WO2019029062A1 - 燃气燃烧器 - Google Patents

燃气燃烧器 Download PDF

Info

Publication number
WO2019029062A1
WO2019029062A1 PCT/CN2017/113933 CN2017113933W WO2019029062A1 WO 2019029062 A1 WO2019029062 A1 WO 2019029062A1 CN 2017113933 W CN2017113933 W CN 2017113933W WO 2019029062 A1 WO2019029062 A1 WO 2019029062A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
fuel injection
flue gas
injection device
lateral
Prior art date
Application number
PCT/CN2017/113933
Other languages
English (en)
French (fr)
Inventor
李宇
张世程
苏毅
闫玉强
沈玲玲
梁健
邬文燕
曾磊赟
张静
Original Assignee
上海齐耀热能工程有限公司
上海船用柴油机研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海齐耀热能工程有限公司, 上海船用柴油机研究所 filed Critical 上海齐耀热能工程有限公司
Publication of WO2019029062A1 publication Critical patent/WO2019029062A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/70Baffles or like flow-disturbing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2202/00Fluegas recirculation
    • F23C2202/20Premixing fluegas with fuel

Definitions

  • the present invention relates to the field of combustion equipment, and in particular to a gas burner.
  • fuel-type NOx There are three main sources of nitrogen oxides in fuel combustion: fuel-type NOx, thermal NOx, and fast NOx.
  • fuel-type NOx is the most important source, and for gas-based fuels with few nitrogen-containing components, because of their faster burning rate, higher fuel calorific value, and higher flue gas temperature,
  • the main sources of nitrogen oxides are thermal NOx and fast NOx.
  • low-nitrogen gas combustion technologies there are two main types of low-nitrogen gas combustion technologies: (1) low-nitrogen gas burners; and (2) low-nitrogen combustion control technology in furnaces.
  • low-nitrogen gas burners In today's industrial technology field, two major types of emission reduction measures are often combined to achieve higher low nitrogen emission performance.
  • the existing low-nitrogen gas burners have the following problems: (1) unstable combustion in a wide load range; (2) unstable low-nitrogen emission capacity in a wide load range; (3) burner combustion The mode is single and so on.
  • the present invention provides a gas burner comprising:
  • a body having a side wall extending in an axial direction, the side wall enclosing a cavity
  • a flue gas passage disposed at one end of the body, the flue gas passage having a first inlet and a first outlet, the first inlet facing a lateral direction of the body, the first outlet facing An axially outer side of the body, and a cross-sectional area at the first inlet of the flue gas passage is greater than a cross-sectional area at the first outlet;
  • first fuel injection device disposed in the cavity and extending into the flue gas passage, the first fuel injection device including a first nozzle, an injection end of the first nozzle Located within the flue gas passage;
  • a lateral fuel injection device including a lateral nozzle that faces a lateral direction of the body.
  • a flue gas passage is provided at one end of the burner body, the cross-sectional area of the flue gas passage at the inlet is larger than the cross-sectional area at the outlet, and the burner further includes a first fuel injection device and a lateral fuel injection device .
  • the first fuel injection device can inject high-speed gas and roll a large amount of furnace flue gas in the smoking gas passage, thereby forming a negative pressure in the flue gas passage, and the pressure in the furnace chamber is greater than the pressure in the flue gas passage, the gas burner
  • the surrounding high-temperature furnace flue gas is continuously induced into the flue gas channel under the action of pressure, thus forming a passage for the inner circulation of the flue gas.
  • a lateral fuel injection device By providing a lateral fuel injection device, fresh high-temperature flue gas generated by the lateral flame is always distributed in the lateral direction of the end portion of the gas burner, and the flue gas enters the flue gas passage along with the flue gas And intimately mixing with the gas ejected from the first fuel injection device. Due to the high-oxygen gas, high-temperature furnace flue gas and high-temperature flue gas generated by the lateral flame, the oxygen-poor and fuel-rich characteristics make the combustion slow and reduce the emission of NOx, especially thermal NOx. Further, since the fuel injection device laterally injected gas to produce a quantity of nitrogenous substances combustion chemical intermediate, and then restore beneficial mechanism of NO X, can further reduce NOx emissions.
  • the lateral fuel injection device can divert part of the gas, so that the combustion of part of the gas occurs laterally at the end of the gas burner, which reduces the combustion load of the first fuel injection device of the gas burner, and is beneficial for reducing the thermal NOx. generate.
  • the high-temperature furnace flue gas and the side flame generated in the flue gas passage have a high temperature of the high-temperature flue gas, it is possible to stabilize the gas ignition at the first nozzle and to stably burn in a wide load range.
  • the cross-sectional area of the flue gas passage gradually decreases from the first inlet to the first outlet.
  • the flue gas passage is configured as a tapered passage, and functions as a speed-up and rectification function for the combustion-supporting gas.
  • the first inlet is closer to the body in the axial direction than the first outlet.
  • the side deflector is disposed at the lateral nozzle for guiding a combustion gas to the lateral nozzle.
  • the side deflector includes a first portion and a second portion, the first portion is disposed in the cavity and extends substantially in the axial direction, and the second portion is coupled to the first portion, And extending at an angle with respect to the radial direction, the angle being 0° to 30°.
  • the flue gas passage is formed by a flue gas passage member including an arcuate outer side plate, an arcuate inner side plate, and an axle connected to both sides of the outer side plate and the inner side plate A guide flow plate, wherein the first fuel injection device passes through the inner side plate.
  • the inner side plate and the outer side plate form ends of the first outlet located in a plane parallel to the radial direction of the body, the two forming part of a concentric ring.
  • a radius of an end portion of the inner side plate forming the first outlet is smaller than a radius of the cavity, and a radius of an end portion of the inner side plate forming the first inlet is larger than a radius of the cavity.
  • the radius of the end of the inner side plate forming the first inlet is equal to the radius of the end of the outer side plate forming the first inlet.
  • the shaft guide flow plate extends into the cavity in an axial direction and extends in a radial direction, and the side guide flow plate is mounted to the shaft guide flow plate.
  • the side deflector is adjustably mounted to the shaft guide flow plate in the axial direction position.
  • the shaft guiding plate extends in a radial direction to an inner surface of the side wall, the shaft guiding plate having an inclined end in the cavity, in a radially outward direction
  • the slanted end portion gradually increases in size in the axial direction.
  • the lateral nozzle of the lateral fuel injection device is configured such that the jet cone angle of the injected jet is between 0[deg.] and 120[deg.].
  • the first nozzle faces the outer side of the body in the axial direction, and the injection end of the first nozzle is closer to the body in the axial direction than the first outlet.
  • the gas burner further includes an auxiliary fuel injection device, the auxiliary fuel injection
  • the projecting device faces outward in the axial direction, and the injection speed of the gas in the auxiliary fuel injection device is smaller than the injection velocity of the gas in the first fuel injection device.
  • the gas burner further includes a gas delivery manifold;
  • the first fuel injection device includes a first gas delivery conduit in communication with the gas delivery manifold, the lateral fuel injection device including the gas Transporting a second gas delivery conduit in communication with the main conduit, and the second gas delivery conduit communicates the auxiliary fuel injection device with the gas delivery manifold;
  • the gas burner further includes a regulating valve, the regulating valve setting On one of the first gas delivery conduit and the second gas delivery conduit.
  • the gas burner includes a plurality of the flue gas passages and a plurality of the lateral fuel injection devices, the plurality of flue gas passages are disposed along a circumferential interval of the body, the lateral fuel injection The device is located between two adjacent flue gas channels.
  • a plurality of said first fuel injection devices are disposed in each of said flue gas passages.
  • the cross-sectional area of the flue gas passage is minimal at the first outlet.
  • FIG. 1 is a perspective view of a gas burner in accordance with a preferred embodiment of the present invention, showing a combustion mode of a gas burner;
  • Figure 2 is a schematic cross-sectional view of the gas burner of Figure 1;
  • Figure 3 is a perspective view of the end of the gas burner of Figure 1;
  • Figure 4 is a cross-sectional view showing the end portion of the gas burner of Figure 3.
  • Axis guide flow plate 43 first fuel injection device 50
  • FIGS. 1-4 illustrate a gas burner 10 in accordance with a preferred embodiment of the present invention.
  • the gas burner 10 can be used, for example, in a boiler.
  • the gas burner 10 can primarily include a body 20, a flue gas passage 30, a first fuel injection device 50, and a lateral fuel injection device 60.
  • the gas burner 10 of the present invention and its various components will be described in detail below with reference to Figs.
  • the body 20 of the gas burner 10 may be in the form of a cylinder whose side wall 21 extends in the axial direction and circumferentially surrounds the space extending in the axial direction. Cavity 22.
  • the "axial direction” means a vertical direction
  • the "radial direction” to be referred to hereinafter is perpendicular to the axial direction.
  • the shape of the body 20 is not limited to the cylindrical shape shown in Figs. In other embodiments, body 20 can be any other suitable shape.
  • the body 20 can also be a thin-walled structure having a cavity having a rectangular, elliptical or other shape in cross section.
  • a flue gas passage 30 is disposed at one end of the body 20, and the opposite end of the body 20 may be an inlet of the combustion-supporting gas b, that is, a combustion-supporting gas is introduced into the cavity 22. Gas b.
  • one end of the body 20 may be provided with three flue gas passages 30 that are disposed at equal intervals along the circumference of the body 20.
  • the plurality of flue gas passages 30 may be disposed at different intervals.
  • the flue gas passage 30 has a first inlet 31 and a first outlet 32.
  • the first inlet 31 faces the lateral direction of the body 20.
  • the first inlet 31 may be lateral to the body 20 and disposed outside of the body 20.
  • lateral refers to a direction substantially parallel to the radial direction and toward the outside of the body 20. That is to say, it may be strictly parallel to the radial direction or may be at a smaller angle with respect to the radial direction, for example 0° to 30°.
  • the first inlet 31 may be disposed toward the outside of the body 20 in the radial direction.
  • the first outlet 32 faces the axially outer side of the body 20, that is, toward the direction away from the body 20 in the axial direction.
  • the term “axial outer side toward the body” may be an axial outer side parallel to the axial direction toward the body, or may be at a small angle with respect to the axial direction, for example, 0° to 30 degrees. °.
  • the first outlet 32 may be disposed above the body 20 toward the axially outer side of the body 20 in parallel with the axial direction.
  • the first inlet 31 is closer to the body 20 in the axial direction than the first outlet 32.
  • the first outlet 32 may be disposed above the first inlet 31 in the axial direction.
  • the cross-sectional area of the flue gas passage 30 is set such that the cross-sectional area at the first inlet 31 is greater than the cross-sectional area at the first outlet 32.
  • the cross-sectional area of the flue gas passage 30 is minimal at the first outlet 32. That is, the cross-sectional area of the flue gas passage 30 can be changed according to actual needs, and only the cross-sectional area of the flue gas passage 30 needs to be minimized at the first outlet 32.
  • the flue gas passage 30 is gradually reduced from the first inlet 31 to the first outlet 32 to make the air flow more smoothly in the flue gas passage 30 and to facilitate processing and making the flue gas passage 30.
  • the shape of the flue gas passage 30 is not limited In this embodiment, the cross-sectional area of the flue gas passage 30 may also be gradually reduced and then remain unchanged, or may change in a wave shape.
  • the flue gas passage 30 may be formed by the flue gas passage member 40.
  • the flue gas passage member 40 may include an outer side plate 41, an inner side plate 42, and a shaft guide flow plate 43.
  • the shaft guide flow plate 43 is connected to both sides of the outer side plate 41 and the inner side plate 42.
  • a cavity is formed inside the smoke passage member 40, which constitutes the flue gas passage 30.
  • the outer side plate 41 and the inner side plate 42 are curved, and the axial guide flow plate 43 has a thin plate shape to make the flow of the airflow in the flue gas passage 30 smoother and smoother.
  • the flue gas passage member 40 has an upper end portion disposed in the axial direction, which end portion surrounds the first outlet 32 constituting the flue gas passage 30.
  • the outer plate 41, the inner side plate 42, and the axial guide plate 43 form the ends of the first outlet 32 in the same plane, which may be parallel to the radial direction of the body 20.
  • the ends of the first outlet 32 formed by the outer side panel 41 and the inner side panel 42 are part of a concentric annular ring.
  • the inner plate 42 forms a radius of the end of the first outlet 32 that is smaller than the radius of the cavity 22, and the radius of the end of the outer plate 41 forming the first outlet 42 is close to the radius of the cavity 22.
  • the flue gas passage member 40 has another lower end portion disposed laterally outward, the end portion surrounding the first inlet 31 constituting the flue gas passage 30.
  • the outer plate 41 and the inner plate 42 form the projections of the ends of the first inlet 31 in the axial direction completely coincident when viewed from the axial direction.
  • the ends of the first inlet 31 formed by the outer side panel 41 and the inner side panel 42 have the same radius for ease of processing and fabrication, and in particular, facilitate the attachment of the shaft guide flow plate 43 to the outer side panel 41 and the inner side panel 42.
  • the inner plate 42 forms a radius of the end of the first inlet 31 that is larger than the radius of the cavity 22.
  • the flue gas passage member 40 may integrally form a generally conical passage that is inclined with respect to the axial direction of the body such that the first outlet 32 may face the lateral direction of the body.
  • the shaft guide flow plate 43 extends in the axial direction into the cavity 22 of the body 20 and extends in the radial direction. In other words, the axial flow is observed when viewed from the axial direction.
  • the plates 43 are radially distributed within the cavity 22.
  • the shaft guide flow plate 43 may extend in the radial direction to the inner surface of the side wall 21 of the body 20.
  • the shaft guiding flow plate 43 acts as an axial flow of the combustion-supporting gas b in the cavity 22, and the shaft guiding flow plate 43 separates the flow path of the combustion-supporting gas b in the cavity 22, and the combustion-supporting gas b is The flow in each flow channel does not interfere with each other, stabilizing the flow field.
  • the shaft guide flow plate 43 has an inclined end at one end.
  • the inclined end portion is located in the cavity 22, and its dimension in the axial direction gradually increases in a radially outward direction, that is, toward the side wall 21 of the body 20 or in the direction toward the side wall 21.
  • the inclined end portion is located at a lower portion of the axial flow guide plate 43 in a radially outward direction, that is, toward the side wall 21 of the body 20 or in the direction of the side wall 21, and the axial direction.
  • the length dimension of the deflector 43 in the axial direction can be linearly increased.
  • the inclined end of the shaft guiding flow plate 43 in the cavity 22 can reduce the partial cross-sectional area of the cavity 22, that is, form a partial tapered passage for conveying the combustion-supporting gas b, and accelerate the combustion-assisting gas b.
  • the effect of rectification enhances the stability of the flame flow field during combustion, particularly the stability of the flame flow field in the auxiliary fuel injection device 70 as will be discussed hereinafter.
  • the end of the shaft guiding plate 43 located in the cavity 22 may also have no inclined structure, that is, in a radially outward direction, that is, toward the side wall of the body 20. 21 or the direction close to the side wall 21, the length of the end portion of the shaft guide flow plate 43 in the axial direction does not change.
  • the first fuel injection device 50 of the gas burner 10 is disposed in the cavity 22.
  • the first fuel injection device 50 may include a first nozzle 51 and a first gas delivery conduit 52 for supplying gas to the first nozzle 51.
  • the first nozzle 51 is disposed in the axial direction and faces the outer side of the body 20.
  • the first nozzle 51 has an injection end that is disposed toward the outside of the body 20 in the axial direction.
  • the gas burner 10 is provided with six first fuel injection devices 50 and a first nozzle 51 that are arranged to be circumferentially spaced along the body 20.
  • the number of the first fuel injection devices 50 is not limited to the present embodiment, and any other suitable number of first fuel injection devices 50 may be provided as needed. Further, the angle of the first spraying device or the first nozzle may be finely adjusted as needed, for example, inclined inward or outward in the radial direction by 0-5° or the like.
  • the first fuel injection device 50 extends through the flue gas passage 30 in the axial direction.
  • the first fuel injection device 50 may extend through the inner side plate 42 of the flue gas passage member 40.
  • the injection end of the first nozzle 51 is located in the smoke Inside the gas passage 30.
  • the injection end of the first nozzle 51 is closer to the body 20 in the axial direction than the first outlet 32 in order to form a strong negative pressure in the flue gas passage 30, which will be described later in detail.
  • the ejection end of the first nozzle 51 is located below the first outlet 32 in the axial direction.
  • first fuel injection devices 50 are disposed within each of the flue gas passages 30. Specifically, each adjacent two first fuel injection devices 50 extend in the axial direction and penetrate the same flue gas passage 30. However, the number of the first fuel injection devices 50 in each of the flue gas passages 30 is not limited to the present embodiment, and one or more than two first fuel injection devices 50 may be disposed in each of the flue gas passages as needed.
  • the gas burner 10 may further include a gas delivery manifold 25.
  • a gas a is introduced into the gas delivery main pipe 25, and the first gas delivery pipe 52 communicates the gas delivery main pipe 25 with the first nozzle 51, and the first fuel injection device 50 ejects high-speed gas through the first nozzle 51.
  • the speed of the high speed gas can be set according to the design power of the gas burner 10.
  • the speed of the high velocity gas may be 80 to 300 m/s.
  • the first nozzle 51 ejects high-speed gas at a relatively high speed, on the one hand, the gas is injected relatively far, and is relatively extended when mixed with air, so that the gas can be burned in a long time range, thereby reducing NOx generation, especially Thermal NOx generation.
  • the furnace flue gas in the flue gas passage 30 can be sucked up and ejected, and a strong negative pressure is formed in the flue gas passage 30, and the pressure in the furnace chamber is greater than the flue gas passage. The pressure inside, so the high temperature furnace flue gas c will enter the flue gas passage 30 under the action of pressure.
  • the high temperature furnace flue gas temperature is higher, which helps to stabilize the gas ignition at the first nozzle 51 and stabilize combustion in a wide load range.
  • the high-temperature furnace flue gas c is oxygen-poor, so that the combustion at the first fuel injection device 50 can be made slow, reducing the generation of NOx, particularly the generation of thermal NOx.
  • the lateral fuel injection device 60 of the gas burner 10 can include a lateral nozzle 61 and a second gas delivery conduit 62.
  • the second gas delivery conduit 62 communicates the gas delivery manifold 25 with the lateral nozzle 61 to supply the gas to the lateral nozzle 61.
  • the lateral nozzle 61 ejects the gas in the lateral direction.
  • the gas velocity ejected laterally by the lateral nozzle 61 is smaller than the gas velocity ejected by the first nozzle 51.
  • the gas burner 10 is provided with three lateral fuel injection devices 60 that are disposed at equal intervals along the circumference of the body 20 and between adjacent two flue gas passages 30. .
  • the number of the lateral fuel injection devices 60 is not limited to the embodiment, according to Any other number of lateral fuel injection devices 60 may be provided as desired.
  • the lateral nozzle 61 of the lateral fuel injection device 60 is disposed laterally outward toward the body 20.
  • the lateral nozzle 61 has an ejection end, and the ejection end of the lateral nozzle 61 is disposed laterally outward toward the body 20.
  • the lateral nozzle 61 may be disposed to extend in the radial direction and toward the outer side of the body 20.
  • the manner in which the lateral nozzles 61 are disposed is not limited to the embodiment.
  • the lateral nozzle 61 can be at an angle to the radial direction as needed.
  • the lateral nozzles 61 can be disposed at an angle to the radial direction, such as 0° to 30°.
  • the lateral nozzle 61 of the lateral fuel injection device 60 can have an expansion angle.
  • the "expansion angle" of the lateral nozzle 61 means the angle between the side wall of the lateral nozzle 61 with respect to the central axis of the lateral nozzle 61.
  • the expansion angle can be designed from 0° to 60°, for example 45°, depending on actual needs.
  • the lateral nozzle 61 of the lateral fuel injection device 60 is configured such that the jet cone angle of the gas jet injected via the lateral nozzle 61 is between 0° and 120°.
  • the jet cone angle can be designed from 0° to 120°, for example 90°, depending on actual needs, so that gas can be injected into a wider space.
  • the gas burner 10 may further include a side deflector 23 .
  • the side guide flow plate 23 may be disposed at the lateral nozzle 61 for guiding a portion of the combustion-supporting gas b in the cavity 22 to the lateral direction such that the gas discharged from the lateral nozzle 61 is mixed with the lateral combustion-supporting gas b1. After burning.
  • high temperature flue gas containing a certain amount of nitrogen-containing chemical intermediate can be generated, so that fresh high-temperature flue gas is always present in the flue gas distributed around the gas burner 10.
  • the lateral fuel injection device 60 can split a portion of the gas to cause partial combustion of the gas to occur laterally at the end of the gas burner 10, reducing the first fuel injection device 50 of the gas burner 10 and will be mentioned below.
  • the combustion load of the auxiliary fuel injection device 70 (if provided) is advantageous for reducing the generation of thermal NOx.
  • the side deflector 23 is disposed between the adjacent two flue gas passage members 40 and is mounted on the adjacent two axial guide plates 43. on. In this way, it is not necessary to provide an additional mounting member to mount the side guide flow plate 23.
  • the mounting position of the side deflector 23 in the axial direction is adjustable to achieve a desired lateral combustion gas flow rate.
  • a plurality of mounting holes may be provided in the axial direction on the shaft guide flow plate 43.
  • the side deflector 23 can be selectively attached to the shaft guide plate 43 by a fastener (for example, a bolt) or the like according to actual conditions (for example, the type of the combustion-supporting gas actually used, etc.).
  • a fastener for example, a bolt
  • the side guide flow plate 23 can be adjustably mounted to the shaft guide flow plate 43 in other directions in the axial direction.
  • the gas burner 10 may be provided with three side deflector plates 23, however, the number of side deflector plates 23 is not limited to this embodiment, and any other number of side deflector plates 23 may be provided as needed.
  • the side guide flow plate 23 is disposed at the lateral nozzle 61, and the lateral nozzle 61 extends through the side guide flow plate 23.
  • the side guide flow plate 23 may include a first portion 231 and a second portion 232.
  • the first portion 231 extends generally in the axial direction and is disposed within the cavity, and the second portion 232 is coupled to the first portion 231.
  • the second portion 232 can extend ⁇ 30° with respect to the radial direction, i.e., the second portion 232 extends at an angle of between 0° and 30° with respect to the radial direction.
  • the second portion 232 extends in a radial direction.
  • the combustion-supporting gas in the cavity 22 flows through the side deflector 23 and along the side deflector 23 to flow into the lateral extent of the end of the body 20, mixing and combusting with the gas supplied from the lateral nozzle 61.
  • the connection between the first portion 231 and the second portion 232 may be a circular arc connection, so that the combustion gas is better guided.
  • the junction of the first portion 231 and the second portion 232 can also be at an angle.
  • the first portion 231 and the second portion 232 are connected at right angles.
  • the projection of the ejection end of the lateral nozzle 61 in the axial direction is located inside the body 20 when viewed from the axial direction, and the projection of the second portion 232 of the side deflector 23 in the axial direction is at least partially Located outside of the body 20. That is, the end of the second portion 232 is farther in the radial direction than the injection end of the lateral nozzle 61 from the central axis of the body 20.
  • the gas burner 10 may further include an auxiliary fuel injection device 70.
  • the auxiliary fuel injection device 70 is also disposed at the end of the body 20 and faces outward in the axial direction.
  • the injection speed of the gas in the auxiliary fuel injection device 70 is smaller than the injection speed of the gas in the first fuel injection device 50. Since the injection speed of the gas in the auxiliary fuel injection device 70 is low, the auxiliary fuel injection device 70 can achieve stable combustion of the gas burner 10.
  • the gas burner 10 can be provided with three auxiliary fuel injection devices 70.
  • the number of auxiliary fuel injection devices 70 is not limited to the present embodiment, and any suitable number of auxiliary fuel injection devices 70 may be provided as needed.
  • the auxiliary fuel injection device 70 may include an auxiliary nozzle 71 and a third gas delivery pipe 72 (that is, the second gas delivery pipe 62).
  • the auxiliary nozzles 71 are disposed to be spaced apart in the circumferential direction of the body 20 and toward the axially outer side of the body 20.
  • the auxiliary nozzle 71 has an injection end which is disposed in the axial direction.
  • the auxiliary nozzle 71 is disposed between the adjacent two axial guide plates 43 (outside of the flue gas passage 30) and is located above the lateral nozzle 61 at a certain distance from the lateral nozzle 61.
  • the auxiliary nozzle 71 is disposed coaxially with the first nozzle 51.
  • the auxiliary nozzle 71 may be further away from the body in the axial direction than the first nozzle 51.
  • the axial height of the injection end of the auxiliary nozzle 71 is higher than the axial height of the injection end of the first nozzle 51.
  • the axial height of the injection end of the auxiliary nozzle 71 may also be equal to or lower than the axial height of the injection end of the first nozzle 51.
  • the third gas delivery conduit 72 communicates the auxiliary nozzle 71 with the gas delivery manifold 25 to supply the auxiliary nozzle 71 with gas.
  • the gas injection speed of the auxiliary fuel injection device 70 is smaller than the gas injection speed of the first fuel injection device 50.
  • the gas injection speed of the auxiliary nozzle 71 is smaller than the gas injection speed of the first nozzle 51.
  • the third gas delivery conduit 72 and the second gas delivery conduit 62 may use different conduits to respectively deliver the gas, but in the preferred embodiment, the third gas delivery conduit 72 and the second gas delivery conduit
  • the conduits 62 can be the same conduit to reduce cost. Therefore, in the following description, only the second gas delivery conduit 62 will be used for explanation.
  • the pipe diameter of the first gas delivery pipe 52 may be smaller than the pipe diameter of the second gas delivery pipe 62 such that the injection speed of the gas in the first fuel injection device 50 is higher, and the auxiliary fuel injection device 70 and the lateral fuel injection device The injection speed of the gas in 60 is low.
  • the pipe diameter of the first gas delivery pipe 52 may be equal to the pipe diameter of the second gas delivery pipe.
  • the gas burner 10 may further include a regulating valve 24, and the regulating valve 24 may be disposed on one of the first gas delivery conduit 52 and the second gas delivery conduit 62 to adjust the flow rate of the gas in each gas pipeline, thereby The injection speed of the gas in each fuel injection device is controlled and the operating state of the gas burner 10 is adjusted. This will be described in detail below.
  • the auxiliary fuel injection device 70 may also include a flame shield 74.
  • a stabilizing flame shield 74 may be disposed on the auxiliary nozzle 71. The flame shield 74 can cause the fuel injection in the auxiliary fuel injection device 70 The burning flame is more stable.
  • FIGS. 1 and 2 clearly show the flame flow field and combustion mode of the gas burner 10.
  • the flame flow field and combustion mode of the gas burner 10 will be described in detail below with reference to FIGS. 1 and 2.
  • the first fuel injection device 50 ejects high-speed gas, and a large negative pressure is generated in the flue gas passage 30 while sucking a large amount of flue gas in the flue gas passage 30 due to the Venturi effect. .
  • This negative pressure induces the high temperature furnace flue gas c into the flue gas passage 30.
  • the lateral fuel injection device 60 ejects the lateral gas, and the lateral gas and the lateral combustion gas b1 led by the side deflector 23 are mixed and burned to generate the lateral flame 63. Due to the Venturi effect, the high temperature flue gas generated by the lateral flame 63 enters the flue gas passage 30 under pressure by the surrounding high temperature furnace flue gas.
  • the components of the high-speed gas flame of the first fuel injection device 50 may mainly include gas, high-temperature furnace flue gas, and high-temperature flue gas generated by the lateral flame 63.
  • the high-speed high temperature flue gas, the flame temperature of flue gas side 63 and has a characteristic of generating oxygen-deficient, fuel-rich, therefore, possible to burn more slowly, reducing the content of NO X.
  • due to the high temperature flue gas side of the flame 63 produced contains a certain amount of nitrogen-containing chemical intermediate, which intermediate is conducive to reducing NO X to nitrogen, can effectively reduce the content of NO X.
  • the lateral fuel injection device 60 can divert part of the gas to cause partial combustion of the gas to occur laterally at the end of the gas burner 10, reducing the combustion load of the first fuel injection device 50 of the gas burner, which is advantageous for reducing the heat. Type NOx formation.
  • the high temperature furnace flue gas and the side flame 63 which are sucked into the flue gas passage 30 have a high temperature of the high temperature flue gas, it contributes to stabilizing the gas ignition at the first nozzle 51 in a wide load range. Stable combustion inside. Therefore, the combination of the first fuel injection device, the flue gas passage, and the lateral fuel injection device can effectively achieve low nitrogen combustion and can stably burn over a wide load range.
  • the fuel sprayed from the auxiliary fuel injection device 70 is mixed with the combustion-supporting gas and burned to generate the auxiliary flame 73. Since the gas velocity of the auxiliary nozzle 71 is relatively low, and the flame shield 74 is attached to the auxiliary nozzle 71, the auxiliary fuel injection device 70 can achieve stable combustion.
  • the gas distribution ratio between the first fuel injection device 50, the lateral fuel injection device 60, and the auxiliary fuel injection device 70 can be realized, and the operating state under different loads and different fuels can be adjusted.
  • the operating state of the gas burner 10 can be adjusted between a low nitrogen combustion mode and a stable combustion mode. Wherein, in the low nitrogen combustion mode, the gas distribution ratio of the first fuel injection device 50 can be increased, and the high speed can be enhanced.
  • the gas flame enhances the internal circulation mechanism of the flue gas and strengthens the low nitrogen combustion mode; in the stable combustion mode, the gas distribution ratio of the lateral fuel injection device 60 and the auxiliary fuel injection device 70 can be increased, thereby reinforcing the lateral flame 63 and The flame 73 is assisted to enhance the stable combustion mode.
  • stable combustion and low nitrogen emissions are achieved over a wide load range.
  • the burner of the present invention by providing a flue gas passage at one end of the body, the cross-sectional area of the flue gas passage at the inlet is larger than the cross-sectional area at the outlet, and the burner further includes the first fuel injection device and the lateral fuel The spraying device, whereby the first fuel injection device can inject high-speed gas and roll a large amount of furnace flue gas in the smoking gas passage, thereby forming a negative pressure in the flue gas passage, and the pressure in the furnace chamber is greater than the pressure in the flue gas passage, The high-temperature furnace flue gas around the gas burner is continuously ignited into the flue gas channel under the action of pressure, thus forming a passage for the flue gas circulation.
  • a lateral fuel injection device By providing a lateral fuel injection device, fresh high-temperature flue gas generated by the lateral flame is always distributed in the lateral direction of the end portion of the gas burner, and the flue gas enters the flue gas passage along with the flue gas And intimately mixing with the gas ejected from the first fuel injection device. Due to the high-oxygen gas, high-temperature furnace flue gas and high-temperature flue gas generated by the lateral flame, the oxygen-poor and fuel-rich characteristics make the combustion slow and reduce the emission of NOx, especially thermal NOx. Further, since the fuel injection device laterally injected gas to produce a quantity of nitrogenous substances combustion chemical intermediate, and then restore beneficial mechanism of NO X, can further reduce NOx emissions.
  • the lateral fuel injection device can divert part of the gas, so that the combustion of part of the gas occurs laterally at the end of the gas burner, which reduces the combustion load of the first fuel injection device of the gas burner, and is beneficial for reducing the thermal NOx. generate.
  • the high temperature furnace flue gas and the side flame generated in the flue gas passage have a high temperature of the high temperature flue gas, it helps to stabilize the gas ignition at the first nozzle and stabilize combustion in a wide load range.
  • the gas burner according to the present invention can effectively achieve low nitrogen combustion and is capable of stable combustion over a wide load range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Abstract

一种燃气燃烧器(10),包括本体(20)、烟气通道(30)、第一燃料喷射装置(50)以及侧向燃料喷射装置(60)。本体(20)具有沿轴向方向延伸的侧壁(21),侧壁(21)围成空腔(22)。烟气通道(30)设置在本体(20)的一端并且具有第一入口(31)和第一出口(32)。第一入口(31)朝向本体(20)的侧向,第一出口(32)朝向本体(20)的轴向外侧,并且烟气通道(30)的第一入口(31)处的横截面面积大于第一出口(32)处的横截面面积。第一燃料喷射装置(50)设置在空腔(22)中并且延伸穿入烟气通道(30)。第一燃料喷射装置(50)包括第一喷嘴(51),第一喷嘴(51)的喷射端位于烟气通道(30)内。侧向燃料喷射装置(60)包括侧向喷嘴(61),侧向喷嘴(61)朝向本体(20)的侧向。该燃气燃烧器(10)能够有效地实现低氮燃烧,并且能够在宽负荷范围内稳定燃烧。

Description

燃气燃烧器 技术领域
本发明涉及燃烧设备领域,具体地,涉及一种燃气燃烧器。
背景技术
随着环保概念在工业领域里的不断深化与落实,全球对化石燃料的燃烧污染物排放都进行了严格的限制。其中,在燃气燃烧领域,国家及地方标准就地理区域、行业、工业应用设备的不同对各类燃气燃烧设备的污染物排放量进行了非常严格的限制。氮氧化物的低排放能力成了衡量燃烧设备的一个最重要的技术指标。
在燃料燃烧过程中,氮氧化物的主要来源有三类:燃料型NOx、热力型NOx和快速型NOx。对于煤类燃料而言,燃料型NOx是最主要的来源,而对于含氮成分很少的气体类燃料而言,因其燃烧速率较快、燃料热值较高、烟气温度较高,导致其氮氧化物的主要来源是热力型NOx和快速型NOx。
在燃气燃烧领域,低氮燃气燃烧技术主要有两大类:(1)低氮燃气燃烧器;(2)炉膛内低氮燃烧控制技术。在当今工业技术领域,两大类减排措施往往结合使用以达到更加高的低氮排放性能。
据工业实践经验表明,现有的低氮燃气燃烧器存在着以下问题:(1)宽负荷范围内燃烧不稳定;(2)宽负荷范围内低氮排放能力不稳定;(3)燃烧器燃烧模式单一等。
因此,需要提供一种燃气燃烧器,以至少部分地解决现有技术中存在的问题。
发明内容
在发明内容部分中引入了一系列简化形式的概念,这将在具体实施例部分中进一步详细说明。本发明的发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定 所要求保护的技术方案的保护范围。
为至少部分地解决上述问题,本发明提供一种燃气燃烧器,包括:
本体,所述本体具有沿轴向方向延伸的侧壁,所述侧壁围成空腔;
烟气通道,所述烟气通道设置在所述本体的一端,所述烟气通道具有第一入口和第一出口,所述第一入口朝向所述本体的侧向,所述第一出口朝向所述本体的轴向外侧,并且所述烟气通道的所述第一入口处的横截面面积大于所述第一出口处的横截面面积;
第一燃料喷射装置,所述第一燃料喷射装置设置在所述空腔中并且延伸穿入所述烟气通道,所述第一燃料喷射装置包括第一喷嘴,所述第一喷嘴的喷射端位于所述烟气通道内;以及
侧向燃料喷射装置,所述侧向燃料喷射装置包括侧向喷嘴,所述侧向喷嘴朝向所述本体的侧向。
根据以上技术方案,在燃烧器本体的一端设置烟气通道,烟气通道在入口处的横截面面积大于出口处的横截面面积,并且燃烧器还包括第一燃料喷射装置和侧向燃料喷射装置。由此,第一燃料喷射装置可以喷射高速燃气,并卷吸烟气通道内的大量炉膛烟气,因此在烟气通道中形成负压,炉膛内的压力大于烟气通道内的压力,燃气燃烧器周边的高温炉膛烟气在压力的作用下源源不断的被引射到烟气通道内,因而形成一个烟气内循环的通道。通过设置侧向燃料喷射装置,使得在燃气燃烧器的端部侧向范围内始终分布有由侧向火焰产生的新鲜的高温烟气,该烟气随着炉膛烟气一起进入到烟气通道内,并与第一燃料喷射装置喷出的燃气进行充分混合。由于高速燃气、高温炉膛烟气以及由侧向火焰产生的高温烟气具有贫氧、富燃料的特性,使得燃烧缓慢,能够降低NOx,特别是热力型NOx的排放。此外,由于侧向燃料喷射装置喷射出的燃气燃烧后产生有一定量的含氮化学中间物质,有利于NOX的再还原机制,能够进一步降低NOx的排放。而且侧向燃料喷射装置可以分流部分燃气,使部分燃气的燃烧发生在燃气燃烧器的端部的侧向,降低了燃气燃烧器的第一燃料喷射装置的燃烧负荷,有利于降低热力型NOx的生成。另外,由于卷吸到烟气通道中的高温炉膛烟气和侧向火焰产生的高温烟气温度较高,因此能够稳定第一喷嘴处的燃气着火,在宽负荷范围内稳定燃烧。
优选地,所述烟气通道的横截面面积从所述第一入口到所述第一出口逐渐减小。由此,烟气通道构造为渐缩通道,对助燃气体起到提速整流的作用。
优选地,所述第一入口比所述第一出口沿轴向方向更靠近所述本体。
优选地,所述侧向导流板设置在所述侧向喷嘴处,用于向所述侧向喷嘴导流助燃气体。
优选地,所述侧向导流板包括第一部分和第二部分,所述第一部分设置在所述空腔中并大致沿所述轴向方向延伸,所述第二部分连接至所述第一部分,并且相对于所述径向方向成夹角地延伸,所述夹角为0°至30°。
优选地,所述烟气通道由烟气通道构件形成,所述烟气通道构件包括弧形的外侧板、弧形的内侧板和连接至所述外侧板和所述内侧板的两侧的轴向导流板,其中,所述第一燃料喷射装置穿过所述内侧板。
优选地,所述内侧板和所述外侧板形成所述第一出口的端部位于同一平行于所述本体的径向方向的平面内,两者形成同心圆环的一部分。
优选地,所述内侧板形成所述第一出口的端部的半径小于所述空腔的半径,所述内侧板形成所述第一入口的端部的半径大于所述空腔的半径。
优选地,所述内侧板形成所述第一入口的端部的半径等于所述外侧板形成所述第一入口的端部的半径。
优选地,所述轴向导流板沿轴向方向延伸进入所述空腔,并且沿径向方向延伸,所述侧向导流板安装至所述轴向导流板。
优选地,所述侧向导流板沿所述轴向方向位置可调节地安装至所述轴向导流板。
优选地,所述轴向导流板沿径向方向延伸至所述侧壁的内表面,所述轴向导流板在所述空腔内具有倾斜的端部,沿径向向外的方向,所述倾斜的端部沿轴向方向的尺寸逐渐增大。
优选地,所述侧向燃料喷射装置的侧向喷嘴构造为使得所喷射的射流的射流锥角为0°至120°。
优选地,所述第一喷嘴沿轴向方向朝向所述本体的外侧,并且所述第一喷嘴的喷射端部沿所述轴向方向比所述第一出口更靠近所述本体。
优选地,所述燃气燃烧器还包括辅助燃料喷射装置,所述辅助燃料喷 射装置沿所述轴向方向朝向外侧,所述辅助燃料喷射装置中的燃气的喷射速度小于所述第一燃料喷射装置中的燃气的喷射速度。
优选地,所述燃气燃烧器还包括燃气输送总管道;所述第一燃料喷射装置包括与所述燃气输送总管道连通的第一燃气输送管道,所述侧向燃料喷射装置包括与所述燃气输送总管道连通的第二燃气输送管道,并且所述第二燃气输送管道将所述辅助燃料喷射装置与所述燃气输送总管道连通;所述燃气燃烧器进一步包括调节阀,所述调节阀设置在所述第一燃气输送管道和所述第二燃气输送管道中的一个上。
优选地,所述燃气燃烧器包括多个所述烟气通道和多个所述侧向燃料喷射装置,所述多个烟气通道沿所述本体的周向间隔设置,所述侧向燃料喷射装置位于相邻两个所述烟气通道之间。
优选地,每个所述烟气通道内设置多个所述第一燃料喷射装置。
优选地,所述烟气通道的横截面面积在所述第一出口处最小。
附图说明
本发明实施例的下列附图在此作为本发明的一部分用于理解本发明。附图中示出了本发明的实施例及其描述,用来解释本发明的原理。在附图中,
图1为根据本发明的一个优选实施例的燃气燃烧器的立体示意图,其中示出了燃气燃烧器的燃烧模式;
图2为图1中的燃气燃烧器的剖面示意图;
图3为图1中的燃气燃烧器的端部的立体示意图;以及
图4为图3中的燃气燃烧器的端部剖面示意图。
附图标记说明:
燃气燃烧器10
本体20              侧壁21
空腔22              侧向导流板23
调节阀24            燃气输送总管道25
第一部分231         第二部分232
烟气通道30          第一入口31
第一出口32          烟气通道构件40
外侧板41            内侧板42
轴向导流板43        第一燃料喷射装置50
第一喷嘴51          第一燃气输送管道52
高速火焰53          侧向燃料喷射装置60
侧向喷嘴61          第二燃气输送管道62
侧向火焰63          辅助燃料喷射装置70
辅助喷嘴71          第三燃气输送管道72
辅助火焰73          稳焰罩74
燃气a               助燃气体b
高温炉膛烟气c       侧向助燃气体b1
具体实施例
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员来说显而易见的是,本发明实施例可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明实施例发生混淆,对于本领域公知的一些技术特征未进行描述。
为了彻底了解本发明实施例,将在下列的描述中提出详细的结构。显然,本发明实施例的施行并不限定于本领域的技术人员所熟习的特殊细节。
图1-图4示出了根据本发明的一个优选实施例的燃气燃烧器10。燃气燃烧器10例如可以用于锅炉中。如图1-图4所示,燃气燃烧器10主要可以包括本体20、烟气通道30、第一燃料喷射装置50以及侧向燃料喷射装置60。下面将结合图1-图4对本发明的燃气燃烧器10及其各个部件进行详细说明。
如图1和图2所示,在本实施例中,燃气燃烧器10的本体20可以呈圆柱体,其侧壁21沿轴向方向延伸,并且周向地围绕形成沿轴向方向延伸的空腔22。具体地,在本实施例中,当燃气燃烧器10如图2所示地安装时,“轴向方向”是指竖直方向,下文将要提到的“径向方向”是指垂直于轴向方向的水平方向。本体20的形状不限于图1-图4中所示出的圆柱形。 在其他实施例中,本体20可以为其他任何合适的形状。例如,本体20也可以为横截面为矩形、椭圆形或者其他形状的具有空腔的薄壁结构。
为了能够实现燃气燃烧器10的烟气内循环,在本体20的一端设置有烟气通道30,本体20的相对的另一端可以为助燃气体b的入口,即在空腔22内通入有助燃气体b。在本优选实施例中,本体20的一端可以设置有三个烟气通道30,该三个烟气通道30设置为沿本体20的周向等间隔设置。本领域技术人员可以理解,根据需要,可以设置一个或任何其他合适数量的多个烟气通道30。其中,在设置有多个烟气通道30的情况下,多个烟气通道30也可以间隔不等地设置。
如图3所示,烟气通道30具有第一入口31和第一出口32。第一入口31朝向本体20的侧向。优选地,第一入口31可以朝向本体20的侧向并设置在本体20的外部。需要说明的是,本文所说的“侧向”是指基本上平行于径向方向并且朝向本体20的外部的方向。也就是说,其可以严格地平行于径向方向,也可以相对于径向方向成较小的角度,例如0°至30°。具体地,在本实施例中,如图3所示,第一入口31可以沿径向方向朝向本体20的外部设置。第一出口32朝向本体20的轴向外侧,即朝向沿轴向方向远离本体20的方向。需要说明的是,本文所说的“朝向本体的轴向外侧”可以是沿平行于轴向方向朝向本体的轴向外侧,也可以相对于轴向方向成较小的角度,例如0°至30°。具体地,在本实施例中,如图3所示,第一出口32可以平行于轴向方向朝向本体20的轴向外侧设置在本体20的上方。优选地,第一入口31沿轴向方向比第一出口32更靠近本体20。具体地,在本实施例中,第一出口32可以设置在第一入口31沿轴向方向的上方。
为了形成文丘里效应以便于烟气的流动,烟气通道30的横截面面积设置为在第一入口31处的横截面面积大于第一出口32处的横截面面积。优选地,烟气通道30的横截面面积在第一出口32处最小。即烟气通道30的横截面面积可以根据实际需要改变,只需要满足烟气通道30的横截面面积在第一出口32处最小即可。作为示例,在本实施例中,烟气通道30从第一入口31到第一出口32逐渐减小,以使气流在烟气通道30中流动时更顺畅并且便于加工和制作烟气通道30。然而,烟气通道30的形状不限于 本实施例,烟气通道30的横截面积也可以先逐渐减小然后保持不变,或者呈波浪形变化。
具体地,如图2-图4所示,在本实施例中,烟气通道30可以由烟气通道构件40形成。烟气通道构件40可以包括外侧板41、内侧板42和轴向导流板43。轴向导流板43连接至外侧板41和内侧板42的两侧。这样,在烟气通道构件40的内部形成空腔,该空腔构成了烟气通道30。如图2和图3所示,优选地,外侧板41和内侧板42呈弧形,轴向导流板43呈薄板状,以使得气流在烟气通道30中的流动更平稳顺畅。
由图2和图3可以清晰地看出,烟气通道构件40具有沿轴向方向设置的靠上的端部,该端部围绕构成烟气通道30的第一出口32。具体地,外侧板41、内侧板42和轴向导流板43形成第一出口32的端部位于同一平面内,该平面可以平行于本体20的径向方向。更具体地,外侧板41和内侧板42形成的第一出口32的端部为同心圆环的一部分。这样可以使得第一出口32的开口大小在所述同心圆环的径向方向上是恒定的,从而使得从第一出口32出来的气流更加平稳顺畅。优选地,如图4所示,内侧板42形成第一出口32的端部的半径小于空腔22的半径,外侧板41形成第一出口42的端部的半径接近空腔22的半径。
另一方面,优选地,烟气通道构件40具有沿侧向向外设置的另一靠下的端部,该端部围绕构成烟气通道30的第一入口31。具体地,当从轴向方向观察时,外侧板41和内侧板42形成第一入口31的端部在轴向方向上的投影完全重合。更具体地,外侧板41和内侧板42形成的第一入口31的端部的半径相等,以便于加工和制作,特别是便于将轴向导流板43连接至外侧板41和内侧板42的两侧。优选地,在本实施例中,内侧板42形成第一入口31的端部的半径大于空腔22的半径。如前所述的,由于内侧板42形成第一出口32的端部的半径小于空腔22的半径,因此,当内侧板42形成第一入口31的端部的半径大于空腔22的半径时,烟气通道构件40可以整体上可以形成一个相对于本体的轴向方向倾斜的大致锥形的通道,使得第一出口32可以朝向本体的侧向。
此外,优选地,轴向导流板43沿轴向方向延伸进入本体20的空腔22内,并且沿径向方向延伸。换句话说,当从沿轴向方向观察时,轴向导流 板43在空腔22内呈放射状分布。具体地,轴向导流板43可以沿径向方向延伸至本体20的侧壁21的内表面。轴向导流板43在空腔22内起到对助燃气体b的轴向导流作用,轴向导流板43在空腔22内将助燃气体b的流道分隔开,助燃气体b在各流道内的流动互相不干扰,稳定了流场。
优选地,轴向导流板43在一端处具有倾斜的端部。具体地,该倾斜的端部位于空腔22中,且沿径向向外的方向,即朝向本体20的侧壁21或靠近侧壁21的方向,其沿轴向方向的尺寸逐渐增大。具体地,如图2所示,该倾斜的端部位于轴向导流板43的下部,沿径向向外的方向,即朝向本体20的侧壁21或靠近侧壁21的方向,轴向导流板43沿轴向方向的长度尺寸可以线性增大。轴向导流板43位于空腔22中的倾斜的端部可以使得空腔22在局部横截面面积减小,即形成用于输送助燃气体b的局部渐缩通道,对助燃气体b起到提速整流的作用,能增强燃烧时火焰流场的稳定性,特别是下文中将要提到的辅助燃料喷射装置70中火焰流场的稳定性。可选地,在其他实施例中,轴向导流板43位于空腔22中的端部也可以没有倾斜的结构,也就是说,沿径向向外的方向,即朝向本体20的侧壁21或靠近侧壁21的方向,轴向导流板43的端部沿轴向方向的长度尺寸不变。
如图2-4所示,燃气燃烧器10的第一燃料喷射装置50设置在空腔22中。第一燃料喷射装置50可以包括第一喷嘴51和用于向第一喷嘴51供应燃气的第一燃气输送管道52。优选地,第一喷嘴51沿轴向方向设置且朝向本体20的外侧。具体地,如图4可以清晰地看出,第一喷嘴51具有喷射端,该喷射端设置为沿轴向方向朝向本体20的外侧。在本优选实施例中,燃气燃烧器10设置有六个第一燃料喷射装置50和第一喷嘴51,其设置为沿本体20周向间隔设置。然而,第一燃料喷射装置50的数量不限于本实施例,可以根据需要设置任何其他合适数量的第一燃料喷射装置50。此外,根据需要,第一喷射装置或第一喷嘴的角度也可以根据需要进行微调,例如沿径向向内或向外倾斜0-5°等。
优选地,第一燃料喷射装置50沿轴向方向延伸穿入烟气通道30。具体地,在本实施例中,如图2-图4所示,第一燃料喷射装置50可以延伸穿过烟气通道构件40的内侧板42。优选地,第一喷嘴51的喷射端位于烟 气通道30内。具体地,第一喷嘴51的喷射端沿轴向方向比第一出口32更靠近本体20,以便于在烟气通道30中形成强烈的负压,这将在后文中详细说明。具体地,在本实施例中,如图3所示,第一喷嘴51的喷射端沿轴向方向位于第一出口32的下方。在本优选实施例中,每个烟气通道30内设置有两个第一燃料喷射装置50。具体地,每相邻的两个第一燃料喷射装置50沿轴向方向延伸穿入同一个烟气通道30。然而,每个烟气通道30内第一燃料喷射装置50的数量不限于本实施方式,根据需要,可以在每个烟气通道内设置有一个或多于两个的第一燃料喷射装置50。
此外,为了给第一燃料喷射装置50输送燃气,燃气燃烧器10还可以包括燃气输送总管道25。在燃气输送总管道25内通入燃气a,第一燃气输送管道52将燃气输送总管道25与第一喷嘴51连通,第一燃料喷射装置50通过第一喷嘴51喷射出高速燃气。高速燃气的速度可以根据燃气燃烧器10的设计功率不同而设定。优选地,高速燃气的速度可以为80至300m/s。第一喷嘴51以较高的速度喷出高速燃气,一方面可以使得燃气喷射得比较远,与空气混合时相对延长,使得燃气可以在较长时间范围内燃烧,降低了NOx的生成,特别是热力型NOx的生成。另一方面,根据文丘里效应,可以将烟气通道30内的炉膛烟气卷吸并喷出,此时在烟气通道30内就会形成强烈的负压,炉膛内的压力大于烟气通道内的压力,因此高温炉膛烟气c在压力的作用下就会进入烟气通道30内。一方面,高温炉膛烟气温度较高,有助于稳定第一喷嘴51处的燃气着火,在宽负荷范围内稳定燃烧。另一方面,高温炉膛烟气c是贫氧的,因此可以使得第一燃料喷射装置50处的燃烧缓慢,降低了NOx的生成,特别是热力型NOx的生成。
如图4所示,燃气燃烧器10的侧向燃料喷射装置60可以包括侧向喷嘴61和第二燃气输送管道62。第二燃气输送管道62将燃气输送总管道25与侧向喷嘴61连通,以将燃气供应至侧向喷嘴61。侧向喷嘴61沿侧向方向喷射出燃气。其中,侧向喷嘴61侧向喷出的燃气速度小于第一喷嘴51喷出的燃气速度。
在本优选实施例中,燃气燃烧器10设置有三个侧向燃料喷射装置60,侧向燃料喷射装置60设置为沿本体20周向等间隔设置,并且位于相邻两个烟气通道30之间。侧向燃料喷射装置60的数量不限于本实施例,根据 需要,可以设置任何其他数量的侧向燃料喷射装置60。
优选地,侧向燃料喷射装置60的侧向喷嘴61朝向本体20的侧向向外设置。具体地,侧向喷嘴61具有喷射端,侧向喷嘴61的喷射端朝向本体20的侧向向外设置。进一步优选地,侧向喷嘴61可以设置为沿径向方向延伸且朝向本体20的外侧。然而,侧向喷嘴61的设置方式并不限于本实施例。根据需要,侧向喷嘴61可以与径向方向成一定的角度。例如,在其他实施例中,侧向喷嘴61可以设置为与径向方向成一定的角度,例如0°至30°。侧向燃料喷射装置60的侧向喷嘴61可以具有扩张角。需要说明的是,在本申请中,侧向喷嘴61的“扩张角”是指侧向喷嘴61的侧壁相对于侧向喷嘴61的中心轴线之间的角度。作为示例,扩张角可以根据实际需要设计为0°至60°,例如45°。优选地,侧向燃料喷射装置60的侧向喷嘴61构造为使得经由侧向喷嘴61所喷射的燃气射流的射流锥角为0°至120°。作为示例,该射流锥角可以根据实际需要设计为0°至120°,例如90°,以使得燃气可以喷射到较宽泛的空间中。
此外,燃气燃烧器10还可以包括侧向导流板23。侧向导流板23可以设置在侧向喷嘴61处,用于将空腔22内的助燃气体b的一部分导流到侧向方向,使得侧向喷嘴61喷出的燃气与侧向助燃气体b1混合之后燃烧。一方面,可以生成含有一定量的含氮化学中间产物的高温烟气,可以使得燃气燃烧器10的周围侧向分布的烟气中总是存在新鲜的高温烟气。这些高温烟气也可以由于文丘里效应而与高温炉膛烟气一起被卷吸到烟气通道30中,有利于NOx的还原机制,从而可以实现燃气燃烧器10的低氮燃烧。另一方面,侧向燃料喷射装置60可以分流部分燃气,使部分燃气的燃烧发生在燃气燃烧器10的端部的侧向,降低了燃气燃烧器10的第一燃料喷射装置50和下文将要提到的辅助燃料喷射装置70(如果设置了的话)的燃烧负荷,有利于降低热力型NOx的生成。
具体地,在本实施例中,如图3和图4所示,侧向导流板23设置在相邻两个烟气通道构件40之间,并安装在相邻两个轴向导流板43上。以此方式,可以不需要提供额外的安装部件来安装侧向导流板23。优选地,侧向导流板23沿轴向方向的安装位置可调节,以得到期望的侧向助燃气体流速。例如,可以在轴向导流板43上沿轴向方向设置多个安装孔。安装侧 向导流板23时,可以根据实际情况(例如,实际使用的助燃气体的种类等)选择性地通过紧固件(例如螺栓)等将侧向导流板23安装至轴向导流板43上的多个安装孔的一个中。当然,本领域技术人员可以理解,侧向导流板23可以以其他方式沿轴向方向位置可调节地安装至轴向导流板43。在本优选实施例中,燃气燃烧器10可以设置有三个侧向导流板23,然而,侧向导流板23的数量不限于本实施例,可以根据需要设置任何其他数量的侧向导流板23。
优选地,如图4所示,侧向导流板23设置在侧向喷嘴61处,并且侧向喷嘴61延伸穿过侧向导流板23。侧向导流板23可以包括第一部分231和第二部分232。第一部分231大致沿轴向方向延伸,并设置在空腔内,第二部分232与第一部分231连接。第二部分232可以相对于径向方向成±30°延伸,即第二部分232相对于径向方向成0°至30°的夹角地延伸。优选地,第二部分232沿径向方向延伸。空腔22内的助燃气体经过侧向导流板23并沿着侧向导流板23流动,从而流动到本体20端部的侧向范围内,与侧向喷嘴61提供的燃气混合燃烧。
优选地,第一部分231和第二部分232的连接处可以为圆弧连接,这样对助燃气体的起到更好的导流效果。当然,第一部分231和第二部分232的连接处为也可以成一定的角度。可选地,第一部分231和第二部分232成直角连接。进一步优选地,当从轴向方向观察时,侧向喷嘴61的喷射端沿轴向方向的投影位于本体20内部,侧向导流板23的第二部分232的沿轴向方向的投影至少部分地位于本体20的外部。也就是说,第二部分232的端部沿径向方向比侧向喷嘴61的喷射端离本体20的中心轴线更远。
此外,如图2-图4所示,燃气燃烧器10还可以包括辅助燃料喷射装置70。辅助燃料喷射装置70也设置在本体20的端部,并且沿轴向方向朝向外侧。辅助燃料喷射装置70中的燃气的喷射速度小于第一燃料喷射装置50中的燃气的喷射速度。由于辅助燃料喷射装置70中的燃气的喷射速度较低,因此,辅助燃料喷射装置70可以实现燃气燃烧器10的稳定燃烧。在本优选实施例中,燃气燃烧器10可以设置有三个辅助燃料喷射装置70。然而,辅助燃料喷射装置70的数量不限于本实施例,可以根据需要设置任何合适数量的辅助燃料喷射装置70。
具体地,在本实施例中,如图2-图4所示,辅助燃料喷射装置70可以包括辅助喷嘴71和第三燃气输送管道72(也即第二燃气输送管道62)。辅助喷嘴71设置为沿本体20的周向间隔开,并且朝向本体20的轴向外侧。具体地,由图3可以清晰地看出,辅助喷嘴71具有喷射端,该喷射端沿轴向方向设置。辅助喷嘴71设置在相邻两个轴向导流板43之间(烟气通道30的外部)并且位于侧向喷嘴61的上方与侧向喷嘴61间隔一定的距离。优选地,辅助喷嘴71与第一喷嘴51同轴布置。辅助喷嘴71沿轴向方向可以比第一喷嘴51更远离本体。具体地,如图4所示,辅助喷嘴71的喷射端的轴向高度高于第一喷嘴51的喷射端的轴向高度。可选地,辅助喷嘴71的喷射端的轴向高度也可以等于或低于第一喷嘴51的喷射端的轴向高度。
第三燃气输送管道72将辅助喷嘴71和燃气输送总管道25连通,以向辅助喷嘴71供应燃气。优选地,辅助燃料喷射装置70的燃气喷射速度小于第一燃料喷射装置50的燃气喷射速度。具体地,辅助喷嘴71的燃气喷射速度小于第一喷嘴51的燃气喷射速度。
需要说明的是,第三燃气输送管道72和第二燃气输送管道62可以为采用不同的管道,以分别输送燃气,但是,在本优选实施例中,第三燃气输送管道72和第二燃气输送管道62可以为同一个管道,以降低成本。因此,在以下的描述中,仅用第二燃气输送管道62来进行说明。
第一燃气输送管道52的管道直径可以小于第二燃气输送管道62的管道直径,以使得第一燃料喷射装置50中的燃气的喷射速度较高,而辅助燃料喷射装置70以及侧向燃料喷射装置60中的燃气的喷射速度较低。可选地,第一燃气输送管道52的管道直径可以等于第二燃气输送管道的管道直径。
此外,燃气燃烧器10还可以包括调节阀24,调节阀24可以设置在第一燃气输送管道52和第二燃气输送管道62中的一个上,以此来调节各燃气管道中燃气的流量,进而控制各燃料喷射装置中的燃气的喷射速度并且调整燃气燃烧器10的工作状态。这将在下文中详细描述。
优选地,辅助燃料喷射装置70还可以包括稳焰罩74。稳焰罩74可以设置在辅助喷嘴71上。稳焰罩74可以使得辅助燃料喷射装置70中喷射燃 烧的火焰更稳定。
图1和图2清楚地示出了燃气燃烧器10的火焰流场和燃烧模式。下面将结合图1和图2详细描述燃气燃烧器10的火焰流场和燃烧模式。
如图1和图2所示,第一燃料喷射装置50喷出高速燃气,由于文丘里效应,卷吸大量烟气通道30内的炉膛烟气的同时,在烟气通道30中形成强烈负压。该负压将高温炉膛烟气c引射到烟气通道30中。此外,侧向燃料喷射装置60喷出侧向的燃气,该侧向的燃气和侧向导流板23导流的侧向助燃气体b1混合后燃烧产生侧向火焰63。由于文丘里效应,侧向火焰63产生的高温烟气与周边的高温炉膛烟气一起在压力的作用下进入烟气通道30中。因此,第一燃料喷射装置50的高速燃气火焰的成分主要可以包括燃气、高温炉膛烟气以及侧向火焰63产生的高温烟气。一方面,由于高速燃气、高温炉膛烟气以及侧向火焰63产生的高温烟气具有贫氧、富燃料的特性,因此,能够使燃烧更加缓慢,降低了NOX的含量。另一方面,由于侧向火焰63产生的高温烟气中含有一定量的含氮化学中间产物,该中间产物有利于NOX还原为氮气,能够有效地降低NOX的含量。而且侧向燃料喷射装置60可以分流部分燃气,使部分燃气的燃烧发生在燃气燃烧器10的端部的侧向,降低了燃气燃烧器的第一燃料喷射装置50的燃烧负荷,有利于降低热力型NOx的生成。再一方面,由于卷吸到烟气通道30中的高温炉膛烟气和侧向火焰63产生的高温烟气温度较高,因此有助于稳定第一喷嘴51处的燃气着火,在宽负荷范围内稳定燃烧。因此,第一燃料喷射装置、烟气通道和侧向燃料喷射装置三者结合能够有效地实现低氮燃烧,并且能够在宽负荷范围内稳定燃烧。
此外,辅助燃料喷射装置70喷出的燃料与助燃气体混合后燃烧并产生辅助火焰73。由于辅助喷嘴71喷出的燃气速度相对比较低,且辅助喷嘴71上安装有稳焰罩74,因此辅助燃料喷射装置70能够实现稳定燃烧。
此外,通过调节调节阀24可以实现第一燃料喷射装置50、侧向燃料喷射装置60和辅助燃料喷射装置70之间的燃气分配比,能够对不同负荷、不同燃料下的工作状态进行调节。具体地,在本实施例中,燃气燃烧器10的工作状态可以在低氮燃烧模式与稳定燃烧模式之间进行调整。其中,在低氮燃烧模式下,可以调高第一燃料喷射装置50的燃气分配比,强化高速 燃气火焰而增强烟气内循环机制,强化低氮燃烧模式;在稳定燃烧模式下,可以调高侧向燃料喷射装置60和辅助燃料喷射装置70的燃气分配比,从而强化了侧向火焰63和辅助火焰73,从而强化稳定燃烧模式。最终,在宽负荷范围内,同时实现稳定的燃烧和低氮排放能力。
根据本发明的燃气燃烧器,通过在本体的一端设置烟气通道,烟气通道在入口处的横截面面积大于出口处的横截面面积,并且燃烧器还包括第一燃料喷射装置和侧向燃料喷射装置,由此,第一燃料喷射装置可以喷射高速燃气,并卷吸烟气通道内的大量炉膛烟气,因此在烟气通道中形成负压,炉膛内的压力大于烟气通道内的压力,燃气燃烧器周边的高温炉膛烟气在压力的作用下源源不断的被引射到烟气通道内,因而形成一个烟气内循环的通道。通过设置侧向燃料喷射装置,使得在燃气燃烧器的端部侧向范围内始终分布有由侧向火焰产生的新鲜的高温烟气,该烟气随着炉膛烟气一起进入到烟气通道内,并与第一燃料喷射装置喷出的燃气进行充分混合。由于高速燃气、高温炉膛烟气以及由侧向火焰产生的高温烟气具有贫氧、富燃料的特性,使得燃烧缓慢,能够降低NOx,特别是热力型NOx的排放。此外,由于侧向燃料喷射装置喷射出的燃气燃烧后产生有一定量的含氮化学中间物质,有利于NOX的再还原机制,能够进一步降低NOx的排放。而且侧向燃料喷射装置可以分流部分燃气,使部分燃气的燃烧发生在燃气燃烧器的端部的侧向,降低了燃气燃烧器的第一燃料喷射装置的燃烧负荷,有利于降低热力型NOx的生成。另外,由于卷吸到烟气通道中的高温炉膛烟气和侧向火焰产生的高温烟气温度较高,因此有助于稳定第一喷嘴处的燃气着火,在宽负荷范围内稳定燃烧。综上所述,根据本发明的燃气燃烧器能够有效地实现低氮燃烧,并且能够在宽负荷范围内稳定燃烧。
除非另有定义,本文中所使用的技术和科学术语与本发明的技术领域的技术人员通常理解的含义相同。本文中使用的术语只是为了描述具体的实施目的,不是旨在限制本发明。本文中出现的诸如“设置”等术语既可以表示一个部件直接附接至另一个部件,也可以表示一个部件通过中间件附接至另一个部件。本文中在一个实施例中描述的特征可以单独地或与其它特征结合地应用于另一个实施例,除非该特征在该另一个实施例中不适用 或是另有说明。
本发明已经通过上述实施例进行了说明,但应当理解的是,上述实施例只是用于举例和说明的目的,而非意在将本发明限制于所描述的实施例范围内。本领域技术人员可以理解的是,根据本发明的教导还可以做出更多种的变型和修改,这些变型和修改均落在本发明所要求保护的范围以内。

Claims (19)

  1. 一种燃气燃烧器,其特征在于,包括:
    本体,所述本体具有沿轴向方向延伸的侧壁,所述侧壁围成空腔;
    烟气通道,所述烟气通道设置在所述本体的一端,所述烟气通道具有第一入口和第一出口,所述第一入口朝向所述本体的侧向,所述第一出口朝向所述本体的轴向外侧,并且所述烟气通道的所述第一入口处的横截面面积大于所述第一出口处的横截面面积;
    第一燃料喷射装置,所述第一燃料喷射装置设置在所述空腔中并且延伸穿入所述烟气通道,所述第一燃料喷射装置包括第一喷嘴,所述第一喷嘴的喷射端位于所述烟气通道内;以及
    侧向燃料喷射装置,所述侧向燃料喷射装置包括侧向喷嘴,所述侧向喷嘴朝向所述本体的侧向。
  2. 根据权利要求1所述的燃气燃烧器,其特征在于,所述烟气通道的横截面面积从所述第一入口到所述第一出口逐渐减小。
  3. 根据权利要求1所述的燃气燃烧器,其特征在于,所述第一入口比所述第一出口沿轴向方向更靠近所述本体。
  4. 根据权利要求1所述的燃气燃烧器,其特征在于,所述侧向喷嘴沿径向方向延伸,所述燃气燃烧器还包括侧向导流板,所述侧向导流板设置在所述侧向喷嘴处,用于向所述侧向喷嘴导流助燃气体。
  5. 根据权利要求4所述的燃气燃烧器,其特征在于,所述侧向导流板包括第一部分和第二部分,所述第一部分设置在所述空腔中并大致沿所述轴向方向延伸,所述第二部分连接至所述第一部分,并且相对于所述径向方向成夹角地延伸,所述夹角为0°至30°。
  6. 根据权利要求4所述的燃气燃烧器,其特征在于,所述烟气通道由烟气通道构件形成,所述烟气通道构件包括弧形的外侧板、弧形的内侧板和连接至所述外侧板和所述内侧板的两侧的轴向导流板,其中,所述第一燃料喷射装置穿过所述内侧板。
  7. 根据权利要求6所述的燃气燃烧器,其特征在于,所述内侧板和所述外侧板形成所述第一出口的端部位于同一平行于所述本体的径向方向的 平面内,两者形成同心圆环的一部分。
  8. 根据权利要求6所述的燃气燃烧器,其特征在于,所述内侧板形成所述第一出口的端部的半径小于所述空腔的半径,所述内侧板形成所述第一入口的端部的半径大于所述空腔的半径。
  9. 根据权利要求6所述的燃气燃烧器,其特征在于,所述内侧板形成所述第一入口的端部的半径等于所述外侧板形成所述第一入口的端部的半径。
  10. 根据权利要求6所述的燃气燃烧器,其特征在于,所述轴向导流板沿轴向方向延伸进入所述空腔,并且沿径向方向延伸,所述侧向导流板安装至所述轴向导流板。
  11. 根据权利要求10所述的燃气燃烧器,其特征在于,所述侧向导流板沿所述轴向方向位置可调节地安装至所述轴向导流板。
  12. 根据权利要求10所述的燃气燃烧器,其特征在于,所述轴向导流板沿径向方向延伸至所述侧壁的内表面,所述轴向导流板在所述空腔内具有倾斜的端部,沿径向向外的方向,所述倾斜的端部沿轴向方向的尺寸逐渐增大。
  13. 根据权利要求1所述的燃气燃烧器,其特征在于,所述侧向燃料喷射装置的侧向喷嘴构造为使得所喷射的射流的射流锥角为0°至120°。
  14. 根据权利要求1所述的燃气燃烧器,其特征在于,所述第一喷嘴沿轴向方向朝向所述本体的外侧,并且所述第一喷嘴的喷射端部沿所述轴向方向比所述第一出口更靠近所述本体。
  15. 根据权利要求1所述的燃气燃烧器,其特征在于,所述燃气燃烧器还包括辅助燃料喷射装置,所述辅助燃料喷射装置沿所述轴向方向朝向外侧,所述辅助燃料喷射装置中的燃气的喷射速度小于所述第一燃料喷射装置中的燃气的喷射速度。
  16. 根据权利要求15所述的燃气燃烧器,其特征在于,所述燃气燃烧器还包括燃气输送总管道;
    所述第一燃料喷射装置包括与所述燃气输送总管道连通的第一燃气输送管道,所述侧向燃料喷射装置包括与所述燃气输送总管道连通的第二燃气输送管道,并且所述第二燃气输送管道将所述辅助燃料喷射装置与所 述燃气输送总管道连通;
    所述燃气燃烧器进一步包括调节阀,所述调节阀设置在所述第一燃气输送管道和所述第二燃气输送管道中的一个上。
  17. 根据权利要求1所述的燃气燃烧器,其特征在于,所述燃气燃烧器包括多个所述烟气通道和多个所述侧向燃料喷射装置,所述多个烟气通道沿所述本体的周向间隔设置,所述侧向燃料喷射装置位于相邻两个所述烟气通道之间。
  18. 根据权利要求17所述的燃气燃烧器,其特征在于,每个所述烟气通道内设置多个所述第一燃料喷射装置。
  19. 根据权利要求1所述的燃气燃烧器,其特征在于,所述烟气通道的横截面面积在所述第一出口处最小。
PCT/CN2017/113933 2017-08-09 2017-11-30 燃气燃烧器 WO2019029062A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710677337.X 2017-08-09
CN201710677337.XA CN107246611B (zh) 2017-08-09 2017-08-09 燃气燃烧器

Publications (1)

Publication Number Publication Date
WO2019029062A1 true WO2019029062A1 (zh) 2019-02-14

Family

ID=60013098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113933 WO2019029062A1 (zh) 2017-08-09 2017-11-30 燃气燃烧器

Country Status (2)

Country Link
CN (1) CN107246611B (zh)
WO (1) WO2019029062A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107246611B (zh) * 2017-08-09 2024-03-22 上海齐耀热能工程有限公司 燃气燃烧器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2220603A (en) * 1938-05-31 1940-11-05 Syncromatic Air Conditioning C Hydrocarbon burner
US5772421A (en) * 1995-05-26 1998-06-30 Canadian Gas Research Institute Low nox burner
CN101634450A (zh) * 2008-07-25 2010-01-27 约翰津克公司 燃烧器装置和方法
CN101852430A (zh) * 2006-06-14 2010-10-06 约翰津克公司 柯恩达气体燃烧器装置和方法
CN206347568U (zh) * 2016-12-02 2017-07-21 海湾环境科技(北京)股份有限公司 燃烧器
CN107246611A (zh) * 2017-08-09 2017-10-13 上海齐耀热能工程有限公司 燃气燃烧器
CN207146388U (zh) * 2017-08-09 2018-03-27 上海齐耀热能工程有限公司 燃气燃烧器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105805746B (zh) * 2016-05-12 2017-12-15 徐州科融环境资源股份有限公司 一种分级燃烧燃气低氮燃烧器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2220603A (en) * 1938-05-31 1940-11-05 Syncromatic Air Conditioning C Hydrocarbon burner
US5772421A (en) * 1995-05-26 1998-06-30 Canadian Gas Research Institute Low nox burner
CN101852430A (zh) * 2006-06-14 2010-10-06 约翰津克公司 柯恩达气体燃烧器装置和方法
CN101634450A (zh) * 2008-07-25 2010-01-27 约翰津克公司 燃烧器装置和方法
CN206347568U (zh) * 2016-12-02 2017-07-21 海湾环境科技(北京)股份有限公司 燃烧器
CN107246611A (zh) * 2017-08-09 2017-10-13 上海齐耀热能工程有限公司 燃气燃烧器
CN207146388U (zh) * 2017-08-09 2018-03-27 上海齐耀热能工程有限公司 燃气燃烧器

Also Published As

Publication number Publication date
CN107246611B (zh) 2024-03-22
CN107246611A (zh) 2017-10-13

Similar Documents

Publication Publication Date Title
JP2526236B2 (ja) 超低NOx燃焼装置
US8104284B2 (en) Combustor and a fuel supply method for the combustor
JP6335903B2 (ja) 火炎シート燃焼器ドーム
US7175423B1 (en) Air staged low-NOx burner
US4708638A (en) Fluid fuel fired burner
US6027330A (en) Low NOx fuel gas burner
KR100297835B1 (ko) 연소용 버너 및 이 버너를 구비한 연소장치
US20080193886A1 (en) Combustion Apparatus
JP2009133599A (ja) 燃焼システム内における逆火/保炎を減少させるのを可能にする方法及びシステム
JPH05231617A (ja) 低NOx短火炎バーナー
US20080206693A1 (en) Low NOx burner
JP2003527556A5 (zh)
CN104613473B (zh) 一种多孔燃气射流烧嘴
US6875008B1 (en) Lean pre-mix low NOx burner
KR101738946B1 (ko) 초 저공해 연소기
CN116221780B (zh) 掺混机构及燃烧装置
WO2019029062A1 (zh) 燃气燃烧器
JP2010270990A (ja) 燃料バーナ及び旋回燃焼ボイラ
CN109297018B (zh) 一种低氮气体燃烧器
RU118029U1 (ru) Жаровая труба малоэмиссионной камеры сгорания с направленным вдувом воздуха
RU2768639C2 (ru) Радиационная стеновая горелка
JP2000074372A (ja) バーナ
JP2005226850A (ja) 燃焼装置
CN207146388U (zh) 燃气燃烧器
CN111649324A (zh) 燃烧器和锅炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17921273

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17921273

Country of ref document: EP

Kind code of ref document: A1