WO2019029465A1 - 一种rna分配的方法、网络设备及终端 - Google Patents

一种rna分配的方法、网络设备及终端 Download PDF

Info

Publication number
WO2019029465A1
WO2019029465A1 PCT/CN2018/098897 CN2018098897W WO2019029465A1 WO 2019029465 A1 WO2019029465 A1 WO 2019029465A1 CN 2018098897 W CN2018098897 W CN 2018098897W WO 2019029465 A1 WO2019029465 A1 WO 2019029465A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
terminal
information
rna
message
Prior art date
Application number
PCT/CN2018/098897
Other languages
English (en)
French (fr)
Inventor
晋英豪
李宏
韩锋
谭巍
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112020002641-7A priority Critical patent/BR112020002641A2/pt
Priority to EP18843490.6A priority patent/EP3668203B1/en
Priority to AU2018314879A priority patent/AU2018314879B2/en
Priority to JP2020507654A priority patent/JP2020530245A/ja
Priority to CA3072521A priority patent/CA3072521C/en
Publication of WO2019029465A1 publication Critical patent/WO2019029465A1/zh
Priority to US16/784,674 priority patent/US11653330B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/38Reselection control by fixed network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • H04W8/14Mobility data transfer between corresponding nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0064Transmission or use of information for re-establishing the radio link of control information between different access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method, a network device, and a terminal for RNA distribution.
  • the Radio Resource Control (RRC) deactivation state is a newly defined terminal communication state in 5G.
  • the Inactive state the core network, the network device, and the terminal all retain corresponding context information, but the terminal is in the Inactive state in the radio access network (RAN) notification area (RAN)
  • RAN radio access network
  • the network may not be notified, but the network needs to be notified after removing the RNA allocated by the terminal in the inactive state on the network side.
  • the new network device may re-allocate the RNA for the terminal.
  • These conditions may include that the new network device and the old network device belong to different RNAs, or that the new network device is at the edge of the current RNA during the periodic RNA update process.
  • the redistributed RNA needs to include which cells are not solved.
  • the present application provides a method, a network device, and a terminal for RNA distribution, in order to re-allocate RNA for a terminal in an Inactive state (or a connected state), according to RNA information recently accessed by the terminal (also can be understood as a terminal)
  • the mobile trajectory) and/or support for the inactive state assigning RNA to the terminal device to make the allocation of RNA more reasonable, reducing non-periodic RNA updates, saving signaling overhead and power consumption.
  • the present application can further enrich the movement track of the terminal according to the stay time of the terminal, so that the network side can more accurately judge the network side, so that the network side can allocate new RNA more accurately.
  • a first aspect provides a method for RNA distribution, the method comprising: receiving, by a first network device, a first message sent by a terminal, the first message carrying RNA information recently accessed by the terminal; the first network device Sending, by the terminal, a reply message of the first message, where the reply message carries the RNA information allocated by the first network device to the terminal.
  • the RNA information that the terminal has recently accessed is used to indicate at least one cell or at least one network device that the terminal passes before moving to the first network device.
  • the representation manner of the RNA information includes the following information or a combination of multiple information: radio access network paging area information, cell identification information, base station identification information, and tracking area. Information and registration area information.
  • the method further includes the first network device determining whether to re-allocate the RNA for the terminal based on RNA information recently accessed by the terminal.
  • the RNA information allocated by the first network device to the terminal is allocated according to the RNA information recently accessed by the terminal.
  • the first message further carries a dwell time of the terminal, where the dwell time is at least one cell or at least one network indicated by the recently accessed RNA information of the terminal.
  • the residence time of the equipment is at least one cell or at least one network indicated by the recently accessed RNA information of the terminal.
  • the RNA information allocated by the first network device to the terminal is allocated according to a dwell time of the terminal.
  • the method further includes: determining whether the inactive state is supported by the first network device, where the inactive state includes at least one or a combination of the following, whether the first network device supports an inactive state, Whether the cell in which the terminal is currently in the inactive state is supported, and whether the PLMN corresponding to the cell in which the terminal is currently located supports the inactive state.
  • the RNA information allocated by the first network device to the terminal is determined according to the RNA information recently accessed by the terminal, and the first network device determines whether to support inactive Status assigned.
  • the method further includes: the first network device receiving a feedback message sent by the second network device, where the feedback message carries a periodic RNA update number of the terminal, where the periodic RNA update times includes the terminal The number of periodic RNA updates that have been made since the transition from the connected state to the inactive state.
  • the first network device can determine whether to set the terminal to the inactive state or directly to the idle state according to the number of received RNA updates.
  • the method further includes: the first network device receiving the RNA information of the second network device sent by the second network device.
  • the method further includes: the first network device receiving information about whether the second network device sends an inactive state.
  • a second aspect provides a method for distributing an RNA, the method comprising: a first message sent by a terminal to a first network device, where the first message carries RNA information recently accessed by the terminal; a reply message of the first message sent by the first network device, where the reply message carries the RNA information allocated by the first network device to the terminal;
  • the RNA information that the terminal has recently accessed is used to indicate at least one cell or at least one network device that the terminal passes before moving to the first network device;
  • the representation manner of the RNA information includes the following information or a combination of multiple information: radio access network paging area information, cell identification information, base station identification information, and tracking area. Information and registration area information.
  • the first message further carries a dwell time of the terminal, where the dwell time is at least one cell or at least one network indicated by the recently accessed RNA information of the terminal.
  • the residence time of the equipment is at least one cell or at least one network indicated by the recently accessed RNA information of the terminal.
  • the third aspect provides a network device for distributing RNA, the network device includes: a receiving unit, configured to receive a first message sent by the terminal, where the first message carries RNA information recently accessed by the terminal; And sending, by the terminal, a reply message of the first message, where the reply message carries the RNA information allocated by the first network device to the terminal.
  • the RNA information that the terminal has recently accessed is used to indicate at least one cell or at least one network device that the terminal passes before moving to the first network device.
  • the representation manner of the RNA information includes the following information or a combination of multiple information: radio access network paging area information, cell identification information, base station identification information, and tracking area. Information and registration area information.
  • the network device further includes a determining unit, configured to determine, according to the RNA information recently accessed by the terminal, whether to re-allocate the RNA for the terminal.
  • the RNA information allocated by the first network device to the terminal is allocated according to the RNA information recently accessed by the terminal.
  • the first message further carries a dwell time of the terminal, where the dwell time is at least one cell or at least one network indicated by the recently accessed RNA information of the terminal.
  • the residence time of the equipment is at least one cell or at least one network indicated by the recently accessed RNA information of the terminal.
  • the network device further includes: a determining unit, configured to determine whether an inactive state is supported, where the supporting the inactive state includes a combination of one or more of the following, Whether the first network device supports the inactive state, whether the cell in which the terminal is currently in the inactive state, and whether the PLMN corresponding to the cell in which the terminal is currently located supports the inactive state.
  • a determining unit configured to determine whether an inactive state is supported, where the supporting the inactive state includes a combination of one or more of the following, Whether the first network device supports the inactive state, whether the cell in which the terminal is currently in the inactive state, and whether the PLMN corresponding to the cell in which the terminal is currently located supports the inactive state.
  • the RNA information allocated by the first network device to the terminal is determined according to the RNA information recently accessed by the terminal and the first network device. Support for inactive state allocation.
  • the receiving unit is further configured to: receive a feedback message sent by the second network device, where the feedback message carries a periodic RNA update number of the terminal, where the periodicity
  • the number of RNA updates includes the number of periodic RNA updates that have been made since the terminal transitioned from the connected state to the inactive state.
  • the receiving unit is further configured to receive the RNA information of the second network device that is sent by the second network device.
  • the receiving unit is further configured to: receive information about whether the second network device sends an inactive state.
  • the fourth aspect provides a terminal for RNA distribution, where the terminal includes: a sending unit, configured to send a first message to the first network device, where the first message carries the RNA information recently accessed by the terminal; a unit, configured to receive a reply message of the first message sent by the first network device, where the reply message carries RNA information allocated by the first network device to the terminal, where the terminal
  • the recently accessed RNA information is used to indicate at least one cell or at least one network device that the terminal passed before moving to the first network device.
  • the first message further carries a dwell time of the terminal, where the dwell time is at least one cell or at least one network indicated by the recently accessed RNA information of the terminal.
  • the residence time of the equipment is at least one cell or at least one network indicated by the recently accessed RNA information of the terminal.
  • a network device for distributing RNA includes a transmitter, a receiver, and a processor: the receiver is configured to receive a first message sent by the terminal, where the first message carries the The RNA information that the terminal has recently accessed; the sender is configured to send a reply message of the first message to the terminal, where the reply message carries the RNA information allocated by the first network device to the terminal.
  • the RNA information that the terminal has recently accessed is used to indicate at least one cell or at least one network device that the terminal passes before moving to the first network device.
  • the representation manner of the RNA information includes the following information or a combination of multiple information: radio access network paging area information, cell identification information, base station identification information, and tracking area. Information and registration area information.
  • the processor is configured to determine, according to the RNA information that the terminal has recently accessed, whether to re-allocate the RNA for the terminal.
  • the RNA information allocated by the first network device to the terminal is allocated according to the RNA information that the terminal recently accessed.
  • the first message further carries a dwell time of the terminal, where the dwell time is at least one cell or at least one network indicated by the recently accessed RNA information of the terminal.
  • the residence time of the equipment is at least one cell or at least one network indicated by the recently accessed RNA information of the terminal.
  • the processor is configured to determine whether an inactive state is supported, where the supporting the inactive state includes a combination of one or more of the following, the first network device Whether the inactive state is supported, whether the cell in which the terminal is currently in the inactive state is supported, and whether the PLMN corresponding to the cell in which the terminal is currently located supports the inactive state.
  • the RNA information allocated by the first network device to the terminal is determined according to the RNA information recently accessed by the terminal and the first network device. Support for inactive state allocation.
  • the receiver is further configured to: receive a feedback message sent by the second network device, where the feedback message carries a periodic RNA update number of the terminal, where the periodicity
  • the number of RNA updates includes the number of periodic RNA updates that have been made since the terminal transitioned from the connected state to the inactive state.
  • the receiver is further configured to receive the RNA information of the second network device that is sent by the second network device.
  • the receiver is further configured to receive information about whether the second network device sends an inactive state.
  • a sixth aspect provides a terminal for RNA distribution, the terminal comprising: a transmitter, a receiver, and a processor, the transmitter, configured to send, to the first network device, a first message, where the first message carries The RNA information that the terminal has recently accessed; the receiver is configured to receive a reply message of the first message sent by the first network device, where the reply message carries the first network device as described The RNA information allocated by the terminal; wherein the RNA information recently accessed by the terminal is used to indicate at least one cell or at least one network device that the terminal passes before moving to the first network device.
  • the first message further carries a dwell time of the terminal, where the dwell time is at least one cell or at least one network indicated by the recently accessed RNA information of the terminal.
  • the residence time of the equipment is at least one cell or at least one network indicated by the recently accessed RNA information of the terminal.
  • a computer readable storage medium comprising instructions, when executed on a computer, causing the computer to perform the method of any of the above aspects.
  • a computer program product comprising instructions, when executed on a computer, causing the computer to perform the method of any of the above aspects.
  • a computer program which, when run on a computer, causes the computer to perform the method of any of the above aspects.
  • the present application also provides a method, a network device and a terminal, which determine the state in which the terminal is placed according to the number of periodic RNA updates of the terminal. For the terminal in the inactive state, the new network device decides which state the terminal is placed according to the number of periodic RNA updates and/or whether there is data to be sent, and the number of periodic RNA updates can reflect the activity level of the terminal, combined with this The parameters determine which state the terminal is placed in to make the allocation more accurate, reduce state switching, and save signaling overhead and power consumption.
  • a tenth aspect a method for setting a terminal state, the method comprising:
  • the first network device receives a feedback message sent by the device, where the feedback message carries the periodic RNA update times of the terminal, where the periodic RNA update times include a periodicity that has been performed after the terminal transitions from the connected state to the inactive state.
  • the first network device sends a reply message of the first message to the terminal, where the reply message is used to indicate a state in which the terminal is placed.
  • the device comprises a second network device and/or the terminal.
  • the reply message when the number of periodic RNA updates is greater than or equal to a preset value, the reply message is used to place the terminal in a deactivated state or an idle state.
  • the first network device or the terminal is based on the received number of periodic RNA updates Continue to count.
  • the first network device or the terminal sets the received periodic update number of periodic RNAs to Set a value, for example, the preset value is zero. Or delete the periodic RNA update count value.
  • the first network device or the terminal re-counts the number of periodic RNA updates if the terminal is set or remains connected.
  • the first network device or the terminal sets the received periodic RNA update number to a preset value.
  • the preset value is zero. Or delete the periodic RNA update count value.
  • the first network device or the terminal re-counts the number of periodic RNA updates if the terminal is set or remains idle.
  • a method for setting a terminal state comprising
  • the terminal sends an RRC message to the first network device, where the RRC message carries the number of periodic RNA updates of the terminal, where the number of periodic RNA updates includes a period that has been performed after the terminal transitions from the connected state to the inactive state.
  • the number of sexual RNA updates the terminal receives a reply message, which is used to indicate what state the terminal is placed in.
  • the reply message when the number of periodic RNA updates is greater than or equal to a preset value, the reply message is used to put the terminal into a deactivated state or an idle state.
  • the first network device or the terminal is based on the number of periodic RNA updates received Continue to count on.
  • the first network device or the terminal sets the received periodic RNA update times as default value. Or delete the periodic RNA update count value.
  • the first network device or the terminal re-counts the number of periodic RNA updates if the terminal is set or remains connected.
  • the first network device or the terminal sets the preset number of the periodic RNA updates received as a preset
  • the value for example, the preset value is zero. Or delete the periodic RNA update count value.
  • the first network device or the terminal re-counts the number of periodic RNA updates if the terminal is set or remains idle.
  • a method for setting a terminal state comprising:
  • the second network device sends a feedback message to the first network device, where the feedback message carries the periodic RNA update times of the terminal, where the periodic RNA update times include that the terminal has performed after transitioning from the connection state to the inactive state.
  • the second network device receives a release message sent by the first network device, where the release message is used to indicate that the context of the terminal is released.
  • the release message sent by the first network device includes the identifier information of the terminal device, for example, the identifier information may be a Resume ID.
  • a thirteenth aspect provides a network device, the network device comprising a receiving unit and a transmitting unit, the receiving unit and the transmitting unit performing the method described in any of the above aspects.
  • a fourteenth aspect provides a network device, the network device comprising a receiver, a transmitter, and the transmitter for performing the method of any of the above aspects.
  • a fifteenth aspect provides a terminal, the terminal comprising a receiving unit and a transmitting unit, wherein the receiving unit and the transmitting unit are configured to perform the method described in any of the above aspects.
  • a sixteenth aspect provides a terminal, the terminal comprising a receiver, a transmitter, and the transmitter for performing the method of any of the above aspects.
  • a computer readable storage medium comprising instructions, when executed on a computer, causing the computer to perform the method of any of the above aspects.
  • a computer program product comprising instructions, when executed on a computer, causing the computer to perform the method of any of the above aspects.
  • a computer program which, when run on a computer, causes the computer to perform the method of any of the above aspects.
  • the present application also provides an RPA information interaction method.
  • the RPA information may be exchanged during the process of establishing an interface between the network devices or during the network device update process.
  • the twentieth aspect provides a method, including: a first network device sends a third message to a second network device; the second network device sends a fourth message to the first network device, where the fourth message is a third message Reply message.
  • the third message may include a message for establishing an interface and/or a message for updating.
  • the third message includes an Xn interface setup request or a gNB configuration update message.
  • the fourth message includes an Xn setup feedback message or a gNB configuration update acknowledgement message.
  • the third message carries RPA information of the first network device
  • the fourth message carries RPA information of the second network device.
  • the present application also provides an inactive state interaction method.
  • the interface may be established during the process of establishing an interface between the network devices or during the network device update process.
  • the twenty-first aspect provides a method, including: a first network device sends a third message to a second network device; the second network device sends a fourth message to the first network device, where the fourth message is a third message The reply message of the message.
  • the third message may include a message for establishing an interface and/or a message for updating.
  • the third message includes an Xn interface setup request or a gNB configuration update message.
  • the fourth message includes an Xn setup feedback message or a gNB configuration update acknowledgement message.
  • the third message carries whether the first network device supports the inactive state; and/or the fourth message carries whether the second network device supports the inactive state.
  • whether the inactive state is supported includes at least one or a combination of the following, whether the first/second network device supports an inactive state, and the terminal Whether the currently located cell supports the inactive state, and whether the PLMN corresponding to the cell in which the terminal is currently located supports the inactive state.
  • FIG. 1 is a network architecture diagram of an application according to an embodiment of the present application
  • FIG. 2 is a flow chart of a method for RNA distribution in the present application
  • FIG. 3 is a flowchart of a method for setting a terminal state provided by the present application.
  • FIG. 5 is a schematic flowchart of establishing interactive RNA information through an Xn interface according to the present application
  • FIG. 6 is a schematic diagram of an RNA update process provided by the present application.
  • RNA update process 7 is a schematic diagram of an RNA update process provided by the present application.
  • FIG. 8 is a schematic diagram of a cell reselection process provided by the present application.
  • FIG. 9 is a schematic structural diagram of an apparatus 100 provided by the present application.
  • FIG. 10 is a schematic structural diagram of a base station 1000 provided by the present application.
  • FIG. 11 is a schematic structural diagram of a UE2000 according to the present application.
  • first, second, etc. may be used to describe various network devices or messages in the embodiments of the present application, these network devices or messages should not be limited to these terms. These terms are only used to distinguish one from another.
  • the first network device may also be referred to as a second network device without departing from the scope of the embodiments of the present application.
  • the second network device may also be referred to as a first network device; the messages are similar.
  • the network device can be any device with wireless transceiver function. Including but not limited to: network devices (eg, network device NodeB, evolved network device eNodeB, network device (gNB) in the fifth generation (5G) communication system, network device or network device in future communication system , an access node in a WiFi system, a wireless relay node, a wireless backhaul node, and the like.
  • the network device may also be a wireless controller in a cloud radio access network (CRAN) scenario.
  • the network device may also be a network device in a 5G network or a network device in a future evolved network; it may also be a wearable device or an in-vehicle device or the like.
  • the network device 100 may also be a small station, a transmission reference point (TRP) or the like. Of course, this application is not limited to this.
  • Old network device refers to a network device that reserves the core network and the RAN side control plane for the Inactive terminal.
  • the old network device can generally be understood as a network device that controls the terminal to transfer from the connection state to the Inactive state, but other conditions are not excluded.
  • the Inactive terminal without data transmission is in the RNA (the notification area of the RAN, The RAN based Notification Area (RNA) remains in the inactive state after the update, and does not need to be transferred to the connection state first.
  • the network device only reconfigures the terminal without state transition, the core network side The connection to the RNA side is transferred, and the network device in which the control terminal maintains the Inactive state is also referred to as the old network device.
  • a new (new) network device which is a network device corresponding to the old network device, is a network device that can currently provide services for the terminal, and the terminal and the at least one cell included in the new network device may have downlink synchronization, and receive a new network device.
  • the broadcast signal, and the terminal interacts with the network through the new network device.
  • the terminal is a device with wireless transceiver function that can interact with the network device and can be deployed on land, including indoor or outdoor, handheld, wearable or on-board; it can also be deployed on the water surface (such as a ship); Deployed in the air (such as airplanes, balloons, satellites, etc.).
  • the terminal may be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, and an industrial control (industrial) Wireless terminal in control), wireless terminal in self driving, wireless terminal in remote medical, wireless terminal in smart grid, wireless in transport safety A terminal, a wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • the terminal can be a device that can communicate with the network device.
  • the UE may also be referred to as a terminal device, an access terminal device, a user equipment (UE), a UE unit, a UE station, a mobile station, a mobile station, a remote station, a remote terminal device, a mobile device, a UE terminal device, and a wireless device.
  • Communication device UE proxy or UE device, etc.
  • Interaction refers to the process in which the two parties exchange information with each other, and the information transmitted here may be the same or different.
  • the two parties are the network device 1 and the network device 2, or may be a network device and a UE. It may be that the network device 1 requests information from the network device 2, and the network device 2 provides the information requested by the network device 1 to the network device 1. Of course, the network device 1 and the network device 2 can also request information from each other.
  • the interaction between the network device and the UE is the same as the interaction between the network device, and details are not described herein.
  • the information requested here may be the same or different.
  • Deactivation (state) state which can be called Inactive state, can also be called radio resource control (RRC) deactivation state, which is a newly defined communication state in 5G, which can be used as An independent communication state (an independent state other than the RRC connected (Connected/Active) state and the RRC idle (Idle) state) can also be understood as a sub-communication state of the connected state or the idle state.
  • RRC radio resource control
  • the Inactive state can be considered as an independent communication state, and the terminal in the Inactive state can have the following characteristics: A: The terminal information in the Access Stratum (AS) is simultaneously in the terminal and the radio access network ( The radio access network (RAN) side is reserved, wherein the AS context of the terminal may be saved in the old network device on the RAN side (the context is consistent with the RRC connection state context or part of the RRC connection state context), or may be used by the old network device The terminal context is transferred to other network devices for storage.
  • B When the terminal moves from the Inactive state to the RRC connection state, it is not necessary to reactivate the link between the old network device and the core network control plane network element. For example, the link between the base station side and the core network side does not need to be reactivated.
  • the RNA is composed of one cell or multiple cells. If it is composed of multiple cells, the multiple cells belong to the same network device, and may belong to different network devices.
  • the different network devices may be network devices of the same RAT. It may be a network device of a different RAT, for example, the network device may be an eNB in a 4.5G network, or may be a gNB in a 5G network.
  • the terminal in the Inactive state may not notify the network when moving inside the RNA, but only performs cell reselection based on the mobility of the terminal, and performs periodic RNA update. When the terminal in the Inactive state moves to a cell other than RNA, it needs to inform the network and perform RNA update.
  • the RNA update is similar to the Tracking Area Update (TAU) in Long Term Evolution (LTE).
  • TAU Tracking Area Update
  • LTE Long Term Evolution
  • the RPA information can uniquely identify the RPA to which the cell belongs, and the cell can notify the terminal of the RPA information to which the terminal belongs by broadcasting the RPA information.
  • the RPA information may be an RPA Code (RPA Code), that is, a set of codes similar to TAC.
  • the RPA information may also be an RPA Identifier/Identity (RPA ID).
  • RPA ID may be expressed in the form of RPAC+PLMN, that is, the RPA ID may simultaneously represent the RPAC and PLMN of the cell.
  • the RPA ID may also be expressed in the form of RPAC+TAI, that is, the RPA ID may simultaneously represent the RPAC and TAI of the cell.
  • RPA can also be other ways of expression. Multiple cells can broadcast the same RPA information or broadcast different RPA information. If multiple cells broadcast the same RPA information, it means that the RPAs to which these cells belong are the same. Otherwise, the RPAs to which these cells belong are different.
  • a cell identifier which may uniquely identify the cell within a certain range, and may be a physical cell identity or a cell global identifier (CGI).
  • CGI cell global identifier
  • the cell identifier can also be other representations.
  • a network device identifier which may uniquely identify the network device within a certain range, for example, may be a global base station identifier, or may be other identifiers.
  • tracking area information or registration area information may uniquely identify the tracking area or the registration area within a certain range, for example, the tracking area information may be a tracking area identification (TAI) or tracking The area code (TAC), the registration area information may be a Registration Area Identifier/Identity (RAI) or a Registered Area Code (RAC).
  • TAI tracking area identification
  • TAC tracking The area code
  • RAI Registration Area Identifier/Identity
  • RAC Registered Area Code
  • RNA information can also be other representations, and no specific limitation is imposed in the present application.
  • Periodic RNA update Generally, the network side will configure a timer for the terminal. If the timer expires, the terminal will initiate a periodic RNA update process to inform the network side terminal that it has not left the previously configured RNA. In the process of counting the number of periodic RNA updates, there is usually no data transmission process, and no data transmission process here can be understood as no uplink data packet or downlink data packet transmission. Of course, it should be understood that the present application does not limit whether there is data transmission. For example, if the terminal is in an inactive state, it may be possible to perform small data packet transmission without a state transition.
  • Identification information of the terminal may be uniquely identified in the range of the RNA, for example, the identifier may be a Resume ID, or may be another identification method.
  • the identifier of the inactive terminal may also indicate information of the old gNB, for example, the identifier of the old gNB may be indicated. It should be understood that the application does not limit the information of the old gNB to the information of the old gNB.
  • the inactive terminal identifier is in the heterogeneous network device and cannot indicate the information about the gNB.
  • the existing state transition scenario is as follows: the connection state is converted to the Inactive state, the connected state is converted to the idle state, the Inactive state is converted to the idle state, and the idle state is converted to the connection.
  • the status and Inactive state are converted to the connected state.
  • the terminal in the Inactive state is inevitably required to perform RNA update and communication status conversion.
  • RNA update, data transmission, etc. the new service network device transferred to the device is reassigned to the terminal in the Inactive state.
  • the RNA, and the terminal in the Inactive state will first move to the connected state, and then if there is no data transmission, then move to the Inactive state.
  • the new network device does not need to re-allocate the RNA, and the terminal in the Inactive state does not need to perform state transition, for example, after moving to the new service network device and still moving within the original RNA, the new network Network devices may not have to redistribute RNA.
  • the terminal in the Inactive state performs RNA update, if there is no data for transmission, it is not necessary to shift to the connected state.
  • Multiple means two or more. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • FIG. 1 is a schematic diagram of a network architecture of a scenario applicable to the present application.
  • the communication system shown in FIG. 1 includes a terminal, a network device, and a core network.
  • the network device includes a first network device, a second network device, and a third network device.
  • the first network device may be a new network device (such as new gNB), and the second network device may be an old network device (old gNB).
  • the first network device and the second network device belong to the same wireless access type, and the wireless access type of the third network device is different from the wireless access type of the first network device and the second network device.
  • the first network device and the second network device may be understood as a 5G network device (gNB), and the third network device may be understood as a 4G or 4.5G network device (eNB).
  • the third network device may be connected to an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) network device of the 5G core network, and may support setting the terminal to an Inactive state or the like.
  • the core network may include access and Mobility Management Function (AMF).
  • AMF can be understood as a core network control plane function, providing mobility management and access management functions for the terminal.
  • AMF Access and Mobility Management Function
  • the second network device that sets the terminal from the connection state to the inactive state is a network device that last provides service for the terminal in the connected state, wherein the network device that last provides service to the terminal in the connected state may be referred to as an old network device (or It can also be called an anchor network device, and the old network device retains the context information of the terminal.
  • the terminal in the Inactive state has mobility. If the terminal in the Inactive state moves from the coverage of the second network device to the coverage of the first network device, the terminal in the Inactive state can use the first network device as the new service network device.
  • the terminal maintains downlink synchronization with the first network device, or synchronizes with the cell of the first network device, receives a broadcast signal of the first network device, and can interact with the core network through the first network device.
  • the first network device can perform data transmission or RNA update for the terminal in the Inactive state.
  • the RNA update process can include periodic RNA updates as well as RNA updates due to positional movements.
  • the first network device acquires the RNA information recently accessed by the terminal to more accurately allocate RNA to the terminal, thereby reducing the number of RNA updates and the air interface overhead.
  • the network device may pre-interact with whether the cell included in the cell supports the Inactive state, and may also consider this factor when allocating the RNA to the terminal, so that the allocation is more accurate and the acquired may also be obtained.
  • the latest RNA of the terminal and the acquired information supporting the Inactive state are combined to further improve the accuracy of the distribution.
  • FIG. 2 is a flow chart of a method for RNA distribution in the present application, as shown in FIG. 2:
  • the first network device receives a first message sent by the terminal, where the first message carries the RNA information that the terminal has recently accessed.
  • the RNA information is used to indicate at least one cell or at least one network device that the terminal passes before the first network device.
  • the representation manner of the RNA information includes the following information or a combination of multiple information: radio access network paging area information, cell identification information, base station identification information, tracking area information, and registration area information. If the RNA information that the terminal has recently accessed is in the form of a cell identifier or a cell identifier list, the cells corresponding to the cell identifiers may include only the cells that have served the terminal, that is, the terminal has signaling interaction or data transmission with the network side.
  • RNA information that the terminal has recently accessed is expressed in the form of an RPA information or an RPA information list
  • at least one cell in the RPA range corresponding to the RPA information is a cell that provides services for the terminal, that is, the terminal has signaling interaction with the network side or Data transmission
  • at least one cell in the RPA range corresponding to the RPA information is a cell that has not served the terminal, but the terminal selects and camps on the cell through cell reselection, that is, the terminal only reads the cell.
  • Broadcast information of the cell without any signaling or data interaction, or at least two cells in the RPA range corresponding to the RPA information include the above two cells at the same time.
  • the at least one cell included in the network device corresponding to the network device identifier is a cell that provides services for the terminal, that is, the terminal and the network side have Signaling interaction or data transmission, or at least one cell included in the network device corresponding to the network device identifier is a cell that has not been served to the terminal, but the terminal selects and camps on the cell through cell reselection, that is,
  • the terminal only reads the broadcast information of the cell without any signaling or data interaction, or the network device corresponding to the network device identifier includes at least two cells including the above two cells at the same time.
  • RNA information recently accessed by the terminal is expressed in the form of TA/RA information or TA/RA information list
  • at least one cell in the TA/RA range corresponding to the TA/RA information is a cell serving the terminal, that is, the terminal.
  • There is signaling interaction or data transmission with the network side or at least one cell in the TA/RA range corresponding to the TA/RA information is a cell that has not served the terminal, but the terminal selects and camps through cell reselection (camp on Passing the cell, that is, the terminal only reads the broadcast information of the cell without any signaling or data interaction, or at least two cells in the TA/RA range corresponding to the TA/RA information include the above two cells at the same time.
  • the first message is used by the terminal to request to restore the RRC connection, or to inform the network side to perform RNA update, or to send uplink data or signaling, or to receive a paging message on the network side, and to send uplink signaling, for example, It is an RRC connection recovery request in Embodiment 3 S1301 of the present application.
  • the first message further carries a dwell time of the terminal, where the dwell time is a dwell time of at least one cell or at least one network device indicated by the RNA information recently accessed by the terminal.
  • the dwell time refers to the time of staying in the cell corresponding to the cell identifier
  • the dwell time refers to the cell to the cell through cell reselection or handover. The time elapsed after reselecting or switching to another cell, if served by a certain cell, may further carry the time served by the cell.
  • the dwell time refers to the time that the terminal stays within the RPA range corresponding to the RPA information
  • the dwell time refers to the cell reselection or handover to enter the RPA.
  • the time elapsed from a cell to a cell that is re-selected by the cell or switched to another cell that does not belong to the RPA may further carry the time served by the RPA if it is served by at least one cell in the RPA.
  • the dwell time refers to the time that the terminal stays within the coverage of the network device corresponding to the network device identifier
  • the stay time refers to the cell reselection or Switching to a cell of the network device to a cell that is reselected by the cell or switched to another cell that does not belong to the network device, if served by at least one cell in the network device, may further carry the network The time of the equipment service.
  • the dwell time refers to the time that the terminal stays within the RA/TA range corresponding to the RA/TA information
  • the dwell time refers to the cell weight.
  • RNA information uses some combination of the four methods of cell identifier, RPA information, network device identifier, and RA/TA information, the stay time may also be a combination of the above four methods.
  • the first network device sends a reply message of the first message to the terminal, where the reply message carries the RNA information allocated by the first network device to the terminal.
  • the RNA allocated by the first network device to the terminal can be carried in the message and sent to the terminal through the RNA information.
  • the first network device allocates RNA to the terminal according to the received RNA information recently accessed by the terminal.
  • the RNA allocated by the first network device to the terminal may be the same as or different from the RNA allocated by the second network device for the terminal (if the same, the RNA information may not be carried in the reply message of the first message), according to the allocation RNA information recently accessed by the terminal (also known as the movement trajectory of the terminal) allocates RNA to the terminal to make RNA distribution more reasonable and reduce non-periodic RNA updates.
  • the reply message may be an RRC connection suspension message (RRC Connection Suspend), an RRC connection reconfiguration message (RRC Connection Reconfiguration), an RRC connection recovery message (RRC Connection Resume), or an RRC connection release message. (RRC Connection Release) may also be an RRC Connection Reject message. Of course, it may be another RRC message, and we do not limit it here.
  • the method further includes: S202, the first network device determining, according to the RNA information recently accessed by the terminal, whether to re-allocate the RNA for the terminal. If the RNA information needs to be re-allocated, the re-allocated RNA information is carried in S205, and if it is not necessary to redistribute the RNA, the RNA information may not be carried in S205.
  • the S203 may be, the network device determines, according to one or more of the following information, whether to re-allocate the RNA for the terminal, the information includes: the RNA information recently accessed by the terminal, the dwell time of the terminal, and whether the inactive is supported. status.
  • the method further includes: S203, the first network device determines whether an inactive state is supported. Whether the inactive state is supported may include whether the first network device supports the inactive state, or whether the cell currently in the terminal supports the inactive state, or whether the PLMN corresponding to the cell currently in the terminal supports the inactive state. And comprehensively consider whether the first network device, cell or PLMN supports the inactive state. The first network device may pre-acquire whether to support the inactive state by interacting with other network devices or by other means.
  • the S204 may be that the first network device allocates an RNA to the terminal according to the RNA information recently accessed by the terminal and whether the inactive state is supported.
  • the method further includes: S204, the first network device receives a feedback message sent by the second network device, where the feedback message carries the periodic RNA update times of the terminal.
  • the number of periodic RNA updates includes the number of periodic RNA updates that have been performed after the terminal transitions from the connected state to the inactive state.
  • the terminal moves from the fourth network device to the second network device (the fourth network device may be the same device as the second network device, or may be the same device as the third network device, and is not limited herein), if the fourth The network device sets the terminal to the inactive state, and the second network device still sets the terminal to the inactive state.
  • the number of periodic RNA updates may include the number of previous statistics, that is, the second network device counts in the fourth network device.
  • the statistics of the number of periodic RNA updates are continued.
  • the fourth network device sets the terminal from the connected state to the inactive state, and after the terminal moves to the second network device, the terminal is still in the inactive state, and the second network device performs periodic RNA update on the terminal, and the periodicity needs to be re-stated.
  • the number of RNA updates which is based on the number of periodic RNA updates counted by the fourth network device.
  • the number of periodic RNA updates needs to be re-stated at this time. It is based on the number of periodic RNA updates counted by the fourth network device and the second network device. In general, the number of statistics is the number of periodic RNA updates that the terminal performs after switching from the connected state to the inactive state, regardless of whether the terminal moves through several network devices and passes through several cells. If the terminal performs multiple periodic RNA updates but no data transmission, the terminal's activity is not high. In some cases, the terminal's context may be released. For example, these situations may include: when the network is congested.
  • the first network device may continue to perform statistics on the basis of the number of periodic RNA updates counted by the second network device, if in the process, the new gNB will be placed in the terminal In the connection state, the first network device can reset the number of periodic RNA updates (ie, the number of times is reset to 0), of course, this situation can also be reset according to the actual situation, or the number of periodic RNA updates is deleted, this application The embodiment does not limit this.
  • the network device can determine the activity level of the terminal according to the number of periodic RNA updates, thereby more accurately determining the state in which the terminal is placed, reducing state switching, saving signaling overhead, and reducing power consumption.
  • the method of the present application may further include: the first network device receiving the RNA information of the second network device sent by the second network device.
  • the first network device receiving the RNA information of the second network device sent by the second network device.
  • the method of the present application may further include: the first network device receiving information about whether the second network device sends an inactive state.
  • the first network device receiving information about whether the second network device sends an inactive state.
  • FIG. 3 is a flowchart of a method for setting a terminal state according to the present application. As shown in FIG. 3, the method includes:
  • the first network device receives a feedback message sent by the device, where the feedback message carries the periodic RNA update times of the terminal, where the periodic RNA update times include that the terminal has performed after transitioning from the connection state to the inactive state.
  • the number of periodic RNA updates For an understanding of the number of periodic RNA updates, reference may be made to the description of the number of periodic RNA updates in S203, and details are not described herein.
  • the first network device sends a reply message to the terminal, where the reply message is used to indicate a state in which the terminal is placed.
  • the device comprises a second network device and/or the terminal.
  • the specific implementation manner may refer to the description of Embodiment 4 of the present application. , will not repeat them here.
  • the number of periodic RNA updates can reflect the activity level of the terminal.
  • the network device combines this parameter to determine which state the terminal is placed in, which can make the allocation more accurate, reduce state switching, and save signaling overhead and power consumption.
  • the 5G network scenario in the wireless communication network is taken as an example for description. It should be noted that the solution in the embodiment of the present application can also be applied to other wireless communication networks, and the corresponding name can also be used in other wireless communication networks. The name of the function is replaced.
  • the interaction may be established during the interface establishment process, for example, Xn interface establishment (ie, establishing an interface between two 5G base stations), X2 interface establishment (ie, establishing an interface between two 4.5G base stations), and Xx interface establishment (ie, 5G base station and 4.5)
  • the G base stations establish an interface, and may also interact during the base station update process, for example, a 5G base station (gNB) configuration update.
  • the following takes the Xn interface as an example to describe how the base stations (and/or cells) interact with each other to support the Inactive state.
  • FIG. 4 is a schematic flowchart of a method for establishing an inactive state by establishing an interaction through an Xn interface according to the present application, as shown in FIG. 4:
  • the gNB1 sends an Xn interface setup request to the gNB2 or sends a gNB configuration update message, where the indication information indicates whether the gNB1 supports the Inactive state, or indicates whether each cell included in the gNB1 supports the Inactive state, or indicates that each gNB1 supports Whether the Public Land Mobile Network (PLMN) corresponding to each cell supports the Inactive state.
  • PLMN Public Land Mobile Network
  • the indication information may be in the form of Table 1, Table 2, and Table 3 as follows:
  • the gNB2 sends an Xn establishment feedback message to the gNB1 or sends a gNB configuration update confirmation message.
  • the message may also include indication information, where the indication information is used to indicate whether the gNB2 supports the Inactive state, or indicates each cell included in the gNB2. Whether to support the Inactive state, or whether the PLMN corresponding to each cell in gNB2 supports the Inactive state.
  • the indication information can be expressed in the form of S1101. For details, refer to the description in S1101, and details are not described herein again.
  • the RPA information needs to be interactively exchanged between the base stations, so that the terminal can be more accurately allocated RNA when needed. Similar to whether the interaction supports the Inactive state, the interaction RPA information may be in the process of establishing an interface between the base stations or in the process of updating the base station. For details, refer to the description of whether the interaction supports the Inactive state, and details are not described herein.
  • FIG. 5 is a schematic flowchart of establishing interactive RNA information through an Xn interface according to the present application, as shown in FIG. 5:
  • the gNB1 sends an Xn interface setup request to the gNB2 or sends a gNB configuration update message, where the request includes the RPA information of the gNB1, and the form of the RPA information may include:
  • the RPA information may be an RPA code (RPA code) corresponding to all the cells to which the gNB1 belongs, and the RPAC is a string of bit information used to identify the unique RPA (similar to the function of TAC to TA).
  • the RPA information may also be an RPA ID, the RPA ID may further indicate a PLMN (ie, the RPA ID may indicate a PLMN and an RPAC), and the RPA ID may further indicate a TA (ie, the RPA ID may indicate a PLMN, an RPAC, and a TAC, or The RPA ID can indicate RPAC and TAC).
  • RPA code RPA code
  • Table 4 Table 4 below:
  • RPA information is for each cell included in gNB1
  • the RPA information may be the RPAC corresponding to the cell
  • the RPAC may be similar to the RPAC in the type 1 above, and details are not described herein.
  • RPAC can be expressed in the form shown in Table 5 below:
  • the RPA information may be an RPA ID corresponding to the cell, and the RPA ID may be similar to the RPA ID in the first type, and details are not described herein.
  • the RPA ID can be expressed as shown in Table 6 below:
  • the RPA information is for each PLMN corresponding to each cell included in the gNB1, the RPA information may be an RPA ID, and the RPA ID may be similar to the RPA ID in the first type, and details are not described herein.
  • the RPA ID can be expressed as shown in Table 7 below:
  • RPA information may also include other forms, and is not limited in this application.
  • the gNB2 sends an Xn setup feedback message to the gNB1 or sends a gNB configuration update confirmation message.
  • the message may also include the RNA information of the gNB2.
  • the RNA information can be expressed in the form of S1201. For details, refer to the description in S1201, and details are not described herein again.
  • the following describes the possible interaction of the terminal from the old gNB to the new gNB.
  • FIG. 6 is a schematic diagram of an RNA update process provided by the present application, as shown in FIG. 6:
  • the terminal sends an RRC connection resume request to the new (g) gNB, where the request includes the identification information of the terminal (for example, Resume ID information) and the RNA information recently accessed by the terminal.
  • This RNA information allows the new gNB to assign RNA to the terminal more accurately.
  • the RRC connection recovery request further carries a dwell time of the terminal, where the dwell time is a dwell time of at least one cell or at least one network device indicated by the RNA information recently accessed by the terminal.
  • S1302 The new gNB determines whether it supports the Inactive state or whether the cell currently in the terminal supports the Inactive state, or whether the PLMN corresponding to the cell currently in the terminal supports the Inactive state. If not, jump to S1305 and put the terminal in an idle state.
  • the new gNB sends a request for acquiring a context request to the old gNB, which may include the identification information of the terminal.
  • the old gNB sends a get UE context response to the new gNB, where the terminal context request feedback includes the security context of the terminal.
  • the acquiring terminal context feedback may also carry the number of periodic RNA updates that the terminal has performed. The number of periodic RNA updates can be in S1306, and the new gNB decides what information to send to which state the terminal is placed.
  • the new gNB determines whether to re-allocate the RNA for the terminal according to the RNA information recently accessed by the terminal. If it is decided to re-allocate the RNA, the corresponding message sent in S1306 may include the newly allocated RAN information. If it is decided not to reallocate the RNA, the corresponding message sent in S1306 may not include the newly allocated RAN information. In this step, the new gNB can also combine the terminal context information, the RNA information recently accessed by the terminal, and one or more of the terminal's dwell time to determine whether to re-allocate the RNA for the terminal.
  • the new gNB determines, according to whether the Inactive state is supported and the terminal sends an RRC connection reply request, what state the terminal is placed, and sends a corresponding message.
  • the message may also include newly assigned RNA information.
  • the new gNB can also determine the state of the terminal in combination with the number of periodic RNA updates.
  • the new gNB sends an RRC Connection Reject or RRC Connection Release to the terminal.
  • the new gNB sends one of the following messages to the terminal to set the terminal to the Inactive state, and the RRC connection rejects (RRC Connection Reject). ), RRC Connection Reconfiguration, RRC Connection Resume, RRC Connection Release, RRC Connection Suspend.
  • the new gNB when the new gNB sends other messages, these messages need to carry indication information for indicating that the terminal is placed in the Inactive state. It should be understood that, of course, the terminal can be placed in the Inactive state by other messages, and the present application does not limit the comparison. If the terminal sends an RRC connection reply request for data transmission, the new gNB can restore the terminal to the connected state through the RRC connection.
  • the new gNB sends a UE context release message to the old gNB.
  • the message includes the identifier information of the terminal.
  • FIG. 7 is a schematic diagram of an RNA update process provided by the present application.
  • the difference between the fourth embodiment and the third embodiment mainly lies in the number of periodic RNA update statistics of the terminal and is in the RRC connection recovery complete message or in the RRC connection recovery request message. carry. As shown in Figure 7:
  • the old gNB sends an RRC message (for example, an RRC connection reconfiguration message, an RRC connection release message, and the like) to the UE.
  • the message may carry a preset number of periodic updates. If the number of periodically updated RNAs of the terminal is greater than or equal to the preset number of times, the number of periodic RNA updates in the following steps S1402 and S1406 may be replaced.
  • the indication information is used to indicate that the terminal is expected to enter the idle state, and further may indicate that the terminal wishes to enter the idle state because the number of periodic updates exceeds or equals the preset update times.
  • the reason that the terminal is expected to enter the idle state and the terminal wants to enter the idle state by using one indication information is that the number of periodic updates exceeds or equals the preset number of updates, and the two indications respectively indicate that the terminal desires to enter.
  • the reason that the idle state and the terminal want to enter the idle state is that the number of periodic updates exceeds or equals the preset number of updates.
  • S1402 The UE sends an RRC connection recovery request to the new gNB, where the request includes identifier information of the terminal.
  • the message can also carry the number of periodic RNA updates. The effect of the number of periodic RNA update times is similar to that described in the third embodiment, and will not be described herein.
  • the new gNB sends a get terminal context request to the old gNB, where the request includes the identifier information of the terminal.
  • S1405 The new gNB sends an RRC connection recovery to the UE.
  • S1406 The UE sends an RRC connection recovery completion to the new gNB.
  • the message carries the number of periodic RNA updates in this step.
  • the effect of the number of periodic RNA update times is similar to that described in the third embodiment, and will not be described herein.
  • the new gNB sends an RRC message to the UE, and sets the terminal to a connected state, an idle state, or an inactive state.
  • the specific RRC message is as described in step S1305, and details are not described herein again. .
  • the new gNB sends a terminal context release to the old gNB, where the message carries the identifier information of the terminal.
  • FIG. 8 is a schematic diagram of a cell reselection process provided by the present application, which emphasizes an inter-RAT cell reselection interaction process, as shown in FIG. 8 :
  • the terminal sends an RRC connection recovery request to the new eNB, where the request carries the identifier information (Resume ID). Because the identification information (Resume ID) is allocated by the old gNB (optionally, the encoding of the ASN.1 of the gNB may be adopted), the old gNB and the new eNB do not belong to the same RAT, so the new eNB may not correctly analyze the identification information (Resume ID) ). That is, the new eNB may not be able to obtain the old gNB, that is, it may not be able to obtain the gNB to which the context of the terminal is reserved. In this case, we need to carry the identity of the old gNB or the identity of at least one cell of the old gNB to indicate where the context of the new eNB terminal remains.
  • S1502 is the same as S1403, and S1503 is the same as S1404.
  • S1403 and S1404 are not described herein.
  • the new eNB sends an RRC connection setup message to the terminal.
  • the reason why the RRC connection recovery message is not sent is because the RRC connection recovery message is sent on the SRB1, but since the new eNB cannot understand the configuration information of the old gNB to the SRB1 of the terminal, the new eNB does not know that the SRB1 reserved by the terminal is How to configure, for example, the configuration of the RLC (the configuration of the RNB is different between the gNB and the eNB, for example, the RLC in the gNB has no aggregation function), so it is difficult to successfully transmit the RRC connection first message on the SRB1.
  • the RRC connection setup message is sent to the terminal, and the connection setup message is sent on the SRB0, and the message includes the configuration information of the SRB1 of the new eNB to the terminal, and the terminal will receive the configuration of the SRB1 after the terminal The reserved configuration is completely replaced.
  • S1505 The terminal sends an RRC connection setup complete message to the new eNB.
  • the new eNB sends an RRC connection reconfiguration message to the terminal, where the reconfiguration message includes the RB (Radio Bearer) information configured by the new eNB, and the message further includes the indication information of the full configuration, because the new eNB cannot
  • the RB configuration information of the old gNB to the terminal is understood (that is, the AS configuration information in the terminal context in step S1503 is not understood), so the new eNB cannot be modified according to the configuration of the old gNB, and therefore can only be used according to its own situation and in step S1503.
  • the information of the core network for example, the session/flow to be established and the QoS information corresponding to the session/flow, configure the RB on the terminal itself, and inform the terminal to adopt full configuration (full configuration indication is carried in step S1506), and the terminal is full.
  • the configuration indication will completely delete the previous configuration, and then perform RB configuration according to the configuration sent by the new eNB in step S1506.
  • FIG. 9 is a schematic structural diagram of a device 100 provided by the present application, and the device 100 is applicable to implement a second network device, a first network device, or a terminal of the present application.
  • the device 100 includes a receiving unit 101 and a transmitting unit 102.
  • the receiving unit 101 is configured to receive the first message sent by the terminal, and the sending unit 102 is configured to send the reply message of the first message to the terminal.
  • the sending unit 102 is configured to send the RNA information of the second network device; and/or whether the information of the inactive state is supported.
  • the sending unit 102 is configured to send the first message to the first network device, and the receiving unit 101 is configured to receive the reply message of the first message sent by the first network device. It should be understood that, in combination with the method of any one or more of the above, the first network device, the second network device, and the terminal may further include more functional units for implementing more functions to achieve reasonable allocation of RNA. , reducing signaling overhead.
  • the receiving unit can be implemented through a communication interface, a receiver, a receiving circuit, and the like.
  • the transmitting unit can be implemented through a communication interface, a transmitter, a transmitting circuit, and the like. It should be understood that the functions of the receiving unit and the transmitting unit can also be integrated and implemented by the communication interface, the transceiver, and the transceiver circuit.
  • the communication interface is a collective name and may include one or more interfaces.
  • the hardware for implementing the second network device, the first network device, or the terminal is not limited to the foregoing structure, and may further include a processor, a memory, and an antenna.
  • the processor may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), and a field programmable gate array ( Field Programmable Gate Array (FPGA) or other programmable logic device, hardware component, or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the processor can also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the memory can be set in the processor or it can exist separately.
  • a duplexer is used to implement an antenna array for both transmitting signals and receiving signals.
  • the transmitter is used to convert between the RF signal and the baseband signal.
  • the transmitter can include a power amplifier, a digital-to-analog converter and a frequency converter.
  • the receiver can include a low noise amplifier, an analog to digital converter and a frequency converter. Among them, the receiver and the transmitter may also be collectively referred to as a transceiver.
  • the baseband processing section is used to implement processing of transmitted or received signals, such as layer mapping, precoding, modulation/demodulation, encoding/decoding, etc., and for physical control channels, physical data channels, physical broadcast channels, reference signals, etc. Perform separate processing.
  • the functions of the receiver and the transmitter can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • program code that implements processor, receiver, and transmitter functions is stored in a memory that implements the functions of the processor, receiver, and transmitter by executing code in memory.
  • a base station 1000 is provided.
  • the base station 1000 includes: a processor 1001, a memory 1004, a receiver 1003, and a transmitter 1002.
  • the device 1003 and the transmitter 1002 are configured to communicate with other network elements, and the memory 1004 is configured to store a program executable by the processor 1001, the program including the method, the step or the process for implementing the above embodiments. Instructions.
  • specific methods, procedures, steps, and beneficial effects refer to the description of the foregoing in the foregoing embodiments, and details are not described herein again.
  • a terminal 2000 includes: a processor 2001, a memory 2003, and a transceiver 2002, where the transceiver 2002 is configured to communicate with other network elements (through an antenna)
  • the memory 2003 is for storing programs executable by the processor 2001, the programs including instructions for implementing the methods, steps or processes described in the various embodiments above.
  • the second network device, the first network device, or the terminal is implemented by software
  • the concepts, explanations, detailed descriptions and other steps related to the present application are referred to the descriptions of the foregoing methods.
  • it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (eg, a solid state disk (SSD)) or the like.
  • the storage medium shown may be integrated into a device, module, or processor, or may be separately configured.
  • the present application further provides a communication system including the foregoing second network device, a first network device, and a terminal. Or a communication system comprising a second network device and a first network device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种RNA分配的方法、网络设备及终端,以在需要为处于Inactive状态(或者连接状态)的终端重新分配RNA的情况下,根据终端最近访问过的RNA信息(也可以理解为终端的移动轨迹)和/或是否支持inactive状态,为终端设备分配RNA,以使RNA的分配更加合理,减少非周期性的RNA更新,节省信令开销和电源消耗。同时,本申请还可以根据终端的停留时间,携带这个消息可以进一步丰富终端的移动轨迹,从而可以给网络侧更为准确的判断,以使得网络侧可以更为准确的分配新的RNA。

Description

一种RNA分配的方法、网络设备及终端 技术领域
本申请涉及通信技术领域,尤其涉及一种RNA分配的方法、网络设备及终端。
背景技术
无线资源控制(Radio Resource Control,RRC)去激活状态,也可称为Inactive状态,是在5G中新定义的一种终端通信状态。该Inactive状态下,核心网、网络设备和终端都保留有相应的上下文信息,但是终端在Inactive状态下在无线接入网(Radio Access Network,RAN)的通知区域(RAN based Notification Area,RNA)内部移动时,可以不通知网络,但是在移出网络侧为终端在inactive状态下分配的RNA后需要通知网络。当终端从旧网络设备移动到新网络设备时,在一些情况下,新网络设备可能会为终端重新分配RNA。这些情况可以包括新网络设备和旧网络设备属于不同的RNA,或者周期性RNA更新过程中新网络设备处于目前RNA的边缘。
但是在现有技术中,重新分配的RNA需要将哪些小区包括在内并没有解决的方案。
发明内容
本申请提供一种RNA分配的方法、网络设备及终端,以在需要为处于Inactive状态(或者连接状态)的终端重新分配RNA的情况下,根据终端最近访问过的RNA信息(也可以理解为终端的移动轨迹)和/或是否支持inactive状态,为终端设备分配RNA,以使RNA的分配更加合理,减少非周期性的RNA更新,节省信令开销和电源消耗。同时,本申请还可以根据终端的停留时间,携带这个消息可以进一步丰富终端的移动轨迹,从而可以给网络侧更为准确的判断,以使得网络侧可以更为准确的分配新的RNA。
第一方面提供一种RNA分配的方法,所述方法包括:第一网络设备接收终端发送的第一消息,所述第一消息携带所述终端最近访问过的RNA信息;所述第一网络设备向所述终端发送所述第一消息的回复消息,所述回复消息携带所述第一网络设备为所述终端分配的RNA信息。
在第一方面的一种可能实现方式中,所述终端最近访问过的RNA信息用于指示所述终端移动到所述第一网络设备之前经过的至少一个小区或至少一个网络设备。
在第一方面的一种可能实现方式中,所述RNA信息的表示方式包括以下一种信息或者多种信息的组合:无线接入网络寻呼区域信息、小区标识信息、基站标识信息、跟踪区信息和注册区信息。
在第一方面的一种可能实现方式中,在所述第一网络设备接收终端发送的第一消息之后,在所述第一网络设备向所述终端发送所述第一消息的回复消息之前,所述方法还包括:所述第一网络设备根据所述终端最近访问过的RNA信息,确定是否为所述终端重新分配RNA。
在第一方面的一种可能实现方式中,所述第一网络设备为所述终端分配的RNA信息是根据所述终端最近访问过的RNA信息分配的。
在第一方面的一种可能实现方式中,所述第一消息还携带所述终端的停留时间,所述停留时间是所述终端最近访问过的RNA信息所指示的至少一个小区或至少一个网络设备的停留时间。
在第一方面的一种可能实现方式中,所述第一网络设备为所述终端分配的RNA信息是根据所述终端的停留时间分配的。
在第一方面的一种可能实现方式中,在所述第一网络设备接收终端发送的第一消息之后,在所述第一网络设备向所述终端发送所述第一消息的回复消息之前,所述方法还包括:所述第一网络设备确定是否支持inactive状态;其中,所述是否支持inactive状态包括下述至少一种或者多种的组合,所述第一网络设备是否支持inactive状态,所述终端当前所处的小区是否支持inactive状态,和所述终端当前所处的小区对应的PLMN是否支持inactive状态。
在第一方面的一种可能实现方式中,所述第一网络设备为所述终端分配的RNA信息是根据所述所述终端最近访问过的RNA信息和所述第一网络设备确定是否支持inactive状态分配的。
在第一方面的一种可能实现方式中,在所述第一网络设备接收终端发送的第一消息之后,在所述第一网络设备向所述终端发送所述第一消息的回复消息之前,所述方法还包括:所述第一网络设备接收第二网络设备发送的反馈消息,所述反馈消息携带所述终端的周期性RNA更新次数,其中所述周期性RNA更新次数包括,所述终端从连接状态转换至inactive状态后已经进行的周期性RNA更新的次数。第一网络设备可以根据接收的RNA更新次数决定是否将终端置为inactive状态,还是直接置为idle状态。在第一方面的一种可能实现方式中,所述方法还包括:所述第一网络设备接收第二网络设备发送的第二网络设备的RNA信息。
在第一方面的一种可能实现方式中,所述方法还包括:所述第一网络设备接收第二网络设备发送的是否支持inactive状态的信息。
第二方面,提供一种RNA分配的方法,所述方法包括:终端向第一网络设备发送的第一消息,所述第一消息携带所述终端最近访问过的RNA信息;所述终端接收所述第一网络设备发送的所述第一消息的回复消息,所述回复消息携带所述第一网络了设备为所述终端分配的RNA信息;
在第二方面的一种可能实现方式中,所述终端最近访问过的RNA信息用于指示所述终端移动到所述第一网络设备之前经过的至少一个小区或至少一个网络设备;
在第二方面的一种可能实现方式中,所述RNA信息的表示方式包括以下一种信息或者多种信息的组合:无线接入网络寻呼区域信息、小区标识信息、基站标识信息、跟踪区信息和注册区信息。
在第二方面的一种可能实现方式中,所述第一消息还携带所述终端的停留时间,所述停留时间是所述终端最近访问过的RNA信息所指示的至少一个小区或至少一个网络设备的停留时间。
第三方面,提供一种RNA分配的网络设备,所述网络设备包括:接收单元,用于接收 终端发送的第一消息,所述第一消息携带所述终端最近访问过的RNA信息;发送单元,用于向所述终端发送所述第一消息的回复消息,所述回复消息携带所述第一网络了设备为所述终端分配的RNA信息。
在第三方面的一种可能实现方式中,所述终端最近访问过的RNA信息用于指示所述终端移动到所述第一网络设备之前经过的至少一个小区或至少一个网络设备。
在第三方面的一种可能实现方式中,所述RNA信息的表示方式包括以下一种信息或者多种信息的组合:无线接入网络寻呼区域信息、小区标识信息、基站标识信息、跟踪区信息和注册区信息。
在第三方面的一种可能实现方式中,所述网络设备还包括确定单元,所述确定单元用于,根据所述终端最近访问过的RNA信息,确定是否为所述终端重新分配RNA。
在第三方面的一种可能实现方式中,所述所述第一网络设备为所述终端分配的RNA信息是根据所述所述终端最近访问过的RNA信息分配的。
在第三方面的一种可能实现方式中,所述第一消息还携带所述终端的停留时间,所述停留时间是所述终端最近访问过的RNA信息所指示的至少一个小区或至少一个网络设备的停留时间。
在第三方面的一种可能实现方式中,所述网络设备还包括:确定单元,用于确定是否支持inactive状态;其中,所述是否支持inactive状态包括下述一种或者多种的组合,所述第一网络设备是否支持inactive状态,所述终端当前所处的小区是否支持inactive状态,和所述终端当前所处的小区对应的PLMN是否支持inactive状态。
在第三方面的一种可能实现方式中,所述所述第一网络设备为所述终端分配的RNA信息是根据所述所述终端最近访问过的RNA信息和所述第一网络设备确定是否支持inactive状态分配的。
在第三方面的一种可能实现方式中,所述接收单元还用于:接收第二网络设备发送的反馈消息,所述反馈消息携带所述终端的周期性RNA更新次数,其中所述周期性RNA更新次数包括,所述终端从连接状态转换至inactive状态后已经进行的周期性RNA更新的次数。
在第三方面的一种可能实现方式中,所述接收单元还用于,接收第二网络设备发送的第二网络设备的RNA信息。
在第三方面的一种可能实现方式中,所述接收单元还用于,接收第二网络设备发送的是否支持inactive状态的信息。
第四方面,提供一种RNA分配的终端,所述终端包括:发送单元,用于向第一网络设备发送的第一消息,所述第一消息携带所述终端最近访问过的RNA信息;接收单元,用于接收所述第一网络设备发送的所述第一消息的回复消息,所述回复消息携带所述第一网络了设备为所述终端分配的RNA信息;其中,所述所述终端最近访问过的RNA信息用于指示所述终端移动到所述第一网络设备之前经过的至少一个小区或至少一个网络设备。
在第四方面的一种可能实现方式中,所述第一消息还携带所述终端的停留时间,所述停留时间是所述终端最近访问过的RNA信息所指示的至少一个小区或至少一个网络设备的停留时间。
第五方面,提供一种RNA分配的网络设备,所述网络设备包括发送器,接收器和处理器:所述接收器,用于接收终端发送的第一消息,所述第一消息携带所述终端最近访问过的RNA信息;所述发送器,用于向所述终端发送所述第一消息的回复消息,所述回复消息携带所述第一网络了设备为所述终端分配的RNA信息。
在第五方面的一种可能实现方式中,所述终端最近访问过的RNA信息用于指示所述终端移动到所述第一网络设备之前经过的至少一个小区或至少一个网络设备。
在第五方面的一种可能实现方式中,所述RNA信息的表示方式包括以下一种信息或者多种信息的组合:无线接入网络寻呼区域信息、小区标识信息、基站标识信息、跟踪区信息和注册区信息。
在第五方面的一种可能实现方式中,所述处理器,用于根据所述终端最近访问过的RNA信息,确定是否为所述终端重新分配RNA。
在第五方面的一种可能实现方式中,所述所述第一网络设备为所述终端分配的RNA信息是根据所述所述终端最近访问过的RNA信息分配的。
在第五方面的一种可能实现方式中,所述第一消息还携带所述终端的停留时间,所述停留时间是所述终端最近访问过的RNA信息所指示的至少一个小区或至少一个网络设备的停留时间。
在第五方面的一种可能实现方式中,所述处理器,用于确定是否支持inactive状态;其中,所述是否支持inactive状态包括下述一种或者多种的组合,所述第一网络设备是否支持inactive状态,所述终端当前所处的小区是否支持inactive状态,和所述终端当前所处的小区对应的PLMN是否支持inactive状态。
在第五方面的一种可能实现方式中,所述所述第一网络设备为所述终端分配的RNA信息是根据所述所述终端最近访问过的RNA信息和所述第一网络设备确定是否支持inactive状态分配的。
在第五方面的一种可能实现方式中,所述接收器还用于:接收第二网络设备发送的反馈消息,所述反馈消息携带所述终端的周期性RNA更新次数,其中所述周期性RNA更新次数包括,所述终端从连接状态转换至inactive状态后已经进行的周期性RNA更新的次数。
在第五方面的一种可能实现方式中,所述接收器还用于,接收第二网络设备发送的第二网络设备的RNA信息。
在第五方面的一种可能实现方式中,所述接收器还用于,接收第二网络设备发送的是否支持inactive状态的信息。
第六方面,提供一种RNA分配的终端,所述终端包括:发送器,接收器和处理器,所述发送器,用于向第一网络设备发送的第一消息,所述第一消息携带所述终端最近访问过的RNA信息;所述接收器,用于接收所述第一网络设备发送的所述第一消息的回复消息,所述回复消息携带所述第一网络了设备为所述终端分配的RNA信息;其中,所述所述终端最近访问过的RNA信息用于指示所述终端移动到所述第一网络设备之前经过的至少一个小区或至少一个网络设备。
在第六方面的一种可能实现方式中,所述第一消息还携带所述终端的停留时间,所述 停留时间是所述终端最近访问过的RNA信息所指示的至少一个小区或至少一个网络设备的停留时间。
第七方面,提供一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括指令,当其在计算机上运行时,使得计算机执行上述任一方面所述的方法。
第八方面,提供一种计算机程序产品,所述程序产品包括指令,当其在计算机上运行时,使得计算机执行上述任一方面所述的方法。
第九方面,提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述任一方面所述的方法。
本申请还提供一种根据终端的周期性RNA更新次数决定将终端置于何种状态的方法,网络设备及终端。对处于inactive状态的终端,新网络设备根据该周期性RNA更新次数和/或是否有数据需要发送,决定将终端置于何种状态,其中周期性RNA更新次数可以反映终端的活跃程度,结合这个参数决定将终端置于何种状态可以使的分配更加准确,减少状态切换,节省信令开销和电源消耗。
第十方面,提供一种终端状态设置的方法,所述方法包括,
第一网络设备接收设备发送的反馈消息,所述反馈消息携带所述终端的周期性RNA更新次数,其中所述周期性RNA更新次数包括,终端从连接状态转换为inactive状态后已经进行的周期性RNA更新的次数;
所述第一网络设备向终端发送所述第一消息的回复消息,所述回复消息用于指示将所述终端置于何种状态。
在第十方面的一种可能的实现方式中,所述设备包括第二网络设备和/或所述终端。
在第十方面的一种可能的实现方式中,当所述周期性RNA更新次数大于等于预设值时,所述回复消息用于将所述终端置于去激活状态或空闲状态。
在第十方面的一种可能的实现方式中,如果所述终端被置为或者保持去激活状态,所述第一网络设备或者所述终端在接收到的所述周期性RNA更新次数的基础上继续统计。
在第十方面的一种可能的实现方式中,如果所述终端被置为或者保持连接状态,所述第一网络设备或者所述终端将接收到的所述周期性RNA更新次数置为的预设值,例如预设值为零。或者将所述周期性RNA更新次数值删除。
在第十方面的一种可能的实现方式中,如果所述终端被置为或者保持连接状态,所述第一网络设备或者所述终端重新统计周期性RNA更新次数。
在第十方面的一种可能的实现方式中,如果所述终端被置为空闲状态,所述第一网络设备或者所述终端将接收到的所述周期性RNA更新次数置为的预设值,例如预设值为零。或者将所述周期性RNA更新次数值删除。
在第十方面的一种可能的实现方式中,如果所述终端被置为或者保持空闲状态,所述第一网络设备或者所述终端重新统计周期性RNA更新次数。
第十一方面,提供一种终端状态设置的方法,所述方法包括,
终端向第一网络设备发送RRC消息,所述RRC消息携带所述终端的周期性RNA更新次数,其中所述周期性RNA更新次数包括,所述终端从连接状态转换至inactive状态后已 经进行的周期性RNA更新的次数;所述终端接收回复消息,所述回复消息用于指示将所述终端置于何种状态。
在第十一方面的一种可能的实现方式中,当所述周期性RNA更新次数大于等于预设值时,所述回复消息用于将所述终端置于去激活状态或空闲状态。
在第十一方面的一种可能的实现方式中,如果所述终端被置为或者保持去激活状态,所述第一网络设备或者所述终端在接收到的所述周期性RNA更新次数的基础上继续统计。
在第十一方面的一种可能的实现方式中,如果所述终端被置为或者保持连接状态,所述第一网络设备或者所述终端将接收到的所述周期性RNA更新次数置为的预设值。或者将所述周期性RNA更新次数值删除。
在第十一方面的一种可能的实现方式中,如果所述终端被置为或者保持连接状态,所述第一网络设备或者所述终端重新统计周期性RNA更新次数。
在第十一方面的一种可能的实现方式中,如果所述终端被置为空闲状态,所述第一网络设备或者所述终端将接收到的所述周期性RNA更新次数置为的预设值,例如预设值为零。或者将所述周期性RNA更新次数值删除。
在第十一方面的一种可能的实现方式中,如果所述终端被置为或者保持空闲状态,所述第一网络设备或者所述终端重新统计周期性RNA更新次数。
第十二方面,提供一种终端状态设置的方法,所述方法包括,
第二网络设备向第一网络设备发送反馈消息,所述反馈消息携带所述终端的周期性RNA更新次数,其中所述周期性RNA更新次数包括,终端从连接状态转换至inactive状态后已经进行的周期性RNA更新的次数;
所述第二网络设备接收所述第一网络设备发送的释放消息,所述释放消息用于指示释放所述终端的上下文。
在第十二方面的一种可能的实现方式中,所述第一网络设备发送的释放消息包含终端设备的标识信息,例如该标识信息可以是Resume ID。
第十三方面提供一种网络设备,所述网络设备包括接收单元和发送单元,所述接收单元和所述发送单元用执行上述任一方面所述的方法。
第十四方面提供一种网络设备,所述网络设备包括接收器,发送器,所述接收器和所述发送器用于执行上述任一方面所述的方法。
第十五方面提供一种终端,所述终端包括接收单元和发送单元,所述接收单元和所述发送单元用于执行上述任一方面所述的方法。
第十六方面提供一种终端,所述终端包括接收器,发送器,所述接收器和所述发送器用于执行上述任一方面所述的方法。
第十七方面,提供一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括指令,当其在计算机上运行时,使得计算机执行上述任一方面所述的方法。
第十八方面,提供一种计算机程序产品,所述程序产品包括指令,当其在计算机上运行时,使得计算机执行上述任一方面所述的方法。
第十九方面,提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述任一方面所述的方法。
本申请还提供一种RPA信息交互方法,为了使网络设备更准确的为终端分配RNA,可以在网络设备之间建立接口的过程中,或者在网络设备更新过程中交互RPA信息。
第二十方面,提供一种方法,包括:第一网络设备向第二网络设备发送第三消息;所述第二网络设备向第一网络设备发送第四消息,其中第四消息是第三消息的回复消息。
在第二十方面的一种可能的实现方式中,所述第三消息可以包括用于建立接口的消息和/或者用于更新的消息。
在第二十方面的一种可能的实现方式中,所述第三消息包括Xn接口建立请求或者gNB配置更新消息
在第二十方面的一种可能的实现方式中,所述第四消息包括Xn建立反馈消息或者gNB配置更新确认消息
在第二十方面的一种可能的实现方式中,所述第三消息携带第一网络设备的RPA信息,所述第四消息携带第二网络设备的RPA信息。
应该理解的是本申请还提供网络设备、计算机存储介质、程序等用于执行上述方法。
本申请还提供一种inactive状态交互方法,为了使网络设备更准确的为终端分配RNA,可以在网络设备之间建立接口的过程中,或者在网络设备更新过程中交互inactive状态。
第二十一方面,提供一种方法,包括:第一网络设备向第二网络设备发送第三消息;所述第二网络设备向第一网络设备发送第四消息,其中第四消息是第三消息的回复消息。
在第二十一方面的一种可能的实现方式中,所述第三消息可以包括用于建立接口的消息和/或者用于更新的消息。
在第二十一方面的一种可能的实现方式中,所述第三消息包括Xn接口建立请求或者gNB配置更新消息
在第二十一方面的一种可能的实现方式中,所述第四消息包括Xn建立反馈消息或者gNB配置更新确认消息
在第二十一方面的一种可能的实现方式中,所述第三消息携带第一网络设备是否支持inactive状态;和/或,第四消息携带第二网络设备是否支持是否支持inactive状态。
在第二十一方面的一种可能的实现方式中,所述是否支持inactive状态包括下述至少一种或者多种的组合,所述第一/第二网络设备是否支持inactive状态,所述终端当前所处的小区是否支持inactive状态,和所述终端当前所处的小区对应的PLMN是否支持inactive状态。
应该理解的是本申请还提供网络设备、计算机存储介质、程序等用于执行上述方法。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获取其他的附图。
图1为本申请实施例应用的网络架构图;
图2是本申请提供的一中RNA分配的方法流程图;
图3是本申请提供的一种终端状态设置的方法流程图;
图4为本申请提供的一种通过Xn接口建立交互是否支持inactive状态的流程示意图;
图5为本申请提供的一种通过Xn接口建立交互RNA信息的流程示意图;
图6是本申请提供的一种RNA更新流程示意图;
图7是本申请提供的一种RNA更新流程示意图;
图8是本申请提供的一种小区重选流程示意图;
图9是本申请提供的一种设备100的结构示意图;
图10是本申请提供的一种基站1000的结构示意图;
图11是本申请提供一种UE2000的结构示意图。
具体实施方式
在本申请中使用的术语是仅仅出于描述特定可能的实现方式的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包括一个或多个相关联的列出项目的或所有可能组合。进一步应当理解,本文中采用的术语“包括”规定了所述的特征、数据、信息、整体、步骤、操作、元件和/或部件的存在,而不排除一个或多个其他特征、数据、信息、整体、步骤、操作、元件、部件和/或它们的组的存在或附加。
应当理解,尽管在本申请实施例中可能采用术语第一、第二等来描述各种网络设备或消息,但这些网络设备或消息不应限于这些术语。这些术语仅用来将其彼此区分开。例如,在不脱离本申请实施例范围的情况下,第一网络设备也可以被称为第二网络设备,类似地,第二网络设备也可以被称为第一网络设备;消息也类似。
需要说明的是,本申请中步骤的顺序可以自由排列,本申请对此不做限定。
下面将结合附图,对本申请实施例中的技术方案进行描述。
首先,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、网络设备可以是任意一种具有无线收发功能的设备。包括但不限于:网络设备(例如,网络设备NodeB、演进型网络设备eNodeB、第五代(the fifth generation,5G)通信系统中的网络设备(gNB)、未来通信系统中的网络设备或网络设备、WiFi系统中的接入节点、无线中继节点、无线回传节点)等。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。网络设备还可以是5G网络中的网络设备或未来演进网络中的网络设备;还可以是可穿戴设备或车载设备等。网络设备100还可以是小站,传输节点(transmission reference point,TRP)等。当然本申请不限于此。
2)旧(old)网络设备,旧网络设备是指为所述Inactive终端保留核心网与RAN侧控制面连接的网络设备。旧网络设备通常可以理解为是控制终端从连接状态转移至Inactive状态的网络设备,但是也不排除其他的情况,例如在RNA更新过程中,没有数据传输的Inactive终端在RNA(RAN的通知区域,RAN based Notification Area,RNA)更新后依然保持Inactive状态,而不需要先转移至连接状态,在此种情况下,虽然网络设备仅对终端 进行了重配置而没有进行状态转移,但是由于核心网侧与RNA侧的连接进行了转移,该控制终端保持Inactive状态的网络设备也称为旧网络设备。
3)新(new)网络设备,是与旧网络设备相对应的网络设备,是当前可以为终端提供服务的网络设备,终端与新网络设备包括的至少一个小区可以存在下行同步,接收新网络设备的广播信号,并且终端通新网络设备与网络交互。
4)终端是一种具有无线收发功能的设备可以和网络设备进行交互,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。终端可以是能和网络设备通信的设备。UE有时也可以称为终端设备、接入终端设备、用户设备(user equipment,UE)、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、无线通信设备、UE代理或UE装置等。
5)交互,本申请中的交互是指交互双方彼此向对方传递信息的过程,这里传递的信息可以相同,也可以不同。例如,交互双方为网络设备1和网络设备2,或是可以是网络设备与UE。可以是网络设备1向网络设备2请求信息,网络设备2向网络设备1提供网络设备1请求的信息。当然,也可以网络设备1和网络设备2彼此向对方请求信息,网络设备与UE的交互与上述网络设备之间的交互相同,在此不再赘述。这里请求的信息可以相同,也可以不同。
6)去激活(状)状态,可称为Inactive(状)状态,也可称为无线资源控制(radio resource control,RRC)去激活状态,是5G中新定义的通信状态,该通信状态可作为一种独立通信状态(除了RRC连接(Connected/Active)状态与RRC空闲(Idle)状态之外的一种独立状态),也可以理解为是连接状态或者空闲状态的一种子通信状态。本申请中可认为Inactive状态是一种独立的通信状态,处于Inactive状态的终端可以具有如下特性:A:终端在接入层(Access Stratum,AS)的上下文信息同时在终端和无线接入网(radio access network,RAN)侧保留,其中,可以在RAN侧的旧网络设备中保存终端的AS上下文(该上下文与RRC连接状态上下文一致或者是RRC连接状态上下文的一部分),也可由旧网络设备将终端上下文传输至其他的网络设备进行保存。B:终端从Inactive状态转移至RRC连接状态时,不需要重新激活旧网络设备与核心网控制面网元的链路,例如不需要重新激活基站侧与核心网侧的链路。C:终端的移动性是通过小区重选而不是切换。
7)RNA由一个小区或者多个小区组成,若由多个小区组成,该多个小区属于同一网络设备,也可以属于不同的网络设备,该不同的网络设备可以是同一RAT的网络设备,也可以是不同RAT的网络设备,例如,该网络设备可以是4.5G网络中的eNB,也可以是5G网络中的gNB。处于Inactive状态的终端在RNA内部移动时可以不通知网络,而仅仅是基于终端的移动性进行小区重选,并进行周期性RNA更新。处于Inactive状态的终端移动至RNA以外的小区时,需要告知网络,并进行RNA更新,RNA更新类似于长期演进网络(Long  Term Evolution,LTE)中的跟踪区更新(Tracking Area Update,TAU)。RNA信息的表示方式包括以下一种信息或者多种信息的组合
a)无线接入网络寻呼区域(RAN paging area,RPA)信息,该RPA信息可以一定的范围内唯一标识小区所属的RPA,并且小区可以通过广播该RPA信息告知终端自己所属的RPA信息。该RPA信息可以为RPA编码(RPA Code),即类似于TAC的一组编码。或者,该RPA信息还可以是RPA标识(RPA Identifier/Identity,RPA ID)。示例性的,RPA ID可以表示为RPAC+PLMN的形式,即RPA ID可以同时表示小区的RPAC和PLMN。或者,RPA ID还可以表示为RPAC+TAI的形式,即RPA ID可以同时表示小区的RPAC和TAI。当然RPA还可以是其他的表述方式。多个小区可以广播相同的RPA信息,也可以广播不同的RPA信息。如果多个小区广播相同的RPA信息,则说明这些小区所属的RPA相同,反之,说明这些小区所属的RPA不同。
b)小区标识,该小区标识可以在一定的范围内唯一的标识该小区,可以是物理小区标识(Physical Cell Identity),也可以是小区全球标识(Cell Global identifier,CGI)。当然,小区标识还可以是其他的表述方式。
c)网络设备标识,该网络设备标识可以在一定的范围内唯一的标识该网络设备,例如可以是全局基站标识,也可以是其他标识。
d)跟踪区信息或者注册区信息,该跟踪区信息或者注册区信息可以在一定的范围内唯一的标识跟踪区或者注册区,例如可以是跟踪区信息可以是跟踪区标识(TAI)或者是跟踪区码(TAC),注册区信息可以是注册区标识(Registration Area Identifier/Identity,RAI)或者是注册区码(RAC)。
可以理解,RNA信息还可以是其他的表现方式,在本申请中不做具体的限制。
8)周期性RNA更新,一般的,网络侧会为终端配一个定时器,若这个定时器超时,则终端就会发起周期性RNA更新过程,告知网络侧终端当前还没有离开之前配置的RNA。在统计周期性RNA更新次数的过程中,通常是没有数据传输过程,这里的没有数据传输过程可以理解为没有上行数据包或者下行数据包传输。当然应该理解的是,本申请对是否有数据传输不做限制,例如,终端在inactive状态下,有可能不需要状态转变就可以进行小数据包进行传输。
9)终端的标识信息,该标识可以在RNA的范围内唯一的标识inactive终端,例如该标识可以是Resume ID,也可以是其他的标识方法。通常情况下,该inactive终端的标识还可以指示旧gNB的信息,例如可以指示旧gNB的标识。当然应该理解的是,本申请对终端的标识信息是否可以指示旧gNB的信息不做限制,例如,inactive终端标识在异系统网络设备中,不能指示就gNB的信息。
10)状态转换,引入新的去激活状态(Inactive状态)以后,存在的状态转换场景如下:连接状态转换为Inactive状态、连接状态转换为空闲状态、Inactive状态转换为空闲状态以及空闲状态转换为连接状态、Inactive状态转换为连接状态。处于Inactive状态的终端不可避免的要进行RNA更新以及通信状态的转换。通常,处于Inactive状态的终端从旧网络设备转移到其它新网络设备并且需要与网络进行交互(例如RNA更新,数据传输等)情况下,转移到的新服务网络设备会为Inactive状态的终端重新分配RNA,并且处于Inactive状态的终端首先会转移至连接状态,然后若没有数据传输,则再转移至Inactive状态。然而,在 实际通信场景中,很多场景下新网络设备是无需重新分配RNA的,处于Inactive状态的终端也无需进行状态转换,例如转移到的新服务网络设备后仍在原RNA内移动,则该新网络设备可以不必重新分配RNA。再例如,处于Inactive状态的终端进行RNA更新后,若没有数据进行传输,则无需转移至连接状态。
11)、“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
12)、名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。信息(information),信号(signal),消息(message),信道(channel)有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
下面将结合附图,对本申请中的技术方案进行描述。
图1是本申请适用场景网络架构示意图。如图1所示的通信系统中包括终端,网络设备以及核心网。其中,网络设备包括第一网络设备、第二网络设备和第三网络设备。其中第一网络设备可以是新网络设备(如new gNB),第二网络设备可以是旧网络设备(old gNB)。第一网络设备和第二网络设备属于相同的无线接入类型,第三网络设备的无线接入类型与第一网络设备和第二网络设备的无线接入类型不同。例如,第一网络设备和第二网络设备可以理解为是5G的网络设备(gNB),第三网络设备可以理解为是4G或4.5G的网络设备(eNB)。第三网络设备可以连接到5G核心网的演进通用陆地无线接入网络(Evolved Universal Terrestrial Radio Access Network,E-UTRAN)网络设备,并可以支持将终端设置为Inactive状态或者类似的状态。核心网中可以包括接入以及移动性管理功能(Access and Mobility Management Function,AMF),AMF可以理解为是核心网控制面功能,为终端提供移动性管理以及接入管理功能。图1中,若处于连接状态的终端驻留在第二网络设备的覆盖范围内在设定的时间内未进行数据传输,则第二网络设备可将终端设置为Inactive状态。将终端从连接状态设置为Inactive状态的第二网络设备是为处于连接状态的终端最后提供服务的网络设备,其中,为处于连接状态的终端最后提供服务的网络设备可称为旧网络设备(或者也可以称为驻留(Anchor)网络设备),旧网络设备会保留终端的上下文信息。处于Inactive状态的终端具有移动性,若处于Inactive状态的终端从第二网络设备覆盖范围移动到第一网络设备的覆盖范围,处于Inactive状态的终端可将第一网络设备作为新的服务网络设备,终端与第一网络设备保持下行同步,或与第一网络设备的小区保持同步,接收第一网络设备的广播信号,并且可通过第一网络设备与核心网交互。第一网络设备可以为处于Inactive状态的终端进行数据传输或进行RNA更新。该RNA更新过程可以包括周期性RNA更新,也可以包括因位置移动导致的RNA更新。在RNA更新的过程中,第一网络设备获取终端最近访问过的RNA信息以便更准确的为该终端分配RNA,进而可以减少RNA更新次数和空口开销。在一种可能的实现方式中,网络设备可以预先交互其或者其包括的小区是否支持Inactive状态,在为终端分配RNA的时候同样可以考虑这个因素,使得分配更为准确,同时也可以将获取的终端最新经过的RNA和获取的是否支持 Inactive状态的信息结合使用,进一步提升分配的准确性。
图2是本申请提供的一中RNA分配的方法流程图,如图2所示:
S201,第一网络设备接收终端发送的第一消息,所述第一消息携带所述终端最近访问过的RNA信息。RNA信息用于指示该终端在所述第一网络设备之前经过的至少一个小区或至少一个网络设备。所述RNA信息的表示方式包括以下一种信息或者多种信息的组合:无线接入网络寻呼区域信息、小区标识信息、基站标识信息、跟踪区信息和注册区信息。若终端最近访问过的RNA信息以小区标识或者小区标识列表的形式表示,则这些小区标识对应的小区可以仅包括为终端提供过服务的小区,即终端与网络侧有信令交互或者数据传输,也可以仅包括未向终端提供过服务的小区,即终端仅仅是读取该小区的广播信息,而没有任何信令或者数据交互,或者还可以同时包括以上两种小区。若终端最近访问过的RNA信息以RPA信息或者RPA信息列表的形式表述,则这些RPA信息对应的RPA范围内至少一个小区为为终端提供过服务的小区,即终端与网络侧有信令交互或者数据传输,或者这些RPA信息对应的RPA范围内至少一个小区为未向终端提供过服务的小区,但终端通过小区重选选择并预占(camp on)过该小区,即终端仅仅是读取该小区的广播信息,而没有任何信令或者数据交互,或者这些RPA信息对应的RPA范围内至少两个小区同时包括以上两种小区。若终端最近访问过的RNA信息以网络设备标识或者网络设备标识列表的形式表述,则这些网络设备标识对应的网络设备包括的至少一个小区为为终端提供过服务的小区,即终端与网络侧有信令交互或者数据传输,或者这些网络设备标识对应的网络设备包括的至少一个小区为未向终端提供过服务的小区,但终端通过小区重选选择并预占(camp on)过该小区,即终端仅仅是读取该小区的广播信息,而没有任何信令或者数据交互,或者网络设备标识对应的网络设备包括的至少两个小区同时包括以上两种小区。若终端最近访问过的RNA信息以TA/RA信息或者TA/RA信息列表的形式表述,则这些TA/RA信息对应的TA/RA范围内至少一个小区为为终端提供过服务的小区,即终端与网络侧有信令交互或者数据传输,或者这些TA/RA信息对应的TA/RA范围内至少一个小区为未向终端提供过服务的小区,但终端通过小区重选选择并预占(camp on)过该小区,即终端仅仅是读取该小区的广播信息,而没有任何信令或者数据交互,或者这些TA/RA信息对应的TA/RA范围内至少两个小区同时包括以上两种小区。其中第一消息用于终端请求恢复RRC连接,或者告知网络侧进行RNA更新,或者需要发送上行数据或信令,或者收到网络侧的paging消息、需要发送上行信令等,举例来说,可以是本申请实施例三S1301中的RRC连接恢复请求。
可选的,所述第一消息还携带所述终端的停留时间,所述停留时间是所述终端最近访问过的RNA信息所指示的至少一个小区或至少一个网络设备的停留时间。若RNA信息采用的是至少一个小区标识的形式,那么该停留时间指的在小区标识对应的小区中停留的时间,所述停留的时间指的是通过小区重选或者切换进入该小区至通过小区重选或者切换到其他小区所经过的时间,若被某个小区服务过,还可以进一步携带被该小区服务的时间。若RNA信息采用的是至少一个RPA信息的形式,那么该停留时间指的是终端在RPA信息对应的RPA范围内停留的时间,所述停留的时间指的是通过小区重选或者切换进入该RPA的某个小区至通过小区重选或者切换到其他不属于该RPA的小区所经过的时间,若被该RPA内的至少一个小区服务过,还可以进一步携带被该RPA服务的时间。若RNA信息采用的是至少 一个网络设备标识的形式,那么该停留时间指的是终端在网络设备标识对应的网络设备覆盖范围内停留的时间,所述停留的时间指的是通过小区重选或者切换进入该网络设备的某个小区至通过小区重选或者切换到其他不属于该网络设备的小区所经过的时间,若被该网络设备内的至少一个小区服务过,还可以进一步携带被该网络设备服务的时间。若RNA信息采用的是至少一个RA/TA信息的形式,那么该停留时间指的是终端在RA/TA信息对应的RA/TA范围内停留的时间,所述停留的时间指的是通过小区重选或者切换进入该RA/TA的某个小区至通过小区重选或者切换到其他不属于该RA/TA的小区所经过的时间,若被该RA/TA内的至少一个小区服务过,还可以进一步携带被该RA/TA服务的时间。携带这个消息可以进一步丰富终端的移动轨迹,从而可以给网络侧更为准确的判断,以使得网络侧可以更为准确的分配新的RNA。若RNA信息采用小区标识、RPA信息、网络设备标识、RA/TA信息这四种方式的某种组合,则停留时间也可以是上述四种方式的组合。
S205,所述第一网络设备向所述终端发送所述第一消息的回复消息所述回复消息携带所述第一网络了设备为所述终端分配的RNA信息。第一网络设备为终端分配的RNA可以通过RNA信息,承载在消息中发送给终端。该第一网络设备根据接收到的该终端最近访问过的RNA信息,为该终端分配RNA。第一网络设备为该终端分配的RNA可以与第二网络设备为该终端分配的RNA相同或者不同(如相同,则可以不在第一消息的回复消息中携带RNA信息),在分配时可以根据该终端最近访问过的RNA信息(也可以理解为终端的移动轨迹)该终端分配RNA,以使RNA分配更加合理,减少非周期性的RNA更新。其中,回复消息可以是RRC连接暂停消息(RRC Connection Suspend)、也可以是RRC连接重配置消息(RRC Connection Reconfiguration)、也可以是RRC连接恢复消息(RRC Connection Resume)、也可以是RRC连接释放消息(RRC Connection Release)、还可以是RRC连接拒绝消息(RRC Connection Reject),当然,还可以是其他RRC消息,在此我们不做限制。
可选的,在S201之后,S205之前,所述方法还包括:S202所述第一网络设备根据所述终端最近访问过的RNA信息,确定是否为所述终端重新分配RNA。如果需要重新分配RNA信息,则在S205中携带重新分配的RNA信息,如果不需要重新分配RNA,则在S205中可以不携带RNA信息。可选的,S203还可以是,网络设备根据下列信息中的一种或者多种,确定是否为终端重新分配RNA,这些信息包括:终端最近访问过的RNA信息,终端的停留时间和是否支持inactive状态。
可选的,在S201之后,S205之前,所述方法还包括:S203所述第一网络设备确定是否支持inactive状态。其中,是否支持inactive状态可以包括,所述第一网络设备是否支持inactive状态,或者所述终端当前所处的小区是否支持inactive状态,或者所述终端当前所处的小区对应的PLMN是否支持inactive状态,以及综合考虑第一网络设备、小区或者PLMN是否支持inactive状态。第一网络设备可以通过与其他网络设备的交互或者其他方式预先获取是否支持inactive状态的情况。可选的,当所述方法包括S202时,所述S204可以是,所述第一网络设备根据所述所述终端最近访问过的RNA信息和是否支持inactive状态来为终端分配RNA。
可选的,在S201之后,S205之前,所述方法还包括:S204所述第一网络设备接收第二网络设备发送的反馈消息,所述反馈消息携带所述终端的周期性RNA更新次数。其中, 所述周期性RNA更新次数包括,所述终端从连接状态转换至inactive状态后已经进行的周期性RNA更新的次数。终端从第四网络设备移动至第二网络设备(第四网络设备可以是和第二网络设备相同的设备,也可以是和第三网络设备相同的设备,在此不做限制),如果第四网络设备将终端置为inactive状态,第二网络设备仍将终端置为inactive状态,在这种情况下,周期性RNA更新次数可以包括之前统计的次数,即第二网络设备在第四网络设备统计的周期性RNA更新次数的基础上继续统计。举例来说,第四网络设备将终端从connected状态置为inactive状态,终端移动到第二网络设备以后仍为inactive状态,第二网络设备对终端进行周期性RNA更新,此时需要重新统计周期性RNA更新的次数,这个次数是在第四网络设备统计的周期性RNA更新次数的基础上加一。在此基础上,如果终端移动到第一网络设备,第一网络设备仍将终端置于inactive状态,第一网络设备对终端进行RNA更新,此时需要重新统计周期性RNA更新的次数,这个次数是在第四网络设备和第二网络设备统计的周期性RNA更新次数的基础上再加一。总的来说,这个统计的次数是终端从connected状态转为inactive状态后,总共进行的周期性RNA更新的次数,而不论终端移动经过几个网络设备,经过几个小区。如果终端进行了多次周期性RNA更新但是却没有数据传输,说明终端的活跃度不高,在某些情况下可以释放该终端的上下文,举例来说,这些情况可以包括:网络出现拥塞的时候,或者周期性RNA更新次数达到预先设定的门限值之后。如果终端在第一网络设备被置为或者保持inactive状态,第一网络设备可以在第二网络设备统计的周期性RNA更新次数的基础上继续进行统计,如果在该过程中,新gNB将终端置为连接状态,则第一网络设备可以重置周期性RNA更新次数(即将次数重置为0),当然这种情况也可以根据实际情况不重置,或者将周期性RNA更新次数删除,本申请实施例对此不做限制。网络设备可以根据周期性RNA更新次数确定终端的活跃程度,进而更准确的决定将终端置于何种状态,减少状态切换,节省信令开销,减少耗电。
可选的,本申请的方法还可以包括:所述第一网络设备接收第二网络设备发送的第二网络设备的RNA信息。具体可以参考实施例二中对交互RNA信息的描述,在此不再赘述。
可选的,本申请的方法还可以包括:所述第一网络设备接收第二网络设备发送的是否支持inactive状态的信息。具体的可以参考实施例一中对交互是否支持inactive状态的描述,在此不再赘述。
应该理解的是,上述文字及图2中对S201、S202、S203、S204、S205等步骤的描述只是一种示例性的,应该理解的是,各个步骤之间还可以有其他的执行顺序,本申请对此不做限制。
图3是本申请提供的一种终端状态设置的方法流程图,如图3所示:所述方法包括,
S301、第一网络设备接收设备发送的反馈消息,所述反馈消息携带所述终端的周期性RNA更新次数,其中所述周期性RNA更新次数包括,终端从连接状态转换至inactive状态后已经进行的周期性RNA更新的次数。其中对周期性RNA更新次数的理解可以参考S203中对周期性RNA更新次数的描述,在此不再赘述。
S302、所述第一网络设备向终端发送回复消息,所述回复消息用于指示将所述终端置于何种状态。
可选的,所述设备包括第二网络设备和/或所述终端。当所述设备包括第二网络设备时, 具体实现方式可以参考本申请实施例三的描述,在此不再赘述;如果所述设备包括终端时,具体实现方式可以参考本申请实施例四的描述,在此不再赘述。
周期性RNA更新次数可以反映终端的活跃程度,网络设备结合这个参数决定将终端置于何种状态可以使的分配更加准确,减少状态切换,节省信令开销和电源消耗。
下面主要以无线通信网络中5G网络场景为例进行说明,应当指出的是,本申请实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
实施例一
可能并不是所有的5G基站或者一个5G基站下面对应(或包括)的所有小区,或者所有的4.5G的基站(eLTE eNB)或者一个4.5G的基站下面对应(或包括)的所有小区都支持Inactive状态,因此基站(和/或小区)之间需要交互彼此是否支持Inactive状态。该交互可以在接口建立过程中,例如Xn接口建立(即两个5G基站之间建立接口)、X2接口建立(即两个4.5G基站之间建立接口)、Xx接口建立(即5G基站与4.5G基站之间建立接口),也可以在基站更新过程中交互,例如,5G基站(gNB)配置更新。下面以Xn接口建立为例,介绍基站(和/或小区)之间如何交互彼此是否支持Inactive状态。图4为本申请提供的一种通过Xn接口建立交互是否支持inactive状态的流程示意图,如图4所示:
S1101:gNB1向gNB2发送Xn接口建立请求或者发送gNB配置更新消息,该包括指示信息,该指示信息指示gNB1是否支持Inactive状态,或者指示gNB1包括的每个小区是否支持Inactive状态,或者指示gNB1中每个小区对应的公共陆地移动网络(Public Land Mobile Network,PLMN)是否支持Inactive状态。示例性的,该指示信息可以采用如下表一、表二、表三的形式:
表一:基站粒度
Figure PCTCN2018098897-appb-000001
表二:小区粒度
Figure PCTCN2018098897-appb-000002
Figure PCTCN2018098897-appb-000003
表三:PLMN粒度
Figure PCTCN2018098897-appb-000004
S1102:gNB2向gNB1发送Xn建立反馈消息或者发送gNB配置更新确认消息,可选的,该消息也可包括指示信息,该指示信息用于指示gNB2是否支持Inactive状态,或者指示gNB2包括的每个小区是否支持Inactive状态,或者指示gNB2中每个小区对应的PLMN是否支持Inactive状态。该指示信息可以采用S1101中的形式表示,具体参见S1101中的描述,在此不再赘述。
实施例二
基站之间需要交互交互RPA信息,这样在需要的时候可以更准确的为终端分配RNA。与交互是否支持Inactive状态类似,交互RPA信息可以在基站之间接口建立过程中或者在基站更新过程中交互,具体的可参见上述对交互是否支持Inactive状态的描述,在此不再赘述。下面以Xn接口建立为例,介绍基站之间如何交互RPA信息。可以理解的是,基站之间如何交互小区标识与如何交互RPA信息类似,在此不再赘述。图5为本申请提供的一种通过Xn接口建立交互RNA信息的流程示意图,如图5所示:
S12011:gNB1向gNB2发送Xn接口建立请求或者发送gNB配置更新消息,该请求包括gNB1的RPA信息,该RPA信息的形式可以包括:
类型一:如果该RPA信息是针对gNB1的所有小区,则该RPA信息可以是gNB1所属的所有的小区对应的RPA编码(RPA code,RPAC),RPAC即是一串bit信息,用于标识唯一的RPA(与TAC之于TA的功能类似)。该RPA信息也可以是RPA ID,该RPA ID可以进一步指示PLMN(即该RPA ID可以指示PLMN和RPAC),该RPA ID还可以进一步指示TA(即该RPA ID可以指示PLMN、RPAC和TAC,或者该RPA ID可以指示RPAC和TAC)。应该理解的是,如果该gNB1支持多个PLMN或者多个TA,那么可以是RPA ID列表的形式。示例性的,可以如下表四所示的形式表示:
表四:Xn接口建立请求消息示例
Figure PCTCN2018098897-appb-000005
Figure PCTCN2018098897-appb-000006
类型二:如果该RPA信息是针对gNB1包括的每个小区,则该RPA信息可以是该小区对应的RPAC,该RPAC可以与上述类型一中的RPAC类似,在此不再赘述。示例性的,RPAC可以如下表五所示的形式表示:
表五:Served Cell Information示例
Figure PCTCN2018098897-appb-000007
类型三:如果该RPA信息是针对gNB1包括的每个小区,则该RPA信息可以是该小区对应的RPA ID,该RPA ID可以与类型一中RPA ID类似,在此不再赘述。示例性的,RPA ID可以如下表六所示的形式表示:
表六:Served Cell Information示例
Figure PCTCN2018098897-appb-000008
类型四:如果该RPA信息是针对gNB1包括的每个小区对应的每个PLMN,则该RPA信息可以是RPA ID,该RPA ID可以与类型一中RPA ID类似,在此不再赘述。示例性的,RPA ID可以如下表七所示的形式表示:
表七:Served Cell Information示例
Figure PCTCN2018098897-appb-000009
Figure PCTCN2018098897-appb-000010
可以理解,RPA信息还可以包括其他的形式,在本申请中不做限制。
S1202:gNB2向gNB1发送Xn建立反馈消息或者发送gNB配置更新确认消息,可选的,该消息也可包括gNB2的RNA信息。该RNA信息可以采用S1201中的形式表示,具体参见S1201中的描述,在此不再赘述。
下面具体介绍终端从旧gNB移动到新gNB可能发生交互
实施例三
图6是本申请提供的一种RNA更新流程示意图,如图6所示:
S1301:终端向新(new)gNB发送RRC连接恢复请求(RRC connection resume request),该请求包含终端的标识信息(例如Resume ID信息)和终端最近访问的RNA信息。该RNA信息可以使新gNB为终端分配RNA更准确。可选的,所述RRC连接恢复请求还携带所述终端的停留时间,所述停留时间是所述终端最近访问过的RNA信息所指示的至少一个小区或至少一个网络设备的停留时间。
可选的,S1302:新gNB判断是其否支持Inactive状态或者终端当前所处的小区是否支持Inactive状态,或者终端当前所处的小区对应的PLMN是否支持Inactive状态。如果不支持,则跳转到S1305,并将终端置于空闲状态。
可选的,S1303:新gNB向旧gNB发送获取终端上下文请求(可以是,retrieve UE context request),该请求包含了终端的标识信息。
可选的,S1304:旧gNB向新gNB发送获取终端上下文反馈(可以是,retrieve UE context response),该终端上下文请求反馈包含了终端的安全上下文。可选的,该获取终端上下文反馈还可以携带终端已经进行的周期性RNA更新次数。该周期性RNA更新次数可以在S1306中,新gNB决定发送什么信息,用来将终端置于何种状态。
可选的,S1305,新gNB根据所述终端最近访问过的RNA信息,确定是否为所述终端重新分配RNA。如果决定重新分配RNA则S1306中发送的相应的消息中可以包括新分配的RAN信息,如果决定不重新分配RNA,则S1306中发送的相应的消息中可以不包括新分配的RAN信息。在该步骤中新gNB还可以结合终端上下文信息,终端最近访问过的RNA信息,以及终端的停留时间中的一个或者多个共同决定是否为终端重新分配RNA。
S1306:新gNB根据是否支持Inactive状态以及终端发送RRC连接回复请求的目的确定将终端置于何种状态,并发送相应的消息。该消息还可以包括新分配的RNA信息。可选的,新gNB还可以结合周期性RNA更新次数确定将终端置于何种状态。
具体来说,如果新gNB的周期性RNA更新次数达到了一定的门限,或者新gNB不支持Inactive状态,则新gNB向终端发送RRC连接拒绝(RRC Connection Reject),或者RRC连接释放(RRC Connection release)将终端置于空闲状态。如果终端发送RRC连接回复请求的目的仅仅是进行RNA更新,且新gNB支持inactive状态,则新gNB向终端发送以下消息中的一种用来将终端置为Inactive状态,RRC连接拒绝(RRC Connection Reject)、RRC连接重配置(RRC Connection Reconfiguration)、RRC连接恢复(RRC  Connection Resume)、RRC连接释放(RRC Connection Release)、RRC连接暂停(RRC Connection Suspend)。除了RRC连接暂停消息外,新gNB发送其他消息时,这些消息需要携带指示信息,用于指示将终端置于Inactive状态。应当理解的是,当然还可以通过其他的消息将终端置于Inactive状态,本申请对比不做限制。如果终端发送RRC连接回复请求的目的是进行数据发送,则新gNB可以通过RRC连接恢复将终端置为连接状态。
可选的,S1307,新gNB向旧gNB发送终端上下文释放消息(UE context release),可选的,该消息包含终端的标识信息信息。
实施例四
图7是本申请提供的一种RNA更新流程示意图,实施例四与实施例三的不同之处主要在于终端统计的周期性RNA更新次数并在RRC连接恢复完成消息或者在RRC连接恢复请求消息中携带。如图7所示:
可选的,S1401,旧gNB向UE发送RRC消息(例如RRC连接重配置消息、RRC连接释放消息等)。该消息可以携带预设的周期性更新次数,如果终端统计的RNA周期性更新次数超过或者等于这个预设的次数,则可选的,下述步骤S1402和S1406中的周期性RNA更新次数可以替换为指示信息,用于指示终端期望进入idle状态,进一步还可以指示终端希望进入idle状态的原因是周期性更新的次数超过或者等于预设的更新次数。可以理解,可以通过一个指示信息同时指示终端期望进入idle状态并且终端希望进入idle状态的原因是周期性更新的次数超过或者等于预设的更新次数,也可以通过两个指示信息分别指示终端期望进入idle状态、终端希望进入idle状态的原因是周期性更新的次数超过或者等于预设的更新次数。
S1402,UE向新gNB发送RRC连接恢复请求,该请求包含终端的标识信息。该消息还可以携带周期性RNA更新次数。该周期性RNA更新次数的作用与实施例三中的描述类似,在此不在赘述。
S1403,新gNB向旧gNB发送获取终端上下文请求,该请求包含了终端的标识信息。
S1404,旧gNB向新gNB发送获取终端上下文反馈。
S1405,新gNB向UE发送RRC连接恢复。
S1406,UE向新gNB发送RRC连接恢复完成。
可选的,如果S1402未携带周期性RNA更新次数则在该步骤中该消息携带周期性RNA更新次数。该周期性RNA更新次数的作用与实施例三中的描述类似,在此不在赘述。
S1407,新gNB向UE发送RRC消息,将终端置为连接状态、或者空闲状态、或者inactive状态,具体的RRC消息如步骤S1305所述,在此不再赘述。。
可选的,S1408,新gNB向旧gNB发送终端上下文释放,该消息携带终端的标识信息。
实施例五
图8是本申请提供的一种小区重选流程示意图,其强调了inter-RAT的小区重选的交互过程,如图8所示:
S1501:终端向新eNB发送RRC连接恢复请求,该请求携带标识信息(Resume ID)。 因为标识信息(Resume ID)是旧gNB分配的(可选的,可以采用gNB的ASN.1的编码),旧gNB与新eNB不属于同一RAT,因此新eNB可能不能正确分析标识信息(Resume ID)。即新的eNB不一定可以得到old gNB,即不一定能够得到终端的上下文保留到哪一个gNB上。在这种情况下,我们需要携带旧gNB的标识或者旧gNB至少一个小区的标识,用于指示新eNB终端的上下文保留在什么地方。
S1502与S1403相同,S1503与S1404相同,具体请参看S1403和S1404的描述,在此不再赘述。
S1504:新eNB向终端发送RRC连接建立消息。之所以不发送RRC连接恢复消息,是由于RRC连接恢复消息是在SRB1上面发送的,但是由于新eNB并不能理解就旧gNB对终端的SRB1的配置信息,因此新eNB不知道终端保留的SRB1是怎么配置的,例如RLC的配置(gNB和eNB对RLC的配置不同,例如在gNB中的RLC就没有聚合功能),因此很难再SRB1上成功传输RRC连接第一消息。因此选择在第四步S1504中向终端发送RRC连接建立消息,该连接建立消息在SRB0上发送,该消息包含了新eNB对终端的SRB1的配置信息,终端收到这个SRB1的配置以后就将之前保留的配置完全替代。
S1505:终端向新eNB发送RRC连接建立完成消息。
S1506:新eNB向终端发送RRC连接重配置消息,该重配置消息包含了新eNB为终端配置的RB(Radio Bearer,无线承载)信息,该消息还包含了满配置的指示信息,因为新eNB不能理解旧gNB对终端的RB配置信息(即不理解步骤S1503中的终端上下文中的AS配置信息),因此新eNB不能根据之前旧gNB的配置进行修改,因此只能根据自己的情况以及步骤S1503中核心网的信息,例如需要建立的会话/流以及会话/流对应的QoS信息自己对终端进行RB的配置,并告知终端采用满配置(在步骤S1506中携带满配置指示),终端在收到满配置指示以后会将之前的配置完全删除,然后根据步骤S1506中的新eNB发过来的配置进行RB配置。
下面结合上述一项或者多项方法对本申请涉及的网络设备或终端进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个单元中。上述集成的单元既可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。需要说明的是,本申请中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。图9示出了本申请提供的设备100的结构示意图,该设备100可应用于实现本申请第二网络设备、第一网络设备或终端。参阅图9所示,设备100包括接收单元101和发送单元102。当设备100用于实现第一网络设备的功能时,接收单元101用于接收终端发送的第一消息,发送单元102,用于向所述终端发送所述第一消息的回复消息。当设备100用于实现第二网络设备的功能时,发送单元102用于发送的第二网络设备的RNA信息;和/或,是否支持inactive状态的信息。当设备100用于实现终端的功能时,发送单元102用于向第一网络设备发送的第一消息,接收单元101用于接收所述第一网络设备发送的所述第一消息的回复消息。应该理解的是,结合上述任一项或者多项的方法,第一网络设备,第二网络设备和终端还可以包括更多的功能单元,用来实现更多的功能,以实现RNA的合理分配,减少信令开销。
当第一网络设备,第二网络设备或终端采用硬件形式实现时,其所涉及的与本申请相关的概念,解释和详细说明、方法、流程及步骤等请参见前述实施例中关于这些内容的描述。本申请中,接收单元可以通过通信接口、接收器、接收电路等实现。发送单元可以通过通信接口、发送器、发送电路等实现。应当理解的是,接收单元和发送单元的功能还可以集成在一起,被通信接口、收发器、收发电路实现。其中,通信接口是统称,可以包括一个或多个接口。
可以理解的是,上述说明仅仅是硬件形式的简化示例,在实际应用中,实现第二网络设备、第一网络设备或终端的硬件并不限于上述结构,例如还可以包括处理器,存储器,天线阵列,双工器以及基带处理部分。处理器可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、硬件部件或者其任意组合。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。存储器可以设置的处理器内,也可以单独存在。双工器用于实现天线阵列,既用于发送信号,又用于接收信号。发送器用于实现射频信号和基带信号之间的转换,通常发送器可以包括功率放大器,数模转换器和变频器,通常接收器可以包括低噪放,模数转换器和变频器。其中,接收器和发送器有时也可以统称为收发器。基带处理部分用于实现所发送或接收的信号的处理,比如层映射、预编码、调制/解调,编码/译码等,并且对于物理控制信道、物理数据信道、物理广播信道、参考信号等进行分别的处理。作为一种实现方式,接收器和发送器的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。作为另一种实现方式,将实现处理器、接收器和发送器功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器、接收器和发送器的功能。
例如,第二网络设备或第一网络设备的实现方式可以参考图10,如图10所示,提供一种基站1000包括:处理器1001、存储器1004、接收器1003、发送器1002,所述接收器1003和发送器1002用于与其他网元通信,所述存储器1004用于存储能够被所述处理器1001执行的程序,所述程序包括用于实现上述各实施例所述方法、步骤或者流程的指令。具体方法、流程、步骤以及有益效果等请参见前述实施例中关于这些内容的描述,在此不再赘述。
例如,终端的实现方式可以参考图11,如图11所示,提供一种终端2000包括:处理器2001、存储器2003、收发器2002,该收发器2002用于与其他网元通信(可以通过天线与其他网元通信),所述存储器2003用于存储能够被所述处理器2001执行的程序,所述程序包括用于实现上述各实施例所述方法、步骤或者流程的指令。具体方法、流程、步骤以及有益效果等请参见前述实施例中关于这些内容的描述,在此不再赘述。
当第二网络设备,第一网络设备,或终端通过软件实现时,其所涉及的与本申请相关的概念,解释和详细说明及其他步骤请参见前述方法中关于这些内容的描述。本申请中,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请 实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固状态硬盘Solid State Disk(SSD))等。所示存储介质可以集成在某设备、模块、处理器内,也可以分开设置。
根据本申请提供的方法,本申请还提供一种通信系统,其包括前述第二网络设备、第一网络设备和终端。或者一种通信系统,包括第二网络设备和第一网络设备。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (41)

  1. 一种RNA分配的方法,其特征在于,所述方法包括:
    第一网络设备接收终端发送的第一消息,所述第一消息携带所述终端最近访问过的RNA信息;
    所述第一网络设备向所述终端发送所述第一消息的回复消息,所述回复消息携带所述第一网络了设备为所述终端分配的RNA信息。
  2. 根据权利要求1所述的方法,其特征在于,所述终端最近访问过的RNA信息用于指示所述终端移动到所述第一网络设备之前经过的至少一个小区或至少一个网络设备。
  3. 根据权利要求1或2所述的方法,其特征在于,所述RNA信息的表示方式包括以下一种信息或者多种信息的组合:无线接入网络寻呼区域信息、小区标识信息、基站标识信息、跟踪区信息和注册区信息。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,在所述第一网络设备接收终端发送的第一消息之后,在所述第一网络设备向所述终端发送所述第一消息的回复消息之前,所述方法还包括:所述第一网络设备根据所述终端最近访问过的RNA信息,确定是否为所述终端重新分配RNA。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述第一消息还携带所述终端的停留时间,所述停留时间是所述终端最近访问过的RNA信息所指示的至少一个小区或至少一个网络设备的停留时间。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,在所述第一网络设备接收终端发送的第一消息之后,在所述第一网络设备向所述终端发送所述第一消息的回复消息之前,所述方法还包括:所述第一网络设备确定是否支持inactive状态;
    其中,所述是否支持inactive状态包括下述至少一种或者多种的组合,所述第一网络设备是否支持inactive状态,所述终端当前所处的小区是否支持inactive状态,和所述终端当前所处的小区对应的PLMN是否支持inactive状态。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,在所述第一网络设备接收终端发送的第一消息之后,在所述第一网络设备向所述终端发送回复消息之前,所述方法还包括:所述第一网络设备接收第二网络设备发送的反馈消息,所述反馈消息携带所述终端的周期性RNA更新次数;
    其中,所述周期性RNA更新次数包括,所述终端从连接状态转换至inactive状态后已经进行的周期性RNA更新的次数。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备接收第二网络设备发送的第二网络设备的RAN寻呼区域信息RPA信息;和/或,
    所述第一网络设备接收第二网络设备发送的是否支持inactive状态的信息;
  9. 一种RNA分配的方法,其特征在于,所述方法包括:
    终端向第一网络设备发送的第一消息,所述第一消息携带所述终端最近访问过的RNA 信息;
    所述终端接收所述第一网络设备发送的所述第一消息的回复消息,所述回复消息携带所述第一网络了设备为所述终端分配的RNA信息;
  10. 根据权利要求9所述的方法,其特征在于,所述终端最近访问过的RNA信息用于指示所述终端移动到所述第一网络设备之前经过的至少一个小区或至少一个网络设备。
  11. 根据权利要求10或9所述的方法,所述RNA信息的表示方式包括以下一种信息或者多种信息的组合:无线接入网络寻呼区域信息、小区标识信息、基站标识信息、跟踪区信息和者注册区信息。
  12. 根据权利要求9至11任一项所述的方法,其特征在于,所述第一消息还携带所述终端的停留时间,所述停留时间是所述终端最近访问过的RNA信息所指示的至少一个小区或至少一个网络设备的停留时间。
  13. 一种RNA分配的网络设备,其特征在于,所述网络设备包括:
    接收单元,用于接收终端发送的第一消息,所述第一消息携带所述终端最近访问过的RNA信息;
    发送单元,用于向所述终端发送所述第一消息的回复消息,所述回复消息携带所述第一网络了设备为所述终端分配的RNA信息。
  14. 根据权利要求13所述的网络设备,其特征在于,所述第一消息还携带所述终端的停留时间,所述停留时间是所述终端最近访问过的RNA信息所指示的至少一个小区或至少一个网络设备的停留时间。
  15. 根据权利要求14或13所述的网络设备,其特征在于,所述网络设备还包括确定单元,
    所述确定单元用于,根据所述终端最近访问过的RNA信息,确定是否为所述终端重新分配RNA。
  16. 根据权利要求13至15任一项所述的网络设备,其特征在于,所述网络设备还包括:
    确定单元,用于确定是否支持inactive状态;
    其中,所述是否支持inactive状态包括下述一种或者多种的组合,所述第一网络设备是否支持inactive状态,所述终端当前所处的小区是否支持inactive状态,和所述终端当前所处的小区对应的PLMN是否支持inactive状态。
  17. 根据权利要求13至16任一项所述的网络设备,其特征在于,所述接收单元还用于:
    接收第二网络设备发送的反馈消息,所述反馈消息携带所述终端的周期性RNA更新次数,其中所述周期性RNA更新次数包括,所述终端从连接状态转换至inactive状态后已经进行的周期性RNA更新的次数。
  18. 根据权利要求13至17任一项所述的网络设备,其特征在于,所述接收单元还用于,
    接收第二网络设备发送的第二网络设备的RNA信息;和/或,
    接收第二网络设备发送的是否支持inactive状态的信息。
  19. 一种RNA分配的终端,其特征在于,所述终端包括:
    发送单元,用于向第一网络设备发送的第一消息,所述第一消息携带所述终端最近访 问过的RNA信息;
    接收单元,用于接收所述第一网络设备发送的所述第一消息的回复消息,所述回复消息携带所述第一网络了设备为所述终端分配的RNA信息;
    其中,所述所述终端最近访问过的RNA信息用于指示所述终端移动到所述第一网络设备之前经过的至少一个小区或至少一个网络设备。
  20. 根据权利要求19所述的终端,其特征在于,所述第一消息还携带所述终端的停留时间,所述停留时间是所述终端最近访问过的RNA信息所指示的至少一个小区或至少一个网络设备的停留时间。
  21. 一种RNA分配的网络设备,其特征在于,所述网络设备包括发送器,接收器和处理器:
    所述接收器,用于接收终端发送的第一消息,所述第一消息携带所述终端最近访问过的RNA信息;
    所述发送器,用于向所述终端发送所述第一消息的回复消息,所述回复消息携带所述第一网络了设备为所述终端分配的RNA信息。
  22. 根据权利要求21所述的网络设备,其特征在于,所述第一消息还携带所述终端的停留时间,所述停留时间是所述终端最近访问过的RNA信息所指示的至少一个小区或至少一个网络设备的停留时间。
  23. 根据权利要求21或22所述的网络设备,其特征在于,所述处理器,用于根据所述终端最近访问过的RNA信息,确定是否为所述终端重新分配RNA。
  24. 根据权利要求21至23任一项所述的网络设备,其特征在于,所述处理器,用于确定是否支持inactive状态;
    其中,所述是否支持inactive状态包括下述一种或者多种的组合,所述第一网络设备是否支持inactive状态,所述终端当前所处的小区是否支持inactive状态,和所述终端当前所处的小区对应的PLMN是否支持inactive状态。
  25. 根据权利要求21至24任一项所述的网络设备,其特征在于,所述接收器还用于:
    接收第二网络设备发送的反馈消息,所述反馈消息携带所述终端的周期性RNA更新次数,其中所述周期性RNA更新次数包括,所述终端从连接状态转换至inactive状态后已经进行的周期性RNA更新的次数。
  26. 根据权利要求21至25任一项所述的网络设备,其特征在于,所述接收器还用于,
    接收第二网络设备发送的第二网络设备的RNA信息;和/或,
    接收第二网络设备发送的是否支持inactive状态的信息。
  27. 一种RNA分配的终端,其特征在于,所述终端包括:发送器,接收器和处理器,
    所述发送器,用于向第一网络设备发送的第一消息,所述第一消息携带所述终端最近访问过的RNA信息;
    所述接收器,用于接收所述第一网络设备发送的所述第一消息的回复消息,所述回复消息携带所述第一网络了设备为所述终端分配的RNA信息;
  28. 根据权利要求27所述的终端,其特征在于,所述第一消息还携带所述终端的停留 时间,所述停留时间是所述终端最近访问过的RNA信息所指示的至少一个小区或至少一个网络设备的停留时间。
  29. 一种无线接入网络寻呼区域RPA信息传输的方法,其特征在于,所述方法包括:
    第一网络设备接收第二网络设备发送的第二消息,所述第二消息携带所述第二网络设备的RPA信息,所述RPA信息用于标识RPA;
    所述第一网络设备向第二网络设备发送第三消息。
  30. 根据权利要求29所述的方法,其特征在于,
    所述RPA信息包括所述第一网络设备所属的一个小区对应的PRA编码Code;和/或,
    所述RPA信息包括所述第二网络设备所属的一个小区对应的PRA Code。
  31. 根据权利要求30所述的方法,其特征在于,所述PRA Code是一串bit信息。
  32. 根据权利要求29至31任一项所述的方法,其特征在于,所述第三消息携带所述第一网络设备的RPA信息
  33. 根据权利要求29至32任一项所述的方法,其特征在于,所述第二消息是Xn接口建立请求或者配置更新消息;或者,
    所述第三消息是Xn建立反馈消息或者配置更新确认消息。
  34. 一种网络设备,其特征在于,所述网络设备包括:
    收发器,所述收发器用于接收第二网络设备发送的第二消息,所述第二消息携带所述第二网络设备的网络寻呼区域RPA信息,所述RPA信息用于标识RPA;
    所述收发器还用于,向第二网络设备发送第三消息。
  35. 根据权利要求34所述的网络设备,其特征在于,
    所述RPA信息包括所述第一网络设备所属的一个小区对应的PRA编码Code;和/或,
    所述RPA信息包括所述第二网络设备所属的一个小区对应的PRA Code。
  36. 根据权利要求35所述的网络设备,其特征在于,所述PRA Code是一串bit信息。
  37. 根据权利要求34至36任一项所述的网络设备,其特征在于,所述第三消息携带所述网络设备的RPA信息
  38. 根据权利要求34至37任一项所述的网络设备,其特征在于,所述第二消息是Xn接口建立请求或者配置更新消息;或者,
    所述第三消息是Xn建立反馈消息或者配置更新确认消息。
  39. 一种网络设备,其特征在于,所述网络设备包括:处理器,收发器和存储器,
    所述存储器用于存储计算机指令,当所述处理器运行所述计算机指令时,使得所述网络设备执行权利要求1至12或者29-33任一项所述的方法。
  40. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括指令,当其在计算机上运行时,使得计算机执行权利要求1至12或者29-33任一项所述的方法。
  41. 一种程序产品,其特征在于,所述程序产品包括指令,当其在计算机上运行时,使得计算机执行权利要求1至12或者29-33任一项所述的方法。
PCT/CN2018/098897 2017-08-09 2018-08-06 一种rna分配的方法、网络设备及终端 WO2019029465A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112020002641-7A BR112020002641A2 (pt) 2017-08-09 2018-08-06 método, dispositivo de rede, e terminal de alocação de rna
EP18843490.6A EP3668203B1 (en) 2017-08-09 2018-08-06 Method and gnodeb for ran based notification area (rna) allocation
AU2018314879A AU2018314879B2 (en) 2017-08-09 2018-08-06 Method for rna allocation, network device, and terminal
JP2020507654A JP2020530245A (ja) 2017-08-09 2018-08-06 Rna割り当て方法、ネットワークデバイス、及び端末
CA3072521A CA3072521C (en) 2017-08-09 2018-08-06 Radio access network-based notification area (rna) allocation method, network device, and terminal
US16/784,674 US11653330B2 (en) 2017-08-09 2020-02-07 RNA allocation method, network device, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710677166.0A CN109392035B (zh) 2017-08-09 2017-08-09 一种rna分配的方法、网络设备及终端
CN201710677166.0 2017-08-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/784,674 Continuation US11653330B2 (en) 2017-08-09 2020-02-07 RNA allocation method, network device, and terminal

Publications (1)

Publication Number Publication Date
WO2019029465A1 true WO2019029465A1 (zh) 2019-02-14

Family

ID=65271101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098897 WO2019029465A1 (zh) 2017-08-09 2018-08-06 一种rna分配的方法、网络设备及终端

Country Status (8)

Country Link
US (1) US11653330B2 (zh)
EP (1) EP3668203B1 (zh)
JP (1) JP2020530245A (zh)
CN (2) CN110381496B (zh)
AU (1) AU2018314879B2 (zh)
BR (1) BR112020002641A2 (zh)
CA (1) CA3072521C (zh)
WO (1) WO2019029465A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021072722A1 (zh) * 2019-10-17 2021-04-22 华为技术有限公司 一种通信方法及装置
US11445567B2 (en) * 2018-08-10 2022-09-13 FG Innovation Company Limited Method and apparatus for RRC state transition

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11382042B2 (en) * 2017-10-04 2022-07-05 Qualcomm Incorporated Enhanced power savings through mobile initiated dormancy
TWI680690B (zh) * 2017-11-16 2019-12-21 香港商鴻穎創新有限公司 用於使用者設備及用於基地台的無線存取網路通報區域管理方法
CN110012477B (zh) * 2018-01-04 2020-08-11 维沃移动通信有限公司 一种配置方法、终端及基站
US11178719B2 (en) * 2018-05-07 2021-11-16 Htc Corporation Device and method of handling an radio resource control resume procedure
CN112655245A (zh) * 2018-09-19 2021-04-13 Oppo广东移动通信有限公司 一种数据传输方法、设备及存储介质
WO2020064726A1 (en) * 2018-09-24 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) User equipment (ue) reachability request parameter for suspended radio access network (ran)
CN110072250A (zh) * 2019-06-04 2019-07-30 重庆邮电大学 一种5g移动终端丢失覆盖处理方法
CN112073163B (zh) * 2019-06-11 2021-11-02 中国电信股份有限公司 邻小区配置信息传输方法和系统、计算机可读存储介质
CN112423317B (zh) * 2019-08-23 2022-08-02 大唐移动通信设备有限公司 异网切换处理方法、信息配置方法、用户设备及网络设备
US11074063B2 (en) * 2019-09-10 2021-07-27 International Business Machines Corporation Automatic upgrade of robotic process automation using a computer
CN112867149B (zh) * 2019-11-12 2022-07-05 大唐移动通信设备有限公司 一种ran通知区域的更新方法及装置
CN112996144B (zh) * 2019-12-02 2023-01-20 大唐移动通信设备有限公司 非激活态终端的基站间交互优化方法、装置和电子设备
WO2021142680A1 (zh) * 2020-01-15 2021-07-22 华为技术有限公司 通信方法、装置及系统
CN114222313B (zh) * 2020-09-03 2024-02-23 中国电信股份有限公司 在共享载波基站中配置rna的配置装置、方法和记录介质
CN116097898A (zh) * 2020-09-23 2023-05-09 联想(北京)有限公司 用于处于rrc非活动状态中的ue的数据传输及rnau程序的方法及设备
CN113115441A (zh) * 2021-04-14 2021-07-13 重庆智铸华信科技有限公司 一种寻呼方法、装置、电子设备及存储介质
CN113973265B (zh) * 2021-10-26 2023-06-13 中国联合网络通信集团有限公司 用户终端的管理方法、装置、设备、系统及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103220653A (zh) * 2012-01-18 2013-07-24 中兴通讯股份有限公司 移动中继跟踪区域配置及位置更新方法和装置
CN106658758A (zh) * 2017-02-10 2017-05-10 北京小米移动软件有限公司 状态转换方法、状态保持方法、装置及用户设备
WO2017097932A1 (en) * 2015-12-11 2017-06-15 Alcatel Lucent Paging with optimized transmission resources in a mobile network

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101128796B1 (ko) * 2004-06-07 2012-06-12 엘지전자 주식회사 광대역 무선 접속 시스템에서 단말의 유휴모드 지원 방법
CN101052204B (zh) * 2006-04-03 2011-12-28 华为技术有限公司 跟踪区重配置方法及系统、用户设备和移动性管理实体
CN101686467B (zh) * 2008-09-28 2013-08-07 华为技术有限公司 寻呼区的分配方法及装置
CN101998433A (zh) * 2009-08-14 2011-03-30 大唐移动通信设备有限公司 一种指示ue网络支持特性的方法和设备
CN102006682B (zh) * 2009-08-28 2015-11-25 中兴通讯股份有限公司 一种传输封闭用户组信息的方法及基站
CN103702421B (zh) * 2012-09-28 2017-12-26 电信科学技术研究院 一种本地公共资源管理方法及设备
US9497673B2 (en) * 2013-11-01 2016-11-15 Blackberry Limited Method and apparatus to enable multiple wireless connections
EP3346735B1 (en) 2014-05-09 2021-02-17 HFI Innovation Inc. Optimized mechanism for paging transmission and reception
CN105208576B (zh) * 2014-06-17 2018-09-14 东芝存储器株式会社 通信装置以及通信方法
CN105813054B (zh) * 2014-12-31 2020-09-15 中兴通讯股份有限公司 一种管理pal的方法和装置、实现寻呼的方法和装置
WO2018084197A1 (ja) * 2016-11-04 2018-05-11 京セラ株式会社 無線端末及び基地局
CN108282818B (zh) 2017-01-06 2020-11-17 中兴通讯股份有限公司 一种ran通知范围信息处理方法及装置
US10624150B2 (en) * 2017-01-30 2020-04-14 FG Innovation Company Limited Radio resource control connection resume method of wireless communication system
KR102339065B1 (ko) * 2017-03-17 2021-12-15 삼성전자주식회사 라디오 액세스 네트워크 통지 영역 업데이트 실패
US10368334B2 (en) * 2017-03-17 2019-07-30 Ofinno Technologies, Llc Radio access network paging area configuration

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103220653A (zh) * 2012-01-18 2013-07-24 中兴通讯股份有限公司 移动中继跟踪区域配置及位置更新方法和装置
WO2017097932A1 (en) * 2015-12-11 2017-06-15 Alcatel Lucent Paging with optimized transmission resources in a mobile network
CN106658758A (zh) * 2017-02-10 2017-05-10 北京小米移动软件有限公司 状态转换方法、状态保持方法、装置及用户设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL : "RAN notification area configuration", 3GPP TSG RAN WG2 MEETING #98 R2-1704889, 6 May 2017 (2017-05-06), Hangzhou, China , pages 1 - 3, XP051264629 *
HUAWEI ET AL: "RAN notification area configuration", 3GPP TSG RAN WG2 MEETING #98 R2-1704889, vol. RAN WG2, 6 May 2017 (2017-05-06), pages 1 - 3, XP051264629 *
See also references of EP3668203A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11445567B2 (en) * 2018-08-10 2022-09-13 FG Innovation Company Limited Method and apparatus for RRC state transition
US11937327B2 (en) 2018-08-10 2024-03-19 FG Innovation Company Limited Method and apparatus for RRC state transition
WO2021072722A1 (zh) * 2019-10-17 2021-04-22 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
EP3668203B1 (en) 2022-11-16
AU2018314879A1 (en) 2020-03-19
JP2020530245A (ja) 2020-10-15
CA3072521A1 (en) 2019-02-14
AU2018314879B2 (en) 2021-08-19
EP3668203A4 (en) 2020-11-11
CN110381496A (zh) 2019-10-25
CN110381496B (zh) 2020-10-27
US11653330B2 (en) 2023-05-16
CA3072521C (en) 2024-01-16
BR112020002641A2 (pt) 2020-08-18
CN109392035A (zh) 2019-02-26
EP3668203A1 (en) 2020-06-17
US20200178209A1 (en) 2020-06-04
CN109392035B (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
WO2019029465A1 (zh) 一种rna分配的方法、网络设备及终端
KR102284529B1 (ko) 통신 방법 및 통신 장치
US9560605B2 (en) Method for configuring downlink transmission power through RRH in cloud LAN environment
US20160192181A1 (en) Method of obtaining rru information by bbu, and bbu
WO2020001317A1 (zh) V2x通信方法、装置及系统
US11337124B2 (en) First base station, second base station, terminal apparatus, method, program, and recording medium
CN109561434B (zh) 用于保证通信服务的方法、设备以及计算机可读介质
WO2019029466A1 (zh) 一种时间配置的方法、网络设备及ue
JP2020529172A (ja) データ無線ベアラ識別子を取得するための方法および基地局
EP4185011A1 (en) Relay communication method, and communication apparatus
CN114731723A (zh) 一种通信方法及装置
CN113678498A (zh) 用于在无线通信系统中传输数据的方法和设备
WO2018219168A1 (zh) 一种用户设备数据通信方法及设备
WO2023052220A1 (en) Method, apparatus and computer program
JP7285905B2 (ja) データ無線ベアラ識別子を取得するための方法および基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18843490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3072521

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020507654

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020002641

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018843490

Country of ref document: EP

Effective date: 20200309

ENP Entry into the national phase

Ref document number: 2018314879

Country of ref document: AU

Date of ref document: 20180806

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112020002641

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200207