WO2019028724A1 - 一种确定目标操作的方法、压力检测装置及终端设备 - Google Patents

一种确定目标操作的方法、压力检测装置及终端设备 Download PDF

Info

Publication number
WO2019028724A1
WO2019028724A1 PCT/CN2017/096754 CN2017096754W WO2019028724A1 WO 2019028724 A1 WO2019028724 A1 WO 2019028724A1 CN 2017096754 W CN2017096754 W CN 2017096754W WO 2019028724 A1 WO2019028724 A1 WO 2019028724A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
piezoelectric ceramic
detecting device
voltage
controller
Prior art date
Application number
PCT/CN2017/096754
Other languages
English (en)
French (fr)
Inventor
王冬立
李辰龙
柯有和
赵辛
王涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780079328.9A priority Critical patent/CN110088716B/zh
Priority to CN202110189680.6A priority patent/CN113050824B/zh
Priority to PCT/CN2017/096754 priority patent/WO2019028724A1/zh
Publication of WO2019028724A1 publication Critical patent/WO2019028724A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position

Definitions

  • the present application relates to the field of terminal devices, and in particular, to a method for determining a target operation, a pressure detecting device, and a terminal device.
  • the button function can be enriched by introducing a pressure sensor.
  • the pressure sensor can detect the pressing force applied to the button, and then trigger different applications according to different pressing forces, so that the same button can realize different button functions according to different pressing strengths.
  • the existing solution combines a pressure sensor and a linear motor, and the pressure sensor detects the pressing force applied by the button, and outputs different driving voltages to the linear motor according to different pressing forces, so that the spring oscillator in the linear motor is at different driving voltages.
  • the force is generated under control and the force is transmitted to the button.
  • the linear motor itself has the characteristics of complicated structure and large size.
  • the existing solution requires an additional pressure sensor, and the pressure sensor and the linear motor in the terminal device require a large size space, and therefore, the existing The pressure sensor combined with the linear motor solution occupies a large size space, which makes the installation design more difficult.
  • the embodiment of the present application provides a method for determining a target operation, a pressure detecting device, and a terminal device, which can reduce the space size of the pressure detecting device and reduce the cost of the pressure detecting device.
  • an embodiment of the present application provides a method for determining a target operation, the method being applied to a pressure detecting device, the pressure detecting device comprising: a controller and a piezoelectric ceramic, the controller and the piezoelectric ceramic phase Connection, the pressure detection method includes:
  • the controller connected to the piezoelectric ceramic may determine the pressure value of the first pressure according to the first voltage;
  • the controller determines the target operation according to the pressure value of the first pressure, and the target operation is a preset pending operation corresponding to the pressure value of the first pressure.
  • the embodiments of the present application have the following advantages:
  • the piezoelectric ceramic is subjected to the first pressure, so that the piezoelectric ceramic generates the first shape variable, and the piezoelectric ceramic generates the first voltage, and the piezoelectric ceramic outputs the first voltage to the controller, and the controller
  • the first voltage is detected to obtain the pressure value of the first pressure.
  • the first pressure is the external pressure received by the piezoelectric ceramic
  • the target operation is selected according to the first pressure.
  • the above pressure detecting method does not need to assist a device such as a linear motor, and only a special pressure sensor such as a piezoelectric ceramic can be used. It should be noted that the pressure sensor needs to be used with a corresponding controller, in the prior art. No exception. Therefore, the embodiment of the present application can effectively reduce the space size of the pressure detecting device, and at the same time save the cost of the pressure detecting device.
  • the controller determines the target operation according to the pressure value of the first pressure, including:
  • the controller determines the target operation according to the pressure value of the first pressure and the first preset relationship, wherein the first preset relationship is a one-to-one correspondence between each first pressure range and each preset operation, the controller determines, according to the pressure value of the first pressure, the first pressure is within a first pressure range of each of the first pressure ranges, and further, the controller Among the preset operations, an operation corresponding to a first pressure range to which the first pressure belongs is determined as the target operation.
  • the foregoing method further includes:
  • the controller determines a second voltage according to a pressure value of the first pressure and a second preset relationship, where the second preset relationship is a correspondence between each second pressure range and each second voltage, where the first pressure is The pressure value is within a second pressure range of the respective second pressure ranges, and the second voltage is a second voltage of the respective second voltages.
  • the foregoing method further includes:
  • the piezoelectric ceramic When the piezoelectric ceramic receives the second voltage output by the controller, the piezoelectric ceramic generates a second shape variable according to the second voltage.
  • the controller passes the first voltage generated by the external pressure of the piezoelectric ceramic and feeds back to the piezoelectric ceramic through the second voltage, so that the piezoelectric ceramic generates a second shape variable, and therefore, the pressure is passed.
  • the detecting device can not only detect the external pressure, but also give feedback to the external pressure.
  • the pressure detecting device further includes: a fingerprint sensor, the fingerprint sensor is in contact with the piezoelectric ceramic; and the piezoelectric ceramic receives the first pressure to generate the first shape variable, including:
  • the piezoelectric ceramic Based on the force applied to the fingerprint sensor, the piezoelectric ceramic receives the first pressure and produces a first shape variable.
  • the external force is transmitted through the fingerprint sensor, which not only can transmit the external pressure to the piezoelectric ceramic, but also realize the fingerprint verification function of the fingerprint sensor.
  • the pressure detecting device further includes a housing, the piezoelectric ceramic is attached to the inner side of the housing, and the controller is located in the housing, and the piezoelectric ceramic receives the first pressure to generate the first shape variable, including:
  • the piezoelectric ceramic receives the first pressure to generate a first shape variable based on a force applied to the outside of the housing.
  • an embodiment of the present application provides a pressure detecting apparatus, including:
  • controller and a piezoelectric ceramic, wherein the controller is coupled to the piezoelectric ceramic
  • the piezoelectric ceramic is configured to receive a first pressure and generate a first shape variable
  • the piezoelectric ceramic generates a first voltage according to the first shape variable
  • the controller is configured to determine a pressure value of the first pressure according to the first voltage
  • the controller is further configured to determine a target operation according to the pressure value of the first pressure, where the target operation is a preset operation to be performed corresponding to the pressure value of the first pressure.
  • the pressure detecting device in the present application has the following advantages:
  • the pressure detecting device includes a controller and a piezoelectric ceramic. Therefore, the above pressure detecting method does not need to assist a device such as a linear motor, and only a special pressure sensor such as a piezoelectric ceramic can be used. It should be noted that the pressure sensor is It needs to be used with the corresponding controller, and the prior art is no exception. Therefore, the embodiment of the present application can effectively reduce the space size of the pressure detecting device, and at the same time save the cost of the pressure detecting device.
  • the controller is specifically configured to:
  • controller is further configured to perform the following steps:
  • the piezoelectric ceramic is also used to perform the following steps:
  • the pressure detecting device includes: a fingerprint sensor, one side of the fingerprint sensor is attached to the piezoelectric ceramic; and the piezoelectric ceramic is specifically used for:
  • Receiving the first pressure generates the first shape variable based on a force applied to the fingerprint sensor.
  • the pressure detecting device further includes: a first housing, a surface of the first housing has a through hole, the fingerprint sensor is located in the through hole, the piezoelectric ceramic and The controller is located within the first housing.
  • the pressure detecting device further includes: a second housing; the fingerprint sensor is located in the second housing, and the other side of the fingerprint sensor is attached to the second housing, The piezoelectric ceramic and the controller are located within the second housing.
  • the pressure detecting device further includes: a third housing, the piezoelectric ceramic is attached to the inner side of the third housing, and the controller is located in the third housing;
  • the piezoelectric ceramic is specifically configured to receive the first pressure to generate the first deformation amount based on a force applied to an outer side of the housing.
  • the pressure detecting device further includes: a fourth casing and a button, the fourth casing has a through hole, and the button is attached to the piezoelectric ceramic to place the button In the through hole, the piezoelectric ceramic is located in the fourth housing, and the controller is also located in the third housing;
  • the piezoelectric ceramic is specifically configured to receive the first pressure to generate the first shape variable based on a force applied to the button.
  • the embodiment of the present application provides a terminal device, where the terminal device includes: at least one pressure detecting device according to the second aspect, and the implementation manner of any one of the second aspects.
  • an embodiment of the present application provides a computer readable storage medium, configured to store computer software instructions used by the pressure detecting device, when executed on a computer, to enable the computer to perform any of the foregoing first aspects.
  • an embodiment of the present application provides a computer program product comprising instructions, which when executed on a computer, enable the computer to perform the method of determining a target operation of any of the above first aspects.
  • FIG. 1 is a schematic structural diagram of a system structure for determining a target operation in an embodiment of the present application
  • FIG. 2 is a schematic view showing a positive piezoelectric effect of a piezoelectric ceramic in an embodiment of the present application
  • FIG. 3 is a schematic diagram of a negative piezoelectric effect of a piezoelectric ceramic in an embodiment of the present application
  • FIG. 4 is a schematic diagram of an embodiment of a method for determining a target operation in an embodiment of the present application
  • Figure 5 is a plot of the frequency and amplitude of different cells in the skin tissue in the embodiment of the present application.
  • FIG. 6 is a schematic structural view of a pressure detecting device according to an embodiment of the present application.
  • FIG. 7 is another schematic structural diagram of a pressure detecting device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of applying four piezoelectric ceramics to a mobile phone terminal in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a working principle of the pressure detecting device in the embodiment of the present application.
  • the embodiment of the present application provides a method for determining a target operation, a pressure detecting device, and a terminal device, which can reduce the space size of the pressure detecting device and reduce the cost of the pressure detecting device.
  • piezoelectric ceramic 101 and the controller 102 are included, and the controller 102 is connected to the piezoelectric ceramic 101.
  • piezoelectric ceramics are functional ceramics with piezoelectric effect and are one of piezoelectric materials, in which piezoelectric effect refers to stress-induced polarization (or electric field), or induced by electric field ( Or the phenomenon of strain, the former is called the positive piezoelectric effect, the latter is called the negative piezoelectric effect, and the two become the piezoelectric effect.
  • the positive piezoelectric effect of the piezoelectric ceramic is as shown in Fig. 2. Due to the external force applied to the piezoelectric ceramic, the piezoelectric ceramic itself generates vibration, and the piezoelectric ceramic is induced to generate an electric field (or electric power), and the negative pressure of the piezoelectric ceramic. Electrical Effects As shown in Fig. 3, an electric field (or electric power) is applied to both faces of the piezoelectric ceramic to cause deformation (or vibration) of the piezoelectric ceramics.
  • the method for determining the target operation in the present application is applied to a pressure detecting device including a controller and a piezoelectric ceramic, as shown in FIG. 4, a method for determining a target operation in the present application.
  • Embodiments include:
  • the piezoelectric ceramic receives the first pressure and generates a first shape variable.
  • the piezoelectric ceramic receives a first pressure applied to the piezoelectric ceramic by the outside, and further, the piezoelectric ceramic generates a first shape variable.
  • the piezoelectric ceramic generates a first voltage according to the first shape variable.
  • the piezoelectric ceramic since the piezoelectric ceramic has a positive piezoelectric effect, the piezoelectric ceramic generates a first voltage according to the first shape variable, and in the positive piezoelectric effect, the first shape variable and the first voltage have a positive correlation relationship, In short, the first deformation The larger the amount, the larger the first voltage generated by the piezoelectric ceramic, and the smaller the first shape variable is, the smaller the first voltage generated by the piezoelectric ceramic is, and the piezoelectric ceramic outputs the first voltage to the controller. Or the controller detects the first voltage generated by the piezoelectric ceramic.
  • the pressure detecting device further includes a fingerprint sensor, and the fingerprint sensor is attached to the piezoelectric ceramic, and the piezoelectric ceramic generates a first shape variable while pressing the fingerprint sensor, thereby A first voltage is generated.
  • the pressure detecting device further includes a housing that fits the piezoelectric ceramic to the inside of the housing, and the controller is also located inside the housing, and presses the housing from the outside of the housing. When it is bonded to the piezoelectric ceramic, the piezoelectric ceramic generates a first shape variable to generate a first voltage.
  • the pressure detecting device further includes a fingerprint sensor and a casing, and the following two situations exist:
  • the housing covers the fingerprint sensor and the piezoelectric ceramic. Specifically, one side of the fingerprint sensor is attached to the inner side of the housing, and the other side of the fingerprint sensor is attached to the piezoelectric ceramic.
  • the controller, the fingerprint sensor and the piezoelectric ceramic are both Located on the inner side of the casing, when the casing and the fingerprint sensor are pressed from the outside of the casing, the piezoelectric ceramic generates a first shape variable, thereby generating a first voltage;
  • a through hole is formed in the surface of the casing, a fingerprint sensor is placed in the through hole and the surface is exposed to the casing. Specifically, the fingerprint sensor is attached to the piezoelectric ceramic. At this time, pressing the fingerprint sensor in the through hole can make The piezoelectric ceramic produces a first shape variable to generate a first voltage.
  • the material of the above casing may be glass or metal, and the present application does not impose any limitation.
  • the controller determines a pressure value of the first pressure according to the first voltage.
  • the piezoelectric ceramic outputs the first voltage generated by the piezoelectric ceramic to the controller, the controller receives the first electric power, and obtains the pressure value of the first pressure according to the formula (1) and the first voltage, the first pressure is the outside Directly or indirectly acting on the pressure of the piezoelectric ceramic.
  • the first voltage has a positive correlation with the pressure value of the first pressure, and the specific relationship is as follows:
  • U is the first voltage
  • h is the thickness of the piezoelectric ceramic
  • A is the force area of the piezoelectric ceramic
  • F is the first pressure
  • g 33 is the piezoelectric voltage constant
  • the piezoelectric voltage corresponding to the different piezoelectric ceramics The constants are different.
  • the controller determines a target operation according to a pressure value of the first pressure.
  • the controller determines the target operation according to the pressure value of the first pressure, wherein the target operation is a to-be-executed operation preset according to the pressure value of the first pressure.
  • the controller determines the target operation according to the pressure value of the first pressure and the first preset relationship, where the first preset relationship is a one-to-one correspondence between each first pressure range and each preset operation, and the control is performed.
  • the preset operation corresponding to a first pressure range to which the pressure value of the first pressure belongs belongs to the target operation according to the first preset relationship.
  • the controller can determine the pressure range to which the pressure value of the first pressure belongs according to the pressure value of the first pressure, and determine the preset operation corresponding to the pressure value of the first pressure according to the first preset relationship.
  • the controller can determine different target operations according to different pressure values of the first pressure. Therefore, the present application can realize different operations according to different pressing strengths.
  • the pressure detecting device is placed in a mobile phone or a wearable device, and the pressure range can be simply divided into a pressure range one and a pressure range two, the pressure range one is F1 ⁇ F ⁇ F2, and the pressure range two is F2 ⁇ F ⁇ F3, F is the pressure value of the first pressure obtained.
  • the pressure range is lightly pressed and the pressure range is heavy.
  • the target operation corresponding to the pressure range may be, for example, returning to the previous interface, and the target operation corresponding to the pressure range 2 may be, for example, returning to the main interface.
  • the piezoelectric ceramic When a first pressure is applied to the piezoelectric ceramic, the piezoelectric ceramic generates a first shape variable and generates a first voltage according to the first shape variable.
  • the controller can obtain the pressure value F of the first pressure according to the first voltage. If F is in the pressure range one, the controller performs an operation of returning to the previous interface; if F is in the pressure range two, the controller performs an operation of returning to the main interface.
  • the specific pressure range of the pressure range one and the pressure range two may be set according to actual application scenarios, and the present application does not impose any limitation.
  • the pressure range can not only be divided into two, but also can be subdivided according to actual needs, so that the pressure values in different pressure ranges correspond to different target operations, making the operation more diversified and not doing here. limited.
  • the controller determines the second voltage according to the pressure value of the first pressure and the second preset relationship.
  • the second preset relationship is a correspondence between each second pressure range and each second voltage, and the frequency and amplitude of each second voltage are different, and each second pressure range in the second preset relationship may be the same.
  • Each of the first pressure ranges in a predetermined relationship may be the same or different.
  • the controller After determining the pressure value of the first pressure, the controller determines a second voltage corresponding to a second pressure range to which the pressure value of the first pressure belongs according to the second preset relationship.
  • human skin tissue consists of a stratum corneum, a transparent layer, and the like, and different layers have different cells.
  • curve 1 is the frequency and amplitude that the Merck cell complex in the skin tissue can perceive
  • curve 2 is the frequency and amplitude that the Meishi body in the skin tissue can perceive
  • curve 3 is in the skin tissue.
  • the frequency and amplitude of the Brazilian genus can be perceived
  • curve 4 is the frequency and amplitude that the riffinic body can be perceived in the skin tissue; the distribution of the above four cells in the human skin tissue (including depth) is different, so different Frequency and vibration of different amplitudes give people different feelings.
  • the second preset relationship may be set according to the relationship between the frequency and the amplitude shown in FIG. 5 such that the frequency and amplitude of the second voltage correspond to the frequency and amplitude shown in FIG. 5, that is, according to the second Voltage, piezoelectric ceramics can produce vibration feedback that the user can perceive.
  • the second preset relationship may also be a correspondence between each second pressure range and each second voltage group, and the controller may determine the pressure of the first pressure according to the second preset relationship.
  • a second voltage group corresponding to a second pressure range to which the value belongs that is, a second voltage determining a plurality of different frequencies and amplitudes, for example, the controller can generate a second voltage having a frequency f and an amplitude A, the frequency a voltage of f/2 and an amplitude of A/2, and a voltage of f/4 and an amplitude of A/4, the controller then outputs the above three second voltages to the piezoelectric ceramic, thereby realizing the user Multi-level feedback of pressing, it should be noted that the frequency and amplitude between the above three voltages can be based on The attenuation law is determined, and the attenuation law can be determined according to a large amount of experimental data, which is not limited in this application.
  • steps 405 and 404 are not limited.
  • the piezoelectric ceramic generates a second shape variable according to the second voltage.
  • the controller outputs the second voltage to the piezoelectric ceramic. Due to the negative piezoelectric effect, the piezoelectric ceramic generates a second shape variable according to the second voltage, so that the user's finger and the like pressed on the surface of the piezoelectric ceramic can be Feel the vibration feedback of the piezoelectric ceramics.
  • the first voltage is greater than the second voltage.
  • the second deformation variable generated by the piezoelectric ceramic according to the second voltage is smaller than the first deformation variable generated by the piezoelectric ceramic receiving the first pressure.
  • the piezoelectric ceramic if the user applies a first pressure to the piezoelectric ceramic through the finger, the piezoelectric ceramic generates a first shape variable, and the controller determines the magnitude of the first pressure according to the first shape variable and determines the second voltage, and the piezoelectric ceramic is The second voltage produces a second shape variable and is fed back to the user's finger, at which point the user feels the feedback vibration of the applied pressure.
  • the above pressure detecting method does not need to assist a device such as a linear motor, and only a special pressure sensor such as a piezoelectric ceramic can be used. It should be noted that the pressure sensor needs to be used with a corresponding controller, in the prior art. No exception. Therefore, the embodiment of the present application can effectively reduce the space size of the pressure detecting device, and at the same time save the cost of the pressure detecting device.
  • Embodiment 2 As shown in FIG. 1 , an embodiment of the pressure detecting device in the present application includes:
  • the piezoelectric ceramic 101 and the controller 102, and the connection between the controller 102 and the piezoelectric ceramic 101 is as shown in FIG. 1;
  • the piezoelectric ceramic 101 is configured to receive a first pressure and generate a first shape variable, and generate a first voltage according to the first shape variable, wherein the first voltage has a positive correlation with the first shape variable;
  • the controller 102 is configured to obtain a pressure value of the first pressure according to the first voltage, and determine a target operation according to the pressure value of the first pressure, where the target operation is preset according to the pressure value of the first pressure. Perform the operation.
  • the controller 102 is specifically configured to: determine a target operation according to the pressure value of the first pressure and a first preset relationship, where the first preset relationship is each first pressure And a corresponding relationship between the range and the preset operation, wherein the pressure value of the first pressure is within a first pressure range of each of the first pressure ranges, and the target operation is one of the preset operations.
  • the controller 102 is further configured to: detect the first voltage to obtain the pressure value of the first pressure, and then use the pressure value of the first pressure according to the first pressure and the second
  • the preset relationship determines a second voltage, and the second preset relationship is a correspondence between each of the second pressure ranges and each of the second voltages; and outputs a second voltage to the piezoelectric ceramics 101.
  • the piezoelectric ceramic 101 is further configured to: if the piezoelectric ceramic 101 receives the second voltage output by the controller 102, generate a second shape variable according to the second voltage, The second voltage has a positive correlation with the second shape variable.
  • the pressure detecting device detects the first voltage outputted by the piezoelectric ceramic 101 through the controller 102. Go to the first pressure, and the controller 102 determines the target operation according to the first pressure and the first preset relationship. It can be understood that if the person presses the piezoelectric ceramic 101 in the pressure detecting device with a finger, the controller 102 Different target operations can be determined according to different pressing strengths of the person, for example, pressing the corresponding target operation: returning to the main interface; in the lock screen state, tapping the corresponding target operation: unlocking.
  • the pressure detecting device in the present application can effectively realize the method of determining the target operation, and the use of the piezoelectric ceramic as the detecting element can effectively reduce the volume of the pressure detecting device, and at the same time, without using other additional devices such as a linear motor, Can effectively save costs.
  • the pressure detecting device of the present application further includes: a glass cover 601, a fingerprint sensor 603, and a mobile phone case 604.
  • the glass cover 601 can be, for example, an upper side of the mobile phone case 604, and the fingerprint sensor 603.
  • One side is attached to the glass cover 601, the other side of the fingerprint sensor 603 is attached to the piezoelectric ceramic 602, the fingerprint sensor 603 and the piezoelectric ceramic 602 are located inside the mobile phone case 604, and the fingerprint sensor 603 and the piezoelectric ceramic 602 are used by the mobile phone. Covered by the housing 604.
  • a through hole is opened in the glass cover 601, and the fingerprint sensor 603 is placed in the through hole, so that the fingerprint sensor 603 is exposed to the glass cover 601, for other possible Connection method, this application does not impose any restrictions.
  • glass cover 601 on the upper side of the mobile phone case 604 may also be made of other materials, such as metal, and the present application does not impose any limitation.
  • the sensor used for the fingerprint verification function by the fingerprint sensor 603 may also be replaced with other sensors of similar functions, and the present application does not impose any limitation.
  • the pressure detecting device further includes: a housing, the piezoelectric ceramic is attached to the inner side of the housing, the controller is disposed in the housing, and the housing covers the piezoelectric ceramic, and A force applied to the outside of the housing, the piezoelectric ceramic receiving the first pressure produces a first deformation.
  • the pressure detecting device further comprises: a housing and a button, the housing has a through hole, and the button is attached to the piezoelectric ceramic, so that when the button is pressed, the piezoelectric ceramic is also Pressing produces a first shape variable, then placing the button in the through hole such that the button is exposed to the surface of the housing and the piezoelectric ceramic is placed inside the housing, and in addition, the controller is also located inside the housing, at this time, based on the button applied The force on the piezoelectric ceramic receives the first pressure to produce a first shape variable.
  • FIG. 8 is a schematic structural view showing application of four piezoelectric ceramics to a mobile phone terminal, wherein piezoelectric ceramics on the upper right side edge are used to constitute a volume key on the mobile phone terminal; and three piezoelectric ceramics on the lower edge are used.
  • the three function keys that make up the mobile terminal can be noted that the pressure detecting device in the present application can be used not only for a mobile phone terminal but also for other terminal devices such as a wearable device; in addition, one terminal device can include at least one piezoelectric ceramic, which can be visually applied. The scene is set, and there is no restriction on this application.
  • FIG. 9 is a schematic diagram of a working principle of the pressure detecting device, and the related operations and beneficial effects performed by the pressure detecting device are similar to those described in the first embodiment, and can be referred to in the first embodiment. The related description is not repeated here.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative, for example, of the unit Partitioning is only a logical function partitioning. In actual implementation, there may be another way of dividing. For example, multiple units or components may be combined or integrated into another system, or some features may be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • User Interface Of Digital Computer (AREA)
  • Push-Button Switches (AREA)

Abstract

一种确定目标操作的方法、压力检测装置及终端设备,能够减小压力检测装置的空间尺寸,同时降低压力检测装置的成本。确定目标操作的方法包括:压电陶瓷(101)接收第一压力并产生第一形变量(401);压电陶瓷(101)根据第一形变量生成第一电压(402);控制器(102)根据第一电压确定第一压力的压力值(403);控制器(102)根据第一压力的压力值和第一预设关系确定目标操作(404)。

Description

一种确定目标操作的方法、压力检测装置及终端设备 技术领域
本申请涉及终端设备领域,尤其涉及一种确定目标操作的方法、压力检测装置及终端设备。
背景技术
由于物理按键功能单一,并需要占用一定空间,因此通过引入压力传感器可以丰富按键功能。压力传感器可以检测对按键施加的按压力度,进而根据不同的按压力度触发不同的应用程序,从而使得同一按键可以根据不同的按压力度实现不同的按键功能。
现有方案使用压力传感器和线性电机相结合,压力传感器检测按键被施加的按压力度,并根据不同的按压力度向线性电机输出不同的驱动电压,以使得线性电机内的弹簧振子在不同驱动电压的控制下产生力的作用,并将力传递到按键上。
在现有技术方案中,线性马达本身具有结构复杂和尺寸大的特点,此外,现有方案还需要额外的压力传感器,终端设备中放置压力传感器和线性马达需要较大尺寸空间,因此,现有压力传感器结合线性电机方案占用的尺寸空间较大,导致安装设计难度较大。
发明内容
本申请实施例提供一种确定目标操作的方法、压力检测装置及终端设备,能够减小压力检测装置的空间尺寸,同时降低压力检测装置的成本。
第一方面,本申请实施例提供了一种确定目标操作的方法,该方法应用于一种压力检测装置,该压力检测装置包括:控制器和压电陶瓷,该控制器与该压电陶瓷相连接,该压力检测方法包括:
当压电陶瓷受到外界压力并产生第一形变量时,会产生与第一形变量相对应的第一电压;与压电陶瓷连接的控制器可以根据第一电压确定第一压力的压力值;控制器根据第一压力的压力值确定目标操作,目标操作为与第一压力的压力值对应的预先设定的待执行操作。
从以上技术方案可以看出,本申请实施例具有以下优点:
上述确定目标操作的方法中压电陶瓷来受到第一压力的作用,使得压电陶瓷产生第一形变量,进而压电陶瓷生成第一电压,压电陶瓷输出第一电压至控制器,控制器对第一电压进行检测得到第一压力的压力值,可以理解第一压力为压电陶瓷受到的外界压力,最终,根据第一压力选择目标操作。上述压力检测方法无需辅助如线性马达之类的器件,只需使用压电陶瓷这种特殊的压力传感器即可,需要说明的是,压力传感器均需要与相应的控制器配合使用,现有技术中也不例外。因此,本申请实施例可以有效地降低压力检测装置的空间尺寸,同时也节省了压力检测装置的成本。
在一种可能的实现方式中,控制器根据第一压力的压力值确定目标操作,包括:
控制器根据第一压力的压力值和第一预设关系确定目标操作,其中,第一预设关系为 各第一压力范围与各预设操作之间的一一对应关系,控制器根据第一压力的压力值确定第一压力在各第一压力范围中的一个第一压力范围内,进而,控制器将各预设操作中,与第一压力所属的一个第一压力范围对应的操作确定为目标操作。
在一种可能的实现方式中,上述方法还包括:
控制器根据第一压力的压力值与第二预设关系确定第二电压,所述第二预设关系为各第二压力范围与各第二电压之间的对应关系,所述第一压力的压力值在所述各第二压力范围中的一个第二压力范围内,所述第二电压为所述各第二电压之中的一个第二电压。
在一种可能的实现方式中,上述方法还包括:
若上述压电陶瓷接收到上述控制器输出的上述第二电压,则上述压电陶瓷根据上述第二电压产生第二形变量。
另外,可以理解的是,控制器通过检测压电陶瓷由于受到外界压力产生的第一电压,并通过第二电压反馈给压电陶瓷以使得压电陶瓷产生第二形变量,因此,通过该压力检测装置不仅可以检测外界压力,还可以对给予该外界压力以反馈。
在一种可能的实现方式中,压力检测装置还包括:指纹传感器,指纹传感器与压电陶瓷相贴合;压电陶瓷接收第一压力产生第一形变量,包括:
基于施加于所述指纹传感器上的力,压电陶瓷接收第一压力并产生第一形变量。
其次,通过指纹传感器来传导外力作用,不仅可以将外界压力传导至压电陶瓷,还可以实现指纹传感器的指纹验证功能。
在一种可能的实现方式中,压力检测装置还包括壳体,压电陶瓷贴合在壳体的内侧,控制器位于壳体内,压电陶瓷接收第一压力产生第一形变量,包括:
基于施加于壳体外侧上的力,压电陶瓷接收第一压力产生第一形变量。
第二方面,本申请实施例提供了一种压力检测装置,包括:
控制器和压电陶瓷,其中,所述控制器与所述压电陶瓷相连接;
所述压电陶瓷,用于接收第一压力并产生第一形变量;
所述压电陶瓷根据所述第一形变量生成第一电压;
所述控制器,用于根据所述第一电压确定所述第一压力的压力值;
所述控制器,还用于根据所述第一压力的压力值确定目标操作,所述目标操作为与所述第一压力的压力值对应的预先设定的待执行操作。
从以上技术方案中,可以看出本申请中的压力检测装置具有如下优点:
压力检测装置包括控制器和压电陶瓷,因此,上述压力检测方法无需辅助如线性马达之类的器件,只需使用压电陶瓷这种特殊的压力传感器即可,需要说明的是,压力传感器均需要与相应的控制器配合使用,现有技术中也不例外。因此,本申请实施例可以有效地降低压力检测装置的空间尺寸,同时也节省了压力检测装置的成本。
在一种可能的实现方式中,控制器具体用于:
根据所述第一压力的压力值和第一预设关系确定目标操作,其中,所述第一预设关系为各第一压力范围与各预设操作之间的对应关系,所述第一压力的压力值在所述各第一压力范围中的一个第一压力范围内,所述目标操作为所述各预设操作的中的一个操作。
在一种可能的实现方式中,控制器还用于执行如下步骤:
根据所述第一压力的压力值与第二预设关系确定第二电压,所述第二预设关系为各第二压力范围与各第二电压之间的对应关系,所述第一压力的压力值在所述各第二压力范围中的一个第二压力范围内,所述第二电压为所述各第二电压之中的一个第二电压。
在一种可能的实现方式中,压电陶瓷还用于执行如下步骤:
根据所述第二电压产生第二形变量。
在一种可能的实现方式中,所述压力检测装置包括:指纹传感器,所述指纹传感器的一面与所述压电陶瓷相贴合;压电陶瓷具体用于:
基于施加于所述指纹传感器上的力,接收所述第一压力产生所述第一形变量。
在一种可能的实现方式中,压力检测装置还包括:第一壳体,所述第一壳体的表面具有通孔,所述指纹传感器位于所述通孔之中,所述压电陶瓷和所述控制器位于所述第一壳体内。
在一种可能的实现方式中,压力检测装置还包括:第二壳体;所述指纹传感器位于所述第二壳体内,并且,所述指纹传感器另一面贴合于所述第二壳体,所述压电陶瓷和所述控制器位于所述第二壳体内。
在一种可能的实现方式中,压力检测装置还包括:第三壳体,所述压电陶瓷贴合在所述第三壳体的内侧,所述控制器位于所述第三壳体内;
所述压电陶瓷具体用于:基于施加于所述壳体外侧上的力,接收所述第一压力产生所述第一形变量。
在一种可能的实现方式中,压力检测装置还包括:第四壳体和按键,所述第四壳体上有通孔,所述按键与所述压电陶瓷相贴合并将所述按键置于所述通孔中,所述压电陶瓷位于所述第四壳体内,所述控制器也位于所述第三壳体内;
所述压电陶瓷具体用于:基于施加于所述按键上的力,接收所述第一压力产生所述第一形变量。
第三方面,本申请实施例提供了一种终端设备,所述终端设备包括:至少一个如上述第二方面、以及第二方面中任一种实现方式所述的压力检测装置。
第四方面,本申请实施例提供了一种计算机可读存储介质,用于储存为上述压力检测装置所用的计算机软件指令,当其在计算机上运行时,使得计算机可以执行上述第一方面中任意一项的确定目标操作的方法。
第五方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第一方面中任意一项的确定目标操作的方法。
另外,第四方面至第五方面中任一种设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为本申请实施例中确定目标操作的方法的一个系统结构框架示意图;
图2为本申请实施例中压电陶瓷的正压电效应示意图;
图3为本申请实施例中压电陶瓷的负压电效应示意图;
图4为本申请实施例中确定目标操作的方法的一个实施例示意图;
图5为本申请实施例中皮肤组织中不同细胞对频率和幅度的感知曲线;
图6为本申请实施例中压力检测装置的一个结构示意图;
图7为本申请实施例中压力检测装置的另一个结构示意图;
图8为本申请实施例中将四个压电陶瓷应用用于手机终端的一个结构示意图;
图9为本申请实施例中压力检测装置的一个工作原理示意图。
具体实施方式
本申请实施例提供了一种确定目标操作的方法、压力检测装置及终端设备,能够减小压力检测装置的空间尺寸,同时降低压力检测装置的成本。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为了便于理解,下面将结合图1对本申请中确定目标操作的方法对应的系统框架进行说明。如图1所示,包括:压电陶瓷101和控制器102,控制器102与压电陶瓷101相连接。众所周知,压电陶瓷是一种具有压电效应的功能性陶瓷,是压电材料中的一种,其中,压电效应是指由应力诱导极化(或电场),或由电场诱导出应力(或应变)的现象,前者称之为正压电效应,后者称之为负压电效应,两者统成为压电效应。另外,压电陶瓷的正压电效应如图2所示,由于对压电陶瓷施加外力作用,使得压电陶瓷自身产生振动,诱导压电陶瓷产生电场(或电力),压电陶瓷的负压电效应如图3所示,向压电陶瓷两个面上施加电场(或电力),使得压电陶瓷诱变产生形变(或振动)。
在了解了上述系统结构之后,下面将结合具体的实施例对本申请中确定目标操作的方法进行说明,具体实施方式如下所述:
需要说明的是,本申请中的确定目标操作的方法应用于一种压力检测装置中,该压力传感器包括控制器和压电陶瓷,如图4所示,本申请中确定目标操作的方法的一个实施例,包括:
401、压电陶瓷接收第一压力并产生第一形变量。
本实施例中,压电陶瓷接收外界作用于该压电陶瓷上的第一压力,进而,压电陶瓷产生第一形变量。
402、压电陶瓷根据第一形变量生成第一电压。
本实施例中,由于压电陶瓷具有正压电效应,压电陶瓷根据第一形变量产生第一电压,在正压电效应中,第一形变量和第一电压之间具有正相关关系,简而言之,第一形变 量越大对应压电陶瓷产生的第一电压也就越大,第一形变量越小对应压电陶瓷产生的第一电压也就越小,并且压电陶瓷将第一电压输出至控制器,或者由控制器检测压电陶瓷产生的第一电压。
可选地,在一种具体的实施方式中,压力检测装置还包括指纹传感器,将指纹传感器与压电陶瓷相贴合,在按压指纹传感器的同时,压电陶瓷会产生第一形变量,从而生成第一电压。
可选地,在另一种具体的实施方式中,压力检测装置还包括壳体,将压电陶瓷贴合于壳体内部,并且控制器也位于壳体内部,在从壳体外侧按压壳体和压电陶瓷贴合处时,压电陶瓷会产生第一形变量,从而生成第一电压。
可选地,在又一种具体的实施方式中,压力检测装置还包括指纹传感器和壳体,此时存在以下两种情况:
第一种,壳体覆盖指纹传感器以及压电陶瓷,具体的,指纹传感器的一面与壳体内侧贴合,指纹传感器的另一面与压电陶瓷贴合,控制器、指纹传感器和压电陶瓷均位于壳体内侧,在从壳体外侧按压壳体和指纹感器贴合处时,压电陶瓷会产生第一形变量,从而生成第一电压;
第二种,壳体表面开设通孔,指纹传感器置于通孔中并且表面暴露于壳体,具体的,指纹传感器与压电陶瓷相贴合,此时,按压通孔中的指纹传感器可以使得压电陶瓷产生第一形变量,从而生成第一电压。
需要说明的是,上述壳体的材料可以为玻璃,也可以为金属,对此本申请不做任何限制。
403、控制器根据第一电压确定第一压力的压力值。
本实施例中,压电陶瓷将其产生的第一电压输出至控制器,控制器接收第一电,根据公式(1)和第一电压获得第一压力的压力值,该第一压力为外界直接或间接作用于压电陶瓷的压力。其中,第一电压与第一压力的压力值之间具有正相关关系,其具体关系如下公式所示:
Figure PCTCN2017096754-appb-000001
其中,U为第一电压,h为压电陶瓷的厚度,A为压电陶瓷的受力面积,F为第一压力,g33为压电电压常数,不同的压电陶瓷对应的压电电压常数不同。
从上述公式中,可以看出第一电压越大对应检测得到第一压力的压力值越大,第一电压越小对应检测得到的第一压力的压力值越小。
404、控制器根据第一压力的压力值确定目标操作。
本实施例中,控制器根据第一压力的压力值确定目标操作,其中,目标操作为根据第一压力的压力值预先设定的待执行操作。
可选地,控制器根据第一压力的压力值和第一预设关系确定目标操作,其中,第一预设关系为各第一压力范围与各预设操作之间的一一对应关系,控制器根据第一预设关系确定该第一压力的压力值所属的一个第一压力范围所对应的预设操作为目标操作。
可以理解的是,控制器可以根据第一压力的压力值,确定该第一压力的压力值所属的压力范围,根据第一预设关系,确定该第一压力的压力值对应的预设操作确定为目标操作,换言之,控制器可以根据第一压力的压力值不同来确定不同的目标操作,因此,本申请可以实现根据不同的按压力度实现不同的操作。
例如,将上述压力检测装置置于手机或可穿戴设备中,将压力范围可以简单的划分为压力范围一和压力范围二,压力范围一为F1≤F≤F2,压力范围二为F2<F≤F3,F为获得的第一压力的压力值。假设,压力范围一为轻按,压力范围二为重压。压力范围一对应的目标操作例如可以为返回上一个界面,压力范围二对应的目标操作例如可以为返回主界面。当在压电陶瓷上施加第一压力,压电陶瓷产生第一形变量,并根据第一形变量产生第一电压,此时,控制器根据第一电压可以获得第一压力的压力值F,如果F处于压力范围一,则控制器执行返回上一个界面的操作;如果F处于压力范围二,则控制器执行返回主界面的操作。
需要说明的是,上述压力范围一和压力范围二的具体压力范围可以根据实际应用场景进行设定,本申请不做任何限制。压力范围也不仅仅可以划分为两个,还可以根据实际需要做更多细分,以使得处于不同的压力范围的压力值对应不同的目标操作,使得操作更多样化,在此也不做限定。
405、控制器根据第一压力的压力值和第二预设关系确定第二电压。
其中,第二预设关系为各第二压力范围与各第二电压之间的对应关系,各第二电压的频率和幅值不同,第二预设关系中的各第二压力范围可以与第一预设关系中的各第一压力范围相同,也可以不同。
控制器确定了第一压力的压力值后,根据第二预设关系确定该第一压力的压力值所属的一个第二压力范围所对应的一个第二电压。
众所周知,人体皮肤组织包括角质层、透明层等组成,并且不同层分部有不同细胞。
如图5所示,曲线1为皮肤组织中的默尔克细胞复合体可以感知的频率和幅度;曲线2为皮肤组织中的梅氏小体可以感知的频率和幅度;曲线3为皮肤组织中的巴西尼小体可以感知的频率和幅度;曲线4为皮肤组织中的鲁菲尼小体可以感知的频率和幅度;上述四种细胞在人体皮肤组织中的分布(包括深度)不同,所以不同频率和不同幅值的振动给人的感受不同。
第二预设关系可以根据图5所示的频率和幅值之间的关系进行设置,以使得第二电压的频率和幅值与图5所示的频率和幅值相对应,即根据第二电压,压电陶瓷可以产生用户可以感知的震动反馈。
另外,在一些实际应用场景中,第二预设关系还可以为各第二压力范围与各第二电压组之间的对应关系,控制器可以根据第二预设关系确定该第一压力的压力值所属的一个第二压力范围对应的一个第二电压组,即确定多个不同频率和幅值的第二电压,例如:控制器可以生成频率为f且幅度为A的第二电压、,频率为f/2且幅度为A/2的电压、以及频率为f/4且幅度为A/4的电压,随之控制器将上述三个第二电压都输出给压电陶瓷,从而实现对用户按压的多级反馈,需要说明的是,对于上述三个电压之间的频率和幅度可以根据 衰减规律进行确定,该衰减规律可以根据大量实验数据确定,对此本申请不做任何限定。
还需要说明的是,对于步骤405和步骤404的执行顺序不做限定。
406、压电陶瓷根据第二电压产生第二形变量。
本实施例中,控制器将第二电压输出至压电陶瓷,由于负压电效应,压电陶瓷根据第二电压产生第二形变量,从而使得按压于压电陶瓷表面的用户手指等部位可以感受到压电陶瓷的震动反馈。
可选择的,第一电压大于第二电压,由压电陶瓷的特性可知,压电陶瓷根据第二电压产生的第二形变量小于压电陶瓷接收第一压力产生的第一形变量。
可以理解的是,假如用户通过手指对压电陶瓷施加第一压力,压电陶瓷产生第一形变量,控制器根据第一形变量确定第一压力的大小并确定第二电压,压电陶瓷根据第二电压产生第二形变量并反馈于用户的手指,此时,用户就会感受到自己施加的按压的反馈震动。
上述压力检测方法无需辅助如线性马达之类的器件,只需使用压电陶瓷这种特殊的压力传感器即可,需要说明的是,压力传感器均需要与相应的控制器配合使用,现有技术中也不例外。因此,本申请实施例可以有效地降低压力检测装置的空间尺寸,同时也节省了压力检测装置的成本。
上述实施例一对本申请中确定目标操作的方法进行了详细说明,下面将从以下方面对本申请中的压力检测装置进行说明。
实施二,如图1所示,本申请中压力检测装置的一个实施例包括:
压电陶瓷101和控制器102,并且,控制器102与压电陶瓷101之间的连接方式如图1所示;
压电陶瓷101,用于接收第一压力并产生第一形变量,并根据上述第一形变量生成第一电压,其中,上述第一电压与上述第一形变量之间具有正相关关系;
控制器102,用于根据上述第一电压获得上述第一压力的压力值,并根据上述第一压力的压力值确定目标操作,上述目标操作为根据上述第一压力的压力值预先设定的待执行操作。
可选地,在一种可能的设计中,控制器102具体用于:根据上述第一压力的压力值和第一预设关系确定目标操作,其中,上述第一预设关系为各第一压力范围与各预设操作之间的对应关系,上述第一压力的压力值在上述各第一压力范围中的一个第一压力范围内,上述目标操作为上述各预设操作的中的一个操作。
可选地,在一种可能的设计中,控制器102还用于:对上述第一电压进行检测得到上述第一压力的压力值,则上述控制器根据上述第一压力的压力值和第二预设关系确定第二电压,上述第二预设关系为各第二压力范围与各第二电压之间的对应关系;并向压电陶瓷101输出第二电压。
可选地,在一种可能的设计中,压电陶瓷101还用于:若压电陶瓷101接收到控制器102输出的上述第二电压,则根据上述第二电压产生第二形变量,上述第二电压与上述第二形变量之间具有正相关关系。
在实施例二中,压力检测装置通过控制器102检测压电陶瓷101输出的第一电压,得 到第一压力,并且控制器102根据上述第一压力与第一预设关系确定目标操作,可以理解的是,假如人用手指按压该压力检测装置中的压电陶瓷101,那么控制器102便可以根据人的不同按压力度确定不同的目标操作,例如,重按对应目标操作:回到主界面;在锁屏状态下轻按对应目标操作:解锁。因此,本申请中的压力检测装置可以有效地实现确定目标操作的方法,并且使用压电陶瓷作为检测元件可以有效地减少压力检测装置的体积,同时,不用其他如线性马达之类的附加器件,可以有效地节约成本。
可选地,如图6所示,本申请中压力检测装置还包括:玻璃盖板601、指纹传感器603和手机壳体604,玻璃盖板601例如可以为手机壳体604上侧面,指纹传感器603一面与玻璃盖板601相贴合,指纹传感器603另一面与压电陶瓷602相贴合,指纹传感器603与压电陶瓷602位于手机壳体604内部,并且指纹传感器603与压电陶瓷602被手机壳体604所覆盖。
可选地,如图7所示的连接方式,在玻璃盖板601上开一通孔,并将指纹传感器603放置于该通孔中,使得指纹传感器603暴露于玻璃盖板601,对于其他可能的连接方式,本申请不做任何限制。
其中,需要说明的是,手机壳体604上侧面的玻璃盖板601也可以由其他材质构成,如金属等,对此本申请不做任何限制。
还需要说明的是,指纹传感器603用于进行指纹验证功能的传感器,也可以替换为其他类似功能的传感器,对此本申请不做任何限制。
可选地,在一种可能的设计中,压力检测装置还包括:壳体,压电陶瓷与壳体内侧贴合,控制器置于壳体内,并且壳体覆盖压电陶瓷,此时,基于施加于壳体外侧上的力,压电陶瓷接收第一压力产生第一形变量。
可选地,在一种可能的设计中,压力检测装置还包括:壳体和按键,壳体上有通孔,按键与压电陶瓷贴合,以使得当按压按键时,压电陶瓷也被按压产生第一形变量,然后将按键置于通孔中,使得按键暴露于壳体表面且压电陶瓷置于壳体内部,此外,控制器也位于壳体内部,此时,基于施加于按键上的力,压电陶瓷接收第一压力产生第一形变量。
如图8所示为将四个压电陶瓷应用用于手机终端的一个结构示意图,右上侧边沿上的压电陶瓷用于构成手机终端上的音量键;下边沿上的三个压电陶瓷用于构成手机终端上的三个功能键。需要说明的是,本申请中的压力检测装置不仅可以用于手机终端,还可以用于其他终端设备如可穿戴设备上;另外,一个终端设备上可以包括至少一个压电陶瓷,可视实际应用场景进行设置,对此本申请不做任何限制。
需要说明的是,如图9所示为压力检测装置的一个工作原理示意图,该压力检测装置执行的相关操作及有益效果,均与上述实施例一中的描述类似,可参阅上述实施例一中的相关描述,此处不再赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的 划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (18)

  1. 一种确定目标操作的方法,所述方法应用于一种压力检测装置,所述压力检测装置包括:控制器和压电陶瓷,其中,所述控制器与所述压电陶瓷相连接,其特征在于,所述方法包括:
    所述压电陶瓷接收第一压力并产生第一形变量;
    所述压电陶瓷根据所述第一形变量生成第一电压;
    所述控制器根据所述第一电压确定所述第一压力的压力值;
    所述控制器根据所述第一压力的压力值确定目标操作,所述目标操作为与所述第一压力的压力值对应的预先设定的待执行操作。
  2. 根据权利要求1所述的确定目标操作的方法,其特征在于,所述控制器根据所述第一压力的压力值确定目标操作,包括:
    所述控制器根据所述第一压力的压力值和第一预设关系确定目标操作,其中,所述第一预设关系为各第一压力范围与各预设操作之间的对应关系,所述第一压力的压力值在所述各第一压力范围中的一个第一压力范围内,所述目标操作为所述各预设操作的中的一个操作。
  3. 根据权利要求1或2所述的确定目标操作的方法,其特征在于,所述方法还包括:
    所述控制器根据所述第一压力的压力值与第二预设关系确定第二电压,所述第二预设关系为各第二压力范围与各第二电压之间的对应关系,所述第一压力的压力值在所述各第二压力范围中的一个第二压力范围内,所述第二电压为所述各第二电压之中的一个第二电压。
  4. 根据权利要求3所述的确定目标操作的方法,其特征在于,所述方法还包括:
    所述压电陶瓷根据所述第二电压产生第二形变量。
  5. 根据权利要求1至4中任一项所述的确定目标操作的方法,所述压力检测装置还包括:指纹传感器,所述指纹传感器与所述压电陶瓷相贴合;
    所述压电陶瓷接收第一压力并产生第一形变量,包括:
    基于施加于所述指纹传感器上的力,所述压电陶瓷接收所述第一压力产生所述第一形变量。
  6. 根据权利要求1至4中任一项所述的确定目标操作的方法,其特征在于,所述压力检测装置还包括壳体,所述压电陶瓷贴合在所述壳体的内侧,所述控制器位于所述壳体内,所述压电陶瓷接收第一压力并产生第一形变量,包括:
    基于施加于所述壳体外侧上的力,所述压电陶瓷接收所述第一压力产生所述第一形变量。
  7. 一种压力检测装置,其特征在于,包括:
    控制器和压电陶瓷,其中,所述控制器与所述压电陶瓷相连接;
    所述压电陶瓷,用于接收第一压力并产生第一形变量,并根据所述第一形变量生成第一电压;
    所述控制器,用于根据所述第一电压确定所述第一压力的压力值,并根据所述第一压 力的压力值确定目标操作,所述目标操作为与所述第一压力的压力值对应的预先设定的待执行操作。
  8. 根据权利要求7所述的压力检测装置,其特征在于,所述控制器具体用于:
    根据所述第一压力的压力值和第一预设关系确定目标操作,其中,所述第一预设关系为各第一压力范围与各预设操作之间的对应关系,所述第一压力的压力值在所述各第一压力范围中的一个第一压力范围内,所述目标操作为所述各预设操作的中的一个操作。
  9. 根据权利要求7或8所述的压力检测装置,其特征在于,所述控制器还用于:
    根据所述第一压力的压力值与第二预设关系确定第二电压,所述第二预设关系为各第二压力范围与各第二电压之间的对应关系,所述第一压力的压力值在所述各第二压力范围中的一个第二压力范围内,所述第二电压为所述各第二电压之中的一个第二电压。
  10. 根据权利要求9所述的压力检测装置,其特征在于,所述压电陶瓷还用于:
    根据所述第二电压产生第二形变量。
  11. 根据权利要求7至10中任一项所述的压力检测装置,其特征在于,所述压力检测装置还包括:指纹传感器,所述指纹传感器的一面与所述压电陶瓷相贴合;
    所述压电陶瓷具体用于:基于施加于所述指纹传感器上的力,接收所述第一压力并产生所述第一形变量。
  12. 根据权利要求11所述的压力检测装置,其特征在于,所述压力检测装置还包括:第一壳体,所述第一壳体的表面具有通孔,所述指纹传感器位于所述通孔之中,所述压电陶瓷和所述控制器位于所述第一壳体内。
  13. 根据权利要求11所述的压力检测装置,其特征在于,所述压力检测装置还包括:第二壳体;所述指纹传感器位于所述第二壳体内,并且,所述指纹传感器另一面贴合于所述第二壳体,所述压电陶瓷和所述控制器位于所述第二壳体内。
  14. 根据权利要求7所述的压力检测装置,其特征在于,所述压力检测装置还包括:第三壳体,所述压电陶瓷贴合在所述第三壳体的内侧,所述控制器位于所述第三壳体内;所述压电陶瓷具体用于:基于施加于所述壳体外侧上的力,接收所述第一压力并产生所述第一形变量。
  15. 根据权利要求7所述的压力检测装置,其特征在于,所述压力检测装置还包括:第四壳体和按键,所述第四壳体上有通孔,所述按键与所述压电陶瓷相贴合并将所述按键置于所述通孔中,所述压电陶瓷和所述控制器位于所述第四壳体内;所述压电陶瓷具体用于:基于施加于所述按键上的力,接收所述第一压力并产生所述第一形变量。
  16. 一种终端设备,其特征在于,包括:至少一个如上述权利要求7至15中任一项权利要求所述的压力检测装置。
  17. 一种计算机程序产品,其特征在于,当所述计算机产品在计算机上运行时,使得计算机可以执行上述权利要求1至6中任一项所述的确定目标操作的方法。
  18. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储压力检测装置所用的计算机软件指令,当所述计算机可读存储介质在计算机上运行时,使得计算机可以执行上述权力要求1至6中任一项所述的确定目标操作的方法。
PCT/CN2017/096754 2017-08-10 2017-08-10 一种确定目标操作的方法、压力检测装置及终端设备 WO2019028724A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780079328.9A CN110088716B (zh) 2017-08-10 2017-08-10 一种确定目标操作的方法、压力检测装置及终端设备
CN202110189680.6A CN113050824B (zh) 2017-08-10 2017-08-10 一种确定目标操作的方法、压力检测装置及终端设备
PCT/CN2017/096754 WO2019028724A1 (zh) 2017-08-10 2017-08-10 一种确定目标操作的方法、压力检测装置及终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/096754 WO2019028724A1 (zh) 2017-08-10 2017-08-10 一种确定目标操作的方法、压力检测装置及终端设备

Publications (1)

Publication Number Publication Date
WO2019028724A1 true WO2019028724A1 (zh) 2019-02-14

Family

ID=65273024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096754 WO2019028724A1 (zh) 2017-08-10 2017-08-10 一种确定目标操作的方法、压力检测装置及终端设备

Country Status (2)

Country Link
CN (2) CN113050824B (zh)
WO (1) WO2019028724A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113050824B (zh) * 2017-08-10 2022-05-31 荣耀终端有限公司 一种确定目标操作的方法、压力检测装置及终端设备
CN114285927A (zh) * 2021-12-06 2022-04-05 维沃移动通信有限公司 电子设备的功能实现方法、功能实现装置和电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080007532A1 (en) * 2006-07-05 2008-01-10 E-Lead Electronic Co., Ltd. Touch-sensitive pad capable of detecting depressing pressure
CN202632249U (zh) * 2012-06-25 2012-12-26 深圳市深越光电技术有限公司 触感触摸屏
CN105117089A (zh) * 2015-09-17 2015-12-02 京东方科技集团股份有限公司 触控基板、触控显示面板及其驱动方法、触控显示装置
CN105487775A (zh) * 2015-11-26 2016-04-13 惠州Tcl移动通信有限公司 一种触摸屏控制方法及移动终端
CN105929577A (zh) * 2016-04-22 2016-09-07 厦门天马微电子有限公司 显示面板、显示装置及显示面板的制造方法
CN106406571A (zh) * 2016-08-31 2017-02-15 广州视源电子科技股份有限公司 交互识别方法、交互识别设备及智能可穿戴设备
CN106775051A (zh) * 2016-11-15 2017-05-31 深圳天珑无线科技有限公司 一种压感触控面板及压感触控装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60115220T2 (de) * 2000-03-23 2006-08-17 Elliptec Resonant Actuator Ag Vibrationsantrieb und herstellungsverfahren sowie verwendung desselben
JP4333883B2 (ja) * 2007-01-24 2009-09-16 ヤマハ株式会社 モーションセンサ及びその製造方法
KR101333794B1 (ko) * 2011-08-16 2013-11-29 한국세라믹기술원 진동 모듈 및 이를 이용한 햅틱 장치
US10578499B2 (en) * 2013-02-17 2020-03-03 Microsoft Technology Licensing, Llc Piezo-actuated virtual buttons for touch surfaces
CN104396296B (zh) * 2013-06-04 2018-03-16 华为技术有限公司 数据传输方法、装置和用户设备
US9448631B2 (en) * 2013-12-31 2016-09-20 Microsoft Technology Licensing, Llc Input device haptics and pressure sensing
CN104063054B (zh) * 2014-06-06 2017-02-15 南京航空航天大学 基于双向摩擦力控制的触觉再现装置及触觉再现方法
CN104535863A (zh) * 2014-12-23 2015-04-22 上海电机学院 一种压电特性参数动态扫频测试装置及方法
CN105955482A (zh) * 2016-05-05 2016-09-21 小天才科技有限公司 一种智能可穿戴设备及其振动控制方法
CN106095179A (zh) * 2016-06-15 2016-11-09 苏州众显电子科技有限公司 一种压电式触摸显示屏
CN106371724B (zh) * 2016-08-26 2019-06-07 Oppo广东移动通信有限公司 移动终端的控制方法、装置及移动终端
CN106639471B (zh) * 2016-12-22 2019-12-20 浙江建科减震科技有限公司 压电及电磁复合俘能型半主动调频质量颗粒阻尼器
CN113050824B (zh) * 2017-08-10 2022-05-31 荣耀终端有限公司 一种确定目标操作的方法、压力检测装置及终端设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080007532A1 (en) * 2006-07-05 2008-01-10 E-Lead Electronic Co., Ltd. Touch-sensitive pad capable of detecting depressing pressure
CN202632249U (zh) * 2012-06-25 2012-12-26 深圳市深越光电技术有限公司 触感触摸屏
CN105117089A (zh) * 2015-09-17 2015-12-02 京东方科技集团股份有限公司 触控基板、触控显示面板及其驱动方法、触控显示装置
CN105487775A (zh) * 2015-11-26 2016-04-13 惠州Tcl移动通信有限公司 一种触摸屏控制方法及移动终端
CN105929577A (zh) * 2016-04-22 2016-09-07 厦门天马微电子有限公司 显示面板、显示装置及显示面板的制造方法
CN106406571A (zh) * 2016-08-31 2017-02-15 广州视源电子科技股份有限公司 交互识别方法、交互识别设备及智能可穿戴设备
CN106775051A (zh) * 2016-11-15 2017-05-31 深圳天珑无线科技有限公司 一种压感触控面板及压感触控装置

Also Published As

Publication number Publication date
CN113050824B (zh) 2022-05-31
CN110088716B (zh) 2021-03-09
CN113050824A (zh) 2021-06-29
CN110088716A (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
JP6739571B2 (ja) 周波数シフトを用いたハプティック変換システム
US20170255269A1 (en) Method, system for implementing operation of mobile terminal according to touching signal and mobile terminal
EP2227730B1 (en) Touch-sensitive device
US20170090569A1 (en) Haptic captcha
JP4633166B2 (ja) 入力装置および入力装置の制御方法
JP4633167B2 (ja) 入力装置および入力装置の制御方法
CN110134238A (zh) 按键反馈方法、装置、存储介质和电子设备
JP2010146507A (ja) 入力装置
WO2011013370A1 (ja) 入力装置および入力装置の制御方法
CN104932763A (zh) 一种带有指纹识别功能的电容触摸屏及其指纹探测方法
JP2011034150A (ja) 入力装置および入力装置の制御方法
CN110209303B (zh) 电子设备和控制方法
WO2019028724A1 (zh) 一种确定目标操作的方法、压力检测装置及终端设备
Quinn et al. Active edge: Designing squeeze gestures for the google pixel 2
WO2012001859A1 (ja) 触感呈示装置および触感呈示装置の制御方法
CN107861622A (zh) 触控反馈方法、设备、计算机可读存储介质及计算机装置
CN111512273B (zh) 提供改善的局部变形的平面设备
CN105868593A (zh) 一种终端的解锁方法和终端
CN110147176B (zh) 一种触摸屏的控制方法、装置、存储介质及电子设备
Van Duong et al. Localized fretting-vibrotactile sensations for large-area displays
CN105867809A (zh) 一种终端的控制方法及装置
Chen et al. HapTag: a compact actuator for rendering push-button tactility on soft surfaces
CN110609642A (zh) 电子设备的控制方法、装置、存储介质及电子设备
JP2011060333A (ja) 入力装置および入力装置の制御方法
Evreinov et al. One-directional position-sensitive force transducer based on EMFi

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920943

Country of ref document: EP

Kind code of ref document: A1