WO2019028772A1 - 随机接入方法及装置、用户设备和基站 - Google Patents

随机接入方法及装置、用户设备和基站 Download PDF

Info

Publication number
WO2019028772A1
WO2019028772A1 PCT/CN2017/096909 CN2017096909W WO2019028772A1 WO 2019028772 A1 WO2019028772 A1 WO 2019028772A1 CN 2017096909 W CN2017096909 W CN 2017096909W WO 2019028772 A1 WO2019028772 A1 WO 2019028772A1
Authority
WO
WIPO (PCT)
Prior art keywords
preamble
preamble transmission
random access
determining
frequency resource
Prior art date
Application number
PCT/CN2017/096909
Other languages
English (en)
French (fr)
Inventor
江小威
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to EP17921092.7A priority Critical patent/EP3668247A4/en
Priority to CN201780000852.2A priority patent/CN108521889B/zh
Priority to PCT/CN2017/096909 priority patent/WO2019028772A1/zh
Publication of WO2019028772A1 publication Critical patent/WO2019028772A1/zh
Priority to US16/781,425 priority patent/US11337254B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a random access method and apparatus, a user equipment, a base station, and a computer readable storage medium.
  • a base station transmits a broadcast by covering a whole sector with a beam.
  • the base station can cover a sector by narrow beam scanning, that is, the base station transmits only a narrow beam in a certain direction at a certain moment, and then continuously changes the beam.
  • This type of scene is called a multi-beam scene.
  • the user equipment first correlates to the best downstream beam by measuring the downlink signal.
  • the UE For a UE with the ability to transmit and receive (Tx-Rx correspondence), the UE can determine the most suitable uplink beam by receiving the downlink beam.
  • the UE cannot determine its own uplink beam, which requires the UE to try to transmit by using different beams to determine the most suitable uplink beam.
  • a UE that does not have the transmission and reception consistency can ensure that the base station receives the preamble by transmitting multiple preambles, which is a multi-preamble transmission in a multi-beam scenario. Since the multi-preamble transmission resources provided by the base station for the UE are limited, only the UE having the specific service requirement can use the multi-preamble transmission resources provided by the base station.
  • the present application discloses a random access method and apparatus, user equipment, base station, and computer readable storage medium to filter UEs that can use multiple preamble transmission resources, thereby saving limited transmission resources.
  • a random access method comprising:
  • the preamble is transmitted by the acquired multiple preamble transmission opportunity to Perform random access.
  • the determining whether to adopt the multi preamble transmission comprises at least one of the following:
  • Determining whether the service that triggers the random access is a preset type service, and if the service is the preset type, determining to use the multiple preamble transmission;
  • the determining whether the multiple preamble transmission function is enabled includes:
  • the multiple preamble transmission function is enabled
  • the current user equipment UE is the UE in the de-enabled state or the connected state, and the base station configuration is enabled with the multi-preamble transmission function of the current UE, the multiple preamble transmission function is enabled;
  • the base station configuration enables the multi-preamble transmission function of the data bearer DRB or the logical channel of the current UE, and the random access is triggered by a DRB or a logical channel that enables the multi-preamble transmission function, and the The random access is a competitive random access, and the multiple preamble transmission function is enabled.
  • the determining whether the current UE is a preset type of UE includes:
  • the determining whether the random access is a preset access type includes:
  • the received access type indicated in the PRACH resource of the multi-preamble transmission from the base station is the preset access type, determining that the random access is the preset access type.
  • the transmitting the preamble by using the acquired multiple preamble transmission opportunity to perform random access includes:
  • the multiple preamble transmission opportunity includes a starting time-frequency resource location, a repetition period, and a repetition number of the PRACH, and the first time-frequency resource location of the next multiple preamble transmission opportunity starts to transmit the preamble, including :
  • the first preset number is equal to the number of the transmit beams minus one
  • the second preset number is equal to a difference between the number of repetitions and the number of transmit beams
  • the same number of transmit beams are selected to transmit the selected preamble.
  • the determining, by the RAR, the transmit beam that the RAR responds to include:
  • the method further includes:
  • the transmit power of the current UE is increased, and the preamble is transmitted to the first time-frequency resource location of the next multiple preamble transmission opportunity.
  • the PRACH resource includes at least one of a preamble identifier and a size of the RAR receiving window.
  • the method further includes:
  • the broadcast message sent by the base station is received, where the broadcast message carries the PRACH resource for each beam multi-preamble transmission.
  • the method further includes:
  • the downlink measurement signal is associated with a downlink beam.
  • a random access method comprising:
  • a random access response RAR for the preamble and the time-frequency resource location in the multiple preamble transmission opportunity, for The UE performs random access.
  • the method further includes:
  • the multiple preamble transmission opportunity includes a starting time-frequency resource location, a repetition period, and a repetition quantity of the physical random access channel PRACH, according to the received multiple preamble transmission opportunities of the preamble a time-frequency resource location, returning an RAR for the preamble and a time-frequency resource location in the multiple preamble transmission opportunity, including:
  • the RAR carries The preamble identifier corresponding to the preamble with the best signal quality.
  • the time-frequency resource location at which the best quality preamble is located includes an Orthogonal Frequency Division Multiplexing OFDM symbol position, a subframe position, and a frequency domain location where the best quality preamble is located. And at least one of the OFDM symbol position, the subframe position, and the frequency domain location where the best quality preamble is located is represented by a random access radio network temporary identifier RA-RNTI.
  • the method further includes:
  • the broadcast message is sent to the UE, where the broadcast message carries the PRACH resource for each beam multi-preamble transmission.
  • the PRACH resource is used to indicate the multiple preamble transmission opportunity, where the multiple preamble transmission opportunity includes a starting time-frequency resource location, a repetition period, and a repetition number of the PRACH.
  • the PRACH resource includes at least one of a preamble identifier and a size of an RAR receiving window.
  • a random access device comprising:
  • a determining module configured to determine to initiate random access
  • the determining module is configured to determine whether to use the multi-preamble sequence preamble transmission after the determining module determines to initiate the random access;
  • Determining a transmission module configured to: if the determining module determines to adopt the multi-preamble transmission, transmit the preamble by using the acquired multiple preamble transmission opportunity to perform random access.
  • the determining module comprises:
  • the first determining sub-module is configured to determine whether the service that triggers the random access is a preset type service, and if it is the preset type service, determine to use the multiple preamble transmission;
  • the second determining sub-module is configured to determine whether the multiple preamble transmission function is enabled, and if the multiple preamble transmission function is enabled, determining to adopt the multiple preamble transmission;
  • the third determining sub-module is configured to determine whether the current UE determines to send the uplink beam of the preamble, and if the current UE does not determine to send the uplink beam of the preamble, determine to use the multiple preamble transmission;
  • the fourth determining sub-module is configured to determine whether the current UE is a preset type of UE, and if the current UE is the preset type of UE, determining to use the multiple preamble transmission;
  • the fifth determining sub-module is configured to determine whether the random access is a preset access type, and if the random access is a preset access type, determining to use the multiple preamble transmission;
  • a sixth judging sub-module configured to determine whether the current UE has a multi-input multi-output MIMO capability or a multi-beam transmitting capability, and if the current UE has a MIMO capability or a multi-beam transmitting capability, determining to use the multi-preamble transmission;
  • the seventh judging sub-module is configured to determine whether the current UE has the capability of transmitting and receiving consistency, and if the current UE does not have the capability of transmitting and receiving consistency, determining to use the multi-preamble transmission.
  • the second determining submodule comprises:
  • a first determining unit configured to: if the received system message has a physical random access channel PRACH resource configured with multiple preamble transmissions, the multiple preamble transmission function is enabled; or
  • the second judging unit is configured to enable the multi preamble transmission function if the current user equipment UE is a de-enabled state or a connected state UE and the base station configuration enables the multi-preamble transmission function of the current UE ;or
  • a third determining unit configured to: if the base station is configured to enable the multiple preamble transmission function of the data bearer DRB or the logical channel of the current UE, and the random access is enabled by the DRB of the multiple preamble transmission function
  • the multi-preamble transmission function is enabled when the logical channel is triggered and the random access is a competitive random access.
  • the fourth determining submodule is configured to:
  • the fifth determining submodule is configured to:
  • the received access type indicated in the PRACH resource of the multi-preamble transmission from the base station is the preset access type, determining that the random access is the preset access type.
  • the determining the transmission module comprises:
  • Obtaining a sub-module configured to acquire a PRACH resource of a multi-preamble transmission from the currently associated downlink beam, where the PRACH resource is used to indicate a multi-preamble transmission opportunity;
  • the transmission monitoring sub-module is configured to start transmitting the preamble from the first time-frequency resource location of the next multi-preamble transmission opportunity indicated by the PRACH resource acquired by the acquiring sub-module, and start monitoring RAR reception at the end of all preamble transmissions Window
  • Determining a transmit and receive submodule configured to: if the transmit monitor submodule receives the RAR in the random access response RAR receive window, determine a transmit beam that is responsive to the RAR, and send the transmit beam to the base station Sending a third message MSG3 and waiting to receive the fourth message MSG4 returned by the base station.
  • the multiple preamble transmission opportunity includes a starting time-frequency resource location, a repetition period, and a repetition number of the PRACH, where the transmission monitoring sub-module includes:
  • Selecting a sending unit configured to select a preamble from the preamble resource pool, and send the selected preamble from the first time-frequency resource location of the next multiple preamble transmission opportunity;
  • the first sending unit is configured to send the selection at a first preset number of time-frequency resource locations after the first time-frequency resource location, if the number of transmit beams supported by the current UE is less than the number of repetitions Transmitting a preamble selected by the unit, or repeatedly transmitting a second preset number of transmit beams, where the first preset quantity is equal to the number of the transmit beams minus one, and the second preset quantity is equal to the repetition quantity and the The difference in the number of transmit beams;
  • the second sending unit is configured to: if the number of the transmit beams supported by the current UE is greater than the number of repetitions, select the same number of transmit beams to send the preamble selected by the selective sending unit.
  • the determining the transmit and receive submodule is configured to:
  • the apparatus further includes:
  • a lifting module configured to: if the determining that the sending and receiving submodule does not receive the RAR in the RAR receiving window or does not receive the MSG4 returned by the base station, and the current UE does not reach the maximum transmit power, And increasing the transmit power of the current UE, and invoking the transport monitor sub-module to start transmitting the preamble from the first time-frequency resource location of the next multiple preamble transmission opportunity.
  • the PRACH resource includes at least one of a preamble identifier and a size of the RAR receiving window.
  • the apparatus further includes:
  • the receiving module is configured to receive, before the determining module determines whether to adopt the multi-preamble transmission, the broadcast message sent by the base station, where the broadcast message carries the PRACH resource for each beam multi-preamble transmission.
  • the apparatus further includes:
  • An association module configured to acquire the multiple preamble transmission from the currently associated downlink beam in the acquiring submodule Before the PRACH resource is transmitted, the downlink measurement signal is associated with a downlink beam.
  • a random access device comprising:
  • a receiving module configured to receive a preamble that is transmitted by the user equipment UE through a multi-preamble sequence preamble transmission opportunity
  • a returning module configured to return a random time position of the time-frequency resource in the preamble and the multiple preamble transmission opportunities according to a time-frequency resource position in the multiple preamble transmission opportunities in which the preamble is received by the receiving module
  • the access response RAR is used by the UE for random access.
  • the apparatus further includes:
  • Receiving a returning module configured to receive a third message MSG3 sent by the UE after the returning module returns an RAR for the preamble and the time-frequency resource location in the multiple preamble transmission opportunity, and according to the MSG3
  • a fourth message MSG4 is returned to the UE.
  • the multiple preamble transmission opportunity includes a starting time-frequency resource location, a repetition period, and a repetition number of the physical random access channel PRACH
  • the returning module includes:
  • Determining a sub-module configured to determine a location of the received time-frequency resource where the preamble is located and all repeated time-frequency resource locations in the current multi-preamble transmission opportunity
  • Selecting a sub-module configured to select a preamble with the same signal quality from the same preamble that is received by the determining sub-module and the preamble identifier received by all the repeated time-frequency resource locations;
  • the RAR is configured to return an RAR according to the time-frequency resource location of the preamble with the best signal quality selected by the selecting sub-module, where the RAR carries the preamble corresponding to the preamble with the best signal quality Logo.
  • the time-frequency resource location at which the best quality preamble is located includes an Orthogonal Frequency Division Multiplexing OFDM symbol position, a subframe position, and a frequency domain location where the best quality preamble is located. And at least one of the OFDM symbol position, the subframe position, and the frequency domain location where the best quality preamble is located is represented by a random access radio network temporary identifier RA-RNTI.
  • the apparatus further includes:
  • a sending module configured to send, to the UE, a broadcast message, where the broadcast message carries a preamble transmission for each beam, before the receiving module receives the preamble transmitted by the user equipment UE through the multi-preamble sequence preamble transmission opportunity PRACH resources.
  • the PRACH resource is used to indicate the multiple preamble transmission opportunity
  • the multiple preamble Transmission opportunities include the initial time-frequency resource location, repetition period, and number of repetitions of the PRACH.
  • the PRACH resource includes at least one of a preamble identifier and a size of an RAR receiving window.
  • a user equipment including:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • the preamble is transmitted through the acquired multiple preamble transmission opportunity to perform random access.
  • a base station including:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • a random access response RAR for the preamble and the time-frequency resource location in the multiple preamble transmission opportunity, for The UE performs random access.
  • a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the steps of the random access method described above.
  • a computer readable storage medium having stored thereon a computer program, the program being executed by a processor to implement the steps of the random access method described above.
  • the preamble is transmitted through multiple preamble transmission opportunities, thereby saving Limited multiple preamble transmission resources.
  • the type is the preset access type to determine that the random access is the default access type, and the implementation is simple.
  • the preamble is transmitted from the first time-frequency resource location of the next multi-preamble transmission opportunity, and the RAR reception window is monitored at the end of all preamble transmissions, and then the transmission beam that the RAR responds is determined, and The transmitting beam transmits the MSG3 to the base station and waits for the MSG4 returned by the receiving base station to complete the random access procedure.
  • the selected preamble is sent from the first time-frequency resource location of the next multiple preamble transmission opportunity, and the time-frequency resource location of the preamble is selected according to the relationship between the number of transmission beams supported by the current UE and the number of repetitions, so that the base station can
  • the RAR is returned according to the location of the time-frequency resource where the received preamble is located.
  • the transmission beam that the RAR responds to is determined according to the random access radio network temporary identifier (RA-RNTI) corresponding to the RAR, thereby providing a condition for subsequently transmitting the third message (MSG3) through the transmission beam.
  • RA-RNTI random access radio network temporary identifier
  • the transmit power of the current UE may be increased to expect to receive the RAR or the MSG4, thereby improving randomization. The probability of access.
  • the receiving of the broadcast message sent by the base station provides a condition for the subsequent transmission of the preamble according to the PRACH resource carried in the broadcast message.
  • the downlink measurement signal is associated with a downlink beam, thereby providing a condition for subsequently acquiring the PRACH resource of the multi-preamble transmission from the currently associated downlink beam.
  • the UE performs random access to provide transmission resources for the eligible UEs to save transmission resources.
  • the random access procedure is completed by receiving the third message MSG3 sent by the UE and returning the fourth message MSG4 to the UE according to the MSG3.
  • resource consumption can be saved.
  • the time-frequency resource location at which the preamble having the best signal quality is defined includes at least one of orthogonal frequency division multiplexing OFDM symbol position, subframe position, and frequency domain position at which the preamble with the best signal quality is located, and signal quality
  • At least one of the OFDM symbol position, the subframe position, and the frequency domain location where the best preamble is located is represented by a random access radio network temporary identifier RA-RNTI, thereby determining the RAR for the UE according to the RA-RNTI corresponding to the RAR.
  • the response of the transmit beam provides the conditions.
  • the UE can send a preamble according to the PRACH resource carried in the broadcast message by sending a broadcast message to the UE.
  • the multiple preamble transmission opportunity includes the initial time-frequency resource location, the repetition period, and the repetition number of the PRACH, thereby providing a condition for the UE to send the preamble according to the PRACH resource.
  • FIG. 1 is a flowchart of a random access method according to an exemplary embodiment of the present application.
  • 2A is a flowchart of a random access procedure according to an exemplary embodiment of the present application.
  • 2B is a schematic diagram of a multiple preamble transmission opportunity according to an exemplary embodiment of the present application
  • FIG. 3 is a flowchart of another random access procedure according to an exemplary embodiment of the present application.
  • FIG. 5 is a flowchart of a return random access response according to an exemplary embodiment of the present application.
  • FIG. 6 is a signaling flowchart of a random access method according to an exemplary embodiment of the present application.
  • FIG. 7 is a block diagram of a random access device according to an exemplary embodiment
  • FIG. 8A is a block diagram of another random access device according to an exemplary embodiment
  • FIG. 8B is a block diagram of another random access device according to an exemplary embodiment
  • FIG. 8C is a block diagram of another random access device according to an exemplary embodiment.
  • FIG. 8D is a block diagram of another random access device according to an exemplary embodiment.
  • FIG. 8E is a block diagram of another random access device according to an exemplary embodiment.
  • FIG. 8F is a block diagram of another random access device according to an exemplary embodiment.
  • FIG. 8G is a block diagram of another random access device according to an exemplary embodiment.
  • FIG. 9 is a block diagram of still another random access device according to an exemplary embodiment.
  • FIG. 10 is a block diagram of another random access device according to an exemplary embodiment.
  • FIG. 11A is a block diagram of another random access device according to an exemplary embodiment
  • FIG. 11B is a block diagram of another random access device according to an exemplary embodiment.
  • FIG. 12 is a block diagram of a device suitable for random access, according to an exemplary embodiment
  • FIG. 13 is a block diagram showing another suitable for a random access device, according to an exemplary embodiment.
  • FIG. 1 is a flowchart of a random access method according to an exemplary embodiment of the present application. The embodiment is described from the UE side. As shown in FIG. 1 , the random access method includes:
  • step S101 it is determined that random access is initiated.
  • the UE when the UE has uplink data to be transmitted, it may be necessary to initiate random access.
  • step S102 it is determined whether or not multi-preamble transmission is employed.
  • the UE may determine whether the UE adopts multiple preamble transmissions by using, but not limited to, one or more of the following manners:
  • the service that triggers the random access is a preset type service, and if it is a preset type service, it may be determined to adopt multiple preamble transmission.
  • the preset type service may include, but is not limited to, a delay sensitive service, such as an Ultra Reliable Low Latency Communication (URLLC) service.
  • a delay sensitive service such as an Ultra Reliable Low Latency Communication (URLLC) service.
  • URLLC Ultra Reliable Low Latency Communication
  • the second method it is determined whether the multi-preamble transmission function is enabled. If the multi-preamble transmission function is enabled, it can be determined that the multi-preamble transmission is used.
  • the multi-preamble transmission function can be determined whether the multi-preamble transmission function is enabled by any one of the following methods:
  • the received system message is configured with a plurality of preamble-transmitted physical random access channel PRACH resources, the multi-preamble transmission function of the current UE is enabled.
  • the current UE is the UE in the de-enabled state or the connected state and the base station is configured to enable the multi-preamble transmission function of the current UE, the multi-preamble transmission function of the current UE is enabled;
  • the base station configuration enables the data bearer (DRB) of the current UE or the multi-preamble transmission function of the logical channel, and the random access is triggered by the DRB or logical channel that has the multi-preamble transmission function enabled, and the random access is competitive random With access, the multi-preamble transmission function of the current UE is enabled.
  • DRB data bearer
  • a third mode it is determined whether the current UE determines to send the uplink beam of the preamble. If the current UE does not determine to send the uplink beam of the preamble, it may determine that multiple preamble transmission is used.
  • the current UE is a preset type of UE. If the current UE is a preset type of UE, it may be determined to adopt multiple preamble transmission.
  • the UE type indicated in the received PRACH resource of the multi-preamble transmission from the base station is a preset type
  • the preset type of UE may include, but is not limited to, an internet terminal.
  • the random access is a preset access type, and if the random access is a preset access type, it may be determined to adopt multiple preamble transmission.
  • the received access type indicated in the PRACH resource of the multi-preamble transmission from the base station is a preset access type
  • it is determined that the random access is a preset access type.
  • the current UE determines whether the current UE has multiple input multiple output (MIMO) capability or multi-beam transmission capability. If the current UE has MIMO capability or multi-beam transmission capability, it may determine that multiple preamble transmission is used.
  • MIMO multiple input multiple output
  • the seventh mode it is determined whether the current UE has the capability of transmitting and receiving consistency. If the current UE does not have the capability of transmitting and receiving, the multi-preamble transmission may be determined.
  • step S103 if it is determined that multiple preamble transmission is adopted, the preamble is transmitted through the acquired multiple preamble transmission opportunity to perform random access.
  • the preamble is transmitted by the acquired multiple preamble transmission opportunity to perform random access, which may include:
  • step S1031 the PRACH resource of the multiple preamble transmission is obtained from the currently associated downlink beam, where the PRACH resource is used to indicate the multiple preamble transmission opportunity.
  • the multiple preamble transmission opportunity may include a starting time-frequency resource location, a repetition period, and a repetition number of the PRACH.
  • FIG. 2B shows the initial time-frequency resource location, the repetition period, and the repetition times of the PRACH of the multiple preamble transmission opportunity.
  • step S1032 the preamble is transmitted starting from the first time-frequency resource location of the next multi-preamble transmission opportunity, and the random access response (RAR) reception window is monitored starting at the end of all preamble transmissions.
  • RAR random access response
  • the start position of the RAR receiving window is turned on at a predetermined interval, for example, 1 subframe, after the end of the multiple preamble transmission opportunity.
  • transmitting the preamble from the first time-frequency resource location of the next multiple preamble transmission opportunity may include:
  • the multi-preamble transmission opportunity shown in FIG. 2B is taken as an example.
  • the number of repetitions of the PRACH resource of the primary preamble transmission opportunity in FIG. 2B is 4 times. If the UE is currently in the multiple preamble transmission opportunity 41, the UE is in the preamble. After selecting a preamble in the resource pool, you can transfer more opportunities from the next multiple preamble.
  • the first time-frequency resource location 421 of the preamble transmission opportunity 42 starts to transmit the selected preamble. If the number of transmit beams supported by the UE is 3, that is, the number of transmit beams supported by the UE is less than the number of repetitions, the first time-frequency resource is used.
  • the two time-frequency resource locations after the location 421 transmit the selected preamble on the instant frequency resource locations 422 and 423, or repeatedly send one transmission beam; if the number of transmission beams supported by the current UE is greater than the repetition number of 4, then 4 is selected. Transmit beams to transmit the selected preamble.
  • step S1033 if the RAR is received in the RAR receiving window, the transmitting beam that the RAR responds is determined, the third message (MSG3) is sent to the base station through the transmitting beam, and the fourth message (MSG4) returned by the receiving base station is waited for. .
  • the transmit beam that the RAR responds to may be determined according to the random access radio network temporary identifier (RA-RNTI) corresponding to the RAR, and then sent to the base station by using the transmit beam. MSG3, and waits to receive the MSG4 returned by the base station.
  • RA-RNTI random access radio network temporary identifier
  • the preamble is transmitted from the first time-frequency resource location of the next multi-preamble transmission opportunity, and the RAR reception window is monitored at the end of all preamble transmissions, and then the RAR responds.
  • the transmitting beam transmits MSG3 to the base station through the transmitting beam, and waits for receiving the MSG4 returned by the base station, thereby completing the random access procedure.
  • the preamble transmission is used to determine whether the current UE can adopt multiple preamble transmissions, if it is determined that multiple preamble transmissions can be used, the preamble is transmitted through multiple preamble transmission opportunities, thereby saving limited multiple preamble transmission resources.
  • FIG. 3 is a flowchart of another random access procedure according to an exemplary embodiment of the present application. As shown in FIG. 3, after the foregoing step S1033, the method may further include:
  • step S1034 if the RAR is not received in the RAR receiving window or the MSG4 returned by the base station is not received, and the current UE does not reach the maximum transmit power, the transmit power of the current UE is boosted, and the process proceeds to step S1032.
  • the UE transmits the same preamble in a multi-preamble transmission opportunity. After completing one multi-preamble transmission, if the RAR is not received in the RAR receiving window or the MSG4 returned by the base station is not received, and the current UE is not When the maximum transmit power is reached, the transmit power of the current UE can be increased to expect to receive RAR or MSG4, so that random access can be achieved.
  • the transmit power of the current UE may be increased to expect to receive the RAR or the MSG4, thereby Increase the probability that random access can be achieved.
  • FIG. 4 is a flowchart of still another random access method according to an exemplary embodiment of the present application, which is performed from a base station The description is made on the side.
  • the random access method includes:
  • step S401 the preamble transmitted by the UE through the multiple preamble transmission opportunity is received.
  • the multiple preamble transmission opportunity may include a starting time-frequency resource location, a repetition period, and a repetition number of the PRACH.
  • FIG. 2B shows the initial time-frequency resource location, the repetition period, and the repetition times of the PRACH of the multiple preamble transmission opportunity.
  • the UE may transmit the preamble by using the acquired multiple preamble transmission opportunity, and the base station receives the preamble transmitted by the UE through the multiple preamble transmission opportunity.
  • step S402 the RAR for the time-frequency resource location in the preamble and the multi-preamble transmission opportunity is returned according to the time-frequency resource location in the multiple preamble transmission opportunities in which the received preamble is located, for the UE to perform random access.
  • the base station feedback RAR is based on the time-frequency resource location in the multiple preamble transmission opportunities in which the received preamble is located, where the time-frequency resource location where the preamble is located may be represented by RA-RNTI, and the calculation of the RA-RNTI It is necessary to take into account the OFDM symbols and the like in which the preamble is located.
  • the base station feeds back the RAR for the RA-RNTI, and the RAR includes the preamble identifier (ID) sent by the RA-RNTI.
  • ID preamble identifier
  • a base station if a base station receives a preamble in an RA-RNTI, it will feed back the RAR to the RA-RNTI, but it must be stated that the base station does not have to perform an RAR response to all received preambles, depending on the current service of the base station. Whether the status is busy.
  • the step S402 can include:
  • step S4021 the time-frequency resource location where the received preamble is located and all the repeated time-frequency resource locations in the current multi-preamble transmission opportunity are determined.
  • the UE may start transmitting the selected preamble from the next multi-preamble transmission opportunity, that is, the first time-frequency resource location 421 of the multi-preamble transmission opportunity 42 shown in FIG. 2B, if the UE The number of transmit beams supported is three, that is, the number of transmit beams supported by the UE is less than the number of repetitions, and the selected preamble is sent on the two time-frequency resource locations OFDM and 423 after the first time-frequency resource location 421. .
  • the base station may determine that the time-frequency resource location where the preamble is located and all the repeated time-frequency resource locations in the current multi-preamble transmission opportunity are the first time-frequency resource location 421 and the time-frequency resource location 422 and 423.
  • step S4022 among the preambles having the same preamble identifier received from the determined time-frequency resource location and all the repeated time-frequency resource locations, the preamble with the best signal quality is selected.
  • the UE selects the preamble with the best signal quality from the preamble with the same preamble identifier received by the first time-frequency resource location 421 and the time-frequency resource locations 422 and 423.
  • step S4023 an RAR is returned according to the time-frequency resource location where the preamble with the best signal quality is located, and the RAR carries the preamble identifier corresponding to the preamble with the best signal quality.
  • the time-frequency resource location where the preamble with the best signal quality is located may include at least one of an Orthogonal Frequency Division Multiplexing (OFDM) symbol position, a subframe position, and a frequency domain location where the preamble with the best signal quality is located.
  • OFDM Orthogonal Frequency Division Multiplexing
  • At least one of the OFDM symbol position, the subframe position, and the frequency domain position at which the preamble with the best signal quality is located may be represented by an RA-RNTI.
  • an RAR may be returned according to the time-frequency resource location where the best preamble of the signal quality is located, for the UE to determine the transmit beam that the RAR responds to.
  • resource consumption can be saved by selecting a preamble with the best signal quality and returning an RAR according to the time-frequency resource location where the best preamble of the signal quality is located.
  • the preamble transmitted by the UE through the multiple preamble transmission opportunity is received, and the time-frequency resource location in the preamble and the multi-preamble transmission opportunity is returned according to the time-frequency resource location in the multiple preamble transmission opportunity where the received preamble is located.
  • the RAR is used for the UE to perform random access, so as to provide transmission resources for the qualified UE to save transmission resources.
  • FIG. 6 is a flowchart of a random access method according to an exemplary embodiment of the present application. The embodiment is described from the perspective of interaction between a UE and a base station. As shown in FIG. 6, the random access method includes:
  • step S601 the base station sends a broadcast message to the UE, where the broadcast message carries PRACH resources for each pre-preamble transmission.
  • the PRACH resource is used to indicate multiple preamble transmission opportunities, and the dedicated PRACH resources of multiple preamble transmissions of each beam are different.
  • Multiple preamble transmission opportunities may include the initial time-frequency resource location, repetition period, and number of repetitions of the PRACH.
  • the PRACH resource may further include a preamble identifier.
  • the PRACH resource may further include a size of the RAR receiving window.
  • step S602 the UE is associated with a downlink beam by using a downlink measurement signal.
  • step S603 the UE determines to initiate random access and determines whether to use multiple preamble transmission.
  • step S604 the UE determines to use the multi-preamble transmission, and acquires the PRACH resource of the multi-preamble transmission from the currently associated downlink beam, where the PRACH resource is used to indicate the multiple preamble transmission opportunity.
  • step S605 the UE starts transmitting the preamble from the first time-frequency resource location of the next multi-preamble transmission opportunity, and starts listening to the RAR reception window at the end of all preamble transmissions.
  • step S606 the base station receives the preamble transmitted by the UE, and returns the RAR for the time-frequency resource location in the preamble and the multi-preamble transmission opportunity according to the time-frequency resource location in the multiple preamble transmission opportunity in which the received preamble is located.
  • step S607 if the UE receives the RAR in the RAR receiving window, it determines the transmitting beam that the RAR responds, and transmits the MSG3 to the base station through the transmitting beam.
  • step S608 the base station receives the MSG3 transmitted by the UE, and returns the MSG4 to the UE.
  • step S609 the UE receives the MSG4 returned by the base station.
  • the UE performs the interaction between the UE and the base station, so that the UE determines whether it can adopt multiple preamble transmissions by determining whether to use multiple preamble transmissions, and uses the base station to provide more information when determining that it can adopt multiple preamble transmissions.
  • the preamble transmission opportunity transmits the preamble.
  • the base station may return the time in the preamble and the multi preamble transmission opportunity according to the time-frequency resource position in the multiple preamble transmission opportunity where the received preamble is located.
  • the RAR of the frequency resource location is used for the UE to perform random access, so as to provide transmission resources for the qualified UE to save transmission resources.
  • FIG. 7 is a block diagram of a random access apparatus according to an exemplary embodiment. As shown in FIG. 7, the random access apparatus includes: a determining module 71, a determining module 72, and a determining transmitting module 73.
  • the determination module 71 is configured to determine to initiate random access.
  • the UE when the UE has uplink data to be transmitted, it may be necessary to initiate random access.
  • the determining module 72 is configured to determine whether to employ the multi-preamble sequence preamble transmission after the determining module 71 determines to initiate the random access.
  • the determining transmission module 73 is configured to transmit the preamble through the acquired multiple preamble transmission opportunities to perform random access if the determining module 72 determines to employ multiple preamble transmissions.
  • the preamble transmission is used to determine whether the current UE can adopt multiple preamble transmissions, if it is determined that multiple preamble transmissions can be used, the preamble is transmitted through multiple preamble transmission opportunities, thereby saving limited multiple preamble transmission resources.
  • FIG. 8A is a block diagram of another random access device according to an exemplary embodiment.
  • the determining module 72 may include at least one of the following sub-modules: First judgment submodule 721.
  • the first judging sub-module 721 is configured to determine whether the service that triggers the random access is a preset type service, and if it is a preset type service, determine to use the multi-preamble transmission.
  • the preset type service may include, but is not limited to, a delay sensitive service, such as an Ultra Reliable Low Latency Communication (URLLC) service.
  • a delay sensitive service such as an Ultra Reliable Low Latency Communication (URLLC) service.
  • URLLC Ultra Reliable Low Latency Communication
  • the second judging sub-module 722 is configured to determine whether the multi-preamble transmission function is enabled, and if the multi-preamble transmission function is enabled, it is determined to employ multi-preamble transmission.
  • the multi-preamble transmission function can be determined whether the multi-preamble transmission function is enabled by any one of the following methods:
  • the received system message is configured with a plurality of preamble-transmitted physical random access channel PRACH resources, the multi-preamble transmission function of the current UE is enabled.
  • the current UE is the UE in the de-enabled state or the connected state and the base station is configured to enable the multi-preamble transmission function of the current UE, the multi-preamble transmission function of the current UE is enabled;
  • the base station configuration enables the data bearer (DRB) of the current UE or the multi-preamble transmission function of the logical channel, and the random access is triggered by the DRB or logical channel that has the multi-preamble transmission function enabled, and the random access is competitive random With access, the multi-preamble transmission function of the current UE is enabled.
  • DRB data bearer
  • the third determining sub-module 723 is configured to determine whether the current UE determines to send the uplink beam of the preamble. If the current UE does not determine to send the uplink beam of the preamble, it is determined to adopt multiple preamble transmission.
  • the fourth judging sub-module 724 is configured to determine whether the current UE is a preset type of UE. If the current UE is a preset type of UE, it is determined to adopt multiple preamble transmission.
  • the UE type indicated in the received PRACH resource of the multi-preamble transmission from the base station is a preset type
  • the preset type of UE may include, but is not limited to, an internet terminal.
  • the fifth determining sub-module 725 is configured to determine whether the random access is a preset access type. If the random access is a preset access type, it is determined to adopt multiple preamble transmission.
  • the received access type indicated in the PRACH resource of the multi-preamble transmission from the base station is a preset access type
  • it is determined that the random access is a preset access type.
  • the sixth judging sub-module 726 is configured to determine whether the current UE has multi-input multi-output MIMO capability or multi-beam transmitting capability. If the current UE has MIMO capability or multi-beam transmitting capability, it is determined to adopt multi-preamble transmission.
  • the seventh judging sub-module 727 is configured to determine whether the current UE has the capability of transmitting and receiving consistency. If the current UE does not have the capability of transmitting and receiving consistency, it is determined to adopt multi-preamble transmission.
  • whether the UE adopts multiple preamble transmissions can be determined in multiple manners, and the implementation manner is flexible and diverse.
  • FIG. 8B is a block diagram of another random access device according to an exemplary embodiment.
  • the second determining sub-module 722 may include: The determining unit 7221, the second determining unit 7222, or the third determining unit 7223.
  • the first judging unit 7221 is configured to enable the multi-preamble transmission function if the multi-preamble transmitted physical random access channel PRACH resource is configured in the received system message.
  • the second judging unit 7222 is configured to enable the multi preamble transmission function if the current user equipment UE is the de-enabled state or the connected state UE and the base station configuration enables the multi-preamble transmission function of the current UE.
  • the third determining unit 7223 is configured to: if the base station is configured to enable the multi-preamble transmission function of the data bearer DRB or the logical channel of the current UE, and the random access is triggered by the DRB or the logical channel that enables the multi-preamble transmission function, and the random access is For competitive random access, multiple preamble transmission functions are enabled.
  • whether multiple preamble transmission functions are enabled or not can be determined in various manners, and the implementation manner is flexible and diverse.
  • FIG. 8C is a block diagram of another random access device according to an exemplary embodiment. As shown in FIG. 8C, on the basis of the foregoing embodiment shown in FIG. 7, determining the transmission module 73 may include: acquiring the submodule 731. The transmission monitoring sub-module 732 and the determining transmission and reception sub-module 733.
  • the obtaining sub-module 731 is configured to acquire the PRACH resource of the multi-preamble transmission from the currently associated downlink beam, where the PRACH resource is used to indicate the multi-preamble transmission opportunity.
  • the multiple preamble transmission opportunity may include a starting time-frequency resource location, a repetition period, and a repetition number of the PRACH.
  • FIG. 2B shows the initial time-frequency resource location, the repetition period, and the repetition times of the PRACH of the multiple preamble transmission opportunity.
  • the transmission monitoring sub-module 732 is configured to start transmitting the preamble from the first time-frequency resource location of the next multi-preamble transmission opportunity indicated by the PRACH resource acquired by the obtaining sub-module 731, and at the end of all preamble transmissions Start listening to the RAR receive window.
  • the start position of the RAR receiving window is turned on at a predetermined interval, for example, 1 subframe, after the end of the multiple preamble transmission opportunity.
  • the determining the sending and receiving sub-module 733 is configured to: if the transmission monitoring sub-module 732 receives the RAR in the random access response RAR receiving window, determine the transmitting beam that the RAR responds, and send the third message MSG3 to the base station by using the transmitting beam, and Waiting to receive the fourth message MSG4 returned by the base station.
  • the transmit beam that the RAR responds to may be determined according to the random access radio network temporary identifier (RA-RNTI) corresponding to the RAR, and then sent to the base station by using the transmit beam. MSG3, and waits to receive the MSG4 returned by the base station.
  • RA-RNTI random access radio network temporary identifier
  • the preamble is transmitted from the first time-frequency resource location of the next multi-preamble transmission opportunity, and the RAR reception window is monitored at the end of all the preamble transmissions, and then the RAR responds.
  • the transmitting beam transmits MSG3 to the base station through the transmitting beam, and waits for receiving the MSG4 returned by the base station, thereby completing the random access procedure.
  • FIG. 8D is a block diagram of another random access device according to an exemplary embodiment. As shown in FIG. 8D, on the basis of the foregoing embodiment shown in FIG. 8C, multiple preamble transmission opportunities include a starting time frequency of PRACH.
  • the transmission monitoring sub-module 732 may include a selection transmitting unit 7321, a first transmitting unit 7322, and a second transmitting unit 7323.
  • the selection transmitting unit 7321 is configured to select a preamble from the preamble resource pool and transmit the selected preamble from the first time-frequency resource location of the next multi-preamble transmission opportunity.
  • the first sending unit 7322 is configured to send the preamble selected by the selecting sending unit 7321 to the first preset number of time-frequency resource locations after the first time-frequency resource location, if the number of transmitting beams supported by the current UE is less than the number of repetitions. Or repeatedly transmitting a second preset number of transmit beams, the first preset number being equal to the number of transmit beams minus one, and the second preset number being equal to the difference between the number of repetitions and the number of transmit beams.
  • the second sending unit 7323 is configured to select the same number of transmission beams to transmit the preamble selected by the selection sending unit 7321 if the number of transmission beams supported by the current UE is greater than the number of repetitions.
  • the multi-preamble transmission opportunity shown in FIG. 2B is taken as an example.
  • the number of repetitions of the PRACH resource of the primary preamble transmission opportunity in FIG. 2B is 4 times. If the UE is currently in the multiple preamble transmission opportunity 41, the UE is in the preamble.
  • the selected preamble may be sent from the next multi-preamble transmission opportunity, that is, the first time-frequency resource location 421 of the multi-preamble transmission opportunity 42 if the UE supports
  • the number of transmit beams is three, that is, the number of transmit beams supported by the UE is less than the number of repetitions, and the selected preamble is transmitted on the two time-frequency resource locations OFDM and 423 after the first time-frequency resource location 421, or Then, one transmission beam is repeatedly transmitted. If the number of transmission beams supported by the current UE is greater than the number of repetitions of 4, four transmission beams are selected to transmit the selected preamble.
  • the selected preamble is sent from the first time-frequency resource location of the next multiple preamble transmission opportunity, and the time-frequency resource location of the preamble is selected according to the size relationship between the number of transmission beams supported by the current UE and the number of repetitions. So that the base station can return the RAR according to the location of the time-frequency resource where the received preamble is located.
  • FIG. 8E is a block diagram of another random access device according to an exemplary embodiment. As shown in FIG. 8E, the device may further include: a lifting module 74, based on the embodiment shown in FIG. 8C.
  • the lifting module 74 is configured to: if it is determined that the sending and receiving submodule 733 does not receive the RAR in the RAR receiving window or does not receive the MSG4 returned by the base station, and the current UE does not reach the maximum transmit power, the transmit power of the current UE is raised, and the call is raised.
  • the transmission monitor sub-module 732 transmits the preamble from the first time-frequency resource location of the next multiple preamble transmission opportunity.
  • the UE transmits the same preamble in a multi-preamble transmission opportunity. After completing one multi-preamble transmission, if the RAR is not received in the RAR receiving window or the MSG4 returned by the base station is not received, and the current UE is not When the maximum transmit power is reached, the transmit power of the current UE can be increased to expect to receive RAR or MSG4, so that random access can be achieved.
  • the transmit power of the current UE may be increased to expect to receive the RAR or the MSG4, thereby Increase the probability that random access can be achieved.
  • FIG. 8F is a block diagram of another random access device according to an exemplary embodiment. As shown in FIG. 8F, on the basis of the foregoing embodiment shown in FIG. 7, the device may further include: a receiving module 75.
  • the receiving module 75 is configured to receive a broadcast message sent by the base station before the determining module 72 determines whether to adopt the multi-preamble transmission, and the broadcast message carries the PRACH resource for each beam multi-preamble transmission.
  • the PRACH resource is used to indicate multiple preamble transmission opportunities, and the dedicated PRACH resources of multiple preamble transmissions of each beam are different.
  • Multiple preamble transmission opportunities may include the initial time-frequency resource location, repetition period, and number of repetitions of the PRACH.
  • the PRACH resource may further include a preamble identifier.
  • the PRACH resource may further include a size of the RAR receiving window.
  • the broadcast message sent by the base station is received, so as to be carried in the subsequent broadcast message.
  • the PRACH resource sends the preamble to provide the conditions.
  • FIG. 8G is a block diagram of another random access device according to an exemplary embodiment. As shown in FIG. 8G, on the basis of the embodiment shown in FIG. 8C, the device may further include:
  • the association module 76 is configured to associate to a downlink beam by the downlink measurement signal before the acquisition sub-module 731 acquires the PRACH resources of the multi-preamble transmission from the currently associated downlink beam.
  • the downlink measurement signal is associated with a downlink beam, thereby providing a condition for subsequently acquiring the PRACH resource of the multiple preamble transmission from the currently associated downlink beam.
  • FIG. 9 is a block diagram of still another random access apparatus according to an exemplary embodiment. As shown in FIG. 9, the random access apparatus includes: a receiving module 91 and a returning module 92.
  • the receiving module 91 is configured to receive a preamble that the user equipment UE transmits through the multi-preamble sequence preamble transmission opportunity.
  • the multiple preamble transmission opportunity may include a starting time-frequency resource location, a repetition period, and a repetition number of the PRACH.
  • FIG. 2B shows the initial time-frequency resource location, the repetition period, and the repetition times of the PRACH of the multiple preamble transmission opportunity.
  • the UE may transmit the preamble by using the acquired multiple preamble transmission opportunity, and the base station receives the preamble transmitted by the UE through the multiple preamble transmission opportunity.
  • the returning module 92 is configured to return a random access response RAR for the time-frequency resource location in the preamble and the multi-preamble transmission opportunity according to the time-frequency resource location in the multiple preamble transmission opportunity in which the preamble received by the receiving module 91 is used. Random access is performed at the UE.
  • the preamble transmitted by the UE through the multiple preamble transmission opportunity is received, and the time-frequency resource location in the preamble and the multi-preamble transmission opportunity is returned according to the time-frequency resource location in the multiple preamble transmission opportunity where the received preamble is located.
  • the RAR is used for the UE to perform random access, so as to provide transmission resources for the qualified UE to save transmission resources.
  • FIG. 10 is a block diagram of another random access device according to an exemplary embodiment. As shown in FIG. 10, on the basis of the foregoing embodiment shown in FIG. 9, the device may further include: a receiving return module 93.
  • the receiving return module 93 is configured to receive the third message MSG3 sent by the UE after the returning module 92 returns the RAR for the time-frequency resource location in the preamble and the multi-preamble transmission opportunity, and return the fourth message MSG4 to the UE according to the MSG3.
  • the random access procedure is completed by receiving the third message MSG3 sent by the UE, and returning the fourth message MSG4 to the UE according to the MSG3.
  • FIG. 11A is a block diagram of another random access device according to an exemplary embodiment.
  • a multiple preamble transmission opportunity includes a physical random access channel PRACH.
  • the return time-frequency resource location, the repetition period, and the number of repetitions, the return module 92 can include a determination sub-module 921, a selection sub-module 922, and a return sub-module 923.
  • the determining sub-module 921 is configured to determine the time-frequency resource location at which the received preamble is located and all of the repeated time-frequency resource locations in the current multi-preamble transmission opportunity.
  • the UE may start transmitting the selected preamble from the next multi-preamble transmission opportunity, that is, the first time-frequency resource location 421 of the multi-preamble transmission opportunity 42 shown in FIG. 2B, if the UE The number of transmit beams supported is three, that is, the number of transmit beams supported by the UE is less than the number of repetitions, and the selected preamble is sent on the two time-frequency resource locations OFDM and 423 after the first time-frequency resource location 421. .
  • the base station may determine that the time-frequency resource location where the preamble is located and all the repeated time-frequency resource locations in the current multi-preamble transmission opportunity are the first time-frequency resource location 421 and the time-frequency resource location 422 and 423.
  • the selection sub-module 922 is configured to select the preamble with the best signal quality from the preamble with the same preamble identifier received by the determining time-frequency resource location determined by the sub-module 921 and all of the repeated time-frequency resource locations.
  • the UE selects the preamble with the best signal quality from the preamble with the same preamble identifier received by the first time-frequency resource location 421 and the time-frequency resource locations 422 and 423.
  • the returning sub-module 923 is configured to return an RAR according to the time-frequency resource location of the preamble with the best signal quality selected by the selection sub-module 922, and the RAR carries the preamble identifier corresponding to the preamble with the best signal quality.
  • the time-frequency resource location where the preamble with the best signal quality is located may include at least one of an Orthogonal Frequency Division Multiplexing (OFDM) symbol position, a subframe position, and a frequency domain location where the preamble with the best signal quality is located.
  • OFDM Orthogonal Frequency Division Multiplexing
  • At least one of the OFDM symbol position, the subframe position, and the frequency domain position at which the preamble with the best signal quality is located may be represented by an RA-RNTI.
  • an RAR may be returned according to the time-frequency resource location where the best preamble of the signal quality is located, for the UE to determine the transmit beam that the RAR responds to.
  • resource cost is saved by selecting a preamble with the best signal quality and returning an RAR according to the time-frequency resource location where the best preamble of the signal quality is located.
  • FIG. 11B is a block diagram of another random access device according to an exemplary embodiment. As shown in FIG. 11B, on the basis of the foregoing embodiment shown in FIG. 9, the device may further include: a sending module 90.
  • the sending module 90 is configured to send a broadcast message to the UE before the receiving module 91 receives the preamble transmitted by the user equipment UE through the multi-preamble sequence preamble transmission opportunity, where the broadcast message carries the PRACH resource for each beam multi-preamble transmission.
  • the UE may send a preamble according to the PRACH resource carried in the broadcast message by sending a broadcast message to the UE.
  • FIG. 12 is a block diagram of a device suitable for random access, according to an exemplary embodiment.
  • device 1200 can be a user device such as a mobile phone, computer, digital broadcast terminal, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, and the like.
  • apparatus 1200 can include one or more of the following components: processing component 1202, memory 1204, power component 1206, multimedia component 1208, audio component 1210, input/output (I/O) interface 1212, sensor component 1214, And a communication component 1216.
  • Processing component 1202 typically controls the overall operation of device 1200, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • Processing component 1202 can include one or more processors 1220 to execute instructions to perform all or part of the steps of the above described methods.
  • processing component 1202 can include one or more modules to facilitate interaction between component 1202 and other components.
  • processing component 1202 can include a multimedia module to facilitate interaction between multimedia component 1208 and processing component 1202.
  • Memory 1204 is configured to store various types of data to support operation at device 1200. Examples of such data include instructions for any application or method operating on device 1200, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 1204 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • Power component 1206 provides power to various components of device 1200.
  • Power component 1206 can include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for device 1200.
  • the multimedia component 1208 includes a screen between the device 1200 and the user that provides an output interface.
  • the screen can include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors To sense touches, swipes, and gestures on the touch panel. The touch sensor can sense not only the boundaries of the touch or sliding action, but also the duration and pressure associated with the touch or slide operation.
  • the multimedia component 1208 includes a front camera and/or a rear camera. When the device 1200 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 1210 is configured to output and/or input an audio signal.
  • audio component 1210 includes a microphone (MIC) that is configured to receive an external audio signal when device 1200 is in an operational mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in memory 1204 or transmitted via communication component 1216.
  • audio component 1210 also includes a speaker for outputting an audio signal.
  • the I/O interface 1212 provides an interface between the processing component 1202 and the peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to, a home button, a volume button, a start button, and a lock button.
  • Sensor assembly 1214 includes one or more sensors for providing status assessment of various aspects to device 1200.
  • sensor component 1214 can detect an open/closed state of device 1200, a relative positioning of components, such as a display and a keypad of device 1200, and sensor component 1214 can also detect a change in position of a component of device 1200 or device 1200, the user The presence or absence of contact with device 1200, device 1200 orientation or acceleration/deceleration and temperature change of device 1200.
  • Sensor assembly 1214 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 1214 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 1214 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 1216 is configured to facilitate wired or wireless communication between device 1200 and other devices.
  • the device 1200 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 1216 receives broadcast signals or broadcast associated information from an external broadcast management system via a broadcast channel.
  • communication component 1216 also includes a near field communication (NFC) module to facilitate short range communication.
  • NFC near field communication
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • device 1200 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component implementation for performing the above methods.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic component implementation for performing the above methods.
  • non-transitory computer readable storage medium comprising instructions, such as a memory 1204 comprising instructions executable by processor 1220 of apparatus 1200 to perform the above method.
  • the non-transitory computer readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
  • FIG. 13 is a block diagram showing another suitable for a random access device, according to an exemplary embodiment.
  • Apparatus 1300 can be provided as a base station.
  • apparatus 1300 includes a processing component 1322, a wireless transmit/receive component 1324, an antenna component 1326, and a signal processing portion specific to the wireless interface.
  • Processing component 1322 can further include one or more processors.
  • One of the processing components 1322 can be configured to:
  • non-transitory computer readable storage medium comprising instructions executable by processing component 1322 of apparatus 1300 to perform the random access method described above.
  • the non-transitory computer readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
  • the device embodiment since it basically corresponds to the method embodiment, reference may be made to the partial description of the method embodiment.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located A place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without any creative effort.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种随机接入方法及装置、用户设备、基站和计算机可读存储介质。其中,随机接入方法包括:确定发起随机接入;判断是否采用多前导序列preamble传输;若确定采用多preamble传输,则通过获取的多preamble传输机会传输preamble,以进行随机接入。本公开实施例,通过判断是否采用多preamble传输来确定当前UE是否可以采用多preamble传输,若确定可以采用多preamble传输,则通过多preamble传输机会传输preamble,从而可以节省有限的多preamble传输资源。

Description

随机接入方法及装置、用户设备和基站 技术领域
本公开涉及通信技术领域,尤其涉及一种随机接入方法及装置、用户设备、基站和计算机可读存储介质。
背景技术
在长期演进(Long Term Evolution,简称为LTE)系统中,基站发送广播是通过一个波束(beam)来覆盖整个扇区。在新空口(New Radio,NR)中,基站可以采用较窄波束扫描的方式来覆盖一个扇区,也即基站在某一时刻只向某一个方向发送一个窄波束,然后通过不断地改变beam的方向,来达到覆盖一个扇区。这种场景被称作多波束(Multi-beam)场景。
在Multi-beam场景下,用户设备(UE)首先通过测量下行信号来关联到一个最好的下行beam。对于具备发送接收一致性(Tx-Rx correspondence)能力的UE来说,UE可以通过接收下行beam来确定最合适的上行beam。但对于不具备发送接收一致性的UE来说,UE无法确定自己的上行beam,这就需要UE通过在不同的beam来尝试发送以便确定最合适的上行beam。
对于随机接入而言,不具备发送接收一致性的UE可以通过发送多个前导序列(preamble)的方式来确保基站收到preamble,这就是多beam场景下的多preamble传输。由于基站为UE提供的多preamble传输资源有限,因此,只有具有特定业务需求的UE才可以使用基站提供的多preamble传输资源。
发明内容
有鉴于此,本申请公开了一种随机接入方法及装置、用户设备、基站和计算机可读存储介质,以筛选出可以使用多preamble传输资源的UE,从而节省有限的传输资源。
根据本公开实施例的第一方面,提供一种随机接入方法,所述方法包括:
确定发起随机接入;
判断是否采用多前导序列preamble传输;
若确定采用所述多preamble传输,则通过获取的多preamble传输机会传输preamble,以 进行随机接入。
在一实施例中,所述判断是否采用多preamble传输包括以下至少一项:
判断触发所述随机接入的业务是否为预设类型业务,若为所述预设类型业务,则确定采用所述多preamble传输;
判断多preamble传输功能是否被使能,若所述多preamble传输功能被使能,则确定采用所述多preamble传输;
判断当前UE是否确定发送preamble的上行波束,若所述当前UE未确定发送preamble的上行波束,则确定采用所述多preamble传输;
判断当前UE是否为预设类型的UE,若所述当前UE为所述预设类型的UE,则确定采用所述多preamble传输;
判断所述随机接入是否为预设的接入类型,若所述随机接入为预设的接入类型,则确定采用所述多preamble传输;
判断当前UE是否具备多输入多输出MIMO能力或多波束发送能力,若所述当前UE具备MIMO能力或多波束发送能力,则确定采用所述多preamble传输;
判断当前UE是否具有发送接收一致性能力,若所述当前UE不具有发送接收一致性能力,则确定采用所述多preamble传输。
在一实施例中,所述判断多preamble传输功能是否被使能,包括:
若接收的系统消息中配置了多preamble传输的物理随机接入信道PRACH资源,则所述多preamble传输功能被使能;或者
若当前用户设备UE为去使能状态或者连接状态的UE且所述基站配置开启了所述当前UE的多preamble传输功能,则所述多preamble传输功能被使能;或者
若所述基站配置开启了所述当前UE的数据承载DRB或逻辑信道的所述多preamble传输功能,且所述随机接入由开启所述多preamble传输功能的DRB或逻辑信道所触发以及所述随机接入为竞争性随机接入,则所述多preamble传输功能被使能。
在一实施例中,所述判断当前UE是否为预设类型的UE,包括:
若接收的来自所述基站的多preamble传输的PRACH资源中指示的UE类型为所述预设类型,则确定所述当前UE为所述预设类型的UE;或者
所述判断所述随机接入是否为预设的接入类型,包括:
若接收的来自所述基站的多preamble传输的PRACH资源中指示的接入类型为所述预设的接入类型,则确定所述随机接入为所述预设的接入类型。
在一实施例中,所述通过获取的多preamble传输机会传输preamble,以进行随机接入,包括:
从当前关联的下行波束中获取多preamble传输的PRACH资源,所述PRACH资源用于指示多preamble传输机会;
从下一个多preamble传输机会的第一个时频资源位置开始传输preamble,并在所有preamble传输结束开始监听随机接入响应RAR接收窗口;
若在所述随机接入响应RAR接收窗口内接收到RAR,则确定出所述RAR所响应的发送波束,通过所述发送波束向基站发送第三消息MSG3,并等待接收所述基站返回的第四消息MSG4。
在一实施例中,所述多preamble传输机会包括PRACH的起始时频资源位置、重复周期和重复次数,所述从下一个多preamble传输机会的第一个时频资源位置开始传输preamble,包括:
从preamble资源池中选择一个preamble,并从下一个多preamble传输机会的第一个时频资源位置开始发送选择的preamble;
若当前UE支持的发送波束数量小于所述重复次数,则在所述第一个时频资源位置之后的第一预设数量的时频资源位置上发送所述选择的preamble,或者再重复发送第二预设数量的发送波束,所述第一预设数量等于所述发送波束数量减一,所述第二预设数量等于所述重复次数与所述发送波束数量的差值;
若当前UE支持的发送波束数量大于所述重复次数,则选择所述重复次数同数量的发送波束来发送所述选择的preamble。
在一实施例中,所述确定出所述RAR所响应的发送波束,包括:
根据所述RAR对应的随机接入无线网络临时标识RA-RNTI确定出所述RAR所响应的发送波束。
在一实施例中,所述方法还包括:
若未在所述RAR接收窗口内接收到RAR或者未接收到所述基站返回的所述MSG4,且 所述当前UE未达到最大发射功率,则提升所述当前UE的发射功率,并转向执行所述从下一个多preamble传输机会的第一个时频资源位置开始传输preamble。
在一实施例中,所述PRACH资源包括preamble标识和所述RAR接收窗口的大小中的至少一项。
在一实施例中,所述方法还包括:
在所述判断是否采用多preamble传输之前,接收所述基站发送的广播消息,所述广播消息中携带用于每个波束多preamble传输的PRACH资源。
在一实施例中,所述方法还包括:
在所述从当前关联的下行波束中获取所述多preamble传输的PRACH资源之前,通过下行测量信号关联到一个下行波束。
根据本公开实施例的第二方面,提供一种随机接入方法,所述方法包括:
接收用户设备UE通过多前导序列preamble传输机会传输的preamble;
根据接收的所述preamble所处的多preamble传输机会中的时频资源位置,返回针对所述preamble及所述多preamble传输机会中的时频资源位置的随机接入响应RAR,以用于所述UE进行随机接入。
在一实施例中,所述方法还包括:
在所述返回针对所述preamble及所述多preamble传输机会中的时频资源位置的RAR之后,接收所述UE发送的第三消息MSG3,并根据所述MSG3向所述UE返回第四消息MSG4。
在一实施例中,所述多preamble传输机会包括物理随机接入信道PRACH的起始时频资源位置、重复周期和重复次数,所述根据接收的所述preamble所处的多preamble传输机会中的时频资源位置,返回针对所述preamble及所述多preamble传输机会中的时频资源位置的RAR,包括:
确定接收的所述preamble所处的时频资源位置及其在当前多preamble传输机会中的所有重复时频资源位置;
从确定的所述时频资源位置及其所有重复时频资源位置接收到的preamble标识相同的preamble中,选择信号质量最好的preamble;
根据所述信号质量最好的preamble所处的时频资源位置返回一个RAR,所述RAR中携 带所述信号质量最好的preamble对应的preamble标识。
在一实施例中,所述信号质量最好的preamble所处的时频资源位置包括所述信号质量最好的preamble所处的正交频分复用OFDM符号位置、子帧位置和频域位置中的至少一项,所述信号质量最好的preamble所处的OFDM符号位置、子帧位置和频域位置中的至少一项采用随机接入无线网络临时标识RA-RNTI表示。
在一实施例中,所述方法还包括:
在所述接收用户设备UE通过多前导序列preamble传输机会传输的preamble之前,向所述UE发送广播消息,所述广播消息中携带用于每个波束多preamble传输的PRACH资源。
在一实施例中,所述PRACH资源用于指示所述多preamble传输机会,所述多preamble传输机会包括PRACH的起始时频资源位置、重复周期和重复次数。
在一实施例中,所述PRACH资源包括preamble标识和RAR接收窗口的大小中的至少一项。
根据本公开实施例的第三方面,提供一种随机接入装置,所述装置包括:
确定模块,被配置为确定发起随机接入;
判断模块,被配置为在所述确定模块确定发起随机接入之后,判断是否采用多前导序列preamble传输;
确定传输模块,被配置为若所述判断模块确定采用所述多preamble传输,则通过获取的多preamble传输机会传输preamble,以进行随机接入。
在一实施例中,所述判断模块包括:
第一判断子模块,被配置为判断触发所述随机接入的业务是否为预设类型业务,若为所述预设类型业务,则确定采用所述多preamble传输;
第二判断子模块,被配置为判断多preamble传输功能是否被使能,若所述多preamble传输功能被使能,则确定采用所述多preamble传输;
第三判断子模块,被配置为判断当前UE是否确定发送preamble的上行波束,若所述当前UE未确定发送preamble的上行波束,则确定采用所述多preamble传输;
第四判断子模块,被配置为判断当前UE是否为预设类型的UE,若所述当前UE为所述预设类型的UE,则确定采用所述多preamble传输;
第五判断子模块,被配置为判断所述随机接入是否为预设的接入类型,若所述随机接入为预设的接入类型,则确定采用所述多preamble传输;
第六判断子模块,被配置为判断当前UE是否具备多输入多输出MIMO能力或多波束发送能力,若所述当前UE具备MIMO能力或多波束发送能力,则确定采用所述多preamble传输;
第七判断子模块,被配置为判断当前UE是否具有发送接收一致性能力,若所述当前UE不具有发送接收一致性能力,则确定采用所述多preamble传输。
在一实施例中,所述第二判断子模块包括:
第一判断单元,被配置为若接收的系统消息中配置了多preamble传输的物理随机接入信道PRACH资源,则所述多preamble传输功能被使能;或者
第二判断单元,被配置为若当前用户设备UE为去使能状态或者连接状态的UE且所述基站配置开启了所述当前UE的多preamble传输功能,则所述多preamble传输功能被使能;或者
第三判断单元,被配置为若所述基站配置开启了所述当前UE的数据承载DRB或逻辑信道的所述多preamble传输功能,且所述随机接入由开启所述多preamble传输功能的DRB或逻辑信道所触发以及所述随机接入为竞争性随机接入,则所述多preamble传输功能被使能。
在一实施例中,所述第四判断子模块,被配置为:
若接收的来自所述基站的多preamble传输的PRACH资源中指示的UE类型为所述预设类型,则确定所述当前UE为所述预设类型的UE;或者
所述第五判断子模块,被配置为:
若接收的来自所述基站的多preamble传输的PRACH资源中指示的接入类型为所述预设的接入类型,则确定所述随机接入为所述预设的接入类型。
在一实施例中,所述确定传输模块包括:
获取子模块,被配置为从当前关联的下行波束中获取多preamble传输的PRACH资源,所述PRACH资源用于指示多preamble传输机会;
传输监听子模块,被配置为从所述获取子模块获取的所述PRACH资源指示的下一个多preamble传输机会的第一个时频资源位置开始传输preamble,并在所有preamble传输结束开始监听RAR接收窗口;
确定发送接收子模块,被配置为若所述传输监听子模块在所述随机接入响应RAR接收窗口内接收到RAR,则确定出所述RAR所响应的发送波束,通过所述发送波束向基站发送第三消息MSG3,并等待接收所述基站返回的第四消息MSG4。
在一实施例中,所述多preamble传输机会包括PRACH的起始时频资源位置、重复周期和重复次数,所述传输监听子模块包括:
选择发送单元,被配置为从preamble资源池中选择一个preamble,并从下一个多preamble传输机会的第一个时频资源位置开始发送选择的preamble;
第一发送单元,被配置为若当前UE支持的发送波束数量小于所述重复次数,则在所述第一个时频资源位置之后的第一预设数量的时频资源位置上发送所述选择发送单元选择的preamble,或者再重复发送第二预设数量的发送波束,所述第一预设数量等于所述发送波束数量减一,所述第二预设数量等于所述重复次数与所述发送波束数量的差值;
第二发送单元,被配置为若当前UE支持的发送波束数量大于所述重复次数,则选择所述重复次数同数量的发送波束来发送所述选择发送单元选择的preamble。
在一实施例中,所述确定发送接收子模块,被配置为:
根据所述RAR对应的随机接入无线网络临时标识RA-RNTI确定出所述RAR所响应的发送波束。
在一实施例中,所述装置还包括:
提升模块,被配置为若所述确定发送接收子模块未在所述RAR接收窗口内接收到RAR或者未接收到所述基站返回的所述MSG4,且所述当前UE未达到最大发射功率,则提升所述当前UE的发射功率,并调用所述传输监听子模块从下一个多preamble传输机会的第一个时频资源位置开始传输preamble。
在一实施例中,所述PRACH资源包括preamble标识和所述RAR接收窗口的大小中的至少一项。
在一实施例中,所述装置还包括:
接收模块,被配置为在所述判断模块判断是否采用多preamble传输之前,接收所述基站发送的广播消息,所述广播消息中携带用于每个波束多preamble传输的PRACH资源。
在一实施例中,所述装置还包括:
关联模块,被配置为在所述获取子模块从当前关联的下行波束中获取所述多preamble传 输的PRACH资源之前,通过下行测量信号关联到一个下行波束。
根据本公开实施例的第四方面,提供一种随机接入装置,所述装置包括:
接收模块,被配置为接收用户设备UE通过多前导序列preamble传输机会传输的preamble;
返回模块,被配置为根据所述接收模块接收的所述preamble所处的多preamble传输机会中的时频资源位置,返回针对所述preamble及所述多preamble传输机会中的时频资源位置的随机接入响应RAR,以用于所述UE进行随机接入。
在一实施例中,所述装置还包括:
接收返回模块,被配置为在所述返回模块返回针对所述preamble及所述多preamble传输机会中的时频资源位置的RAR之后,接收所述UE发送的第三消息MSG3,并根据所述MSG3向所述UE返回第四消息MSG4。
在一实施例中,所述多preamble传输机会包括物理随机接入信道PRACH的起始时频资源位置、重复周期和重复次数,所述返回模块包括:
确定子模块,被配置为确定接收的所述preamble所处的时频资源位置及其在当前多preamble传输机会中的所有重复时频资源位置;
选择子模块,被配置为从所述确定子模块确定的所述时频资源位置及其所有重复时频资源位置接收到的preamble标识相同的preamble中,选择信号质量最好的preamble;
返回子模块,被配置为根据所述选择子模块选择的所述信号质量最好的preamble所处的时频资源位置返回一个RAR,所述RAR中携带所述信号质量最好的preamble对应的preamble标识。
在一实施例中,所述信号质量最好的preamble所处的时频资源位置包括所述信号质量最好的preamble所处的正交频分复用OFDM符号位置、子帧位置和频域位置中的至少一项,所述信号质量最好的preamble所处的OFDM符号位置、子帧位置和频域位置中的至少一项采用随机接入无线网络临时标识RA-RNTI表示。
在一实施例中,所述装置还包括:
发送模块,被配置为在所述接收模块接收用户设备UE通过多前导序列preamble传输机会传输的preamble之前,向所述UE发送广播消息,所述广播消息中携带用于每个波束多preamble传输的PRACH资源。
在一实施例中,所述PRACH资源用于指示所述多preamble传输机会,所述多preamble 传输机会包括PRACH的起始时频资源位置、重复周期和重复次数。
在一实施例中,所述PRACH资源包括preamble标识和RAR接收窗口的大小中的至少一项。
根据本公开实施例的第五方面,提供一种用户设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
确定发起随机接入;
判断是否采用多前导序列preamble传输;
若确定采用所述多preamble传输,则通过获取的多preamble传输机会传输preamble,以进行随机接入。
根据本公开实施例的第六方面,提供一种基站,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
接收用户设备UE通过多前导序列preamble传输机会传输的preamble;
根据接收的所述preamble所处的多preamble传输机会中的时频资源位置,返回针对所述preamble及所述多preamble传输机会中的时频资源位置的随机接入响应RAR,以用于所述UE进行随机接入。
根据本公开实施例的第七方面,提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述随机接入方法的步骤。
根据本公开实施例的第八方面,提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述随机接入方法的步骤。
本公开的实施例提供的技术方案可以包括以下有益效果:
通过判断是否采用多preamble传输来确定当前UE是否可以采用多preamble传输,若确定可以采用多preamble传输,则通过多preamble传输机会传输preamble,从而可以节省 有限的多preamble传输资源。
可以通过多种方式判断UE是否采用多preamble传输,实现方式灵活多样。
可以通过多种方式判断多preamble传输功能是否被使能,实现方式灵活多样。
通过接收的来自基站的多preamble传输的PRACH资源中指示的UE类型为预设类型,来确定当前UE为预设类型的UE,通过接收的来自基站的多preamble传输的PRACH资源中指示的接入类型为预设的接入类型,来确定随机接入为预设的接入类型,实现方式简单。
在确定采用多preamble传输之后,从下一个多preamble传输机会的第一个时频资源位置开始传输preamble,并在所有preamble传输结束开始监听RAR接收窗口,然后确定出RAR所响应的发送波束,通过该发送波束向基站发送MSG3,并等待接收基站返回的MSG4,从而完成随机接入过程。
通过从下一个多preamble传输机会的第一个时频资源位置开始发送选择的preamble,并根据当前UE支持的发送波束数量与重复次数的大小关系来选择发送preamble的时频资源位置,使得基站可以根据接收的preamble所在的时频资源位置返回RAR。
通过根据RAR对应的随机接入无线网络临时标识(RA-RNTI)确定出RAR所响应的发送波束,从而为后续通过该发送波束发送第三消息(MSG3)提供了条件。
若未在RAR接收窗口内接收到RAR或者未接收到基站返回的MSG4,且当前UE未达到最大发射功率,则可以提升当前UE的发射功率,以期望接收到RAR或MSG4,从而提高可以实现随机接入的概率。
通过限定PRACH资源包括preamble标识和RAR接收窗口的大小中的至少一项,为后续实现随机接入提供了条件。
通过接收基站发送的广播消息,从而为后续根据广播消息中携带的PRACH资源发送preamble提供了条件。
通过下行测量信号关联到一个下行波束,从而为后续从当前关联的下行波束中获取多preamble传输的PRACH资源提供了条件。
通过接收UE通过多preamble传输机会传输的preamble,并根据接收的preamble所处的多preamble传输机会中的时频资源位置,返回针对preamble及多preamble传输机会中的时频资源位置的RAR,以用于UE进行随机接入,从而达到为符合条件的UE提供传输资源,以节省传输资源的目的。
通过接收UE发送的第三消息MSG3,并根据MSG3向UE返回第四消息MSG4,从而完成随机接入过程。
通过选择信号质量最好的preamble,并根据信号质量最好的preamble所处的时频资源位置返回一个RAR,从而可以节省资源消耗。
通过限定信号质量最好的preamble所处的时频资源位置包括信号质量最好的preamble所处的正交频分复用OFDM符号位置、子帧位置和频域位置中的至少一项以及信号质量最好的preamble所处的OFDM符号位置、子帧位置和频域位置中的至少一项采用随机接入无线网络临时标识RA-RNTI表示,从而为UE根据RAR对应的RA-RNTI确定出RAR所响应的发送波束提供了条件。
通过向UE发送广播消息,使得UE可以根据该广播消息中携带的PRACH资源发送preamble。
通过限定PRACH资源用于指示多preamble传输机会,多preamble传输机会包括PRACH的起始时频资源位置、重复周期和重复次数,从而为UE根据PRACH资源发送preamble提供了条件。
通过限定PRACH资源包括preamble标识和RAR接收窗口的大小中的至少一项,为后续实现随机接入提供了条件。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是本申请一示例性实施例示出的一种随机接入方法的流程图;
图2A是本申请一示例性实施例示出的一种随机接入过程的流程图;
图2B是本申请一示例性实施例示出的多preamble传输机会的示意图;
图3是本申请一示例性实施例示出的另一种随机接入过程的流程图;
图4是本申请一示例性实施例示出的又一种随机接入方法的流程图;
图5是本申请一示例性实施例示出的一种返回随机接入响应的流程图;
图6是本申请一示例性实施例示出的一种随机接入方法的信令流程图;
图7是根据一示例性实施例示出的一种随机接入装置的框图;
图8A是根据一示例性实施例示出的另一种随机接入装置的框图;
图8B是根据一示例性实施例示出的另一种随机接入装置的框图;
图8C是根据一示例性实施例示出的另一种随机接入装置的框图;
图8D是根据一示例性实施例示出的另一种随机接入装置的框图;
图8E是根据一示例性实施例示出的另一种随机接入装置的框图;
图8F是根据一示例性实施例示出的另一种随机接入装置的框图;
图8G是根据一示例性实施例示出的另一种随机接入装置的框图;
图9是根据一示例性实施例示出的又一种随机接入装置的框图;
图10是根据一示例性实施例示出的另一种随机接入装置的框图;
图11A是根据一示例性实施例示出的另一种随机接入装置的框图;
图11B是根据一示例性实施例示出的另一种随机接入装置的框图;
图12是根据一示例性实施例示出的一种适用于随机接入装置的框图;
图13是根据一示例性实施例示出的另一种适用于随机接入装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
图1是本申请一示例性实施例示出的一种随机接入方法的流程图,该实施例从UE侧进行描述,如图1所示,该随机接入方法包括:
在步骤S101中,确定发起随机接入。
例如,当UE有上行数据需要发送时,则可以需要发起随机接入。
在步骤S102中,判断是否采用多preamble传输。
在该实施例中,UE可以采用但不局限于以下一种或几种方式来判断该UE是否采用多preamble传输:
第一种方式,判断触发随机接入的业务是否为预设类型业务,若为预设类型业务,则可以确定采用多preamble传输。
其中,预设类型业务可以包括但不局限于时延敏感业务,例如高可靠低时延通信(Ultra Reliable Low Latency Communication,URLLC)业务。
第二种方式,判断多preamble传输功能是否被使能,若多preamble传输功能被使能,则可以确定采用多preamble传输。
其中,可以通过但不局限于以下任意一种方式判断多preamble传输功能是否被使能:
1)若接收的系统消息中配置了多preamble传输的物理随机接入信道PRACH资源,则当前UE的多preamble传输功能被使能。
2)当前UE为去使能状态或者连接状态的UE且基站配置开启了当前UE的多preamble传输功能,则当前UE的多preamble传输功能被使能;或者
3)若基站配置开启了当前UE的数据承载(DRB)或逻辑信道的多preamble传输功能,且随机接入由开启多preamble传输功能的DRB或逻辑信道所触发以及该随机接入为竞争性随机接入,则当前UE的多preamble传输功能被使能。
第三种方式,判断当前UE是否确定发送preamble的上行波束,若当前UE未确定发送preamble的上行波束,则可以确定采用多preamble传输。
第四种方式,判断当前UE是否为预设类型的UE,若当前UE为预设类型的UE,则可以确定采用多preamble传输。
例如,若接收的来自基站的多preamble传输的PRACH资源中指示的UE类型为预设类型,则可以确定当前UE为预设类型的UE。
其中,预设类型的UE可以包括但不局限于互联网终端。
第五种方式,判断随机接入是否为预设的接入类型,若随机接入为预设的接入类型,则可以确定采用多preamble传输。
例如,若接收的来自基站的多preamble传输的PRACH资源中指示的接入类型为预设的接入类型,则确定随机接入为预设的接入类型。
第六种方式,判断当前UE是否具备多输入多输出(MIMO)能力或多波束发送能力,若当前UE具备MIMO能力或多波束发送能力,则可以确定采用多preamble传输。
第七种方式,判断当前UE是否具有发送接收一致性能力,若当前UE不具有发送接收一致性能力,则可以确定采用多preamble传输。
在步骤S103中,若确定采用多preamble传输,则通过获取的多preamble传输机会传输preamble,以进行随机接入。
如图2A所示,通过获取的多preamble传输机会传输preamble,以进行随机接入,可以包括:
在步骤S1031中,从当前关联的下行波束中获取多preamble传输的PRACH资源,该PRACH资源用于指示多preamble传输机会。
其中,多preamble传输机会可以包括PRACH的起始时频资源位置、重复周期和重复次数,例如,图2B给出了一次多preamble传输机会的PRACH的起始时频资源位置、重复周期和重复次数的示意图。
在步骤S1032中,从下一个多preamble传输机会的第一个时频资源位置开始传输preamble,并在所有preamble传输结束开始监听随机接入响应(RAR)接收窗口。
其中,RAR接收窗口的起始位置在该多preamble传输机会结束后的预定间隔例如1个子帧处开启。
在该实施例中,从下一个多preamble传输机会的第一个时频资源位置开始传输preamble可以包括:
从preamble资源池中选择一个preamble,并从下一个多preamble传输机会的第一个时频资源位置开始发送选择的preamble;若当前UE支持的发送波束数量小于重复次数,则在第一个时频资源位置之后的第一预设数量的时频资源位置上发送选择的preamble,或者再重复发送第二预设数量的发送波束,第一预设数量等于发送波束数量减一,第二预设数量等于重复次数与发送波束数量的差值;若当前UE支持的发送波束数量大于重复次数,则选择重复次数同数量的发送波束来发送选择的preamble。
以图2B所示的多preamble传输机会为例进行描述,图2B中一次多preamble传输机会的PRACH资源的重复次数为4次,假设UE当前处于多preamble传输机会41中,则该UE在从preamble资源池中选择一个preamble后,可以从下一个多preamble传输机会即多 preamble传输机会42的第一个时频资源位置421开始发送选择的preamble,若该UE支持的发送波束数量为3,即该UE支持的发送波束数量小于重复次数,则在第一个时频资源位置421之后的两个时频资源位置即时频资源位置422和423上发送选择的preamble,或者再重复发送1个的发送波束;若当前UE支持的发送波束数量5大于重复次数4,则选择4个发送波束来发送选择的preamble。
在步骤S1033中,若在RAR接收窗口内接收到RAR,则确定出RAR所响应的发送波束,通过发送波束向基站发送第三消息(MSG3),并等待接收基站返回的第四消息(MSG4)。
在该实施例中,在RAR接收窗口内接收到RAR之后,可以根据RAR对应的随机接入无线网络临时标识(RA-RNTI)确定出RAR所响应的发送波束,然后通过该发送波束向基站发送MSG3,并等待接收基站返回的MSG4。
该实施例,在确定采用多preamble传输之后,从下一个多preamble传输机会的第一个时频资源位置开始传输preamble,并在所有preamble传输结束开始监听RAR接收窗口,然后确定出RAR所响应的发送波束,通过该发送波束向基站发送MSG3,并等待接收基站返回的MSG4,从而完成随机接入过程。
上述实施例,通过判断是否采用多preamble传输来确定当前UE是否可以采用多preamble传输,若确定可以采用多preamble传输,则通过多preamble传输机会传输preamble,从而可以节省有限的多preamble传输资源。
图3是本申请一示例性实施例示出的另一种随机接入过程的流程图,如图3所示,在上述步骤S1033之后,该方法还可以包括:
在步骤S1034中,若未在RAR接收窗口内接收到RAR或者未接收到基站返回的MSG4,且当前UE未达到最大发射功率,则提升当前UE的发射功率,并转向执行步骤S1032。
在该实施例中,UE在一次多preamble传输机会中传输相同的preamble,当完成一次多preamble传输后,若未在RAR接收窗口内接收到RAR或者未接收到基站返回的MSG4,且当前UE未达到最大发射功率,则可以提升当前UE的发射功率,以期望接收到RAR或MSG4,从而可以实现随机接入。
上述实施例,若未在RAR接收窗口内接收到RAR或者未接收到基站返回的MSG4,且当前UE未达到最大发射功率,则可以提升当前UE的发射功率,以期望接收到RAR或MSG4,从而提高可以实现随机接入的概率。
图4是本申请一示例性实施例示出的又一种随机接入方法的流程图,该实施例从基站 侧进行描述,如图4所示,该随机接入方法包括:
在步骤S401中,接收UE通过多preamble传输机会传输的preamble。
其中,多preamble传输机会可以包括PRACH的起始时频资源位置、重复周期和重复次数,例如,图2B给出了一次多preamble传输机会的PRACH的起始时频资源位置、重复周期和重复次数的示意图。
在该实施例中,UE在确定采用多preamble传输之后,可以通过获取的多preamble传输机会传输preamble,基站接收UE通过多preamble传输机会传输的preamble。
在步骤S402中,根据接收的preamble所处的多preamble传输机会中的时频资源位置,返回针对preamble及多preamble传输机会中的时频资源位置的RAR,以用于UE进行随机接入。
在该实施例中,基站反馈RAR是基于接收的preamble所处的多preamble传输机会中的时频资源位置,其中,preamble所处的时频资源位置可以用RA-RNTI表示,RA-RNTI的计算需要将preamble所处的OFDM符号等考虑进去。基站针对RA-RNTI来反馈RAR,RAR中包括在该RA-RNTI所发送的preamble标识(ID)。通常,如果基站在一个RA-RNTI接收到preamble,就会对该RA-RNTI反馈RAR,但必须说明的是基站并不一定要对所有接收到的preamble进行RAR响应,这取决于基站当时的业务状态是否繁忙。
如图5所示,该步骤S402可以包括:
在步骤S4021中,确定接收的preamble所处的时频资源位置及其在当前多preamble传输机会中的所有重复时频资源位置。
假设UE在从preamble资源池中选择一个preamble后,可以从下一个多preamble传输机会即图2B所示的多preamble传输机会42的第一个时频资源位置421开始发送选择的preamble,若该UE支持的发送波束数量为3,即该UE支持的发送波束数量小于重复次数,则在第一个时频资源位置421之后的两个时频资源位置即时频资源位置422和423上发送选择的preamble。基站在接收到preamble后,可以确定该preamble所处的时频资源位置及其在当前多preamble传输机会中的所有重复时频资源位置为第一个时频资源位置421以及时频资源位置422和423。
在步骤S4022中,从确定的时频资源位置及其所有重复时频资源位置接收到的preamble标识相同的preamble中,选择信号质量最好的preamble。
UE从第一个时频资源位置421以及时频资源位置422和423接收到的preamble标识相同的preamble中,选择信号质量最好的preamble。
在步骤S4023中,根据信号质量最好的preamble所处的时频资源位置返回一个RAR,该RAR中携带信号质量最好的preamble对应的preamble标识。
其中,信号质量最好的preamble所处的时频资源位置可以包括信号质量最好的preamble所处的正交频分复用(OFDM)符号位置、子帧位置和频域位置中的至少一项,信号质量最好的preamble所处的OFDM符号位置、子帧位置和频域位置中的至少一项可以采用RA-RNTI表示。
在确定信号质量最好的preamble之后,可以根据信号质量最好的preamble所处的时频资源位置返回一个RAR,以用于UE确定RAR所响应的发送波束。
该实施例,通过选择信号质量最好的preamble,并根据信号质量最好的preamble所处的时频资源位置返回一个RAR,从而可以节省资源消耗。
上述实施例,通过接收UE通过多preamble传输机会传输的preamble,并根据接收的preamble所处的多preamble传输机会中的时频资源位置,返回针对preamble及多preamble传输机会中的时频资源位置的RAR,以用于UE进行随机接入,从而达到为符合条件的UE提供传输资源,以节省传输资源的目的。
图6是本申请一示例性实施例示出的一种随机接入方法的流程图,该实施例从UE和基站交互的角度进行描述,如图6所示,该随机接入方法包括:
在步骤S601中,基站向UE发送广播消息,该广播消息中携带用于每个波束多preamble传输的PRACH资源。
其中,PRACH资源用于指示多preamble传输机会,每个beam的多preamble传输的专用PRACH资源不同。多preamble传输机会可以包括PRACH的起始时频资源位置、重复周期和重复次数。另外,可选地,该PRACH资源还可以包括preamble标识。进一步地,该PRACH资源还可以包括RAR接收窗口的大小。
在步骤S602中,UE通过下行测量信号关联到一个下行波束。
在步骤S603中,UE确定发起随机接入,并判断是否采用多preamble传输。
在步骤S604中,UE确定采用多preamble传输,则从当前关联的下行波束中获取多preamble传输的PRACH资源,该PRACH资源用于指示多preamble传输机会。
在步骤S605中,UE从下一个多preamble传输机会的第一个时频资源位置开始传输preamble,并在所有preamble传输结束开始监听RAR接收窗口。
在步骤S606中,基站接收UE传输的preamble,并根据接收的preamble所处的多preamble传输机会中的时频资源位置,返回针对preamble及多preamble传输机会中的时频资源位置的RAR。
在步骤S607中,若UE在RAR接收窗口内接收到RAR,则确定出RAR所响应的发送波束,并通过该发送波束向基站发送MSG3。
在步骤S608中,基站接收UE发送的MSG3,并向UE返回MSG4。
在步骤S609中,UE接收基站返回的MSG4。
上述实施例,通过UE和基站之间的交互,使得UE通过判断是否采用多preamble传输来确定自己是否可以采用多preamble传输,并在确定自己可以采用多preamble传输的情况下,使用基站提供的多preamble传输机会传输preamble,基站在接收UE通过多preamble传输机会传输的preamble后,可以根据接收的preamble所处的多preamble传输机会中的时频资源位置,返回针对preamble及多preamble传输机会中的时频资源位置的RAR,以用于UE进行随机接入,从而达到为符合条件的UE提供传输资源,以节省传输资源的目的。
图7是根据一示例性实施例示出的一种随机接入装置的框图,如图7所示,该随机接入装置包括:确定模块71、判断模块72和确定传输模块73。
确定模块71被配置为确定发起随机接入。
例如,当UE有上行数据需要发送时,则可以需要发起随机接入。
判断模块72被配置为在确定模块71确定发起随机接入之后,判断是否采用多前导序列preamble传输。
确定传输模块73被配置为若判断模块72确定采用多preamble传输,则通过获取的多preamble传输机会传输preamble,以进行随机接入。
上述实施例,通过判断是否采用多preamble传输来确定当前UE是否可以采用多preamble传输,若确定可以采用多preamble传输,则通过多preamble传输机会传输preamble,从而可以节省有限的多preamble传输资源。
图8A是根据一示例性实施例示出的另一种随机接入装置的框图,如图8A所示,在上述图7所示实施例的基础上,判断模块72可以包括以下至少一个子模块:第一判断子模块 721、第二判断子模块722、第三判断子模块723、第四判断子模块724、第五判断子模块725、第六判断子模块726和第七判断子模块727。
第一判断子模块721被配置为判断触发随机接入的业务是否为预设类型业务,若为预设类型业务,则确定采用多preamble传输。
其中,预设类型业务可以包括但不局限于时延敏感业务,例如高可靠低时延通信(Ultra Reliable Low Latency Communication,URLLC)业务。
第二判断子模块722被配置为判断多preamble传输功能是否被使能,若多preamble 传输功能被使能,则确定采用多preamble传输。
其中,可以通过但不局限于以下任意一种方式判断多preamble传输功能是否被使能:
1)若接收的系统消息中配置了多preamble传输的物理随机接入信道PRACH资源,则当前UE的多preamble传输功能被使能。
2)当前UE为去使能状态或者连接状态的UE且基站配置开启了当前UE的多preamble传输功能,则当前UE的多preamble传输功能被使能;或者
3)若基站配置开启了当前UE的数据承载(DRB)或逻辑信道的多preamble传输功能,且随机接入由开启多preamble传输功能的DRB或逻辑信道所触发以及该随机接入为竞争性随机接入,则当前UE的多preamble传输功能被使能。
第三判断子模块723被配置为判断当前UE是否确定发送preamble的上行波束,若当前UE未确定发送preamble的上行波束,则确定采用多preamble传输。
第四判断子模块724被配置为判断当前UE是否为预设类型的UE,若当前UE为预设类型的UE,则确定采用多preamble传输。
例如,若接收的来自基站的多preamble传输的PRACH资源中指示的UE类型为预设类型,则可以确定当前UE为预设类型的UE。
其中,预设类型的UE可以包括但不局限于互联网终端。
第五判断子模块725被配置为判断随机接入是否为预设的接入类型,若随机接入为预设的接入类型,则确定采用多preamble传输。
例如,若接收的来自基站的多preamble传输的PRACH资源中指示的接入类型为预设的接入类型,则确定随机接入为预设的接入类型。
第六判断子模块726被配置为判断当前UE是否具备多输入多输出MIMO能力或多波束发送能力,若当前UE具备MIMO能力或多波束发送能力,则确定采用多preamble传输。
第七判断子模块727被配置为判断当前UE是否具有发送接收一致性能力,若当前UE不具有发送接收一致性能力,则确定采用多preamble传输。
上述实施例,可以通过多种方式判断UE是否采用多preamble传输,实现方式灵活多样。
图8B是根据一示例性实施例示出的另一种随机接入装置的框图,如图8B所示,在上述图8A所示实施例的基础上,第二判断子模块722可以包括:第一判断单元7221、第二判断单元7222或者第三判断单元7223。
第一判断单元7221被配置为若接收的系统消息中配置了多preamble传输的物理随机接入信道PRACH资源,则多preamble传输功能被使能。
第二判断单元7222被配置为若当前用户设备UE为去使能状态或者连接状态的UE且基站配置开启了当前UE的多preamble传输功能,则多preamble传输功能被使能。
第三判断单元7223被配置为若基站配置开启了当前UE的数据承载DRB或逻辑信道的多preamble传输功能,且随机接入由开启多preamble传输功能的DRB或逻辑信道所触发以及随机接入为竞争性随机接入,则多preamble传输功能被使能。
上述实施例,可以通过多种方式判断多preamble传输功能是否被使能,实现方式灵活多样。
图8C是根据一示例性实施例示出的另一种随机接入装置的框图,如图8C所示,在上述图7所示实施例的基础上,确定传输模块73可以包括:获取子模块731、传输监听子模块732和确定发送接收子模块733。
获取子模块731被配置为从当前关联的下行波束中获取多preamble传输的PRACH资源,PRACH资源用于指示多preamble传输机会。
其中,多preamble传输机会可以包括PRACH的起始时频资源位置、重复周期和重复次数,例如,图2B给出了一次多preamble传输机会的PRACH的起始时频资源位置、重复周期和重复次数的示意图。
传输监听子模块732被配置为从获取子模块731获取的PRACH资源指示的下一个多preamble传输机会的第一个时频资源位置开始传输preamble,并在所有preamble传输结束开 始监听RAR接收窗口。
其中,RAR接收窗口的起始位置在该多preamble传输机会结束后的预定间隔例如1个子帧处开启。
确定发送接收子模块733被配置为若传输监听子模块732在随机接入响应RAR接收窗口内接收到RAR,则确定出RAR所响应的发送波束,通过发送波束向基站发送第三消息MSG3,并等待接收基站返回的第四消息MSG4。
在该实施例中,在RAR接收窗口内接收到RAR之后,可以根据RAR对应的随机接入无线网络临时标识(RA-RNTI)确定出RAR所响应的发送波束,然后通过该发送波束向基站发送MSG3,并等待接收基站返回的MSG4。
上述实施例,在确定采用多preamble传输之后,从下一个多preamble传输机会的第一个时频资源位置开始传输preamble,并在所有preamble传输结束开始监听RAR接收窗口,然后确定出RAR所响应的发送波束,通过该发送波束向基站发送MSG3,并等待接收基站返回的MSG4,从而完成随机接入过程。
图8D是根据一示例性实施例示出的另一种随机接入装置的框图,如图8D所示,在上述图8C所示实施例的基础上,多preamble传输机会包括PRACH的起始时频资源位置、重复周期和重复次数,传输监听子模块732可以包括:选择发送单元7321、第一发送单元7322和第二发送单元7323。
选择发送单元7321被配置为从preamble资源池中选择一个preamble,并从下一个多preamble传输机会的第一个时频资源位置开始发送选择的preamble。
第一发送单元7322被配置为若当前UE支持的发送波束数量小于重复次数,则在第一个时频资源位置之后的第一预设数量的时频资源位置上发送选择发送单元7321选择的preamble,或者再重复发送第二预设数量的发送波束,第一预设数量等于发送波束数量减一,第二预设数量等于重复次数与发送波束数量的差值。
第二发送单元7323被配置为若当前UE支持的发送波束数量大于重复次数,则选择重复次数同数量的发送波束来发送选择发送单元7321选择的preamble。
以图2B所示的多preamble传输机会为例进行描述,图2B中一次多preamble传输机会的PRACH资源的重复次数为4次,假设UE当前处于多preamble传输机会41中,则该UE在从preamble资源池中选择一个preamble后,可以从下一个多preamble传输机会即多preamble传输机会42的第一个时频资源位置421开始发送选择的preamble,若该UE支持的 发送波束数量为3,即该UE支持的发送波束数量小于重复次数,则在第一个时频资源位置421之后的两个时频资源位置即时频资源位置422和423上发送选择的preamble,或者再重复发送1个的发送波束;若当前UE支持的发送波束数量5大于重复次数4,则选择4个发送波束来发送选择的preamble。
上述实施例,通过从下一个多preamble传输机会的第一个时频资源位置开始发送选择的preamble,并根据当前UE支持的发送波束数量与重复次数的大小关系来选择发送preamble的时频资源位置,使得基站可以根据接收的preamble所在的时频资源位置返回RAR。
图8E是根据一示例性实施例示出的另一种随机接入装置的框图,如图8E所示,在上述图8C所示实施例的基础上,该装置还可以包括:提升模块74。
提升模块74被配置为若确定发送接收子模块733未在RAR接收窗口内接收到RAR或者未接收到基站返回的MSG4,且当前UE未达到最大发射功率,则提升当前UE的发射功率,并调用传输监听子模块732从下一个多preamble传输机会的第一个时频资源位置开始传输preamble。
在该实施例中,UE在一次多preamble传输机会中传输相同的preamble,当完成一次多preamble传输后,若未在RAR接收窗口内接收到RAR或者未接收到基站返回的MSG4,且当前UE未达到最大发射功率,则可以提升当前UE的发射功率,以期望接收到RAR或MSG4,从而可以实现随机接入。
上述实施例,若未在RAR接收窗口内接收到RAR或者未接收到基站返回的MSG4,且当前UE未达到最大发射功率,则可以提升当前UE的发射功率,以期望接收到RAR或MSG4,从而提高可以实现随机接入的概率。
图8F是根据一示例性实施例示出的另一种随机接入装置的框图,如图8F所示,在上述图7所示实施例的基础上,该装置还可以包括:接收模块75。
接收模块75被配置为在判断模块72判断是否采用多preamble传输之前,接收基站发送的广播消息,广播消息中携带用于每个波束多preamble传输的PRACH资源。
其中,PRACH资源用于指示多preamble传输机会,每个beam的多preamble传输的专用PRACH资源不同。多preamble传输机会可以包括PRACH的起始时频资源位置、重复周期和重复次数。另外,可选地,该PRACH资源还可以包括preamble标识。进一步地,该PRACH资源还可以包括RAR接收窗口的大小。
上述实施例,通过接收基站发送的广播消息,从而为后续根据广播消息中携带的 PRACH资源发送preamble提供了条件。
图8G是根据一示例性实施例示出的另一种随机接入装置的框图,如图8G所示,在上述图8C所示实施例的基础上,该装置还可以包括:
关联模块76被配置为在获取子模块731从当前关联的下行波束中获取多preamble传输的PRACH资源之前,通过下行测量信号关联到一个下行波束。
上述实施例,通过下行测量信号关联到一个下行波束,从而为后续从当前关联的下行波束中获取多preamble传输的PRACH资源提供了条件。
图9是根据一示例性实施例示出的又一种随机接入装置的框图,如图9所示,该随机接入装置包括:接收模块91和返回模块92。
接收模块91被配置为接收用户设备UE通过多前导序列preamble传输机会传输的preamble。
其中,多preamble传输机会可以包括PRACH的起始时频资源位置、重复周期和重复次数,例如,图2B给出了一次多preamble传输机会的PRACH的起始时频资源位置、重复周期和重复次数的示意图。
在该实施例中,UE在确定采用多preamble传输之后,可以通过获取的多preamble传输机会传输preamble,基站接收UE通过多preamble传输机会传输的preamble。
返回模块92被配置为根据接收模块91接收的preamble所处的多preamble传输机会中的时频资源位置,返回针对preamble及多preamble传输机会中的时频资源位置的随机接入响应RAR,以用于UE进行随机接入。
上述实施例,通过接收UE通过多preamble传输机会传输的preamble,并根据接收的preamble所处的多preamble传输机会中的时频资源位置,返回针对preamble及多preamble传输机会中的时频资源位置的RAR,以用于UE进行随机接入,从而达到为符合条件的UE提供传输资源,以节省传输资源的目的。
图10是根据一示例性实施例示出的另一种随机接入装置的框图,如图10所示,在上述图9所示实施例的基础上,该装置还可以包括:接收返回模块93。
接收返回模块93被配置为在返回模块92返回针对preamble及多preamble传输机会中的时频资源位置的RAR之后,接收UE发送的第三消息MSG3,并根据MSG3向UE返回第四消息MSG4。
上述实施例,通过接收UE发送的第三消息MSG3,并根据MSG3向UE返回第四消息MSG4,从而完成随机接入过程。
图11A是根据一示例性实施例示出的另一种随机接入装置的框图,如图11A所示,在上述图9所示实施例的基础上,多preamble传输机会包括物理随机接入信道PRACH的起始时频资源位置、重复周期和重复次数,返回模块92可以包括:确定子模块921、选择子模块922和返回子模块923。
确定子模块921被配置为确定接收的preamble所处的时频资源位置及其在当前多preamble传输机会中的所有重复时频资源位置。
假设UE在从preamble资源池中选择一个preamble后,可以从下一个多preamble传输机会即图2B所示的多preamble传输机会42的第一个时频资源位置421开始发送选择的preamble,若该UE支持的发送波束数量为3,即该UE支持的发送波束数量小于重复次数,则在第一个时频资源位置421之后的两个时频资源位置即时频资源位置422和423上发送选择的preamble。基站在接收到preamble后,可以确定该preamble所处的时频资源位置及其在当前多preamble传输机会中的所有重复时频资源位置为第一个时频资源位置421以及时频资源位置422和423。
选择子模块922被配置为从确定子模块921确定的时频资源位置及其所有重复时频资源位置接收到的preamble标识相同的preamble中,选择信号质量最好的preamble。
UE从第一个时频资源位置421以及时频资源位置422和423接收到的preamble标识相同的preamble中,选择信号质量最好的preamble。
返回子模块923被配置为根据选择子模块922选择的信号质量最好的preamble所处的时频资源位置返回一个RAR,RAR中携带信号质量最好的preamble对应的preamble标识。
其中,信号质量最好的preamble所处的时频资源位置可以包括信号质量最好的preamble所处的正交频分复用(OFDM)符号位置、子帧位置和频域位置中的至少一项,信号质量最好的preamble所处的OFDM符号位置、子帧位置和频域位置中的至少一项可以采用RA-RNTI表示。
在确定信号质量最好的preamble之后,可以根据信号质量最好的preamble所处的时频资源位置返回一个RAR,以用于UE确定RAR所响应的发送波束。
上述实施例,通过选择信号质量最好的preamble,并根据信号质量最好的preamble所处的时频资源位置返回一个RAR,从而可以节省资源消耗。
图11B是根据一示例性实施例示出的另一种随机接入装置的框图,如图11B所示,在上述图9所示实施例的基础上,该装置还可以包括:发送模块90。
发送模块90被配置为在接收模块91接收用户设备UE通过多前导序列preamble传输机会传输的preamble之前,向UE发送广播消息,广播消息中携带用于每个波束多preamble传输的PRACH资源。
上述实施例,通过向UE发送广播消息,使得UE可以根据该广播消息中携带的PRACH资源发送preamble。
图12是根据一示例性实施例示出的一种适用于随机接入装置的框图。例如,装置1200可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等用户设备。
参照图12,装置1200可以包括以下一个或多个组件:处理组件1202,存储器1204,电源组件1206,多媒体组件1208,音频组件1210,输入/输出(I/O)的接口1212,传感器组件1214,以及通信组件1216。
处理组件1202通常控制装置1200的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理元件1202可以包括一个或多个处理器1220来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1202可以包括一个或多个模块,便于处理组件1202和其他组件之间的交互。例如,处理部件1202可以包括多媒体模块,以方便多媒体组件1208和处理组件1202之间的交互。
存储器1204被配置为存储各种类型的数据以支持在设备1200的操作。这些数据的示例包括用于在装置1200上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1204可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1206为装置1200的各种组件提供电力。电源组件1206可以包括电源管理系统,一个或多个电源,及其他与为装置1200生成、管理和分配电力相关联的组件。
多媒体组件1208包括在装置1200和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器 以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1208包括一个前置摄像头和/或后置摄像头。当设备1200处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1210被配置为输出和/或输入音频信号。例如,音频组件1210包括一个麦克风(MIC),当装置1200处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1204或经由通信组件1216发送。在一些实施例中,音频组件1210还包括一个扬声器,用于输出音频信号。
I/O接口1212为处理组件1202和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1214包括一个或多个传感器,用于为装置1200提供各个方面的状态评估。例如,传感器组件1214可以检测到设备1200的打开/关闭状态,组件的相对定位,例如组件为装置1200的显示器和小键盘,传感器组件1214还可以检测装置1200或装置1200一个组件的位置改变,用户与装置1200接触的存在或不存在,装置1200方位或加速/减速和装置1200的温度变化。传感器组件1214可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1214还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1214还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1216被配置为便于装置1200和其他设备之间有线或无线方式的通信。装置1200可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信部件1216经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信部件1216还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1200可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1204,上述指令可由装置1200的处理器1220执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图13是根据一示例性实施例示出的另一种适用于随机接入装置的框图。装置1300可以被提供为一基站。参照图13,装置1300包括处理组件1322、无线发射/接收组件1324、天线组件1326、以及无线接口特有的信号处理部分,处理组件1322可进一步包括一个或多个处理器。
处理组件1322中的其中一个处理器可以被配置为:
接收用户设备UE通过多前导序列preamble传输机会传输的preamble;
根据接收的preamble所处的多preamble传输机会中的时频资源位置,返回针对preamble及多preamble传输机会中的时频资源位置的随机接入响应RAR,以用于UE进行随机接入。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,上述指令可由装置1300的处理组件1322执行以完成上述随机接入方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的 过程、方法、物品或者设备中还存在另外的相同要素。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (40)

  1. 一种随机接入方法,其特征在于,所述方法包括:
    确定发起随机接入;
    判断是否采用多前导序列preamble传输;
    若确定采用所述多preamble传输,则通过获取的多preamble传输机会传输preamble,以进行随机接入。
  2. 根据权利要求1所述的方法,其特征在于,所述判断是否采用多preamble传输包括以下至少一项:
    判断触发所述随机接入的业务是否为预设类型业务,若为所述预设类型业务,则确定采用所述多preamble传输;
    判断多preamble传输功能是否被使能,若所述多preamble传输功能被使能,则确定采用所述多preamble传输;
    判断当前UE是否确定发送preamble的上行波束,若所述当前UE未确定发送preamble的上行波束,则确定采用所述多preamble传输;
    判断当前UE是否为预设类型的UE,若所述当前UE为所述预设类型的UE,则确定采用所述多preamble传输;
    判断所述随机接入是否为预设的接入类型,若所述随机接入为预设的接入类型,则确定采用所述多preamble传输;
    判断当前UE是否具备多输入多输出MIMO能力或多波束发送能力,若所述当前UE具备MIMO能力或多波束发送能力,则确定采用所述多preamble传输;
    判断当前UE是否具有发送接收一致性能力,若所述当前UE不具有发送接收一致性能力,则确定采用所述多preamble传输。
  3. 根据权利要求2所述的方法,其特征在于,所述判断多preamble传输功能是否被使能,包括:
    若接收的系统消息中配置了多preamble传输的物理随机接入信道PRACH资源,则所述多preamble传输功能被使能;或者
    若当前用户设备UE为去使能状态或者连接状态的UE且所述基站配置开启了所述当前UE的多preamble传输功能,则所述多preamble传输功能被使能;或者
    若所述基站配置开启了所述当前UE的数据承载DRB或逻辑信道的所述多preamble传输功能,且所述随机接入由开启所述多preamble传输功能的DRB或逻辑信道所触发以及所述 随机接入为竞争性随机接入,则所述多preamble传输功能被使能。
  4. 根据权利要求2所述的方法,其特征在于,所述判断当前UE是否为预设类型的UE,包括:
    若接收的来自所述基站的多preamble传输的PRACH资源中指示的UE类型为所述预设类型,则确定所述当前UE为所述预设类型的UE;或者
    所述判断所述随机接入是否为预设的接入类型,包括:
    若接收的来自所述基站的多preamble传输的PRACH资源中指示的接入类型为所述预设的接入类型,则确定所述随机接入为所述预设的接入类型。
  5. 根据权利要求1所述的方法,其特征在于,所述通过获取的多preamble传输机会传输preamble,以进行随机接入,包括:
    从当前关联的下行波束中获取多preamble传输的PRACH资源,所述PRACH资源用于指示多preamble传输机会;
    从下一个多preamble传输机会的第一个时频资源位置开始传输preamble,并在所有preamble传输结束开始监听随机接入响应RAR接收窗口;
    若在所述随机接入响应RAR接收窗口内接收到RAR,则确定出所述RAR所响应的发送波束,通过所述发送波束向基站发送第三消息MSG3,并等待接收所述基站返回的第四消息MSG4。
  6. 根据权利要求5所述的方法,其特征在于,所述多preamble传输机会包括PRACH的起始时频资源位置、重复周期和重复次数,所述从下一个多preamble传输机会的第一个时频资源位置开始传输preamble,包括:
    从preamble资源池中选择一个preamble,并从下一个多preamble传输机会的第一个时频资源位置开始发送选择的preamble;
    若当前UE支持的发送波束数量小于所述重复次数,则在所述第一个时频资源位置之后的第一预设数量的时频资源位置上发送所述选择的preamble,或者再重复发送第二预设数量的发送波束,所述第一预设数量等于所述发送波束数量减一,所述第二预设数量等于所述重复次数与所述发送波束数量的差值;
    若当前UE支持的发送波束数量大于所述重复次数,则选择所述重复次数同数量的发送波束来发送所述选择的preamble。
  7. 根据权利要求6所述的方法,其特征在于,所述确定出所述RAR所响应的发送波束,包括:
    根据所述RAR对应的随机接入无线网络临时标识RA-RNTI确定出所述RAR所响应的发送波束。
  8. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    若未在所述RAR接收窗口内接收到RAR或者未接收到所述基站返回的所述MSG4,且所述当前UE未达到最大发射功率,则提升所述当前UE的发射功率,并转向执行所述从下一个多preamble传输机会的第一个时频资源位置开始传输preamble。
  9. 根据权利要求7所述的方法,其特征在于,所述PRACH资源包括preamble标识和所述RAR接收窗口的大小中的至少一项。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述方法还包括:
    在所述判断是否采用多preamble传输之前,接收所述基站发送的广播消息,所述广播消息中携带用于每个波束多preamble传输的PRACH资源。
  11. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    在所述从当前关联的下行波束中获取所述多preamble传输的PRACH资源之前,通过下行测量信号关联到一个下行波束。
  12. 一种随机接入方法,其特征在于,所述方法包括:
    接收用户设备UE通过多前导序列preamble传输机会传输的preamble;
    根据接收的所述preamble所处的多preamble传输机会中的时频资源位置,返回针对所述preamble及所述多preamble传输机会中的时频资源位置的随机接入响应RAR,以用于所述UE进行随机接入。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    在所述返回针对所述preamble及所述多preamble传输机会中的时频资源位置的RAR之后,接收所述UE发送的第三消息MSG3,并根据所述MSG3向所述UE返回第四消息MSG4。
  14. 根据权利要求12所述的方法,其特征在于,所述多preamble传输机会包括物理随机接入信道PRACH的起始时频资源位置、重复周期和重复次数,所述根据接收的所述preamble所处的多preamble传输机会中的时频资源位置,返回针对所述preamble及所述多preamble传输机会中的时频资源位置的RAR,包括:
    确定接收的所述preamble所处的时频资源位置及其在当前多preamble传输机会中的所有重复时频资源位置;
    从确定的所述时频资源位置及其所有重复时频资源位置接收到的preamble标识相同的preamble中,选择信号质量最好的preamble;
    根据所述信号质量最好的preamble所处的时频资源位置返回一个RAR,所述RAR中携带所述信号质量最好的preamble对应的preamble标识。
  15. 根据权利要求14所述的方法,其特征在于,所述信号质量最好的preamble所处的时频资源位置包括所述信号质量最好的preamble所处的正交频分复用OFDM符号位置、子帧位置和频域位置中的至少一项,所述信号质量最好的preamble所处的OFDM符号位置、子帧位置和频域位置中的至少一项采用随机接入无线网络临时标识RA-RNTI表示。
  16. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    在所述接收用户设备UE通过多前导序列preamble传输机会传输的preamble之前,向所述UE发送广播消息,所述广播消息中携带用于每个波束多preamble传输的PRACH资源。
  17. 根据权利要求16所述的方法,其特征在于,所述PRACH资源用于指示所述多preamble传输机会,所述多preamble传输机会包括PRACH的起始时频资源位置、重复周期和重复次数。
  18. 根据权利要求17所述的方法,其特征在于,所述PRACH资源包括preamble标识和RAR接收窗口的大小中的至少一项。
  19. 一种随机接入装置,其特征在于,所述装置包括:
    确定模块,被配置为确定发起随机接入;
    判断模块,被配置为在所述确定模块确定发起随机接入之后,判断是否采用多前导序列preamble传输;
    确定传输模块,被配置为若所述判断模块确定采用所述多preamble传输,则通过获取的多preamble传输机会传输preamble,以进行随机接入。
  20. 根据权利要求19所述的装置,其特征在于,所述判断模块包括:
    第一判断子模块,被配置为判断触发所述随机接入的业务是否为预设类型业务,若为所述预设类型业务,则确定采用所述多preamble传输;
    第二判断子模块,被配置为判断多preamble传输功能是否被使能,若所述多preamble传输功能被使能,则确定采用所述多preamble传输;
    第三判断子模块,被配置为判断当前UE是否确定发送preamble的上行波束,若所述当前UE未确定发送preamble的上行波束,则确定采用所述多preamble传输;
    第四判断子模块,被配置为判断当前UE是否为预设类型的UE,若所述当前UE为所述预设类型的UE,则确定采用所述多preamble传输;
    第五判断子模块,被配置为判断所述随机接入是否为预设的接入类型,若所述随机接入 为预设的接入类型,则确定采用所述多preamble传输;
    第六判断子模块,被配置为判断当前UE是否具备多输入多输出MIMO能力或多波束发送能力,若所述当前UE具备MIMO能力或多波束发送能力,则确定采用所述多preamble传输;
    第七判断子模块,被配置为判断当前UE是否具有发送接收一致性能力,若所述当前UE不具有发送接收一致性能力,则确定采用所述多preamble传输。
  21. 根据权利要求20所述的装置,其特征在于,所述第二判断子模块包括:
    第一判断单元,被配置为若接收的系统消息中配置了多preamble传输的物理随机接入信道PRACH资源,则所述多preamble传输功能被使能;或者
    第二判断单元,被配置为若当前用户设备UE为去使能状态或者连接状态的UE且所述基站配置开启了所述当前UE的多preamble传输功能,则所述多preamble传输功能被使能;或者
    第三判断单元,被配置为若所述基站配置开启了所述当前UE的数据承载DRB或逻辑信道的所述多preamble传输功能,且所述随机接入由开启所述多preamble传输功能的DRB或逻辑信道所触发以及所述随机接入为竞争性随机接入,则所述多preamble传输功能被使能。
  22. 根据权利要求20所述的装置,其特征在于,所述第四判断子模块,被配置为:
    若接收的来自所述基站的多preamble传输的PRACH资源中指示的UE类型为所述预设类型,则确定所述当前UE为所述预设类型的UE;或者
    所述第五判断子模块,被配置为:
    若接收的来自所述基站的多preamble传输的PRACH资源中指示的接入类型为所述预设的接入类型,则确定所述随机接入为所述预设的接入类型。
  23. 根据权利要求19所述的装置,其特征在于,所述确定传输模块包括:
    获取子模块,被配置为从当前关联的下行波束中获取多preamble传输的PRACH资源,所述PRACH资源用于指示多preamble传输机会;
    传输监听子模块,被配置为从所述获取子模块获取的所述PRACH资源指示的下一个多preamble传输机会的第一个时频资源位置开始传输preamble,并在所有preamble传输结束开始监听RAR接收窗口;
    确定发送接收子模块,被配置为若所述传输监听子模块在所述随机接入响应RAR接收窗口内接收到RAR,则确定出所述RAR所响应的发送波束,通过所述发送波束向基站发送第三消息MSG3,并等待接收所述基站返回的第四消息MSG4。
  24. 根据权利要求23所述的装置,其特征在于,所述多preamble传输机会包括PRACH的起始时频资源位置、重复周期和重复次数,所述传输监听子模块包括:
    选择发送单元,被配置为从preamble资源池中选择一个preamble,并从下一个多preamble传输机会的第一个时频资源位置开始发送选择的preamble;
    第一发送单元,被配置为若当前UE支持的发送波束数量小于所述重复次数,则在所述第一个时频资源位置之后的第一预设数量的时频资源位置上发送所述选择发送单元选择的preamble,或者再重复发送第二预设数量的发送波束,所述第一预设数量等于所述发送波束数量减一,所述第二预设数量等于所述重复次数与所述发送波束数量的差值;
    第二发送单元,被配置为若当前UE支持的发送波束数量大于所述重复次数,则选择所述重复次数同数量的发送波束来发送所述选择发送单元选择的preamble。
  25. 根据权利要求24所述的装置,其特征在于,所述确定发送接收子模块,被配置为:
    根据所述RAR对应的随机接入无线网络临时标识RA-RNTI确定出所述RAR所响应的发送波束。
  26. 根据权利要求23所述的装置,其特征在于,所述装置还包括:
    提升模块,被配置为若所述确定发送接收子模块未在所述RAR接收窗口内接收到RAR或者未接收到所述基站返回的所述MSG4,且所述当前UE未达到最大发射功率,则提升所述当前UE的发射功率,并调用所述传输监听子模块从下一个多preamble传输机会的第一个时频资源位置开始传输preamble。
  27. 根据权利要求25所述的装置,其特征在于,所述PRACH资源包括preamble标识和所述RAR接收窗口的大小中的至少一项。
  28. 根据权利要求19-27任一项所述的装置,其特征在于,所述装置还包括:
    接收模块,被配置为在所述判断模块判断是否采用多preamble传输之前,接收所述基站发送的广播消息,所述广播消息中携带用于每个波束多preamble传输的PRACH资源。
  29. 根据权利要求23所述的装置,其特征在于,所述装置还包括:
    关联模块,被配置为在所述获取子模块从当前关联的下行波束中获取所述多preamble传输的PRACH资源之前,通过下行测量信号关联到一个下行波束。
  30. 一种随机接入装置,其特征在于,所述装置包括:
    接收模块,被配置为接收用户设备UE通过多前导序列preamble传输机会传输的preamble;
    返回模块,被配置为根据所述接收模块接收的所述preamble所处的多preamble传输机会 中的时频资源位置,返回针对所述preamble及所述多preamble传输机会中的时频资源位置的随机接入响应RAR,以用于所述UE进行随机接入。
  31. 根据权利要求30所述的装置,其特征在于,所述装置还包括:
    接收返回模块,被配置为在所述返回模块返回针对所述preamble及所述多preamble传输机会中的时频资源位置的RAR之后,接收所述UE发送的第三消息MSG3,并根据所述MSG3向所述UE返回第四消息MSG4。
  32. 根据权利要求30所述的装置,其特征在于,所述多preamble传输机会包括物理随机接入信道PRACH的起始时频资源位置、重复周期和重复次数,所述返回模块包括:
    确定子模块,被配置为确定接收的所述preamble所处的时频资源位置及其在当前多preamble传输机会中的所有重复时频资源位置;
    选择子模块,被配置为从所述确定子模块确定的所述时频资源位置及其所有重复时频资源位置接收到的preamble标识相同的preamble中,选择信号质量最好的preamble;
    返回子模块,被配置为根据所述选择子模块选择的所述信号质量最好的preamble所处的时频资源位置返回一个RAR,所述RAR中携带所述信号质量最好的preamble对应的preamble标识。
  33. 根据权利要求32所述的装置,其特征在于,所述信号质量最好的preamble所处的时频资源位置包括所述信号质量最好的preamble所处的正交频分复用OFDM符号位置、子帧位置和频域位置中的至少一项,所述信号质量最好的preamble所处的OFDM符号位置、子帧位置和频域位置中的至少一项采用随机接入无线网络临时标识RA-RNTI表示。
  34. 根据权利要求30所述的装置,其特征在于,所述装置还包括:
    发送模块,被配置为在所述接收模块接收用户设备UE通过多前导序列preamble传输机会传输的preamble之前,向所述UE发送广播消息,所述广播消息中携带用于每个波束多preamble传输的PRACH资源。
  35. 根据权利要求34所述的装置,其特征在于,所述PRACH资源用于指示所述多preamble传输机会,所述多preamble传输机会包括PRACH的起始时频资源位置、重复周期和重复次数。
  36. 根据权利要求35所述的装置,其特征在于,所述PRACH资源包括preamble标识和RAR接收窗口的大小中的至少一项。
  37. 一种用户设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    确定发起随机接入;
    判断是否采用多前导序列preamble传输;
    若确定采用所述多preamble传输,则通过获取的多preamble传输机会传输preamble,以进行随机接入。
  38. 一种基站,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    接收用户设备UE通过多前导序列preamble传输机会传输的preamble;
    根据接收的所述preamble所处的多preamble传输机会中的时频资源位置,返回针对所述preamble及所述多preamble传输机会中的时频资源位置的随机接入响应RAR,以用于所述UE进行随机接入。
  39. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1所述的随机接入方法的步骤。
  40. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求12所述的随机接入方法的步骤。
PCT/CN2017/096909 2017-08-10 2017-08-10 随机接入方法及装置、用户设备和基站 WO2019028772A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17921092.7A EP3668247A4 (en) 2017-08-10 2017-08-10 RANDOM ACCESS PROCESS AND DEVICE, USER EQUIPMENT, AND BASE STATION
CN201780000852.2A CN108521889B (zh) 2017-08-10 2017-08-10 随机接入方法及装置、用户设备和基站
PCT/CN2017/096909 WO2019028772A1 (zh) 2017-08-10 2017-08-10 随机接入方法及装置、用户设备和基站
US16/781,425 US11337254B2 (en) 2017-08-10 2020-02-04 Random access method and device, user equipment and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/096909 WO2019028772A1 (zh) 2017-08-10 2017-08-10 随机接入方法及装置、用户设备和基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/781,425 Continuation US11337254B2 (en) 2017-08-10 2020-02-04 Random access method and device, user equipment and base station

Publications (1)

Publication Number Publication Date
WO2019028772A1 true WO2019028772A1 (zh) 2019-02-14

Family

ID=63434472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096909 WO2019028772A1 (zh) 2017-08-10 2017-08-10 随机接入方法及装置、用户设备和基站

Country Status (4)

Country Link
US (1) US11337254B2 (zh)
EP (1) EP3668247A4 (zh)
CN (1) CN108521889B (zh)
WO (1) WO2019028772A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3668248A4 (en) * 2017-08-16 2021-03-31 Beijing Xiaomi Mobile Software Co., Ltd. RANDOM ACCESS METHOD AND DEVICE, USER DEVICE AND BASE STATION
CN109644426B (zh) * 2018-09-27 2020-09-22 Oppo广东移动通信有限公司 接收信息、发送信息的方法和设备
CN112753179B (zh) * 2018-09-28 2022-06-14 华为技术有限公司 随机接入方法以及随机接入装置
CN110972239B (zh) 2018-09-28 2022-11-22 中兴通讯股份有限公司 信息的发送方法及装置、信息的接收方法及装置
US11968721B2 (en) 2018-10-31 2024-04-23 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for transmitting random access indication information
CN111278151B (zh) * 2018-12-24 2021-09-28 维沃移动通信有限公司 随机接入方法、网络侧设备和终端
CN115843463A (zh) * 2020-10-12 2023-03-24 Oppo广东移动通信有限公司 随机接入响应接收窗的确定方法、装置、设备及介质
CN115988672A (zh) * 2021-10-15 2023-04-18 维沃移动通信有限公司 随机接入处理方法、装置、终端、网络侧设备及存储介质
CN118614136A (zh) * 2022-01-28 2024-09-06 鸿颖创新有限公司 执行随机接入上行链路传输的方法和用户设备及相关基站

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016086982A1 (en) * 2014-12-03 2016-06-09 Huawei Technologies Duesseldorf Gmbh Method to prioritize random access with preamble coding
WO2017055302A1 (en) * 2015-09-28 2017-04-06 Telefonaktiebolaget Lm Ericsson (Publ) Random access preamble for minimizing pa backoff

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150036622A1 (en) * 2013-08-05 2015-02-05 Qualcomm Incorporated Uplink pilot channel transmission to reduce latency of circuit switched fall back
EP3202210A1 (en) * 2014-10-03 2017-08-09 Telefonaktiebolaget LM Ericsson (publ) Handling physical random access channel transmissions in multi-carrier scenarios
EP3328151B1 (en) * 2015-01-26 2023-10-18 ASUS Technology Licensing Inc. Method and apparatus for beam detection in a wireless communication system
CN106922033B (zh) * 2015-12-28 2020-09-25 上海诺基亚贝尔股份有限公司 一种在基站中进行上行随机接入的方法和装置
WO2017222327A1 (ko) * 2016-06-22 2017-12-28 엘지전자 주식회사 랜덤 액세스를 수행하는 방법 및 그 방법을 수행하는 단말
JP7074122B2 (ja) * 2016-09-28 2022-05-24 ソニーグループ株式会社 次世代ワイヤレスシステムにおけるランダムアクセス
US12063688B2 (en) * 2016-09-29 2024-08-13 Ntt Docomo, Inc. Terminal, radio communication method, and system for a random access procedure in communication using beam forming

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016086982A1 (en) * 2014-12-03 2016-06-09 Huawei Technologies Duesseldorf Gmbh Method to prioritize random access with preamble coding
WO2017055302A1 (en) * 2015-09-28 2017-04-06 Telefonaktiebolaget Lm Ericsson (Publ) Random access preamble for minimizing pa backoff

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"CATT. Further details on NR 4-step RA Procedure. ", 3GPPTSG RAN WGL NR AD-HOC#2, .RL-1710035, 30-06-2017 *
"CATT. Further details on NR 4-step RA Procedure. Rl-1702066. ", 3GPP TSG RAN WG 1 MEETING #88, 17 August 1703 (1703-08-17) *
"CATT. Further details on NR 4-step RA Procedure. Rl-1704541.", 3GPP TSG RAN WG 1 MEETING #88BIS,, 07-04-2017 *
"CATT. Further details on NR 4-step RA Procedure., Rl-1707464. ", 3GPP TSG RAN WG 1 MEETING #89, 19-05-2017 *
See also references of EP3668247A4 *

Also Published As

Publication number Publication date
US11337254B2 (en) 2022-05-17
US20200178310A1 (en) 2020-06-04
EP3668247A4 (en) 2021-03-10
EP3668247A1 (en) 2020-06-17
CN108521889A (zh) 2018-09-11
CN108521889B (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
WO2019033288A1 (zh) 随机接入方法及装置、用户设备和基站
US11197318B2 (en) Method and apparatus for transmitting system information
WO2019028772A1 (zh) 随机接入方法及装置、用户设备和基站
US12089256B2 (en) Random access method and device, electronic device and computer-readable storage medium
CN109076378B (zh) 传输配置方法及装置
WO2020019216A1 (zh) 传输配置方法及装置
WO2019183881A1 (zh) 信息上报方法及装置和基于带宽部分的操作方法及装置
WO2020019218A1 (zh) 传输配置方法及装置
WO2020082307A1 (zh) 混合自动重传请求harq反馈方法及装置
US20210075555A1 (en) Hybrid automatic repeat request feedback indication and feedback method, device, and base station
WO2020097757A1 (zh) 带宽部分的配置方法及装置
WO2020132868A1 (zh) 直连资源配置方法及装置
WO2019047143A1 (zh) 寻呼消息接收方法及装置和寻呼配置方法及装置
WO2021007780A1 (zh) 时间间隔确定方法、harq-ack发送方法
WO2019024037A1 (zh) 指示多业务数据复用传输的方法及装置、终端和基站
WO2018201439A1 (zh) 随机接入方法及装置、用户设备和计算机可读存储介质
WO2019174047A1 (zh) 系统消息请求停止方法及装置、用户设备和基站
WO2018205227A1 (zh) 用于发送和接收系统消息的方法、装置、用户设备及基站
WO2020124497A1 (zh) 上行传输方法及装置
WO2020258275A1 (zh) 信道占用时间的起始位置确定方法和装置
CN109618564B (zh) 传输方向的指示方法及装置
WO2019056385A1 (zh) 随机接入方法及装置、用户设备和计算机可读存储介质
CN114731712A (zh) 触发条件判断、资源分区配置方法和装置
US12063630B2 (en) Method and device for indicating resource occupation state, and method and device for determining resource occupation state
US11950254B2 (en) Method and device for configuring data transmission mode, and method and device for data transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017921092

Country of ref document: EP

Effective date: 20200310