WO2019029482A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2019029482A1
WO2019029482A1 PCT/CN2018/098965 CN2018098965W WO2019029482A1 WO 2019029482 A1 WO2019029482 A1 WO 2019029482A1 CN 2018098965 W CN2018098965 W CN 2018098965W WO 2019029482 A1 WO2019029482 A1 WO 2019029482A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
symbol
configuration information
uplink transmission
symbol configuration
Prior art date
Application number
PCT/CN2018/098965
Other languages
English (en)
French (fr)
Inventor
曾召华
王阿妮
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2020506196A priority Critical patent/JP6997858B2/ja
Publication of WO2019029482A1 publication Critical patent/WO2019029482A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the field of communication technologies, for example, to a communication method and apparatus.
  • the frame structure of the Time Division Duplex (TDD) LTE system is configured as follows: In the TDD ratio 2, the symbols that can be used for uplink transmission have uplink pilot time slots (UpPTS, Uplink Pilot). Time Slot), Subframe #2, and Subframe#7, where Up to 2 uplink transmission symbols can be configured on UpPTS, and 12 symbols (Extended Cyclic Prefix) or 14 on Subfarme can be configured. Symbol (Normal Cyclic Prefix).
  • the frame structure is also fixed or fixed for a period of time.
  • Embodiments of the present disclosure provide a communication method and apparatus, which can implement symbol adaptive configuration of uplink transmission.
  • An embodiment of the present disclosure provides a communication method, including:
  • the base station transmits symbol configuration information, where the symbol configuration information is used to indicate at least one of: an uplink symbol that cannot be used for uplink transmission and an uplink symbol that can be used for uplink transmission.
  • An embodiment of the present disclosure provides a communication method, including:
  • UE User equipment
  • the symbol configuration information is used to indicate at least one of: an uplink symbol that cannot be used for uplink transmission and an uplink symbol that can be used for uplink transmission.
  • An embodiment of the present disclosure provides a communication apparatus, including:
  • a sending module configured to send symbol configuration information, where the symbol configuration information is used to indicate at least one of: an uplink symbol that cannot be used for uplink transmission and an uplink symbol that can be used for uplink transmission.
  • An embodiment of the present disclosure provides a communication apparatus, including:
  • the processing module is configured to perform uplink transmission on the uplink data according to the symbol configuration information
  • the symbol configuration information is used to indicate at least one of: an uplink symbol that cannot be used for uplink transmission and an uplink symbol that can be used for uplink transmission.
  • An embodiment of the present disclosure provides a base station, including: a memory, a processor, and a communication program stored on the memory and operable on the processor, where the communication program is implemented by the processor to implement the communication method .
  • An embodiment of the present disclosure provides a UE, including: a memory, a processor, and a communication program stored on the memory and operable on the processor, where the communication program is implemented by the processor to implement the communication method .
  • the embodiment of the present application further provides a computer readable medium storing a communication program, and the communication program is implemented by a processor to implement the communication method.
  • the embodiment of the present application further provides a computer readable medium storing a communication program, and the communication program is implemented by a processor to implement the communication method.
  • FIG. 1 is a schematic diagram of a frame structure of a TDD LTE system in the related art
  • FIG. 2 is a flowchart of a communication method according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a communication method according to another embodiment of the present disclosure.
  • FIG. 4 is a flowchart of a communication method according to another embodiment of the present disclosure.
  • FIG. 5 is a flowchart of a communication method according to another embodiment of the present disclosure.
  • FIG. 6 is a flowchart of a communication method according to another embodiment of the present disclosure.
  • FIG. 7 is a flowchart of a communication method according to another embodiment of the present disclosure.
  • FIG. 8 is a flowchart of a communication method according to another embodiment of the present disclosure.
  • FIG. 9 is a flowchart of a communication method according to another embodiment of the present disclosure.
  • FIG. 10 is a flowchart of a communication method according to another embodiment of the present disclosure.
  • FIG. 11 is a flowchart of a communication method according to another embodiment of the present disclosure.
  • FIG. 12 is a flowchart of a communication method according to another embodiment of the present disclosure.
  • FIG. 13 is a flowchart of a communication method according to another embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of a communication device according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic diagram of a communication device according to another embodiment of the present disclosure.
  • FIG. 16 is a schematic diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic diagram of a UE according to an embodiment of the present disclosure.
  • the interference on multiple uplink symbols may be different.
  • the interference on the uplink symbol decreases from the UpPTS.
  • the interference on multiple uplink symbols is also different.
  • the present disclosure provides a communication method and apparatus, introducing a symbol adaptation mechanism for uplink transmission to reduce the impact of interference on uplink transmission.
  • FIG. 2 is a flowchart of a communication method according to an embodiment of the present disclosure. As shown in FIG. 2, the communication method provided in this embodiment includes:
  • Step 201 The base station sends symbol configuration information.
  • the symbol configuration information is used to indicate at least one of the following: an uplink symbol that cannot be used for uplink transmission and an uplink symbol that can be used for uplink transmission.
  • the symbol configuration information may be carried by at least one of a cell level broadcast message and UE level authorization information.
  • the present disclosure is not limited thereto.
  • the symbol configuration information can also be carried by other messages.
  • the symbol configuration information carried by the cell-level broadcast message may be used to indicate to all UEs in the cell which uplink symbols are available for uplink transmission or which uplink symbols are not available for uplink transmission; symbol configuration carried by UE-level authorization information The information can be used to indicate to the UE which uplink symbols are available for uplink transmission or which uplink symbols are not available for uplink transmission.
  • the symbol configuration information may be carried by at least one of: a System Information Block (SIB), a Radio Resource Configuration Common Message in the Mobility Control Information (MobilityControlInfo ⁇ RadioResourceConfigCommon), and Downlink Control Information ( Downlink Control Information, DCI).
  • SIB System Information Block
  • MobilityControlInfo ⁇ RadioResourceConfigCommon Radio Resource Configuration Common Message in the Mobility Control Information
  • DCI Downlink Control Information
  • the communication method of the embodiment may further include:
  • Step 100 The base station detects a preset type of interference.
  • the base station may turn on the atmospheric waveguide detection function to perform atmospheric waveguide related interference detection, or the base station may perform interference detection of the uplink cross-slot.
  • Step 200 The base station determines symbol configuration information according to the interference detection result.
  • the base station may determine the uplink symbol that can be used for uplink transmission or the uplink symbol that cannot be used for uplink transmission according to the detection result of the atmospheric waveguide interference, or may be determined according to the detection result of the uplink cross-slot interference. Set symbol configuration information based on the determined information.
  • the base station may also use other detection methods to determine an uplink symbol that can be used for uplink transmission or an uplink symbol that cannot be used for uplink transmission.
  • the symbol configuration information may include: a value of a bit field corresponding to each uplink symbol in a period, where a value of a bit field corresponding to an uplink symbol that can be used for uplink transmission and an uplink that cannot be used for uplink transmission
  • the bit field corresponding to the symbol has a different value. For example, a bit field corresponding to an uplink symbol has a value of 0, indicating that the uplink symbol cannot be used for uplink transmission, and a bit field corresponding to one uplink symbol has a value of 1 indicating that the uplink symbol can be used for uplink transmission.
  • the symbol configuration information may include N-bit bit information, and the N-bit bit information has a mapping relationship with at least one of: an uplink symbol set that cannot be used for uplink transmission and a symbol that cannot be used for uplink transmission.
  • the total number; or, the N-bit information has a mapping relationship with at least one of the following: a set of uplink symbols available for uplink transmission and a total number of symbols available for uplink transmission.
  • N can be a positive integer greater than one.
  • the LTE system is used as an example
  • the base station may be configured to send the RRC SIB1 and the Mobility ControlInfo ⁇ RadioResourceConfigCommon
  • the UE may be used for the idle id (Idle) UE to obtain the uplink physics.
  • the symbol configuration information of the Physical Uplink Shared Channel (PUSCH) which can be used to switch the symbol configuration information of the uplink PUSCH of the target cell.
  • PUSCH Physical Uplink Shared Channel
  • the symbol configuration information is carried by the PUSCH symbol configuration field (PUSCHSymbolConfig).
  • PUSCHSymbolConfig the UE in the idle state can learn the symbols available for the uplink PUSCH according to the PUSCHSymbolConfig in the SIB1, and the handover UE can learn the symbols available for the uplink PUSCH of the target cell according to the PUSCHSymbolConfig included in the MobilityControlInfo ⁇ RadioResourceConfigCommon.
  • one cycle may be 10 milliseconds (ms) or 5 ms.
  • the value of the above period may also be notified to the UE by adding a field in the broadcast message.
  • the configuration manner of the PUSCHSymbolConfig includes the following two types.
  • One mode is: setting the uplink symbols in one cycle to respectively correspond to one bit field, and when the value of the bit field corresponding to the uplink symbol is 0, the uplink symbol cannot be used for uplink transmission, and the bit field corresponding to the uplink symbol is taken.
  • a value of 1 indicates that the upstream symbol can be used for uplink transmission.
  • Another way is to use N-bit information to indicate how many uplink symbols in a period cannot be used for uplink transmission. The value of N may depend on the total number of uplink symbols in a period.
  • the total number of symbols that cannot be used for uplink transmission is equal to the sum of the number of symbols that cannot transmit the PUSCH and the number of symbols (in this example, two symbols) configured on the UpTPS.
  • the base station may notify the UE of available uplink symbols by using UE-level authorization information (such as DCI).
  • DCI UE-level authorization information
  • a new bit is added to indicate whether one or more uplink symbols can be used for uplink transmission.
  • the DCI since the DCI only controls the uplink PUSCH transmission, and the symbols of the uplink PUSCH for data transmission are 10 (extended CP) or 12 (conventional CP), 10 or 12 bit fields can be configured. The value of each bit field indicates whether the corresponding uplink symbol is available for PUSCH transmission.
  • 4-bit bit information (which may be carried by the PUSCH Symbol field) may be used, and the information size may indicate how many uplink symbols on the PUSCH channel cannot be used for PUSCH transmission of the UE.
  • Table 2 there is a mapping relationship between the value of the PUSCH Symbol field and the total number of symbols that cannot be used for PUSCH transmission and the symbol set that cannot transmit PUSCH.
  • the communication method of this embodiment is also applicable to a 5G communication system.
  • the symbol-adaptive configuration mode of the uplink transmission is introduced on the base station side, and the adaptive configuration mode may include two types of real-time adjustment modes: UE-level adjustment mode and cell-level configuration mode.
  • the two adaptive configuration modes may be used separately. It can also be used at the same time.
  • FIG. 3 is a flowchart of an example of a communication method according to another embodiment of the present disclosure.
  • the base station may configure the uplink symbols available for the uplink transmission in a broadcast (SIB1) manner.
  • the symbol period may be 5 ms
  • the PUSCHSymbolConfig carried by the SIB1 may indicate how many uplink symbols are not available for uplink transmission in a period.
  • the communication method provided in this embodiment includes the following steps:
  • Step 301 The base station turns on the atmospheric waveguide detection function.
  • Step 302 The base station starts interference measurement detection related to the atmospheric waveguide. For example, detecting interference information of an uplink channel (for example, an UpPTS, an uplink PUSCH, an uplink channel sounding reference signal (SRS), etc.), and determining whether the interference characteristics of the atmospheric waveguide are satisfied.
  • the interference measurement detection may include detection of a threshold, a decrement over time, a continuous resource block (RB), or a full bandwidth.
  • Step 303 The base station determines whether there is symbol level atmospheric waveguide interference, if yes, proceeds to step 304, and if not, ends.
  • Step 304 The base station determines, according to an absolute interference threshold or a relative interference threshold, an uplink symbol and a number of symbols that are interfered under the atmospheric waveguide.
  • Step 305 The base station determines the PUSCHSymbolConfig according to the interfered uplink symbol and the number of symbols.
  • Step 306 The base station sends an SIB1, where the SIB1 carries the PUSCHSymbolConfig.
  • the value of PUSCHSymbolConfig may be determined based on Table 1 according to the determined interfered uplink symbol and the number of symbols. For example, it is detected that the uplink symbol #0 in the slot #0 in one cycle is not interfered with and cannot be used for transmitting the PUSCH. At this time, the symbol #0 of the slot #0 and the two symbols configured on the previous UpTPS cannot be used. The total number of symbols that can be used for PUSCH transmission is 3, and based on Table 1, the value of PUSCHSymbolConfig can be determined to be 0011. After the UE receives the SIB1 broadcasted by the base station, the UE can learn, based on the PUSCHSymbolConfig carried in the SIB1, which uplink symbols cannot be used for transmitting the PUSCH.
  • FIG. 4 is a flowchart of a communication method according to an embodiment of the present disclosure.
  • the base station may configure the uplink symbols available for the uplink transmission in a broadcast (SIB1) manner.
  • SIB1 broadcast
  • the symbol period is 10 ms
  • the PUSCHSymbolConfig carried by the SIB1 may indicate whether the corresponding uplink symbol in one cycle is available for uplink transmission.
  • the communication method provided in this embodiment includes the following steps:
  • Step 401 The base station turns on an uplink interference detection function.
  • Step 402 The base station starts interference measurement. For example, interference information of an uplink channel (eg, UpPTS, uplink PUSCH, and uplink SRS, etc.) is detected.
  • an uplink channel eg, UpPTS, uplink PUSCH, and uplink SRS, etc.
  • Step 403 The base station determines whether there is symbol level interference, if yes, proceeds to step 404, and if not, ends.
  • Step 404 The base station determines the interfered symbol condition according to an absolute interference threshold or a relative interference threshold.
  • Step 405 The base station determines the PUSCHSymbolConfig according to the interfered symbol condition.
  • Step 406 The base station sends the SIB1, where the SIB1 carries the PUSCHSymbolConfig.
  • the TDD ratio 3 has a maximum of 38 uplink symbols in 10 ms (32 uplink symbols under the extended CP), and 38 bit fields may be sequentially used (time deferred) to indicate whether each uplink symbol is Can be used for transmission.
  • a bit field corresponding to one uplink symbol has a value of 0, indicating that the uplink symbol cannot be used for uplink transmission, and a bit field corresponding to one uplink symbol has a value of 1 indicating that the uplink symbol can be used for uplink transmission.
  • FIG. 5 is a flowchart of a communication method according to an embodiment of the present disclosure.
  • the base station can use the DCI to control the UE-level PUSCH transmission usable symbols, wherein the PUSCH Symbol field carried by the DCI indicates how many uplinks are in front. Symbols cannot be used for PUSCH transmission.
  • the communication method provided in this embodiment includes the following steps:
  • Step 501 The base station turns on the atmospheric waveguide detection function.
  • Step 502 The base station starts interference measurement detection related to the atmospheric waveguide.
  • the interference information of the uplink channel for example, UpPTS, uplink PUSCH, and uplink SRS, etc.
  • the interference measurement detection may include detection of threshold determination, decrementing association over time, interference RB continuity, or full bandwidth.
  • Step 503 The base station determines whether there is symbol level atmospheric waveguide interference, if yes, proceeds to step 504, and if not, ends.
  • Step 504 The base station determines, according to an absolute interference threshold or a relative interference threshold, a symbol condition of the interference under the atmospheric waveguide.
  • Step 505 The base station determines whether the UE has an uplink scheduling, if yes, proceeds to step 506, and if not, ends.
  • Step 506 When the UE has uplink scheduling, the base station according to the number of interfered symbols and the interference size on each symbol, and the location information of the UE from the base station and the uplink power margin, and the base station demodulation performance, etc. The number of interference symbols that the UE can overcome, the size of the interference, and the like are determined, and finally the symbols that can be used for PUSCH transmission are determined.
  • Step 507 The base station sends a DCI, where the DCI carries symbol configuration information.
  • the information of the PUSCH Symbol field carried by the DCI may be determined based on Table 2 according to the determined interfered symbol condition. For example, when it is detected that the uplink symbols #0 and #1 in the slot #0 in one cycle are subjected to interference and cannot transmit the PUSCH, based on Table 2, it can be determined that the value of the PUSCH Symbol field is 0010. After receiving the DCI delivered by the base station, the UE can learn, based on the PUSCH Symbol field carried in the DCI, which uplink symbols cannot be used for transmitting the PUSCH.
  • FIG. 6 is a flowchart of a communication method according to another embodiment of the present disclosure.
  • the base station may use the DCI to control the symbols that can be used for the UE-level PUSCH transmission, and the DCI is indicated by one symbol and one bit field. .
  • the communication method provided in this embodiment includes the following steps:
  • Step 601 The base station turns on the atmospheric waveguide detection function.
  • Step 602 The base station starts an interference measurement test related to the atmospheric waveguide.
  • detecting interference information of an uplink channel for example, an UpPTS, an uplink PUSCH, and an uplink SRS, etc.
  • determining whether the interference characteristics of the atmospheric waveguide are satisfied which may include threshold determination, declining correlation with time, continuous RB interference, or full bandwidth. Detection.
  • Step 603 The base station determines whether there is symbol level atmospheric waveguide interference, if yes, proceeds to step 604, and if not, ends.
  • Step 604 The base station determines, according to an absolute interference threshold or a relative interference threshold, a symbol condition of the interference under the atmospheric waveguide.
  • Step 605 The base station determines whether the UE has an uplink scheduling, and if yes, proceeds to step 606, and if not, ends.
  • Step 606 When the UE has uplink scheduling, the base station according to the number of interfered symbols and the interference size on each symbol, and the location information of the UE from the base station and the uplink power margin, and the base station demodulation performance, etc. The number of interference symbols that the UE can overcome, the size of the interference, and the like are determined, and finally the symbols that can be used for PUSCH transmission are determined.
  • the bit field corresponding to the symbol that cannot transmit the PUSCH may be set to 0, and the bit field corresponding to the symbol capable of transmitting the PUSCH may be set to 1.
  • Step 607 The base station sends a DCI, where the DCI carries symbol configuration information.
  • FIG. 7 is a flowchart of a communication method according to another embodiment of the present disclosure.
  • the base station can use the cell level SIB1 and the UE level DCI to jointly control the symbols usable for the uplink transmission.
  • the communication method provided in this embodiment includes the following steps:
  • Step 701 The base station turns on the atmospheric waveguide detection function.
  • Step 702 The base station starts the interference measurement detection related to the atmospheric waveguide.
  • the interference information of the uplink channel for example, UpPTS, uplink PUSCH, and uplink SRS, etc.
  • the interference measurement detection may include detection of threshold determination, decrementing association over time, interference RB continuity, or full bandwidth.
  • Step 703 The base station determines whether there is symbol level atmospheric waveguide interference, if yes, proceeds to step 704, and if not, ends.
  • Step 704 The base station determines, according to an absolute interference threshold or a relative interference threshold, a symbol condition of the interference under the atmospheric waveguide.
  • Step 705 The base station determines the PUSCHSymbolConfig according to the interfered symbol condition.
  • step 705 the value of the PUSCHSymbolConfig is determined based on the determined interference symbol, and the SIB1 is transmitted, where the SISCH1 carries the PUSCHSymbolConfig.
  • Step 706 Determine whether the UE has an uplink scheduling. If yes, go to step 707. If not, end.
  • Step 707 When the UE has an uplink scheduling, the base station, according to the number of interfered symbols and the interference size on each symbol, and the location information of the UE from the base station and the uplink power margin, and the integrated base station demodulation performance, etc. The number of interference symbols that the UE can overcome, the size of the interference, and the like are determined, and finally the symbols that can be used for PUSCH transmission are determined.
  • PUSCH Symbol domain information carried by the DCI may be determined based on Table 2 according to the determined interfered symbol condition. And sending a DCI, where the DCI carries the determined PUSCH Symbol domain information.
  • FIG. 8 is a flowchart of a communication method according to another embodiment of the present disclosure. As shown in FIG. 8, the communication method provided in this embodiment includes the following steps:
  • Step 801 The UE acquires symbol configuration information.
  • Step 802 Perform uplink transmission on the uplink data according to the symbol configuration information.
  • the symbol configuration information is used to indicate at least one of: an uplink symbol that cannot be used for uplink transmission and an uplink symbol that can be used for uplink transmission.
  • step 801 can include one of the following:
  • the UE obtains symbol configuration information from a cell-level broadcast message sent by the base station;
  • the UE obtains symbol configuration information from the UE-level authorization information delivered by the base station;
  • the UE determines symbol configuration information according to the cell-level broadcast message sent by the base station and the UE-level authorization information. For example, the UE may determine that the uplink symbol available for the uplink transmission is an intersection of the symbol configuration information carried by the cell-level broadcast message and the available uplink symbol indicated by the symbol configuration information carried by the UE-level authorization information.
  • the symbol configuration information may include: a value of a bit field corresponding to each uplink symbol in a period, where a bit field corresponding to an uplink symbol that can be used for uplink transmission is a value that cannot be used for uplink transmission.
  • the bit field corresponding to the uplink symbol has a different value. For example, a bit field corresponding to an uplink symbol has a value of 0, indicating that the uplink symbol cannot be used for uplink transmission, and a bit field corresponding to one uplink symbol has a value of 1 indicating that the uplink symbol can be used for uplink transmission.
  • the symbol configuration information may include N-bit bit information, and the N-bit bit information has a mapping relationship with at least one of: an uplink symbol set that cannot be used for uplink transmission and an uplink symbol set that cannot be used for uplink transmission.
  • the total number of symbols; or, the N-bit information has a mapping relationship with at least one of the following: a set of uplink symbols available for uplink transmission and a total number of symbols available for uplink transmission.
  • the method further includes: when determining that the mapped resource location of the uplink data is unavailable according to the symbol configuration information, the uplink data is not sent.
  • the UE may determine the mapping resource location of the uplink data according to the symbol configuration information sent by the base station, perform data mapping and transmit, and if there is no symbol to transmit the uplink data, the UE does not transmit the corresponding uplink data.
  • FIG. 9 is a flowchart of a communication method according to an embodiment of the present disclosure.
  • the UE can determine a symbol that can be used for PUSCH transmission according to PUSCHSymbolConfig in SIB1.
  • the communication method provided in this embodiment includes the following steps:
  • Step 901 Determine whether the UE has an uplink transmission, if yes, go to step 902, and if not, end;
  • Step 902 Determine a symbol that can be used for PUSCH transmission according to PUSCHSymbolConfig in SIB1. For example, if the value of the PUSCHSymbolConfig in the SIB1 is 0011, the UE can learn that the first three uplink symbols in one cycle cannot be used for PUSCH transmission according to Table 1, and are configured on the uplink symbol #0 and UpPTS in slot #0, respectively. 2 up symbols.
  • Step 903 Perform uplink transmission on the uplink data according to the symbol configuration information.
  • FIG. 10 is a flowchart of a communication method according to an embodiment of the present disclosure.
  • the UE can determine a symbol usable for PUSCH transmission according to the PUSCH Symbol field in the DCI.
  • the communication method provided in this embodiment includes the following steps:
  • Step 1001 Determine whether the UE has an uplink transmission. If yes, go to step 1002, and if not, end.
  • Step 1002 Determine a symbol that can be used for PUSCH transmission according to a PUSCH Symbol field in the DCI.
  • the UE can learn that the first two uplink symbols in one cycle cannot be used for PUSCH transmission according to Table 2, which are the uplink symbols #0 and # in slot #0, respectively. 1.
  • Step 1003 Perform uplink transmission on the uplink data according to the symbol configuration information.
  • FIG. 11 is a flowchart of a communication method according to another embodiment of the present disclosure.
  • the UE may determine a symbol usable for PUSCH transmission according to PUSCHSymbolConfig in SIB1 and PUSCH Symbol field in DCI.
  • the communication method provided in this embodiment includes the following steps:
  • Step 1101 determining whether the UE has an uplink transmission, if yes, proceeding to step 1102, and if not, ending;
  • Step 1102 Determine an intersection of PUSCHSymbolConfig in SIB1 and an uplink transmittable symbol indicated by a PUSCH Symbol field in the DCI, and perform PUSCH data transmission as a final symbol set available for PUSCH transmission.
  • Step 1103 Perform uplink transmission on the uplink data according to the symbol configuration information.
  • FIG. 12 is a flowchart of a communication method according to another embodiment of the present disclosure.
  • the UE may determine a symbol usable for PUSCH transmission according to PUSCHSymbolConfig in SIB1, where PUSCHSymbolConfig indicates that UpPTS uplink symbol is not available, and UE The SRS configuration is sent on the UpPTS upstream symbol.
  • the communication method provided in this embodiment includes the following steps:
  • Step 1201 The UE arrives at the SRS transmission subframe.
  • Step 1202 Determine whether the UpPTS symbol in which the SRS is located is available according to the PUSCHSymbolConfig in the SIB1. If not, go to step 1203. If not, go to step 1204.
  • step 1203 the SRS is not sent.
  • Step 1204 Send the SRS normally.
  • FIG. 13 is a flowchart of a communication method according to another embodiment of the present disclosure.
  • the base station determines and delivers SIB1, and the SISCH1ymbolConfig is updated in the SIB1, where PUSCHSymbolConfig indicates that the UpPTS uplink symbol is unavailable, and The available symbols for the base station configuration SRS are on the UpPTS.
  • the communication method provided in this embodiment includes the following steps:
  • Step 1301 The base station updates PUSCHSymbolConfig.
  • Step 1302 Determine whether the UpPTS uplink symbol is available; if yes (ie, use), go to step 1303, if not, go to step 1304;
  • Step 1303 Normally allocate SRS resources on the UpPTS.
  • Step 1304 The SRS resource of the UE is no longer allocated on the UpPTS symbol.
  • FIG. 14 is a schematic diagram of a communication apparatus according to an embodiment of the present disclosure. As shown in FIG. 14, the communication device provided in this embodiment includes:
  • the sending module 1402 is configured to send symbol configuration information.
  • the symbol configuration information is used to indicate at least one of: an uplink symbol that cannot be used for uplink transmission and an uplink symbol that can be used for uplink transmission.
  • the symbol configuration information may be carried by at least one of a cell level broadcast message and UE level authorization information.
  • the symbol configuration information may be carried by at least one of: SIB1, MobilityControlInfo ⁇ RadioResourceConfigCommon, and DCI.
  • the communication device of this embodiment may further include:
  • the detecting module 1400 is configured to detect a preset type of interference.
  • the determining module 1401 is configured to determine symbol configuration information according to the interference detection result.
  • the symbol configuration information may include: a value of a bit field corresponding to each uplink symbol in a period, where a bit field corresponding to an uplink symbol that can be used for uplink transmission is a value that cannot be used for uplink transmission.
  • the bit field corresponding to the uplink symbol has a different value. For example, a bit field corresponding to an uplink symbol has a value of 0, indicating that the uplink symbol cannot be used for uplink transmission, and a bit field corresponding to one uplink symbol has a value of 1 indicating that the uplink symbol can be used for uplink transmission.
  • the symbol configuration information may include N-bit information, and the N-bit information has a mapping relationship with at least one of the following: a set of uplink symbols that cannot be used for uplink transmission and a total number of symbols that cannot be used for uplink transmission; or The N-bit information has a mapping relationship with at least one of the following: a set of uplink symbols that can be used for uplink transmission and a total number of symbols that can be used for uplink transmission.
  • FIG. 15 is a schematic diagram of a communication device according to another embodiment of the present disclosure. As shown in FIG. 15, the communication device provided in this embodiment includes:
  • the obtaining module 1501 is configured to obtain symbol configuration information.
  • the processing module 1502 is configured to perform uplink transmission on the uplink data according to the symbol configuration information.
  • the symbol configuration information is used to indicate at least one of: an uplink symbol that cannot be used for uplink transmission and an uplink symbol that can be used for uplink transmission.
  • the acquisition module 1501 is configured to obtain symbol configuration information in one of the following ways:
  • the symbol configuration information is determined according to the cell level broadcast message and the UE level authorization information sent by the base station.
  • the symbol configuration information may include: a value of a bit field corresponding to each uplink symbol in a period, where a bit field corresponding to an uplink symbol that can be used for uplink transmission is a value that cannot be used for uplink transmission.
  • the bit field corresponding to the uplink symbol has a different value. For example, a bit field corresponding to an uplink symbol has a value of 0, indicating that the uplink symbol cannot be used for uplink transmission, and a bit field corresponding to one uplink symbol has a value of 1 indicating that the uplink symbol can be used for uplink transmission.
  • the symbol configuration information may include N-bit information, and the N-bit information has a mapping relationship with at least one of the following: a set of uplink symbols that cannot be used for uplink transmission and a total number of symbols that cannot be used for uplink transmission; or The N-bit information has a mapping relationship with at least one of the following: a set of uplink symbols that can be used for uplink transmission and a total number of symbols that can be used for uplink transmission.
  • FIG. 16 is a schematic diagram of a base station according to an embodiment of the present disclosure.
  • the base station 1600 provided in this embodiment includes: a memory 1601, one or more processors 1602 (only one is shown), and communications stored on the memory 1601 and operable on the processor 1602. program.
  • the communication program executes the communication method on the base station side when it is read and executed by the processor 1602.
  • the processor 1602 may include, but is not limited to, a processing device such as a Micro Controller Unit (MCU) or a Field-Programmable Gate Array (FPGA).
  • the memory 1601 may include a high speed random access memory, and may also include non-volatile memory such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 1601 can further include memory remotely located relative to processor 1602, which can be connected to base station 1600 via a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • base station 1600 may also include more or fewer components than shown in FIG. 16, or have a different configuration than that shown in FIG.
  • the base station 1600 provided in this embodiment may further include: a transmission module 1603 configured to receive or transmit data via a network.
  • the transmission module 1603 can be a radio frequency (RF) module, and the transmission module 1603 is configured to communicate with the Internet wirelessly.
  • RF radio frequency
  • FIG. 17 is a schematic diagram of a UE according to an embodiment of the present disclosure.
  • the UE 1700 provided in this embodiment includes: a memory 1701, one or more processors 1702 (only one is shown), and communications stored on the memory 1701 and operable on the processor 1702. program.
  • the communication program executes the communication method on the UE side when read and executed by the processor 1702.
  • the processor 1702 may include, but is not limited to, a processing device such as an MCU or an FPGA.
  • the memory 1701 may include a high speed random access memory, and may also include non-volatile memory such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 1701 can further include memory remotely located relative to processor 1702, which can be connected to UE 1700 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • FIG. 17 is merely illustrative, and does not limit the structure of the UE described above.
  • the UE 1700 may also include more or fewer components than those shown in FIG. 17, or have a different configuration than that shown in FIG.
  • the UE 1700 provided in this embodiment may further include: a transmission module 1703 configured to receive or send data via a network.
  • the transmission module 1703 can be a radio frequency (RF) module, and the transmission module 1703 is configured to communicate with the Internet by wireless.
  • RF radio frequency
  • an embodiment of the present disclosure further provides a computer readable medium storing a communication program, the communication program being implemented by the processor to implement the communication method on the base station side.
  • the embodiment of the present application further provides a computer readable medium storing a communication program, and the communication program is implemented by the processor to implement the communication method on the UE side.
  • computer storage medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules or other data. Sex, removable and non-removable media.
  • Computer storage media include, but are not limited to, Random Access Memory (RAM), Read-Only Memory (ROM), and Electrically Erasable Programmable Read-Only Memory (EEPROM). , flash memory or other memory technology, Compact Disc Read-Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical disc storage, magnetic box, tape, disk storage Or other magnetic storage device, or any other medium that can be used to store the desired information and can be accessed by the computer.
  • communication media typically includes computer readable instructions, data structures, program modules or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置。上述通信方法包括:基站对预设类型的干扰进行检测;所述基站根据干扰检测结果确定符号配置信息;基站发送符号配置信息;其中,所述符号配置信息用于指示以下至少之一:不能用于上行传输的上行符号以及可用于上行传输的上行符号。或者,上述方法包括:用户设备UE获取符号配置信息;所述UE根据所述符号配置信息,对上行数据进行上行传输;其中,所述符号配置信息用于指示以下至少之一:不能用于上行传输的上行符号以及可用于上行传输的上行符号。

Description

通信方法及装置
本公开要求申请日为2017年08月07日、申请号为201710667076.3、名称为“一种通信方法及装置”的中国专利申请的优先权,该申请的全部内容通过引用结合在本公开中。
技术领域
本公开涉及通信技术领域,例如涉及一种通信方法及装置。
背景技术
长期演进(Long Term Evolution,LTE)系统下,帧结构是固定的,可用于上行多种信道传输的符号也是固定的。例如,如图1所示,时分双工(Time Division Duplex,TDD)LTE系统的帧结构如下配置:在TDD配比2下,可用于上行传输的符号有上行导频时隙(UpPTS,Uplink Pilot Time Slot)、子帧(Subframe)#2以及Subframe#7,其中,UpPTS上可以配置1到2个上行传输符号,一个Subfarme上可配置12个符号(扩展前缀(Extended Cyclic Prefix))或者14个符号(常规前缀(Normal Cyclic Prefix))。
在第五代移动通信技术(Fifth Generation,5G)通信系统中,帧结构也是固定的,或者在一段时间内是固定不变的。
在TDD LTE系统和5G通信系统中,均存在符号间干扰差异带来的上行整体性能损失的问题。
发明内容
本公开实施例提供一种通信方法及装置,能够实现上行传输的符号自适应配置。
本公开实施例提供一种通信方法,包括:
基站发送符号配置信息,其中,所述符号配置信息用于指示以下至少之一:不能用于上行传输的上行符号以及可用于上行传输的上行符号。
本公开实施例提供一种通信方法,包括:
用户设备(User Equipment,UE)获取符号配置信息;
根据所述符号配置信息,对上行数据进行上行传输;
其中,所述符号配置信息用于指示以下至少之一:不能用于上行传输的上行符号以及可用于上行传输的上行符号。
本公开实施例提供一种通信装置,包括:
发送模块,用于发送符号配置信息;其中,所述符号配置信息用于指示以下至少之一:不能用于上行传输的上行符号以及可用于上行传输的上行符号。
本公开实施例提供一种通信装置,包括:
获取模块,设置为获取符号配置信息;
处理模块,设置为根据所述符号配置信息,对上行数据进行上行传输;
其中,所述符号配置信息用于指示以下至少之一:不能用于上行传输的上行符号以及可用于上行传输的上行符号。
本公开实施例提供一种基站,包括:存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的通信程序,所述通信程序被所述处理器执行时实现上述通信方法。
本公开实施例提供一种UE,包括:存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的通信程序,所述通信程序被所述处理器执行时实现上述通信方法。
本申请实施例还提供一种计算机可读介质,存储有通信程序,所述通信程序被处理器执行时实现上述通信方法。
本申请实施例还提供一种计算机可读介质,存储有通信程序,所述通信程序被处理器执行时实现上述通信方法。
附图说明
图1为相关技术中的TDD LTE系统的帧结构示意图;
图2为本公开一实施例提供的一种通信方法的流程图;
图3为本公开另一实施例提供的通信方法的流程图;
图4为本公开另一实施例提供的通信方法的流程图;
图5为本公开另一实施例提供的通信方法的流程图;
图6为本公开另一实施例提供的通信方法的流程图;
图7为本公开另一实施例提供的通信方法的流程图;
图8为本公开另一实施例提供的通信方法的流程图;
图9为本公开另一实施例提供的通信方法的流程图;
图10为本公开另一实施例提供的通信方法的流程图;
图11为本公开另一实施例提供的通信方法的流程图;
图12为本公开另一实施例提供的通信方法的流程图;
图13为本公开另一实施例提供的通信方法的流程图;
图14为本公开一实施例提供的一种通信装置的示意图;
图15为本公开另一实施例提供的通信装置的示意图;
图16为本公开一实施例提供的一种基站的示意图;
图17为本公开一实施例提供的一种UE的示意图。
具体实施方式
以下结合附图对本公开实施例进行说明,以下说明的实施例仅用于说明和解释本公开,并不用于限定本公开。
在TDD LTE系统实际应用时,多个上行符号上的干扰可能存在差异,例如,大气波导(Atmosphere Duct)下,上行符号上的干扰从UpPTS起依次减小。再例如,当由于某种原因出现交叉时隙干扰时,多个上行符号上的干扰也是存在差异的。同样地,在5G通信系统中,也存在符号间干扰差异导致上行整体性能损失的问题。
本公开提供一种通信方法及装置,引入用于上行传输的符号自适应机制,以减少干扰对上行传输带来的影响。
图2为本公开实施例提供的一种通信方法的流程图。如图2所示,本实施例提供的通信方法包括:
步骤201、基站发送符号配置信息。
其中,符号配置信息用于指示以下至少之一:不能用于上行传输的上行符号以及可用于上行传输的上行符号。
在示例性实施方式中,符号配置信息可以由小区级广播消息和UE级授权信息中至少之一携带。然而,本公开对此并不限定。在其他实现方式中,符号配置信息还可以由其他消息携带。
在示例性实施方式中,小区级广播消息携带的符号配置信息可以用于向小区内所有UE指示哪些上行符号可用于上行传输或者哪些上行符号不能用于上行传输;UE级授权信息携带的符号配置信息可以用于向该UE指示哪些上行符号可用于上行传输或者哪些上行符号不能用于上行传输。
在示例性实施方式中,符号配置信息可以由以下至少之一携带:系统消息块(System Information Block,SIB)1、移动控制信息中的无线资源配置公共消息(MobilityControlInfo→RadioResourceConfigCommon)、下行控制信息(Downlink Control Information,DCI)。
在示例性实施方式中,在步骤201之前,本实施例的通信方法还可以包括:
步骤100、基站对预设类型的干扰进行检测。
在示例性实施方式中,基站可以打开大气波导检测功能,进行大气波导相关的干扰检测,或者基站可以进行上行交叉时隙的干扰检测。
步骤200、基站根据干扰检测结果,确定符号配置信息。
在示例性实施方式中,基站可以根据大气波导干扰的检测结果,或者,可以根据上行交叉时隙干扰的检测结果,确定可用于上行传输的上行符号或者不能用于上行传输的上行符号,然后,根据确定的信息,设置符号配置信息。然而,本公开对此并不限定。在其他实现方式中,基站还可以采用其他检测方式确定可用于上行传输的上行符号或不能用于上行传输的上行符号。
在示例性实施方式中,符号配置信息可以包括:一个周期内每个上行符号对应的比特域取值,其中,可用于上行传输的上行符号对应的比特域取值与不能用于上行传输的上行符号对应的比特域取值不同。比如,一个上行符号对应的比特域取值为0表示该上行符号不能用于上行传输,一个上行符号对应的比特域取值为1表示该上行符号能用于上行传输。
在示例性实施方式中,符号配置信息可以包括N位比特信息,该N位比特信息与以下至少一项之间存在映射关系:不能用于上行传输的上行符号集合以及不能用于上行传输的符号总数;或者,该N位比特信息与以下至少一项之间存在映射关系:可用于上行传输的上行符号集合以及可用于上行传输的符号总数。其中,N可以为大于1的正整数。
在一种示例性实现方式中,以LTE系统为例,基站可以在LTE SIB1和MobilityControlInfo→RadioResourceConfigCommon中包含新增的符号配置信息进行下发,前者可以用于空闲态(Idle)的UE获取上行物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的符号配置信息,后者可以用于切换UE获取目标小区的上行PUSCH的符号配置信息。
在本示例中,符号配置信息通过PUSCH符号配置字段(PUSCHSymbolConfig)携带。换言之,空闲态的UE可以根据SIB1中的PUSCHSymbolConfig,获知上行PUSCH可用的符号,切换UE可以根据MobilityControlInfo→RadioResourceConfigCommon中包含的PUSCHSymbolConfig,获知目标小区的上行PUSCH可用的符号。
在示例性实施方式中,在配置PUSCHSymbolConfig时,可以以10毫秒(ms)或者5ms为一个周期。在示例性实施方式中,上述周期的取值也可以通过在广播消息中增加字段通知给UE。
在示例性实施方式中,PUSCHSymbolConfig的配置方式包括以下两种。一种方式是:设置一个周期内的上行符号依次分别对应一个比特域,当上行符号对应的比特域的取值为0表示该上行符号不能用于上行传输,当上行符号对应的比特域的取值为1表示该上行符号可以用于上行传输。另一种方式是:采用N位比特信息表示一个周期内前多少个上行符号不能用于上行传输,其中,N的取值可以取决于一个周期内的上行符号总数。如表1所示,PUSCHSymbolConfig与不能用于上行传输的符号总数和不能传输PUSCH的符号集合之间存在映射关系。其中,不能用于上行传输的符号总数等于不能传输PUSCH的符号数目以及UpTPS上配置的符号数目(在本示例中,为2个符号)之和。
表1 SIB1上行传输符号的小区级配置
Figure PCTCN2018098965-appb-000001
在另一种示例性实现方式中,以LTE系统为例,基站可以通过UE级授权信息(比如,DCI)向UE通知可用的上行符号。其中,可以在上行调度对应的DCI中,例如,LTE的DCI0或DCI4等,增加新的比特位,表示一个或多个上行符号是否可以用于上行传输的情况。
在示例性实施方式中,由于DCI只是控制上行PUSCH传输,而上行PUSCH用于数据传输的符号为10个(扩展CP)或者12个(常规CP),因此,可以配置10个或者12个比特域,每个比特域的取值表示对应的上行符号是否可用于PUSCH传输。
或者,可以采用4位比特信息(可以由PUSCH Symbol域携带),该信息大小可以表示PUSCH信道上前多少个上行符号不能用于UE的PUSCH传输。如表2所示,PUSCH Symbol域的取值与不能用于PUSCH传输的符号总数和不能传输PUSCH的符号集合之间存在映射关系。
表2 UE级DCI的上行传输符号配置
Figure PCTCN2018098965-appb-000002
本实施例的通信方法同样适用于5G通信系统。
在本实施例中,在基站侧引入上行传输的符号自适应配置方式,该自适应配置方式可以包括UE级实时调整方式和小区级配置方式两种,这两种自适应配置方式可以单独使用,也可以同时使用。
图3为本公开另一实施例提供的通信方法的示例流程图。在本示例性实施例中,在LTE TDD配比2下,当存在大气波导干扰时,基站可以采用广播(SIB1)方式配置上行传输可用的上行符号。本实施例中,符号周期可以为5ms,且SIB1携带的PUSCHSymbolConfig可以表示一个周期内前多少个上行符号不能用于上行传输。
如图3所示,本实施例提供的通信方法包括以下步骤:
步骤301、基站打开大气波导检测功能。
步骤302、基站启动大气波导相关的干扰测量检测。例如,检测上行信道(例如,UpPTS、上行PUSCH、上行信道探测参考信号(Sounding Reference Signal,SRS)等)的干扰信息,判断是否满足大气波导的干扰特性。在示例性实施方式中,干扰测量检测可以包括阈值判断、随时间递减关联、干扰资源块(Resource  Block,RB)连续或者全带宽等方面的检测。
步骤303、基站判断是否存在符号级的大气波导干扰,如果存在,则进入步骤304,如果不存在,则结束。
步骤304、基站根据绝对干扰门限或者相对干扰门限,确定大气波导下受干扰的上行符号以及符号数。
步骤305、基站根据受干扰的上行符号及符号数,确定PUSCHSymbolConfig。
步骤306、基站发送SIB1,其中,SIB1中携带PUSCHSymbolConfig。
在步骤305中,可以根据确定的受干扰的上行符号以及符号数,基于表1确定PUSCHSymbolConfig的取值。比如,检测到一个周期内时隙#0中的上行符号#0受到干扰较大不能用于传输PUSCH,此时,时隙#0的符号#0及之前的UpTPS上配置的2个符号均不能用于传输PUSCH,故不能用于PUSCH传输的符号总数为3,基于表1可以确定PUSCHSymbolConfig的取值为0011。后续,UE接收到基站广播的SIB1后,可以根据SIB1中携带的PUSCHSymbolConfig,基于表1获知哪些上行符号不能用于传输PUSCH。
图4为本公开实施例提供的通信方法的流程图。在本示例性实施例中,在LTE TDD配比3下,当存在同频组网TDD配比2的交叉时隙干扰时,基站可以采用广播(SIB1)方式配置上行传输可用的上行符号。本实施例中,符号周期为10ms,且SIB1携带的PUSCHSymbolConfig可以表示一个周期内对应的上行符号是否可用于上行传输。
如图4所示,本实施例提供的通信方法包括以下步骤:
步骤401、基站打开上行干扰检测功能。
步骤402、基站启动干扰测量。例如,检测上行信道(例如,UpPTS、上行PUSCH以及上行SRS等)的干扰信息。
步骤403、基站判断是否存在符号级干扰,如果存在,则进入步骤404,如果不存在,则结束。
步骤404、基站根据绝对干扰门限或者相对干扰门限,确定受干扰的符号情况。
步骤405、基站根据受干扰的符号情况,确定PUSCHSymbolConfig。
步骤406、基站发送SIB1,其中,SIB1中携带PUSCHSymbolConfig。
在示例性实施方式中,TDD配比3在10ms内最大共38个上行符号(在扩展CP下,32个上行符号),可以采用38个比特域依次(时间递延)表示每个上行符号 是否可用于传输。在示例性实施方式中,一个上行符号对应的比特域取值为0表示该上行符号不能用于上行传输,一个上行符号对应的比特域取值为1表示该上行符号可以用于上行传输。
图5为本公开实施例提供的通信方法的流程图。在本示例性实施例中,在LTE TDD配比2下,当存在大气波导干扰时,基站可以采用DCI控制UE级PUSCH传输可使用的符号,其中,DCI携带的PUSCH Symbol域指示前多少个上行符号不能用于PUSCH传输。
如图5所示,本实施例提供的通信方法包括以下步骤:
步骤501、基站打开大气波导检测功能。
步骤502、基站启动大气波导相关的干扰测量检测。例如,检测上行信道(例如,UpPTS、上行PUSCH以及上行SRS等)的干扰信息,判断是否满足大气波导的干扰特性。在示例性实施方式中,干扰测量检测可以包括阈值判断、随时间递减关联、干扰RB连续或者全带宽等方面的检测。
步骤503、基站判断是否存在符号级的大气波导干扰,如果存在,则进入步骤504,如果不存在,则结束。
步骤504、基站根据绝对干扰门限或者相对干扰门限,确定大气波导下受干扰的符号情况。
步骤505、基站判断UE是否存在上行调度,如果存在,则进入步骤506,如果不存在,则结束。
步骤506、当UE存在上行调度时,基站根据受干扰的符号数和每个符号上的干扰大小,以及UE距离基站的位置信息和上行功率余量等因素,并综合基站解调性能等,共同确定UE可以克服的干扰符号数以及干扰大小等,最终确定可用于PUSCH传输的符号。
步骤507、基站发送DCI,其中,DCI中携带符号配置信息。
在步骤506中,可以根据确定的受干扰的符号情况,基于表2确定DCI携带的PUSCH Symbol域的信息。比如,在检测到一个周期内时隙#0中的上行符号#0和#1受到干扰较大不能传输PUSCH时,基于表2可知,可以确定PUSCH Symbol域的取值为0010。后续,UE接收到基站下发的DCI后,可以根据DCI中携带的PUSCH Symbol域,基于表2获知哪些上行符号不能用于传输PUSCH。
图6为本公开另一实施例提供的通信方法的流程图。在本示例性实施例中,在LTE TDD配比2下,当存在大气波导干扰时,基站可以采用DCI控制UE级 PUSCH传输可使用的符号,且DCI中采用一个符号一个比特域的方式进行指示。
如图6所示,本实施例提供的通信方法包括以下步骤:
步骤601、基站打开大气波导检测功能。
步骤602、基站启动大气波导相关的干扰测量检测。
例如,检测上行信道(例如,UpPTS、上行PUSCH以及上行SRS等)的干扰信息,判断是否满足大气波导的干扰特性,其中可以包括阈值判断、随时间递减关联、干扰RB连续或者全带宽等方面的检测。
步骤603、基站判断是否存在符号级的大气波导干扰,如果存在,则进入步骤604,如果不存在,则结束。
步骤604、基站根据绝对干扰门限或者相对干扰门限,确定大气波导下受干扰的符号情况。
步骤605、基站判断UE是否存在上行调度,如果存在,则进入步骤606,如果不存在,则结束。
步骤606、当UE存在上行调度时,基站根据受干扰的符号数和每个符号上的干扰大小,以及UE距离基站的位置信息和上行功率余量等因素,并综合基站解调性能等,共同确定UE可以克服的干扰符号数以及干扰大小等,最终确定可用于PUSCH传输的符号。在步骤606中,可以将不能传输PUSCH的符号对应的比特域置为0,将能够传输PUSCH的符号对应的比特域置为1。
步骤607、基站发送DCI,其中,DCI中携带符号配置信息。
图7为本公开另一实施例提供的通信方法的流程图。在本示例性实施例中,在LTE TDD配比2下,当存在大气波导干扰时,基站可以采用小区级SIB1和UE级DCI共同控制上行传输可使用的符号。
如图7所示,本实施例提供的通信方法包括以下步骤:
步骤701、基站打开大气波导检测功能。
步骤702、基站启动大气波导相关的干扰测量检测。例如,检测上行信道(例如,UpPTS、上行PUSCH以及上行SRS等)的干扰信息,判断是否满足大气波导的干扰特性。在示例性实施方式中,干扰测量检测可以包括阈值判断、随时间递减关联、干扰RB连续或者全带宽等方面的检测。
步骤703、基站判断是否存在符号级的大气波导干扰,如果存在,则进入步骤704,如果不存在,则结束。
步骤704、基站根据绝对干扰门限或者相对干扰门限,确定大气波导下受干 扰的符号情况。
步骤705、基站根据受干扰的符号情况,确定PUSCHSymbolConfig。
在步骤705中,可以根据确定的受干扰的符号情况,基于表1确定PUSCHSymbolConfig的取值,并发送SIB1,其中,SIB1中携带PUSCHSymbolConfig。
步骤706、判断UE是否存在上行调度,如果存在,则进入步骤707,如果不存在,则结束;
步骤707、当UE存在上行调度时,基站根据受干扰的符号数和每个符号上的干扰大小,以及UE距离基站的位置信息和上行功率余量等因素,并综合基站解调性能等,共同确定UE可以克服的干扰符号数以及干扰大小等,最终确定可用于PUSCH传输的符号。在步骤707中,可以根据确定的受干扰的符号情况,基于表2确定DCI携带的PUSCH Symbol域信息。并发送DCI,其中,DCI中携带确定的PUSCH Symbol域信息。
图8为本公开另一实施例提供的通信方法的流程图。如图8所示,本实施例提供的通信方法,包括以下步骤:
步骤801、UE获取符号配置信息。
步骤802、根据符号配置信息,对上行数据进行上行传输。
在示例性实施方式中,符号配置信息用于指示以下至少之一:不能用于上行传输的上行符号以及可用于上行传输的上行符号。
在示例性实施方式中,步骤801可以包括以下之一:
UE从基站发送的小区级广播消息中,获取符号配置信息;
UE从基站下发的UE级授权信息中,获取符号配置信息;以及
UE根据基站发送的小区级广播消息以及UE级授权信息,确定符号配置信息。比如,UE可以确定上行传输可用的上行符号为小区级广播消息携带的符号配置信息和UE级授权信息携带的符号配置信息所指示的可用的上行符号的交集。
在示例性实施方式中,符号配置信息,可以包括:一个周期内每个上行符号对应的比特域取值,其中,可用于上行传输的上行符号对应的比特域取值与不能用于上行传输的上行符号对应的比特域取值不同。比如,一个上行符号对应的比特域取值为0表示该上行符号不能用于上行传输,一个上行符号对应的比特域取值为1表示该上行符号能用于上行传输。
在示例性实施方式中,符号配置信息可以包括N位比特信息,所述N位比特信息与以下至少一项之间存在映射关系:不能用于上行传输的上行符号集合以及不能用于上行传输的符号总数;或者,所述N位比特信息与以下至少一项之间存在映射关系:可用于上行传输的上行符号集合以及可用于上行传输的符号总数。
在示例性实施方式中,上述方法还包括:当根据符号配置信息确定上行数据的映射资源位置不可用时,不发送该上行数据。
在本实施例中,UE可以根据基站发送的符号配置信息,确定上行数据的映射资源位置,进行数据映射并发送,如果没有符号可以传输上行数据,则UE不传输对应的上行数据。
图9为本公开实施例提供的通信方法的流程图。在本示例性实施例中,在LTE TDD配比2下,当存在符号级干扰时,UE可以根据SIB1中的PUSCHSymbolConfig确定可以用于PUSCH传输的符号。
如图9所示,本实施例提供的通信方法包括以下步骤:
步骤901、判断UE是否存在上行传输,如果存在,进入步骤902,如果不存在,则结束;
步骤902、根据SIB1中的PUSCHSymbolConfig确定可用于PUSCH传输的符号。比如,SIB1中的PUSCHSymbolConfig的取值为0011,则UE基于表1可以获知一个周期内的前3个上行符号不能用于PUSCH传输,分别为时隙#0中的上行符号#0以及UpPTS上配置的2个上行符号。
步骤903、根据符号配置信息,对上行数据进行上行传输。
图10为本公开实施例提供的通信方法的流程图。在本示例性实施例中,在LTE TDD配比2下,当存在符号级干扰时,UE可以根据DCI中的PUSCH Symbol域确定可用于PUSCH传输的符号。
如图10所示,本实施例提供的通信方法包括以下步骤:
步骤1001、判断UE是否存在上行传输,如果存在,进入步骤1002,如果不存在,则结束。
步骤1002、根据DCI中的PUSCH Symbol域确定可用于PUSCH传输的符号。
比如,DCI中的PUSCH Symbol域的取值为0010,则UE基于表2可以获知一个周期内的前2个上行符号不能用于PUSCH传输,分别为时隙#0中的上行符号#0和#1。
步骤1003、根据符号配置信息,对上行数据进行上行传输。
图11为本公开另一实施例提供的通信方法的流程图。在本示例性实施例中,在LTE TDD配比2下,当存在符号级干扰时,UE可以根据SIB1中的PUSCHSymbolConfig和DCI中的PUSCH Symbol域确定可用于PUSCH传输的符号。
如图11所示,本实施例提供的通信方法包括以下步骤:
步骤1101、判断UE是否存在上行传输,如果存在,进入步骤1102,如果不存在,则结束;
步骤1102、确定SIB1中PUSCHSymbolConfig和DCI中PUSCH Symbol域所表示的上行可传输符号的交集,作为最终的可用于PUSCH传输的符号集合,进行PUSCH数据发送。
步骤1103、根据符号配置信息,对上行数据进行上行传输。
图12为本公开另一实施例提供的通信方法的流程图。在本示例性实施例中,在LTE TDD配比2下,当存在符号级干扰时,UE可以根据SIB1中的PUSCHSymbolConfig确定可用于PUSCH传输的符号,其中,PUSCHSymbolConfig表明UpPTS上行符号不可用,且UE SRS配置在UpPTS上行符号上发送。
如图12所示,本实施例提供的通信方法包括以下步骤:
步骤1201、UE到达SRS发送子帧。
步骤1202、根据SIB1中PUSCHSymbolConfig,确定SRS所在的UpPTS符号是否可用,如果不可用,进入步骤1203,如果不存在,进入步骤1204。
步骤1203、不发送SRS。
步骤1204、正常发送SRS。
图13为本公开另一实施例提供的通信方法的流程图。在本示例性实施例中,在LTE TDD配比2下,当存在符号级干扰时,基站确定并下发了SIB1,且该SIB1中更新了PUSCHSymbolConfig,其中,PUSCHSymbolConfig表明UpPTS上行符号不可用,且基站配置SRS的可用符号在UpPTS上。
如图13所示,本实施例提供的通信方法包括以下步骤:
步骤1301、基站更新PUSCHSymbolConfig。
步骤1302、判断UpPTS上行符号是否可用;若是(即可用),进入步骤1303,如果不可用,进入步骤1304;
步骤1303、正常分配SRS资源在UpPTS上。
步骤1304、不再将UE的SRS资源分配在UpPTS符号上。
图14为本公开实施例提供的一种通信装置的示意图。如图14所示,本实施例提供的通信装置,包括:
发送模块1402,设置为发送符号配置信息。
在示例性实施方式中,符号配置信息用于指示以下至少之一:不能用于上行传输的上行符号以及可用于上行传输的上行符号。
在示例性实施方式中,符号配置信息可以由小区级广播消息和UE级授权信息中至少之一携带。比如,符号配置信息可以由以下至少之一携带:SIB1、MobilityControlInfo→RadioResourceConfigCommon以及DCI。
在示例性实施方式中,本实施例的通信装置还可以包括:
检测模块1400,设置为对预设类型的干扰进行检测。
确定模块1401,设置为根据干扰检测结果,确定符号配置信息。
在示例性实施方式中,符号配置信息,可以包括:一个周期内每个上行符号对应的比特域取值,其中,可用于上行传输的上行符号对应的比特域取值与不能用于上行传输的上行符号对应的比特域取值不同。比如,一个上行符号对应的比特域取值为0表示该上行符号不能用于上行传输,一个上行符号对应的比特域取值为1表示该上行符号能用于上行传输;
或者,符号配置信息,可以包括N位比特信息,所述N位比特信息与以下至少一项之间存在映射关系:不能用于上行传输的上行符号集合以及不能用于上行传输的符号总数;或者,所述N位比特信息与以下至少一项之间存在映射关系:可用于上行传输的上行符号集合以及可用于上行传输的符号总数。
关于本实施例提供的通信装置的相关说明可以参照基站侧的通信方法的描述,故于此不再赘述。
图15为本公开另一实施例提供的一种通信装置的示意图。如图15所示,本实施例提供的通信装置,包括:
获取模块1501,设置为获取符号配置信息。
处理模块1502,设置为根据符号配置信息,对上行数据进行上行传输。
在示例性实施方式中,符号配置信息用于指示以下至少之一:不能用于上行传输的上行符号以及可用于上行传输的上行符号。
在示例性实施方式中,获取模块1501是设置为通过以下之一方式获取符号 配置信息:
从基站发送的小区级广播消息中,获取符号配置信息;
从基站下发的UE级授权信息中,获取符号配置信息;
根据基站发送的小区级广播消息以及UE级授权信息,确定符号配置信息。
在示例性实施方式中,符号配置信息,可以包括:一个周期内每个上行符号对应的比特域取值,其中,可用于上行传输的上行符号对应的比特域取值与不能用于上行传输的上行符号对应的比特域取值不同。比如,一个上行符号对应的比特域取值为0表示该上行符号不能用于上行传输,一个上行符号对应的比特域取值为1表示该上行符号能用于上行传输;
或者,符号配置信息,可以包括N位比特信息,所述N位比特信息与以下至少一项之间存在映射关系:不能用于上行传输的上行符号集合以及不能用于上行传输的符号总数;或者,所述N位比特信息与以下至少一项之间存在映射关系:可用于上行传输的上行符号集合以及可用于上行传输的符号总数。
关于本实施例提供的通信装置的相关说明可以参照UE侧的通信方法的描述,故于此不再赘述。
图16为本公开实施例提供的一种基站的示意图。如图16所示,本实施例提供的基站1600,包括:存储器1601、一个或多个处理器1602(图中仅示出一个)以及存储在存储器1601上并可在处理器1602上运行的通信程序。其中,该通信程序在被处理器1602读取执行时,执行上述基站侧的通信方法。
其中,处理器1602可以包括但不限于微处理器(Microcontroller Unit,MCU)或可编程逻辑器件(Field-Programmable Gate Array,FPGA)等的处理装置。存储器1601可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器1601可进一步包括相对于处理器1602远程设置的存储器,这些远程存储器可以通过网络连接至基站1600。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本领域普通技术人员可以理解,图16所示的结构仅为示意,其并不对上述基站的结构造成限定。例如,基站1600还可包括比图16中所示更多或者更少的组件,或者具有与图16所示不同的配置。
如图16所示,本实施例提供的基站1600还可以包括:传输模块1603,设置为经由一个网络接收或者发送数据。在一个实例中,传输模块1603可以为射频 (Radio Frequency,RF)模块,传输模块1603用于通过无线方式与互联网进行通信。
图17为本公开实施例提供的一种UE的示意图。如图17所示,本实施例提供的UE 1700,包括:存储器1701、一个或多个处理器1702(图中仅示出一个)以及存储在存储器1701上并可在处理器1702上运行的通信程序。其中,该通信程序在被处理器1702读取执行时,执行上述UE侧的通信方法。
其中,处理器1702可以包括但不限于MCU或FPGA等的处理装置。存储器1701可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器1701可进一步包括相对于处理器1702远程设置的存储器,这些远程存储器可以通过网络连接至UE 1700。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本领域普通技术人员可以理解,图17所示的结构仅为示意,其并不对上述UE的结构造成限定。例如,UE 1700还可包括比图17中所示更多或者更少的组件,或者具有与图17所示不同的配置。
如图17所示,本实施例提供的UE 1700还可以包括:传输模块1703,设置为经由一个网络接收或者发送数据。在一个实例中,传输模块1703可以为射频(Radio Frequency,RF)模块,传输模块1703用于通过无线方式与互联网进行通信。
此外,本公开实施例还提供一种计算机可读介质,存储有通信程序,所述通信程序被处理器执行时实现上述基站侧的通信方法。
此外,本申请实施例还提供一种计算机可读介质,存储有通信程序,所述通信程序被处理器执行时实现上述UE侧的通信方法。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分。例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由多个物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或 暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、带电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、闪存或其他存储器技术、紧凑型光盘只读储存器(Compact Disc Read-Only Memory,CD-ROM)、数字多功能盘(Digital Versatile Disc,DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上显示和描述了本公开的基本原理和主要特征和本公开的优点。

Claims (20)

  1. 一种通信方法,包括:
    基站发送符号配置信息,其中,所述符号配置信息用于指示以下至少之一:不能用于上行传输的上行符号以及可用于上行传输的上行符号。
  2. 根据权利要求1所述的方法,其中,所述符号配置信息由以下至少之一携带:小区级广播消息和用户设备UE级授权信息。
  3. 根据权利要求1所述的方法,其中,所述符号配置信息由以下至少之一携带:系统消息块1、移动控制信息中的无线资源配置公共消息以及下行控制信息。
  4. 根据权利要求1、2或3所述的方法,其中,在所述基站发送符号配置信息之前,还包括:
    所述基站对预设类型的干扰进行检测;
    所述基站根据干扰检测结果,确定所述符号配置信息。
  5. 根据权利要求1至4中任一项所述的方法,其中,所述符号配置信息,包括:一个周期内每个上行符号对应的比特域取值,其中,可用于上行传输的上行符号对应的比特域取值与不能用于上行传输的上行符号对应的比特域取值不同。
  6. 根据权利要求1至4中任一项所述的方法,其中,所述符号配置信息,包括:N位比特信息,其中,所述N位比特信息与以下至少一项之间存在映射关系:不能用于上行传输的上行符号集合以及不能用于上行传输的符号总数;或者,所述N位比特信息与以下至少一项之间存在映射关系:可用于上行传输的上行符号集合以及可用于上行传输的符号总数。
  7. 一种通信方法,包括:
    用户设备UE获取符号配置信息;
    所述UE根据所述符号配置信息,对上行数据进行上行传输;
    其中,所述符号配置信息用于指示以下至少之一:不能用于上行传输的上行符号以及可用于上行传输的上行符号。
  8. 根据权利要求7所述的方法,其中,所述UE获取符号配置信息,包括以下之一:
    所述UE从基站发送的小区级广播消息中,获取所述符号配置信息;
    所述UE从基站下发的UE级授权信息中,获取所述符号配置信息;以及,
    所述UE根据基站发送的小区级广播消息以及UE级授权信息,确定所述符 号配置信息。
  9. 根据权利要求7或8所述的方法,其中,所述符号配置信息,包括:一个周期内每个上行符号对应的比特域取值,其中,可用于上行传输的上行符号对应的比特域取值与不能用于上行传输的上行符号对应的比特域取值不同。
  10. 根据权利要求7或8所述的方法,其中,所述符号配置信息,包括:N位比特信息,其中,所述N位比特信息与以下至少一项之间存在映射关系:不能用于上行传输的上行符号集合以及不能用于上行传输的符号总数;或者,所述N位比特信息与以下至少一项之间存在映射关系:可用于上行传输的上行符号集合以及可用于上行传输的符号总数。
  11. 根据权利要求7所述的方法,还包括:
    当根据所述符号配置信息确定所述上行数据的映射资源位置不可用时,不发送所述上行数据。
  12. 一种通信装置,包括:发送模块,设置为发送符号配置信息;
    其中,所述符号配置信息用于指示以下至少之一:不能用于上行传输的上行符号以及可用于上行传输的上行符号。
  13. 根据权利要求12所述的装置,还包括:
    检测模块,设置为对预设类型的干扰进行检测;
    确定模块,设置为根据干扰检测结果,确定所述符号配置信息。
  14. 根据权利要求12或13所述的装置,其中,所述符号配置信息,包括:一个周期内每个上行符号对应的比特域取值,其中,可用于上行传输的上行符号对应的比特域取值与不能用于上行传输的上行符号对应的比特域取值不同;
    或者,所述符号配置信息,包括:N位比特信息,其中,所述N位比特信息与以下至少一项之间存在映射关系:不能用于上行传输的上行符号集合以及不能用于上行传输的符号总数,或者,所述N位比特信息与以下至少一项之间存在映射关系:可用于上行传输的上行符号集合以及可用于上行传输的符号总数。
  15. 一种通信装置,包括:
    获取模块,设置为获取符号配置信息;
    处理模块,设置为根据所述符号配置信息,对上行数据进行上行传输;
    其中,所述符号配置信息用于指示以下至少之一:不能用于上行传输的上行符号以及可用于上行传输的上行符号。
  16. 根据权利要求15所述的装置,其中,所述获取模块是设置为通过以下之一方式获取符号配置信息:
    从基站发送的小区级广播消息中,获取所述符号配置信息;
    从基站下发的UE级授权信息中,获取所述符号配置信息;以及,
    根据基站发送的小区级广播消息以及UE级授权信息,确定所述符号配置信息。
  17. 根据权利要求15或16所述的装置,其中,所述符号配置信息,包括:一个周期内每个上行符号对应的比特域取值,其中,可用于上行传输的上行符号对应的比特域取值与不能用于上行传输的上行符号对应的比特域取值不同;
    或者,所述符号配置信息,包括:N位比特信息,其中,所述N位比特信息与以下至少一项之间存在映射关系:不能用于上行传输的上行符号集合以及不能用于上行传输的符号总数;或者,所述N位比特信息与以下至少一项之间存在映射关系:可用于上行传输的上行符号集合以及可用于上行传输的符号总数。
  18. 一种基站,包括:存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的通信程序,所述通信程序被所述处理器执行时实现如权利要求1至6中任一项所述的通信方法。
  19. 一种用户设备UE,包括:存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的通信程序,所述通信程序被所述处理器执行时实现如权利要求7至11中任一项所述的通信方法。
  20. 一种计算机可读介质,存储有通信程序,所述通信程序被处理器执行时实现如权利要求1至11中任一项所述的通信方法。
PCT/CN2018/098965 2017-08-07 2018-08-06 通信方法及装置 WO2019029482A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020506196A JP6997858B2 (ja) 2017-08-07 2018-08-06 通信方法および装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710667076.3 2017-08-07
CN201710667076.3A CN109391570B (zh) 2017-08-07 2017-08-07 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2019029482A1 true WO2019029482A1 (zh) 2019-02-14

Family

ID=65270881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098965 WO2019029482A1 (zh) 2017-08-07 2018-08-06 通信方法及装置

Country Status (3)

Country Link
JP (1) JP6997858B2 (zh)
CN (1) CN109391570B (zh)
WO (1) WO2019029482A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101360320A (zh) * 2007-07-30 2009-02-04 大唐移动通信设备有限公司 基站间同频干扰规避方法、控制装置和基站设备
US20110190024A1 (en) * 2009-08-11 2011-08-04 Qualcomm Incorporated Interference mitigation by puncturing transmission of interfering cells
CN102469466A (zh) * 2010-11-11 2012-05-23 华为技术有限公司 一种干扰处理方法与装置
CN106465392A (zh) * 2016-08-17 2017-02-22 北京小米移动软件有限公司 通信方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572896B (zh) * 2008-04-29 2011-01-26 大唐移动通信设备有限公司 一种配置上行探测参考信号的方法和装置
JP5690019B2 (ja) * 2011-04-08 2015-03-25 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 無線通信システムにおいて大気ダクトによって生じる干渉の低減
US9642148B2 (en) * 2012-05-01 2017-05-02 Qualcomm Incorporated Interference cancellation based on adaptive time division duplexing (TDD) configurations
CN105991256B (zh) * 2015-01-29 2020-02-04 电信科学技术研究院 一种上行数据传输控制、传输方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101360320A (zh) * 2007-07-30 2009-02-04 大唐移动通信设备有限公司 基站间同频干扰规避方法、控制装置和基站设备
US20110190024A1 (en) * 2009-08-11 2011-08-04 Qualcomm Incorporated Interference mitigation by puncturing transmission of interfering cells
CN102469466A (zh) * 2010-11-11 2012-05-23 华为技术有限公司 一种干扰处理方法与装置
CN106465392A (zh) * 2016-08-17 2017-02-22 北京小米移动软件有限公司 通信方法及装置

Also Published As

Publication number Publication date
CN109391570B (zh) 2022-05-17
CN109391570A (zh) 2019-02-26
JP6997858B2 (ja) 2022-01-18
JP2020529788A (ja) 2020-10-08

Similar Documents

Publication Publication Date Title
CN110049557B (zh) 随机接入方法及装置
US10931407B2 (en) User terminal and radio communication method
JP6125736B2 (ja) フレキシブルサブフレーム動作の期間中のシステム情報の取得に関する方法及びノード
WO2018030185A1 (ja) 通信装置及び通信方法
KR20240001287A (ko) 동기화 신호 블록 선택
CN111587548B (zh) 具有混合自动重传请求确认的物理上行链路共享信道
US20160270060A1 (en) Terminal device, base station apparatus, communication method, and integrated circuit
JP2018029323A (ja) 通信装置及び通信方法
CN113785520B (zh) 已配置许可上行链路控制信息(uci)映射规则
WO2017183252A1 (ja) 端末装置、基地局装置、通信方法
KR102319182B1 (ko) D2D(Device to Device)통신 단말의 통신 방법 및 장치
EP3439380A1 (en) Terminal device, base station device, communication method, and control method
JP7272791B2 (ja) 端末、無線通信方法及びシステム
MX2012010830A (es) Temporizacion de transmisiones de enlace ascendente en un sistema de comunicacion de portadoras multiples.
WO2018030158A1 (ja) 通信装置、通信方法及びプログラム
US10440701B2 (en) User equipment and power allocation method
EP3133876B1 (en) Terminal device, base-station device, integrated circuit, and communication method
US10165517B2 (en) Power allocation method and communications device
US10117255B2 (en) Neighboring cell load information
RU2727718C2 (ru) Пользовательское устройство
WO2016161791A1 (zh) 一种传输调度请求的方法和装置
CN107852715B (zh) 终端装置以及通信方法
US9357546B1 (en) Methods and systems for controlling TTI bundling
CN113767585A (zh) 利用下行链路(dl)半持久调度的针对多个物理下行链路共享信道(pdsch)的混合自动重传请求(harq)反馈
US9986556B1 (en) Enhanced TTI bundling in TDD mode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844809

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020506196

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18844809

Country of ref document: EP

Kind code of ref document: A1