第二网络设备发送的测量任务,该测量任务中可以包括第一参数的信息、采样信息以及上报信息,第一网络设备根据该测量任务对第一参数进行采样、上报。
在一种可能的实现方式中,上述采样信息和上报信息,至少一个是预设信息。在一个具体的实施例中,第一网络设备根据存储器中预先存储的采样信息和上报信息对第一参数进行采样、上报。
第五方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当所述指令在计算机上运行时,使得计算机执行如上述第一方面或第二方面所述的方法。
第六方面,本申请提供了一种网络设备,所述网络设备可用于执行上述第一方面所述的方法。
在一种可能的实现方式中,该网络设备可以包括获取模块、采样模块、确定模块以及发送模块。
其中,获取模块,用于获取采样信息、上报信息以及预设的至少一个参数值区间的信息中的至少一种,所述采样信息用于指示采样周期,所述上报信息用于指示上报周期,所述上报周期是所述采样周期的N倍,N为大于等于1的整数,所述参数值区间的信息用于指示每个参数值区间对应的参数值范围;
采样模块,用于分别在N个采样周期中进行采样,得到N个第一参数信息;
确定模块,用于确定所述N个第一参数在所述至少一个参数值区间内的分布情况信息;
发送模块,用于将所述分布情况信息发送给第二网络设备。
附图说明
图1为本申请提供的一种上报网络性能参数方法的流程示意图;
图2为本申请提供的物理资源块利用率的参数值区间划分示意图;
图3为本申请提供的空口传输速率的参数值区间划分示意图;
图4为本申请提供的另一种上报网络性能参数方法的流程示意图;
图5为本申请提供的一种网络设备的结构示意图之一;
图6为本申请提供的一种网络设备的结构示意图之二;
图7为本申请提供的另一种网络设备的结构示意图之一;
图8为本申请提供的另一种网络设备的结构示意图之二。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
运维支撑系统(the office of strategic services,OSS)可以创建测量任务,并将测量任 务下发给基站,基站对测量任务中配置的测量量进行测量,并将测量结果上报给OSS。
例如,测量任务中配置的测量量为物理资源块利用率时,基站获取周期T内物理资源块利用率平均值,并将该平均值上报给OSS,OSS根据基站上报的平均值对网络性能进行评估。
然而,在实际应用时,周期T通常取5分钟、15分钟或30分钟甚至更长,因此,周期T内物理资源块利用率的平均值,虽然能够表示周期T物理资源块利用率的整体情况,但是对于短时间的突发状况,例如由于较多数量的终端与基站同时进行通信导致物理资源块利用率突然上升到较大值,但是由于周期T内其他时刻的物理资源块利用率整体较低,使得在求取平均值后数值仍然较低,无法体现突发时刻的情况。
又例如,当测量任务中配置的测量量为空口传输速率时,也存在类似的问题。
由于基站上报的测量参数仅能够反映网络性能的整体性,无法反映突发状况。因此,OSS在根据基站上报的测量参数对网络性能进行评估时,可能存在评估结果不准确的情况,进而不能对网络进行有效的调控。
为了解决上述问题,本申请提供了一种上报网络性能参数的方法,用于实现上报的网络性能参数既能够反映出相应时间段内网络性能的整体性,又能反映网络性能的突发性。
在本申请实施例中,第一网络设备表示用于上报网络性能参数的设备,例如基站等;第二网络设备表示用于接收网络性能参数的设备,例如OSS等网管设备。
参见图1,为本申请提供的上报网络性能参数方法的流程示意图,如图所示,该方法可以包括以下步骤:
步骤101、第一网络设备获取采样信息、上报信息以及预设的至少一个参数值区间的信息。
其中,采样信息可以是用于指示采样周期的信息。具体地,采样信息可以是采样周期;或者,由于采样周期与采样频率之间存在既定的数学关系,因此采样信息也可以是采样频率。第一网络设备根据采样周期进行采样。
上报信息可以是用于指示上报周期的信息,上报周期通常为采样周期的N倍,N为大于等于1的整数。具体地,上报信息可以是上报周期,或者,也可以是上报频率,或者还可以是N的取值,第一网络设备可以根据采样周期和N的取值确定出上报周期。第一网络设备根据上报周期,将采集到的第一参数信息或者经过处理后的第一参数信息上报给第二网络设备。
例如,采样信息指示采样周期为1秒,上报信息指示上报周期为5分钟,那么N为300,第一网络设备每1秒获取一个第一参数信息,每5分钟对获取到的300个第一参数信息进行处理,并将处理结果上报给第二网络设备。
预设的至少一个参数值区间的信息,用于指示每个参数值区间对应的参数值范围。
在一个具体实施例中,若每个参数值区间的宽度相同,那么参数值区间的信息可以为每个参数值区间的宽度,例如,第一参数为物理资源块利用率,预设的参数值区间分别为[0%,20%]、(20%,40%]、(40%,60%]、(60%,80%]以及(81%,100%],如图2所示。由于每个区间的宽度均为20%,因此,参数值区间的信息可以为20%,那么第一网络设备则可以对物理资源块利用率的取值范围进行等分,且等分后每个区间的宽度为20%,以获得上述每个参数值区间的范围。
在另外一些实施例中,参数值区间的信息也可以是每个区间的取值范围,比如,当多 个参数值区间的宽度不同时,参数值区间的信息可以包括每个区间的取值范围。举一个具体的例子,第一参数为空口传输速率,由于传输速率大多时候集中在0~1Mbps之间,那么划分的参数值区间可以分别为[0,1]、(1,5]、(5,10]、(10,15]、(15,20]、(20,+∞](单位Mbps),如图3所示。
若划分的参数值区间的数量较多,则能够更精准的反映出参数值的分布、变化,然而,由于参数值区间较多,第一网络设备统计量增加,上报的内容信息也相应增加;若划分的参数值区间的数量较少,则第一网络设备的统计量减少,上报的内容信息也相应减少,但有可能无法精准反映出在周期T内参数值的整体性和突发性。因此,在对参数值区间进行划分时,可以参考已经采集到的多个第一参数的取值范围,以及网络性能较好或较差时第一参数的取值范围。
以第一参数为物理资源块利用率为例,那么第一参数的取值范围为[0,100%],可以对第一参数的取值范围进行若干等分,例如,等分的5个参数值区间分别为[0%,20%]、(20%,40%]、(40%,60%]、(60%,80%]以及(81%,100%];或者,还可以结合第一参数的取值与网络性能之间的对应关系进行区间划分,例如,划分后的参数值区间分别为[0%,20%]、(20%,70%]以及(70%,100%],其中,若第一参数的值落在(70%,100%]区间内,则说明此时物理资源块利用率较高,网络负荷较大,若第一参数的值落在(20%,70%]区间内,则说明此时物理资源块利用率较为适中,网络负荷适中,若第一参数的值落在[0%,20%]区间内,说明此时物理资源块利用率较低,大量物理资源被闲置。
应当理解,上述参数值区间的数量、每个参数值区间的取值范围均为举例说明,本申请对此不做限制。
在一种可能的实现方式中,上述采样信息、上报信息、至少一个参数值区间的信息,在这三者中至少一个是预设信息。第一网络设备的存储器中可以预先存储有采样信息、上报信息、至少一个参数值区间的信息中的一种或多种。例如,在未来的通信协议中可以对采样周期、上报周期和预设的至少一个参数值区间的信息进行限定,那么第一网络设备的存储器中则预先存储有采样周期、上报周期以及预设的至少一个参数值区间的信息,第一网络设备可以从存储器读取采样周期、上报周期以及预设的至少一个参数值区间的信息。
在另外一种可能的实现方式中,上述采样信息、上报周期、预设的至少一个参数值区间的信息,在这三者中至少一个是由是第二网络设备发送给第一网络设备的。例如,第二网络设备在创建测量任务时,可以根据实际需求确定第一网络设备的采样周期、上报周期以及第一参数的参数值区间如何划分,并将这些信息携带在测量任务中下发给第一网络设备,第一网络设备根据第二网络设备下发的测量任务确定采样周期以及参数值区间的信息。
可选地,还可以对上述两种实现方式进行结合,即对采样信息、上报信息或预设的至少一个参数值区间的信息,预先约定默认值,若第二网络设备向第一网络设备发送了采样信息、上报信息或参数值区间的信息,则第一网络设备根据第二网络设备发送的采样信息、上报信息或参数值区间的信息确定采样周期、上报周期以及每个参数值区间的范围;若第二网络设备没有向第一网络设备发送采样信息、上报信息或参数值区间的信息,则第一网络设备根据预先约定的默认值,确定采样周期、上报周期以及每个参数值区间的范围。
步骤102、第一网络设备分别在N个采样周期中进行采样,得到N个第一参数信息。
在一种可能的实现方式中,第一网络设备在每个采样周期中进行采样时,可以在该周 期内某个时刻上进行采样,根据该时刻采样得到的参数确定该采样周期的第一参数信息。
具体地,可以根据公式(1)进行计算得到与该采样周期对应的物理资源块利用率:
Figure PCTCN2018100074-appb-000005
其中,M表示一个采样周期内的上行(或下行、或上行和下行)物理资源块利用率,M1表示上行传输(或下行传输,或上行传输和下行传输)中所使用的物理资源块的数量,P表示所有可用于上行传输(或下行传输,或上行传输和下行传输)的物理资源块的数量。
为了统计方便,公式(1)采用了向下取整的算法,应当理解,公式(1)中的向下取整也可以变换为向上取整。
再例如,在一个采样周期内,共传输了L个数据包,L为大于等于1的整数,第一网络设备获取每个数据包的数据量ThpVolDl(i)以及每个数据包的传输时长ThpTimeDl(i),然后根据下述公式确定该周期的空口传输速率Ipthroughput:
Figure PCTCN2018100074-appb-000006
其中,i为大于等于1且小于等于L的整数。
通常,每个数据包的数据量的单位为千比特(kbits),每个数据包的传输时长的单位为ms,空口传输速率可以在公式(2)的基础上再乘以1000,将空口传输速率的单位转换为kbits/s,以符合应用习惯。
此外,由于通常每个数据包的传输时长的单位为ms,即一个时间传输间隔(TTI),而在计算一个数据包的传输时长时,可以通过传输结束的时间减去传输开始的时间获得,因此,若一个较小数据包在一个TTI内完成了传输,那么传输结束的时间减去传输开始的时间即为0。若一个采样周期内每个数据包均在一个TTI内完成传输,即若公式(2)中分母上的值为0时,那么则认为该采样周期上的空口传输速率为0。
在另外一种可能的实现方式中,第一网络设备还可以在采样周期内进行多次采样,并根据多次采样结果确定该周期内的第一参数信息。例如,将采样周期进一步划分为k个采样子周期,第一网络设备在k个采样子周期上进行采样,并根据公式(1)得到每个采样子周期的物理资源块利用率,或者根据公式(2)得到每个采样子周期的空口传输速率,然后对k个子周期的物理资源块利用率或空口传输速率求取平均值,得到该采样周期内的物理资源块利用率或空口传输速率。
步骤103、第一网络设备确定上述N个第一参数在上述至少一个参数值区间内的分布情况信息。
在一种可能的实现方式中,第一网络设备针对上述至少一个参数值区间,确定得到所述N个第一参数分别落入每个参数值区间的数量。
仍以第一参数为物理资源块利用率、参数值区间分别为[0%,20%]、(20%,40%]、(40%,60%]、(60%,80%]以及(81%,100%]为例,第一网络设备针对每个区间,确定落入该区间内的第一参数的数量,上述5个参数值区间分别对应的第一参数的数量为n 1、n 2、n 3、n 4以及n 5,其中,n 1、n 2、n 3、n 4以及n 5均为大于等于0的整数,且n 1+n 2+n 3+n 4+n 5=N,具体可如图2所示。
在另外一种可能的实现方式中,第一网络设备针对每个参数值区间,确定得到N个第一参数分别落入每个参数值区间的数量,并进一步确定每个参数值区间对应的第一参数的数量与N的比值。
仍以第一参数为物理资源块利用率、参数值区间分别为[0%,20%]、(20%,40%]、(40%,60%]、(60%,80%]以及(81%,100%]为例,第一网络设备针对每个区间,确定落入该区间内的第一参数的数量,上述5个参数值区间分别对应的第一参数的数量为n 1、n 2、n 3、n 4以及n 5,其中,n 1、n 2、n 3、n 4以及n 5均为大于等于0的整数,且n 1+n 2+n 3+n 4+n 5=N。然后第一网络设备进一步确定n 1与N的比值、n 2与N的比值、n 3与N的比值、n 4与N的比值、以及n 5与N的比值。
步骤104、第一网络设备将确定出的分布情况信息发送给第二网络设备。
如前所述,若第一网络设备确定出的分布情况信息为每个参数值区间对应的第一参数的数量,那么第一网络设备则将每个参数值区间对应的第一参数的数量上报给第二网络设备,例如,第一网络设备可以将[n 1,n 2,n 3,n 4,n 5]发送给第二网络设备。
举例说明,假设上报周期为5分钟,采样周期为1秒,那么N=300,即每个参数值区间对应的第一参数的数量最大为300,可用9个比特位表示,若按照上述共划分5个参数值区间的情况,那么第一网络设备在一个上报周期内上报的分布情况信息可以用45个比特位表示,信令开销、资源开销并不大。
若第一网络设备确定出的分布情况信息为每个参数值区间所对应的第一参数的数量与N的比值,那么第一网络设备则将每个参数值区间所对应的第一参数的数量与N的比值上报给第二网络设备,例如,第一网络设备可以将[n 1/N,n 2/N,n 3/N,n 4/N,n 5/N]发送给第二网络设备。
与现有技术中仅将平均值上报给第二网络设备相比,将每个参数值区间对应的第一参数的数量上报给第二网络设备,或者,将每个参数值区间所对应的第一参数的数量与N的比值上报给第二网络设备,有助于第二网络设备可以更全面了解该N个采样周期中网络性能的情况,对于该N个采样周期对应的时间段内发生的突发状况,也不会由于求取平均值而无法体现。
第二网络设备在接收到第一网络设备发送的分布情况信息之后,可以对该N个采样周期内网络性能的整体情况进行分析,例如,分析该N个采样周期内第一参数分布数量最多的参数值区间;也可以对该N个采样周期内的突发情况进行分析,例如,分析数值较大或较小的参数值区间对应的第一参数的数量。
在上述方法中,预先对第一参数的取值范围进行区间划分,第一网络设备按照预设的采样周期进行采样,并将N个采样周期在预设区间的分布情况信息上报给第二网络设备,以使第二网络设备根据所述分布情况信息对网络性能进行评估。由于第一参数在预设区间上的分布情况信息,比现有技术中上报的平均值更能反映出N个采样周期内网络性能的整体性和突发性,有助于第二网络设备根据分布情况信息进行网络性能评估时,得到更加准确的网络性能评估结果。
此外,为了解决上述技术问题,本申请还提供了一种上报网络性能参数的方法,用于实现上报的网络性能参数既能够反映出相应时间段内网络性能的整体性,又能反映网络性能的突发性。
参见图4,为本申请提供的上报网络性能参数方法的流程示意图,如图所示,该方法可以包括以下步骤:
步骤401、第一网络设备获取采样信息和上报信息中的至少一种。
其中,采样信息用于指示采样周期,上报信息用于指示上报周期,且上报周期为采样周期的N倍,N为大于等于1的整数。在一个具体的实施例中,上报信息也可以是N的取值,第一网络设备可以根据采样周期和N的取值,进一步确定出上报周期。
在一种可能的实现方式中,上述采样信息和上报信息,至少一个是预设信息。例如,在未来的通信协议可以对采样周期和上报周期进行限定,那么第一网络设备的存储器中可能预先存储有采样周期以及上报周期,第一网络设备可以从存储器中读取采样周期以及上报周期。
在另外一种可能的实现方式中,上述采样信息和上报信息,至少一个是由第二网络设备发送给第一网络设备的。例如,第二网络设备在创建测量任务时,可以根据实际需求确定第一网络设备的采样周期以及上报周期,并将这些信息携带在测量任务中下发给第一网络设备,第一网络设备根据第二网络设备下发的测量任务确定采样周期以及上报周期。
可选地,还可以对上述两种实现方式进行结合,即第一网络设备的存储器中预先存储有采样信息和上报信息的默认值,若第二网络设备向第一网络设备发送了采样信息或上报信息,则第一网络设备根据第二网络设备发送的采样信息或上报信息确定采样周期、上报周期以及每个参数值区间的范围;若第二网络设备没有向第一网络设备发送采样信息、上报信息,则第一网络设备根据预存的默认值,确定采样周期、上报周期。
步骤402、第一网络设备分别在上报周期包括的N个采样周期中进行采样,得到N个第一参数信息。
在一种可能的实现方式中,第一网络设备在每个采样周期中进行采样时,可以在该采样周期内某个时刻上进行采样,根据该时刻采样得到的参数确定该采样周期的第一参数信息。
在另外一种可能的实现方式中,第一网络设备还可以在该采样周期内进行多次采样,并将多次采样结果确定该采样周期内的第一参数信息。
具体实现方式与步骤102中的实现方式类似,此处不再一一赘述。
步骤403、第一网络设备将上述N个第一参数信息发送给第二网络设备。
第二网络设备在接收到第一网络设备发送的N个第一参数信息之后,可以对该N个采样周期内网络性能的整体情况进行分析,例如,第二网络设备可以统计该N个第一参数的平均值;也可以对该N个采样周期内的突发情况进行分析,例如,第二网络设备可以统计该N个第一参数中数值较大或较小的参数的数量及分布。
在上述方法中,第一网络设备分别在一个上报周期中的N个采样周期中进行采样得到N个第一参数信息,并将该N个第一参数信息上报给第二网络设备,以使第二网络设备根据该N个第一参数对网络性能进行评估,比现有技术中上报的平均值更能反映出N个采样周期内网络性能的整体性和突发性,第二网络设备可以获取到更多的关于网络性能的信息,有助于第二网络设备在进行网络性能评估时,得到更加准确的网络性能评估结果。
基于相同的技术构思,本申请实施例还提供了一种网络设备,该网络设备可用于实现上述方法实施例中第一网络设备所执行的步骤。参见图5,为本申请实施例提供的网络设备的结构示意图,如图所示,该网络设备包括:获取模块501、采样模块502、确定模块 503以及发送模块504。
具体地,获取模块501,用于获取采样信息、上报信息以及预设的至少一个参数值区间的信息中的至少一种,所述采样信息用于指示采样周期,所述上报信息用于指示上报周期,所述上报周期是所述采样周期的N倍,N为大于等于1的整数,所述参数值区间的信息用于指示每个参数值区间对应的参数值范围。
采样模块502,用于分别在N个采样周期中进行采样,得到N个第一参数信息。
确定模块503,用于确定所述N个第一参数在所述至少一个参数值区间内的分布情况信息。
发送模块504,用于将所述分布情况信息发送给第二网络设备。
在一种可能的实现方式中,所述采样信息、上报信息和所述至少一个参数值区间的信息,至少一个是由第二网络设备发送给第一网络设备的。
在一种可能的实现方式中,所述采样信息以及所述至少一个参数值区间的信息,至少一个是预设信息。
在一种可能的实现方式中,所确定模块503,在确定所述N个第一参数在所述至少一个参数值区间内的分布情况时,具体用于:
确定得到所述N个第一参数分别落入每个所述参数值区间的数量。
在一种可能的实现方式中,所确定模块503,在确定所述N个第一参数在所述至少一个参数值区间内的分布情况时,具体用于:
确定得到所述N个第一参数分别落入每个所述参数值区间的数量;
确定每个所述参数值区间所对应的第一参数的数量与N的比值。
在一种可能的实现方式中,所述第一参数信息包括物理资源块利用率和空口传输速率中的至少一种。
在一种可能的实现方式中,所述采样模块502,分别在N个采样周期中进行采样,得到N个第一参数信息时,具体用于:
在第一采样周期中的每个采样子周期内进行采样,得到与所述每个采样子周期对应的用于传输的物理资源块数量,所述第一采样周期为所述N个采样周期中的任一采样周期;
根据上述公式(1)确定与所述第一采样周期对应的物理资源块利用率。
在一种可能的实现方式中,所述采样模块502,分别在N个采样周期中进行采样,得到N个第一参数信息时,具体用于:
在第一采样周期内,获取传输的每个数据包的数据量以及每个数据包的传输时长,所述第一采样周期为所述N个采样周期中的任一采样周期;
根据上述公式(2)确定与所述第一采样周期对应的空口传输速率。
基于相同的技术构思,本申请实施例还提供了一种网络设备,该网络设备可用于实现上述方法实施例中第一网络设备所执行的步骤。参见图6,为本申请实施例提供的网络设备的结构示意图,如图所示,该网络设备包括:处理器601,分别与所述处理器601连接的存储器602和发送器603。
所述处理器601,用于调用所述存储器602中预先存储的计算机程序执行:
获取采样信息、上报信息以及预设的至少一个参数值区间的信息中的至少一种,所述采样信息用于指示采样周期,所述上报信息用于指示上报周期,所述上报周期是所述采样周期的N倍,N为大于等于1的整数,所述参数值区间的信息用于指示每个参数值区间对 应的参数值范围;分别在N个采样周期中进行采样,得到N个第一参数信息;确定所述N个第一参数在所述至少一个参数值区间内的分布情况信息;
所述发送器603,用于将所述分布情况信息发送给第二网络设备。
在一种可能的实现方式中,所述采样信息、上报信息和所述至少一个参数值区间的信息,至少一个是由第二网络设备发送给第一网络设备的。
在一种可能的实现方式中,所述采样信息以及所述至少一个参数值区间的信息,至少一个是预设信息。
在一种可能的实现方式中,所述处理器601,在确定所述N个第一参数在所述至少一个参数值区间内的分布情况时,具体用于:
确定得到所述N个第一参数分别落入每个所述参数值区间的数量。
在一种可能的实现方式中,所述处理器601,在确定所述N个第一参数在所述至少一个参数值区间内的分布情况时,具体用于:
确定得到所述N个第一参数分别落入每个所述参数值区间的数量;
确定每个所述参数值区间所对应的第一参数的数量与N的比值。
在一种可能的实现方式中,所述第一参数信息包括物理资源块利用率和空口传输速率中的至少一种。
在一种可能的实现方式中,所述处理器601,分别在N个采样周期中进行采样,得到N个第一参数信息时,具体用于:
在第一采样周期中的每个采样子周期内进行采样,得到与所述每个采样子周期对应的用于传输的物理资源块数量,所述第一采样周期为所述N个采样周期中的任一采样周期;
根据上述公式(1)确定与所述第一采样周期对应的物理资源块利用率。
在一种可能的实现方式中,所述处理器601,分别在N个采样周期中进行采样,得到N个第一参数信息时,具体用于:
在第一采样周期内,获取传输的每个数据包的数据量以及每个数据包的传输时长,所述第一采样周期为所述N个采样周期中的任一采样周期;
根据上述公式(2)确定与所述第一采样周期对应的空口传输速率。
基于相同的技术构思,本申请实施例还提供了一种网络设备,该网络设备可用于实现上述方法实施例中第一网络设备所执行的步骤。参见图7,为本申请实施例提供的网络设备的结构示意图,如图所示,该网络设备包括:获取模块701、采样模块702以及发送模块703。
具体地,获取模块701,用于获取采样信息和上报信息中的至少一种,所述采样信息用于指示采样周期,所述上报信息用于指示上报周期,所述上报周期是所述采样周期的N倍,N为大于等于1的整数。
采样模块702,用于分别在上报周期包括的N个采样周期中进行采样,得到N个第一参数信息,所述N为大于等于1的整数。
发送模块703,用于将所述N个第一参数信息发送给第二网络设备。
在一种可能的实现方式中,上述采样信息和上报信息,至少一个是由第二网络设备发送给第一网络设备的。在一个具体实施例中,第一网络设备可以接收第二网络设备发送的测量任务,该测量任务中可以包括第一参数的信息、采样信息以及上报信息,第一网络设备根据该测量任务对第一参数进行采样、上报。
在一种可能的实现方式中,上述采样信息和上报信息,至少一个是预设信息。在一个具体的实施例中,第一网络设备根据存储器中预先存储的采样信息和上报信息对第一参数进行采样、上报。
基于相同的技术构思,本申请实施例还提供了一种网络设备,该网络设备可用于实现上述方法实施例中第一网络设备所执行的步骤。参见图8,为本申请实施例提供的网络设备的结构示意图,如图所示,该网络设备包括:处理器801,分别与所述处理器801连接的存储器802和发送器803。
所述处理器801,用于调用所述存储器802中预先存储的计算机程序执行:
获取采样信息和上报信息中的至少一种,所述采样信息用于指示采样周期,所述上报信息用于指示上报周期,所述上报周期是所述采样周期的N倍,N为大于等于1的整数;分别在上报周期包括的N个采样周期中进行采样,得到N个第一参数信息,所述N为大于等于1的整数;
所述发送器803,用于将所述N个第一参数信息发送给第二网络设备。
在一种可能的实现方式中,上述采样信息和上报信息,至少一个是由第二网络设备发送给第一网络设备的。在一个具体实施例中,第一网络设备可以接收第二网络设备发送的测量任务,该测量任务中可以包括第一参数的信息、采样信息以及上报信息,第一网络设备根据该测量任务对第一参数进行采样、上报。
在一种可能的实现方式中,上述采样信息和上报信息,至少一个是预设信息。在一个具体的实施例中,第一网络设备根据存储器中预先存储的采样信息和上报信息对第一参数进行采样、上报。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当所述指令在计算机上运行时,使得计算机执行上述方法实施例。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个 方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (24)

  1. 一种上报网络性能参数的方法,其特征在于,包括:
    第一网络设备获取采样信息和上报信息中的至少一种,所述采样信息用于指示采样周期,所述上报信息用于指示上报周期,所述上报周期是所述采样周期的N倍,N为大于等于1的整数;所述第一网络设备分别在上报周期包括的N个采样周期中进行采样,得到N个第一参数信息;所述第一网络设备将所述N个第一参数信息发送给第二网络设备。
  2. 如权利要求1所述的方法,其特征在于,所述采样信息和上报信息,至少一个是由第二网络设备发送给第一网络设备的。
  3. 如权利要求1所述的方法,其特征在于,在一种可能的实现方式中,上述采样信息和上报信息,至少一个是预设信息。
  4. 一种上报网络性能参数的方法,其特征在于,包括:
    第一网络设备获取采样信息、上报信息以及预设的至少一个参数值区间的信息中的至少一种,所述采样信息用于指示采样周期,所述上报信息用于指示上报周期,所述上报周期是所述采样周期的N倍,N为大于等于1的整数,所述参数值区间的信息用于指示每个参数值区间对应的参数值范围;
    所述第一网络设备分别在N个采样周期中进行采样,得到N个第一参数信息;
    所述第一网络设备确定所述N个第一参数在所述至少一个参数值区间内的分布情况信息;
    所述第一网络设备将所述分布情况信息发送给第二网络设备。
  5. 如权利要求4所述的方法,其特征在于,所述采样信息、上报信息和所述至少一个参数值区间的信息,至少一个是由第二网络设备发送给第一网络设备的。
  6. 如权利要求4所述的方法,其特征在于,所述采样信息以及所述至少一个参数值区间的信息,至少一个是预设信息。
  7. 如权利要求4所述的方法,其特征在于,所述第一网络设备确定所述N个第一参数在所述至少一个参数值区间内的分布情况,包括:
    确定得到所述N个第一参数分别落入每个所述参数值区间的数量。
  8. 如权利要求4所述的方法,其特征在于,所述第一网络设备确定所述N个第一参数在所述至少一个参数值区间内的分布情况,包括:
    确定得到所述N个第一参数分别落入每个所述参数值区间的数量;
    确定每个所述参数值区间所对应的第一参数的数量与N的比值。
  9. 如权利要求4所述的方法,其特征在于,所述第一参数信息包括物理资源块利用率和空口传输速率中的至少一种。
  10. 如权利要求4所述的方法,其特征在于,所述第一网络设备分别在N个采样周期中进行采样,得到N个第一参数信息,包括:
    所述第一网络设备在第一采样周期中的每个采样子周期内进行采样,得到与所述每个采样子周期对应的用于传输的物理资源块数量,所述第一采样周期为所述N个采样周期中的任一采样周期;
    所述第一网络设备根据下述公式确定与所述第一采样周期对应的物理资源块利用率:
    Figure PCTCN2018100074-appb-100001
    其中,M表示与所述第一采样周期对应的物理资源块利用率,M1表示用于传输的物理资源块数量,P表示可用于传输的物理资源块的数量。
  11. 如权利要求4所述的方法,其特征在于,所述第一网络设备分别在N个采样周期中进行采样,得到N个第一参数信息,包括:
    所述第一网络设备在第一采样周期内,获取传输的每个数据包的数据量以及每个数据包的传输时长,所述第一采样周期为所述N个采样周期中的任一采样周期;
    所述第一网络设备根据下述公式确定与所述第一采样周期对应的空口传输速率:
    Figure PCTCN2018100074-appb-100002
    其中,Ipthroughput表示空口传输速率,L表示所述第一采样周期内传输了L个数据包,ThpVolDl(i)表示传输的第i个数据包的数据量,ThpTimeDl(i)表示第i个数据包的传输时长,i为大于等于1且小于等于L的整数。
  12. 一种网络设备,所述网络设备作为第一网络设备,其特征在于,包括:处理器,分别与所述处理器连接的存储器和发送器;
    所述处理器,用于调用所述存储器中预先存储的计算机程序执行:
    获取采样信息和上报信息中的至少一种,所述采样信息用于指示采样周期,所述上报信息用于指示上报周期,所述上报周期是所述采样周期的N倍,N为大于等于1的整数;分别在上报周期包括的N个采样周期中进行采样,得到N个第一参数信息;
    所述发送器,用于将所述N个第一参数信息发送给第二网络设备。
  13. 如权利要求12所述的网络设备,其特征在于,所述采样信息和上报信息,至少一个是由第二网络设备发送给第一网络设备的。
  14. 如权利要求12所述的网络设备,其特征在于,所述采样信息和上报信息,至少一个是预设信息。
  15. 一种网络设备,所述网络设备作为第一网络设备,其特征在于,包括:处理器,分别与所述处理器连接的存储器和发送器;
    所述处理器,用于调用所述存储器中预先存储的计算机程序执行:
    获取采样信息、上报信息以及预设的至少一个参数值区间的信息中的至少一种,所述采样信息用于指示采样周期,所述上报信息用于指示上报周期,所述上报周期是所述采样周期的N倍,N为大于等于1的整数,所述参数值区间的信息用于指示每个参数值区间对应的参数值范围;分别在N个采样周期中进行采样,得到N个第一参数信息;确定所述N个第一参数在所述至少一个参数值区间内的分布情况信息;
    所述发送器,用于将所述分布情况信息发送给第二网络设备。
  16. 如权利要求15所述的网络设备,其特征在于,所述采样信息、上报信息和所述至少一个参数值区间的信息,至少一个是由第二网络设备发送给第一网络设备的。
  17. 如权利要求15所述的网络设备,其特征在于,所述采样信息以及所述至少一个参数值区间的信息,至少一个是预设信息。
  18. 如权利要求15所述的网络设备,其特征在于,所述处理器,在确定所述N个第 一参数在所述至少一个参数值区间内的分布情况时,具体用于:
    确定得到所述N个第一参数分别落入每个所述参数值区间的数量。
  19. 如权利要求15所述的网络设备,其特征在于,所述处理器,在确定所述N个第一参数在所述至少一个参数值区间内的分布情况时,具体用于:
    确定得到所述N个第一参数分别落入每个所述参数值区间的数量;
    确定每个所述参数值区间所对应的第一参数的数量与N的比值。
  20. 如权利要求15所述的网络设备,其特征在于,所述第一参数信息包括物理资源块利用率和空口传输速率中的至少一种。
  21. 如权利要求15所述的网络设备,其特征在于,所述处理器,分别在N个采样周期中进行采样,得到N个第一参数信息时,具体用于:
    在第一采样周期中的每个采样子周期内进行采样,得到与所述每个采样子周期对应的用于传输的物理资源块数量,所述第一采样周期为所述N个采样周期中的任一采样周期;
    根据下述公式确定与所述第一采样周期对应的物理资源块利用率:
    Figure PCTCN2018100074-appb-100003
    其中,M表示与所述第一采样周期对应的物理资源块利用率,M1表示用于传输的物理资源块数量,P表示可用于传输的物理资源块的数量。
  22. 如权利要求15所述的网络设备,其特征在于,所述处理器,分别在N个采样周期中进行采样,得到N个第一参数信息时,具体用于:
    在第一采样周期内,获取传输的每个数据包的数据量以及每个数据包的传输时长,所述第一采样周期为所述N个采样周期中的任一采样周期;
    根据下述公式确定与所述第一采样周期对应的空口传输速率:
    Figure PCTCN2018100074-appb-100004
    其中,IPthroughput表示空口传输速率,L表示所述第一采样周期内传输了L个数据包,ThpVolDl(i)表示传输的第i个数据包的数据量,ThpTimeDl(i)表示第i个数据包的传输时长,i为大于等于1且小于等于L的整数。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1-8任一所述的方法。
  24. 一种网络设备,其特征在于,所述网络设备用于执行所述权利要求1-8任一所述的上报网络性能参数方法。
PCT/CN2018/100074 2017-08-11 2018-08-10 一种上报网络性能参数的方法及设备 WO2019029729A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18843662.0A EP3661254A4 (en) 2017-08-11 2018-08-10 METHOD AND DEVICE FOR REPORTING NETWORK POWER PARAMETERS
US16/786,123 US11109389B2 (en) 2017-08-11 2020-02-10 Method for reporting network performance parameter and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710685419.9A CN109392002B (zh) 2017-08-11 2017-08-11 一种上报网络性能参数的方法及设备
CN201710685419.9 2017-08-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/786,123 Continuation US11109389B2 (en) 2017-08-11 2020-02-10 Method for reporting network performance parameter and device

Publications (1)

Publication Number Publication Date
WO2019029729A1 true WO2019029729A1 (zh) 2019-02-14

Family

ID=65271925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100074 WO2019029729A1 (zh) 2017-08-11 2018-08-10 一种上报网络性能参数的方法及设备

Country Status (4)

Country Link
US (1) US11109389B2 (zh)
EP (1) EP3661254A4 (zh)
CN (1) CN109392002B (zh)
WO (1) WO2019029729A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112188533B (zh) * 2019-07-03 2023-03-03 华为技术有限公司 一种网络性能的上报方法及装置
CN113114480B (zh) * 2020-01-10 2023-06-06 华为技术有限公司 一种数据的上报方法及相关设备
CN113572654B (zh) * 2020-04-29 2023-11-14 华为技术有限公司 网络性能监控方法、网络设备及存储介质
US11523321B1 (en) * 2021-05-14 2022-12-06 T-Mobile Innovations Llc Method and system for cell prioritization
CN116107487B (zh) * 2023-04-12 2023-08-08 上海励驰半导体有限公司 采样控制方法、相关设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6757681B1 (en) * 1998-06-02 2004-06-29 International Business Machines Corporation Method and system for providing performance data
CN103763741A (zh) * 2013-11-13 2014-04-30 北京青创智通科技有限公司 一种智能停车场无线通信方法及系统
CN103974295A (zh) * 2013-01-30 2014-08-06 华为技术有限公司 链路状态检测装置及其工作方法
CN104581804A (zh) * 2013-10-24 2015-04-29 普天信息技术研究院有限公司 物联网中固定终端状态检测的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100495988C (zh) * 2006-02-09 2009-06-03 华为技术有限公司 实现信令承载可用性检测的方法
CN103596212B (zh) * 2012-08-17 2017-09-29 电信科学技术研究院 异构网络下的层二测量及结果处理方法和设备
JP6048694B2 (ja) * 2012-08-29 2016-12-21 日本電気株式会社 通信システム、基地局、及び通信方法
WO2016037336A1 (en) * 2014-09-11 2016-03-17 Empire Technology Development Llc Data throughput control in a mobile wireless communication environment
US9888420B2 (en) * 2016-06-29 2018-02-06 Alcatel-Lucent Usa Inc. Processing handovers for mobile terminals capable of interference cancellation
US10361887B2 (en) * 2016-10-25 2019-07-23 Apple Inc. Time of arrival estimation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6757681B1 (en) * 1998-06-02 2004-06-29 International Business Machines Corporation Method and system for providing performance data
CN103974295A (zh) * 2013-01-30 2014-08-06 华为技术有限公司 链路状态检测装置及其工作方法
CN104581804A (zh) * 2013-10-24 2015-04-29 普天信息技术研究院有限公司 物联网中固定终端状态检测的方法
CN103763741A (zh) * 2013-11-13 2014-04-30 北京青创智通科技有限公司 一种智能停车场无线通信方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3661254A4

Also Published As

Publication number Publication date
US11109389B2 (en) 2021-08-31
CN109392002A (zh) 2019-02-26
EP3661254A1 (en) 2020-06-03
EP3661254A4 (en) 2020-12-30
CN109392002B (zh) 2022-07-12
US20200187218A1 (en) 2020-06-11

Similar Documents

Publication Publication Date Title
WO2019029729A1 (zh) 一种上报网络性能参数的方法及设备
KR101209697B1 (ko) 서비스 차별화된 무선 네트워크에서 QoS를 측정하고감시하는 방법
EP1861958B1 (en) MEASURING AND MONITORING QoS IN SERVICE DIFFERENTIATED WIRELESS NETWORKS
US11456929B2 (en) Control plane entity and management plane entity for exchaning network slice instance data for analytics
US7177271B2 (en) Method and system for managing admission to a network
US10887639B2 (en) Video data processing method and device
EP3952410A1 (en) Method and system for managing mobile network congestion
US20170041817A1 (en) Communication management apparatus, wireless terminal, and non-transitory machine-readable storage medium
CN107371179B (zh) 测量结果上报方法、测量结果接收方法、相关设备和系统
EP3873123A1 (en) Capacity planning method and device
CN114885359B (zh) 时延性能评估方法、接入网设备及存储介质
US10602386B2 (en) Method for measuring service transmission status of user equipment and service station
JP2020506622A (ja) Urllcのための拡張されたチャネル品質指標(cqi)測定手順
US9621438B2 (en) Network traffic management
WO2013026350A1 (zh) 一种系统性能评估方法及装置
CN107347196B (zh) 一种确定小区拥塞的方法及装置
US10104571B1 (en) System for distributing data using a designated device
CN100488310C (zh) 高速下行分组接入准入判决方法及其装置
US10177929B1 (en) System for distributing data to multiple devices
CN114466413A (zh) 一种带宽调节方法、通信装置及计算机可读存储介质
CN113992523B (zh) 一种数据采集方法及设备
CN112866128A (zh) 分布式网络的限速方法、装置及电子设备
Li et al. FSM-based Wi-Fi power estimation method for smart devices
CN103442406A (zh) 一种接入控制方法及装置
WO2017170088A1 (ja) 管理ノード、管理システム、管理方法およびコンピュータ読み取り可能記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18843662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018843662

Country of ref document: EP

Effective date: 20200224