WO2019029348A1 - 数据传输方法、终端和基站 - Google Patents

数据传输方法、终端和基站 Download PDF

Info

Publication number
WO2019029348A1
WO2019029348A1 PCT/CN2018/096634 CN2018096634W WO2019029348A1 WO 2019029348 A1 WO2019029348 A1 WO 2019029348A1 CN 2018096634 W CN2018096634 W CN 2018096634W WO 2019029348 A1 WO2019029348 A1 WO 2019029348A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
information
subcarrier
reference signal
physical resource
Prior art date
Application number
PCT/CN2018/096634
Other languages
English (en)
French (fr)
Inventor
李俊超
唐浩
唐臻飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18844795.7A priority Critical patent/EP3554116B1/en
Priority to BR112019004076-5A priority patent/BR112019004076B1/pt
Priority to CN201880052068.0A priority patent/CN110999367A/zh
Priority to EP21157035.3A priority patent/EP3890385A3/en
Priority to KR1020197007354A priority patent/KR102225238B1/ko
Priority to JP2019516958A priority patent/JP6874129B2/ja
Priority to US16/204,756 priority patent/US10530547B2/en
Publication of WO2019029348A1 publication Critical patent/WO2019029348A1/zh
Priority to US16/552,461 priority patent/US10623159B2/en
Priority to US16/819,412 priority patent/US10965419B2/en
Priority to US17/201,453 priority patent/US20210203463A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a data transmission method, a terminal, and a base station.
  • a terminal In a wireless communication system, a terminal usually transmits a reference signal and data channel information according to a Physical Resource Block (PRB) index.
  • PRB Physical Resource Block
  • LTE Long Term Evolution
  • the terminal can blindly check the synchronization signal to determine the downlink carrier center position, which can be determined according to the (maximum) carrier bandwidth.
  • the PRB index the terminal will be able to transmit reference signals and data channel information according to the PRB index.
  • the synchronization signal is not necessarily located in the middle of the downlink carrier, and the terminal cannot know the center position of the carrier, and a carrier may include multiple synchronization signals in the frequency domain. Therefore, how to determine the PRB index to ensure correct communication between the base station and the terminal is a technical problem to be solved.
  • the embodiment of the present application provides a data transmission method, a terminal, and a base station, and determines a PRB index to ensure correct communication between the base station and the terminal.
  • the first aspect of the present application provides a data transmission method, including:
  • the terminal transmits terminal specific information according to a second physical resource block index; the second physical resource block index is determined according to a second bandwidth and/or a second location on the frequency domain.
  • the first PRB index is a PRB index used before establishing a connection between the terminal and the base station, or the first PRB index is a PRB index used before the terminal receives the System Information Block (SIB).
  • the terminal may receive the public information sent by the base station according to the first PRB index, where the first PRB index may be determined only according to the first bandwidth, or may be determined only according to the first location, and may also be performed according to the first bandwidth and the first location. determine.
  • the terminal receives the public information according to the first PRB index, and transmits the terminal specific information according to the second PRB index, where the first PRB index is determined according to the first location on the first bandwidth and/or the frequency domain, The second PRB index is determined based on the second bandwidth and/or the second location on the frequency domain.
  • the terminal may determine the first PRB index according to the first location on the first bandwidth and/or the frequency domain, determine the second PRB index according to the second location on the second bandwidth and/or the frequency domain, and enable the terminal to separately
  • the receiving of the common information and the transmission of the terminal specific information are performed according to different PRB indexes, whereby the terminal can determine the PRB index and can transmit the reference signal and the data channel information to the base station according to the determined PRB index.
  • the first location is a frequency domain location of the synchronization signal block or determined according to the first information
  • the second location is a carrier center location or determined according to the second information.
  • the first information is indicated by a primary message block.
  • the second information is indicated by a primary message block, a system message block, or a radio resource control signaling.
  • the first bandwidth is not greater than a minimum terminal bandwidth capability or determined according to a minimum terminal bandwidth capability or determined according to a maximum carrier bandwidth
  • the second bandwidth is determined according to a maximum carrier bandwidth
  • the minimum terminal bandwidth capability is the minimum of the maximum bandwidth capabilities of all terminals
  • the maximum bandwidth capability of the terminal is the maximum bandwidth that the terminal can support, that is, the maximum number of PRB blocks that the terminal can simultaneously transmit.
  • the maximum downlink carrier bandwidth is the maximum number of PRBs included in the downlink carrier, or the number of PRBs that the base station can simultaneously transmit.
  • the first bandwidth is not greater than a minimum terminal bandwidth capability or determined according to a minimum terminal bandwidth capability or determined according to a maximum carrier bandwidth, where the second bandwidth is a size of a carrier bandwidth portion.
  • the maximum downlink carrier bandwidth is the maximum number of PRBs included in the downlink carrier, or the number of PRBs that the base station can simultaneously transmit.
  • the minimum terminal bandwidth capability is the minimum of the maximum bandwidth capabilities of all terminals, and the maximum bandwidth capability of the terminal is the maximum bandwidth that the terminal can support, that is, the maximum number of PRB blocks that the terminal can simultaneously transmit.
  • the maximum carrier bandwidth is determined according to a subcarrier spacing.
  • the common information includes at least one of the following: a reference signal for demodulating common control information, a reference signal for demodulating common data channel information, common control information, or common data channel information.
  • the terminal specific information includes at least one of the following: a reference signal for demodulating terminal specific control information, a reference signal for demodulating terminal specific data channel information, or a channel measurement reference signal.
  • the method further includes:
  • the carrier bandwidth part refers to a part of the channel bandwidth, which may be the bandwidth determined in the first step of the two-level resource allocation during data transmission, and may be a continuous resource in the frequency domain.
  • the method further includes:
  • the terminal transmits a physical resource for transmitting terminal specific data channel information in the carrier bandwidth portion.
  • the second aspect of the present application provides a data transmission method, including:
  • the base station transmits terminal specific information according to a second physical resource block index; the second physical resource block index is determined according to a second bandwidth and/or a second location on the frequency domain.
  • the first PRB index is a PRB index used before establishing a connection between the terminal and the base station, or the first PRB index is a PRB index used before the terminal receives the SIB.
  • the base station may send the public information to the terminal according to the first PRB index, where the first PRB index may be determined only according to the first bandwidth, or may be determined only according to the first location, and may also be determined according to the first bandwidth and the first location. .
  • the base station sends the public information to the terminal according to the first PRB index, and transmits the terminal specific information according to the second PRB index, where the first PRB index is determined according to the first location on the first bandwidth and/or the frequency domain.
  • the second PRB index is determined according to the second bandwidth and/or the second location on the frequency domain.
  • the base station may determine the first PRB index according to the first location on the first bandwidth and/or the frequency domain, determine the second PRB index according to the second location in the second bandwidth and/or the frequency domain, and enable the base station to separately
  • the transmission of the common information and the transmission of the terminal specific information are performed according to different PRB indexes, whereby the base station can determine the PRB index and can perform transmission of the reference signal and the data channel information according to the determined PRB index and the terminal.
  • the first location is a frequency domain location of the synchronization signal block or determined according to the first information
  • the second location is a carrier center location or determined according to the second information.
  • the first information is indicated by a primary message block.
  • the second information is indicated by a primary message block or a system message block or radio resource control signaling.
  • the first bandwidth is not greater than a minimum terminal bandwidth capability or determined according to a minimum terminal bandwidth capability or determined according to a maximum carrier bandwidth
  • the second bandwidth is determined according to a maximum carrier bandwidth
  • the minimum terminal bandwidth capability is the minimum of the maximum bandwidth capabilities of all terminals
  • the maximum bandwidth capability of the terminal is the maximum bandwidth that the terminal can support, that is, the maximum number of PRB blocks that the terminal can simultaneously transmit.
  • the maximum downlink carrier bandwidth is the maximum number of PRBs included in the downlink carrier, or the number of PRBs that the base station can simultaneously transmit.
  • the first bandwidth is not greater than a minimum terminal bandwidth capability or determined according to a minimum terminal bandwidth capability or determined according to a maximum carrier bandwidth, where the second bandwidth is a size of a carrier bandwidth portion.
  • the maximum downlink carrier bandwidth is the maximum number of PRBs included in the downlink carrier, or the number of PRBs that the base station can simultaneously transmit.
  • the minimum terminal bandwidth capability is the minimum of the maximum bandwidth capabilities of all terminals, and the maximum bandwidth capability of the terminal is the maximum bandwidth that the terminal can support, that is, the maximum number of PRB blocks that the terminal can simultaneously transmit.
  • the maximum carrier bandwidth is determined according to a subcarrier spacing.
  • the common information includes at least one of the following: a reference signal for demodulating common control information, a reference signal for demodulating common data channel information, common control information, or common data channel information.
  • the terminal specific information includes at least one of the following: a reference signal for demodulating terminal specific control information, a reference signal for demodulating terminal specific data channel information, or a channel measurement reference signal.
  • the method further includes:
  • the method further includes:
  • the base station transmits a physical resource for transmitting terminal specific data channel information in the carrier bandwidth portion.
  • the third aspect of the present application provides a terminal, including:
  • a receiving module configured to receive public information according to the first physical resource block index; the first physical resource block index is determined according to the first location on the first bandwidth and/or the frequency domain;
  • a transmission module configured to transmit terminal specific information according to the second physical resource block index; the second physical resource block index is determined according to the second bandwidth and/or the second location on the frequency domain.
  • the first location is a frequency domain location of the synchronization signal block or determined according to the first information
  • the second location is a carrier center location or determined according to the second information.
  • the first information is indicated by a primary message block.
  • the second information is indicated by a primary message block, a system message block, or a radio resource control signaling.
  • the first bandwidth is not greater than a minimum terminal bandwidth capability or determined according to a minimum terminal bandwidth capability or determined according to a maximum carrier bandwidth
  • the second bandwidth is determined according to a maximum carrier bandwidth
  • the first bandwidth is not greater than a minimum terminal bandwidth capability or determined according to a minimum terminal bandwidth capability or determined according to a maximum carrier bandwidth, where the second bandwidth is a size of a carrier bandwidth portion.
  • the maximum carrier bandwidth is determined according to a subcarrier spacing.
  • the common information includes at least one of the following: a reference signal for demodulating common control information, a reference signal for demodulating common data channel information, common control information, or common data channel information.
  • the terminal specific information includes at least one of the following: a reference signal for demodulating terminal specific control information, a reference signal for demodulating terminal specific data channel information, or a channel measurement reference signal.
  • the device further includes:
  • a determining module configured to determine, according to the second physical resource block index, a carrier bandwidth portion for scheduling terminal specific data channel information.
  • the transmission module is further configured to transmit a physical resource for transmitting terminal specific data channel information in the carrier bandwidth portion.
  • a fourth aspect of the present application provides a base station, including:
  • a sending module configured to send public information according to the first physical resource block index;
  • the first physical resource block index is determined according to the first location on the first bandwidth and/or the frequency domain;
  • a transmission module configured to transmit terminal specific information according to the second physical resource block index; the second physical resource block index is determined according to the second bandwidth and/or the second location on the frequency domain.
  • the first location is a frequency domain location of the synchronization signal block or determined according to the first information
  • the second location is a carrier center location or determined according to the second information.
  • the first information is indicated by a primary message block.
  • the second information is indicated by a primary message block or a system message block or radio resource control signaling.
  • the first bandwidth is not greater than a minimum terminal bandwidth capability or determined according to a minimum terminal bandwidth capability or determined according to a maximum carrier bandwidth
  • the second bandwidth is determined according to a maximum carrier bandwidth
  • the first bandwidth is not greater than a minimum terminal bandwidth capability or determined according to a minimum terminal bandwidth capability or determined according to a maximum carrier bandwidth, where the second bandwidth is a size of a carrier bandwidth portion.
  • the maximum carrier bandwidth is determined according to a subcarrier spacing.
  • the common information includes at least one of the following: a reference signal for demodulating common control information, a reference signal for demodulating common data channel information, common control information, or common data channel information.
  • the terminal specific information includes at least one of the following: a reference signal for demodulating terminal specific control information, a reference signal for demodulating terminal specific data channel information, or a channel measurement reference signal.
  • the device further includes:
  • a determining module configured to determine, according to the second physical resource block index, a carrier bandwidth portion for scheduling terminal specific data channel information.
  • the transmission module is further configured to transmit a physical resource for transmitting terminal specific data channel information in the carrier bandwidth portion.
  • a fifth aspect of the embodiments of the present application provides a data transmission apparatus, the apparatus comprising a processor and a memory, the memory is used to store a program, and the processor calls a program stored in the memory to execute the method provided by the first aspect of the application.
  • the data transmission device can be a terminal chip.
  • a sixth aspect of the embodiments of the present application provides a data transmission apparatus, the apparatus comprising a processor and a memory, wherein the memory is used to store a program, and the processor calls a program stored in the memory to perform the method provided by the second aspect of the present application.
  • the data transmission device can be a base station chip.
  • a seventh aspect of the embodiments of the present application provides a terminal, comprising at least one processing element (or chip) for performing the method of the above first aspect.
  • An eighth aspect of the embodiments of the present application provides a base station, comprising at least one processing element (or chip) for performing the method of the above second aspect.
  • a ninth aspect of the embodiments of the present application provides a data transmission program for performing the method of the above first aspect when executed by a processor.
  • a tenth aspect of the embodiments of the present application provides a program product, such as a computer readable storage medium, comprising the program of the ninth aspect.
  • An eleventh aspect of the present application provides a data transmission program for performing the method of the above second aspect when executed by a processor.
  • a twelfth aspect of the embodiments of the present application provides a program product, such as a computer readable storage medium, including the program of the eleventh aspect.
  • the data transmission method, the terminal, and the base station provided by the application receives the public information according to the first PRB index, and transmits the terminal specific information according to the second PRB index, wherein the first PRB index is according to the first bandwidth and/or the frequency domain.
  • the first location determines that the second PRB index is determined based on the second bandwidth and/or the second location on the frequency domain.
  • the terminal may determine the first PRB index according to the first location on the first bandwidth and/or the frequency domain, determine the second PRB index according to the second location on the second bandwidth and/or the frequency domain, and enable the terminal to separately
  • the receiving of the common information and the transmission of the terminal specific information are performed according to different PRB indexes, whereby the terminal can determine the PRB index and can transmit the reference signal and the data channel information to the base station according to the determined PRB index.
  • FIG. 1 is a schematic diagram of the architecture of an NR system
  • Embodiment 2 is a signaling flowchart of Embodiment 1 of a data transmission method according to the present application;
  • FIG. 3a is a schematic diagram of a first PRB index determining manner
  • FIG. 3b is another schematic diagram of a manner of determining a first PRB index
  • FIG. 4a is still another schematic diagram of determining a first PRB index
  • FIG. 4b is still another schematic diagram of determining a first PRB index
  • 4c is another schematic diagram of a manner of determining a first PRB index
  • FIG. 4d is still another schematic diagram of a manner of determining a first PRB index
  • FIG. 5a is still another schematic diagram of a manner of determining a first PRB index
  • FIG. 5b is still another schematic diagram of a manner of determining a first PRB index
  • FIG. 5c is still another schematic diagram of a manner of determining a first PRB index
  • FIG. 5d is still another schematic diagram of a manner of determining a first PRB index
  • FIG. 6a is still another schematic diagram of a manner of determining a first PRB index
  • FIG. 6b is still another schematic diagram of a manner of determining a first PRB index
  • FIG. 7a is still another schematic diagram of a manner of determining a first PRB index
  • FIG. 7b is still another schematic diagram of the manner of determining the first PRB index
  • FIG. 8a is still another schematic diagram of a manner of determining a first PRB index
  • FIG. 8b is still another schematic diagram of determining a first PRB index
  • FIG. 9 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 10 is another schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 12 is another schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 13 is still another schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 14 is still another schematic structural diagram of a base station according to an embodiment of the present application.
  • a terminal also called a user equipment (UE), a mobile station (MS), a mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • Devices for example, handheld devices with wireless connectivity, in-vehicle devices, and the like.
  • terminals are: mobile phones, tablets, laptops, PDAs, mobile internet devices (MIDs), wearable devices, virtual reality (VR) devices, augmented reality.
  • MIDs mobile internet devices
  • VR virtual reality
  • augmented reality, AR augmented reality, AR
  • wireless terminals in industrial control wireless terminals in self driving, wireless terminals in remote medical surgery
  • smart grid Wireless terminals wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and the like.
  • Radio access network which is the part of the network that connects the terminal to the wireless network.
  • a RAN node is a node (or device) in a radio access network, which may also be referred to as a base station, or a network device.
  • RAN nodes are: gNB, transmission reception point (TRP), evolved Node B (eNB), radio network controller (RNC), and Node B (Node).
  • B, NB base station controller
  • BTS base transceiver station
  • home base station for example, home evolved NodeB, or home Node B, HNB
  • BBU baseband unit
  • Wifi access point AP
  • the RAN may include a centralized unit (CU) node and a distributed unit (DU) node.
  • CU centralized unit
  • DU distributed unit
  • the maximum carrier bandwidth is the maximum number of PRBs included in the carrier, which is determined according to the subcarrier spacing. For example, for a frequency band below 6 GHz, the maximum carrier bandwidth is 100 MHz. When the subcarrier spacing is 15 kHz, the maximum carrier bandwidth includes 550 PRBs; when the subcarrier spacing is 30 kHz, the maximum carrier bandwidth includes 275 PRBs; when the subcarrier spacing is At 60 kHz, the maximum carrier bandwidth includes 137 PRBs; for the frequency band above 6 GHz, the maximum carrier bandwidth is 400 MHz. When the subcarrier spacing is 60 kHz, the maximum carrier bandwidth includes 550 PRBs; when the subcarrier spacing is 120 kHz, the maximum carrier bandwidth includes 275 PRBs. In particular, the maximum carrier bandwidth may be the maximum downlink carrier bandwidth or the maximum uplink carrier bandwidth.
  • carrier bandwidth part refers to a part of the channel bandwidth, which can also be called “bandwidth part”, “operating bandwidth” or transmission bandwidth, mini BP (mini BP)
  • the BP unit, the BP sub-band, and the like may be simply referred to as BP or BWP.
  • BWP refers to the bandwidth determined in the first step of the two-level resource allocation during data transmission. It can be a continuous or non-contiguous resource in the frequency domain.
  • one carrier bandwidth portion includes consecutive or non-contiguous K>0 subcarriers; or, one carrier bandwidth portion is a frequency domain resource in which N>0 non-overlapping consecutive or non-contiguous Resource Blocks are located; or A carrier bandwidth portion is a frequency domain resource in which M>0 non-overlapping consecutive or non-contiguous Resource Block Groups (RBGs) are located, and one RBG includes P>0 consecutive RBs.
  • a carrier bandwidth portion is associated with a particular system parameter set of numerology, the system parameter set including at least one of a subcarrier spacing and a Cyclic Prefix (CP).
  • CP Cyclic Prefix
  • the system parameter numerology refers to a series of physical layer parameters in the air interface.
  • a BWP can correspond to a numerology.
  • Numerology includes subcarrier spacing, type of time unit or cyclic prefix (CP) type. Taking the subcarrier spacing as an example, if the terminal device supports the subcarrier spacing of 15 kHz and 30 kHz, the base station can allocate a BWP with a subcarrier spacing of 15 kHz and a BWP with a subcarrier spacing of 30 kHz, and the terminal device according to different scenarios. And business needs, you can switch to a different BWP, or transfer data on two or more BWPs at the same time. When the terminal device supports multiple BWPs, the numerology corresponding to each BWP may be the same or different.
  • a unit in this application refers to a functional unit or a logical unit. It can be in the form of software, which is implemented by the processor executing program code; it can also be in hardware form.
  • Multiple means two or more, and other quantifiers are similar.
  • "and/or” describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character “/” generally indicates that the contextual object is an "or” relationship.
  • the ranges described in “above” or “below” and the like include boundary points.
  • FIG. 1 is a schematic diagram of an architecture of an NR system. As shown in FIG. 1 , the system includes a terminal 10 and a RAN 20, where the terminal 10 can be, for example, For the UE, the RAN 20 may be a base station, and the system architecture in FIG.
  • LTE long term evolution
  • the terminal since the synchronization signal is not necessarily located in the middle of the downlink carrier, the terminal cannot know the center position of the carrier, and a carrier may include multiple synchronization signals in the frequency domain. Therefore, the terminal will not be able to determine the PRB index and thus cannot transmit reference signals and data channel information with the base station.
  • a data transmission method is provided.
  • the terminal receives the public information sent by the base station according to the first PRB index, and transmits the terminal specific information according to the second PRB index, where the first PRB index is according to the first bandwidth. And/or determined by the first location on the frequency domain, the second PRB index is determined based on the second bandwidth and/or the second location on the frequency domain.
  • the terminal may determine the first PRB index according to the first location on the first bandwidth and/or the frequency domain, determine the second PRB index according to the second location on the second bandwidth and/or the frequency domain, and enable the terminal to separately
  • the receiving of the common information and the transmission of the terminal specific information are performed according to different PRB indexes, whereby the terminal can determine the PRB index and can transmit the reference signal and the data channel information to the base station according to the determined PRB index.
  • FIG. 2 is a signaling flowchart of Embodiment 1 of a data transmission method according to the present application.
  • the method in this embodiment may include:
  • Step 201 The terminal receives the public information according to the first PRB index, where the first PRB index is determined according to the first location on the first bandwidth and/or the frequency domain.
  • the first PRB index is a PRB index used before establishing a connection between the terminal and the base station, or the first PRB index is a PRB index used before the terminal receives the SIB.
  • the terminal may receive the public information sent by the base station according to the first PRB index, where the first PRB index may be determined only according to the first bandwidth, or may be determined only according to the first location, and may also be based on the first bandwidth and The first position is determined.
  • the first bandwidth may be determined according to the maximum downlink carrier bandwidth, or may be not greater than the minimum terminal bandwidth capability, and may also be determined according to the minimum terminal bandwidth capability.
  • the first bandwidth is a positive integer multiple of the maximum downlink carrier bandwidth.
  • the maximum downlink carrier bandwidth is the maximum number of PRBs included in the downlink carrier, or the number of PRBs that the base station can simultaneously transmit.
  • the maximum downlink carrier bandwidth is determined according to the subcarrier spacing corresponding to the first PRB index; For the minimum of the maximum bandwidth capabilities of all terminals, the maximum bandwidth capability of the terminal is the maximum bandwidth that the terminal can support, that is, the maximum number of PRB blocks that the terminal can simultaneously transmit.
  • the first location is the frequency domain location of the sync signal block or is determined based on the first information.
  • the frequency domain position of the sync signal block is the lowest PRB (or center PRB or highest PRB) of the sync signal block or one of the 0th, 5th, 6th, and 11th subcarriers of the PRB or the subcarrier offset by 1/2 The location of the carrier spacing.
  • the center PRB is the K′-1th or K′th PRB
  • the center PRB is K'th PRB.
  • the first location may also be determined according to the first information, where the first location may be one of the 0th, 5th, 6th, and 11th subcarriers of one PRB or one PRB, or the 0th, 5th, 6th, and 11th of the PRBs.
  • One of the carriers is offset by the position of the 1/2 subcarrier spacing.
  • the base station may carry the first information of the first location to be sent to the terminal in some broadcast signaling.
  • the first information may be indicated by the primary message block.
  • the first information indicates A first offset between a location and a frequency domain reference location, the frequency domain reference location may be a frequency domain location of the synchronization signal block.
  • the first possible embodiment is as follows.
  • FIG. 3a is a schematic diagram of a first PRB index determining manner.
  • the first PRB index ⁇ 0, 1, . . . , M-1 ⁇ is a common downlink PRB index, and the PRB corresponding to the index is 0.
  • determining, according to the first location in the frequency domain and the first bandwidth, the PRB corresponding to the maximum index may be determined according to the first bandwidth, where the first location is a frequency domain location of the synchronization signal block, first The bandwidth is determined according to the maximum downlink carrier bandwidth.
  • the first bandwidth is a positive integer multiple of the maximum downlink carrier bandwidth, for example, 2 times.
  • FIG. 3b is another schematic diagram of the first PRB index determining manner.
  • the first PRB index ⁇ 0, 1, . . . , M-1 ⁇ is a common downlink PRB index, and the corresponding index is 0.
  • the PRB may be determined according to the first location in the frequency domain, and the PRB corresponding to the maximum index may be determined according to the first bandwidth, where the first location is the frequency domain location of the synchronization signal block, and the first bandwidth is based on the maximum
  • the downlink carrier bandwidth is determined.
  • the first bandwidth is a positive integer multiple of the maximum downlink carrier bandwidth, for example, 2 times.
  • the PRB number in the first PRB index shown in FIG. 3a and FIG. 3b is only an example.
  • the PRB number in the first PRB index may also be other manners, such as numbering from right to left, or Starting from the middle to the right, starting from the left, etc., when the PRB number in the first PRB index belongs to other forms, the first PRB index is determined in a similar manner to the determination method shown in FIGS. 3a and 3b. I won't go into details here.
  • the terminal may determine, according to the first PRB index, a sub-band resource in which the SIB is located and/or a PDCCH resource that schedules the SIB, that is, a resource of the common bandwidth shown in FIG. 3a and FIG. 3b.
  • the terminal blindly detects the synchronization signal block according to the synchronization signal raster, and the synchronization signal block includes a primary synchronization signal, a secondary synchronization signal, and a Physical Broadcast Channel (PBCH).
  • PBCH Physical Broadcast Channel
  • the terminal determines, according to a primary information block (MIB) carried by the PBCH, a subband resource in which the SIB is located, where the subband resource includes a frequency domain location and bandwidth of the subband, or only a frequency domain location of the subband, where The definition of the frequency domain position of the sub-band is as defined in the frequency domain position of the sync signal block, and will not be described here.
  • the terminal determines, according to the MIB carried by the PBCH, a physical downlink control channel (PDCCH) resource of the scheduling SIB, where the PDCCH resource includes a frequency domain location and bandwidth of the PDCCH resource, or only a frequency domain of the PDCCH resource.
  • PDCH physical downlink control channel
  • the terminal determines the sub-band of the SIB according to the PDCCH resource or the downlink control information (Downlink Control Information; DCI) carried by the PDCCH. Resources.
  • DCI Downlink Control Information
  • the first PRB index is defined within a first virtual bandwidth, the first virtual bandwidth being determined according to a frequency domain location of the synchronization signal block and a maximum carrier bandwidth.
  • the first virtual bandwidth and the center PRB of the synchronization signal block or one of the 0th, 5th, 6th, and 11th subcarriers of the PRB or the position of the subcarrier offset 1/2 subcarrier interval are aligned.
  • the first virtual bandwidth may also be referred to as a first maximum virtual bandwidth, a first nominal bandwidth, or a first maximum nominal bandwidth, which is not limited in this application.
  • the terminal may further receive, according to the first PRB index, a DMRS for demodulating a common downlink control channel, a common downlink control channel, a DMRS for demodulating a common downlink data channel, a common downlink data channel, and a solution in a subband where the SIB is located.
  • the downlink data channel for controlling the information scheduling includes at least a common downlink data channel corresponding to the SIB, and the terminal specific downlink data channel includes at least a downlink data channel scheduled by the terminal downlink control information.
  • the terminal may further receive, in the PDCCH resource, the common downlink control information including the common downlink control information of the common downlink data channel corresponding to the SIB, and/or the scheduling terminal specific downlink data channel, according to the first PRB index. Terminal specific downlink control information.
  • the base station may determine a sequence of downlink reference signals according to the first PRB index, and the base station maps part or all of the downlink reference signal sequence to at least one resource element (Resource Element; RE), and the base station sends the at least one RE on the foregoing Downlink reference signal.
  • the downlink reference signal may be a DMRS, and the DMRS may be used to demodulate at least one of the following channels: a common downlink data channel including at least a common downlink data channel corresponding to the SIB, and at least includes a public downlink corresponding to the scheduling SIB.
  • a common downlink control channel, a terminal specific downlink control channel, and a terminal specific downlink data channel which are common downlink control channels of the data channel.
  • the DMRS sequence is determined by the base station, and part or all of the sequence is mapped to the RE as an example for description.
  • the determining manner of the sequence of other reference signals is similar to the determining manner of the DMRS sequence. No longer.
  • the other reference signals include a Channel State Information Reference Signal (CSI-RS) or a Phase-Tracking Reference Signal (PT-RS).
  • CSI-RS Channel State Information Reference Signal
  • PT-RS Phase-Tracking Reference Signal
  • the DMRS sequence is defined by a first PRB index.
  • the DMRS sequence may be generated according to formula (1):
  • r(m) is a DMRS sequence
  • c(m) is a pseudo-random sequence
  • M is determined according to a maximum downlink carrier bandwidth
  • A is a positive integer, indicating a first frequency domain unit in the frequency domain and a first time in the time domain a number of REs in the unit for transmitting the DMRS, where the first frequency domain unit includes 12K subcarriers, K is a positive integer, and the first time unit may be a symbol, a symbol group, a time slot, a time slot group, or a subframe, and the like.
  • the embodiment is not limited herein.
  • A when the reference signal sequence is defined in one subframe, A may be determined according to a system parameter set corresponding to the subband in which the reference signal is located, where the system parameter set includes a subcarrier spacing and/or a type of the CP.
  • the DMRS when the DMRS is used to demodulate a PDCCH and/or a terminal specific downlink control channel including at least a downlink data channel corresponding to the scheduling SIB, the A is determined according to the number of symbols included in the time domain of the PDCCH resource.
  • the number of the first PRB index corresponding to each PRB on the sub-band can be determined according to the frequency domain position of the sub-band, and then the transmission is determined.
  • the reference signal in particular, the DMRS sequence can be mapped according to equation (2):
  • F 1 ( ⁇ ) is a predefined function
  • k is an index of subcarriers in the frequency domain
  • l is an index of symbols on the time domain
  • p is an antenna port number, a complex-valued modulation symbol corresponding to the antenna port number p on RE(k, l)
  • n CPRB is the number of the first PRB index corresponding to the PRB on the sub-band
  • B is a positive integer indicating a second frequency domain unit in the frequency domain a number of REs for transmitting the DMRS in a second time unit in the time domain
  • the second frequency domain unit includes 12L subcarriers
  • L is a positive integer
  • the second time unit may be a symbol, a symbol group, a time slot
  • the slot group, the subframe, and the like are not limited in this embodiment for the specific content of the second time unit.
  • B is determined according to a system parameter set corresponding to the subband in which the DMRS is located, where
  • the terminal may determine, according to the frequency domain location of the PDCCH resource, the number of the first PRB index corresponding to each PRB on the PDCCH resource, and further determine the transmitted reference signal.
  • the DMRS sequence may be mapped according to formula (3):
  • F 2 ( ⁇ ) is a predefined function
  • n CCE is a number of CCEs in the PDCCH resource, and the number is determined according to a corresponding symbol index on the CCE time domain and/or a corresponding PRB index in the frequency domain.
  • B is determined according to the number of symbols included in the time domain of the PDCCH resource.
  • the terminal does not need to know the carrier bandwidth, and does not need to know the location of the synchronization signal block in the carrier, and can correctly receive at least one channel of the following channels according to the first PRB index: at least including the SIB corresponding
  • the common downlink data channel, including the common downlink data channel includes at least a common downlink control channel, a terminal specific downlink control channel, and a terminal specific downlink data channel, which are used to schedule a common downlink control channel of the common downlink data channel corresponding to the SIB.
  • FIG. 4a is still another schematic diagram of the first PRB index determining manner.
  • the first PRB index ⁇ 0, 1, . . . , P-1 ⁇ is a common downlink PRB index, and the corresponding index is 0.
  • the PRB may be determined according to the first location in the frequency domain.
  • the PRB corresponding to the largest index may be determined according to the first bandwidth, where the first location is a frequency domain location of the synchronization signal block, and the first bandwidth is not greater than a minimum. Terminal bandwidth capability.
  • FIG. 4b is still another schematic diagram of the first PRB index determining manner.
  • the first PRB index ⁇ 0, 1, . . . , P-1 ⁇ is a common downlink PRB index, and the corresponding index is 0.
  • the PRB may also be determined according to the first location in the frequency domain and the first bandwidth.
  • the PRB corresponding to the maximum index may be determined according to the first bandwidth, where the first location is a frequency domain location of the synchronization signal block.
  • the first bandwidth is no greater than the minimum terminal bandwidth capability.
  • FIG. 4c is still another schematic diagram of the first PRB index determining manner.
  • the first PRB index ⁇ 0, 1, . . . , P-1 ⁇ is a common downlink PRB index, and the corresponding index is 0.
  • the PRB may be determined according to the first location in the frequency domain, and the PRB corresponding to the maximum index may be determined according to the first bandwidth, where the first location is determined according to the first information, and the first bandwidth is not greater than the minimum terminal bandwidth. ability.
  • FIG. 4d is still another schematic diagram of the first PRB index determining manner.
  • the first PRB index ⁇ 0, 1, . . . , P-1 ⁇ is a common downlink PRB index, and the corresponding index is 0.
  • the PRB may be further determined according to the first location and the first bandwidth in the frequency domain, and the PRB corresponding to the maximum index may be determined according to the first bandwidth, where the first location is determined according to the first information, the first bandwidth. Not greater than the minimum terminal bandwidth capability.
  • the PRB number in the first PRB index shown in FIG. 4a to FIG. 4d is only an example.
  • the PRB number in the first PRB index may also be other manners, such as numbering from right to left, or
  • the PRB number in the first PRB index belongs to other forms, the first PRB index is determined in a similar manner to that shown in FIG. 4a to FIG. 4d, and details are not described herein again.
  • the terminal may determine, according to the first PRB index, a sub-band resource in which the SIB is located and/or a PDCCH resource that schedules the SIB, that is, a resource of a common bandwidth as shown in FIG. 4a to FIG. 4d.
  • the terminal blindly detects the synchronization signal block according to a synchronization signal raster, and the synchronization signal block includes a primary synchronization signal, a secondary synchronization signal, and a PBCH.
  • the terminal determines, according to the MIB carried by the PBCH, the sub-band resource in which the SIB is located, where the sub-band resource includes the frequency domain location and bandwidth of the sub-band, or only the frequency domain location of the sub-band, where the frequency domain location of the sub-band is defined as The definition of the frequency domain location of the synchronization signal block is not described here; or the terminal determines the PDCCH resource of the scheduling SIB according to the MIB carried by the PBCH, where the PDCCH resource includes the frequency domain location and bandwidth of the PDCCH resource, or only the PDCCH The frequency domain location of the resource, where the definition of the frequency domain location of the PDCCH is as defined in the frequency domain location of the synchronization signal block, and is not described herein again.
  • the terminal further determines the sub-band resource in which the SIB is located according to the PDCCH resource or the DCI carried by the PDCCH.
  • the terminal receives, according to the first PRB index, a DMRS for demodulating a common downlink control channel, a common downlink control channel, a DMRS for demodulating a common downlink data channel, a common downlink data channel, and a demodulation terminal in a subband where the SIB is located.
  • a DMRS of a specific control channel, a terminal-specific control channel, a DMRS demodulating a terminal-specific data channel, and a terminal-specific data channel wherein the data channel is a shared channel
  • the common downlink data channel includes at least a common downlink control information.
  • the scheduled downlink data channel, the common downlink data channel indication includes a common downlink data channel corresponding to the SIB
  • the terminal specific downlink data channel includes at least a downlink data channel scheduled by the terminal downlink control information.
  • the terminal may further receive, in the PDCCH resource, the common downlink control information including the common downlink control information of the common downlink data channel corresponding to the SIB, and/or the scheduling terminal specific downlink data channel, according to the first PRB index.
  • Terminal specific downlink control information Since the terminal does not report the bandwidth capability before the access is completed, the sub-band bandwidth and/or the bandwidth of the PDCCH resource does not exceed the minimum terminal bandwidth capability in order to ensure that all terminals can correctly receive the SIB and/or PDCCH. Therefore, the first bandwidth is not greater than the minimum terminal bandwidth capability.
  • the first PRB index is defined within a common frequency space determined according to a frequency domain location of the synchronization signal block or a frequency domain location indicated by the base station and a predefined or base station-indicated bandwidth.
  • the base station may determine a sequence of downlink reference signals according to the first PRB index, and the base station maps part or all of the downlink reference signal sequence to the at least one RE, and the base station sends the downlink reference signal on the at least one RE.
  • the downlink reference signal may be a DMRS, and the DMRS may be used to demodulate at least one of the following channels: a common downlink data channel including at least a common downlink data channel corresponding to the SIB, and at least includes a public downlink corresponding to the scheduling SIB.
  • a common downlink control channel, a terminal specific downlink control channel, and a terminal specific downlink data channel which are common downlink control channels of the data channel.
  • the DMRS sequence is determined by the base station, and part or all of the sequence is mapped to the RE as an example for description.
  • the determining manner of the sequence of other reference signals is similar to the determining manner of the DMRS sequence. No longer.
  • the other reference signals comprise CSI-RS and/or PT-RS.
  • the DMRS sequence is defined by a first PRB index.
  • the DMRS sequence may be generated according to formula (4):
  • r(m) is a DMRS sequence
  • c(m) is a pseudo-random sequence
  • P is the number of RBs included in the sub-band or the corresponding number of RBs in the frequency domain of the PDCCH resource, and P is not greater than the maximum downlink bandwidth capability of all terminals.
  • Minimum value P may also be predefined;
  • A represents a first frequency domain unit in the frequency domain, and a RE number for transmitting the DMRS in a first time unit in the time domain, wherein the first frequency domain unit includes 12K subcarriers.
  • K is a positive integer
  • the first time unit may be a symbol, a symbol group, a time slot, a time slot group, a sub-frame, etc., and the specific content of the first time unit is not limited herein.
  • A may be determined according to a system parameter set corresponding to the subband in which the reference signal is located, where the system parameter set includes a subcarrier spacing and/or a type of the CP.
  • the DMRS is used to demodulate a common downlink control channel and/or a terminal specific downlink control channel including at least a common downlink control channel of a common downlink data channel corresponding to the SIB
  • A is based on the PDCCH resource time domain. The number of symbols included is determined.
  • the DMRS sequence can be mapped to the RE according to equation (5):
  • G 1 ( ⁇ ) is a predefined function
  • k is an index of subcarriers in the frequency domain
  • l is an index of symbols on the time domain
  • p is an antenna port number, a complex-valued modulation symbol corresponding to the antenna port number p on RE(k,l)
  • B represents a second frequency domain unit in the frequency domain and a RE number for transmitting the DMRS in a second time unit in the time domain
  • the second frequency domain unit includes 12L subcarriers
  • L is a positive integer
  • the second time unit may be a symbol, a symbol group, a time slot, a time slot group, a subframe, etc., for the specific content of the second time unit, this embodiment There are no restrictions here.
  • B is determined according to a system parameter set corresponding to the subband in which the DMRS is located, where the system parameter set includes a subcarrier spacing and/or a type of the CP.
  • B is determined according to the number of symbols included in the time domain of the PDCCH resource.
  • the terminal does not need to know the carrier bandwidth, and does not need to know the location of the synchronization signal block in the carrier, and can correctly receive at least one channel of the following channels according to the first PRB index: at least including the SIB corresponding
  • the common downlink data channel, including the common downlink data channel includes at least a common downlink control channel, a terminal specific downlink control channel, and a terminal specific downlink data channel, which are used to schedule a common downlink control channel of the common downlink data channel corresponding to the SIB.
  • the common downlink data channel and/or the terminal specific downlink control channel including at least the common downlink data channel corresponding to the SIB are limited to a common bandwidth having a bandwidth not greater than the minimum terminal bandwidth capability, the DCI is reduced in size. Improve transmission robustness.
  • FIG. 5a is still another schematic diagram of the first PRB index determining manner.
  • the first PRB index ⁇ 0, 1, . . . , Q-1 ⁇ is a common downlink PRB index, and the corresponding index is 0.
  • the PRB may be determined according to the first location in the frequency domain.
  • the PRB corresponding to the largest index may be determined according to the first bandwidth, where the first location is the frequency domain location of the synchronization signal block, and the first bandwidth is based on the minimum terminal.
  • the bandwidth capability is determined, optionally, the first bandwidth is a minimum terminal bandwidth capability.
  • FIG. 5b is still another schematic diagram of the first PRB index determining manner.
  • the first PRB index ⁇ 0, 1, . . . , Q-1 ⁇ is a common downlink PRB index, and the corresponding index is 0.
  • the PRB may also be determined according to the first location in the frequency domain and the first bandwidth.
  • the PRB corresponding to the largest index may be determined according to the first bandwidth, where the first location is the frequency domain location of the synchronization signal block, A bandwidth is determined based on a minimum terminal bandwidth capability, optionally, the first bandwidth is a minimum terminal bandwidth capability.
  • FIG. 5c is still another schematic diagram of the first PRB index determining manner.
  • the first PRB index ⁇ 0, 1, . . . , Q-1 ⁇ is a common downlink PRB index, and the corresponding index is 0.
  • the PRB may be determined according to the first location in the frequency domain, and the PRB corresponding to the largest index may be determined according to the first bandwidth, where the first location is determined according to the first information, and the first bandwidth is determined according to the minimum terminal bandwidth capability.
  • the first bandwidth is a minimum terminal bandwidth capability.
  • FIG. 5d is still another schematic diagram of the first PRB index determining manner.
  • the first PRB index ⁇ 0, 1, . . . , Q-1 ⁇ is a common downlink PRB index, and the corresponding index is 0.
  • the PRB may be further determined according to the first location and the first bandwidth in the frequency domain, and the PRB corresponding to the largest index may be determined according to the first bandwidth, where the first location is determined according to the first information, and the first bandwidth is determined according to the first bandwidth.
  • the minimum terminal bandwidth capability is determined, optionally, the first bandwidth is a minimum terminal bandwidth capability.
  • the PRB number in the first PRB index shown in FIG. 5a and FIG. 5d is only an example.
  • the PRB number in the first PRB index may also be other manners, such as numbering from right to left, or Starting from the middle to the right, starting from the left, etc., when the PRB number in the first PRB index belongs to other forms, the first PRB index is determined in a similar manner to the determination manner shown in FIGS. 5a and 5d. I won't go into details here.
  • the terminal may determine, according to the first PRB index, a sub-band resource in which the SIB is located and/or a PDCCH resource that schedules the SIB, that is, a resource of the common bandwidth shown in FIG. 5a to FIG. 5d.
  • the terminal blindly detects the synchronization signal block according to a synchronization signal raster, and the synchronization signal block includes a primary synchronization signal, a secondary synchronization signal, and a PBCH.
  • the terminal determines, according to the MIB carried by the PBCH, the sub-band resource in which the SIB is located, where the sub-band resource includes the frequency domain location and bandwidth of the sub-band, or only the frequency domain location of the sub-band, where the frequency domain location of the sub-band is defined as The definition of the frequency domain location of the synchronization signal block is not described here; or the terminal determines the PDCCH resource of the scheduling SIB according to the MIB carried by the PBCH, where the PDCCH resource includes the frequency domain location and bandwidth of the PDCCH resource, or only the PDCCH The frequency domain location of the resource, where the definition of the frequency domain location of the PDCCH is as defined in the frequency domain location of the synchronization signal block, and is not described herein again.
  • the terminal further determines the sub-band resource in which the SIB is located according to the PDCCH resource or the DCI carried by the PDCCH.
  • the terminal receives, according to the first PRB index, a DMRS for demodulating a common downlink control channel, a common downlink control channel, a DMRS for demodulating a common downlink data channel, a common downlink data channel, and a demodulation terminal in a subband where the SIB is located.
  • a DMRS of a specific control channel, a terminal-specific control channel, a DMRS demodulating a terminal-specific data channel, and a terminal-specific data channel wherein the data channel is a shared channel
  • the common downlink data channel includes at least a common downlink control information.
  • the scheduled downlink data channel, the common downlink data channel includes at least a common downlink data channel corresponding to the SIB
  • the terminal specific downlink data channel includes at least a downlink data channel scheduled by the terminal downlink control information.
  • the terminal may further receive, in the PDCCH resource, the common downlink control information including the common downlink control information of the common downlink data channel corresponding to the SIB, and/or the scheduling terminal specific downlink data channel, according to the first PRB index.
  • Terminal specific downlink control information Since the terminal does not report the bandwidth capability before the access is completed, the sub-band bandwidth and/or the bandwidth of the PDCCH resource does not exceed the minimum terminal bandwidth capability in order to ensure that all terminals can correctly receive the SIB and/or PDCCH. Therefore, the first bandwidth can be the minimum terminal bandwidth capability.
  • the first PRB index is defined in the second virtual bandwidth
  • the second virtual bandwidth is determined according to a frequency domain location of the synchronization signal block or a frequency domain first location indicated by the base station and a minimum terminal bandwidth capability.
  • the second virtual bandwidth and the central PRB of the common bandwidth or one of the 0th, 5th, 6th, and 11th subcarriers of the PRB or the subcarrier offset is 1/2 subcarrier spacing.
  • the second virtual bandwidth may also be referred to as a first minimum virtual bandwidth, a second nominal bandwidth, and a first minimum nominal bandwidth, which are not limited in the present invention.
  • the base station may determine a sequence of downlink reference signals according to the first PRB index, and the base station maps part or all of the downlink reference signal sequence to the at least one RE, and the base station sends the downlink reference signal on the at least one RE.
  • the downlink reference signal may be a DMRS, and the DMRS may be used to demodulate at least one of the following channels: a common downlink data channel including at least a common downlink data channel corresponding to the SIB, and at least includes a public downlink corresponding to the scheduling SIB.
  • a common downlink control channel, a terminal specific downlink control channel, and a terminal specific downlink data channel which are common downlink control channels of the data channel.
  • the DMRS sequence is determined by the base station, and part or all of the sequence is mapped to the RE as an example for description.
  • the determining manner of the sequence of other reference signals is similar to the determining manner of the DMRS sequence. No longer.
  • the other reference signals comprise CSI-RS and/or PT-RS.
  • the DMRS sequence is defined with a minimum terminal bandwidth capability.
  • the DMRS sequence can be generated according to formula (6):
  • r(m) is a DMRS sequence
  • c(m) is a pseudo-random sequence
  • Q is a minimum terminal bandwidth capability
  • A represents a first frequency domain unit in the frequency domain and a first time unit in the time domain for transmission
  • the specific content of the embodiment is not limited herein.
  • A when the reference signal sequence is defined in one subframe, A may be determined according to a system parameter set corresponding to the subband in which the reference signal is located, where the system parameter set includes a subcarrier spacing and/or a type of the CP.
  • the DMRS when the DMRS is used to demodulate a PDCCH and/or a terminal specific downlink control channel including at least a downlink data channel corresponding to the scheduling SIB, the A is determined according to the number of symbols included in the time domain of the PDCCH resource.
  • a partial sequence of the DMRS can be mapped to the RE according to formula (7):
  • B represents a second frequency domain unit in the frequency domain and a RE number for transmitting the DMRS in a second time unit in the time domain
  • the second frequency domain unit includes 12L subcarriers, L is a positive integer, and the second time unit may be a symbol, a symbol group, a time slot, a time slot group, a subframe, etc., for the specific content of the second time unit, this embodiment There are no restrictions here.
  • B is determined according to a system parameter set corresponding to the subband in which the DMRS is located, where the system parameter set includes a subcarrier spacing and/or a type of the CP.
  • B is determined according to the number of symbols included in the time domain of the PDCCH resource.
  • the second virtual bandwidth and the lowest PRB of the common bandwidth or one of the 0th, 5th, 6th, and 11th subcarriers of the PRB or the position of the subcarrier offset 1/2 subcarrier interval are aligned.
  • m' 0, 1, ..., B ⁇ P-1.
  • the terminal does not need to know the carrier bandwidth, and does not need to know the location of the synchronization signal block in the carrier, and can correctly receive at least one channel of the following channels according to the first PRB index: at least including the SIB corresponding
  • the common downlink data channel, including the common downlink data channel includes at least a common downlink control channel, a terminal specific downlink control channel, and a terminal specific downlink data channel, which are used to schedule a common downlink control channel of the common downlink data channel corresponding to the SIB.
  • the common downlink data channel and/or the terminal specific downlink control channel including at least the common downlink data channel corresponding to the SIB are limited to a common bandwidth having a bandwidth not greater than the minimum terminal bandwidth capability, the DCI is reduced in size. Improve transmission robustness.
  • Step 202 The terminal transmits terminal specific information according to the second PRB index, where the second PRB index is determined according to the second bandwidth and/or the second location on the frequency domain. Optionally, for different subcarrier intervals, there is a corresponding second PRB index.
  • the second PRB index is a PRB index used after establishing a connection between the terminal and the base station, or the second PRB index is a PRB index used after the terminal receives the SIB.
  • the terminal may send the terminal specific information to the base station according to the second PRB index, or may receive the terminal specific information sent by the base station according to the second PRB index, where the second PRB index may be determined only according to the second bandwidth, The determination may be based only on the second location, and may also be determined based on the second bandwidth and the second location.
  • the second bandwidth is determined according to the maximum carrier bandwidth or not greater than the terminal bandwidth capability.
  • the second bandwidth is a positive integer multiple of the maximum carrier bandwidth.
  • the maximum carrier bandwidth is the maximum number of PRBs included in the carrier, or the number of PRBs that the base station can transmit/receive at the same time.
  • the maximum carrier bandwidth is determined according to the subcarrier spacing corresponding to the second PRB index, optionally, the maximum carrier.
  • the bandwidth may be the maximum downlink carrier bandwidth or the maximum uplink carrier bandwidth; the terminal bandwidth capability is the maximum bandwidth that the terminal can support, that is, the maximum number of PRB blocks that the terminal can simultaneously transmit.
  • the bandwidth capability of the terminal may be
  • the downlink bandwidth capability of the terminal can also be the uplink bandwidth capability of the terminal.
  • the terminal may receive data and/or signaling through the downlink bandwidth, and may transmit data and/or signaling through the uplink bandwidth.
  • the second location is a carrier center location or determined based on the second information.
  • T s is a time unit; the center position of the carrier may also be the PRB of the carrier whose index is the intermediate value or the lowest subcarrier of the PRB (the 0th sub-carrier) Carrier) or central subcarrier (5th or 6th subcarrier) or highest subcarrier (11th subcarrier) or the position of the subcarrier offset 1/2 subcarrier spacing, in particular, 2N in the downlink carrier
  • the center position of the carrier is the N-1th PRB or the 11th subcarrier of the PRB or the position
  • the center position of the carrier is the Nth PRB or the 0th, 5th, 6th, and 11th subcarriers of the PRB.
  • One of the subcarriers or the subcarrier offsets the position of the 1/2 subcarrier spacing; optionally, the center position of the carrier may be the center position of the downlink carrier or the center position of the uplink carrier.
  • the second location may also be determined according to the second information, where the second location may be one of the 0th, 5th, 6th, and 11th subcarriers of one PRB or one PRB, or the 0th, 5th, 6th, and 11th of the PRB.
  • the base station may carry the second information of the second location to be sent to the terminal in some high layer signaling.
  • the second information may be Instructing, by the MIB, the SIB, or the Radio Resource Control (RRC) signaling, the second information indicates a second offset between the second location and the frequency domain reference location, where the frequency domain reference location may be
  • RRC Radio Resource Control
  • the location of the synchronization signal block may also be the frequency domain location indicated by the base station through higher layer signaling.
  • the fourth possible embodiment is as follows.
  • FIG. 6a is still another schematic diagram of the first PRB index determining manner.
  • the second PRB index ⁇ 0, 1, . . . , M-1 ⁇ is a common PRB index, and the PRB corresponding to the index is 0.
  • determining, according to the second location in the frequency domain, the PRB corresponding to the largest index may be determined according to the second bandwidth, where the second location is a carrier center location or determined according to the second information, and the second bandwidth is determined according to the maximum carrier.
  • the bandwidth is determined.
  • the second bandwidth is the maximum carrier bandwidth.
  • the public PRB index may be a public downlink PRB index or a public uplink PRB index.
  • the carrier center position may be a downlink carrier center position or an uplink carrier center position.
  • the maximum carrier bandwidth may be a maximum downlink carrier bandwidth or a maximum uplink carrier bandwidth.
  • FIG. 6b is still another schematic diagram of the first PRB index determining manner.
  • the second PRB index ⁇ 0, 1, . . . , M-1 ⁇ is a common PRB index, and the PRB corresponding to the index is 0.
  • determining, according to the second location and the second bandwidth in the frequency domain, the PRB corresponding to the largest index may be determined according to the second bandwidth, where the second location is a carrier center location or determined according to the second information, The second bandwidth is determined according to the maximum carrier bandwidth. Specifically, when the second location is the carrier center location, the second bandwidth is the maximum carrier bandwidth.
  • the public PRB index may be a public downlink PRB index or a public uplink.
  • the PRB index, correspondingly, the carrier center position may be the downlink carrier center position or the uplink carrier center position.
  • the maximum carrier bandwidth may be the maximum downlink carrier bandwidth or the maximum uplink carrier bandwidth.
  • the PRB number in the first PRB index shown in FIG. 6a and FIG. 6b is only an example.
  • the PRB number in the first PRB index may also be other manners, such as numbering from right to left, or Starting from the middle to the right, starting from the left, etc., when the PRB number in the first PRB index belongs to other forms, the first PRB index is determined in a similar manner to the determination method shown in FIGS. 6a and 6b. I won't go into details here.
  • the terminal may determine the sub-band resource and/or the PDCCH resource according to the second PRB index, as shown in FIG. 6a and FIG. 6b, including determining the downlink sub-band resource and/or the downlink PDCCH resource according to the common downlink PRB index, And/or determining uplink sub-band resources and/or uplink PDCCH resources according to the common uplink PRB index.
  • the terminal determines the sub-band resource according to the SIB or the RRC signaling, where the sub-band may be a sub-band corresponding to the common downlink data channel information, or may be a downlink carrier bandwidth part and/or an uplink carrier bandwidth part of the terminal, where
  • the sub-band resource includes the frequency domain location and bandwidth of the sub-band, or only the frequency domain location of the sub-band, wherein the definition of the frequency domain location of the sub-band is the same as the definition of the frequency domain location of the synchronization signal block in step 201, where Further, the terminal determines a PDCCH resource according to the SIB or the RRC signaling, where the PDCCH resource is used to schedule the common downlink data channel information and/or the terminal downlink data channel information, where the PDCCH resource includes the frequency domain location and bandwidth of the PDCCH resource. Or only the frequency domain location of the PDCCH resource is included, where the definition of the frequency domain location of the PDCCH is the same as the definition of the frequency domain location of the synchronization
  • the terminal may further transmit, in the subband, the DMRS for demodulating the common downlink control channel, the common downlink control channel, the DMRS for demodulating the common downlink data channel, the common downlink data channel, and the demodulation terminal specificity according to the second PRB index.
  • the common downlink data channel includes at least scheduling by public downlink control information.
  • the downlink data channel, the terminal specific data channel includes at least an uplink/downlink data channel scheduled by the terminal downlink control information.
  • the terminal may receive, in the PDCCH resource, public downlink control information for scheduling a common downlink data channel and/or terminal specific downlink control information for scheduling a terminal specific data channel according to the second PRB index.
  • the terminal can receive data commands through the downlink data channel, and can also transmit data through the uplink data channel.
  • the second PRB index is defined in a third virtual bandwidth, which is determined according to a carrier center location or a frequency domain second location indicated by the base station and a maximum carrier bandwidth.
  • the third virtual bandwidth center PRB or one of the 0th, 5th, 6th, and 11th subcarriers of the PRB or the position of the subcarrier offset 1/2 subcarrier interval is the central location or the base station indication The second position in the frequency domain.
  • the third virtual bandwidth may also be referred to as a second maximum virtual bandwidth, a third nominal bandwidth, and a second maximum nominal bandwidth, which are not limited in the present invention.
  • the base station may determine a sequence of downlink reference signals according to the second PRB index, and the base station maps part or all of the downlink reference signal sequence to the at least one RE, and the base station sends the downlink reference signal on the at least one RE.
  • the downlink reference signal may be a DMRS, and the DMRS may be used to demodulate at least one of the following channels: a PDCCH scheduling a common downlink data channel, a common downlink data channel including a common downlink data channel, and a terminal specific downlink. Control channel and terminal specific downlink data channel.
  • the DMRS sequence is determined by the base station, and part or all of the sequence is mapped to the RE as an example for description.
  • the determining manner of the sequence of other reference signals is similar to the determining manner of the DMRS sequence. No longer.
  • the other reference signals include a CSI-RS, a PT-RS, an uplink DMRS, and a Sounding Reference Signal (SRS).
  • the DMRS sequence is defined by a second PRB index.
  • the DMRS sequence generation method is the same as the DMRS sequence generation method described in the first possible embodiment, that is, may be generated according to formula (1).
  • the terminal may determine the number of the second PRB index corresponding to each PRB on the sub-band according to the frequency domain position of the sub-band, and further determine the transmitted reference signal, specifically, the DMRS.
  • the mapping method of the sequence is the same as the mapping method of the DMRS sequence in the first possible embodiment, that is, the mapping may be performed according to the formula (2); or the terminal may determine, according to the frequency domain location of the PDCCH resource, where each REG of the PDCCH resource is located.
  • the PRB corresponds to the number of the second PRB index, and further determines the transmitted reference signal.
  • the mapping method of the DMRS sequence is the same as the mapping method of the DMRS sequence in the first possible embodiment, that is, may be mapped according to formula (3).
  • the second PRB index may be through a terminal-specific PRB index and a frequency domain location of the sub-band or a frequency domain location of the PDCCH resource and a second location.
  • the offset between the terminals indicates that the terminal-specific PRB index is defined within the sub-band bandwidth or PDCCH resource bandwidth.
  • n CPRB a + n offset + n UPRB , where or The n offset is an offset between a frequency domain location of the sub-band or a frequency domain location of the PDCCH resource and a second location, and n UPRB is the terminal-specific PRB index.
  • the terminal-specific PRB index may be represented by the second PRB index and an offset between a frequency domain location of the sub-band or a frequency domain location of the PDCCH resource and a second location.
  • the PRB grids before and after the initial access are consistent, there are the following cases: two terminals configured with MU-MIMO, one of which stays in the sub-band of the receiving SIB after the initial access, and A terminal is configured with a bandwidth portion after initial access, and the bandwidth portion overlaps (partially or completely) with the sub-band.
  • MU-MIMO multi-user multiple input multiple output
  • the base station is semi-statically (eg, by RRC signaling) configured with a third offset ⁇ .
  • the terminal may determine the number of the second PRB index corresponding to each PRB on the sub-band according to the frequency domain position of the sub-band, and further determine the transmitted reference signal, specifically, the DMRS.
  • the sequence can be mapped according to formula (9) or formula (10):
  • the terminal may determine, according to the frequency domain location of the PDCCH resource, the number of the PRB corresponding to the PRB of the PDCCH resource corresponding to the second PRB index, and further determine the transmitted reference signal, and specifically, may be mapped according to formula (11):
  • the terminal does not need to know the carrier bandwidth, and can correctly transmit at least one of the following channels according to the second PRB index: a common downlink control channel, a common downlink data channel, a terminal specific control channel, and terminal specific data.
  • a common downlink control channel a common downlink data channel
  • a terminal specific control channel a terminal specific data.
  • the terminal can receive data through the downlink data channel and can also transmit data through the uplink data channel.
  • the terminal can receive signaling through the downlink control channel.
  • the sub-band resource may include a sub-band corresponding to the common downlink data channel information determined according to the SIB or RRC signaling, or may be a downlink carrier bandwidth part and/or an uplink carrier bandwidth part of the terminal, and The sub-band corresponding to the common downlink data channel information configured through the MIB is included.
  • FIG. 7a is still another schematic diagram of the first PRB index determining manner.
  • the second PRB index ⁇ 0, 1, . . . , P-1 ⁇ is a common downlink PRB index, and the corresponding index is 0.
  • the PRB may be determined according to the second location on the frequency domain. On this basis, the PRB corresponding to the largest index may be determined according to the second bandwidth.
  • the second location is determined according to the second information, the second bandwidth is not greater than the terminal bandwidth capability or determined according to the minimum terminal bandwidth capability, and optionally, the second bandwidth is the minimum terminal bandwidth capability.
  • FIG. 7b is still another schematic diagram of the first PRB index determining manner.
  • the second PRB index ⁇ 0, 1, . . . , P-1 ⁇ is a common downlink PRB index, and the corresponding index is 0.
  • the PRB may also be determined according to the second location and the second bandwidth in the frequency domain. On this basis, the PRB corresponding to the largest index may be determined according to the second bandwidth.
  • the second location is determined according to the second information, the second bandwidth is not greater than the terminal bandwidth capability or determined according to the minimum terminal bandwidth capability, and optionally, the second bandwidth is the minimum terminal bandwidth capability.
  • the PRB number in the first PRB index shown in FIG. 7a and FIG. 7b is only an example.
  • the PRB number in the first PRB index may also be other manners, such as numbering from right to left, or Starting from the middle to the right, starting from the left, etc., when the PRB number in the first PRB index belongs to other forms, the first PRB index is determined in a similar manner to the determination method shown in FIGS. 7a and 7b. I won't go into details here.
  • the terminal determines the sub-band resource according to the SIB or the RRC signaling, where the sub-band may be a sub-band corresponding to the common downlink data channel information, where the sub-band resource includes the frequency domain location and bandwidth of the sub-band, or only the frequency of the sub-band
  • the PDCCH resource is determined by the terminal according to the SIB or the RRC signaling, and the PDCCH resource is used by the terminal according to the SIB or the RRC signaling, and the definition of the frequency domain location of the sub-band is the same as the definition of the frequency domain location of the synchronization signal block in step 201.
  • the terminal can determine sub-band resources and/or PDCCH resources as shown in Figures 7a and 7b.
  • the terminal may receive, according to the second PRB index, at least one of a DMRS for demodulating a common downlink data channel, a common downlink data channel, a DMRS for demodulating a common downlink control channel, and a common downlink control channel in the subband.
  • the data channel is also a shared channel
  • the common downlink data channel includes at least a downlink data channel scheduled by common downlink control information.
  • the terminal may receive the common downlink control information for scheduling the common downlink data channel in the PDCCH resource according to the second PRB index.
  • the base station may determine a sequence of downlink reference signals according to the second PRB index, and the base station maps part or all of the downlink reference signal sequence to the at least one RE, and the base station sends the downlink reference signal on the at least one RE.
  • the downlink reference signal may be a DMRS, and the DMRS may be used to demodulate at least one of the following channels: a PDCCH and a common downlink data channel that schedule a common downlink data channel.
  • the DMRS sequence is determined by the base station, and part or all of the sequence is mapped to the RE as an example for description.
  • the determining manner of the sequence of other reference signals is similar to the determining manner of the DMRS sequence. No longer.
  • the other reference signals comprise CSI-RS and/or PT-RS.
  • the DMRS sequence is defined by a second PRB index.
  • the DMRS sequence generation method is the same as the DMRS sequence generation method described in the second possible embodiment, that is, may be generated according to formula (4).
  • the terminal may determine, according to the frequency domain location of the sub-band, the number of each PRB corresponding to the second PRB index on the sub-band, and further determine the transmitted reference signal; or, the terminal The PRB where each REG on the PDCCH resource is located may be determined according to the frequency domain location of the PDCCH resource, and the number of the second PRB index corresponding to the second PRB index may be determined to determine the transmitted reference signal.
  • the mapping method of the DMRS sequence is the same as the mapping method of the DMRS sequence in the second possible embodiment, that is, it can be mapped according to the formula (5).
  • the terminal does not need to know the carrier bandwidth, and can correctly receive at least one of the following according to the second PRB index: a common downlink data channel, a DMRS for demodulating a common downlink data channel, a common downlink control channel, and a demodulation common DMRS of the downlink control channel.
  • a common downlink data channel is limited to a common bandwidth with a bandwidth not greater than the minimum terminal bandwidth capability, it is advantageous to reduce the DCI size and improve transmission robustness.
  • the sixth possible embodiment is as follows.
  • FIG. 8a is still another schematic diagram of the first PRB index determining manner.
  • the second PRB index ⁇ 0, 1, . . . , Q-1 ⁇ is a common downlink PRB index, and the corresponding index is 0.
  • the PRB may be determined according to the second location on the frequency domain. On this basis, the PRB corresponding to the largest index may be determined according to the second bandwidth.
  • the second location is determined according to the second information, and the second bandwidth is a minimum terminal bandwidth capability.
  • FIG. 8b is still another schematic diagram of the first PRB index determining manner.
  • the second PRB index ⁇ 0, 1, . . . , Q-1 ⁇ is a common downlink PRB index, and the corresponding index is 0.
  • the PRB may also be determined according to the second location and the second bandwidth in the frequency domain. On this basis, the PRB corresponding to the largest index may be determined according to the second bandwidth.
  • the second location is determined according to the second information, and the second bandwidth is a minimum terminal bandwidth capability.
  • the PRB number in the first PRB index shown in FIG. 8a and FIG. 8b is only an example.
  • the PRB number in the first PRB index may also be other manners, such as numbering from right to left, or Starting from the middle to the right, starting from the left, etc., when the PRB number in the first PRB index belongs to other forms, the first PRB index is determined in a similar manner to the determination method shown in FIGS. 3a and 3b. I won't go into details here.
  • the terminal determines the sub-band resource according to the SIB or the RRC signaling, where the sub-band may be a sub-band corresponding to the common downlink data channel information, where the sub-band resource includes the frequency domain location and bandwidth of the sub-band, or only the frequency of the sub-band
  • the PDCCH resource is determined by the terminal according to the SIB or the RRC signaling, and the PDCCH resource is used by the terminal according to the SIB or the RRC signaling, and the definition of the frequency domain location of the sub-band is the same as the definition of the frequency domain location of the synchronization signal block in step 201.
  • the terminal can determine sub-band resources and/or PDCCH resources as shown in Figures 8a and 8b.
  • the terminal may receive, according to the second PRB index, at least one of a DMRS for demodulating a common downlink data channel, a common downlink data channel, a DMRS for demodulating a common downlink control channel, and a common downlink control channel in the subband.
  • the data channel is also a shared channel
  • the common downlink data channel includes at least a downlink data channel scheduled by common downlink control information.
  • the terminal may receive the common downlink control information for scheduling the common downlink data channel in the PDCCH resource according to the second PRB index.
  • the second PRB index is defined in the fourth virtual bandwidth
  • the fourth virtual bandwidth is determined according to the frequency domain second location indicated by the base station and the minimum terminal capability.
  • the fourth virtual bandwidth is aligned with a central PRB of the common bandwidth or one of the 0th, 5th, 6th, and 11th subcarriers of the PRB or a position of the subcarrier offset of 1/2 subcarrier spacing.
  • the fourth virtual bandwidth may also be referred to as a second minimum virtual bandwidth, a fourth nominal bandwidth, and a second minimum nominal bandwidth, which are not limited in the present invention.
  • the base station may determine a sequence of downlink reference signals according to the second PRB index, and the base station maps part or all of the downlink reference signal sequence to the at least one RE, and the base station sends the downlink reference signal on the at least one RE.
  • the downlink reference signal may be a DMRS, and the DMRS may be used to demodulate at least one of the following channels: a PDCCH and a common downlink data channel that schedule a common downlink data channel.
  • the DMRS sequence is determined by the base station, and part or all of the sequence is mapped to the RE as an example for description.
  • the determining manner of the sequence of other reference signals is similar to the determining manner of the DMRS sequence. No longer.
  • the other reference signals comprise CSI-RS and/or PT-RS.
  • the DMRS sequence is defined by a second PRB index.
  • the DMRS sequence generation method is the same as the DMRS sequence generation method described in the third possible embodiment, that is, it can be generated according to the formula (6).
  • the terminal may determine the transmitted reference signal according to the number of the second PRB index corresponding to each PRB on the sub-band; or, the terminal may be based on the frequency domain of the PDCCH resource.
  • the location determines that the PRB where each REG is located on the PDCCH resource corresponds to the number of the second PRB index, and further determines the transmitted reference signal.
  • the mapping method of the DMRS sequence is the same as the mapping method of the DMRS sequence in the third possible embodiment, that is, it can be mapped according to the formula (7).
  • the terminal does not need to know the carrier bandwidth, and can correctly receive at least one of the following according to the second PRB index: a common downlink data channel, a DMRS for demodulating a common downlink data channel, a common downlink control channel, and a demodulation common DMRS of the downlink control channel.
  • a common downlink data channel is limited to a common bandwidth with a bandwidth not greater than the minimum terminal bandwidth capability, it is advantageous to reduce the DCI size and improve transmission robustness.
  • the seventh possible embodiment is as follows.
  • the second PRB index is a terminal specific downlink PRB index, where the terminal specific downlink PRB index is defined in a carrier bandwidth portion of the terminal, and optionally, the carrier bandwidth portion may be a downlink carrier bandwidth portion, or It is the uplink carrier bandwidth part.
  • the terminal determines a part of the carrier bandwidth according to the SIB or the RRC signaling, where the carrier bandwidth resource includes a frequency domain location and a bandwidth of the carrier bandwidth part, or a frequency domain location including only the bandwidth part of the carrier, where the frequency domain location of the carrier bandwidth part
  • the carrier bandwidth resource includes a frequency domain location and a bandwidth of the carrier bandwidth part, or a frequency domain location including only the bandwidth part of the carrier, where the frequency domain location of the carrier bandwidth part
  • the terminal determines the PDCCH resource according to the SIB or RRC signaling, where the PDCCH resource is used to schedule terminal specific downlink data channel information, and the PDCCH resource includes The frequency domain location and bandwidth of the PDCCH resource, or only the frequency domain location of the PDCCH resource, where the definition of the frequency domain location of the PDCCH resource is the same as the definition of the frequency domain location of the synchronization signal block in step 201, and details are not described herein again.
  • the terminal may transmit the terminal specific data channel in the carrier bandwidth portion according to the second PRB index, where the terminal specific data channel, that is, the terminal specific shared channel, including the terminal specific downlink data channel and/or the terminal specific uplink data channel.
  • the terminal specific data channel includes at least a data channel scheduled by the terminal downlink control information.
  • the terminal may receive terminal specific downlink control information for scheduling terminal specific uplink/downlink data in the PDCCH resource according to the second PRB index.
  • the concept of transmission can be understood as transmission and/or reception, and the application does not impose any limitation.
  • a resource allocation method in a sub-band may have a common bandwidth, and may be a downlink carrier bandwidth portion or an uplink carrier bandwidth portion.
  • the resource allocation field in the resource allocation information includes a Resource Indication Value (RIV) corresponding to the offset (RB offset ) of the sub-band lowest PRB and the allocated continuous RB or The number of consecutive virtual RBs (L CRBs ).
  • RIV is defined as follows:
  • L CRBs ⁇ 1 and no more than Indicates the number of RBs included in the subband corresponding to the system parameter configuration ⁇ .
  • the terminal determines, according to the RIV, that the allocated consecutive RBs or consecutive virtual RBs are ⁇ RB 0 + RB offset , ..., RB 0 + RB offset + L CRBs -1 ⁇ , where RB 0 is the lowest PRB of the sub-band corresponding to the common PRB
  • the number of the index, the common PRB index is the first PRB index in the first possible embodiment and/or the second PRB index in the fourth possible embodiment, that is, the common PRB index is determined according to the maximum carrier bandwidth.
  • step 201 and the step 202 are not performed in the sequence.
  • the step 201 is performed first, and then the step 202 is performed.
  • the step 202 is performed first, and then the step 201 is performed. This is not particularly limited.
  • the terminal receives the public information according to the first PRB index, and transmits the terminal specific information according to the second PRB index, where the first PRB index is based on the first bandwidth and/or the first in the frequency domain.
  • the location-determined second PRB index is determined based on the second bandwidth and/or the second location on the frequency domain.
  • the terminal may determine the first PRB index according to the first location on the first bandwidth and/or the frequency domain, determine the second PRB index according to the second location on the second bandwidth and/or the frequency domain, and enable the terminal to separately
  • the receiving of the common information and the transmission of the terminal specific information are performed according to different PRB indexes, whereby the terminal can determine the PRB index and can transmit the reference signal and the data channel information to the base station according to the determined PRB index.
  • FIG. 9 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • the terminal includes: a receiving unit 11 and a transmitting unit 12, where:
  • the receiving unit 11 receives the common information according to the first physical resource block index; the first physical resource block index is determined according to the first location on the first bandwidth and/or the frequency domain;
  • the transmission unit 12 transmits terminal specific information according to the second physical resource block index; the second physical resource block index is determined according to the second bandwidth and/or the second location on the frequency domain.
  • the terminal provided by the embodiment of the present application may perform the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the first location is a frequency domain location of the synchronization signal block or determined according to the first information
  • the second location is a carrier center location or determined according to the second information.
  • the first information is indicated by a primary message block.
  • the second information is indicated by a primary message block, a system message block, or a radio resource control signaling.
  • the first bandwidth is not greater than a minimum terminal bandwidth capability or determined according to a minimum terminal bandwidth capability or determined according to a maximum carrier bandwidth
  • the second bandwidth is determined according to a maximum carrier bandwidth
  • the first bandwidth is not greater than a minimum terminal bandwidth capability or determined according to a minimum terminal bandwidth capability or determined according to a maximum carrier bandwidth, where the second bandwidth is a size of a carrier bandwidth portion.
  • the maximum carrier bandwidth is determined according to a subcarrier spacing.
  • the common information includes at least one of the following: a reference signal for demodulating common control information, a reference signal for demodulating common data channel information, common control information, or common data channel information.
  • the terminal specific information includes at least one of the following: a reference signal for demodulating terminal specific control information, a reference signal for demodulating terminal specific data channel information, or a channel measurement reference signal.
  • FIG. 10 is a schematic diagram of another structure of a terminal according to an embodiment of the present application.
  • the terminal further includes a determining module 13 , where:
  • the determining module 13 determines a carrier bandwidth portion for scheduling terminal specific data channel information according to the second physical resource block index.
  • the transmission module 12 is further configured to transmit, in the carrier bandwidth portion, physical resources for transmitting terminal specific data channel information.
  • the terminal provided by the embodiment of the present application may perform the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • each unit of the above terminal is only a division of a logical function, and the actual implementation may be integrated into one physical entity in whole or in part, or may be physically separated.
  • these units may all be implemented in the form of software by means of processing component calls; or may be implemented entirely in hardware; some units may be implemented by software in the form of processing component calls, and some units may be implemented in the form of hardware.
  • the sending unit may be a separately set processing element, or may be integrated in one of the chips of the terminal, or may be stored in a memory of the terminal in the form of a program, which is called and executed by a processing element of the terminal. The function of the sending unit.
  • the implementation of other units is similar.
  • each step of the above method or each of the above units may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above sending unit is a unit for controlling transmission, and the information transmitted by the base station can be received by a transmitting device of the terminal, such as an antenna and a radio frequency device.
  • the above units may be one or more integrated circuits configured to implement the above method, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors (digital singnal processor) , DSP), or one or more Field Programmable Gate Arrays (FPGAs).
  • ASICs Application Specific Integrated Circuits
  • DSP digital singnal processor
  • FPGAs Field Programmable Gate Arrays
  • the processing element can be a general purpose processor, such as a central processing unit (CPU) or other processor that can invoke the program.
  • CPU central processing unit
  • these units can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 11 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • the base station includes: a sending unit 21 and a transmitting unit 22, where:
  • the sending unit 21 is configured to send the public information according to the first physical resource block index, where the first physical resource block index is determined according to the first location on the first bandwidth and/or the frequency domain;
  • the transmitting unit 22 is configured to transmit terminal specific information according to the second physical resource block index, where the second physical resource block index is determined according to the second bandwidth and/or the second location on the frequency domain.
  • the base station provided by the embodiment of the present application may perform the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the first location is a frequency domain location of the synchronization signal block or determined according to the first information
  • the second location is a carrier center location or determined according to the second information.
  • the first information is indicated by a primary message block.
  • the second information is indicated by a primary message block, a system message block, or a radio resource control signaling.
  • the first bandwidth is not greater than a minimum terminal bandwidth capability or determined according to a minimum terminal bandwidth capability or determined according to a maximum carrier bandwidth
  • the second bandwidth is determined according to a maximum carrier bandwidth
  • the first bandwidth is not greater than a minimum terminal bandwidth capability or determined according to a minimum terminal bandwidth capability or determined according to a maximum carrier bandwidth, where the second bandwidth is a size of a carrier bandwidth portion.
  • the maximum carrier bandwidth is determined according to a subcarrier spacing.
  • the common information includes at least one of the following: a reference signal for demodulating common control information, a reference signal for demodulating common data channel information, common control information, or common data channel information.
  • the terminal specific information includes at least one of the following: a reference signal for demodulating terminal specific control information, a reference signal for demodulating terminal specific data channel information, or a channel measurement reference signal.
  • FIG. 12 is a schematic diagram of another structure of a base station according to an embodiment of the present application.
  • the base station further includes a determining module 23, where:
  • the determining module 23 determines a carrier bandwidth portion for scheduling terminal specific data channel information according to the second physical resource block index.
  • the transmission module 22 is further configured to transmit, in the carrier bandwidth portion, physical resources for transmitting terminal specific data channel information.
  • the base station provided by the embodiment of the present application may perform the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • each unit of the above base station is only a division of a logical function. In actual implementation, it may be integrated into one physical entity in whole or in part, or may be physically separated. Moreover, these units may all be implemented in the form of software by means of processing component calls; or may be implemented entirely in hardware; some units may be implemented by software in the form of processing component calls, and some units may be implemented in the form of hardware.
  • the sending unit may be a separately set processing element, or may be integrated in a certain chip of the base station, or may be stored in a memory of the base station in the form of a program, which is called and executed by a processing element of the base station. The function of the sending unit.
  • the implementation of other units is similar.
  • each step of the above method or each of the above units may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above sending unit is a unit for controlling transmission, and the information transmitted by the terminal can be received by a transmitting device of the base station, such as an antenna and a radio frequency device.
  • the above units may be one or more integrated circuits configured to implement the above method, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors (digital singnal processor) , DSP), or one or more Field Programmable Gate Arrays (FPGAs).
  • ASICs Application Specific Integrated Circuits
  • DSP digital singnal processor
  • FPGAs Field Programmable Gate Arrays
  • the processing element can be a general purpose processor, such as a central processing unit (CPU) or other processor that can invoke the program.
  • CPU central processing unit
  • these units can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 13 is still another schematic structural diagram of a terminal according to an embodiment of the present application.
  • the terminal includes a processor 110, a memory 120, and a transceiver 130.
  • the transceiver 130 can be coupled to an antenna.
  • the transceiver 130 receives the information transmitted by the base station through the antenna, and transmits the information to the processor 110 for processing.
  • the processor 110 processes the data of the terminal and transmits it to the base station through the transceiver 130.
  • the memory 120 is configured to store a program that implements the above method embodiments, or the various units of the embodiment shown in FIG. 9 to FIG. 10, and the processor 110 calls the program to perform the operations of the foregoing method embodiments to implement the operations of the foregoing FIG. Each unit shown.
  • part or all of the above units may be implemented by being embedded in a chip of the terminal in the form of an integrated circuit. And they can be implemented separately or integrated. That is, the above units may be configured to implement one or more integrated circuits of the above method, for example, one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors (digital singnal processor) , DSP), or one or more Field Programmable Gate Arrays (FPGAs).
  • ASICs Application Specific Integrated Circuits
  • microprocessors digital singnal processor
  • FPGAs Field Programmable Gate Arrays
  • FIG. 14 is still another schematic structural diagram of a base station according to an embodiment of the present application.
  • the base station includes an antenna 110, a radio frequency device 120, and a baseband device 130.
  • the antenna 110 is connected to the radio frequency device 120.
  • the radio frequency device 120 receives the information transmitted by the terminal through the antenna 110, and transmits the information sent by the terminal to the baseband device 130 for processing.
  • the baseband device 130 processes the information of the terminal and sends it to the radio frequency device 120.
  • the radio frequency device 120 processes the information of the terminal and sends the information to the terminal through the antenna 110.
  • the above various units are implemented in the form of a processing element scheduler, such as baseband device 130 including processing element 131 and storage element 132, processing element 131 invoking a program stored by storage element 132 to perform the above method embodiments method.
  • the baseband device 130 may further include an interface 133 for interacting with the radio frequency device 120, such as a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the above units may be one or more processing elements configured to implement the above methods, the processing elements being disposed on the baseband device 130, where the processing elements may be integrated circuits, such as: one or more ASICs, or one or more DSPs, or one or more FPGAs, etc. These integrated circuits can be integrated to form a chip.
  • the above various units may be integrated together in the form of a system-on-a-chip (SOC), for example, the baseband device 130 includes a SOC chip for implementing the above method.
  • the processing element 131 and the storage element 132 may be integrated into the chip, and the functions of the above method or the above units may be implemented by the processing element 131 in the form of a stored program that calls the storage element 132; or, at least one integrated circuit may be integrated into the chip.
  • the functions of the above methods or the above units may be implemented; or, in combination with the above implementation manners, the functions of some units are implemented in the form of processing component calling programs, and the functions of some units are implemented in the form of integrated circuits.
  • the above base station includes at least one processing element, a storage element and a communication interface, wherein at least one of the processing elements is used to perform the method provided by the above method embodiments.
  • the processing element may perform some or all of the steps in the above method embodiments in a manner of executing the program stored in the storage element in the first manner; or in the second manner: through the integrated logic circuit of the hardware in the processor element Some or all of the steps in the foregoing method embodiments are performed in combination with the instructions.
  • the methods provided in the foregoing method embodiments may also be implemented in combination with the first mode and the second mode.
  • the processing elements herein are the same as described above, and may be a general purpose processor, such as a Central Processing Unit (CPU), or may be one or more integrated circuits configured to implement the above method, for example: one or more specific An Application Specific Integrated Circuit (ASIC), or one or more digital singnal processors (DSPs), or one or more Field Programmable Gate Arrays (FPGAs).
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • DSPs digital singnal processors
  • FPGAs Field Programmable Gate Arrays
  • the storage element can be a memory or a collective name for a plurality of storage elements.
  • the present application further provides a storage medium comprising: a readable storage medium and a computer program for implementing the data transmission method provided by any of the foregoing embodiments.
  • the application also provides a program product comprising a computer program (ie, an execution instruction) stored in a readable storage medium.
  • a computer program ie, an execution instruction
  • At least one processor of the terminal can read the computer program from a readable storage medium, and the at least one processor executes the computer program to cause the terminal to implement the data transmission method provided by the various embodiments described above.
  • the embodiment of the present application further provides a data transmission apparatus, including at least one storage element and at least one processing element, wherein the at least one storage element is configured to store a program, when the program is executed, causing the data transmission apparatus to perform the foregoing The operation of the terminal in an embodiment.
  • the device can be a terminal chip.
  • the present application further provides a storage medium comprising: a readable storage medium and a computer program for implementing the data transmission method provided by any of the foregoing embodiments.
  • the application also provides a program product comprising a computer program (ie, an execution instruction) stored in a readable storage medium.
  • a computer program ie, an execution instruction
  • At least one processor of the base station can read the computer program from a readable storage medium, and the at least one processor executes the computer program such that the base station implements the data transmission method provided by the various embodiments described above.
  • the embodiment of the present application further provides a data transmission apparatus, including at least one storage element and at least one processing element, wherein the at least one storage element is configured to store a program, when the program is executed, causing the data transmission apparatus to perform the foregoing The operation of the base station in an embodiment.
  • the device can be a base station chip.
  • All or part of the steps of implementing the above method embodiments may be performed by hardware associated with the program instructions.
  • the aforementioned program can be stored in a readable memory.
  • the steps including the foregoing method embodiments are performed; and the foregoing memory (storage medium) includes: read-only memory (English: read-only memory, abbreviation: ROM), RAM, flash memory, hard disk, Solid state drive, magnetic tape (English: magnetic tape), floppy disk (English: floppy disk), optical disc (English: optical disc) and any combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种数据传输方法、终端和基站,该方法包括:终端根据第一物理资源块索引接收公共信息;所述第一物理资源块索引是根据第一带宽和/或频域上的第一位置确定的;所述终端根据第二物理资源块索引传输终端特定信息;所述第二物理资源块索引是根据第二带宽和/或频域上的第二位置确定的。本申请通过确定PRB索引,以保证基站和终端之间能够正确的通信。

Description

数据传输方法、终端和基站
本申请要求于2017年08月10日提交中国专利局、申请号为201710682190.3、申请名称为“数据传输方法、终端和基站”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输方法、终端和基站。
背景技术
在无线通信系统中,终端通常会根据物理资源块(Physical Resource Block;PRB)索引传输参考信号和数据信道信息。在长期演进(Long Term Evolution;LTE)系统中,由于同步信号通常位于下行载波中间72个子载波上,终端可以通过盲检同步信号,以确定下行载波中心位置,进而可以根据(最大)载波带宽确定PRB索引,终端将可以根据该PRB索引传输参考信号和数据信道信息。
然而,在新空口(New Radio;NR)中,同步信号不一定位于下行载波的中间,终端也无法获知载波的中心位置,而且一个载波中频域上可能包含多个同步信号。因此,如何确定PRB索引,以保证基站和终端之间能够正确的通信,是目前亟待解决的技术问题。
发明内容
本申请实施例提供一种数据传输方法、终端和基站,通过确定PRB索引,以保证基站和终端之间能够正确的通信。
本申请第一方面提供一种数据传输方法,包括:
终端根据第一物理资源块索引接收公共信息;所述第一物理资源块索引是根据第一带宽和/或频域上的第一位置确定的;
所述终端根据第二物理资源块索引传输终端特定信息;所述第二物理资源块索引是根据第二带宽和/或频域上的第二位置确定的。
在本方案中,第一PRB索引为终端和基站之间建立连接之前使用的PRB索引,或者第一PRB索引为终端接收系统消息块(System Information Block,SIB)之前使用的PRB索引。另外,终端可以根据第一PRB索引接收基站发送的公共信息,其中,第一PRB索引可以仅根据第一带宽确定,也可以仅根据第一位置确定,还可以根据第一带宽和第一位置进行确定。
在上述方案中,终端根据第一PRB索引接收公共信息,根据第二PRB索引传输终端特定信息,其中,第一PRB索引是根据第一带宽和/或频域上的第一位置确定的,第二PRB索引是根据第二带宽和/或频域上的第二位置确定的。由于终端可以根据第 一带宽和/或频域上的第一位置确定出第一PRB索引,根据第二带宽和/或频域上的第二位置确定出第二PRB索引,并使终端可以分别根据不同的PRB索引进行公共信息的接收和终端特定信息的传输,由此,终端可以确定出PRB索引,并能够根据确定出的PRB索引向基站传输参考信号和数据信道信息。
可选地,所述第一位置为同步信号块的频域位置或根据第一信息确定,所述第二位置为载波中心位置或根据第二信息确定。
可选地,所述第一信息通过主消息块指示。
可选地,所述第二信息通过主消息块、系统消息块或无线资源控制信令指示。
可选地,所述第一带宽不大于最小终端带宽能力或根据最小终端带宽能力确定或根据最大载波带宽确定,所述第二带宽根据最大载波带宽确定。
在本方案中,最小终端带宽能力为所有终端最大带宽能力中的最小值,终端最大带宽能力为该终端所能支持的最大带宽,即终端能够同时传输的最大PRB块的数量。最大下行载波带宽为下行载波中最多包含的PRB数,或者是基站可以同时发送的PRB数。
可选地,所述第一带宽不大于最小终端带宽能力或根据最小终端带宽能力确定或根据最大载波带宽确定,所述第二带宽为载波带宽部分的大小。
在本方案中,最大下行载波带宽为下行载波中最多包含的PRB数,或者是基站可以同时发送的PRB数。最小终端带宽能力为所有终端最大带宽能力中的最小值,终端最大带宽能力为该终端所能支持的最大带宽,即终端能够同时传输的最大PRB块的数量。
可选地,所述最大载波带宽根据子载波间隔确定。
可选地,所述公共信息包括如下信息中的至少一项:用于解调公共控制信息的参考信号、用于解调公共数据信道信息的参考信号、公共控制信息或公共数据信道信息。
可选地,所述终端特定信息包括如下信息中的至少一项:用于解调终端特定控制信息的参考信号、用于解调终端特定数据信道信息的参考信号或信道测量参考信号。
可选地,所述方法还包括:
所述终端根据所述第二物理资源块索引确定用于调度终端特定数据信道信息的载波带宽部分。
在上述方案中,载波带宽部分(carrier bandwidth part),是指信道带宽中的一部分,其可以是在数据传输时两级资源分配中第一步确定的带宽,可以为频域上一段连续的资源。
可选地,所述终端根据所述第二物理资源块索引确定用于调度终端特定数据信道信息的载波带宽部分之后,所述方法还包括:
所述终端在所述载波带宽部分内传输用于传输终端特定数据信道信息的物理资源。
本申请第二方面提供一种数据传输方法,包括:
基站根据第一物理资源块索引发送公共信息;所述第一物理资源块索引是根据第一带宽和/或频域上的第一位置确定的;
所述基站根据第二物理资源块索引传输终端特定信息;所述第二物理资源块索引是根据第二带宽和/或频域上的第二位置确定的。
在本方案中,第一PRB索引为终端和基站之间建立连接之前使用的PRB索引,或者第一PRB索引为终端接收SIB之前使用的PRB索引。另外,基站可以根据第一PRB索引向终端发送公共信息,其中,第一PRB索引可以仅根据第一带宽确定,也可以仅根据第一位置确定,还可以根据第一带宽和第一位置进行确定。
在上述方案中,基站根据第一PRB索引向终端发送公共信息,根据第二PRB索引传输终端特定信息,其中,第一PRB索引是根据第一带宽和/或频域上的第一位置确定的,第二PRB索引是根据第二带宽和/或频域上的第二位置确定的。由于基站可以根据第一带宽和/或频域上的第一位置确定出第一PRB索引,根据第二带宽和/或频域上的第二位置确定出第二PRB索引,并使基站可以分别根据不同的PRB索引进行公共信息的发送和终端特定信息的传输,由此,基站可以确定出PRB索引,并能够根据确定出的PRB索引和终端进行参考信号和数据信道信息的传输。
可选地,所述第一位置为同步信号块的频域位置或根据第一信息确定,所述第二位置为载波中心位置或根据第二信息确定。
可选地,所述第一信息通过主消息块指示。
可选地,所述第二信息通过主消息块或系统消息块或无线资源控制信令指示。
可选地,所述第一带宽不大于最小终端带宽能力或根据最小终端带宽能力确定或根据最大载波带宽确定,所述第二带宽根据最大载波带宽确定。
在本方案中,最小终端带宽能力为所有终端最大带宽能力中的最小值,终端最大带宽能力为该终端所能支持的最大带宽,即终端能够同时传输的最大PRB块的数量。最大下行载波带宽为下行载波中最多包含的PRB数,或者是基站可以同时发送的PRB数。
可选地,所述第一带宽不大于最小终端带宽能力或根据最小终端带宽能力确定或根据最大载波带宽确定,所述第二带宽为载波带宽部分的大小。
在本方案中,最大下行载波带宽为下行载波中最多包含的PRB数,或者是基站可以同时发送的PRB数。最小终端带宽能力为所有终端最大带宽能力中的最小值,终端最大带宽能力为该终端所能支持的最大带宽,即终端能够同时传输的最大PRB块的数量。
可选地,所述最大载波带宽根据子载波间隔确定。
可选地,所述公共信息包括如下信息中的至少一项:用于解调公共控制信息的参考信号、用于解调公共数据信道信息的参考信号、公共控制信息或公共数据信道信息。
可选地,所述终端特定信息包括如下信息中的至少一项:用于解调终端特定控制信息的参考信号、用于解调终端特定数据信道信息的参考信号或信道测量参考信号。
可选地,所述方法还包括:
所述基站根据所述第二物理资源块索引确定用于调度终端特定数据信道信息的载波带宽部分。
可选地,所述基站根据所述第二物理资源块索引确定用于调度终端特定数据信道信息的载波带宽部分之后,所述方法还包括:
所述基站在所述载波带宽部分内传输用于传输终端特定数据信道信息的物理资源。
本申请第三方面提供一种终端,包括:
接收模块,用于根据第一物理资源块索引接收公共信息;所述第一物理资源块索引是根据第一带宽和/或频域上的第一位置确定的;
传输模块,用于根据第二物理资源块索引传输终端特定信息;所述第二物理资源块索引是根据第二带宽和/或频域上的第二位置确定的。
可选地,所述第一位置为同步信号块的频域位置或根据第一信息确定,所述第二位置为载波中心位置或根据第二信息确定。
可选地,所述第一信息通过主消息块指示。
可选地,所述第二信息通过主消息块、系统消息块或无线资源控制信令指示。
可选地,所述第一带宽不大于最小终端带宽能力或根据最小终端带宽能力确定或根据最大载波带宽确定,所述第二带宽根据最大载波带宽确定。
可选地,所述第一带宽不大于最小终端带宽能力或根据最小终端带宽能力确定或根据最大载波带宽确定,所述第二带宽为载波带宽部分的大小。
可选地,所述最大载波带宽根据子载波间隔确定。
可选地,所述公共信息包括如下信息中的至少一项:用于解调公共控制信息的参考信号、用于解调公共数据信道信息的参考信号、公共控制信息或公共数据信道信息。
可选地,所述终端特定信息包括如下信息中的至少一项:用于解调终端特定控制信息的参考信号、用于解调终端特定数据信道信息的参考信号或信道测量参考信号。
可选地,所述装置还包括:
确定模块,用于根据所述第二物理资源块索引确定用于调度终端特定数据信道信息的载波带宽部分。
可选地,所述传输模块,还用于在所述载波带宽部分内传输用于传输终端特定数据信道信息的物理资源。
本申请第四方面提供一种基站,包括:
发送模块,用于根据第一物理资源块索引发送公共信息;所述第一物理资源块索引是根据第一带宽和/或频域上的第一位置确定的;
传输模块,用于根据第二物理资源块索引传输终端特定信息;所述第二物理资源块索引是根据第二带宽和/或频域上的第二位置确定的。
可选地,所述第一位置为同步信号块的频域位置或根据第一信息确定,所述第二位置为载波中心位置或根据第二信息确定。
可选地,所述第一信息通过主消息块指示。
可选地,所述第二信息通过主消息块或系统消息块或无线资源控制信令指示。
可选地,所述第一带宽不大于最小终端带宽能力或根据最小终端带宽能力确定或根据最大载波带宽确定,所述第二带宽根据最大载波带宽确定。
可选地,所述第一带宽不大于最小终端带宽能力或根据最小终端带宽能力确定或根据最大载波带宽确定,所述第二带宽为载波带宽部分的大小。
可选地,所述最大载波带宽根据子载波间隔确定。
可选地,所述公共信息包括如下信息中的至少一项:用于解调公共控制信息的参考信号、用于解调公共数据信道信息的参考信号、公共控制信息或公共数据信道信息。
可选地,所述终端特定信息包括如下信息中的至少一项:用于解调终端特定控制 信息的参考信号、用于解调终端特定数据信道信息的参考信号或信道测量参考信号。
可选地,所述装置还包括:
确定模块,用于根据所述第二物理资源块索引确定用于调度终端特定数据信道信息的载波带宽部分。
可选地,所述传输模块,还用于在所述载波带宽部分内传输用于传输终端特定数据信道信息的物理资源。
本申请实施例第五方面提供一种数据传输装置,该装置包括处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以执行本申请第一方面提供的方法。该数据传输装置可以是终端芯片。
本申请实施例第六方面提供一种数据传输装置,该装置包括处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以执行本申请第二方面提供的方法。该数据传输装置可以是基站芯片。
本申请实施例第七方面提供一种终端,包括用于执行以上第一方面的方法的至少一个处理元件(或芯片)。
本申请实施例第八方面提供一种基站,包括用于执行以上第二方面的方法的至少一个处理元件(或芯片)。
本申请实施例第九方面提供一种数据传输程序,该程序在被处理器执行时用于执行以上第一方面的方法。
本申请实施例第十方面提供一种程序产品,例如计算机可读存储介质,包括第九方面的程序。
本申请实施例第十一方面提供一种数据传输程序,该程序在被处理器执行时用于执行以上第二方面的方法。
本申请实施例第十二方面提供一种程序产品,例如计算机可读存储介质,包括第十一方面的程序。
本申请提供的数据传输方法、终端和基站,终端根据第一PRB索引接收公共信息,并根据第二PRB索引传输终端特定信息,其中,第一PRB索引是根据第一带宽和/或频域上的第一位置确定的,第二PRB索引是根据第二带宽和/或频域上的第二位置确定的。由于终端可以根据第一带宽和/或频域上的第一位置确定出第一PRB索引,根据第二带宽和/或频域上的第二位置确定出第二PRB索引,并使终端可以分别根据不同的PRB索引进行公共信息的接收和终端特定信息的传输,由此,终端可以确定出PRB索引,并能够根据确定出的PRB索引向基站传输参考信号和数据信道信息。
附图说明
图1为NR系统的架构示意图;
图2为本申请数据传输方法实施例一的信令流程图;
图3a为第一PRB索引确定方式的一示意图;
图3b为第一PRB索引确定方式的另一示意图;
图4a为第一PRB索引确定方式的又一示意图;
图4b为第一PRB索引确定方式的又一示意图;
图4c为第一PRB索引确定方式的又一示意图;
图4d为第一PRB索引确定方式的又一示意图;
图5a为第一PRB索引确定方式的又一示意图;
图5b为第一PRB索引确定方式的又一示意图;
图5c为第一PRB索引确定方式的又一示意图;
图5d为第一PRB索引确定方式的又一示意图;
图6a为第一PRB索引确定方式的又一示意图;
图6b为第一PRB索引确定方式的又一示意图;
图7a为第一PRB索引确定方式的又一示意图;
图7b为第一PRB索引确定方式的又一示意图;
图8a为第一PRB索引确定方式的又一示意图;
图8b为第一PRB索引确定方式的又一示意图;
图9为本申请实施例提供的一种终端的一结构示意图;
图10为本申请实施例提供的一种终端的另一结构示意图;
图11为本申请实施例提供的一种基站的一结构示意图;
图12为本申请实施例提供的一种基站的另一结构示意图;
图13为本申请实施例提供的一种终端的又一结构示意图;
图14为本申请实施例提供的一种基站的又一结构示意图。
具体实施方式
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
2)无线接入网(radio access network,RAN),RAN是网络中将终端接入到无线网络的部分。RAN节点(或设备)为无线接入网中的节点(或设备),又可以称为基站,或网络设备。目前,一些RAN节点的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或Wifi接入点(access point,AP)等。另外,在一种网络结构中,RAN可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点。
3)最大载波带宽为载波中最多包含的PRB数,其根据子载波间隔确定。例如,对应6GHz以下频段,最大载波带宽为100MHz,当子载波间隔为15kHz时,最大载波带宽包括550个PRB;当子载波间隔为30kHz时,最大载波带宽包括275个PRB;当子载波间隔为60kHz时,最大载波带宽包括137个PRB;对应6GHz以上频段,最大载波带宽为400MHz,当子载波间隔为60kHz时,最大载波带宽包括550个PRB;当子载波间隔为120kHz时,最大载波带宽包括275个PRB。特别地,最大载波带宽可以是最大下行载波带宽,也可以是最大上行载波带宽。
4)“载波带宽部分(carrier bandwidth part)”,是指信道带宽中的一部分,也可以叫做“带宽部分(bandwidth part)”,“工作带宽(operating bandwidth)”或者传输带宽,迷你BP(mini BP)、BP单元(BP Unit)、BP子带等,可以简称为BP,也可以简称为BWP,本申请实施例中不对载波带宽部分的名称以及简称进行具体限定。BWP是指在数据传输时两级资源分配中第一步确定的带宽。可以为频域上一段连续或非连续的资源。例如,一个载波带宽部分包含连续或非连续的K>0个子载波;或者,一个载波带宽部分为N>0个不重叠的连续或非连续的资源块(Resource Block)所在的频域资源;或者,一个载波带宽部分为M>0个不重叠的连续或非连续的资源块组(Resource Block Group,RBG)所在的频域资源,一个RBG包括P>0个连续的RB。一个载波带宽部分与一个特定的系统参数numerology集合相关,所述系统参数集合包括子载波间隔和循环前缀(Cyclic Prefix,CP)的至少一种。
5)系统参数numerology,是指空口(air interface)中的一系列物理层参数,具体实现时,可选的,一个BWP可以对应一个numerology。numerology包括子载波间隔,时间单位的类型或循环前缀(cyclic prefix,CP)类型等。以子载波间隔为例,若终端设备支持子载波间隔15kHz和30kHz,则基站可以为终端设备分配一个子载波间隔为15kHz的BWP,和一个子载波间隔为30kHz的BWP,终端设备根据不同的场景和业务需求,可以切换到不同的BWP上,或者同时在两个或更多BWP上传输数据。当终端设备支持多个BWP时,每个BWP对应的numerology可以相同也可以不同。
6)本申请中的单元是指功能单元或逻辑单元。其可以为软件形式,通过处理器执行程序代码来实现其功能;也可以为硬件形式。
7)“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“以上”或“以下”等所描述的范围包括边界点。
本领域技术人员可以理解,本申请实施例提供的数据传输方法可以应用于第5代网络(5th Generation;5G)和后续演进通信系统中,也可以运用到其他无线通信网络,例如:通用移动通信系统(Universal Mobile Telecommunications System;UMTS)网络,或者后向兼容LTE的网络等,图1为NR系统的架构示意图,如图1所示,该系统包括终端10和RAN 20,其中,终端10例如可以为UE,RAN 20可以为基站,图1中的系统架构将长期演进(long term evolution,LTE)系统中eNB的协议层拆分开,部分协议层的功能放在CU节点集中控制,剩下部分或全部协议层的功能分布在DU节点中,由CU节点集中控制DU节点。
在图1所示的系统架构的基础上,在NR中,由于同步信号不一定位于下行载波的中间,终端也无法获知载波的中心位置,而且一个载波中频域上可能包含多个同步信号。因此,终端将无法确定出PRB索引,因而也就无法与基站传输参考信号和数据信道信息。
本申请实施例考虑到这些情况,提出一种数据传输方法,终端根据第一PRB索引接收基站发送的公共信息,根据第二PRB索引传输终端特定信息,其中,第一PRB索引是根据第一带宽和/或频域上的第一位置确定的,第二PRB索引是根据第二带宽和/或频域上的第二位置确定的。由于终端可以根据第一带宽和/或频域上的第一位置确定出第一PRB索引,根据第二带宽和/或频域上的第二位置确定出第二PRB索引,并使终端可以分别根据不同的PRB索引进行公共信息的接收和终端特定信息的传输,由此,终端可以确定出PRB索引,并能够根据确定出的PRB索引向基站传输参考信号和数据信道信息。
图2为本申请数据传输方法实施例一的信令流程图。在上述图1所示系统架构的基础上,如图2所示,本实施例的方法可以包括:
步骤201、终端根据第一PRB索引接收公共信息;所述第一PRB索引是根据第一带宽和/或频域上的第一位置确定的。
可选地,对于不同的子载波间隔,有各自对应的第一PRB索引。
特别地,所述第一PRB索引为终端和基站之间建立连接之前使用的PRB索引,或者所述第一PRB索引为终端接收SIB之前使用的PRB索引。
在本实施例中,终端可以根据第一PRB索引接收基站发送的公共信息,其中,第一PRB索引可以仅根据第一带宽确定,也可以仅根据第一位置确定,还可以根据第一带宽和第一位置进行确定。
第一带宽可以根据最大下行载波带宽确定,也可以是不大于最小终端带宽能力,还可以根据最小终端带宽能力确定,可选地,第一带宽为最大下行载波带宽的正整数倍。其中,最大下行载波带宽为下行载波中最多包含的PRB数,或者是基站可以同时发送的PRB数,可选地,最大下行载波带宽根据第一PRB索引对应的子载波间隔确定;最小终端带宽能力为所有终端最大带宽能力中的最小值,终端最大带宽能力为该终端所能支持的最大带宽,即终端能够同时传输的最大PRB块的数量。
第一位置为同步信号块的频域位置或根据第一信息确定。同步信号块的频域位置为该同步信号块的最低PRB(或中心PRB或最高PRB)或该PRB的第0、5、6、11个子载波中的一个或该子载波偏移1/2子载波间隔的位置。特别地,当同步信号块包括K=2K′个PRB时,中心PRB为第K′-1个或第K′个PRB,当同步信号块包括K=2K′+1个PRB时,中心PRB为第K′个PRB。另外,第一位置还可以根据第一信息确定,第一位置可以是一个PRB或一个PRB的第0、5、6、11个子载波中的一个或一个PRB的第0、5、6、11个子载波中的一个偏移1/2子载波间隔的位置。在实际应用中,基站可以将配置第一位置的第一信息携带在某些广播信令中发送给终端,特别地,第一信息可以通过主消息块指示,可选地,第一信息指示第一位置和频域参考位置之间的第一偏移,该频域参考位置可以是同步信号块的频域位置。
下面,将对第一PRB索引的确定方式进行详细说明。
如下为第一种可能实施例。
可选地,图3a为第一PRB索引确定方式的一示意图,如图3a所示,第一PRB索引{0,1,…,M-1}为公共下行PRB索引,对应索引为0的PRB可以根据频域上的第一位置和第一带宽确定,在此基础上,对应索引为最大值的PRB可以根据第一带宽确定,其中,第一位置为同步信号块的频域位置,第一带宽根据最大下行载波带宽确定,可选地,第一带宽为最大下行载波带宽的正整数倍,例如2倍。
可选地,图3b为第一PRB索引确定方式的另一示意图,如图3b所示,第一PRB索引{0,1,…,M-1}为公共下行PRB索引,对应索引为0的PRB可以根据频域上的第一位置确定,在此基础上,对应索引为最大值的PRB可以根据第一带宽确定,其中,第一位置为同步信号块的频域位置,第一带宽根据最大下行载波带宽确定,可选地,第一带宽为最大下行载波带宽的正整数倍,例如2倍。
需要指出的是,图3a和图3b所示的第一PRB索引中PRB编号只是一种示例,当然,第一PRB索引中PRB编号也可以为其他的方式,如从右向左进行编号,或者从中间开始向右进行编号,再从左开始等等,当第一PRB索引中PRB编号属于其他形式时,第一PRB索引的确定方式与图3a和图3b中所示的确定方式类似,此处不再赘述。
可选地,终端可以根据所述第一PRB索引确定SIB所在子频带资源和/或调度SIB的PDCCH资源,即图3a和图3b所示公共带宽的资源。终端根据同步信号栅格(raster)盲检同步信号块,该同步信号块中包括主同步信号、辅同步信号和物理广播信道(Physical Broadcast Channel;PBCH)。终端根据PBCH所承载的主消息块(Master Information Block;MIB)确定SIB所在子频带资源,该子频带资源包括该子频带的频域位置和带宽,或只包括该子频带的频域位置,其中子频带的频域位置的定义如同步信号块的频域位置的定义,这里不再赘述。或者,终端根据PBCH所承载的MIB确定调度SIB的物理下行控制信道(Physical Downlink Control Channel;PDCCH)资源,该PDCCH资源包括该PDCCH资源的频域位置和带宽,或者只包括该PDCCH资源的频域位置,其中PDCCH的频域位置的定义如同步信号块的频域位置的定义,这里不再赘述,终端再根据PDCCH资源或PDCCH承载的下行控制信息(Downlink Control Information;DCI)确定SIB所在子频带资源。
也就是说,所述第一PRB索引定义在第一虚拟带宽内,该第一虚拟带宽根据同步信号块的频域位置以及最大载波带宽确定。可选地,该第一虚拟带宽和同步信号块的中心PRB或该PRB的第0、5、6、11个子载波中的一个或该子载波偏移1/2子载波间隔的位置对齐。该第一虚拟带宽也可以被称为第一最大虚拟带宽、第一名义带宽或第一最大名义带宽,本申请不作限制。
可选地,终端还可以根据第一PRB索引在所述SIB所在子频带中接收解调公共下行控制信道的DMRS、公共下行控制信道、解调公共下行数据信道的DMRS、公共下行数据信道、解调终端特定控制信道的DMRS、终端特定控制信道、解调终端特定数据信道的DMRS或终端特定数据信道中的至少一项,其中,数据信道也即共享信道,公共下行数据信道至少包括通过公共下行控制信息调度的下行数据信道,公共下行数据信道至少包括SIB对应的公共下行数据信道,终端特定下行数据信道至少包括通过 终端下行控制信息调度的下行数据信道。可选地,终端还可以根据第一PRB索引在所述PDCCH资源中接收至少包括调度SIB对应的公共下行数据信道的公共下行控制信息在内的公共下行控制信息和/或调度终端特定下行数据信道的终端特定下行控制信息。
特别地,基站可以根据第一PRB索引确定下行参考信号的序列,基站将下行参考信号序列的部分或全部映射到至少一个资源粒子(Resource Element;RE)上,基站在前述至少一个RE上发送该下行参考信号。其中,下行参考信号可以是DMRS,该DMRS可以用于解调如下信道中的至少一种信道:至少包括SIB对应的公共下行数据信道在内的公共下行数据信道,至少包括调度SIB对应的公共下行数据信道的公共下行控制信道在内的公共下行控制信道、终端特定下行控制信道和终端特定下行数据信道。
本申请实施例中均以基站确定DMRS序列,并将该序列中的部分或全部映射到RE上为例进行说明,对于其他参考信号的序列的确定方式,与DMRS序列的确定方式类似,此处不再赘述。可选地,所述其他参考信号包括信道状态信息参考信号(Channel State Information Reference Signal;CSI-RS)或相位跟踪参考信号(Phase-tracking Reference Signal;PT-RS)。
在一种可能的实现方式中,该DMRS序列是以第一PRB索引来定义的,具体地,DMRS序列可以根据公式(1)生成:
Figure PCTCN2018096634-appb-000001
其中,r(m)为DMRS序列,c(m)为伪随机序列,M根据最大下行载波带宽确定;A为正整数,表示频域上一个第一频域单元、时域上一个第一时间单元中用于传输该DMRS的RE数,其中,第一频域单元包含12K个子载波,K为正整数,第一时间单元可以是符号、符号组、时隙、时隙组或子帧等,对于第一时间单元具体的内容,本实施例在此不作不限制。可选地,当参考信号序列定义在一个子帧内时,A可以根据该参考信号所在子频带对应的系统参数集合确定,其中,该系统参数集合包括子载波间隔和/或CP的类型。可选地,当该DMRS用于解调至少包括调度SIB对应的下行数据信道在内的PDCCH和/或终端特定下行控制信道时,A根据该PDCCH资源时域上包括的符号数确定。
如图3a和图3b所示,在将生成的该DMRS序列映射到RE上时,可以根据该子频带的频域位置确定该子频带上各PRB对应第一PRB索引的编号,进而确定被传输的参考信号,具体地,DMRS序列可以按照公式(2)映射:
Figure PCTCN2018096634-appb-000002
其中,F 1(·)为预定义函数,k为频域上子载波的索引,l为时域上符号的索引,p为天线端口号,
Figure PCTCN2018096634-appb-000003
为RE(k,l)上对应天线端口号p的复值调制符号,n CPRB为该子频带上PRB对应第一PRB索引的编号,B为正整数,表示频域上一个第二频域单元、时域上一个第二时间单元中用于传输该DMRS的RE数,其中,第二频域单元包含12L个子载波,L为正整数,第二时间单元可以是符号、符号组、时隙、时隙组、子帧等,对于第二时间单元的具体内容,本实施例在此不作限制。可选地,当参考信号序列定义在一个子帧内时,B根据该DMRS所在子频带对应的系统参数集合确定,其中,该系统参数集合包括子载波间隔和/或CP的类型。
类似地,终端可以根据该PDCCH资源的频域位置确定该PDCCH资源上各PRB对应第一PRB索引的编号,进而确定被传输的参考信号,具体地,DMRS序列可以按照公式(3)映射:
Figure PCTCN2018096634-appb-000004
其中,F 2(·)为预定义函数,n CCE为该PDCCH资源中CCE的编号,该编号根据该CCE时域上对应的符号索引和/或频域上对应的PRB索引确定。可选地,B根据该PDCCH资源时域上包括的符号数确定。
基于本实施例,终端不需要知道载波带宽,也不需要知道同步信号块在载波中的位置,便可以根据所述第一PRB索引正确接收如下信道中的至少一种信道:至少包括SIB对应的公共下行数据信道在内的公共下行数据信道,至少包括调度SIB对应的公共下行数据信道的公共下行控制信道在内的公共下行控制信道、终端特定下行控制信道和终端特定下行数据信道。
如下为第二种可能实施例。
可选地,图4a为第一PRB索引确定方式的又一示意图,如图4a所示,第一PRB索引{0,1,…,P-1}为公共下行PRB索引,对应索引为0的PRB可以根据频域上的第一位置确定,在此基础上,对应索引为最大的PRB可以根据第一带宽确定,其中,第一位置为同步信号块的频域位置,第一带宽不大于最小终端带宽能力。
可选地,图4b为第一PRB索引确定方式的又一示意图,如图4b所示,第一PRB索引{0,1,…,P-1}为公共下行PRB索引,对应索引为0的PRB还可以根据频域上的第一位置和第一带宽确定,在此基础上,对应索引为最大值的PRB可以根据第一带宽确定,其中,第一位置为同步信号块的频域位置,第一带宽不大于最小终端带宽能力。
可选地,图4c为第一PRB索引确定方式的又一示意图,如图4c所示,第一PRB索引{0,1,…,P-1}为公共下行PRB索引,对应索引为0的PRB可以根据频域上的第一位置确定,在此基础上,对应索引为最大值的PRB可以根据第一带宽确定,其中,第一位置根据第一信息确定,第一带宽不大于最小终端带宽能力。
可选地,图4d为第一PRB索引确定方式的又一示意图,如图4d所示,第一PRB索引{0,1,…,P-1}为公共下行PRB索引,对应索引为0的PRB还可以根据频域上的第一位置和第一带宽确定,在此基础上,对应索引为最大值的PRB可以根据第一带宽确定,其中,第一位置根据第一信息确定,第一带宽不大于最小终端带宽能力。
需要指出的是,图4a-图4d所示的第一PRB索引中PRB编号只是一种示例,当然,第一PRB索引中PRB编号也可以为其他的方式,如从右向左进行编号,或者从中间开始进行编号等等,当第一PRB索引中PRB编号属于其他形式时,第一PRB索引的确定方式与图4a-图4d中所示的确定方式类似,此处不再赘述。
可选地,终端可以根据所述第一PRB索引确定SIB所在子频带资源和/或调度SIB的PDCCH资源,即图4a至图4d所示公共带宽的资源。终端根据同步信号栅格(raster)盲检同步信号块,该同步信号块中包括主同步信号、辅同步信号和PBCH。终端根据PBCH所承载的MIB确定SIB所在子频带资源,该子频带资源包括该子频带的频域位置和带宽,或只包括该子频带的频域位置,其中子频带的频域位置的定义如同步信号 块的频域位置的定义,这里不再赘述;或者,终端根据PBCH所承载的MIB确定调度SIB的PDCCH资源,该PDCCH资源包括该PDCCH资源的频域位置和带宽,或者只包括该PDCCH资源的频域位置,其中PDCCH的频域位置的定义如同步信号块的频域位置的定义,这里不再赘述,终端再根据PDCCH资源或PDCCH承载的DCI确定SIB所在子频带资源。
可选地,终端根据第一PRB索引在所述SIB所在子频带中接收解调公共下行控制信道的DMRS、公共下行控制信道、解调公共下行数据信道的DMRS、公共下行数据信道、解调终端特定控制信道的DMRS、终端特定控制信道、解调终端特定数据信道的DMRS、终端特定数据信道中的至少一项,其中,数据信道也即共享信道,公共下行数据信道至少包括通过公共下行控制信息调度的下行数据信道,公共下行数据信道指示包括SIB对应的公共下行数据信道,终端特定下行数据信道至少包括通过终端下行控制信息调度的下行数据信道。可选地,终端还可以根据第一PRB索引在所述PDCCH资源中接收至少包括调度SIB对应的公共下行数据信道的公共下行控制信息在内的公共下行控制信息和/或调度终端特定下行数据信道的终端特定下行控制信息。由于终端在接入完成之前不上报带宽能力,因此为了保证所有终端都能正确接收SIB和/或PDCCH,该子频带带宽和/或该PDCCH资源的带宽不超过最小终端带宽能力。因此,第一带宽不大于最小终端带宽能力。
也就是说,所述第一PRB索引定义在根据同步信号块的频域位置或基站指示的频域位置以及预定义或基于基站指示的带宽确定的公共带宽内。
特别地,基站可以根据第一PRB索引确定下行参考信号的序列,基站将下行参考信号序列的部分或全部映射到至少一个RE上,基站在前述至少一个RE上发送该下行参考信号。其中,下行参考信号可以是DMRS,该DMRS可以用于解调如下信道中的至少一种信道:至少包括SIB对应的公共下行数据信道在内的公共下行数据信道,至少包括调度SIB对应的公共下行数据信道的公共下行控制信道在内的公共下行控制信道、终端特定下行控制信道和终端特定下行数据信道。
本申请实施例中均以基站确定DMRS序列,并将该序列中的部分或全部映射到RE上为例进行说明,对于其他参考信号的序列的确定方式,与DMRS序列的确定方式类似,此处不再赘述。可选地,所述其他参考信号包括CSI-RS和/或PT-RS。
在一种可能的实现方式中,该DMRS序列是以第一PRB索引来定义的,具体地,DMRS序列可以根据公式(4)生成:
Figure PCTCN2018096634-appb-000005
其中,r(m)为DMRS序列,c(m)为伪随机序列,P为该子频带所包括的RB数或该PDCCH资源频域上对应的RB数,P不大于所有终端最大下行带宽能力中的最小值
Figure PCTCN2018096634-appb-000006
P也可以为预定义的;A表示频域上一个第一频域单元、时域上一个第一时间单元中用于传输该DMRS的RE数,其中,第一频域单元包含12K个子载波,K为正整数,第一时间单元可以是符号、符号组、时隙、时隙组、子帧等,对于第一时间单元具体的内容,本实施例在此不作不限制。可选地,当参考信号序列定义在一个子帧内时,A可以根据该参考信号所在子频带对应的系统参数集合确定,其中,该系统参数集合包括子载波间隔和/或CP的类型。可选地,当该DMRS用于解调至少包括调度 SIB对应的公共下行数据信道的公共下行控制信道在内的公共下行控制信道和/或终端特定下行控制信道时,A根据该PDCCH资源时域上包括的符号数确定。
在生成DMRS序列之后,可以根据公式(5)将DMRS序列映射到RE上:
Figure PCTCN2018096634-appb-000007
其中,G 1(·)为预定义函数,k为频域上子载波的索引,l为时域上符号的索引,p为天线端口号,
Figure PCTCN2018096634-appb-000008
为RE(k,l)上对应天线端口号p的复值调制符号,B表示频域上一个第二频域单元、时域上一个第二时间单元中用于传输该DMRS的RE数,其中,第二频域单元包含12L个子载波,L为正整数,第二时间单元可以是符号、符号组、时隙、时隙组、子帧等,对于第二时间单元的具体内容,本实施例在此不作限制。可选地,当参考信号序列定义在一个子帧内时,B根据该DMRS所在子频带对应的系统参数集合确定,其中,该系统参数集合包括子载波间隔和/或CP的类型。可选地,B根据该PDCCH资源时域上包括的符号数确定。
基于本实施例,终端不需要知道载波带宽,也不需要知道同步信号块在载波中的位置,便可以根据所述第一PRB索引正确接收如下信道中的至少一种信道:至少包括SIB对应的公共下行数据信道在内的公共下行数据信道,至少包括调度SIB对应的公共下行数据信道的公共下行控制信道在内的公共下行控制信道、终端特定下行控制信道和终端特定下行数据信道。此外,由于至少包括SIB对应的公共下行数据信道在内的公共下行数据信道和/或终端特定下行控制信道均被限制在带宽不大于最小终端带宽能力的公共带宽内,有利于减少DCI的大小,提高传输鲁棒性。
如下为第三种可能实施例。
可选地,图5a为第一PRB索引确定方式的又一示意图,如图5a所示,第一PRB索引{0,1,…,Q-1}为公共下行PRB索引,对应索引为0的PRB可以根据频域上的第一位置确定,在此基础上,对应索引为最大的PRB可以根据第一带宽确定,其中,第一位置为同步信号块的频域位置,第一带宽根据最小终端带宽能力确定,可选地,第一带宽为最小终端带宽能力。
可选地,图5b为第一PRB索引确定方式的又一示意图,如图5b所示,第一PRB索引{0,1,…,Q-1}为公共下行PRB索引,对应索引为0的PRB还可以根据频域上的第一位置和第一带宽确定,在此基础上,对应索引为最大的PRB可以根据第一带宽确定,其中,第一位置为同步信号块的频域位置,第一带宽根据最小终端带宽能力确定,可选地,第一带宽为最小终端带宽能力。
可选地,图5c为第一PRB索引确定方式的又一示意图,如图5c所示,第一PRB索引{0,1,…,Q-1}为公共下行PRB索引,对应索引为0的PRB可以根据频域上的第一位置确定,在此基础上,对应索引为最大的PRB可以根据第一带宽确定,其中,第一位置根据第一信息确定,第一带宽根据最小终端带宽能力确定,可选地,第一带宽为最小终端带宽能力。
可选地,图5d为第一PRB索引确定方式的又一示意图,如图5d所示,第一PRB索引{0,1,…,Q-1}为公共下行PRB索引,对应索引为0的PRB还可以根据频域上的第一位置和第一带宽确定,在此基础上,对应索引为最大的PRB可以根据第一带宽确 定,其中,第一位置根据第一信息确定,第一带宽根据最小终端带宽能力确定,可选地,第一带宽为最小终端带宽能力。
需要指出的是,图5a和图5d所示的第一PRB索引中PRB编号只是一种示例,当然,第一PRB索引中PRB编号也可以为其他的方式,如从右向左进行编号,或者从中间开始向右进行编号,再从左开始等等,当第一PRB索引中PRB编号属于其他形式时,第一PRB索引的确定方式与图5a和图5d中所示的确定方式类似,此处不再赘述。
可选地,终端可以根据所述第一PRB索引确定SIB所在子频带资源和/或调度SIB的PDCCH资源,即图5a至图5d所示公共带宽的资源。终端根据同步信号栅格(raster)盲检同步信号块,该同步信号块中包括主同步信号、辅同步信号和PBCH。终端根据PBCH所承载的MIB确定SIB所在子频带资源,该子频带资源包括该子频带的频域位置和带宽,或只包括该子频带的频域位置,其中子频带的频域位置的定义如同步信号块的频域位置的定义,这里不再赘述;或者,终端根据PBCH所承载的MIB确定调度SIB的PDCCH资源,该PDCCH资源包括该PDCCH资源的频域位置和带宽,或者只包括该PDCCH资源的频域位置,其中PDCCH的频域位置的定义如同步信号块的频域位置的定义,这里不再赘述,终端再根据PDCCH资源或PDCCH承载的DCI确定SIB所在子频带资源。
可选地,终端根据第一PRB索引在所述SIB所在子频带中接收解调公共下行控制信道的DMRS、公共下行控制信道、解调公共下行数据信道的DMRS、公共下行数据信道、解调终端特定控制信道的DMRS、终端特定控制信道、解调终端特定数据信道的DMRS、终端特定数据信道中的至少一项,其中,数据信道也即共享信道,公共下行数据信道至少包括通过公共下行控制信息调度的下行数据信道,公共下行数据信道至少包括SIB对应的公共下行数据信道,终端特定下行数据信道至少包括通过终端下行控制信息调度的下行数据信道。可选地,终端还可以根据第一PRB索引在所述PDCCH资源中接收至少包括调度SIB对应的公共下行数据信道的公共下行控制信息在内的公共下行控制信息和/或调度终端特定下行数据信道的终端特定下行控制信息。由于终端在接入完成之前不上报带宽能力,因此为了保证所有终端都能正确接收SIB和/或PDCCH,该子频带带宽和/或该PDCCH资源的带宽不超过最小终端带宽能力。因此,第一带宽可以是最小终端带宽能力。
也就是说,所述第一PRB索引定义在第二虚拟带宽内,该第二虚拟带宽根据同步信号块的频域位置或基站指示的频域第一位置以及最小终端带宽能力确定。可选地,该第二虚拟带宽和公共带宽的中心PRB或该PRB的第0、5、6、11个子载波中的一个或该子载波偏移1/2子载波间隔的位置对齐。该第二虚拟带宽也可以被称为第一最小虚拟带宽、第二名义带宽、第一最小名义带宽,本发明不作限制。
特别地,基站可以根据第一PRB索引确定下行参考信号的序列,基站将下行参考信号序列的部分或全部映射到至少一个RE上,基站在前述至少一个RE上发送该下行参考信号。其中,下行参考信号可以是DMRS,该DMRS可以用于解调如下信道中的至少一种信道:至少包括SIB对应的公共下行数据信道在内的公共下行数据信道,至少包括调度SIB对应的公共下行数据信道的公共下行控制信道在内的公共下行控制信 道、终端特定下行控制信道和终端特定下行数据信道。
本申请实施例中均以基站确定DMRS序列,并将该序列中的部分或全部映射到RE上为例进行说明,对于其他参考信号的序列的确定方式,与DMRS序列的确定方式类似,此处不再赘述。可选地,所述其他参考信号包括CSI-RS和/或PT-RS。
在一种可能的实现方式中,该DMRS序列是以最小终端带宽能力进行定义的。具体地,DMRS序列可以根据公式(6)生成:
Figure PCTCN2018096634-appb-000009
其中,r(m)为DMRS序列,c(m)为伪随机序列,Q为最小终端带宽能力;A表示频域上一个第一频域单元、时域上一个第一时间单元中用于传输该DMRS的RE数,其中,第一频域单元包含12K个子载波,K为正整数,第一时间单元可以是符号、符号组、时隙、时隙组、子帧等,对于第一时间单元具体的内容,本实施例在此不作不限制。可选地,当参考信号序列定义在一个子帧内时,A可以根据该参考信号所在子频带对应的系统参数集合确定,其中,该系统参数集合包括子载波间隔和/或CP的类型。可选地,当该DMRS用于解调至少包括调度SIB对应的下行数据信道在内的PDCCH和/或终端特定下行控制信道时,A根据该PDCCH资源时域上包括的符号数确定。
在生成DMRS序列之后,以图5b和图5d为例,可以根据公式(7)将DMRS的部分序列映射到RE上:
Figure PCTCN2018096634-appb-000010
其中,m′=m+a 1-b 1,m=0,1,…,B·P-1,
Figure PCTCN2018096634-appb-000011
Figure PCTCN2018096634-appb-000012
Figure PCTCN2018096634-appb-000013
Figure PCTCN2018096634-appb-000014
G 2(·)为预定义函数,k为频域上子载波的索引,l为时域上符号的索引,p为天线端口号,
Figure PCTCN2018096634-appb-000015
为RE(k,l)上对应天线端口号p的复值调制符号,B表示频域上一个第二频域单元、时域上一个第二时间单元中用于传输该DMRS的RE数,其中,第二频域单元包含12L个子载波,L为正整数,第二时间单元可以是符号、符号组、时隙、时隙组、子帧等,对于第二时间单元的具体内容,本实施例在此不作限制。可选地,当参考信号序列定义在一个子帧内时,B根据该DMRS所在子频带对应的系统参数集合确定,其中,该系统参数集合包括子载波间隔和/或CP的类型。可选地,B根据该PDCCH资源时域上包括的符号数确定。
可选地,所述第二虚拟带宽和公共带宽的最低PRB或该PRB的第0、5、6、11个子载波中的一个或该子载波偏移1/2子载波间隔的位置对齐。此时,将该DMRS序列的部分映射到RE上时,有m′=0,1,…,B·P-1。
基于本实施例,终端不需要知道载波带宽,也不需要知道同步信号块在载波中的位置,便可以根据所述第一PRB索引正确接收如下信道中的至少一种信道:至少包括SIB对应的公共下行数据信道在内的公共下行数据信道,至少包括调度SIB对应的公共下行数据信道的公共下行控制信道在内的公共下行控制信道、终端特定下行控制信道和终端特定下行数据信道。此外,由于至少包括SIB对应的公共下行数据信道在内的公共下行数据信道和/或终端特定下行控制信道均被限制在带宽不大于最小终端带宽能力的公共带宽内,有利于减少DCI的大小,提高传输鲁棒性。
步骤202、终端根据第二PRB索引传输终端特定信息;第二PRB索引是根据第二带宽和/或频域上的第二位置确定的。可选地,对于不同的子载波间隔,有各自对应的 第二PRB索引。
特别地,所述第二PRB索引为终端和基站之间建立连接之后使用的PRB索引,或者所述第二PRB索引为终端接收SIB之后使用的PRB索引。
在本实施例中,终端可以根据第二PRB索引向基站发送终端特定信息,也可以根据第二PRB索引接收基站发送的终端特定信息,其中,第二PRB索引可以仅根据第二带宽确定,也可以仅根据第二位置确定,还可以根据第二带宽和第二位置进行确定。
第二带宽根据最大载波带宽确定或不大于终端带宽能力,可选地,第二带宽为最大载波带宽的正整数倍。最大载波带宽为载波中最多包含的PRB数,或者是基站可以同时发送/接收的PRB数,可选地,最大载波带宽根据第二PRB索引对应的子载波间隔确定,可选地,该最大载波带宽可以是最大下行载波带宽也可以是最大上行载波带宽;终端带宽能力为该终端所能支持的最大带宽,即终端能够同时传输的最大PRB块的数量,可选地,该终端带宽能力可以是终端下行带宽能力也可以是终端上行带宽能力。终端可以在通过下行带宽接收数据和/或信令,可以通过上行带宽发送数据和/或信令。
第二位置为载波中心位置或根据第二信息确定。载波的中心位置可以是基带信号生成公式(8)中k′=0对应的点,
Figure PCTCN2018096634-appb-000016
其中,p为天线端口号,μ对应子载波间隔配置,
Figure PCTCN2018096634-appb-000017
为符号起始位置,
Figure PCTCN2018096634-appb-000018
为第t个时隙上对应天线端口号p、子载波间隔配置μ的基带信号,
Figure PCTCN2018096634-appb-000019
Figure PCTCN2018096634-appb-000020
Figure PCTCN2018096634-appb-000021
为载波带宽,
Figure PCTCN2018096634-appb-000022
为一个PRB中包含的子载波个数,
Figure PCTCN2018096634-appb-000023
Figure PCTCN2018096634-appb-000024
上对应天线端口号p、子载波间隔配置μ的复值,
Figure PCTCN2018096634-appb-000025
根据CP类型和/或符号起始位置确定,T s为一个时间单位(time unit);载波的中心位置也可以是载波中对应索引为中间值的PRB或该PRB的最低子载波(第0个子载波)或中心子载波(第5或第6个子载波)或最高子载波(第11个子载波)或该子载波偏移1/2子载波间隔的位置,特别地,当下行载波中有2N个PRB时,载波的中心位置为第N-1个PRB或该PRB的第11个子载波或该子载波偏移1/2子载波间隔的位置,或者第N个PRB或该PRB的第0个子载波或该子载波偏移1/2子载波间隔的位置,当下行载波中有2N+1个PRB时,载波的中心位置为第N个PRB或该PRB的第0、5、6、11个子载波中的一个或该子载波偏移1/2子载波间隔的位置;可选地,该载波的中心位置可以是下行载波的中心位置也可以是上行载波的中心位置。另外,第二位置还可以根据第二信息确定,第二位置可以是一个PRB或一个PRB的第0、5、6、11个子载波中的一个或一个PRB的第0、5、6、11个子载波中的一个偏移1/2子载波间隔的位置,在实际应用中,基站可以将配置第二位置的第二信息携带在某些高层信令中发送给终端,特别地,第二信息可以通过MIB、SIB或无线资源控制(Radio Resource Control;RRC)信令指示, 可选地,第二信息指示第二位置和频域参考位置之间的第二偏移,该频域参考位置可以是同步信号块的位置,也可以是基站通过高层信令指示的频域位置。
下面,对第二PRB索引的确定方式进行详细说明。
如下为第四种可能实施例。
可选地,图6a为第一PRB索引确定方式的又一示意图,如图6a所示,第二PRB索引{0,1,…,M-1}为公共PRB索引,对应索引为0的PRB可以根据频域上的第二位置确定,在此基础上,对应索引为最大的PRB可以根据第二带宽确定,其中第二位置为载波中心位置或根据第二信息确定,第二带宽根据最大载波带宽确定,特别的,当第二位置为载波中心位置时,第二带宽为最大载波带宽,可选地,所述公共PRB索引可以是公共下行PRB索引也可以是公共上行PRB索引,对应地,载波中心位置可以是下行载波中心位置也可以是上行载波中心位置,对应地,最大载波带宽可以是最大下行载波带宽也可以是最大上行载波带宽。
可选地,图6b为第一PRB索引确定方式的又一示意图,如图6b所示,第二PRB索引{0,1,…,M-1}为公共PRB索引,对应索引为0的PRB还可以根据频域上的第二位置和第二带宽确定,在此基础上,对应索引为最大的PRB可以根据第二带宽确定,其中第二位置为为载波中心位置或根据第二信息确定,第二带宽根据最大载波带宽确定,特别的,当第二位置为载波中心位置时,第二带宽为最大载波带宽,可选地,所述公共PRB索引可以是公共下行PRB索引也可以是公共上行PRB索引,对应地,载波中心位置可以是下行载波中心位置也可以是上行载波中心位置,对应地,最大载波带宽可以是最大下行载波带宽也可以是最大上行载波带宽。
需要指出的是,图6a和图6b所示的第一PRB索引中PRB编号只是一种示例,当然,第一PRB索引中PRB编号也可以为其他的方式,如从右向左进行编号,或者从中间开始向右进行编号,再从左开始等等,当第一PRB索引中PRB编号属于其他形式时,第一PRB索引的确定方式与图6a和图6b中所示的确定方式类似,此处不再赘述。
可选地,终端可以根据第二PRB索引确定子频带资源和/或PDCCH资源,如图6a和图6b所示,包括根据所述公共下行PRB索引确定下行子频带资源和/或下行PDCCH资源,和/或根据所述公共上行PRB索引确定上行子频带资源和/或上行PDCCH资源。终端根据SIB或RRC信令确定子频带资源,该子频带可以是公共下行数据信道信息对应的子频带,也可以是终端的下行载波带宽部分(carrier bandwidth part)和/或上行载波带宽部分,该子频带资源包括该子频带的频域位置和带宽,或只包括该子频带的频域位置,其中子频带的频域位置的定义同步骤201中同步信号块的频域位置的定义,这里不再赘述;或者,终端根据SIB或RRC信令确定PDCCH资源,该PDCCH资源用于调度公共下行数据信道信息和/或终端下行数据信道信息,该PDCCH资源包括该PDCCH资源的频域位置和带宽,或者只包括该PDCCH资源的频域位置,其中PDCCH的频域位置的定义同步骤201中同步信号块的频域位置的定义,这里不再赘述。
可选地,终端还可以根据第二PRB索引在该子频带中传输解调公共下行控制信道的DMRS、公共下行控制信道、解调公共下行数据信道的DMRS、公共下行数据信道、解调终端特定控制信道的DMRS、终端特定控制信道、解调终端特定数据信道的DMRS、 终端特定数据信道中的至少一项,其中,数据信道也即共享信道,公共下行数据信道至少包括通过公共下行控制信息调度的下行数据信道,终端特定数据信道至少包括通过终端下行控制信息调度的上/下行数据信道。可选地,终端可以根据第二PRB索引在该PDCCH资源中接收调度公共下行数据信道的公共下行控制信息和/或调度终端特定数据信道的终端特定下行控制信息。终端可以在通过下行数据信道接收数据令,还可以通过上行数据信道发送数据。
也就是说,所述第二PRB索引定义在第三虚拟带宽内,该第三虚拟带宽根据载波中心位置或基站指示的频域第二位置以及最大载波带宽确定。可选地,该第三虚拟带宽中心PRB或该PRB的第0、5、6、11个子载波中的一个或该子载波偏移1/2子载波间隔的位置为所述中心位置或基站指示的频域第二位置。该第三虚拟带宽也可以被称为第二最大虚拟带宽、第三名义带宽、第二最大名义带宽,本发明不作限制。
特别地,基站可以根据第二PRB索引确定下行参考信号的序列,基站将下行参考信号序列的部分或全部映射到至少一个RE上,基站在前述至少一个RE上发送该下行参考信号。其中,下行参考信号可以是DMRS,该DMRS可以用于解调如下信道中的至少一种信道:调度公共下行数据信道在内的PDCCH、公共下行数据信道在内的公共下行数据信道、终端特定下行控制信道和终端特定下行数据信道。
本申请实施例中均以基站确定DMRS序列,并将该序列中的部分或全部映射到RE上为例进行说明,对于其他参考信号的序列的确定方式,与DMRS序列的确定方式类似,此处不再赘述。可选地,所述其他参考信号包括CSI-RS、PT-RS、上行DMRS、探测参考信号(Sounding Reference Signal;SRS)。
在一种可能的实现方式中,该DMRS序列是以第二PRB索引来定义的。具体地,DMRS序列生成方法同第一种可能实施例中所述DMRS序列生成方法,即可以根据公式(1)生成。在将生成的该DMRS序列映射到RE上时,终端可以根据该子频带的频域位置确定该子频带上各PRB对应第二PRB索引的编号,进而确定被传输的参考信号,具体地,DMRS序列的映射方法同第一种可能实施例中所述DMRS序列的映射方法,即可以按照公式(2)映射;或者,终端可以根据该PDCCH资源的频域位置确定该PDCCH资源上各REG所在的PRB对应第二PRB索引的编号,进而确定被传输的参考信号,具体地,DMRS序列的映射方法同第一种可能实施例中所述DMRS序列的映射方法,即可以按照公式(3)映射。
可选地,在将生成的该DMRS序列映射到RE上时,所述第二PRB索引可以通过终端特定PRB索引以及所述子频带的频域位置或PDCCH资源的频域位置与第二位置之间的偏移来表示,所述终端特定PRB索引定义在所述子频带带宽或PDCCH资源带宽内。以图6b所示为例,有n CPRB=a+n offset+n UPRB,其中
Figure PCTCN2018096634-appb-000026
Figure PCTCN2018096634-appb-000027
n offset为所述子频带的频域位置或PDCCH资源的频域位置与第二位置之间的偏移,n UPRB为所述终端特定PRB索引。
等价地,所述终端特定PRB索引可以通过所述第二PRB索引以及所述子频带的频域位置或PDCCH资源的频域位置与第二位置之间的偏移来表示。
除此之外,当初始接入前后的PRB网格一致时,存在如下情况:被配置MU-MIMO的两个终端,其中一个终端在初始接入后驻留在接收SIB的子频带内,另一个终端在 初始接入后被配置了带宽部分,且该带宽部分与所述子频带(部分或完全)重叠。为了能够为这两个终端配置多用户多输入多输出(Multi-user Multiple Input Multiple Output;MU-MIMO),需要保证这两个终端的带宽部分中相同索引的PRB上的参考符号是相同的,此时,基站半静态(例如通过RRC信令)配置的第三偏移δ。在将生成的该DMRS序列映射到RE上时,终端可以根据该子频带的频域位置确定该子频带上各PRB对应第二PRB索引的编号,进而确定被传输的参考信号,具体地,DMRS序列可以按照公式(9)或公式(10)映射:
Figure PCTCN2018096634-appb-000028
或者,终端可以根据该PDCCH资源的频域位置确定该PDCCH资源上各REG所在的PRB对应第二PRB索引的的编号,进而确定被传输的参考信号,具体地,可以按照公式(11)映射:
Figure PCTCN2018096634-appb-000029
基于本实施例,终端不需要知道载波带宽,便可以根据所述第二PRB索引正确传输如下信道中的至少一种信道:公共下行控制信道、公共下行数据信道、终端特定控制信道、终端特定数据信道中的至少一项,以及如下信号中的至少一种信号:解调公共下行控制信道的DMRS、解调公共下行数据信道的DMRS、解调终端特定控制信道的DMRS、解调终端特定数据信道的DMRS。终端可以在通过下行数据信道接收数据,还可以通过上行数据信道发送数据。终端可以通过下行控制信道接收信令。
此外,由于配置的子频带资源或PDCCH资源完全重叠或部分重叠的两个终端对重叠部分内PRB的编号理解一致,所以映射在各PRB上的参考信号序列的具有相同的序列值,在这种情况下,可以为这两个终端配置MU-MIMO,从而提高系统吞吐量。这里,所述子频带资源除了包括根据SIB或RRC信令确定的公共下行数据信道信息对应的子频带,也可以是终端的下行载波带宽部分(carrier bandwidth part)和/或上行载波带宽部分,还包括通过MIB配置的公共下行数据信道信息对应的子频带。
如下为第五种可能实施例。
可选地,图7a为第一PRB索引确定方式的又一示意图,如图7a所示,第二PRB索引{0,1,…,P-1}为公共下行PRB索引,对应索引为0的PRB可以根据频域上的第二位置确定,在此基础上,对应索引为最大的PRB可以根据第二带宽确定。其中,第二位置根据第二信息确定,第二带宽不大于终端带宽能力或根据最小终端带宽能力确定,可选地,第二带宽为最小终端带宽能力。
可选地,图7b为第一PRB索引确定方式的又一示意图,如图7b所示,第二PRB索引{0,1,…,P-1}为公共下行PRB索引,对应索引为0的PRB还可以根据频域上的第二位置和第二带宽确定,在此基础上,对应索引为最大的PRB可以根据第二带宽确定。其中,第二位置根据第二信息确定,第二带宽不大于终端带宽能力或根据最小终端带宽能力确定,可选地,第二带宽为最小终端带宽能力。
需要指出的是,图7a和图7b所示的第一PRB索引中PRB编号只是一种示例, 当然,第一PRB索引中PRB编号也可以为其他的方式,如从右向左进行编号,或者从中间开始向右进行编号,再从左开始等等,当第一PRB索引中PRB编号属于其他形式时,第一PRB索引的确定方式与图7a和图7b中所示的确定方式类似,此处不再赘述。
终端根据SIB或RRC信令确定子频带资源,该子频带可以是公共下行数据信道信息对应的子频带,该子频带资源包括该子频带的频域位置和带宽,或只包括该子频带的频域位置;或者,其中子频带的频域位置的定义同步骤201中同步信号块的频域位置的定义,这里不再赘述;或者,终端根据SIB或RRC信令确定PDCCH资源,该PDCCH资源用于调度公共下行数据信道信息,该PDCCH资源包括该PDCCH资源的频域位置和带宽,或只包括该PDCCH资源的频域位置,其中PDCCH资源的频域位置的定义同步骤201中同步信号块的频域位置的定义,这里不再赘述。因此,终端可以确定子频带资源和/或PDCCH资源,如图7a和图7b所示。
可选地,终端可以根据第二PRB索引在该子频带中接收解调公共下行数据信道的DMRS、公共下行数据信道、解调公共下行控制信道的DMRS、公共下行控制信道中的至少一项,其中,数据信道也即共享信道,公共下行数据信道至少包括通过公共下行控制信息调度的下行数据信道。可选地,终端可以根据第二PRB索引在该PDCCH资源中接收调度公共下行数据信道的公共下行控制信息。
特别地,基站可以根据第二PRB索引确定下行参考信号的序列,基站将下行参考信号序列的部分或全部映射到至少一个RE上,基站在前述至少一个RE上发送该下行参考信号。其中,下行参考信号可以是DMRS,该DMRS可以用于解调如下信道中的至少一种信道:调度公共下行数据信道在内的PDCCH和/或公共下行数据信道。
本申请实施例中均以基站确定DMRS序列,并将该序列中的部分或全部映射到RE上为例进行说明,对于其他参考信号的序列的确定方式,与DMRS序列的确定方式类似,此处不再赘述。可选地,所述其他参考信号包括CSI-RS和/或PT-RS。
在一种可能的实现方式中,该DMRS序列是以第二PRB索引来定义的。具体地,DMRS序列生成方法同第二种可能实施例中所述DMRS序列生成方法,即可以根据公式(4)生成。在将生成的DMRS序列映射到RE上时,终端可以根据该子频带的频域位置确定该子频带上各PRB对应所述第二PRB索引的编号,进而确定被传输的参考信号;或者,终端可以根据该PDCCH资源的频域位置确定该PDCCH资源上各REG所在的PRB对应所述第二PRB索引的编号,进而确定被传输的参考信号。具体地,DMRS序列的映射方法同第二种可能实施例中所述DMRS序列的映射方法,即可以按照公式(5)映射。
基于本实施例,终端不需要知道载波带宽,便可以根据所述第二PRB索引正确接收如下至少一种:公共下行数据信道、解调公共下行数据信道的DMRS、公共下行控制信道、解调公共下行控制信道的DMRS。此外,由于公共下行数据信道被限制在带宽不大于最小终端带宽能力的公共带宽内,有利于减少DCI的大小,提高传输鲁棒性。
如下为第六种可能实施例。
可选地,图8a为第一PRB索引确定方式的又一示意图,如图8a所示,第二PRB 索引{0,1,…,Q-1}为公共下行PRB索引,对应索引为0的PRB可以根据频域上的第二位置确定,在此基础上,对应索引为最大的PRB可以根据第二带宽确定。其中,第二位置根据第二信息确定,第二带宽为最小终端带宽能力。
可选地,图8b为第一PRB索引确定方式的又一示意图,如图8b所示,第二PRB索引{0,1,…,Q-1}为公共下行PRB索引,对应索引为0的PRB还可以根据频域上的第二位置和第二带宽确定,在此基础上,对应索引为最大的PRB可以根据第二带宽确定。其中,第二位置根据第二信息确定,第二带宽为最小终端带宽能力。
需要指出的是,图8a和图8b所示的第一PRB索引中PRB编号只是一种示例,当然,第一PRB索引中PRB编号也可以为其他的方式,如从右向左进行编号,或者从中间开始向右进行编号,再从左开始等等,当第一PRB索引中PRB编号属于其他形式时,第一PRB索引的确定方式与图3a和图3b中所示的确定方式类似,此处不再赘述。
终端根据SIB或RRC信令确定子频带资源,该子频带可以是公共下行数据信道信息对应的子频带,该子频带资源包括该子频带的频域位置和带宽,或只包括该子频带的频域位置;或者,其中子频带的频域位置的定义同步骤201中同步信号块的频域位置的定义,这里不再赘述;或者,终端根据SIB或RRC信令确定PDCCH资源,该PDCCH资源用于调度公共下行数据信道信息,该PDCCH资源包括该PDCCH资源的频域位置和带宽,或只包括该PDCCH资源的频域位置,其中PDCCH资源的频域位置的定义同步骤201中同步信号块的频域位置的定义,这里不再赘述。因此,终端可以确定子频带资源和/或PDCCH资源,如图8a和图8b所示。
可选地,终端可以根据第二PRB索引在该子频带中接收解调公共下行数据信道的DMRS、公共下行数据信道、解调公共下行控制信道的DMRS、公共下行控制信道中的至少一项,其中,数据信道也即共享信道,公共下行数据信道至少包括通过公共下行控制信息调度的下行数据信道。可选地,终端可以根据第二PRB索引在该PDCCH资源中接收调度公共下行数据信道的公共下行控制信息。
也就是说,所述第二PRB索引定义在第四虚拟带宽内,该第四虚拟带宽根据基站指示的频域第二位置以及最小终端能力确定。可选地,该第四虚拟带宽和所述公共带宽的中心PRB或该PRB的第0、5、6、11个子载波中的一个或该子载波偏移1/2子载波间隔的位置对齐。该第四虚拟带宽也可以被称为第二最小虚拟带宽、第四名义带宽、第二最小名义带宽,本发明不作限制。
特别地,基站可以根据第二PRB索引确定下行参考信号的序列,基站将下行参考信号序列的部分或全部映射到至少一个RE上,基站在前述至少一个RE上发送该下行参考信号。其中,下行参考信号可以是DMRS,该DMRS可以用于解调如下信道中的至少一种信道:调度公共下行数据信道在内的PDCCH和/或公共下行数据信道。
本申请实施例中均以基站确定DMRS序列,并将该序列中的部分或全部映射到RE上为例进行说明,对于其他参考信号的序列的确定方式,与DMRS序列的确定方式类似,此处不再赘述。可选地,所述其他参考信号包括CSI-RS和/或PT-RS。
在一种可能的实现方式中,该DMRS序列是以第二PRB索引来定义的。具体地,DMRS序列生成方法同第三种可能实施例中所述DMRS序列生成方法,即可以根据公 式(6)生成。在将生成的DMRS序列映射到RE上时,终端可以根据该子频带上各PRB对应所述第二PRB索引的编号,进而确定被传输的参考信号;或者,终端可以根据该PDCCH资源的频域位置确定该PDCCH资源上各REG所在的PRB对应所述第二PRB索引的编号,进而确定被传输的参考信号。具体地,DMRS序列的映射方法同第三种可能实施例中所述DMRS序列的映射方法,即可以根据公式(7)映射。
基于本实施例,终端不需要知道载波带宽,便可以根据所述第二PRB索引正确接收如下至少一种:公共下行数据信道、解调公共下行数据信道的DMRS、公共下行控制信道、解调公共下行控制信道的DMRS。此外,由于公共下行数据信道被限制在带宽不大于最小终端带宽能力的公共带宽内,有利于减少DCI的大小,提高传输鲁棒性。
如下为第七种可能实施例。
可选地,第二PRB索引为终端特定下行PRB索引,其中,该终端特定下行PRB索引定义在该终端的载波带宽部分中,可选地,该载波带宽部分可以是下行载波带宽部分,也可以是上行载波带宽部分。
终端根据SIB或RRC信令确定载波带宽部分资源,该载波带宽资源包括该载波带宽部分的频域位置和带宽,或只包括该载波带宽部分的频域位置,其中载波带宽部分的频域位置的定义同步骤201中同步信号块的频域位置的定义,这里不再赘述;或者,终端根据SIB或RRC信令确定PDCCH资源,该PDCCH资源用于调度终端特定下行数据信道信息,该PDCCH资源包括该PDCCH资源的频域位置和带宽,或只包括该PDCCH资源的频域位置,其中PDCCH资源的频域位置的定义同步骤201中同步信号块的频域位置的定义,这里不再赘述。
可选地,终端可以根据第二PRB索引在该载波带宽部分中传输终端特定数据信道,其中,终端特定数据信道也即终端特定共享信道,包括终端特定下行数据信道和/或终端特定上行数据信道,终端特定数据信道至少包括通过终端下行控制信息调度的数据信道。可选地,终端可以根据第二PRB索引在该PDCCH资源中接收调度终端特定上/下行数据的终端特定下行控制信息。其中,对于传输的概念,可以理解为发送和/或接收,本申请不做任何限制。
如下为第八种可能实施例。
一种子频带内的资源分配方法,所述子频带可以公共带宽,可以是下行载波带宽部分,也可以是上行载波带宽部分。
在所述资源分配方法中,资源分配信息中的资源分配域包括一个资源指示值(Resource Indication Value,RIV),该RIV对应与子频带最低PRB的偏移(RB offset)和分配的连续RB或连续虚拟RB数(L CRBs)。RIV定义如下:
如果
Figure PCTCN2018096634-appb-000030
Figure PCTCN2018096634-appb-000031
否则
Figure PCTCN2018096634-appb-000032
其中L CRBs≥1且不超过
Figure PCTCN2018096634-appb-000033
表示对应系统参数配置μ的子频带中包含的RB数。
终端根据该RIV确定被分配的连续RB或连续虚拟RB为{RB 0+RB offset,…,RB 0+RB offset+L CRBs-1},其中RB 0为所述子频带的最低PRB对应公共PRB索引的编号,所述公共PRB索引为第一种可能实施例中的第一PRB索引和/或第四种可能实施例中的第二PRB索引,即所述公共PRB索引根据最大载波带宽确定。
另外,可以理解,以上的步骤201及步骤202的执行顺序仅是一种示意。步骤201与步骤202没有执行的先后顺序的区分,可以先执行步骤201,再执行步骤202;也可以先执行步骤202,再执行步骤201;也可以同时执行这两个步骤,本申请实施例对此不做特别限定。
需要进行说明的是,上述不同的实施例之间,对于相同或相似的概念或过程可以相互引用或结合,划分为不同的实施例仅仅是为了更清楚的说明本申请。
本申请实施例提供的数据传输方法,终端根据第一PRB索引接收公共信息,根据第二PRB索引传输终端特定信息,其中,第一PRB索引是根据第一带宽和/或频域上的第一位置确定的,第二PRB索引是根据第二带宽和/或频域上的第二位置确定的。由于终端可以根据第一带宽和/或频域上的第一位置确定出第一PRB索引,根据第二带宽和/或频域上的第二位置确定出第二PRB索引,并使终端可以分别根据不同的PRB索引进行公共信息的接收和终端特定信息的传输,由此,终端可以确定出PRB索引,并能够根据确定出的PRB索引向基站传输参考信号和数据信道信息。
图9为本申请实施例提供的一种终端的一结构示意图,参见图9,该终端包括:接收单元11和传输单元12,其中:
接收单元11根据第一物理资源块索引接收公共信息;所述第一物理资源块索引是根据第一带宽和/或频域上的第一位置确定的;
传输单元12根据第二物理资源块索引传输终端特定信息;所述第二物理资源块索引是根据第二带宽和/或频域上的第二位置确定的。
本申请实施例提供的终端,可以执行上述对应的方法实施例,其实现原理和技术效果类似,在此不再赘述。
可选地,所述第一位置为同步信号块的频域位置或根据第一信息确定,所述第二位置为载波中心位置或根据第二信息确定。
可选地,所述第一信息通过主消息块指示。
可选地,所述第二信息通过主消息块、系统消息块或无线资源控制信令指示。
可选地,所述第一带宽不大于最小终端带宽能力或根据最小终端带宽能力确定或根据最大载波带宽确定,所述第二带宽根据最大载波带宽确定。
可选地,所述第一带宽不大于最小终端带宽能力或根据最小终端带宽能力确定或根据最大载波带宽确定,所述第二带宽为载波带宽部分的大小。
可选地,所述最大载波带宽根据子载波间隔确定。
可选地,所述公共信息包括如下信息中的至少一项:用于解调公共控制信息的参考信号、用于解调公共数据信道信息的参考信号、公共控制信息或公共数据信道信息。
可选地,所述终端特定信息包括如下信息中的至少一项:用于解调终端特定控制信息的参考信号、用于解调终端特定数据信道信息的参考信号或信道测量参考信号。
图10为本申请实施例提供的一种终端的另一结构示意图,本申请实施例在图9所示实施例的基础上,所述终端还包括确定模块13,其中:
确定模块13根据所述第二物理资源块索引确定用于调度终端特定数据信道信息的载波带宽部分。
可选地,传输模块12还用于在所述载波带宽部分内传输用于传输终端特定数据信道信息的物理资源。
本申请实施例提供的终端,可以执行上述对应的方法实施例,其实现原理和技术效果类似,在此不再赘述。
需要说明的是,应理解以上终端的各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元通过软件通过处理元件调用的形式实现,部分单元通过硬件的形式实现。例如,发送单元可以为单独设立的处理元件,也可以集成在终端的某一个芯片中实现,此外,也可以以程序的形式存储于终端的存储器中,由终端的某一个处理元件调用并执行该发送单元的功能。其它单元的实现与之类似。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。此外,以上发送单元是一种控制发送的单元,可以通过终端的发送装置,例如天线和射频装置接收基站发送的信息。
以上这些单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个单元通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
图11为本申请实施例提供的一种基站的一结构示意图,参见图11,该基站包括:发送单元21和传输单元22,其中:
发送单元21用于根据第一物理资源块索引发送公共信息;所述第一物理资源块索引是根据第一带宽和/或频域上的第一位置确定的;
传输单元22用于根据第二物理资源块索引传输终端特定信息;所述第二物理资源块索引是根据第二带宽和/或频域上的第二位置确定的。
本申请实施例提供的基站,可以执行上述对应的方法实施例,其实现原理和技术效果类似,在此不再赘述。
可选地,所述第一位置为同步信号块的频域位置或根据第一信息确定,所述第二位置为载波中心位置或根据第二信息确定。
可选地,所述第一信息通过主消息块指示。
可选地,所述第二信息通过主消息块、系统消息块或无线资源控制信令指示。
可选地,所述第一带宽不大于最小终端带宽能力或根据最小终端带宽能力确定或 根据最大载波带宽确定,所述第二带宽根据最大载波带宽确定。
可选地,所述第一带宽不大于最小终端带宽能力或根据最小终端带宽能力确定或根据最大载波带宽确定,所述第二带宽为载波带宽部分的大小。
可选地,所述最大载波带宽根据子载波间隔确定。
可选地,所述公共信息包括如下信息中的至少一项:用于解调公共控制信息的参考信号、用于解调公共数据信道信息的参考信号、公共控制信息或公共数据信道信息。
可选地,所述终端特定信息包括如下信息中的至少一项:用于解调终端特定控制信息的参考信号、用于解调终端特定数据信道信息的参考信号或信道测量参考信号。
图12为本申请实施例提供的一种基站的另一结构示意图,本申请实施例在图11所示实施例的基础上,所述基站还包括确定模块23,其中:
确定模块23根据所述第二物理资源块索引确定用于调度终端特定数据信道信息的载波带宽部分。
可选地,传输模块22还用于在所述载波带宽部分内传输用于传输终端特定数据信道信息的物理资源。
本申请实施例提供的基站,可以执行上述对应的方法实施例,其实现原理和技术效果类似,在此不再赘述。
需要说明的是,应理解以上基站的各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元通过软件通过处理元件调用的形式实现,部分单元通过硬件的形式实现。例如,发送单元可以为单独设立的处理元件,也可以集成在基站的某一个芯片中实现,此外,也可以以程序的形式存储于基站的存储器中,由基站的某一个处理元件调用并执行该发送单元的功能。其它单元的实现与之类似。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。此外,以上发送单元是一种控制发送的单元,可以通过基站的发送装置,例如天线和射频装置接收终端发送的信息。
以上这些单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个单元通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
图13为本申请实施例提供的一种终端的又一结构示意图。如图13所示,该终端包括:处理器110、存储器120、收发装置130。收发装置130可以与天线连接。在下行方向上,收发装置130通过天线接收基站发送的信息,并将信息发送给处理器110进行处理。在上行方向上,处理器110对终端的数据进行处理,并通过收发装置130发送给基站。
该存储器120用于存储实现以上方法实施例,或者图9-图10所示实施例各个单元的程序,处理器110调用该程序,执行以上方法实施例的操作,以实现图9-图10所示的各个单元。
或者,以上各个单元的部分或全部也可以通过集成电路的形式内嵌于该终端的某一个芯片上来实现。且它们可以单独实现,也可以集成在一起。即以上这些单元可以被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。
图14为本申请实施例提供的一种基站的又一结构示意图。如图14所示,该基站包括:天线110、射频装置120、基带装置130。天线110与射频装置120连接。在上行方向上,射频装置120通过天线110接收终端发送的信息,将终端发送的信息发送给基带装置130进行处理。在下行方向上,基带装置130对终端的信息进行处理,并发送给射频装置120,射频装置120对终端的信息进行处理后经过天线110发送给终端。
在一种实现中,以上各个单元通过处理元件调度程序的形式实现,例如基带装置130包括处理元件131和存储元件132,处理元件131调用存储元件132存储的程序,以执行以上方法实施例中的方法。此外,该基带装置130还可以包括接口133,用于与射频装置120交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
在另一种实现中,以上这些单元可以是被配置成实施以上方法的一个或多个处理元件,这些处理元件设置于基带装置130上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA等。这些集成电路可以集成在一起,构成芯片。
例如,以上各个单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,例如,基带装置130包括SOC芯片,用于实现以上方法。该芯片内可以集成处理元件131和存储元件132,由处理元件131调用存储元件132的存储的程序的形式实现以上方法或以上各个单元的功能;或者,该芯片内可以集成至少一个集成电路,用于实现以上方法或以上各个单元的功能;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
不管采用何种方式,总之,以上基站包括至少一个处理元件,存储元件和通信接口,其中至少一个处理元件用于执行以上方法实施例所提供的方法。处理元件可以以第一种方式:即执行存储元件存储的程序的方式执行以上方法实施例中的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行以上方法实施例中的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上方法实施例提供的方法。
这里的处理元件同以上描述,可以是通用处理器,例如中央处理器(Central Processing Unit,CPU),还可以是被配置成实施以上方法的一个或多个集成电路,例 如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
本申请还提供一种存储介质,包括:可读存储介质和计算机程序,所述计算机程序用于实现前述任一实施例提供的数据传输方法。
本申请还提供一种程序产品,该程序产品包括计算机程序(即执行指令),该计算机程序存储在可读存储介质中。终端的至少一个处理器可以从可读存储介质读取该计算机程序,至少一个处理器执行该计算机程序使得终端实施前述各种实施方式提供的数据传输方法。
本申请实施例还提供了一种数据传输装置,包括至少一个存储元件和至少一个处理元件、所述至少一个存储元件用于存储程序,该程序被执行时,使得所述数据传输装置执行上述任一实施例中的终端的操作。该装置可以是终端芯片。
本申请还提供一种存储介质,包括:可读存储介质和计算机程序,所述计算机程序用于实现前述任一实施例提供的数据传输方法。
本申请还提供一种程序产品,该程序产品包括计算机程序(即执行指令),该计算机程序存储在可读存储介质中。基站的至少一个处理器可以从可读存储介质读取该计算机程序,至少一个处理器执行该计算机程序使得基站实施前述各种实施方式提供的数据传输方法。
本申请实施例还提供了一种数据传输装置,包括至少一个存储元件和至少一个处理元件、所述至少一个存储元件用于存储程序,该程序被执行时,使得所述数据传输装置执行上述任一实施例中的基站的操作。该装置可以是基站芯片。
实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一可读取存储器中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储器(存储介质)包括:只读存储器(英文:read-only memory,缩写:ROM)、RAM、快闪存储器、硬盘、固态硬盘、磁带(英文:magnetic tape)、软盘(英文:floppy disk)、光盘(英文:optical disc)及其任意组合。

Claims (56)

  1. 一种数据通信的方法,其特征在于,包括:
    终端根据第一物理资源块索引接收第一解调参考信号,所述第一物理资源块索引是根据频域上的第一位置确定的,所述第一解调参考信号用于解调系统消息所在的数据信道;
    所述终端根据第二物理资源块索引发送和/或接收第二解调参考信号,所述第二物理资源块索引是根据频域上的第二位置确定的,所述第二解调参考信号用于解调非所述系统消息所在的数据信道。
  2. 根据权利要求1所述的方法,其特征在于,所述第一位置通过主消息块指示,所述第二位置通过所述系统消息或者无线资源控制信令指示。
  3. 根据权利要求1或2所述的方法,其特征在于,第一位置为系统消息所在子频带的最低位置。
  4. 根据权利要求1-3中任一所述的方法,其特征在于,包括:
    所述终端在接收所述系统消息后,根据所述第二物理资源块索引发送和/或接收所述第二解调参考信号。
  5. 根据权利要求1-4中任一所述的方法,其特征在于,所述非系统消息所在的数据信道包括终端特定数据信道。
  6. 根据权利要求5所述的方法,其特征在于,所述终端特定数据信道包括上行数据信道或下行数据信道。
  7. 一种数据通信的方法,其特征在于,包括:
    终端根据第一物理资源索引接收第一解调参考信号,所述第一物理资源块索引为根据频域上的第一位置确定的,所述第一解调参考信号用于解调调度公共信息的下行控制信道;
    所述终端根据第二物理资源块索引接收第二解调参考信号,所述第二物理资源块索引为根据频域上的第二位置确定的,所述第二解调参考信号用于解调调度终端特定信息的下行控制信道。
  8. 根据权利要求7所述的方法,其特征在于,所述第一位置通过主消息块指示,所述第二位置通过系统消息或无线资源控制信令指示。
  9. 根据权利要求7或8所述的方法,其特征在于,所述终端在与基站建立连接之后,根据所述第二物理资源块索引接收所述第二解调参考信号。
  10. 根据权利要求7-9中任一所述的方法,其特征在于,所述公共信息包括系统消息。
  11. 根据权利要求7-10中任一所述的方法,其特征在于,所述第一位置为调度系统消息的控制信道的最低位置。
  12. 一种数据通信的方法,其特征在于,包括:
    基站根据第一物理资源块索引发送第一解调参考信号,所述第一物理资源块索引是根据频域上的第一位置确定的,所述第一解调参考信号用于解调系统消息所在的数据信道;
    所述基站根据第二物理资源块索引发送和/或接收第二解调参考信号,所述第二物理资源块索引是根据频域上的第二位置确定的,所述第二解调参考信号用于解调非系统消息所在的数据信道。
  13. 根据权利要求12所述的方法,其特征在于,所述第一位置通过主消息块指示,所述第二位置通过所述系统消息或者无线资源控制信令指示。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第一位置为系统消息所在子频带的最低位置。
  15. 根据所述权利要求12-14中任一所述的方法,其特征在于,所述非系统消息所在的数据信道包括终端特定数据信道。
  16. 根据权利要求12-14中任一所述的方法,其特征在于,所述终端特定数据信道包括上行数据信道或下行数据信道。
  17. 一种数据通信的方法,其特征在于,包括:
    基站根据第一物理资源块索引发送第一解调参考信号,所述第一物理资源块索引为根据频域上的第一位置确定的,所述第一解调参考信号用于解调调度公共信息的下行控制信道;
    基站根据第二物理资源块索引发送第二解调参考信号,所述第二物理资源块索引为根据频域上的第二位置确定的,所述第二解调参考信号用于解调调度终端特定信息的下行控制信道。
  18. 根据权利要求17所述的方法,其特征在于,所述第一位置通过主消息块指示,所述第二位置通过系统消息或无线资源控制信令指示。
  19. 根据权利要求17或18所述的方法,其特征在于,
    所述基站与所述终端建立连接后,根据所述第二物理资源块索引发送所述第二解调参考信号。
  20. 根据权利要求17-19中任一所述的方法,所述公共信息包括系统消息。
  21. 根据权利要求17-20中任一所述的方法,所述第一位置为调度系统消息的控制信道的最低位置。
  22. 一种装置,其特征在于,包括用于执行权利要求1至11任一项所述的各个步骤的单元或手段。
  23. 一种装置,其特征在于,包括用于执行权利要求12至21任一项所述的各个步骤的单元或手段。
  24. 一种装置,其特征在于,包括:处理器和存储器;
    其中,所述存储器,用于存储程序;
    所述处理器,用于执行所述存储器中存储的所述程序,以实现如权利要求1至11任一所述方法。
  25. 一种装置,其特征在于,包括:处理器和存储器;
    其中,所述存储器,用于存储程序;
    所述处理器,用于执行所述存储器中存储的所述程序,以实现如权利要求12至21任一所述方法。
  26. 一种终端,包括如权利要求22所述的装置。
  27. 一种基站,包括如权利要求23所述的装置。
  28. 一种数据通信的方法,其特征在于,包括:
    终端接收主消息块,所述主消息块包括第一信息,所述第一信息用于指示第一子载波,所述第一子载波为系统消息所在子频带最低物理资源块的最低子载波;
    所述终端根据所述第一子载波,确定第一物理资源块索引;
    所述终端根据所述第一物理资源块索引接收第一解调参考信号,所述第一解调参考信号用于解调系统消息所在的数据信道;
    所述终端接收所述系统消息或者无线资源控制信令,所述系统消息或者无线资源控制信令包括第二信息,所述第二信息用于指示第二子载波,所述第二子载波为一个物理资源块的最低子载波;
    所述终端根据所述第二子载波,确定第二物理资源块索引;
    所述终端根据所述第二物理资源块索引发送和/或接收第二解调参考信号,所述第二解调参考信号用于解调非所述系统消息所在的数据信道。
  29. 根据权利要求28所述的方法,其特征在于,包括:
    所述终端在接收所述系统消息后,根据所述第二物理资源块索引发送和/或接收所述第二解调参考信号。
  30. 根据权利要求28或者29所述的方法,其特征在于,所述第一信息用于指示所述第一子载波和同步信号块频域位置的偏移;所述第二信息用于指示所述第二子载波与所述同步信号块频域位置的偏移。
  31. 根据权利要求28-30所述的方法,其特征在于,所述最低子载波为第0个子载波。
  32. 根据权利要求28-31中任一所述的方法,其特征在于,所述非系统消息所在的数据信道包括终端特定数据信道。
  33. 根据权利要求32所述的方法,其特征在于,所述终端特定数据信道包括上行数据信道或下行数据信道。
  34. 一种数据通信的方法,其特征在于,包括:
    终端接收主消息块,所述主消息块包括第一信息,所述第一信息用于指示第一子载波,所述第一子载波为调度系统消息的控制信道的最低物理资源块的最低子载波,所述控制信道用于调度系统消息;
    所述终端根据所述第一子载波,确定第一物理资源块索引;
    所述终端根据所述第一物理资源块索引接收第一解调参考信号,所述第一解调参考信号用于解调调度公共信息的下行控制信道;
    所述终端接收所述系统消息或者无线资源控制信令,所述系统消息或者无线资源控制信令包括第二信息,所述第二信息用于指示第二子载波,所述第二子载波为一个物理资源块的最低子载波;
    所述终端根据所述第二子载波,确定第二物理资源块索引;
    所述终端根据第二物理资源块索引接收第二解调参考信号,所述第二解调参考信号用于解调调度终端特定信息的下行控制信道。
  35. 根据权利要求34所述的方法,其特征在于,
    所述终端在与基站建立连接之后,根据所述第二物理资源块索引接收所述第二解调参考信号。
  36. 根据权利要求34或者35所述的方法,其特征在于,所述第一信息用于指示所述第一子载波和同步信号块频域位置的偏移;所述第二信息用于指示所述第二子载波与所述同步信号块频域位置的偏移。
  37. 根据权利要求34-36中任一所述的方法,其特征在于,所述最低子载波为第0个子载波。
  38. 根据权利要求34-37中任一所述的方法,其特征在于,所述公共信息包括系统消息。
  39. 一种数据通信方法,其特征在于,
    基站发送主消息块,所述主消息块包括第一信息,所述第一信息用于指示确定第一物理资源块索引的第一子载波,所述第一子载波为系统消息所在子频带最低物理资源块的最低子载波;
    所述基站根据所述第一物理资源块索引发送第一解调参考信号,所述第一解调参考信号用于解调系统消息所在的数据信道;
    所述基站发送所述系统消息或者无线资源控制信令,所述系统消息或者无线资源控制信令包括第二信息,所述第二信息用于指示确定第二物理资源块索引第二子载波,所述第二子载波为一个物理资源块的最低子载波;
    所述基站根据所述第二物理资源块索引发送和/或接收第二解调参考信号,所述第二解调参考信号用于解调非系统消息所在的数据信道。
  40. 根据权利要求39所述的方法,其特征在于,所述第一信息用于指示所述第一子载波和同步信号块频域位置的偏移;所述第二信息用于指示所述第二子载波与所述同步信号块频域位置的偏移。
  41. 根据权利要求39或者40所述的方法,其特征在于,所述最低子载波为第0个子载波。
  42. 根据权利要求39-41中任一所述的方法,其特征在于,所述非系统消息所在的数据信道包括终端特定数据信道。
  43. 根据权利要求39-42中任一所述的方法,其特征在于,所述终端特定数据信道包括上行数据信道或下行数据信道。
  44. 一种数据通信方法,其特征在于,
    基站发送主消息块,所述主消息块包括第一信息,所述第一信息用于指示确定第一物理资源块索引的第一子载波,所述第一子载波为调度系统消息的控制信道的最低物理资源块的最低子载波;
    所述基站根据所述第一物理资源块索引发送第一解调参考信号,所述第一解调参考信号用于解调调度公共信息的下行控制信道;
    所述基站发送所述系统消息或者无线资源控制信令,所述系统消息或者无线资源控制信令包括第二信息,所述第二信息用于指示确定第二物理资源块索引的第二子载波,所述第二子载波为一个物理资源块的最低子载波;
    所述基站根据所述第二物理资源块索引发送第二解调参考信号,所述第二解调参 考信号用于解调调度终端特定信息的下行控制信道。
  45. 根据权利要求44所述的方法,其特征在于,
    所述基站与所述终端建立连接后,根据所述第二物理资源块索引接收所述第二解调参考信号。
  46. 根据权利要求44或者45所述的方法,其特征在于,所述第一信息用于指示所述第一子载波和同步信号块频域位置的偏移;所述第二信息用于指示所述第二子载波与所述同步信号块频域位置的偏移。
  47. 根据权利要求44-46中任一所述的方法,其特征在于,所述最低子载波为第0个子载波。
  48. 根据权利要求44-47中任一所述的方法,其特征在于,所述公共信息包括系统消息。
  49. 一种装置,其特征在于,包括用于执行权利要求28至38任一项所述的各个步骤的单元或手段。
  50. 一种装置,其特征在于,包括用于执行权利要求39至48任一项所述的各个步骤的单元或手段。
  51. 一种装置,其特征在于,包括:处理器和存储器;
    其中,所述存储器,用于存储程序;
    所述处理器,用于执行所述存储器中存储的所述程序,以实现如权利要求28至38任一所述方法。
  52. 一种装置,其特征在于,包括:处理器和存储器;
    其中,所述存储器,用于存储程序;
    所述处理器,用于执行所述存储器中存储的所述程序,以实现如权利要求39至48任一所述方法。
  53. 一种终端,包括如权利要求49所述的装置。
  54. 一种基站,包括如权利要求50所述的装置。
  55. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有程序,所述程序在计算机上运行时,使得所述计算机执行如权利要求1至21、28至48任一所述的方法。
  56. 一种计算机程序产品,其特征在于,包括执行如权利要求1至21、28至48任一所述的方法的程序。
PCT/CN2018/096634 2017-08-10 2018-07-23 数据传输方法、终端和基站 WO2019029348A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP18844795.7A EP3554116B1 (en) 2017-08-10 2018-07-23 Data transmission method, terminal, and base station
BR112019004076-5A BR112019004076B1 (pt) 2017-08-10 2018-07-23 Método de comunicação de dados, aparelho, terminal e estação de base
CN201880052068.0A CN110999367A (zh) 2017-08-10 2018-07-23 数据传输方法、终端和基站
EP21157035.3A EP3890385A3 (en) 2017-08-10 2018-07-23 Data communication method, terminal, and base station
KR1020197007354A KR102225238B1 (ko) 2017-08-10 2018-07-23 데이터 송신 방법, 단말기, 및 기지국
JP2019516958A JP6874129B2 (ja) 2017-08-10 2018-07-23 データ通信方法、端末、および基地局
US16/204,756 US10530547B2 (en) 2017-08-10 2018-11-29 Data communication method, terminal, and base station
US16/552,461 US10623159B2 (en) 2017-08-10 2019-08-27 Data communication method, terminal, and base station
US16/819,412 US10965419B2 (en) 2017-08-10 2020-03-16 Data communication method, terminal, and base station
US17/201,453 US20210203463A1 (en) 2017-08-10 2021-03-15 Data Communication Method, Terminal, and Base Station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710682190.3A CN109392122B (zh) 2017-08-10 2017-08-10 数据传输方法、终端和基站
CN201710682190.3 2017-08-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/204,756 Continuation US10530547B2 (en) 2017-08-10 2018-11-29 Data communication method, terminal, and base station

Publications (1)

Publication Number Publication Date
WO2019029348A1 true WO2019029348A1 (zh) 2019-02-14

Family

ID=65273314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096634 WO2019029348A1 (zh) 2017-08-10 2018-07-23 数据传输方法、终端和基站

Country Status (7)

Country Link
US (4) US10530547B2 (zh)
EP (2) EP3890385A3 (zh)
JP (2) JP6874129B2 (zh)
KR (1) KR102225238B1 (zh)
CN (4) CN109831827B (zh)
BR (1) BR112019004076B1 (zh)
WO (1) WO2019029348A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11323300B2 (en) 2016-02-09 2022-05-03 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for phase noise tracking reference signal sequence generation using demodulation reference signals
MX2019015130A (es) * 2017-06-16 2020-02-17 Guangdong Oppo Mobile Telecommunications Corp Ltd Metodo y dispositivo de comunicacion inalambrica.
US11337170B2 (en) * 2017-10-02 2022-05-17 Lg Electronics Inc. Method and device for transmitting or receiving data in wireless communication system
US11343666B2 (en) * 2018-02-13 2022-05-24 Qualcomm Incorporated Waveform design of discovery signals
WO2021035734A1 (zh) * 2019-08-30 2021-03-04 北京小米移动软件有限公司 数据传输方法、装置及存储介质
CN110611558B (zh) * 2019-10-16 2022-04-22 深圳前海中电慧安科技有限公司 采集移动终端信息的方法、装置、采集设备和存储介质
BR112022008810A2 (pt) * 2019-11-08 2022-07-26 Guangdong Oppo Mobile Telecommunications Corp Ltd Método para determinar um conjunto de recursos de controle, método para configurar um conjunto de recursos de controle, equipamento de usuário e dispositivo de rede
WO2021103026A1 (zh) * 2019-11-30 2021-06-03 华为技术有限公司 在带宽部分上进行通信的方法
CN116249118A (zh) * 2021-12-07 2023-06-09 华为技术有限公司 资源分配方法、装置和通信设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110170435A1 (en) * 2010-01-12 2011-07-14 Samsung Electronics Co. Ltd. Method for processing csi-rs in wireless communication system
CN103516474A (zh) * 2012-06-28 2014-01-15 中兴通讯股份有限公司 物理上行控制信道资源确定方法及用户设备
CN103686772A (zh) * 2012-09-20 2014-03-26 中兴通讯股份有限公司 增强型下行控制信道的配置、检测方法及装置、基站、终端
WO2017014613A1 (ko) * 2015-07-23 2017-01-26 삼성전자 주식회사 무선 셀룰러 통신 시스템에서 협대역 신호 전송을 위한 방법 및 장치
CN106961734A (zh) * 2016-01-11 2017-07-18 中兴通讯股份有限公司 信息的传输方法及装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101702644B (zh) * 2009-11-02 2014-08-13 中兴通讯股份有限公司 一种物理混合重传指示信道的传输方法和装置
WO2012109542A1 (en) * 2011-02-11 2012-08-16 Interdigital Patent Holdings, Inc Systems and methods for an enhanced control channel
KR101962245B1 (ko) * 2011-09-23 2019-03-27 삼성전자 주식회사 광대역 단말과 협대역 단말을 함께 운용하는 무선통신시스템에서 협대역 단말의 시스템 접속 방법 및 장치
US9660782B2 (en) * 2011-10-19 2017-05-23 Lg Electronics Inc. Method and apparatus for transceiving downlink control information in a wireless access system
US20130195069A1 (en) * 2012-01-30 2013-08-01 Nokia Siemens Networks Oy Signaling mechanism for supporting flexible physical broadcast channel and common reference signal configurations
US9526091B2 (en) * 2012-03-16 2016-12-20 Intel Corporation Method and apparatus for coordination of self-optimization functions in a wireless network
CN106059738B (zh) * 2012-05-10 2019-11-26 华为终端有限公司 在增强型物理下行控制信道上传输信息的方法及设备
WO2013180521A1 (ko) * 2012-05-31 2013-12-05 엘지전자 주식회사 제어 신호 송수신 방법 및 이를 위한 장치
CN103716841A (zh) * 2012-09-29 2014-04-09 中兴通讯股份有限公司 信息传输方法及装置
WO2014069910A1 (ko) * 2012-10-31 2014-05-08 엘지전자 주식회사 제어 정보를 송수신하는 방법 및 이를 위한 장치
CN103813468A (zh) * 2012-11-09 2014-05-21 北京三星通信技术研究有限公司 一种传输下行数据的方法和设备
CN103944692A (zh) * 2013-01-18 2014-07-23 中兴通讯股份有限公司 ePHICH的发送方法及装置、接收方法及装置
US10085247B2 (en) * 2013-03-08 2018-09-25 Sharp Kabushiki Kaisha Physical control channel monitoring
US9479298B2 (en) * 2013-07-08 2016-10-25 Intel IP Corporation Demodulation reference signals (DMRS)for side information for interference cancellation
US10251161B2 (en) * 2014-08-07 2019-04-02 Lg Electronics Inc. Method for determining transmission resource block pool of terminal in D2D communication, and apparatus therefor
WO2016126119A1 (ko) * 2015-02-04 2016-08-11 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
WO2016182413A1 (ko) * 2015-05-14 2016-11-17 엘지전자 주식회사 무선 통신 시스템에서 단말의 phich 수신 방법 및 상기 방법을 이용하는 단말
WO2017052326A1 (en) * 2015-09-24 2017-03-30 Lg Electronics Inc. Method and apparatus for handling various iot network access in wireless communication system
CN106656446B (zh) * 2015-11-03 2020-06-26 中兴通讯股份有限公司 参考信号的发送方法及装置、接收方法及装置
CN113507354A (zh) * 2016-01-11 2021-10-15 苹果公司 用于IoT控制信道的装置和方法
KR20190035765A (ko) * 2016-07-26 2019-04-03 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 정보 전송 방법 및 정보 전송 기기
CN106394007A (zh) 2016-09-13 2017-02-15 合肥汉闻数字印刷设备有限公司 一种用于薄膜数字打印的薄膜传输装置
EP3513524B1 (en) * 2016-11-11 2021-09-29 Motorola Mobility LLC Determining a location of a frequency-domain resource block
KR102514446B1 (ko) * 2017-01-09 2023-03-27 엘지전자 주식회사 측정 정보를 보고하는 방법 및 이를 위한 단말
CN109803440B (zh) * 2017-11-16 2021-04-06 电信科学技术研究院 一种进行随机接入的方法及设备
JP6974482B2 (ja) * 2017-11-17 2021-12-01 エルジー エレクトロニクス インコーポレイティドLg Electronics Inc. 下りリンクチャネルを送受信する方法及びそのための装置
US11240796B2 (en) * 2018-01-12 2022-02-01 Telefonaktiebolaget Lm Ericsson (Publ) Wireless communication block interleaving
US11563541B2 (en) * 2018-05-11 2023-01-24 Qualcomm Incorporated Resource mapping for broadcasted system information
KR20220018451A (ko) * 2020-08-06 2022-02-15 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 분산 자원 할당 방법 및 장치
CN114071757A (zh) * 2020-08-06 2022-02-18 华硕电脑股份有限公司 无线通信系统中资源分配的方法和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110170435A1 (en) * 2010-01-12 2011-07-14 Samsung Electronics Co. Ltd. Method for processing csi-rs in wireless communication system
CN103516474A (zh) * 2012-06-28 2014-01-15 中兴通讯股份有限公司 物理上行控制信道资源确定方法及用户设备
CN103686772A (zh) * 2012-09-20 2014-03-26 中兴通讯股份有限公司 增强型下行控制信道的配置、检测方法及装置、基站、终端
WO2017014613A1 (ko) * 2015-07-23 2017-01-26 삼성전자 주식회사 무선 셀룰러 통신 시스템에서 협대역 신호 전송을 위한 방법 및 장치
CN106961734A (zh) * 2016-01-11 2017-07-18 中兴通讯股份有限公司 信息的传输方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "NB-IoT - Remaining issues for NPBCH and MIB", 3GPP TSG RAN WG1 NB-IOT AD-HOC MEETING R1-161820, no. R1-161820, 16 March 2016 (2016-03-16), XP051080938 *
See also references of EP3554116A4

Also Published As

Publication number Publication date
CN109392122A (zh) 2019-02-26
BR112019004076A2 (pt) 2019-05-28
US20210203463A1 (en) 2021-07-01
CN110999367A (zh) 2020-04-10
EP3890385A3 (en) 2021-12-22
US10965419B2 (en) 2021-03-30
US20190386798A1 (en) 2019-12-19
EP3890385A2 (en) 2021-10-06
CN111726877A (zh) 2020-09-29
JP6874129B2 (ja) 2021-05-19
JP7227297B2 (ja) 2023-02-21
US20200220683A1 (en) 2020-07-09
CN109392122B (zh) 2023-05-12
CN111726877B (zh) 2022-10-18
BR112019004076B1 (pt) 2021-10-13
CN109831827B (zh) 2020-03-10
CN109831827A (zh) 2019-05-31
US10623159B2 (en) 2020-04-14
JP2021122121A (ja) 2021-08-26
EP3554116A4 (en) 2020-03-04
JP2019535186A (ja) 2019-12-05
EP3554116B1 (en) 2021-04-21
KR102225238B1 (ko) 2021-03-09
US20190097774A1 (en) 2019-03-28
EP3554116A1 (en) 2019-10-16
US10530547B2 (en) 2020-01-07
KR20190039568A (ko) 2019-04-12

Similar Documents

Publication Publication Date Title
JP7227297B2 (ja) データ通信方法、端末、および基地局
EP3706353B1 (en) Carrier switching method, device and system for multi-carrier communication
EP2880944B1 (en) Method for component carrier configuration, base station and user equipment
WO2019029366A1 (zh) 一种调整频域资源和发送指示信息的方法、装置及系统
WO2018082544A1 (zh) 无线通信的方法和装置
US11632206B2 (en) Method and apparatus for obtaining resource indication value
WO2019096235A1 (zh) 接收参考信号的方法和发送参考信号的方法
US11265903B2 (en) Uplink transmission method and apparatus
TW202013996A (zh) 配置訊息的傳輸方法和終端設備
WO2019096229A1 (zh) 资源的配置方法、装置和存储介质
WO2019080937A1 (zh) 上行控制信息的发送及接收方法和装置
WO2018228537A1 (zh) 信息发送、接收方法及装置
WO2021062918A1 (zh) 一种资源的动态指示方法及装置
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
WO2018228496A1 (zh) 一种指示方法、处理方法及装置
CN107534999A (zh) 一种数据传输方法及接入点、站点
WO2018082365A1 (zh) 传输控制方法、装置及系统存储介质
WO2019029464A1 (zh) 用于灵活双工系统的数据传输方法及设备
JPWO2019021574A1 (ja) 無線通信装置、方法、プログラム、コンピュータに読み取り可能な非一時的記録媒体、及びシステム
WO2023197309A1 (zh) 侧行通信的方法及装置

Legal Events

Date Code Title Description
REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019004076

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197007354

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844795

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019516958

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019004076

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190227

ENP Entry into the national phase

Ref document number: 2018844795

Country of ref document: EP

Effective date: 20190711

NENP Non-entry into the national phase

Ref country code: DE