WO2019028695A1 - 一种定日镜方位角数字液压控制系统 - Google Patents

一种定日镜方位角数字液压控制系统 Download PDF

Info

Publication number
WO2019028695A1
WO2019028695A1 PCT/CN2017/096600 CN2017096600W WO2019028695A1 WO 2019028695 A1 WO2019028695 A1 WO 2019028695A1 CN 2017096600 W CN2017096600 W CN 2017096600W WO 2019028695 A1 WO2019028695 A1 WO 2019028695A1
Authority
WO
WIPO (PCT)
Prior art keywords
digital
hydraulic motor
heliostat
hydraulic
azimuth
Prior art date
Application number
PCT/CN2017/096600
Other languages
English (en)
French (fr)
Inventor
杨世祥
杨涛
李桂英
杨帆
赵志辉
刘延京
Original Assignee
北京亿美博科技有限公司
天津亿美博数字装备科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京亿美博科技有限公司, 天津亿美博数字装备科技有限公司 filed Critical 北京亿美博科技有限公司
Priority to PCT/CN2017/096600 priority Critical patent/WO2019028695A1/zh
Priority to CN201721018075.8U priority patent/CN207424686U/zh
Priority to CN201710696017.9A priority patent/CN107247467B/zh
Publication of WO2019028695A1 publication Critical patent/WO2019028695A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the invention relates to the field of tower photothermal power generation, in particular to a heliostat azimuth digital hydraulic control system.
  • the tower solar thermal power generation method is a solar concentrating thermal power generation technology.
  • a tall central absorption tower needs to be built on the open ground.
  • An absorber is installed on the top of the tower, and a certain number is installed around the tower.
  • the heliostats generate sunlight through the heliostats to collect the sunlight into the cavity of the receiver at the top of the tower, and then generate steam through the heat exchanger, which drives the steam engine to generate electricity.
  • Heliostat is a concentrating device consisting of a supporting structure, a tracking transmission system and a mirror. It is used to track and reflect and concentrate the sun's rays into the collector at the top of the receiving tower. It is an important part of the tower solar thermal power station. .
  • the heliostat azimuth control system is an important part of the movement and positioning of the heliostat. Its performance determines the working efficiency of the heliostat, which in turn affects the power generation efficiency of the entire tower solar thermal power generation system.
  • the invention provides a heliostat azimuth digital hydraulic control system.
  • a digital hydraulic control system for heliostat azimuth control comprising: a hydraulic auxiliary component, a hydraulic power component, a digital hydraulic motor, and a heliostat azimuth motion mechanism; the hydraulic auxiliary component ensures a digital hydraulic motor Normal operation; the hydraulic power unit provides a high pressure oil source for the digital hydraulic motor; the digital hydraulic motor is used to control the movement of the azimuth motion mechanism of the heliostat.
  • the digital hydraulic motor controls the heliostat azimuth motion mechanism to rotate the heliostat around a specified axis, control the heliostat to track, reflect the sun's rays, and concentrate the sun's rays to the target position.
  • the digital servo valve, the feedback mechanism, and the hydraulic motor are integrally integrated into the digital hydraulic motor.
  • the controller issues an instruction to the motor on the digital servo valve to open the digital servo valve, the hydraulic power component supplies high pressure oil to the digital servo valve, and the digital servo valve outputs high pressure oil to drive the The hydraulic motor moves, and the movement of the hydraulic motor drives a corresponding feedback mechanism to control the digital servo valve port to perform corresponding adjustment changes.
  • the rotational speed of the motor and the internal mechanical feedback mechanism determine the rotational speed of the hydraulic motor
  • the rotational angle of the motor and the internal mechanical feedback mechanism determine the rotational angle of the hydraulic motor
  • the digital hydraulic motor is a digitally controlled mechanical feedback servo hydraulic motor.
  • a digital hydraulic motor is used to control the azimuth motion mechanism of the heliostat, thereby controlling the heliostat to track and reflect and concentrate the solar rays to the target position.
  • the azimuth of the heliostat is fully vectorized and digitized, reducing the difficulty of debugging, shortening the debugging cycle, and reducing the cleanliness of the hydraulic oil. Requires, long-term use does not need to adjust system parameters, and achieve high positioning accuracy.
  • FIG. 1 is a schematic view of a heliostat azimuth digital hydraulic control system according to the present invention
  • FIG. 2 is a schematic view showing the working principle of a mechanical feedback servo hydraulic motor in a digital control mode.
  • the heliostat azimuth digital hydraulic control system includes a hydraulic auxiliary component 1, a hydraulic power component 2, a digital hydraulic motor 3, and an azimuth motion mechanism 4.
  • the hydraulic auxiliary component 1 ensures that the digital hydraulic motor 3 of the hydraulic system operates normally
  • the hydraulic power component 2 provides a high-pressure oil source for the digital hydraulic motor 3
  • the digital hydraulic motor 3 directly or indirectly controls the azimuth movement mechanism of the heliostat 4 , so that the heliostat rotates around the specified axis, controls the heliostat to track, reflect the sun's rays, and gather the sun's rays to the target position.
  • the digital hydraulic motor 3 integrates a digital servo valve, a feedback mechanism, a hydraulic motor, and the like into one unit. As shown in FIG. 2, when the digital control mode is used, the controller issues a command to the motor on the digital servo valve of the digital hydraulic motor 3 to open the digital servo valve of the digital hydraulic motor 3, and the hydraulic power component 2 supplies the digital hydraulic motor 3. High-pressure oil, the digital servo valve outputs high-pressure oil to drive the hydraulic motor to move. The movement of the hydraulic motor drives the corresponding feedback mechanism to control the digital servo valve port to make corresponding adjustment changes, such as the opening or direction of the valve port.
  • the feedback mechanism determines the rotational speed of the hydraulic motor, the rotation angle of the motor and the internal mechanical feedback mechanism determine the rotation angle of the hydraulic motor, and realize the control of the direction, the rotation angle, and the rotational speed of the hydraulic motor, and finally achieve a high positioning accuracy of the azimuth angle of the heliostat.
  • the heliostat azimuth digital hydraulic control system described in the present application wherein the digital hydraulic motor 3 is a digitally controlled mechanical feedback servo hydraulic motor, directly or indirectly controls the heliostat using the digital hydraulic motor 3.
  • the azimuth motion mechanism 4, the azimuth angle of the heliostat completely realizes vectorization and digitization, reduces the debugging difficulty, shortens the debugging period, reduces the requirement for the cleanliness of the hydraulic oil, does not need to adjust the system parameters for long-term use, and achieves high positioning accuracy.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

一种用于定日镜方位角控制的数字液压控制系统,所述系统包括:液压辅助元件(1)、液压动力元件(2)、数字液压马达(3)及定日镜方位角运动机构(4);所述液压辅助元件(1)保证数字液压马达(3)正常工作;所述液压动力元件(2)为数字液压马达(3)提供高压油源;所述数字液压马达(3)用于控制所述定日镜的方位角运动机构(4)的运动。在所述控制系统中,使用数字液压马达(3)控制定日镜的方位角运动机构(4),定日镜的方位角完全实现矢量化和数字化,降低调试难度、缩短调试周期,降低对液压油清洁度要求、长期使用不需调整系统参数,并实现高定位精度。

Description

一种定日镜方位角数字液压控制系统 技术领域
本发明涉及塔式光热发电领域,具体地,涉及一种定日镜方位角数字液压控制系统。
背景技术
塔式太阳能热发电方式是一种太阳能聚光热发电技术,利用这种技术发电需在空旷的地面上建立一高大的中央吸收塔,塔顶上安装固定一个吸收器,塔的周围安装一定数量的定日镜,通过定日镜将太阳光聚集到塔顶的接收器的腔体内产生高温,然后经过热交换器产生蒸汽,蒸汽推动蒸汽机发电。定日镜是由支撑结构、跟踪传动系统及反射镜组成的聚光装置,用于跟踪并反射、聚集太阳光线进入位于接收塔顶部的集热器,是塔式太阳能热发电站的重要组成部分。定日镜方位角控制系统是保证定日镜运动和定位的重要组成部分,其性能决定定日镜的工作效率,进而影响整个塔式太阳能热发电系统的发电效率。
定日镜方位角控制系统常见的控制方式有:机械控制和液压控制。机械控制方式存在布置不灵活的缺点,每个动作都需要有独立的动力源,增加了系统的复杂性和装机功率;而且不能实现系统的过载保护,元件易磨损,导致工作寿命短。液压控制通常采用液压伺服控制,而传统的液压伺服控制中,液压缸(马达)采用伺服阀进行控制,每一路都设有开环增益调整、反馈增益调整、零位调整和输入与反馈相位调整;导致伺服阀内部细小的射流孔会磨损,伺服阀存在温飘、零点漂移等不稳定因素,系统易振荡,长期使用需要调整系统参数;而且伺服系统对液压油清洁度要求极高,调试难度大、周期长。
综上所述,现有技术仍然有待改进。
发明内容
为了解决现有的定日镜跟踪传动系统布置不灵活、系统复杂、装机功率大、工作寿命短,长期使用需要调整系统参数、对液压油清洁度要求高、调试难度大、周期长等问题,本发明提供一种定日镜方位角数字液压控制系统。
一种用于定日镜方位角控制的数字液压控制系统,所述系统包括:液压辅助元件、液压动力元件、数字液压马达及定日镜方位角运动机构;所述液压辅助元件保证数字液压马达正常工作;所述液压动力元件为数字液压马达提供高压油源;所述数字液压马达用于控制所述定日镜的方位角运动机构的运动。
进一步地,所述数字液压马达控制所述定日镜方位角运动机构,使所述定日镜绕指定轴旋转,控制定日镜跟踪、反射太阳光线,并将太阳光线聚集到目标位置。
进一步地,数字伺服阀、反馈机构、液压马达整体集成为所述数字液压马达。
进一步地,控制器向所述数字伺服阀上的电机发出指令,打开所述数字伺服阀,所述液压动力元件向所述数字伺服阀提供高压油,所述数字伺服阀输出高压油以驱动所述液压马达运动,所述液压马达的运动带动相应的反馈机构控制所述数字伺服阀阀口进行相应的调节变化。
进一步地,所述电机的转动速度与内部的机械反馈机构决定所述液压马达的转速,所述电机的转动角度与内部的机械反馈机构决定所述液压马达的转角,由此实现对所述数字液压马达的方向、转角、和转速的控制,最终使定日镜方位角实现高定位精度。
进一步地,所述数字液压马达为数字控制方式的机械反馈式伺服液压马达。
本发明中,使用数字液压马达控制定日镜的方位角运动机构,从而控制定日镜跟踪并反射、聚集太阳光线到目标位置。定日镜的方位角完全实现矢量化和数字化,降低调试难度、缩短调试周期,降低对液压油清洁度 要求、长期使用不需调整系统参数,并实现高定位精度。
附图说明
图1是本发明所述的定日镜方位角数字液压控制系统的示意图;
图2是数字控制方式的机械反馈式伺服液压马达的工作原理示意图。
图中:
1-液压辅助元件
2-液压动力元件
3-数字液压马达
4-方位角运动机构
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
如图1所示,示出了本发明的定日镜方位角数字液压控制系统的示意图。所述定日镜方位角数字液压控制系统包括液压辅助元件1、液压动力元件2、数字液压马达3及方位角运动机构4。其中,液压辅助元件1保证液压系统的数字液压马达3正常工作,液压动力元件2为所述数字液压马达3提供高压油源,数字液压马达3直接或间接控制定日镜的方位角运动机构4,使定日镜绕指定轴旋转,控制定日镜跟踪、反射太阳光线,并将太阳光线聚集到目标位置。
数字液压马达3将数字伺服阀、反馈机构、液压马达等集成为一个整体。如图2所示,使用数字控制方式时,由控制器向数字液压马达3的数字伺服阀上的电机发出指令,打开数字液压马达3的数字伺服阀,液压动力元件2向数字液压马达3提供高压油,数字伺服阀输出高压油驱动液压马达运动,液压马达的运动带动相应的反馈机构控制数字伺服阀阀口进行相应的调节变化,如阀口的开度或方向等。电机的转动速度与内部的机械 反馈机构决定液压马达的转速,电机的转动角度与内部的机械反馈机构决定液压马达的转角,实现对液压马达的方向、转角、和转速的控制,最终使定日镜方位角实现高定位精度。
如上所述,本申请所述的定日镜方位角数字液压控制系统,其中的数字液压马达3是数字控制方式的机械反馈式伺服液压马达,使用数字液压马达3直接或间接控制定日镜的方位角运动机构4,定日镜的方位角完全实现矢量化和数字化,降低调试难度、缩短调试周期,降低对液压油清洁度要求、长期使用不需调整系统参数,并实现高定位精度。
以上实施例仅表达了本发明的实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (6)

  1. 一种用于定日镜方位角控制的数字液压控制系统,其特征在于,所述系统包括:液压辅助元件、液压动力元件、数字液压马达及定日镜方位角运动机构;
    所述液压辅助元件保证所述数字液压马达正常工作;
    所述液压动力元件为所述数字液压马达提供高压油源;
    所述数字液压马达用于控制所述定日镜的方位角运动机构的运动。
  2. 根据权利要求1所述的系统,其特征在于,所述数字液压马达控制所述定日镜方位角运动机构,使所述定日镜绕指定轴旋转,控制定日镜跟踪、反射太阳光线,并将太阳光线聚集到目标位置。
  3. 根据权利要求1所述的系统,其特征在于,数字伺服阀、反馈机构、液压马达整体集成为所述数字液压马达。
  4. 根据权利要求3所述的系统,其特征在于,控制器向所述数字伺服阀上的电机发出指令,打开所述数字伺服阀,所述液压动力元件向所述数字伺服阀提供高压油,所述数字伺服阀输出高压油以驱动所述液压马达运动,所述液压马达的运动带动相应的反馈机构控制所述数字伺服阀阀口进行相应的调节变化。
  5. 根据权利要求4所述的系统,其特征在于,所述电机的转动速度与内部的机械反馈机构决定所述液压马达的转速,所述电机的转动角度与内部的机械反馈机构决定所述液压马达的转角,由此实现对所述数字液压马达的方向、转角、和转速的控制,最终使定日镜方位角实现高定位精度。
  6. 根据上述任一权利要求所述的系统,其特征在于,所述数字液压马达是数字控制方式的机械反馈式伺服液压马达。
PCT/CN2017/096600 2017-08-09 2017-08-09 一种定日镜方位角数字液压控制系统 WO2019028695A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2017/096600 WO2019028695A1 (zh) 2017-08-09 2017-08-09 一种定日镜方位角数字液压控制系统
CN201721018075.8U CN207424686U (zh) 2017-08-09 2017-08-15 一种定日镜方位角数字液压控制系统
CN201710696017.9A CN107247467B (zh) 2017-08-09 2017-08-15 一种定日镜方位角数字液压控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/096600 WO2019028695A1 (zh) 2017-08-09 2017-08-09 一种定日镜方位角数字液压控制系统

Publications (1)

Publication Number Publication Date
WO2019028695A1 true WO2019028695A1 (zh) 2019-02-14

Family

ID=60013233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096600 WO2019028695A1 (zh) 2017-08-09 2017-08-09 一种定日镜方位角数字液压控制系统

Country Status (2)

Country Link
CN (2) CN207424686U (zh)
WO (1) WO2019028695A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107387478A (zh) * 2017-09-06 2017-11-24 北京亿美博科技有限公司 一种高精度数字液压马达
CN107957737A (zh) * 2017-12-16 2018-04-24 洛阳斯特林智能传动科技有限公司 回转式液压驱动装置、定日镜及塔式光热发电系统
CN108661989A (zh) * 2018-07-25 2018-10-16 北京亿美博科技有限公司 一种实现螺旋输送机转速精准控制的数字液压系统
CN108843658A (zh) * 2018-09-12 2018-11-20 北京亿美博科技有限公司 一种旋转机构的数字液压控制系统、旋转系统及机械设备
CN109436264B (zh) * 2018-12-05 2023-08-01 燕山大学 一种仿生鱼尾电液推进装置
CN110206786A (zh) * 2019-06-03 2019-09-06 徽瑞智能装备(黄山)有限责任公司 一种阻尼可调的液压马达的执行器
CN113587457B (zh) * 2021-07-29 2022-10-21 中建三局第二建设工程有限责任公司 一种用于光热电站定日镜的大规模数字化安装施工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101509473A (zh) * 2009-03-20 2009-08-19 哈尔滨工业大学 用于太阳能热发电系统的定日镜上的闭式液压传动装置
CN102607202A (zh) * 2012-04-10 2012-07-25 中国航天科技集团公司烽火机械厂 一种槽式太阳能集热跟踪驱动设备和系统
WO2013108245A1 (en) * 2012-01-22 2013-07-25 Heliofocus Ltd. Solar concentrating systems
US20150096436A1 (en) * 2013-10-04 2015-04-09 John D. Venables AC Servo Motor Hydraulic Units For Ship Motion Control
CN106949106A (zh) * 2017-05-04 2017-07-14 天津欧陆重工机械制造有限公司 一种塔式太阳能热发电定日镜方位角转动静压支撑系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101614444B (zh) * 2008-06-23 2010-11-10 中国华电工程(集团)有限公司 塔式太阳能热发电中定日镜自动跟踪太阳轨迹的控制方法
CN201397476Y (zh) * 2009-04-08 2010-02-03 皇明太阳能集团有限公司 一种定日镜自动控制系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101509473A (zh) * 2009-03-20 2009-08-19 哈尔滨工业大学 用于太阳能热发电系统的定日镜上的闭式液压传动装置
WO2013108245A1 (en) * 2012-01-22 2013-07-25 Heliofocus Ltd. Solar concentrating systems
CN102607202A (zh) * 2012-04-10 2012-07-25 中国航天科技集团公司烽火机械厂 一种槽式太阳能集热跟踪驱动设备和系统
US20150096436A1 (en) * 2013-10-04 2015-04-09 John D. Venables AC Servo Motor Hydraulic Units For Ship Motion Control
CN106949106A (zh) * 2017-05-04 2017-07-14 天津欧陆重工机械制造有限公司 一种塔式太阳能热发电定日镜方位角转动静压支撑系统

Also Published As

Publication number Publication date
CN207424686U (zh) 2018-05-29
CN107247467B (zh) 2023-07-21
CN107247467A (zh) 2017-10-13

Similar Documents

Publication Publication Date Title
WO2019028695A1 (zh) 一种定日镜方位角数字液压控制系统
US11949368B2 (en) Solar tracker system
CN108474395B (zh) 间隙减小装置和具有间隙减小结构的定日镜
CN102393750A (zh) 利用温度变化自动跟踪太阳能的方法
ES2171082T3 (es) Instalacion termohidraulica de seguimiento solar.
US10871309B2 (en) Azimuthal and elevation rotation mechanism for a solar tracker
WO2019028696A1 (zh) 一种光热发电反射镜数字液压控制系统
CN103335418B (zh) 一种可变镜面积槽式太阳能集热器
CN107763862B (zh) V型调姿定日镜
CN108224815B (zh) 基于网络的槽式太阳能控制系统及控制方法
KR101612426B1 (ko) 반사경이 구비된 고정형 태양광 발전기
KR20180056073A (ko) 헬리오스타트 필드의 실시간 운전 중 자동 보정 시스템
CN108181933B (zh) 槽式太阳能系统跟踪控制方法
Xu et al. A novel solar tracker driven by waves: From idea to implementation
CN106802673B (zh) 一种碟式Stirling太阳能碟面立柱几何校准方法
Jani et al. Linkage Synthesis for Solar Tracking
CN103309012B (zh) 可变焦菲涅尔透镜聚焦器
CN203324560U (zh) 可变焦菲涅尔透镜聚焦器
RU2661169C1 (ru) Многозеркальная гелиоустановка с общим приводом системы ориентации
CN204406218U (zh) 光伏发电双轴追日装置
Ning et al. Design of the solar automatic tracker of polar axis type
CN104932551B (zh) 一种定日镜远轴控制方法及定日镜远轴控制装置
Kribus Toward large-scale solar energy systems with peak concentrations of 20,000 suns
CN111351231A (zh) 一种可控得热量槽式聚光集热系统
CN103955230A (zh) 聚光功率调节装置和太阳能发电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920908

Country of ref document: EP

Kind code of ref document: A1