WO2019029664A1 - 多连接通信的指示方法和执行方法、及对应装置和系统 - Google Patents

多连接通信的指示方法和执行方法、及对应装置和系统 Download PDF

Info

Publication number
WO2019029664A1
WO2019029664A1 PCT/CN2018/099826 CN2018099826W WO2019029664A1 WO 2019029664 A1 WO2019029664 A1 WO 2019029664A1 CN 2018099826 W CN2018099826 W CN 2018099826W WO 2019029664 A1 WO2019029664 A1 WO 2019029664A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection
working mode
data bearer
mode
transmission
Prior art date
Application number
PCT/CN2018/099826
Other languages
English (en)
French (fr)
Inventor
邹伟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2019029664A1 publication Critical patent/WO2019029664A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer

Definitions

  • the present disclosure relates to the field of wireless communication technologies, such as an indication method and an execution method related to multi-connection communication, and a corresponding apparatus and system.
  • the 5th Generation (5G) which is being researched by the 3rd Generation Partnership Project (3GPP), will achieve greater throughput, more user connections, lower latency, and more High reliability, and lower power consumption (including network side devices and user terminals).
  • 3GPP 3rd Generation Partnership Project
  • 5G technology goals to achieve 1000 times mobile data traffic growth per region by 2020, 10 to 100 times throughput per user equipment (User Equipment, UE), the number of connected devices 10 to 100 Double the growth, low power equipment 10 times longer battery life, and end-to-end 5 times delay.
  • 5G will adopt a unified technology architecture to support enhanced mobile broadband (eMBB) services, massive machine type communication (mMTC) services and high reliability and low latency (Ultra). Reliable and Low Latency) business.
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • Ultra high reliability and low latency
  • Reliable and Low Latency The reliability requirements of various businesses are different. For services that require high reliability, data packet replication can be introduced to send data.
  • the present application provides an indication method and an execution method for multi-connection communication, and a corresponding device and system, which implement an indication of an operation mode of multi-connection communication.
  • the present application provides a method for indicating multi-connection communication, which is applied to a first network node, including: determining an operation mode of a multi-connection data bearer; transmitting a multi-connection work mode notification to the second network node, indicating to the second network node Connect the working mode of the data bearer.
  • the application further provides a method for executing multi-connection communication, which is applied to the second network node, and includes: receiving a multi-connection working mode notification; and performing an operation mode switching according to the multi-connection working mode notification indicating the working mode.
  • the application also provides a multi-connection communication indicating device, which is disposed on the first network node, and includes:
  • Determining a module configured to determine a working mode of the multi-connection data bearer
  • the indication module is configured to send the multi-connection working mode notification to the second network node, and indicate the working mode of the multi-connection data bearer to the second network node.
  • the application further provides an apparatus for executing multi-connection communication, which is disposed on the second network node, and includes:
  • a receiving module configured to receive a multi-connection working mode notification
  • a switching module configured to perform an operation mode switching according to the indicated working mode of the multi-connection working mode notification.
  • FIG. 1 is a structural diagram of two related technologies for implementing dual-connection transmission
  • FIG. 2 is a flowchart of a method for indicating multi-connection communication according to an embodiment of the present application
  • FIG. 3 is a flowchart of a method for executing multi-connection communication according to an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of a pointing device for multi-connection communication according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an apparatus for executing multi-connection communication according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of three multi-connection communication working modes according to an embodiment of the present application.
  • FIG. 7 is a flowchart of determining, by a RLC entity of another sending and receiving node on the network side, a multi-connection communication working mode according to the configured event according to an embodiment of the present application;
  • FIG. 8 is a flowchart of determining a multi-connection communication working mode by a network according to an embodiment of the present application.
  • FIG. 9 is a bitmap diagram indicating a dual connectivity working mode according to an embodiment of the present application.
  • FIG. 10 is another bit map diagram indicating a dual connectivity working mode according to an embodiment of the present application.
  • CA Carrier Aggregation
  • a Radio Bearer has a Packet Data Convergence Protocol (PDCP) entity and two radio links. Layer Link Control (RLC) entity, a Media Access Control (MAC) entity. Each entity is located at the same transmission and receiving point (TRP).
  • TRP transmission and receiving point
  • the other is a Dual Connectivity (DC) architecture.
  • a radio bearer has one PDCP entity, two RLC entities, and two MAC entities. The PDCP entity, one RLC entity and one MAC entity are located in one TRP, and the other RLC entity and another MAC entity are located in another TRP.
  • dual-connected or multi-connected systems can also transmit data by selecting a connection of better quality, thereby increasing spectral efficiency.
  • a dual-connected or multi-connected system may also select two or more connections to simultaneously transmit different data to a user to increase the maximum rate of the user.
  • the embodiment of the present application provides a method for indicating multi-connection communication, which is applied to a first network node, and includes: steps S101 and S102.
  • step S101 an operation mode of the multi-connection data bearer is determined.
  • step S102 the multi-connection working mode notification is sent to the second network node, and the working mode of the multi-connection data bearer is indicated to the second network node.
  • the first network node is a network side device
  • the second network node is a user side device
  • the multi-connection working mode notification indicates the working mode of the multi-connection data bearer, and can effectively indicate the working mode of the multi-connection, thereby supporting dynamic switching of different multi-connection working modes, and fully utilizing channel characteristics of different connections to improve Reliability and spectral efficiency of packet transmission.
  • the working modes of the multi-connection data bearer in the embodiment of the present application include: single connection selective transmission, multiple connection sharing transmission, and multi-connection replication transmission.
  • the single connection selection transmission mode in the embodiment of the present application refers to: selecting one connection among a plurality of connections for data transmission.
  • Multi-connection split transmission refers to transmitting data packets on a multi-connection bearer in multiple connection-sharing manners. At this time, different data packets on the multi-connection bearer may be allocated to different connections by the base station or the user for subsequent transmission.
  • Multi-connection replication transmission refers to: after one or more replications of a packet on a multi-connection bearer, multiple identical data packets are allocated to multiple connections for transmission.
  • the above packet copy function may be located in the PDCP layer, that is, the PDCP Protocol Data Unit (PDU) is copied.
  • the multiple connection bearers may be connection bearers of the RLC layer.
  • the manner of determining the working mode of the multi-connection data bearer includes at least one of: determining according to an initial configuration of the data bearer; determining according to a trigger event configured in advance on the network side device; and configuring according to the user-side device in advance Trigger event determination; determined based on information of the multi-connection data bearer.
  • the working mode supported by the multi-connection data bearer in the embodiment of the present application may be defined in an initial configuration of the data bearer.
  • the mode of operation employed by the multi-connection data bearer can be defined in the initial configuration of the data bearer.
  • the information of the multi-connection data bearer includes at least one of the following:
  • the channel quality of each connection in the multi-connection data bearer the packet error rate of each connection in the multi-connection data bearer, and the load of each connection in the multi-connection data bearer.
  • the determining the working mode of the multi-connection data bearer comprises: measuring channel quality and channel load of each connection in the multi-connection data bearer. At least one of: obtaining a channel measurement result for each connection; determining one of the plurality of connections for data transmission based on channel measurement results for each connection in the multi-connection data carrier.
  • the triggering event configured in advance on the network side device includes: the first sending and receiving node configuring a triggering event to the second sending and receiving node by using a signaling interface between the sending and receiving nodes.
  • the triggering event in the embodiment of the present application may be configured in advance by the network side device or the user side device.
  • the network side device may configure a triggering event between the plurality of transmitting and receiving nodes through the Xn interface. After the triggering event occurs, multiple sending and receiving nodes can notify through the Xn interface to transmit information related to the triggering event. In an embodiment, after the trigger event is sent, multiple sending and receiving nodes may perform notification through the Xn interface to deliver the working mode of the desired multi-connection data bearer.
  • the multi-connection working mode notification is sent by at least one of: radio resource control RRC signaling, packet data convergence protocol PDCP control The protocol data unit PDU, and the control unit of the medium access control MAC layer.
  • the working mode of the multi-connection bearer changed in the embodiment of the present application may be notified by the network or the user to the opposite end (user or network).
  • the user and the network can perform corresponding multi-connection communication according to the received working mode of the changed multi-connection bearer.
  • the foregoing multi-connection working mode notification may be transmitted to the opposite end by means of signaling, and the signaling includes at least one of the following: RRC signaling, PDCP control PDU, and a control unit of the MAC layer.
  • the multi-connection working mode notification includes at least one of the following: an operation mode of the multi-connection data bearer;
  • a branch identifier of at least one connection of the working mode is used.
  • the at least one connected branch identifier is indicated by a logical channel identifier or by means of bitmap mapping.
  • the branch identifier of the connection in the embodiment of the present application may be a logical channel identifier, or may be indicated by a bitmap mapping manner, where the bitmap may be indicated by a single bitmap map or a plurality of bitmap maps. Ways to make joint instructions.
  • the at least one connected branch identification is indicated by a location in the bitmap.
  • the at least one connected branch identification is indicated by the location of at least one bit in the bitmap.
  • the working mode of the multi-connection data bearer is represented by a different value represented by at least one bit in the bitmap; or different working modes are different from a plurality of bits in the bitmap The bit position corresponds.
  • the correspondence between the different bit positions and the plurality of user connections may also be that a plurality of adjacent bits correspond to a connection with a certain user.
  • the mode of operation of the multi-connection data bearer described above can be represented by different bit values of a plurality of adjacent bits.
  • different operating modes may be associated with different bit positions of a plurality of bits; wherein a bit position of '1' or '0' indicates that its corresponding operating mode begins to start.
  • the working mode of the multi-connection data bearer is jointly indicated by means of a plurality of bitmap mappings; wherein different positions of each of the plurality of bitmaps represent different connections; The same bit positions of each of the plurality of bitmaps represent the same connection.
  • each of the plurality of bitmaps indicates a connection of an operational mode of the multi-connection data bearer.
  • a first bitmap in the plurality of bitmaps is used to represent a connection participating in performing a copy transmission; and a second bitmap in the plurality of bitmaps is used to indicate participation in a multi-connection sharing Data transfer.
  • the embodiment of the present application may use multiple bitmaps to indicate user connections using different working modes respectively; wherein different bit positions in each bitmap correspond to different users.
  • a bitmap can be used to indicate whether different user connections are participating in a connection for copy transmission; where different bit positions represent different user connections, the value of each bit indicating whether the connection is involved in a copy transmission.
  • a bitmap may be used to indicate whether different connections of a certain user participate in multi-connection sharing data transmission; wherein different bit positions indicate different user connections, and the value of each bit indicates whether the connection participates in multi-connection sharing data transmission.
  • the different values of 2 bits are used to indicate one or more of the following modes of operation: selecting a single-connection selective transmission of the first connection, selecting a second connection Single-connection selective transmission, dual-connection shared transmission, and dual-connection replication transmission.
  • a bit map may be used to indicate a working mode of a different connection of a certain user, wherein bit pairs of different positions (two bits form a bit pair) correspond to Different user connections.
  • a different value of 2 bits is used to indicate at least one mode of operation of the following connection: a single connection selects the transmission and selects the connection to transmit data, and the single connection selects the transmission and does not select the connection to transmit data, the connection participates in the dual connection
  • the transfer is shared and the connection participates in a dual-connection copy transfer.
  • the multi-connection data bearer is a dual-connection data bearer, respectively configuring the dual-connection as a primary connection and a secondary connection, indicating a working mode of the primary connection in the multi-connection working mode notification information
  • the working mode of the connection is derived from the working mode of the main connection.
  • the working mode of the changed multi-connection bearer When the working mode of the changed multi-connection bearer is notified by the network or the user to the opposite end (user or network), the working mode of the primary connection may be indicated only in the notification information.
  • the working mode of the connection can be derived from the working mode of the main connection.
  • a method for performing multi-connection communication in the embodiment of the present application is applied to a second network node, including: steps S202 and S203.
  • step S202 a multi-connection mode of operation notification is received.
  • step S203 the operation mode switching is performed according to the indicated operation mode of the multi-connection operation mode notification.
  • Performing the mode switching according to the indicated working mode of the multi-connection working mode notification includes at least one of the following:
  • the radio link layer is discarded to control the data packets buffered in the RLC entity.
  • the embodiment of the present application further provides a multi-connection communication indicating device, which is disposed on a first network node, and includes: a determining module and an indicating module.
  • the determination module is set to determine the working mode of the multi-connection data bearer.
  • the indication module is configured to send the multi-connection working mode notification to the second network node, and indicate the working mode of the multi-connection data bearer to the second network node.
  • the multi-connection working mode notification sent by the indication module includes at least one of the following:
  • a branch identifier of at least one connection of the working mode is used.
  • the connected branch identifier is indicated by a single bitmap mapping manner or integrated to indicate a working mode of the multi-connection data bearer by means of multiple bitmap mapping; different positions of the bitmap show different connections; each bitmap The same bit position represents the same connection.
  • the embodiment of the present application further provides an apparatus for performing multi-connection communication, which is disposed on a second network node, and includes: a receiving module and a switching module.
  • the receiving module is configured to receive the multi-connection working mode notification.
  • a switching module configured to perform an operation mode switching according to the indicated working mode of the multi-connection working mode notification.
  • the switching module performs the working mode switching according to the indicated working mode according to the multi-connection working mode notification, and includes at least one of the following:
  • the radio link layer is discarded to control the data packets buffered in the RLC entity.
  • the embodiment of the present application further provides a multi-connection communication system, including the above-mentioned multi-connection communication indication device and the above-described multi-connection communication execution device.
  • the embodiment of the present application further provides a pointing device for multi-connection communication, including: a memory and a processor,
  • the memory is configured as a program to store an indication of multi-connection communication
  • the processor is configured to execute the program to be set to:
  • the embodiment of the present application further provides an execution device for multi-connection communication, including: a memory and a processor,
  • the memory is configured to store a program of execution of the multi-connection communication
  • the processor is configured to execute the program to be set to:
  • the working mode switching is performed according to the indicated working mode of the multi-connection working mode notification.
  • the embodiment of the present application further provides a storage medium, which is set as a program for storing an indication of multi-connection communication, and the program is executed to be set as:
  • the embodiment of the present application further provides a storage medium, which is configured to store a program for executing the multi-connection communication, and the program is executed to be set as:
  • the working mode switching is performed according to the indicated working mode of the multi-connection working mode notification.
  • the working mode of the multi-connection data bearer may be single-connection selective transmission, multi-connection split transmission, or multi-connection replication transmission.
  • the single connection selection transmission mode refers to selecting one connection among a plurality of connections for data transmission. The above selection may be based on the channel quality of each connection and/or the channel load of each connection, or may be specified by the network side device.
  • PDCP3 in the single-connection selective transmission mode is set to select a connection and fixedly allocate the arriving data packet to it.
  • the above-mentioned multi-connection split transmission refers to transmitting data packets on a multi-connection bearer in a manner of multiple connection sharing. At this time, different data packets on the bearer may be allocated to different connections by the base station or the user for subsequent transmission. As shown in FIG. 6, PDCP3 in the multi-connection sharing transmission mode is set to allocate arriving packets to each connection according to certain criteria.
  • the multi-connection replication transmission refers to allocating a plurality of identical data packets to multiple connections for transmission after one or more data packets are copied on a multi-connection bearer.
  • the data packet replication function may be located in the PDCP layer, that is, the protocol data unit (PDU) of the PDCP is copied.
  • PDU protocol data unit
  • PDCP3 in the multi-connection copy transmission mode is set to transmit the same data packet to be copied to each connection after copying the arrived packet.
  • connection bearers described above may be connection bearers of the RLC layer.
  • the flow of the multi-connection communication working mode is determined by the RLC entity of another transmitting and receiving node on the network side according to the configured event, and the implementation process includes steps 1 to 7.
  • step 1 the transmitting and receiving node TRP1 where the network side PDCP3 is located sends an event configuration command to the transmitting and receiving node TRP2 where the network side RLC4 is located.
  • TRP2 configures related events and starts monitoring the configured events.
  • the specific event may be that the channel quality or load of a connection is above or below a certain threshold.
  • TRP2 sends an event configuration response to TRP1 to acknowledge receipt of the event configuration command described above.
  • TRP2 sends an event trigger report to TRP1 after detecting the corresponding event trigger.
  • TRP1 sends an event trigger report response to TRP2 to acknowledge receipt of the event trigger report described above.
  • TRP1 decides to change the subsequent multi-connection working mode according to the triggered event report, and sends a multi-connection working mode change notification to TRP2.
  • TRP1 can also decide to change the subsequent multi-connection working mode according to the local information without receiving the TRP2 trigger event report, and send a multi-connection working mode change notification to TRP2.
  • step 6 the TRP 2 sends a multi-connection mode of operation change response to the TRP 1 to acknowledge receipt of the multi-connection mode of operation change notification described above.
  • TRP1 and TRP2 perform the operations required for the multi-connection mode of operation change.
  • the RLC4 of the TRP2 may select one of the following operations:
  • a packet that is cached but has not yet been assigned a sequence number is sent or reported to TRP1, and the packet that has been assigned the sequence number but has not been successfully transmitted continues to be transmitted.
  • the RLC state is initialized.
  • the associated RLC initialization signaling is sent to the user.
  • step 11 the flow of determining the multi-connection communication working mode by the network is explained, and the implementation process includes step 11, step 21 and step 31.
  • step 11 the network decides to change the subsequent multi-connection working mode according to the local information or the triggered event, and sends a multi-connection working mode change notification to the user.
  • step 21 the user sends a multi-connection work mode change response to the network to acknowledge receipt of the multi-connection work mode change notification described above.
  • step 31 the network and the user perform the operations required for the multi-connection work mode change.
  • its RLC entity can choose to do one of the following:
  • a packet that is buffered but has not yet been assigned a sequence number is sent or reported to the PDCP, and the packet that has been assigned the sequence number but has not been successfully transmitted continues to be transmitted.
  • the RLC entity initializes the RLC state.
  • the network or the user sends the relevant RLC initialization signaling to the peer.
  • connection When a connection changes from a transport packet to a state where no packet is transmitted, its PDCP entity stops allocating packets to the connected RLC entity. When a connection changes from a non-transmitted packet to a transported packet, its PDCP entity begins to allocate packets to the connected RLC entity. After the network or user receives the RLC initialization signaling of a connection, the RLC state initialization of the connection is performed, and each RLC timer is reset.
  • bit mapping manner indicating a dual connection operation mode will be described. If the user has a total of 4 connections, the 4 bit pairs can be used in the bitmap to indicate the working mode of the 4 connections, wherein the bit pairs of each different location correspond to a fixed connection. When the value of a pair of bits is different, it indicates that the corresponding connection has a different working mode in the configured dual connection. For example, ⁇ can be used to indicate that the dual-connection mode of operation of the connection is a single-connection selection transmission mode, and the connection is selected to transmit data; 01 can be used to indicate that the dual-connection mode of operation of the connection is a single-connection selective transmission.
  • connection is not selected to transmit data
  • the operation mode of the dual connection in which the connection is located may be used to share the dual connection of the connection, and the operation mode of the dual connection in which the connection is located may be 11 Connect the participating dual-connection replication transport.
  • a similar method can be used to construct a longer bitmap when the user has more connections.
  • the two connections may be configured as a primary connection and a secondary connection, respectively.
  • the working mode of the changed multi-connection bearer is notified by the network or the user to the opposite end (user or network)
  • the working mode of the primary connection may be indicated only in the notification information.
  • the working mode of the connection can be derived from the working mode of the main connection. As shown in FIG.
  • connection 1 and connection 5 are configured as dual-connected primary and secondary connections
  • B1B2 when B1B2 is '00', it indicates that the dual-connection mode of operation is a single-connection selective transmission mode. Only connection 1 participates in packet transmission; '01' indicates that the dual connection mode of operation is a single connection selection transmission mode and only connection 5 participates in packet transmission; '10' indicates that the dual connection mode of operation is a shared transmission mode and connection 1 and 5 participate in the shared transmission of the data packet; '11' indicates that the dual connection mode of operation is the replication transmission mode and both connections 1 and 5 participate in the replication transmission of the data packet.
  • FIG. 10 Another bit mapping manner indicating a dual connectivity mode of operation is illustrated.
  • Two separate bit maps can be used to indicate the operational status of different connections in a multi-connection communication.
  • Figure 10(A) shows whether each connection participates in a copy packet transmission in which different bit positions correspond to different connections, and the value of each bit indicates whether the connection corresponding to the bit position participates in the copy packet transmission. For example, ‘ ⁇ ’ may be used to indicate no participation, and ‘1’ may indicate participation.
  • FIG. 10(B) shows whether each connection participates in the transmission of the shared data packet, in which different bit positions correspond to different connections, and the value of each bit indicates whether the connection corresponding to the bit position participates in the transmission of the shared data packet.
  • ‘ ⁇ ’ may be used to indicate no participation, and ‘1’ may indicate participation.
  • the working mode of the connection can be clearly defined by the values of the same connection in different bitmaps. For example, if the corresponding bit B1B5 of connection 1 in FIG. 10(A) and FIG. 10(B) is '00', it indicates that connection 1 does not participate in any transmission; '10' indicates that connection 1 participates in copy packet transmission; '01' indicates Participate in the sharing of data packets.
  • connection 1 and connection 2 are configured as two connections of a dual-connection bearer in the initial configuration, the value of B1B5B2B6 is 1010, indicating that the dual-connection mode of operation is the replication transmission mode, and connections 1 and 2 participate in the replication transmission.
  • 1000 indicates that the dual connection mode of operation is the copy transmission mode and only connection 1 participates in the packet transmission; 0010 indicates that the dual connection mode of operation is the copy transmission mode and only connection 2 participates in the packet transmission; 0101 indicates that the dual connection mode of operation is The transmission mode is shared and both connections 1 and 2 participate in packet transmission; 0100 indicates that the dual connection mode of operation is a single connection selection transmission mode and only connection 1 participates in packet transmission; 0001 indicates that the dual connection mode of operation is a single connection selection transmission mode and Only connection 2 participates in packet transmission.
  • the independent bit maps are used to indicate the copy and share characteristics of different connections, the working state of the slave connection cannot be directly derived from the master connection. Therefore, when the bit map of this figure is used, the working states of the two connections of the dual connection are indicated in the bit map.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出一种多连接通信的指示方法和执行方法、及对应装置和系统,所述指示方法,包括:确定多连接数据承载的工作模式;向第二网络节点发送多连接工作模式通知,向第二网络节点指示多连接数据承载的工作模式。所述执行方法,包括:接收多连接工作模式通知;根据所述多连接工作模式通知所指示的工作模式进行工作模式切换。

Description

多连接通信的指示方法和执行方法、及对应装置和系统
本申请要求在2017年08月10日提交中国专利局、申请号为201710682498.8的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及无线通信技术领域,例如涉及多连接通信的指示方法和执行方法、及对应装置和系统。
背景技术
在第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)正在研究的第五代移动通信技术(5th Generation,5G)将实现更大的吞吐量,更多的用户连接,更低时延,更高可靠性,和更低功耗(包括网络侧设备和用户终端)。目前,业界提出了5G技术目标是:到2020年左右,实现每区域1000倍的移动数据流量增长,每用户设备(User Equipment,UE)10到100倍的吞吐量增长,连接设备数10到100倍的增长,低功率设备10倍的电池寿命延长,以及端到端5倍延迟的下降。从应用场景的角度而言,5G将采用一个统一的技术架构来支持增强移动宽带(enhanced Mobile broadband,eMBB)业务,海量机器类(massive Machine Type Communication,mMTC)业务和高可靠低时延(Ultra Reliable and Low Latency)业务。各种业务对可靠性的要求是不一样的。对于要求高可靠性的业务,可以引入数据包复制的方式来发送数据。
但是,在多连接工作模式中,相关技术并没有解决如何提高数据包传输的可靠性。
发明内容
本申请提供多连接通信的指示方法和执行方法、及对应装置和系统,实现对多连接通信的工作模式进行指示。
本申请提供了一种多连接通信的指示方法,应用于第一网络节点,包括:确定多连接数据承载的工作模式;向第二网络节点发送多连接工作模式通知,向第二网络节点指示多连接数据承载的工作模式。
本申请还提供一种多连接通信的执行方法,应用于第二网络节点,包括: 接收多连接工作模式通知;根据所述多连接工作模式通知所指示的工作模式进行工作模式切换。
本申请还提供一种多连接通信的指示装置,设置于第一网络节点,包括:
确定模块,设置为确定多连接数据承载的工作模式;
指示模块,设置为向第二网络节点发送多连接工作模式通知,向第二网络节点指示多连接数据承载的工作模式。
本申请还提供一种多连接通信的执行装置,设置于第二网络节点,包括:
接收模块,设置为接收多连接工作模式通知;
切换模块,设置为根据所述多连接工作模式通知所指示的工作模式进行工作模式切换。
附图概述
图1为相关技术的两种实现双连接传输的架构图;
图2为本申请实施例的多连接通信的指示方法的流程图;
图3为本申请实施例的多连接通信的执行方法的流程图;
图4为本申请实施例的多连接通信的指示装置的结构示意图;
图5为本申请实施例的多连接通信的执行装置的结构示意图;
图6为本申请实施例的三种多连接通信工作模式的示意图;
图7为本申请实施例的由网络侧的另一发送接收节点的RLC实体根据所配置事件决定多连接通信工作模式的流程图;
图8为本申请实施例的由网络决定多连接通信工作模式流程图;
图9为本申请实施例的指示双连接工作模式的比特映射图;
图10为本申请实施例的指示双连接工作模式的另一种比特映射图。
具体实施方式
为使本申请的申请目的、技术方案和有益效果更加清楚明了,下面结合附图对本申请的实施例进行说明。在不冲突的情况下,本申请中的实施例和实施例中的特征可以相互任意组合。
如图1所示,当前3GPP的讨论中,实现双连接的架构有两种。一种是载波聚合(Carrier Aggregation,CA)架构,如图1(A)所示,一个无线承载(Radio Bearer)有一个分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)实体,两 个无线链路层控制(Radio Link Control,RLC)实体,一个介质访问控制(Media Access Control,MAC)实体。各个实体位于同一个发送接收节点(transmission and receiving point,TRP)。另外一种是双连接(Dual Connectivity,DC)架构,如图1(B),一个无线承载有一个PDCP实体,两个RLC实体,两个MAC实体。其中,PDCP实体,一个RLC实体和一个MAC实体位于一个TRP,另一个RLC实体和另一个MAC实体位于另一个TRP。
除了将数据包复制后在各个连接中传输来提高可靠性,双连接或多连接的系统还可以通过选择质量比较好的某个连接来传输数据,从而提高频谱效率。或者,双连接或多连接的系统也可以选择两个或多个连接同时传输不同的数据给某个用户来提高该用户的最大速率。
如图2所示,本申请实施例提供一种多连接通信的指示方法,应用于第一网络节点,包括:步骤S101和S102。
在步骤S101中,确定多连接数据承载的工作模式。
在步骤S102中,向第二网络节点发送多连接工作模式通知,向第二网络节点指示多连接数据承载的工作模式。
本申请实施例中第一网络节点为网络侧设备,第二网络节点为用户侧设备。
本申请通过多连接工作模式通知指示多连接数据承载的工作模式,可以有效的对多连接的工作模式进行指示,从而支持不同多连接工作模式的动态切换,能充分利用不同连接的信道特性来提高数据包传输的可靠性和频谱效率。
本申请实施例中所述多连接数据承载的工作模式包括:单连接选择传输、多连接分担传输、以及多连接复制传输。
本申请实施例单连接选择传输模式是指:在多个连接中选择一个连接进行数据传输。多连接分担(split)传输是指:以多个连接分担的方式传输多连接承载上的数据包。这时,上述多连接承载上的不同数据包可以由基站或用户分配给不同的连接进行后续传输。多连接复制传输是指:将某个多连接承载上的数据包进行一次或多次复制后,将多个相同的数据包分配给多个连接进行传输。上述数据包复制功能可以位于PDCP层内,即复制的是PDCP的协议数据单元(Protocol Data Unit,PDU)。其中,多个连接承载可以是RLC层的连接承载。
在一实施例中,确定多连接数据承载的工作模式的方式包括以下至少之一:根据数据承载的初始配置确定;根据预先在网络侧设备配置的触发事件确定;根据预先在用户侧设备配置的触发事件确定;根据多连接数据承载的信息确定。
本申请实施例中多连接数据承载所支持的工作模式可以在数据承载的初始配置中进行定义。多连接数据承载所采用的工作模式可以在数据承载的初始配置中进行定义。
其中,所述多连接数据承载的信息包括以下的至少一项:
多连接数据承载中每个连接的信道质量、多连接数据承载中每个连接的误包率、以及多连接数据承载中每个连接的负载。
在一实施例中,当所述多连接数据承载的工作模式为单连接选择传输时,所述确定多连接数据承载的工作模式包括:测量多连接数据承载中每个连接的信道质量和信道负荷中的至少之一,以得到每个连接的信道测量结果;基于所述多连接数据承载中每个连接的信道测量结果确定多个连接中的一个连接进行数据传输。
在一实施例中,预先在网络侧设备配置的触发事件包括:第一发送接收节点通过发送接收节点之间的信令接口向第二发送接收节点配置触发事件。
本申请实施例中的触发事件可以由网络侧设备或用户侧设备预先进行配置。在一实施例中,在多发送接收节点的情况下,网络侧设备可以通过Xn接口在多个发送接收节点之间配置触发事件。当触发事件发生后,多个发送接收节点之间可以通过Xn接口来进行通知,传递触发事件相关的信息。在一实施例中,当触发事件发送后,多个发送接收节点之间可以通过Xn接口来进行通知,传递期望的多连接数据承载的工作模式。
在一实施例中,在所述向第二网络节点发送多连接工作模式通知中,通过以下方式至少之一发送所述多连接工作模式通知:无线资源控制RRC信令,分组数据汇聚协议PDCP控制的协议数据单元PDU,以及介质访问控制MAC层的控制单元。
本申请实施例中所改变的多连接承载的工作模式可以由网络或用户通知对端(用户或网络)。用户和网络可以根据所收到的所改变的多连接承载的工作模式进行相应的多连接通信。上述的多连接工作模式通知可以通过信令的方式传输到对端,该信令包含下列至少之一:RRC信令,PDCP控制PDU,以及MAC层的控制单元。
在一实施例中,多连接工作模式通知包括以下至少之一:多连接数据承载的工作模式;
使用所述工作模式的至少一个连接的分支标识。
在一实施例中,所述至少一个连接的分支标识为逻辑信道标识或者通过比特图映射的方式进行指示。
本申请实施例中连接的分支标识可以是逻辑信道标识,也可以通过比特图映射的方式进行指示,其中,利用比特图的方式可以通过单个比特图映射的方式进行指示或者多个比特图映射的方式进行联合指示。
在一实施例中,所述至少一个连接的分支标识通过比特图中的位置进行指示。
在一实施例中,所述至少一个连接的分支标识通过比特图中的至少一个比特的位置进行指示。
在一实施例中,所述多连接数据承载的工作模式使用所述比特图中的至少一个比特所代表的不同的数值进行表示;或者不同工作模式与所述比特图中的多个比特的不同比特位置相对应。
上述不同比特位置和多个用户连接的对应关系也可以是多个相邻比特对应与某个用户的连接。例如,上述多连接数据承载的工作模式可以用多个相邻比特的不同的比特值表示。例如,可以将不同的工作模式和多个比特的不同比特位置相对应;其中某个比特位置置‘1’或‘0’表示其对应的工作模式开始启动。
在一实施例中,通过多个比特图映射的方式进行联合指示多连接数据承载的工作模式;其中,所述多个比特图中的每个比特图的不同位置表示不同的连接;其中,所述多个比特图中的每个比特图的相同比特位置表示相同的连接。
在一实施例中,所述多个比特图中的每个比特图指示所述多连接数据承载的一种工作模式的连接。
在一实施例中,使用所述多个比特映射图中的第一个比特图表示参与进行复制传输的连接;使用所述多个比特映射图中的第二个比特图指示参与进行多连接分担的数据传输。
本申请实施例可以使用多个比特图分别指示使用不同的工作模式的用户连接;其中每个比特图中不同比特位置对应与不同的用户连接。例如,可以使用一个比特图表示不同用户连接是否参与进行复制传输的连接;其中不同比特位置表示不同的用户连接,各比特的值指示该连接是否参与进行复制传输。例如,可以使用一个比特图指示某个用户的不同连接是否参与进行多连接分担的数据传输;其中不同比特位置表示不同的用户连接,各比特的值指示该连接是否参与进行多连接分担的数据传输。
在一实施例中,当多连接数据承载为双连接数据承载时,使用2比特的不同数值表示以下的一种或多种工作模式:选择第一连接的单连接选择传输,选择第二连接的单连接选择传输,双连接的分担传输,以及双连接的复制传输。
在一实施例中,当多连接数据承载为双连接数据承载时,可以使用一个比特图指示某个用户的不同连接的工作模式,其中不同位置的比特对(2比特构成一个比特对)对应于不同的用户连接。这时,使用2比特的不同数值表示以下的一个连接的至少一种工作模式:单连接选择传输并选择该连接传输数据,单连接选择传输并不选择该连接传输数据,该连接参与双连接的分担传输,该连接参与双连接的复制传输。
在一实施例中,当多连接数据承载为双连接数据承载时,分别将所述双连接配置为主连接和从连接,在所述多连接工作模式通知信息中指示主连接的工作模式,从连接的工作模式通过主连接的工作模式推导得知。
当所改变的多连接承载的工作模式由网络或用户通知对端(用户或网络)时,可以只在通知信息中指示主连接的工作模式。从连接的工作模式可以通过主连接的工作模式推导得知。
如图3所示,本申请实施例一种多连接通信的执行方法,应用于第二网络节点,包括:步骤S202和S203。
在步骤S202中,接收多连接工作模式通知。
在步骤S203中,根据所述多连接工作模式通知所指示的工作模式进行工作模式切换。
根据所述多连接工作模式通知所指示的工作模式进行工作模式切换包括以下至少之一:
发送分组数据汇聚协议PDCP状态报告给第一网络节点;
重置无线链路层控制RLC实体的参数;
丢弃无线链路层控制RLC实体中缓存的数据包。
如图4所示,本申请实施例还提供一种多连接通信的指示装置,设置于第一网络节点,包括:确定模块和指示模块。
确定模块,设置为确定多连接数据承载的工作模式。
指示模块,设置为向第二网络节点发送多连接工作模式通知,向第二网络节点指示多连接数据承载的工作模式。
在一实施例中,所述指示模块发送的多连接工作模式通知包括以下至少之 一:
多连接数据承载的工作模式;
使用所述工作模式的至少一个连接的分支标识。
所述连接的分支标识通过单个比特图映射的方式进行指示或者通过多个比特图映射的方式进行综合指示多连接数据承载的工作模式;比特图的不同位置表示不同的连接;每个比特图的相同比特位置表示相同的连接。
如图5所示,本申请实施例还提供一种多连接通信的执行装置,设置于第二网络节点,包括:接收模块和切换模块。
接收模块,设置为接收多连接工作模式通知。
切换模块,设置为根据所述多连接工作模式通知所指示的工作模式进行工作模式切换。
所述切换模块根据所述多连接工作模式通知所指示的工作模式进行工作模式切换包括以下至少之一:
发送分组数据汇聚协议PDCP状态报告给第一网络节点;
重置无线链路层控制RLC实体的参数;
丢弃无线链路层控制RLC实体中缓存的数据包。
本申请实施例还提供一种多连接通信系统,包括上述的多连接通信的指示装置和上述的多连接通信的执行装置。
本申请实施例还提供一种多连接通信的指示设备,包括:存储器和处理器,
所述存储器设置为存储多连接通信的指示的程序;
所述处理器,设置为执行所述程序,以设置为:
确定多连接数据承载的工作模式;
向第二网络节点发送多连接工作模式通知,向第二网络节点指示多连接数据承载的工作模式。
本申请实施例还提供一种多连接通信的执行设备,包括:存储器和处理器,
所述存储器设置为存储多连接通信的执行的程序;
所述处理器,设置为执行所述程序,以设置为:
接收多连接工作模式通知;
根据所述多连接工作模式通知所指示的工作模式进行工作模式切换。
本申请实施例还提供一种存储介质,设置为存储多连接通信的指示的程序,所述程序执行,以设置为:
确定多连接数据承载的工作模式;
向第二网络节点发送多连接工作模式通知,向第二网络节点指示多连接数据承载的工作模式。
本申请实施例还提供一种存储介质,设置为存储多连接通信的执行的程序,所述程序执行,以设置为:
接收多连接工作模式通知;
根据所述多连接工作模式通知所指示的工作模式进行工作模式切换。
如图6所示,多连接数据承载的工作模式可以是单连接选择传输,多连接分担(split)传输,或者多连接复制传输。其中,上述单连接选择传输模式是指在多个连接中选择一个连接进行数据传输。上述选择可以基于各连接的信道质量和/或各连接的信道负荷,也可以由网络侧设备进行规定。如图6所示,单连接选择传输模式中的PDCP3设置为选择某个连接,并把到达的数据包固定分配给它。
上述多连接分担(split)传输是指以多个连接分担的方式传输多连接承载上的数据包。这时,上述承载上的不同数据包可以由基站或用户分配给不同的连接进行后续传输。如图6所示,多连接分担传输模式中的PDCP3设置为把到达的数据包按一定准则分配给每个连接。
上述多连接复制传输是指将某个多连接承载上的数据包进行一次或多次复制后,将多个相同的数据包分配给多个连接进行传输。其中,上述数据包复制功能可以位于PDCP层内,即复制的是PDCP的协议数据单元(Protocol Data Unit,PDU)。如图6所示,多连接复制传输模式中的PDCP3设置为把到达的数据包复制以后将复制的相同数据包发送给每个连接。
上述的多个连接承载可以是RLC层的连接承载。
如图7所示,说明由网络侧的另一发送接收节点的RLC实体根据所配置事件决定多连接通信工作模式的流程,其实现过程包括步骤1至步骤7。
在步骤1中,网络侧PDCP3所在发送接收节点TRP1发送事件配置命令给网络侧RLC4所在的发送接收节点TRP2。TRP2在收到该命令后进行相关事件的配置并开始对所配置的事件进行监测。在一实施例中,具体的事件可以是某个连接的信道质量或负载高于或低于某个门限。
在步骤2中,TRP2发送事件配置响应给TRP1确认收到上述的事件配置命令。
在步骤3中,TRP2在检测到相应的事件触发后发送事件触发报告给TRP1.
在步骤4中,TRP1发送事件触发报告响应给TRP2确认收到上述的事件触发报告。
在步骤5中,TRP1根据触发的事件报告决定更改后续的多连接工作模式,并发送多连接工作模式改变通知给TRP2。TRP1也可以在没有收到TRP2触发事件报告的情况下根据本地的信息决定更改后续的多连接工作模式,并发送多连接工作模式改变通知给TRP2。
在步骤6中,TRP2发送多连接工作模式改变响应给TRP1确认收到上述的多连接工作模式改变通知。
在步骤7中,TRP1和TRP2进行多连接工作模式改变所需要的操作。当TRP2的连接从传输数据包改变为不传输数据包的状态时,TRP2的RLC4可以选择进行如下操作之一:
将缓存但还没有分配序列号的数据包发送或者报告TRP1,并继续发送已经分配序列号但没有发送成功的数据包。
将所有缓存的数据包发送或者报告TRP1,并立即停止发送数据包。在一实施例中,初始化RLC状态。在一实施例中,发送相关的RLC初始化信令给用户。
继续发送缓存的数据包。
如图8所示,说明由网络决定多连接通信工作模式的流程,其实现过程包括步骤11、步骤21和步骤31。
在步骤11中,网络根据本地信息或触发的事件决定更改后续的多连接工作模式,并发送多连接工作模式改变通知给用户。
在步骤21中,用户发送多连接工作模式改变响应给网络确认收到上述的多连接工作模式改变通知。
在步骤31中,网络和用户进行多连接工作模式改变所需要的操作。当某个连接从传输数据包改变为不传输数据包的状态时,其RLC实体可以选择进行如下操作之一:
将缓存但还没有分配序列号的数据包发送或者报告给PDCP,并继续发送已经分配序列号但没有发送成功的数据包。
将所有缓存的数据包发送或者报告PDCP,并立即停止发送数据包。在一实施例中,该RLC实体初始化RLC状态。在一实施例中,网络或用户发送相关的RLC初始化信令给对端。
继续发送缓存的数据包。
当某个连接从传输数据包改变为不传输数据包的状态时,其PDCP实体停止对该连接的RLC实体分配数据包。当某个连接从不传输数据包改变为传输数据包的状态时,其PDCP实体开始对该连接的RLC实体分配数据包。当网络或用户收到某连接的RLC初始化信令后,进行该连接的RLC状态初始化,并复位每个RLC计时器。
如图9所示,说明指示双连接工作模式的比特映射方式。如果用户一共有4个连接,可以在比特映射图中使用4个比特对分别指示4个连接的工作模式,其中每个不同位置的比特对对应一个固定的连接。当某个比特对的值不同时,表示其所对应的连接在所配置的双连接中的工作模式不同。例如,可以使用○○表示该连接所处的双连接的工作模式为单连接选择传输模式,并选择该连接传输数据;可以使用01表示该连接所处的双连接的工作模式为单连接选择传输并不选择该连接传输数据,可以使用1○表示该连接所处的双连接的工作模式为该连接参与的双连接的分担传输,可以使用11表示该连接所处的双连接的工作模式为该连接参与的双连接的复制传输。当用户有更多连接时,可以用类似的方法构造一个更长的比特映射图。在一实施例中,对于双连接承载,可以将两个连接分别配置为主连接和从连接。当所改变的多连接承载的工作模式由网络或用户通知对端(用户或网络)时,可以只在通知信息中指示主连接的工作模式。从连接的工作模式可以通过主连接的工作模式推导得知。如图9中,如果连接1和连接5(图9没有指示)被配置为双连接的主连接和从连接,则B1B2为‘00’时,表示该双连接的工作模式为单连接选择传输模式且只有连接1参加包传输;‘01’表示该双连接的工作模式为单连接选择传输模式且只有连接5参加包传输;‘10’表示该双连接的工作模式为分担传输模式且连接1和5均参加数据包的分担传输;‘11’表示该双连接的工作模式为复制传输模式且连接1和5均参加数据包的复制传输。
如图10所示,说明指示双连接工作模式的另一种比特映射方式。可以使用 两个独立的比特映射图分别表示不同连接在多连接通信的工作状态。图10(A)表示的是每个连接是否参与复制包传输,其中不同的比特位置对应于不同的连接,每个比特的值表示该比特位置对应的连接是否参与复制包传输。例如可以使用‘○’表示不参与,‘1’表示参与。图10(B)表示的是每个连接是否参与分担数据包的传输,其中不同的比特位置对应于不同的连接,每个比特的值表示该比特位置对应的连接是否参与分担数据包的传输。例如可以使用‘○’表示不参与,‘1’表示参与。这样,就可以通过同一连接在不同比特映射图中的值清晰的定义该连接的工作模式。例如,如果连接1在图10(A)和图10(B)中对应的比特B1B5为‘00’时,表示连接1不参加任何传输;‘10’表示连接1参与复制包传输;‘01’表示参与分担数据包的传输。如果连接1和连接2在初始配置时配置为某个双连接承载的两个连接,则B1B5B2B6的值为1010时表示该双连接的工作模式为复制传输模式,且连接1和2均参加复制传输;1000表示该双连接的工作模式为复制传输模式且只有连接1参加包传输;0010表示该双连接的工作模式为复制传输模式且只有连接2参加包传输;0101表示该双连接的工作模式为分担传输模式且连接1和2均参加包传输;0100表示该双连接的工作模式为单连接选择传输模式且只有连接1参加包传输;0001表示该双连接的工作模式为单连接选择传输模式且只有连接2参加包传输。在图10中,由于使用独立的比特映射图分别指示不同连接的复制和分担特性,所以不能从主连接直接推导出从连接的工作状态。所以采用本图的比特映射时,双连接的两个连接的工作状态都在比特映射图中进行指示。

Claims (29)

  1. 一种多连接通信的指示方法,应用于第一网络节点,包括:
    确定多连接数据承载的工作模式;
    向第二网络节点发送多连接工作模式通知,向第二网络节点指示所述多连接数据承载的工作模式。
  2. 如权利要求1所述的方法,其中,所述多连接数据承载的工作模式包括:
    单连接选择传输、多连接分担传输、以及多连接复制传输。
  3. 如权利要求1所述的方法,其中,确定多连接数据承载的工作模式的方式包括以下至少之一:
    根据数据承载的初始配置确定;
    根据预先在网络侧设备配置的触发事件确定;
    根据预先在用户侧设备配置的触发事件确定;
    根据多连接数据承载的信息确定。
  4. 如权利要求3所述的方法,其中,所述多连接数据承载的信息包括以下至少一项:
    所述多连接数据承载中每个连接的信道质量、所述多连接数据承载中每个连接的误包率、以及所述多连接数据承载中每个连接的负载。
  5. 如权利要求2所述的方法,其中,当所述多连接数据承载的工作模式为单连接选择传输时,所述确定多连接数据承载的工作模式包括:
    测量多连接数据承载中每个连接的信道质量和信道负荷中的至少之一,以得到每个连接的测量结果;
    基于所述多连接数据承载中每个连接的信道测量结果确定多个连接中的一个连接进行数据传输。
  6. 如权利要求3所述的方法,其中,预先在网络侧设备配置的触发事件包括:
    第一发送接收节点通过发送接收节点之间的信令接口向第二发送接收节点配置触发事件。
  7. 如权利要求1所述的方法,其中,在所述向第二网络节点发送多连接工作模式通知中,通过以下方式中至少之一发送所述多连接工作模式通知:
    无线资源控制RRC信令,分组数据汇聚协议PDCP控制的协议数据单元PDU,以及介质访问控制MAC层的控制单元。
  8. 如权利要求1所述的方法,其中,多连接工作模式通知包括以下至少之 一:
    所述多连接数据承载的工作模式;
    使用所述工作模式的至少一个连接的分支标识。
  9. 如权利要求8所述的方法,其中,所述至少一个连接的分支标识为逻辑信道标识。
  10. 如权利要求8所述的指示方法,其中,所述至少一个连接的分支标识通过比特图中的位置进行指示。
  11. 如权利要求10所述的方法,其中,所述至少一个连接的分支标识通过比特图中的至少一个比特的位置进行指示。
  12. 如权利要求10所述的方法,其中,所述多连接数据承载的工作模式使用所述比特图中的至少一个比特所代表的不同的数值进行表示;或者不同的工作模式与所述比特图中的多个比特的不同比特位置相对应。
  13. 如权利要求8所述的方法,其中,通过多个比特图映射的方式进行联合指示所述多连接数据承载的工作模式;其中,所述多个比特图中的每个比特图的不同位置表示不同的连接;所述多个比特图中的每个比特图的相同位置表示相同的连接。
  14. 如权利要求13所述的方法,其中,所述多个比特图中的每个比特图指示所述多连接数据承载的一种工作模式的连接。
  15. 如权利要求13所述的方法,其中,使用所述多个比特映射图中的第一个比特图表示参与进行复制传输的连接;使用所述多个比特映射图中的第二个比特图指示参与进行多连接分担的数据传输。
  16. 如权利要求10所述的方法,其中,当所述多连接数据承载为双连接数据承载时,使用2比特的不同数值表示以下至少一种工作模式:选择第一连接的单连接选择传输,选择第二连接的单连接选择传输,双连接的分担传输,以及双连接的复制传输。
  17. 如权利要求10所述的方法,其中,当所述多连接数据承载为双连接数据承载时,使用2比特的不同数值表示以下一个连接的至少一种工作模式:单连接选择传输并选择该连接传输数据,单连接选择传输并不选择该连接传输数据,该连接参与双连接的分担传输,该连接参与双连接的复制传输。
  18. 如权利要求8所述的方法,其中,当多连接数据承载为双连接数据承载时,分别将所述双连接配置为主连接和从连接,在所述多连接工作模式通知 信息中指示主连接的工作模式,从连接的工作模式通过所述主连接的工作模式推导得知。
  19. 一种多连接通信的执行方法,应用于第二网络节点,包括:
    接收多连接工作模式通知;
    根据所述多连接工作模式通知所指示的工作模式进行工作模式切换。
  20. 如权利要求19所述的方法,其中,根据所述多连接工作模式通知所指示的工作模式进行工作模式切换包括以下至少之一:
    发送分组数据汇聚协议PDCP状态报告给第一网络节点;
    重置无线链路层控制RLC实体的参数;
    丢弃所述无线链路层控制RLC实体中缓存的数据包。
  21. 一种多连接通信的指示装置,设置于第一网络节点,包括:
    确定模块,设置为确定多连接数据承载的工作模式;
    指示模块,设置为向第二网络节点发送多连接工作模式通知,向第二网络节点指示所述多连接数据承载的工作模式。
  22. 如权利要求21所述的装置,其中,所述指示模块发送的多连接工作模式通知包括以下至少之一:
    多连接数据承载的工作模式;
    使用所述工作模式的至少一个连接的分支标识。
  23. 如权利要求22所述的装置,其中,所述至少一个连接的分支标识通过单个比特图映射指示或者通过多个比特图映射联合指示所述多连接数据承载的工作模式;比特图的不同位置表示不同的连接;每个比特图的相同比特位置表示相同的连接。
  24. 一种多连接通信的执行装置,设置于第二网络节点,包括:
    接收模块,设置为接收多连接工作模式通知;
    切换模块,设置为根据所述多连接工作模式通知所指示的工作模式进行工作模式切换。
  25. 如权利要求24所述的装置,其中,所述切换模块根据所述多连接工作模式通知所指示的工作模式进行工作模式切换包括以下至少之一:
    发送分组数据汇聚协议PDCP状态报告给第一网络节点;
    重置无线链路层控制RLC实体的参数;
    丢弃所述无线链路层控制RLC实体中缓存的数据包。
  26. 一种多连接通信系统,包括如权利要求21-23所述的多连接通信的指示装置和如权利要求24-25所述的多连接通信的执行装置。
  27. 一种多连接通信的指示设备,包括:存储器和处理器,
    所述存储器设置为存储多连接通信的指示的程序;
    所述处理器,设置为执行所述程序,其中,所述程序运行时执行权利要求1至18中任一项所述的方法。
  28. 一种多连接通信的执行设备,包括:存储器和处理器,
    所述存储器设置为存储多连接通信的执行的程序;
    所述处理器,设置为执行所述程序,其中,所述程序运行时执行权利要求19至20中任一项所述的方法。
  29. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至18中或者权利要求19至21中任一项所述的方法。
PCT/CN2018/099826 2017-08-10 2018-08-10 多连接通信的指示方法和执行方法、及对应装置和系统 WO2019029664A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710682498.8 2017-08-10
CN201710682498.8A CN109392124A (zh) 2017-08-10 2017-08-10 多连接通信的指示方法和执行方法、及对应装置和系统

Publications (1)

Publication Number Publication Date
WO2019029664A1 true WO2019029664A1 (zh) 2019-02-14

Family

ID=65270998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099826 WO2019029664A1 (zh) 2017-08-10 2018-08-10 多连接通信的指示方法和执行方法、及对应装置和系统

Country Status (2)

Country Link
CN (1) CN109392124A (zh)
WO (1) WO2019029664A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110602786A (zh) * 2019-08-24 2019-12-20 江苏久鑫铜业有限公司 一种下行超可靠低时延数据传输方法
US20230422329A1 (en) * 2020-11-03 2023-12-28 Beijing Xiaomi Mobile Software Co., Ltd. Method for communication on multiple links, communication device, and storage medium
CN113825170A (zh) * 2020-11-24 2021-12-21 北京沃东天骏信息技术有限公司 用于确定网络通道的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159731A1 (ko) * 2015-04-03 2016-10-06 삼성전자 주식회사 무선 통신 시스템에서 다른 무선 접속 기술을 이용한 다중 연결을 제공하기 위한 장치 및 방법
CN106031237A (zh) * 2015-02-13 2016-10-12 瑞典爱立信有限公司 双连接的建立
CN106162895A (zh) * 2015-04-22 2016-11-23 中兴通讯股份有限公司 一种多连接通信的分布式协调方法和装置
CN106332046A (zh) * 2015-06-16 2017-01-11 北京信威通信技术股份有限公司 一种双连接dc模式下动态选择无线资源的方法
WO2017034449A1 (en) * 2015-08-26 2017-03-02 Telefonaktiebolaget Lm Ericsson (Publ) Uplink signaling for dual connectivity

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998491B (zh) * 2009-08-28 2013-04-24 华为技术有限公司 业务数据的传输方法、设备和通信系统
GB2504702A (en) * 2012-08-06 2014-02-12 Broadcom Corp Apparatus responds to a communication mode preference indication to change the behaviour for transmitting the communication mode preference indication
WO2014179982A1 (en) * 2013-05-10 2014-11-13 Broadcom Corporation Configurable protocol stack for dual connectivity
US20160219458A1 (en) * 2015-01-26 2016-07-28 Qualcomm Incorporated Methods and apparatus for radio link control switching

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106031237A (zh) * 2015-02-13 2016-10-12 瑞典爱立信有限公司 双连接的建立
WO2016159731A1 (ko) * 2015-04-03 2016-10-06 삼성전자 주식회사 무선 통신 시스템에서 다른 무선 접속 기술을 이용한 다중 연결을 제공하기 위한 장치 및 방법
CN106162895A (zh) * 2015-04-22 2016-11-23 中兴通讯股份有限公司 一种多连接通信的分布式协调方法和装置
CN106332046A (zh) * 2015-06-16 2017-01-11 北京信威通信技术股份有限公司 一种双连接dc模式下动态选择无线资源的方法
WO2017034449A1 (en) * 2015-08-26 2017-03-02 Telefonaktiebolaget Lm Ericsson (Publ) Uplink signaling for dual connectivity

Also Published As

Publication number Publication date
CN109392124A (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
RU2713442C1 (ru) Система и способ переключения сот
US20200178145A1 (en) Communication method, base station, terminal device, and system
CN112217716B (zh) 数据包路由的方法及设备、数据包传输的控制方法及设备
US20180270679A1 (en) Reliability-based multi-link communications
US10454827B2 (en) Method and devices for controlling usage of multi-path TCP
CN110249597A (zh) 一种QoS流处理方法、设备和通信系统
CN112352445B (zh) 用于在辅助和ad-hoc组合模式中发送和/或接收消息的设备
WO2018202153A1 (zh) 一种新型服务质量架构在双连接系统的配置方法及装置
WO2019024767A1 (zh) 释放ip地址的方法、装置、网络设备及系统
JP2017508364A (ja) セカンダリ基地局及びマスター基地局によって実行される通信方法、並びに対応する基地局
KR20130082154A (ko) 무선 디바이스에서 다수의 무선 액세스 베어러들의 재구성을 제어하기 위한 방법
US20200178138A1 (en) Communication method, base station, terminal device, and system
WO2018127219A1 (zh) 一种减少中断时延的方法、装置及用户设备
JP5926452B2 (ja) ワイヤレス通信ネットワークのネットワーク要素を運用する方法、およびネットワーク要素
CN110999382B (zh) 用于控制分组复制的方法及设备
WO2018202148A1 (zh) 一种数据传输方法、相关设备及系统
WO2019029664A1 (zh) 多连接通信的指示方法和执行方法、及对应装置和系统
WO2020164178A1 (zh) 一种数据传输方法及装置
JP2018500802A (ja) セカンダリ基地局ベアラの変更
WO2010075717A1 (zh) 用户上下行不同步切换的方法和装置
JP2021514596A (ja) Pdcp複製のnrユーザプレーンシグナリング制御されたトリガリング
CN114340041A (zh) 数据传输方法及装置
WO2020063401A1 (zh) 一种模式切换方法、数据流分流方法及装置
WO2021026706A1 (zh) 一种f1接口管理方法及装置
WO2016115868A1 (zh) 接入技术网络间的网络资源调整方法及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18844840

Country of ref document: EP

Kind code of ref document: A1