WO2019028693A1 - 具有多个航行自由度的水下机器人 - Google Patents

具有多个航行自由度的水下机器人 Download PDF

Info

Publication number
WO2019028693A1
WO2019028693A1 PCT/CN2017/096588 CN2017096588W WO2019028693A1 WO 2019028693 A1 WO2019028693 A1 WO 2019028693A1 CN 2017096588 W CN2017096588 W CN 2017096588W WO 2019028693 A1 WO2019028693 A1 WO 2019028693A1
Authority
WO
WIPO (PCT)
Prior art keywords
main cabin
underwater robot
disposed
waterproof
freedom according
Prior art date
Application number
PCT/CN2017/096588
Other languages
English (en)
French (fr)
Inventor
何伟
郭同腾
Original Assignee
深圳微孚智能信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳微孚智能信息科技有限公司 filed Critical 深圳微孚智能信息科技有限公司
Priority to PCT/CN2017/096588 priority Critical patent/WO2019028693A1/zh
Priority to CN201780000792.4A priority patent/CN107690406B/zh
Publication of WO2019028693A1 publication Critical patent/WO2019028693A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/52Tools specially adapted for working underwater, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/08Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/10Casings or enclosures characterised by the shape, form or construction thereof with arrangements for protection from ingress, e.g. water or fingers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans

Definitions

  • the present invention relates to an underwater robot having multiple navigation degrees of freedom
  • the traditional underwater robot adopts a modular design scheme, which requires a good sealing performance for each unit device, so that a lot of work needs to be done on the seal.
  • it is necessary to use expensive watertight connectors, which increases the cost of the equipment; in addition, the reliability of the connection of these modules is difficult to ensure, which reduces the reliability of the equipment.
  • An object of the present invention is to provide an underwater robot to solve the technical problem of complicated waterproof structure and poor operational reliability existing in the prior art.
  • the technical solution adopted by the present invention is: providing an underwater robot having a plurality of navigation degrees of freedom, comprising a main cabin having a sealed compartment and a plurality of propellers;
  • the propellers each include a propeller device and a waterproof rotating electric machine that rotates the propeller device, the waterproof rotating electric machine is coupled to the main cabin and one end is placed in the sealed compartment, the waterproof rotating electric machine and the main A first sealing member is disposed between the cabins.
  • the number of the propellers is six, and the six propellers are two vertical propellers, two front end horizontal propellers and two rear end horizontal propellers;
  • the propellers are respectively disposed at two sides of the middle portion of the main cabin body, and two front end horizontal thrusters are respectively disposed at two sides of one end portion of the main cabin body, and two rear end horizontal thrusters are respectively disposed at the main body
  • the other end of the cabin is on both sides.
  • the surface of the main cabin has transverse and longitudinal directions perpendicular to each other; two vertical thrusters are located on the transverse center line and are axially symmetric along the longitudinal center line; The front end horizontal thrusters are axially symmetrically disposed along the longitudinal center line, and the two rear end horizontal thrusters are axially symmetrically disposed along the longitudinal center line, and each of the front end horizontal thrusters is adjacent to each other.
  • Backend horizontal push The feeders are arranged in an axisymmetric direction along the transverse center line.
  • each of the propeller devices includes a bracket, a propeller shaft rotatably mounted on the bracket, a blade fixed to the propeller shaft, and a coupling between the propeller shaft and the waterproof rotation
  • the propeller shaft axes of the end horizontal thrusters are arranged orthogonally.
  • the transmission assembly includes a first gear fixed to the waterproof rotary electric machine and a second gear meshed with the first gear, and the second gear is fixed to the propeller shaft.
  • first gear and the second gear are both bevel gears, and an axis of the first gear is disposed perpendicular to an axis of the second gear.
  • the waterproof rotating electrical machine includes:
  • a waterproof casing comprising an annular base portion, a cylindrical portion extending from an inner side of the annular base portion in an axial direction of the annular base portion, and a distance away from the cylindrical portion The bottom of one end of the toroidal base;
  • the motor casing is sleeved on the outer side of the cylindrical portion, and an accommodation space is formed between the inner wall of the motor casing and the outer wall of the cylindrical portion;
  • a rotating shaft is fixed to the rotor, and an end of the rotating shaft is extended to the outside of the waterproof casing.
  • the underwater robot further includes a first bearing and a second bearing, and the rotating shaft is rotatably mounted on the waterproof casing through the first bearing and the second bearing.
  • a rotor fixing member is connected to the annular base, and the rotor fixing member has a shaft through hole through which an end portion of the rotating shaft passes.
  • a bottom surface of the rotor fixing member facing the waterproof casing is formed with a first mounting groove, and the first bearing is disposed in the first mounting groove;
  • a second mounting groove is formed, and the second bearing is disposed in the second mounting groove.
  • the rotor fixing member is fixedly connected to the annular base portion by a fastener.
  • the annular base portion includes a first annular portion and a second annular portion extending radially outward from the first annular portion, and a surface of the first annular portion is formed with a receiving groove, Rotor fixture Placed in the accommodating groove.
  • the motor casing includes a cylindrical sleeve portion and a cover portion connected to one end of the sleeve portion.
  • the cover portion is provided with a wire exit hole.
  • the underwater robot further includes a through-wall connector connected to the main cabin, and a second sealing member is disposed between the through-wall connector and the main cabin;
  • the through-wall connector comprises: [0024] a connector housing having a cavity with two ends;
  • an isolation substrate disposed in the cavity and dividing the cavity into a first cavity and a second cavity;
  • at least one electrode pin is disposed through the isolation substrate, The electrode pin has a first end for soldering to an electric wire and a second end for soldering to another wire and opposite to the first end;
  • a first filling body for filling a solder joint in the first cavity and covering at least the first end;
  • a second filling body for filling in the second cavity and at least Covering the solder joints of the second end.
  • the underwater robot further includes a light transmitting member; the main cabin body is provided with a through hole communicating with the sealing chamber, and the light transmitting member is connected to the outside of the main cabin and closed
  • the through hole is provided with a third sealing member between the light transmitting member and the main cabin.
  • the underwater robot further includes a water depth detecting device, and the water depth detecting device is disposed on the main cabin.
  • the water depth detecting device includes a mounting bracket and a water depth detecting chip fixed on the mounting bracket, and a fourth sealing member is disposed between the mounting bracket and the main cabin.
  • the underwater robot further includes a connector connector, the connector connector is connected to the main cabin body and one end is placed in the sealed cabin, the connector connector and the main cabin A fifth sealing member is disposed between the bodies.
  • the main cabin includes an upper cover, a middle cover and a lower cover that are sequentially connected, and the upper cover, the middle cover and the lower cover are enclosed to form the sealed compartment.
  • a sixth sealing member is disposed between the upper cover and the middle casing, and the middle casing and the lower cover are provided with a seventh sealing member.
  • the underwater robot provided by the present invention uses multiple propellers, and is waterproof and rotating.
  • a first sealing member is disposed between the machine and the main cabin body, so that a plurality of movement directions are provided, the waterproof structure is simplified, the waterproof performance and work reliability of the main cabin body are improved, and the production cost is reduced.
  • FIG. 1 is a perspective view of an underwater robot according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of an underwater robot according to an embodiment of the present invention.
  • FIG. 3 is a schematic perspective view of the underwater robot omitting the propeller device according to an embodiment of the present invention
  • FIG. 4 is an exploded perspective view of the underwater robot omitting the propeller device according to an embodiment of the present invention
  • FIG. 5 is a cross-sectional view of the underwater robot omitting the propeller device according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a waterproof rotary electric machine according to an embodiment of the present invention.
  • FIG. 7 is a front elevational view showing a waterproof rotary electric machine according to an embodiment of the present invention.
  • FIG. 8 is a rear view of a waterproof rotary electric machine according to an embodiment of the present invention.
  • FIG. 9 is a perspective view of a propeller according to an embodiment of the present invention.
  • FIG. 10 is an exploded perspective view of a propeller provided by an embodiment of the present invention.
  • FIG. 11 is a perspective view of a through-wall connector according to an embodiment of the present invention.
  • FIG. 12 is a cross-sectional view showing the connection between the through-wall connector and the main cabin body according to an embodiment of the present invention.
  • FIGS. 1 and 2 a preferred embodiment of the present invention is provided.
  • the underwater robot 100 having a plurality of navigation degrees of freedom provided by the embodiment includes a main cabin 10 having a capsule 10a and a plurality of propellers 300; each of the propellers 300 includes a propeller device 40 and The waterproof rotary electric machine 30 in which the propeller device 40 rotates, the waterproof rotary electric machine 30 is connected to the main cabin 10 and one end is placed in the sealed compartment 10a, and a first sealing member 39 is disposed between the waterproof rotary electric machine 30 and the main cabin 10.
  • the above-described underwater robot 100 having a plurality of navigation degrees of freedom employs a plurality of thrusters 300, and a first sealing member 39 is disposed between the waterproof rotating electrical machine 30 and the main cabin 10, thus having a plurality of motions
  • the direction simplifies the waterproof structure, improves the waterproof performance and work reliability of the main cabin 10, and reduces the production cost.
  • the underwater robot 100 of the present embodiment employs six propellers 300, and the six propellers 300 are two vertical propellers 301 and two front end horizontal propellers 302, respectively. And two rear end horizontal thrusters 303; two vertical thrusters 301 are respectively disposed at two sides of the central portion of the main cabin body 10, and two front end horizontal thrusters 302 are respectively disposed at two sides of one end portion of the main cabin body 10, Two rear end horizontal thrusters 30 3 are respectively disposed on both sides of the other end portion of the main cabin body 10. It is worth mentioning that the six thrusters 300 can achieve five degrees of freedom, including the direction of motion of the front and rear, up and down, left and right, yaw and roll.
  • the surface of the main cabin 10 has mutually perpendicular lateral directions (D1 direction in the drawing, hereinafter collectively referred to as the first direction D1) and longitudinal direction (D2 direction in the illustration).
  • the second direction D2) is collectively referred to as the second direction D2);
  • the two vertical thrusters 301 are located on the center line of the first direction D1 and are arranged in axisymmetric direction along the center line of the second direction D2;
  • the two front end horizontal thrusters 302 are along the second direction D2
  • the center line is axially symmetrically disposed, and the two rear end horizontal thrusters 303 are axially symmetrically disposed along the center line of the second direction D2, and each of the front end horizontal thrusters 302 and the adjacent rear end horizontal thrusters 303 are along the first
  • the center line of the direction D1 is arranged in an axisymmetric manner.
  • each of the propeller devices 40 includes a bracket 41, a propeller shaft 42 rotatably mounted on the bracket 41, a blade 43 fixed to the propeller shaft 42, and a propeller shaft 42 and a waterproof rotating electric machine 30.
  • the axis of the paddle shaft 42 is disposed orthogonal to the axis of the propeller shaft 42 of the adjacent rear end horizontal thruster 303.
  • the blade 43 connected to the propeller shaft 42 rotates, the liquid flows at a high speed in the axial direction of the propeller shaft 42, and the blade 43 of the vertical thruster 301 rotates to cause the liquid to flow upward to push the underwater robot 100 to descend.
  • the blade 43 of the vertical pusher 301 stops rotating, the underwater robot 100 is lifted by the buoyancy module mounted thereon, thereby moving up and down; the blades 43 of the front and rear horizontal thrusters 302, 303 are rotated, and then pushed The movement of the underwater machine before, after, up and down, left and right, yaw and roll.
  • the main cabin 10 includes an upper cover 11, a middle casing 12 and a lower cover 13, and the upper cover 11, the middle casing 12 and the lower cover 13 may be made of aluminum alloy or have a certain hardness.
  • the resin material is integrally formed, or may be made separately, and the outer side of the main cabin 10 may be equipped with a buoyancy module made of a solid buoyant material.
  • the main cabin 10 is sequentially connected by the upper cover 11, the middle casing 12 and the lower cover 13, and the upper cover 11 and the lower cover 13 are respectively mounted on the middle casing 12 by fasteners such as screws. And connected to the middle shell 12 fixed.
  • the main body 10 upper cover 11, the middle casing 12 and the lower cover 13 are enclosed to form a capsule 10a, and a sixth sealing member 102 is disposed between the upper cover 11 and the middle casing 12, and the middle casing 12 and the lower cover 13 is provided with a seventh sealing member 103, which is, but not limited to, a sealing ring or a gasket made of an epoxy material.
  • the upper cover 11 and the lower cover 13 are respectively provided with a hole portion 104, and the hole portion 104 is inserted through the cover plates 11 and 13 along the thickness of the cover plate, and correspondingly, the upper and lower sides of the middle case 12 are respectively disposed.
  • the screw holes 105 corresponding to the hole portions 104 are sequentially passed through the hole portions 104 and the screw holes 105 by fasteners such as screws to fix the upper cover plate 11 and the lower cover plate 13 to the upper and lower sides of the middle case 12, respectively.
  • a motor mounting hole 106 is disposed on the side wall of the middle case 12, and the waterproof rotary motor 30 is coupled to the middle case 12 of the main cabin 10, and one end of the waterproof rotary motor 30 is placed in the seal chamber 10a via the motor mounting hole 106.
  • the upper cover 11 and the lower cover 13 are respectively provided with connector mounting holes 107, and the connector mounting holes 107 are penetrated through the cover plates 11 and 13 along the thickness of the cover plate, and the through-wall connectors 20 are connected to the main cabin 10.
  • Upper cover 11 and lower cover 13 are provided.
  • the main compartment body 10 is provided with a through hole 10b communicating with the sealing chamber 10a.
  • the light transmitting member 50 is connected to the outside of the main cabin 10 and closes the through hole 10b, and the light transmitting member 50 and the main compartment.
  • a third sealing member 101 is disposed between the bodies 10.
  • the through hole 10b is located on the front side (the right side of the drawing) of the middle case 12, and an imaging module (not shown) is mounted in the through hole 10b.
  • the transparent member 50 is, but not limited to, transparent. Made of PC material, the light transmissive member 50 is fixed on the middle casing 12 by screws 51 and closes the through hole 10b, and adopts a third seal.
  • the member 101 seals the gap between the light transmitting member 50 and the middle casing 12 to prevent water from flowing into the sealing chamber 10a.
  • the third sealing member 101 is, but not limited to, a sealing ring or a gasket made of an epoxy material.
  • a lens decorative cover 52 may be sleeved.
  • the water depth detecting device 60 is for detecting the depth of penetration of the main cabin 10 in the water, and the water depth detecting device 60 is disposed on the main cabin 10.
  • the water depth detecting device 60 is, but not limited to, a pressure sensor device.
  • the water depth detecting device 60 includes a mounting bracket 61 and a water depth detecting chip 62 fixed to the mounting bracket 61.
  • a fourth sealing member 108 is disposed between the mounting bracket 61 and the main cabin 10.
  • the fourth sealing member 108 is but not limited to a ring.
  • the mounting bracket 61 is removably coupled to the main cabin 10, and the mounting bracket 61 includes a bearing portion 611 and a connecting portion 612 connected to the carrying portion 611.
  • the carrying portion 611 has a circular cross section
  • the connecting portion 612 is a cylindrical shape having an outer diameter smaller than the outer diameter of the bearing portion 611.
  • the water depth detecting chip 62 is fixed in the carrying portion 611.
  • the outer wall of the connecting portion 612 is formed with a threaded portion, and the outer end of the connecting portion 612 is placed in the sealing chamber 10a. Internally, a nut that is threadedly engaged with the threaded portion of the connecting portion 612 is fixed to the inner wall of the seal chamber 10a.
  • a connector connector 70 is connected to the main cabin 10 and one end is placed in the capsule 10a.
  • a fifth seal is provided between the connector connector 70 and the main cabin 10.
  • the member 109 and the fifth sealing member 109 are, but not limited to, a seal ring or a gasket made of an epoxy resin material.
  • the waterproof rotary electric machine 30 of the present embodiment is of an inner rotor type, including a waterproof casing 31, a motor casing 32, an annular stator 33, a rotor 34, and a rotating shaft 35, and a rotor 34 and a stator 33.
  • the three-phase line is independent, the water does not come into contact with the stator 33 and the three-phase line, and the waterproof effect is good.
  • the waterproof case 31 may be integrally formed of an aluminum alloy or a resin material having good thermal conductivity, and includes an annular base portion 311, a cylindrical portion 312, and a bottom portion 313, and a cylindrical portion 312. Extending from the inner side of the toroidal base portion 3 11 in the axial direction of the toroidal base portion 311, the bottom portion 313 extends radially inward from the end of the cylindrical portion 312 away from the toroidal base portion 311, and closes the cylindrical portion 312 The end.
  • the waterproof casing 31 is formed by, but not limited to, an epoxy resin.
  • the waterproof casing 31 has an inner cavity 31a whose one end is closed and whose other end is closed.
  • the rotor 34 is supported in the inner cavity 31a, and the stator 33 is disposed.
  • the annular base portion 311 includes a first annular portion 3111 and a second annular portion 3112 extending radially outward from the first annular portion 3111, the waterproof casing 31 Removably mounted on the main cabin 10, the first annular portion 3111, the cylindrical portion 312 of the waterproof casing 31 and the bottom portion 313 are inserted into the sealed compartment 10a of the main cabin 10, and the annular casing base of the waterproof casing 31
  • the second annular portion 3112 of the 311 is external to the outside of the main cabin 10.
  • the motor housing 32 is sleeved outside the cylindrical portion 312, and an accommodation space 30a is formed between the inner wall of the motor housing 32 and the outer wall of the cylindrical portion 312.
  • the motor casing 32 may be made of an aluminum alloy or a resin material having good thermal conductivity, and the motor casing 32 includes a cylindrical sleeve portion 321 and a cover portion 322 connected to the sleeve portion 321 - the end portion, the sleeve portion 321 and the cover portion 322 It can be made in one piece or in separate parts.
  • the inner diameter of the sleeve portion 321 is matched with the outer diameter of the first annular portion 3111 and the size of the cover portion 322, and one end of the sleeve portion 321 is sleeved outside the first annular portion 3111, and One end is sleeved on the cover portion 322.
  • the annular stator 33 is fixed in the accommodating space 30a, and the stator 33 is disposed coaxially with the cylindrical portion 312.
  • the stator 33 includes a stator core 331 and a coil (not shown).
  • the stator core 331 has a plurality of teeth.
  • the coil is wound around the tooth portion, and the stator core 331 is fixed to the sleeve portion 321 .
  • the inner peripheral surface is provided.
  • the rotor 34 is rotatably mounted in the cylindrical portion 312, the rotor 34 is disposed coaxially with the stator 33, and the rotor 34 is positioned at a predetermined gap between the stator 33 and the stator 33. Facing the stator 3 3 in the direction, the stator 33 generates an attractive force and a repulsive force upon energization, and drives the rotor 34 to rotate.
  • the rotary shaft 35 is fixed to the rotor 34, and the end of the rotary shaft 35 extends outward and protrudes from the watertight casing 31.
  • the rotating shaft 35 is rotatably mounted on the waterproof casing 31 via the first bearing 36 and the second bearing 37, and the first bearing 36 and the second bearing 37 are, but not limited to, graphite bearings.
  • the inner ring of the bearing rotates with the supported rotating shaft 35 and the outer ring of the bearing is fixed.
  • a toroidal base 311 is connected to a rotor fixing member 38 having a shaft through hole 381 through which the end of the rotating shaft 35 passes.
  • the rotor fixing member 38 has a substantially annular plate shape, and the shaft through hole 381 has a circular cross section.
  • the rotor fixing member 38 can fix the rotor 34 to the waterproof casing 31 to protect the rotor 34. It can be understood that, in order to replace the rotor 34, only the rotor fixing member 38 can be removed, and the rotor 34 can be taken out and replaced with a new rotor 34, and the rotor 34 can be easily replaced.
  • the surface of the first annular portion 3111 is formed with a receiving groove 3113, and the rotor fixing member 38 is disposed in the receiving groove 3113.
  • the groove depth of the receiving groove 3113 With the rotor fixture 38 The thickness is the same, and after the rotor fixture 38 is mounted on the waterproof casing 31, the outer surface of the rotor fixture 38 is flush with the outer surface of the waterproof casing 31.
  • the shape of the accommodating groove 3113 is matched with the shape of the rotor fixing member 38.
  • the accommodating groove 3113 positions the rotor fixing member 38 to ensure the shaft through hole 381 and the rotation.
  • the shaft 35 is coaxial.
  • the rotor fixture 38 is directly mounted on the outer side surface of the first annular portion 3111.
  • the rotor fixing member 38 is fixedly coupled to the annular base portion 311 by fasteners (not shown) such as screws, and the rotor fixing member 38 is provided with a plurality of upper portions.
  • the first fixing hole 382 surrounds the outer circumference of the shaft through hole 381 and is spaced apart from each other.
  • the first fixing hole 382 extends in the axial direction of the annular base portion 311 and penetrates both side surfaces of the rotor fixing member 38. .
  • the bottom surface of the receiving groove 31 13 of the first annular portion 3111 is formed with a second fixing hole 3114 corresponding to the first fixing hole 382.
  • the second fixing hole 3114 extends in the axial direction of the annular base portion 311, and is sequentially inserted through the fastener. After the first fixing hole 382 and the corresponding second fixing hole 3114, the rotor fixing member 38 is held in the annular base portion 311 of the waterproof casing 31.
  • the second annular portion 3112 is provided with a plurality of third fixing holes 3115 extending in the axial direction of the annular base portion 311 and extending through the second annular portion 3112. Both side surfaces of the second annular portion 3112 are inserted into the third fixing holes 3115 by fasteners to hold the waterproof casing 31 on the main cabin 10.
  • the bottom surface 313 of the rotor fixing member 38 facing the waterproof casing 31 is formed with a first mounting groove 383, and the first bearing 36 is disposed in the first mounting groove 383; the bottom portion 313 is formed with The second mounting groove 31 31, the second bearing 37 is disposed in the second mounting groove 3131.
  • the inner side surface of the rotor fixture 38 is formed with a first mounting groove 383, the first mounting groove 383 is located at the center of the side surface, and the first mounting groove 383 is in communication with the shaft through hole 381, the first bearing
  • the inner ring of 36 rotates with the supported rotating shaft 35, and the outer ring of the first bearing 36 is fixed to the inner wall of the first mounting groove 383; the inner ring of the second bearing 37 rotates with the supported rotating shaft 35, and the outer portion of the second bearing 37
  • the ring is fixed to the inner wall of the second mounting groove 3131.
  • one side surface of the toroidal base portion 311 near the bottom portion 313 is provided with an annular fixing groove 3116, and the first sealing member 39 is disposed in the annular fixing groove 3116.
  • the annular fixing groove 3116 is located inside the third fixing hole 3115, and the groove depth of the annular fixing groove 3116 is smaller than the sectional size of the first sealing member 39.
  • the first sealing member 39 is, but not limited to, a sealing ring or a gasket made of an epoxy material.
  • the cover portion 322 is provided with a wire opening hole 3223. The three-phase line in the waterproof rotary electric machine 30 can be led out from the outlet hole 3223 of the cover portion 322.
  • the outlet hole 3223 may also be on the sleeve portion 321.
  • any existing fixing means such as a snap, a screw, or the like can be used for connection and fixing.
  • the sleeve portion 321 and the water-proof casing 31 and between the sleeve portion 321 and the lid portion 322 are connected and fixed by an adhesive (not shown).
  • a first plastic storage tank 3117 is disposed on the outer side wall of the first annular portion 3111 of the waterproof casing 31, and a second plastic storage tank 3221 is disposed on the outer side wall of the cover portion 322.
  • the adhesive colloid is injected into the first plastic storage tank 3117 and the second plastic storage tank 3221 to connect and fix the sleeve portion 321 and the waterproof casing 31 and between the sleeve portion 321 and the lid portion 322.
  • a side surface of the cover portion 322 facing the annular base portion 311 is provided with a positioning groove 3222 into which the bottom portion 313 of the waterproof case 31 is placed.
  • the closed end of the waterproof casing 31 can be positioned and fixed by the cooperation of the positioning groove 32 22 and the bottom portion 313 of the waterproof casing 31, thereby the waterproof casing 31 and the motor.
  • the position between the outer casings 32 is maintained to improve structural stability.
  • the propeller device 40 includes a bracket 41, a propeller shaft 42 rotatably mounted on the bracket 41, a blade 43 fixed to the propeller shaft 42, and a connection between the propeller shaft 42 and the rotating shaft 35.
  • the blade 43 is, but not limited to, an aluminum alloy material.
  • the bracket 41 includes a flat plate portion 411 for fixing to the main cabin 10 and a support arm portion 412 protruding from the side of the flat plate portion 411.
  • the support arm The number of the portions 412 is not limited to two, and the flat plate portion 411 is provided with a through hole 4111 through which the end portion of the rotary shaft 35 is passed between the two support arm portions 412.
  • the propeller shaft 42 is rotatably mounted on the bracket 41 via a third bearing 45 and a fourth bearing 46, and the third bearing 45 and the fourth bearing 46 are mounted on the two support arms 412, the third bearing 45 and the fourth bearing, respectively.
  • 46 is, but not limited to, stainless steel ball bearings.
  • the vane 43 is mounted on the propeller shaft 42 in a manner that is non-rotatable relative to the propeller shaft 42, and the tightening nut 47 is screwed onto the propeller shaft 42 to retain the vane 43 on the propeller shaft.
  • the other end of the propeller shaft 42 opposite to the end to which the fastening nut 47 is attached is sleeved with a shaft spring 48.
  • the transmission assembly 44 includes a first gear 441 fixed to the rotating shaft 35 and a second gear 442 meshing with the first gear 441, and the second gear 442 is fixed to the propeller shaft 42.
  • the first gear 441 and the second gear 442 are both bevel gears, and the axis of the rotating shaft 35 is perpendicular to the axis of the propeller shaft 42. Straight set.
  • the through-wall connector 20 of the present embodiment includes a connector housing 21, an isolation substrate 22, an electrode pin 23, a first filler body 24, and a second filler body 25.
  • the connector housing 21 may be made of aluminum or an aluminum alloy, and has a cavity 211 having two ends, the above-mentioned isolation substrate 22, electrode pins 23, first filler body 24, and The second filling body 25 is disposed in the cavity 211.
  • the connector housing 21 is made of an aluminum alloy material, and the material is preferably 6061 aluminum alloy.
  • the connector housing 21 includes an upper portion 212 connected to each other.
  • the connector housing 21 is fixedly connected to the upper cover 11 and the lower cover 13 of the main cabin 10 through the lower portion 213, and the bottom end of the lower portion 213 extends into the capsule 10a of the main cabin 10, and the upper portion 212 has A contact sealing surface 2121 for sealing against the outer wall of the main body 10, the contact sealing surface 2121 surrounding the outer periphery of the lower portion 213.
  • the upper portion 212 includes a circular main body portion 2122 and a polygonal twisting portion 2123.
  • the twisting portion 2123 extends radially outward from one end of the main body portion 2122, and the shape of the twisting portion 2123 is but not limited. In the shape of a hexagon, it is convenient to disassemble the through-wall connector 20 by a tool such as a wrench.
  • the lower portion 213 is, but not limited to, a circular ring shape, and the outer wall of the lower portion 213 is formed with a threaded portion 2131 which is screwed to the main body 10 to be fixed.
  • an aluminum oxide film (not shown) is coated on the surface of the connector housing 21, that is, the connector housing 21 is anodized, and the aluminum or aluminum alloy is used as an anode. It is placed in an electrolyte solution for electrification treatment, and an aluminum oxide film is formed on the surface by electrolysis. Thus, the grease is cleaned to prevent falling off, and the corrosion resistance and wear resistance of the connector housing 21 are significantly improved and improved. .
  • the isolation substrate 22 which may be a circuit board, is substantially circular, disposed in the cavity 211 and partitioning the cavity 211 into a first cavity 211a and a second cavity 211b,
  • the isolation substrate 22 is, but not limited to, a circuit board.
  • the isolation substrate 22 is used for mounting and fixing the electrode pins 23.
  • the inner wall of the upper portion 212 is convexly provided with a limiting portion 2124 for supporting the isolation substrate 22, and is isolated.
  • the substrate 22 is fixed to the stopper portion 2124 of the upper portion 212, and divides the cavity 211 into a first cavity 211a and a second cavity 211b.
  • the isolation substrate 22 is fixed on the limiting portion 2124 by an adhesive (not shown).
  • the adhesive is preferably a metal glue, and the metal glue is a strong adhesive with ethyl cyanoacrylate as a main component.
  • the resultant glue can quickly bond the separator substrate 22 and the connector housing 21, and is easy to operate.
  • an electrode pin 23 is disposed through the isolation substrate 22, the pin has a first end 231 for soldering to a wire 001 and is used for soldering with another wire 001 and with the first end.
  • the number of electrode pins 23 is but not limited to two, two electrode pins 23 are spaced apart, and the axis of each electrode is parallel to the connector housing On the axis of 21, the isolation substrate 22 is provided with a socket through which the electrode pins 23 pass.
  • the first end 231 of the pin is located in the first cavity 211a, and the second end 2 32 of the pin is located in the second cavity 21 lb.
  • the first end 231 of the pin passes through the wire 001 and is located at the main The load (not shown) outside the cabin 10 is electrically connected, and the wire 001 is welded to the first end 231; the second end 232 of the pin is electrically connected to the wire 001 inside the main cabin 10, and the inside of the main cabin 10
  • the wire 001 is connected to a power source and soldered to the second end 232 to supply power to the load.
  • the electrode pins 23 include two pin members that are electrically connected, and the two pin members are fixed to both end faces of the isolation substrate 22, respectively.
  • the solder joints of the second end 232 are covered in the body 211b.
  • a predetermined spacing is left between each end of the electrode pin 23 and the mouth end of the connector housing 21, and the first filler body 24 and the second filler body 25 are both but not limited to
  • the epoxy resin filling body, the first cavity 211a is filled in the first cavity 211a and covers the exposed portion of the wire 001 which is soldered to the first end 231, so that not only the liquid can be prevented from entering, that is, the external portion is avoided.
  • the liquid flows into the main cabin 10 from the cavity 211 of the connector housing 21, thereby achieving a waterproof effect, and further enables the electrode pin 23 to be located at the portion of the first cavity 211a and the isolation circuit board to be more stable;
  • the cavity 21 lb is filled in the second cavity 211b and covers the exposed portion of the electric wire 001 which is soldered to the second end 232, further increasing the waterproof capability and improving the stability of the structure.
  • the contact sealing surface 2121 is provided with an annular waterproof mounting groove 21 25, and the second sealing member 26 is disposed in the waterproof mounting groove 2125.
  • the second sealing member 26 may be bonded to the surface of the contact sealing surface 2121.
  • the second sealing member 26 is a sealing ring, the cross-sectional shape of the second sealing member 26 is circular, and the thickness of the second sealing member 26 is larger than the waterproof mounting groove. The depth of 2125.
  • the second sealing member 26 is a gasket.
  • the shape of the cross section of the second sealing member 26 is a rectangle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Wind Motors (AREA)
  • Manipulator (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

一种具有多个航行自由度的水下机器人(100),包括具有一密封舱(10a)的主舱体(10)和多个推进器(300);每个所述推进器(300)均包括螺旋桨装置(40)和使所述螺旋桨装置(40)旋转的防水旋转电机(30),所述防水旋转电机(30)连接在所述主舱体(10)上且一端置入所述密封舱(10a)内,所述防水旋转电机(30)与所述主舱体(10)之间设置有第一密封构件(39)。与现有技术对比,采用多个推进器(300),且防水旋转电机(30)与主舱体(10)之间设置有第一密封构件(39),这样,可实现包括前后、上下、左右、偏航及横滚的运动方向的五个自由度,简化了防水结构,提高了主舱体(10)的防水性能和工作可靠性,降低了制成生产成本。

Description

具有多个航行自由度的水下机器人
技术领域
[0001] 本发明涉及一种具有多个航行自由度的水下机器人
背景技术
[0002] 目前, 传统的水下机器人是多采用模块化设计方案, 这种设计方案要求每一个 单元设备都要有很好的密封性, 这样就需在密封上做大量工作。 同吋为了连接 各个单元设备需要使用价格昂贵的水密连接器, 这样就使得设备成本增加; 另 夕卜, 这些模块连接处可靠性很难保证, 这样降低了设备的可靠性。
技术问题
[0003] 本发明的目的在于提供一种水下机器人, 以解决现有技术中存在的的防水结构 复杂, 工作可靠性差技术问题。
问题的解决方案
技术解决方案
[0004] 为实现上述目的, 本发明采用的技术方案是: 提供一种具有多个航行自由度的 水下机器人, 其包括具有一密封舱的主舱体和多个推进器; 每个所述推进器均 包括螺旋桨装置和使所述螺旋桨装置旋转的防水旋转电机, 所述防水旋转电机 连接在所述主舱体上且一端置入所述密封舱内, 所述防水旋转电机与所述主舱 体之间设置有第一密封构件。
[0005] 进一步地, 所述推进器的数量为六个, 六个所述推进器分别为两个垂直推进器 、 两个前端水平推进器和两个后端水平推进器; 两个所述垂直推进器分别设置 在所述主舱体的中部的两侧, 两个前端水平推进器分别设置在所述主舱体的一 端部的两侧, 两个后端水平推进器分别设置在所述主舱体的另一端部两侧。
[0006] 进一步地, 所述主舱体的表面具有相互垂直的横向和纵向; 两个垂直推进器位 于所述横向的中线上并沿所述纵向的中线上呈轴对称地设置; 两个所述前端水 平推进器沿所述纵向的中线上呈轴对称地设置, 两个所述后端水平推进器沿所 述纵向的中线上呈轴对称地设置, 各所述前端水平推进器与相邻的后端水平推 进器沿所述横向的中线上呈轴对称地设置。
[0007] 进一步地, 每个所述螺旋桨装置均包括支架、 可旋转地安装在所述支架上的螺 旋桨轴、 固定在所述螺旋桨轴上的叶片以及连接在所述螺旋桨轴与所述防水旋 转电机之间的传动组件; 两个前端水平推进器的螺旋桨轴轴线正交设置, 两个 后端水平推进器的螺旋桨轴轴线正交设置, 各前端水平推进器的螺旋桨轴轴线 与相邻的后端水平推进器的螺旋桨轴轴线正交设置。
[0008] 进一步地, 所述传动组件包括固定在所述防水旋转电机上的第一齿轮和与所述 第一齿轮啮合的第二齿轮, 所述第二齿轮固定在所述螺旋桨轴上。
[0009] 进一步地, 所述第一齿轮和所述第二齿轮均为锥齿轮, 所述第一齿轮的轴线与 所述第二齿轮的轴线垂直设置。
[0010] 进一步地, 所述防水旋转电机包括:
[0011] 防水机壳, 其包括圆环形基部、 从所述圆环形基部的内侧沿所述圆环形基部的 轴向延伸的圆筒部以及连接在所述圆筒部的远离所述圆环形基部一端的底部;
[0012] 电机外壳, 套设在圆筒部外侧, 所述电机外壳的内壁与所述圆筒部外壁之间形 成容置空间;
[0013] 环形的定子, 固定在所述容置空间中;
[0014] 转子, 可旋转地安装在所述圆筒部中; 以及
[0015] 旋转轴, 固定于所述转子, 且所述旋转轴的端部向外延至所述防水机壳外部。
[0016] 进一步地, 上述的水下机器人还包括第一轴承和第二轴承, 所述旋转轴通过所 述第一轴承和所述第二轴承可旋转地安装在所述防水机壳上。
[0017] 进一步地, 所述圆环形基部上连接有转子固定件, 所述转子固定件具有供所述 旋转轴的端部穿过的轴通孔。
[0018] 进一步地, 所述转子固定件的面向所述防水机壳的所述底部一侧表面形成有第 一安装槽, 所述第一轴承设置在所述第一安装槽内; 所述底部形成有第二安装 槽, 所述第二轴承设置在所述第二安装槽内。
[0019] 进一步地, 所述转子固定件通过紧固件与所述圆环形基部连接固定。
[0020] 进一步地, 所述圆环形基部包括第一环形部分和从第一环形部分向外径向延伸 的第二环形部分, 所述第一环形部分的表面形成有容置槽, 所述转子固定件设 置在所述容置槽内。
[0021] 进一步地, 所述电机外壳包括圆筒状的套筒部和连接在所述套筒部一端的盖部 [0022] 进一步地, 所述盖部上幵设有出线孔。
[0023] 进一步地, 上述的水下机器人还包括穿壁连接器, 连接在所述主舱体上, 所述 穿壁连接器与所述主舱体之间设置有第二密封构件; 所述穿壁连接器包括: [0024] 连接器壳体, 其具有两端幵口的凹腔;
[0025] 隔离基板, 设置在所述凹腔内并将所述凹腔分隔成第一腔体和第二腔体; [0026] 至少一个电极插针, 穿设于所述隔离基板, 所述电极插针具有用于与一电线焊 接的第一端和用于与另一电线焊接且与所述第一端相对的第二端;
[0027] 第一填充体, 用于填充在所述第一腔体内并至少覆盖所述第一端的焊点; [0028] 第二填充体, 用于填充在所述第二腔体内并至少覆盖所述第二端的焊点。
[0029] 进一步地, 上述的水下机器人还包括透光件; 所述主舱体上幵设有连通所述密 封舱的贯通孔, 所述透光件连接在所述主舱体外侧并闭合所述贯通孔, 所述透 光件与所述主舱体之间设置有第三密封构件。
[0030] 进一步地, 上述的水下机器人还包括水深检测装置, 所述水深检测装置设置在 所述主舱体上。
[0031] 进一步地, 所述水深检测装置包括安装支架和固定在所述安装支架上的水深检 测芯片, 所述安装支架与所述主舱体之间设置有第四密封构件。
[0032] 进一步地, 上述的水下机器人还包括接插件接头, 所述接插件接头连接在所述 主舱体上且一端置入所述密封舱内, 所述接插件接头与所述主舱体之间设置有 第五密封构件。
[0033] 进一步地, 所述主舱体包括顺序连接的上盖板、 中壳和下盖板, 所述上盖板、 所述中壳和所述下盖板围合形成所述密封舱, 所述上盖板与所述中壳之间设置 有第六密封构件, 所述中壳与所述下盖板设置有第七密封构件。
发明的有益效果
有益效果
[0034] 与现有技术对比, 本发明提供的水下机器人, 采用多个推进器, 且防水旋转电 机与主舱体之间设置有第一密封构件, 这样, 具有多个运动方向, 简化了防水 结构, 提高了主舱体的防水性能和工作可靠性, 降低了制成生产成本。
对附图的简要说明
附图说明
[0035] 图 1是本发明实施例提供的水下机器人的立体示意图;
[0036] 图 2是本发明实施例提供的水下机器人的分解示意图;
[0037] 图 3是本发明实施例提供的水下机器人省略螺旋桨装置吋的立体示意图;
[0038] 图 4是本发明实施例提供的水下机器人省略螺旋桨装置吋的分解示意图;
[0039] 图 5是本发明实施例提供的水下机器人省略螺旋桨装置吋的剖视示意图;
[0040] 图 6是本发明实施例提供的防水旋转电机的剖视示意图;
[0041] 图 7是本发明实施例提供的防水旋转电机的正视示意图;
[0042] 图 8是本发明实施例提供的防水旋转电机的后视示意图;
[0043] 图 9是本发明实施例提供的推进器的立体示意图;
[0044] 图 10本发明实施例提供的推进器的分解示意图;
[0045] 图 11是本发明实施例提供的穿壁连接器的立体示意图;
[0046] 图 12是本发明实施例提供的穿壁连接器与主舱体连接吋的剖视示意图。
本发明的实施方式
[0047] 为了使本发明所要解决的技术问题、 技术方案及有益效果更加清楚明白, 以下 结合附图及实施例, 对本发明进行进一步详细说明。 应当理解, 所描述的实施 例是本发明的一部分实施例, 而不是全部的实施例。 基于所描述的本发明的实 施例, 本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施 例, 都属于本发明保护的范围。
[0048] 为了使本领域的技术人员更好地理解本发明的技术方案, 下面结合具体附图对 本发明的实现进行详细的描述。
[0049] 除非另作定义, 此处使用的技术术语或者科学术语应当为本发明所属领域内具 有一般技能的人士所理解的通常意义。 本发明专利申请说明书以及权利要求书 中使用的"第一"、 "第二 "以及类似的词语并不表示任何顺序、 数量或者重要性, 而只是用来区分不同的组成部分。 同样, "一个 "或者 "一"等类似词语也不表示数 量限制, 而是表示存在至少一个。
[0050] 如图 1和 2所示, 为本发明提供的一较佳实施例。
[0051] 本实施例提供的具有多个航行自由度的水下机器人 100, 包括具有一密封舱 10a 的主舱体 10和多个推进器 300; 每个推进器 300均包括螺旋桨装置 40和使螺旋桨 装置 40旋转的防水旋转电机 30, 防水旋转电机 30连接在主舱体 10上且一端置入 密封舱 10a内, 防水旋转电机 30与主舱体 10之间设置有第一密封构件 39。
[0052] 上述的具有多个航行自由度的水下机器人 100, 采用多个推进器 300, 且防水旋 转电机 30与主舱体 10之间设置有第一密封构件 39, 这样, 具有多个运动方向, 简化了防水结构, 提高了主舱体 10的防水性能和工作可靠性, 降低了制成生产 成本。
[0053] 参见图 1和 2, 本实施例的水下机器人 100, 采用的推进器 300的数量为六个, 六 个推进器 300分别为两个垂直推进器 301、 两个前端水平推进器 302和两个后端水 平推进器 303; 两个垂直推进器 301分别设置在主舱体 10的中部的两侧, 两个前 端水平推进器 302分别设置在主舱体 10的一端部的两侧, 两个后端水平推进器 30 3分别设置在主舱体 10的另一端部两侧。 值得一提的是, 六个推进器 300可实现 五个自由度, 包括前后、 上下、 左右、 偏航及横滚的运动方向。
[0054] 参见图 1和 2, 在本实施例中, 主舱体 10的表面具有相互垂直的横向 (图示中的 D1方向, 下面统称第一方向 D1) 和纵向 (图示中的 D2方向, 下面统称第二方向 D2) ; 两个垂直推进器 301位于第一方向 D1的中线上并沿第二方向 D2的中线上 呈轴对称地设置; 两个前端水平推进器 302沿第二方向 D2的中线上呈轴对称地设 置, 两个后端水平推进器 303沿第二方向 D2的中线上呈轴对称地设置, 各前端水 平推进器 302与相邻的后端水平推进器 303沿第一方向 D1的中线上呈轴对称地设 置。
[0055] 具体地, 每个螺旋桨装置 40均包括支架 41、 可旋转地安装在支架 41上的螺旋桨 轴 42、 固定在螺旋桨轴 42上的叶片 43以及连接在螺旋桨轴 42与防水旋转电机 30 之间的传动组件 44; 两个前端水平推进器 302的螺旋桨轴 42轴线正交设置, 两个 后端水平推进器 303的螺旋桨轴 42轴线正交设置, 各前端水平推进器 302的螺旋 桨轴 42轴线与相邻的后端水平推进器 303的螺旋桨轴 42轴线正交设置。 需要说明 的是, 与螺旋桨轴 42连接的叶片 43旋转吋, 液体沿螺旋桨轴 42轴向高速流动, 垂直推进器 301的叶片 43旋转吋, 使液体向上流动, 以推动水下机器人 100下降 , 而当垂直推进器 301的叶片 43停止旋转吋, 水下机器人 100利用安装在其上的 浮力模块上升, 从而实现上下方向移动; 前端和后端水平推进器 302、 303的叶 片 43旋转吋, 则推动水下机器前后、 上下、 左右、 偏航及横滚的移动。
[0056] 参见图 3至 5, 主舱体 10包括上盖板 11、 中壳 12和下盖板 13, 上盖板 11、 中壳 12 和下盖板 13可以由铝合金或具有一定硬度的树脂材料一体成型制成, 也可以是 分体制成, 主舱体 10的外侧可安装有由固体浮力材料制成的浮力模块。 在本实 施例中, 主舱体 10由上盖板 11、 中壳 12和下盖板 13顺序连接构成, 上盖板 11和 下盖板 13分别通过螺丝等紧固件安装在中壳 12上并与中壳 12连接固定。 主舱体 1 0上盖板 11、 中壳 12和下盖板 13围合形成密封舱 10a, 上盖板 11与中壳 12之间设置 有第六密封构件 102, 中壳 12与下盖板 13设置有第七密封构件 103, 该第六密封 构件 102和第七密封构件 103为但不局限于环氧树脂材质制成的密封圈或密封垫 片。
[0057] 具体地, 上盖板 11和下盖板 13上均设置有孔部 104, 孔部 104沿盖板的厚度贯穿 于盖板 11、 13, 相应地, 中壳 12的上下侧分别设置有与孔部 104对应的螺孔 105 , 通过螺丝等紧固件顺序穿过孔部 104和螺孔 105, 以将上盖板 11和下盖板 13分 别固定在中壳 12的上下侧。 中壳 12的侧壁上幵设有电机安装孔 106, 防水旋转电 机 30连接在主舱体 10的中壳 12上, 且防水旋转电机 30的一端经电机安装孔 106置 入密封舱 10a内。 上盖板 11和下盖板 13上均幵设有连接器安装孔 107, 连接器安装 孔 107沿盖板的厚度贯穿于盖板 11、 13, 穿壁连接器 20连接在主舱体 10的上盖板 11和下盖板 13上。
[0058] 参见图 3至 5, 主舱体 10上幵设有连通密封舱 10a的贯通孔 10b, 透光件 50连接在 主舱体 10外侧并闭合贯通孔 10b, 透光件 50与主舱体 10之间设置有第三密封构件 101。 在本实施例中, 贯通孔 10b位于中壳 12的前侧 (图示的右侧) 上, 该贯通 孔 10b内安装有摄像模块 (图未示) , 透光件 50采用但不局限于透明的 PC材料制 成, 该透光件 50通过螺丝 51固定在中壳 12上并闭合该贯通孔 10b, 采用第三密封 构件 101以密封透光件 50与中壳 12之间的间隙, 避免水流入密封舱 10a内, 第三密 封构件 101为但不局限于环氧树脂材质制成的密封圈或密封垫片。 在透光件 50的 外侧, 可套设有镜头装饰盖 52。
[0059] 参见图 3至 5, 水深检测装置 60, 用于检测主舱体 10在水中的潜入深度, 水深检 测装置 60设置在主舱体 10上。 在本实施例中, 水深检测装置 60为但不局限于压 力传感器装置, 当水深检测装置 60检测出主舱体 10所处水深的压强吋, 根据帕 斯卡定律能够计算出主舱体 10所处水深。 水深检测装置 60包括安装支架 61和固 定在安装支架 61上的水深检测芯片 62, 安装支架 61与主舱体 10之间设置有第四 密封构件 108, 第四密封构件 108为但不局限于环氧树脂材质制成的密封圈或密 封垫片。
[0060] 具体地, 安装支架 61可拆除地连接于主舱体 10, 安装支架 61包括承载部 611和 与承载部 611连接的连接部 612, 承载部 611具有圆环形的横截面, 连接部 612呈 外径尺寸小于承载部 611外径尺寸的圆筒状, 水深检测芯片 62固定在承载部 611 内, 连接部 612的外壁上形成有螺纹部, 连接部 612的外端置入密封舱 10a内部, 密封舱 10a的内壁上固定有与连接部 612的螺纹部螺纹配合的螺母。
[0061] 参见图 3至 5, 接插件接头 70, 接插件接头 70连接在主舱体 10上且一端置入密封 舱 10a内, 接插件接头 70与主舱体 10之间设置有第五密封构件 109, 第五密封构件 109为但不局限于环氧树脂材质制成的密封圈或密封垫片。
[0062] 参见图 6至 8, 本实施例的防水旋转电机 30, 为内转子型, 包括防水机壳 31、 电 机外壳 32、 环形的定子 33、 转子 34和旋转轴 35, 转子 34与定子 33及三相线相独 立, 水不会与定子 33及三相线接触, 防水效果好。
[0063] 参见图 6至 8, 防水机壳 31, 可由铝合金或具有良好导热性的树脂材料一体成型 制成, 其包括圆环形基部 311、 圆筒部 312和底部 313, 圆筒部 312从圆环形基部 3 11的内侧沿圆环形基部 311的轴向延伸, 底部 313从圆筒部 312的远离圆环形基部 311—端径向向内延伸, 并闭合该圆筒部 312的该端。 在本实施例中, 防水机壳 3 1为但不局限于环氧树脂形成, 防水机壳 31具有一端幵口且另一端封闭的内腔 31a , 转子 34支承在内腔 31a中, 定子 33设置在外部。 圆环形基部 311包括第一环形部 分 3111和从第一环形部分 3111向外径向延伸的第二环形部分 3112, 防水机壳 31 可拆除地安装在主舱体 10上, 第一环形部分 3111、 防水机壳 31圆筒部 312和底部 313插设在该主舱体 10的密封舱 10a内, 防水机壳 31圆环形基部 311的第二环形部 分 3112外置在主舱体 10外侧。
[0064] 参见图 6至 8, 电机外壳 32, 套设在圆筒部 312外侧, 电机外壳 32的内壁与圆筒 部 312外壁之间形成容置空间 30a。 电机外壳 32可由铝合金或具有良好导热性的树 脂材料制成, 电机外壳 32包括圆筒状的套筒部 321和连接在套筒部 321—端的盖 部 322, 套筒部 321和盖部 322可以是一体成型, 也可以是分体制成。 在本实施例 中, 套筒部 321的内径尺寸分别与第一环形部分 3111的外径尺寸和盖部 322的尺 寸相匹配, 套筒部 321的一端套设在第一环形部分 3111外侧, 另一端套设于盖部 322。
[0065] 参见图 6至 8, 环形的定子 33固定在容置空间 30a中, 定子 33与圆筒部 312同轴设 置。 在本实施例中, 定子 33包括定子铁芯 331和线圈 (图未示) , 定子铁芯 331 具有多个齿部, 线圈绕设于齿部上, 定子铁芯 331固定至套筒部 321的的内周表 面。
[0066] 参见图 6至 8, 转子 34可旋转地安装在圆筒部 312中, 转子 34与定子 33同轴设置 , 且转子 34以与定子 33之间具有预设间隙的方式定位成在径向方向上面向定子 3 3, 定子 33在通电吋产生吸引力和排斥力, 驱使转子 34旋转。
[0067] 参见图 6至 8, 旋转轴 35, 固定于转子 34, 且旋转轴 35的端部向外延伸并伸出防 水机壳 31。 在本实施例中, 旋转轴 35通过第一轴承 36和第二轴承 37可旋转地安 装在防水机壳 31上, 第一轴承 36和第二轴承 37为但不局限于石墨材质的滚珠轴 承, 轴承的内部环随所支撑的旋转轴 35旋转, 并且轴承的外部环是固定的。
[0068] 参见图 6至 8, 圆环形基部 311上连接有转子固定件 38, 转子固定件 38具有供旋 转轴 35的端部穿过的轴通孔 381。 在本实施例中, 转子固定件 38大致呈圆环板状 , 轴通孔 381的截面为圆形, 通过转子固定件 38, 可将转子 34固定在防水机壳 31 , 从而对转子 34进行保护, 可以理解的是, 在需要更换转子 34吋, 只需拆下转 子固定件 38, 即可将转子 34取出并换入新的转子 34, 转子 34部件更换方便。
[0069] 参见图 6至 8, 在本实施例中, 第一环形部分 3111的表面形成有容置槽 3113, 转 子固定件 38设置在容置槽 3113内, 该容置槽 3113的槽深尺寸与转子固定件 38的 厚度尺寸相同, 转子固定件 38安装在防水机壳 31上后, 转子固定件 38的外侧表 面与防水机壳 31的外侧表面齐平。 容置槽 3113的形状与转子固定件 38的形状相 匹配, 这样, 转子固定件 38置入容置槽 3113后, 容置槽 3113对转子固定件 38进 行定位, 以保证轴通孔 381与旋转轴 35同轴。
[0070] 在又一实施例中, 转子固定件 38直接安装在第一环形部分 3111的外侧表面上。
[0071] 参见图 6至 8, 在本实施例中, 转子固定件 38通过如螺丝等紧固件 (图未示) 与 圆环形基部 311连接固定, 转子固定件 38上幵设有多个第一固定孔 382, 多个第 一固定孔 382环绕在轴通孔 381的外周且彼此间隔, 第一固定孔 382沿圆环形基部 311的轴向延伸并贯穿转子固定件 38的两侧表面。 第一环形部分 3111的容置槽 31 13底面形成有与第一固定孔 382对应的第二固定孔 3114, 第二固定孔 3114沿圆环 形基部 311的轴向延伸, 通过紧固件顺序插入第一固定孔 382和对应的第二固定 孔 3114后, 以将转子固定件 38保持在防水机壳 31的圆环形基部 311内。
[0072] 参见图 6至 8, 在本实施例中, 第二环形部分 3112上幵设有多个第三固定孔 3115 , 第三固定孔 3115沿圆环形基部 311的轴向延伸, 并贯穿第二环形部分 3112的两 侧表面, 通过紧固件插入第三固定孔 3115, 以将防水机壳 31保持在主舱体 10上
[0073] 参见图 6至 8, 转子固定件 38的面向防水机壳 31的底部 313—侧表面形成有第一 安装槽 383, 第一轴承 36设置在第一安装槽 383内; 底部 313形成有第二安装槽 31 31, 第二轴承 37设置在第二安装槽 3131内。 在本实施例中, 转子固定件 38的内 侧表面的形成有第一安装槽 383, 第一安装槽 383位于该侧表面的中央, 且第一 安装槽 383与轴通孔 381连通, 第一轴承 36的内部环随所支撑的旋转轴 35旋转, 第一轴承 36的外部环固定在第一安装槽 383内壁上; 第二轴承 37的内部环随所支 撑的旋转轴 35旋转, 第二轴承 37的外部环固定在第二安装槽 3131内壁上。
[0074] 参见图 6至 8, 在本实施例中, 圆环形基部 311的靠近底部 313的一侧表面幵设有 环形固定槽 3116, 第一密封构件 39设置在环形固定槽 3116内。 在本实施例中, 环形固定槽 3116位于在第三固定孔 3115的内侧, 且环形固定槽 3116的槽深尺寸 要小于第一密封构件 39的断面尺寸。 第一密封构件 39为但不局限于环氧树脂材 质制成的密封圈或密封垫片。 [0075] 参见图 6至 8, 在本实施例中, 盖部 322上幵设有出线孔 3223。 防水旋转电机 30 内的三相线可从盖部 322的出线孔 3223导出。
[0076] 在又一实施例中, 出线孔 3223也可在套筒部 321上。
[0077] 参见图 6至 8, 套筒部 321与防水机壳 31之间以及套筒部 321与盖部 322之间可采 用卡接、 螺钉等一切现有的固定方式连接固定。 在本实施例中, 套筒部 321与防 水机壳 31之间以及套筒部 321与盖部 322之间均采用粘结剂 (图未示) 连接固定 。 防水机壳 31的第一环形部分 3111外侧壁上幵设有第一储胶槽 3117, 盖部 322的 外侧壁上幵设有第二储胶槽 3221。 通过在第一储胶槽 3117和第二储胶槽 3221内 注入粘接胶体, 以使套筒部 321与防水机壳 31之间以及套筒部 321与盖部 322之间 连接固定。
[0078] 参见图 6至 8, 盖部 322面向圆环形基部 311的一侧表面幵设有供防水机壳 31的底 部 313置入的定位槽 3222。 这样, 在盖部 322安装至套筒部 321后, 通过定位槽 32 22与防水机壳 31的底部 313的配合, 能够将防水机壳 31的封闭端定位固定, 从而 将防水机壳 31与电机外壳 32之间的位置保持, 提高了结构稳固性。
[0079] 参见图 9和 10, 螺旋桨装置 40包括支架 41、 可旋转地安装在支架 41上的螺旋桨 轴 42、 固定在螺旋桨轴 42上的叶片 43以及连接在螺旋桨轴 42与旋转轴 35之间的 传动组件 44。 在本实施例中, 叶片 43为但不局限于铝合金材质, 支架 41包括用 于与主舱体 10固定的平板部 411和凸设在该平板部 411一侧的支撑臂部 412, 支撑 臂部 412的数量为但不局限于两个, 平板部 411于两个支撑臂部 412之间幵设有供 旋转轴 35端部穿出的贯穿孔 4111。 螺旋桨轴 42通过第三轴承 45和第四轴承 46可 旋转地安装在支架 41上, 第三轴承 45和第四轴承 46分别安装在两个支撑臂部 412 上, 第三轴承 45和第四轴承 46为但不局限于不锈钢材质的滚珠轴承。
[0080] 参见图 9和 10, 叶片 43以不可相对螺旋桨轴 42转动的方式安装在该螺旋桨轴 42 上, 并在螺旋桨轴 42上螺合紧固螺帽 47, 将叶片 43保持在该螺旋桨轴 42上, 螺 旋桨轴 42的与连接有紧固螺帽 47—端相对的另一端上套设有轴卡簧 48。
[0081] 参见图 9和 10, 传动组件 44包括固定在旋转轴 35上的第一齿轮 441和与第一齿轮 441啮合的第二齿轮 442, 第二齿轮 442固定在螺旋桨轴 42上。 在本实施例中, 第 一齿轮 441和第二齿轮 442均为锥齿轮, 旋转轴 35的轴线与螺旋桨轴 42的轴线垂 直设置。
[0082] 参见图 11和 12, 本实施例的穿壁连接器 20, 包括连接器壳体 21、 隔离基板 22、 电极插针 23、 第一填充体 24和第二填充体 25。
[0083] 参见图 11和 12, 连接器壳体 21, 可采用铝或铝合金制成, 具有两端幵口的凹腔 211, 上述隔离基板 22、 电极插针 23、 第一填充体 24和第二填充体 25均设置在凹 腔 211内, 在本实施例中, 连接器壳体 21为铝合金材质制成, 材料优选使用 6061 型号铝合金, 该连接器壳体 21包括相互连接上部 212和下部 213, 连接器壳体 21 通过下部 213与主舱体 10的上盖板 11和下盖板 13连接固定, 下部 213的底端伸入 主舱体 10的密封舱 10a中, 上部 212具有用于与主舱体 10的外壁密封的一接触密封 面 2121, 接触密封面 2121环绕在下部 213外周。
[0084] 具体地, 上部 212包括圆环形的主体部分 2122和多边形的拧转部分 2123, 拧转 部分 2123自主体部分 2122的一端径向向外延伸, 拧转部分 2123的形状为但不局 限于六边形, 这样, 方便通过扳手等工具对该穿壁连接器 20进行拆装。
[0085] 参见图 11和 12, 在本实施例中, 下部 213为但不局限于圆环形, 下部 213的外壁 上形成有螺纹部 2131, 通过螺纹方式与主舱体 10连接固定。
[0086] 作为进一步地优化, 在连接器壳体 21的表面上涂覆有氧化铝薄膜 (图未示) , 即对连接器壳体 21进行阳极氧化表面处理, 以铝或铝合金制品为阳极, 置于电 解质溶液中进行通电处理, 利用电解作用使其表面形成氧化铝薄膜, 这样, 清 洗油脂以防脱落, 使得连接器壳体 21的耐蚀性、 耐磨性均具有显著的改善和提 高。
[0087] 参见图 11和 12, 隔离基板 22, 可以是电路板, 大致呈圆形, 其设置在凹腔 211 内并将凹腔 211分隔成第一腔体 211a和第二腔体 211b, 在本实施例中, 隔离基板 2 2为但不局限于电路板, 隔离基板 22用于安装和固定电极插针 23, 上部 212的内 壁上凸设有用于支撑隔离基板 22的限位部 2124, 隔离基板 22固定在上部 212的限 位部 2124上, 并将凹腔 211分隔成第一腔体 211a和第二腔体 211b。
[0088] 具体地, 隔离基板 22通过粘结剂 (图未示) 固定在限位部 2124上, 粘结剂优选 金属胶水, 金属胶水是以氰基丙烯酸乙酯为主要成分的一种强粘合力胶水, 可 使隔离基板 22与连接器壳体 21快速粘合, 操作简便。 [0089] 参见图 11和 12, 电极插针 23, 穿设于隔离基板 22, 插针具有用于与一电线 001 焊接的第一端 231和用于与另一电线 001焊接且与第一端 231相对的第二端 232, 在本实施例中, 电极插针 23的数量为但不局限于两个, 两个电极插针 23间隔设 置, 且每个电极的轴线且平行于连接器壳体 21的轴线, 隔离基板 22上幵设有供 电极插针 23穿过的插孔。 插针的第一端 231位于第一腔体 211a内, 插针的第二端 2 32位于第二腔体 21 lb内, 需要指出的是, 插针的第一端 231通过电线 001与位于 主舱体 10外部的负载 (图未示) 电性连接, 该电线 001与第一端 231焊接; 插针 的第二端 232与主舱体 10内部的电线 001电性连接, 主舱体 10内部的电线 001连接 有电源且与第二端 232焊接, 从而对负载供电。
[0090] 在又一实施例中, 电极插针 23包括电性连接的两个插针构件, 两个插针构件分 别固定在隔离基板 22的两端面上。
[0091] 参见图 11和 12, 第一填充体 24, 用于填充在第一腔体 21 la内并至少覆盖第一端 231的焊点; 第二填充体 25, 用于填充在第二腔体 211b内并至少覆盖第二端 232 的焊点。 在本实施例中, 电极插针 23的各端部与连接器壳体 21的幵口端之间均 留有预设间距, 第一填充体 24和第二填充体 25均为但不局限于环氧树脂填充体 , 第一腔体 211a填充在第一腔体 211a内并覆盖与第一端 231焊接的电线 001中裸露 在外的电芯部分, 这样, 不仅能避免液体进入, 即避免外部的液体从连接器壳 体 21的凹腔 211流入主舱体 10内, 从而起到防水效果, 更能使电极插针 23位于第 一腔体 211a的部分以及隔离电路板固定的更加稳固; 第二腔体 21 lb填充在第二腔 体 211b内并覆盖与第二端 232焊接的电线 001中裸露在外的电芯部分, 进一步地 增加了防水能力, 并提高了结构的稳定性。
[0092] 参见图 11和 12, 在本实施例中, 接触密封面 2121上幵设有环形的防水安装槽 21 25, 第二密封构件 26设置防水安装槽 2125内。
[0093] 在又一实施例中, 第二密封构件 26可粘接在接触密封面 2121表面。
[0094] 参见图 11和 12, 在本实施例中, 第二密封构件 26为密封圈, 第二密封构件 26的 横截面的形状为圆形, 且第二密封构件 26的厚度大于防水安装槽 2125的深度。
[0095] 在又一实施例中, 第二密封构件 26为密封垫片。
[0096] 在又一实施例中, 第二密封构件 26的横截面的形状为矩形。 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的 精神和原则之内所作的任何修改、 等同替换或改进等, 均应包含在本发明的保 护范围之内。

Claims

权利要求书
一种具有多个航行自由度的水下机器人, 其特征在于, 包括具有一密 封舱的主舱体和多个推进器; 每个所述推进器均包括螺旋桨装置和使 所述螺旋桨装置旋转的防水旋转电机, 所述防水旋转电机连接在所述 主舱体上且一端置入所述密封舱内, 所述防水旋转电机与所述主舱体 之间设置有第一密封构件。
根据权利要求 1所述的具有多个航行自由度的水下机器人, 其特征在 于, 所述推进器的数量为六个, 六个所述推进器分别为两个垂直推进 器、 两个前端水平推进器和两个后端水平推进器; 两个所述垂直推进 器分别设置在所述主舱体的中部的两侧, 两个前端水平推进器分别设 置在所述主舱体的一端部的两侧, 两个后端水平推进器分别设置在所 述主舱体的另一端部两侧。
根据权利要求 2所述的具有多个航行自由度的水下机器人, 其特征在 于, 所述主舱体的表面具有相互垂直的横向和纵向; 两个垂直推进器 位于所述横向的中线上并沿所述纵向的中线上呈轴对称地设置; 两个 所述前端水平推进器沿所述纵向的中线上呈轴对称地设置, 两个所述 后端水平推进器沿所述纵向的中线上呈轴对称地设置, 各所述前端水 平推进器与相邻的后端水平推进器沿所述横向的中线上呈轴对称地设 置。
根据权利要求 2或 3所述的具有多个航行自由度的水下机器人, 其特征 在于, 每个所述螺旋桨装置均包括支架、 可旋转地安装在所述支架上 的螺旋桨轴、 固定在所述螺旋桨轴上的叶片以及连接在所述螺旋桨轴 与所述防水旋转电机之间的传动组件; 两个前端水平推进器的螺旋桨 轴轴线正交设置, 两个后端水平推进器的螺旋桨轴轴线正交设置, 各 前端水平推进器的螺旋桨轴轴线与相邻的后端水平推进器的螺旋桨轴 轴线正交设置。
根据权利要求 4所述的具有多个航行自由度的水下机器人, 其特征在 于, 所述传动组件包括固定在所述防水旋转电机上的第一齿轮和与所 述第一齿轮啮合的第二齿轮, 所述第二齿轮固定在所述螺旋桨轴上。
[权利要求 6] 根据权利要求 5所述的具有多个航行自由度的水下机器人, 其特征在 于, 所述第一齿轮和所述第二齿轮均为锥齿轮, 所述第一齿轮的轴线 与所述第二齿轮的轴线垂直设置。
[权利要求 7] 根据权利要求 1所述的具有多个航行自由度的水下机器人, 其特征在 于, 所述防水旋转电机包括:
防水机壳, 其包括圆环形基部、 从所述圆环形基部的内侧沿所述圆环 形基部的轴向延伸的圆筒部以及连接在所述圆筒部的远离所述圆环形 基部一端的底部;
电机外壳, 套设在圆筒部外侧, 所述电机外壳的内壁与所述圆筒部外 壁之间形成容置空间;
环形的定子, 固定在所述容置空间中;
转子, 可旋转地安装在所述圆筒部中; 以及
旋转轴, 固定于所述转子, 且所述旋转轴的端部向外延至所述防水机 壳外部。
[权利要求 8] 根据权利要求 7所述的具有多个航行自由度的水下机器人, 其特征在 于, 还包括第一轴承和第二轴承, 所述旋转轴通过所述第一轴承和所 述第二轴承可旋转地安装在所述防水机壳上。
[权利要求 9] 根据权利要求 8所述的具有多个航行自由度的水下机器人, 其特征在 于, 所述圆环形基部上连接有转子固定件, 所述转子固定件具有供所 述旋转轴的端部穿过的轴通孔。
[权利要求 10] 根据权利要求 8所述的具有多个航行自由度的水下机器人, 其特征在 于, 所述转子固定件的面向所述防水机壳的所述底部一侧表面形成有 第一安装槽, 所述第一轴承设置在所述第一安装槽内; 所述底部形成 有第二安装槽, 所述第二轴承设置在所述第二安装槽内。
[权利要求 11] 根据权利要求 9所述的具有多个航行自由度的水下机器人, 其特征在 于, 所述转子固定件通过紧固件与所述圆环形基部连接固定。
[权利要求 12] 根据权利要求 11所述的具有多个航行自由度的水下机器人, 其特征在 于, 所述圆环形基部包括第一环形部分和从第一环形部分向外径向延 伸的第二环形部分, 所述第一环形部分的表面形成有容置槽, 所述转 子固定件设置在所述容置槽内。
根据权利要求 7所述的具有多个航行自由度的水下机器人, 其特征在 于, 所述电机外壳包括圆筒状的套筒部和连接在所述套筒部一端的盖 部。
根据权利要求 13所述的具有多个航行自由度的水下机器人, 其特征在 于, 所述盖部上幵设有出线孔。
根据权利要求 1所述的具有多个航行自由度的水下机器人, 其特征在 于, 还包括穿壁连接器, 连接在所述主舱体上, 所述穿壁连接器与所 述主舱体之间设置有第二密封构件; 所述穿壁连接器包括: 连接器壳体, 其具有两端幵口的凹腔;
隔离基板, 设置在所述凹腔内并将所述凹腔分隔成第一腔体和第二腔 体;
至少一个电极插针, 穿设于所述隔离基板, 所述电极插针具有用于与 一电线焊接的第一端和用于与另一电线焊接且与所述第一端相对的第 一山
J而;
第一填充体, 用于填充在所述第一腔体内并至少覆盖所述第一端的焊 点;
第二填充体, 用于填充在所述第二腔体内并至少覆盖所述第二端的焊 点。
根据权利要求 1所述的具有多个航行自由度的水下机器人, 其特征在 于, 还包括透光件; 所述主舱体上幵设有连通所述密封舱的贯通孔, 所述透光件连接在所述主舱体外侧并闭合所述贯通孔, 所述透光件与 所述主舱体之间设置有第三密封构件。
根据权利要求 1所述的具有多个航行自由度的水下机器人, 其特征在 于, 还包括水深检测装置, 所述水深检测装置设置在所述主舱体上。 根据权利要求 17所述的具有多个航行自由度的水下机器人, 其特征在 于, 所述水深检测装置包括安装支架和固定在所述安装支架上的水深 检测芯片, 所述安装支架与所述主舱体之间设置有第四密封构件。
[权利要求 19] 根据权利要求 1所述的具有多个航行自由度的水下机器人, 其特征在 于, 还包括接插件接头, 所述接插件接头连接在所述主舱体上且一端 置入所述密封舱内, 所述接插件接头与所述主舱体之间设置有第五密 封构件。
[权利要求 20] 根据权利要求 1所述的具有多个航行自由度的水下机器人, 其特征在 于, 所述主舱体包括顺序连接的上盖板、 中壳和下盖板, 所述上盖板 、 所述中壳和所述下盖板围合形成所述密封舱, 所述上盖板与所述中 壳之间设置有第六密封构件, 所述中壳与所述下盖板设置有第七密封 构件。
PCT/CN2017/096588 2017-08-09 2017-08-09 具有多个航行自由度的水下机器人 WO2019028693A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/096588 WO2019028693A1 (zh) 2017-08-09 2017-08-09 具有多个航行自由度的水下机器人
CN201780000792.4A CN107690406B (zh) 2017-08-09 2017-08-09 具有多个航行自由度的水下机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/096588 WO2019028693A1 (zh) 2017-08-09 2017-08-09 具有多个航行自由度的水下机器人

Publications (1)

Publication Number Publication Date
WO2019028693A1 true WO2019028693A1 (zh) 2019-02-14

Family

ID=61154030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096588 WO2019028693A1 (zh) 2017-08-09 2017-08-09 具有多个航行自由度的水下机器人

Country Status (2)

Country Link
CN (1) CN107690406B (zh)
WO (1) WO2019028693A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113968326A (zh) * 2021-09-26 2022-01-25 西安交通大学 一种矢量框架式水下机器人

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108563234A (zh) * 2018-05-09 2018-09-21 深圳市吉影科技有限公司 一种水下无人机自平衡控制方法及系统
CN109185035B (zh) * 2018-10-31 2020-04-03 宁波大学 一种自平衡的潮流能发电装置
CN109515658A (zh) * 2019-01-08 2019-03-26 天长市未名机器人有限责任公司 水下机器鱼主板舱结构
CN109911157A (zh) * 2019-04-15 2019-06-21 深圳鳍源科技有限公司 一种水下机器人、水下机器人的控制方法及装置
CN110304219A (zh) * 2019-07-05 2019-10-08 深圳潜水侠创新动力科技有限公司 水下推进器及水下组合推进器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101475055A (zh) * 2009-01-21 2009-07-08 上海广茂达伙伴机器人有限公司 水下机器人
US20120048172A1 (en) * 2010-08-31 2012-03-01 Lotz Jeffrey Paul Remotely Operated Submersible Vehicle
CN102483074A (zh) * 2009-08-17 2012-05-30 阿莫泰克有限公司 水泵电机及利用其的水泵
CN104960650A (zh) * 2015-06-16 2015-10-07 华中科技大学 一种六自由度水下机器人
CN206087176U (zh) * 2016-10-14 2017-04-12 福建海图智能科技有限公司 一种小型六维度运动水下机器人
CN106891073A (zh) * 2015-12-18 2017-06-27 上海航士海洋装备有限公司 六自由度水中移动平台

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1327029A1 (en) * 2000-05-31 2003-07-16 Soil Machine Dynamics Limited Underwater earth moving machine
DE102007033076A1 (de) * 2007-07-13 2009-01-15 Dr. Fritz Faulhaber Gmbh & Co. Kg Elektrischer Kleinstantrieb sowie Rückschlusselement und Verfahren zu dessen Herstellung
KR20160014055A (ko) * 2013-05-30 2016-02-05 레미 테크놀러지스 엘엘씨 유체 냉각형 하우징을 구비한 전기 기계
CN103785923B (zh) * 2014-02-24 2016-06-29 哈尔滨工程大学 一种基于rov的局部干法水下焊接机器人
CN104071318A (zh) * 2014-07-08 2014-10-01 中国船舶科学研究中心上海分部 一种水下搜救机器人
CN105644745B (zh) * 2016-02-19 2017-11-03 中国船舶重工集团公司第七一〇研究所 一种基于多推进器的水下航行器控制方法
CN106741798B (zh) * 2016-12-20 2018-07-24 福建海图智能科技有限公司 一种推进器
CN207106829U (zh) * 2017-08-09 2018-03-16 深圳微孚智能信息科技有限公司 具有多个航行自由度的水下机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101475055A (zh) * 2009-01-21 2009-07-08 上海广茂达伙伴机器人有限公司 水下机器人
CN102483074A (zh) * 2009-08-17 2012-05-30 阿莫泰克有限公司 水泵电机及利用其的水泵
US20120048172A1 (en) * 2010-08-31 2012-03-01 Lotz Jeffrey Paul Remotely Operated Submersible Vehicle
CN104960650A (zh) * 2015-06-16 2015-10-07 华中科技大学 一种六自由度水下机器人
CN106891073A (zh) * 2015-12-18 2017-06-27 上海航士海洋装备有限公司 六自由度水中移动平台
CN206087176U (zh) * 2016-10-14 2017-04-12 福建海图智能科技有限公司 一种小型六维度运动水下机器人

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113968326A (zh) * 2021-09-26 2022-01-25 西安交通大学 一种矢量框架式水下机器人

Also Published As

Publication number Publication date
CN107690406A (zh) 2018-02-13
CN107690406B (zh) 2019-06-28

Similar Documents

Publication Publication Date Title
WO2019028693A1 (zh) 具有多个航行自由度的水下机器人
CN207106829U (zh) 具有多个航行自由度的水下机器人
WO2018039937A1 (zh) 一种推进器
CN107933856B (zh) 一种水下机器人
EP3000718B1 (en) Electrical propulsion device
CN108835055A (zh) 捕捞机器人
CN208484811U (zh) 水下侦察机器人
JP2018130985A (ja) 水上乗り物の水中推進装置
CN208484814U (zh) 模组化水下机器人
RU2011139298A (ru) Устройство с винтами противоположного вращения, имеющее средство изменения шага винтов
CN111152906A (zh) 水下推进器
CN109050842A (zh) 模组化水下机器人
JP2009090961A (ja) ポッド型推進器及びポッド型ポンプ装置
CN107444593B (zh) 一种紧凑型高推动比水下机器人
CN111699132A (zh) 动力水翼系统
CN209913096U (zh) 一种防水密封接头组件及具有其的电动冲浪板
CN207496908U (zh) 一种磁耦合水下推进器
CN108860526A (zh) 水下侦察机器人
CN208549721U (zh) 捕捞机器人
CN207550460U (zh) 一种水下机器人
CN114802674B (zh) 推进装置
CN207346066U (zh) 水下航行器
CN205239871U (zh) 水下机器人用安全抛载装置
CN212530027U (zh) 水下推进器
CN213566419U (zh) 一种船用全浸水吊舱全回转推进器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/06/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17921083

Country of ref document: EP

Kind code of ref document: A1