WO2019027277A1 - Blood glucose meter and method for measuring blood glucose using same - Google Patents

Blood glucose meter and method for measuring blood glucose using same Download PDF

Info

Publication number
WO2019027277A1
WO2019027277A1 PCT/KR2018/008815 KR2018008815W WO2019027277A1 WO 2019027277 A1 WO2019027277 A1 WO 2019027277A1 KR 2018008815 W KR2018008815 W KR 2018008815W WO 2019027277 A1 WO2019027277 A1 WO 2019027277A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood glucose
sensor
electrode
unit
glucose meter
Prior art date
Application number
PCT/KR2018/008815
Other languages
French (fr)
Korean (ko)
Inventor
황인식
김해란
윤인준
한대우
김동철
Original Assignee
주식회사 드림보우
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170098943A external-priority patent/KR20190014875A/en
Priority claimed from KR1020180090166A external-priority patent/KR102173405B1/en
Application filed by 주식회사 드림보우 filed Critical 주식회사 드림보우
Publication of WO2019027277A1 publication Critical patent/WO2019027277A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof

Definitions

  • the present invention relates to a blood glucose meter and a blood glucose measuring method using the same. More particularly, the present invention relates to a blood glucose meter for measuring blood glucose and a blood glucose measuring method using the same.
  • Type I diabetes Diabetes is a major health concern, and treatment of Type I (insulin-dependent) diabetes, a more severe form of the condition, requires one or more insulin injections daily. Insulin controls the use of glucose or sugars in the blood and prevents hyperglycemia that can become ketosis if left untreated.
  • Type II diabetes non-insulin dependent diabetes monitor their blood glucose levels periodically, while controlling their condition by diet and exercise.
  • noninvasive blood glucose measurement methods using a reverse ionization method have been developed.
  • the blood glucose measurement method using the reverse movement electrophoresis method measures the glucose by extracting the intracellular fluid onto the skin, it is possible to measure a much smaller amount of clearance than the invasive blood glucose measurement method using the needle sensor, (Sweat, body hair, etc.).
  • Korean Patent No. 10-1512566 discloses a conventional blood glucose meter.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a blood glucose meter capable of measuring blood glucose with a small amount of foreign objects.
  • the blood glucose meter measures blood glucose by being installed on the skin.
  • the blood glucose meter is disposed at a predetermined position of the skin and applies current to the body.
  • (-) electrode unit and the distance between the end of the sensor unit and the (-) electrode unit is smaller than the distance between the sensor unit and the (-) electrode unit, And the distance between the end portion and the (+) electrode portion.
  • the blood glucose meter of the embodiment of the present invention there is an advantage that the foreign body sensation is small and the blood glucose can be accurately measured.
  • FIG. 1 is a schematic view showing a blood glucose meter according to an embodiment of the present invention installed on a human body.
  • FIGS. 2 and 3 are schematic sectional views of a blood glucose meter according to an embodiment of the present invention.
  • FIG. 4 is a schematic sectional view showing another embodiment of the blood glucose meter of the present invention.
  • FIG. 5 is a schematic block diagram of a blood glucose meter of the present invention.
  • FIG. 6 is a schematic flowchart of a blood glucose measurement method according to another embodiment of the present invention.
  • the blood glucose meter measures blood glucose by being installed on the skin.
  • the blood glucose meter is disposed at a predetermined position of the skin and applies current to the body.
  • (-) electrode unit and the distance between the end of the sensor unit and the (-) electrode unit is smaller than the distance between the sensor unit and the (-) electrode unit, And the distance between the end portion and the (+) electrode portion.
  • the sensor unit may further include a position defining unit that defines a positional relationship between the electrode unit and the sensor unit.
  • the electrode portion is fixed at a predetermined position on the position regulating portion, and the sensor portion can be subcutaneously penetrated at a predetermined position on the position regulating portion.
  • the position regulating portion may include an infiltration inducing portion for defining a position where the sensor portion is subcutaneously injected, and the sensor portion may be subcutaneously infiltrated through the infiltration inducing portion.
  • the infiltration inducing portion may be formed as a through space.
  • the sensor unit may further include a guide unit disposed on the through space to guide the sensor unit and the position defining unit apart from each other in the through space and to guide the sensor unit into the subcutaneous space.
  • the distance between the end of the sensor part and the (-) electrode part may be smaller than the distance between the end of the sensor part and the (+) electrode part.
  • the end of the sensor portion may be disposed in a footprint occupied by the negative (-) electrode portion.
  • the blood glucose measurement method according to another embodiment of the present invention may be a method of measuring blood glucose using the blood glucose meter.
  • FIG. 1 is a schematic view showing a blood glucose meter according to an embodiment of the present invention installed on a human body.
  • FIGS. 2 and 3 are schematic sectional views of a blood glucose meter according to an embodiment of the present invention.
  • FIG. 4 is a schematic sectional view showing another embodiment of the blood glucose meter of the present invention.
  • FIG. 5 is a schematic block diagram of a blood glucose meter of the present invention
  • FIG. 6 is a schematic flowchart of a blood glucose measurement method according to another embodiment of the present invention.
  • the blood glucose meter 100 may be configured to apply reverse ionization.
  • the blood glucose meter 100 may be configured to apply an immunoassay / semi-invasive blood glucose measurement principle using reverse ionization.
  • the blood glucose meter 100 may include a transmitter 10, an electrode unit 20, and a glucose sensor 30.
  • the transmitter 10 transmits data relating to the glucose concentration value or blood sugar value measured by the glucose sensor 30 to an output device (not shown) including the receiver.
  • the output device can use various known output devices (PC, smartphone, clock-type output device, etc.).
  • the electrode unit 20 is formed to include a negative pole 21 and a positive pole 22.
  • the negative electrode 21 and the negative electrode 21 are formed by reversing ionization so that a sufficient amount of glucose can be collected toward the negative electrode 21 And is responsible for applying current to the body.
  • the material of the electrode unit 20 may be an electrode containing platinum (Pt), gold (Au), silver (Ag) and carbon (C) or a silver / silver chloride And it is possible to form the electrode portion 20 in various materials.
  • the electrode portion 20 can be manufactured by any known method, for example, a screen printing method, sputtering or the like.
  • the electrode unit 20 in the form of a semi-invasive or fully invasive needle and insert it into the skin layer (semi-invasive) or subcutaneous (complete invasion).
  • the glucose sensor 30 may be formed in the form of a structure such as a fine needle or a needle, and an enzyme electrode (not shown) may be formed therein to be implanted subcutaneously in a surgical manner to directly measure the concentration of glucose in the intercellular fluid Can play a role.
  • the glucose sensor 30 used in the present invention can use various known types of sensors.
  • the glucose sensor 30 may be implanted subcutaneously by surgery.
  • the glucose sensor 30 may be placed under the subcutaneous implantation and inserted by a procedure.
  • the method for measuring the glucose concentration through the glucose sensor 30 used in the present invention can be a known electrochemical analysis method.
  • the electrochemical analysis method is a method in which oxygen is consumed from glucose extracted by an enzyme electrode (not shown) To generate hydrogen peroxide, and oxidizing the produced hydrogen peroxide by an appropriate potential to measure the amount of generated electrons, thereby measuring the concentration of glucose.
  • the method of measuring the glucose concentration through the glucose sensor 30 is not limited to the above-described method. If the method is capable of measuring glucose on a concentrated region by being disposed in a region where glucose is concentrated by reverse- It can be variously modified.
  • FIG. 1 a blood glucose measurement method according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 and 6.
  • FIG. 1 a blood glucose measurement method according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 and 6.
  • the blood glucose measurement method includes the step of inserting the glucose sensor 30 into the electrode unit 20 while contacting the skin with the skin and / (S20), and measuring the concentration of glucose (S30) through the glucose sensor (30).
  • the glucose sensor 30 can be inserted in the direction of the (-) pole 21 while allowing the electrode unit 20 to contact the skin and / or subcutaneously.
  • the electrode unit 20 in the form of a semi-invasive or fully invasive needle and insert it into the skin layer (semi-invasive) or subcutaneous (complete invasion).
  • the glucose sensor 30 has an enzyme electrode (not shown) formed therein in the form of a fine needle and is inserted subcutaneously in the (-) pole 21 direction of the electrode unit 20 to directly measure the glucose concentration in the intercellular fluid Can be measured.
  • a current is applied to the transdermal interstitial fluid, so that a cation such as Na + in the intracellular fluid flows in the (-) pole 21 direction and an anion such as Cl- 22), and glucose in the interstitial fluid flows through the ion flow as it moves in the (-) pole 21 direction as shown by the arrow in Fig.
  • the glucose concentration is measured through the glucose sensor 30 after the glucose concentration in the (-) pole 21 direction.
  • the concentration of glucose through the glucose sensor 30 can be measured by a known electrochemical analysis method.
  • the electrochemical analysis method is a method in which glucose is caused to generate hydrogen peroxide by the glucose oxidase immobilized in the glucose sensor 30 and a constant voltage is applied to the generated hydrogen peroxide to measure the electric current, Can be measured.
  • the measured glucose concentration is transmitted to the output device (not shown) including the receiver located outside the body via the transmitter 10, and it is possible to confirm the glucose concentration measured through the output device (not shown).
  • the glucose concentration continuously measured in a predetermined time unit can be stored in an output device (not shown), and it is possible to record and manage the glucose concentration for several days.
  • the glucose is concentrated in the (-) pole 21 direction due to the current applied through the electrode unit 20, Since the concentration of glucose is measured through the inserted glucose sensor 30, the measurement accuracy can be remarkably improved as compared with the conventional blood glucose measurement method.
  • the blood glucose measurement method using the invasive continuous blood glucose meter 100 and the blood glucose measurement method using the reverse ionization according to the present invention can be carried out by applying an electric current through the electrode unit 20, The concentration of glucose is measured through the glucose sensor 30 inserted in the (-) pole 21 direction, so that the measurement accuracy can be remarkably improved as compared with the conventional blood glucose meter 100 .
  • the accurate glucose concentration can be measured even if the depth to which the glucose sensor 30 penetrates subcutaneously is made small, the foreign substance feeling can be remarkably lowered.
  • the electrode unit 20 may be arranged at a predetermined position on the skin to apply a current to the body.
  • the electrode portion 20 may be disposed on the epidermis of the skin, or may be inserted into the dermis, subcutaneous fat layer, or the like.
  • the glucose sensor 30 (hereinafter, referred to as a sensor portion) may be a structure for penetrating subcutaneously to measure glucose.
  • the sensor unit 30 may directly measure the amount of glucose, but may also indirectly measure the amount of glucose by acquiring data and / or chemical changes that may be generated by contact with glucose.
  • the electrode unit 20 may include a positive electrode 22 (hereinafter referred to as a positive electrode unit) and a negative electrode 21 (hereinafter referred to as a negative electrode unit) (+) Electrode portion 22 and the (-) electrode portion 21 may be spaced apart from each other by a predetermined distance, and may be disposed at a predetermined position of the skin.
  • a positive electrode 22 hereinafter referred to as a positive electrode unit
  • a negative electrode 21 hereinafter referred to as a negative electrode unit
  • Electrode portion 22 and the (-) electrode portion 21 may be spaced apart from each other by a predetermined distance, and may be disposed at a predetermined position of the skin.
  • the distance between the end of the sensor unit 30 subcutaneously subcutaneously and the (-) electrode unit 21 provided on the skin is determined by the distance between the end of the sensor unit 30 infiltrated subcutaneously, (+) Electrode portion 22 may be different.
  • the separation distance between the end (lower end) of the sensor unit 30 and the (-) electrode unit 21, which is subcutaneously placed at a predetermined position The distance between the end of the sensor unit 30 (the lower end) and the (+) electrode unit 22 may be different.
  • the distance between the end of the sensor unit 30 and the negative electrode unit 21 may be smaller than the distance between the end of the sensor unit 30 and the positive electrode unit 22.
  • the end portion of the sensor portion 30 may be disposed offset toward the (-) electrode portion 21 from the (+) electrode portion 22.
  • the end of the sensor unit 30 may be disposed within a footprint A occupied by the (-) electrode unit 21.
  • (-) electrode unit 21 is disposed at a predetermined position on the skin, the lower side of the (-) electrode unit 21 is connected to the footprint of the (-) electrode unit 21, An end portion of the sensor unit 30 may be disposed within a footprint A defined by the (-) electrode unit 21.
  • the sensor unit 30 can be easily brought into contact with glucose guided to the (-) electrode unit 21.
  • the end of the sensor unit 30 described above may refer to a lower end of the sensor unit 30, but it may be formed of a material capable of reacting with glucose in the sensor unit 30, It may mean the end of the part.
  • the blood glucose meter 100 may further include a position regulating unit 40 for regulating the positional relationship between the electrode unit 20 and the sensor unit 30.
  • the position regulating unit 40 may determine the positional relationship between the (-) electrode unit 21 and the (+) electrode unit 22, the positional relationship between the sensor unit 30 and the (+) electrode unit 22, And / or the positional relationship between the sensor unit 30 and the (-) electrode unit 21 may be defined.
  • the positional relationship refers to a positional relationship between the electrode unit 20 and the acid sensor unit 30 when the electrode unit 20 and the sensor unit 30 are installed on the human body, And so on.
  • the electrode unit 20 is installed on the skin and fixed directly or indirectly to the skin.
  • the sensor unit 30 is penetrated subcutaneously, and the maximum penetration state The positional relationship between the electrode unit 20 and the sensor unit 30 can be defined.
  • the electrode unit 20 may be fixed at a predetermined position on the position defining unit 40.
  • (+) electrode portion 22 and / or the (-) electrode portion 21 may be fixed at a predetermined position on the position defining portion 40.
  • the electrode unit 20 may be formed on the lower surface of the position defining unit 40 by a screen printing method, sputtering, or the like, or may be adhesively fixed by a mechanical coupling, an adhesive, or the like.
  • the electrode unit 20 can be fixed at a predetermined position on the lower side of the position defining unit 40.
  • the sensor unit 30 can be subcutaneously infiltrated at a predetermined position on the position defining unit 40.
  • the position regulating unit 40 may define the position at which the sensor unit 30 is subcutaneously infiltrated.
  • the position regulating portion 40 may include an infiltration inducing portion for defining a position at which the sensor portion 30 penetrates subcutaneously.
  • the sensor portion 30 may be subcutaneously penetrated through the infiltration inducing portion .
  • the position regulating unit 40 may include the infiltration inducing unit that previously defines the position where the sensor unit 30 is subcutaneously infiltrated.
  • the position regulating portion 40 not only defines the position of the electrode portion 20 but also defines the position of the sensor portion 30 penetrating the subcutaneous body, and consequently, the electrode portion 20
  • the positional relationship between the sensor units 30 can be defined.
  • the infiltration inducing portion may be formed as a through space S.
  • the infiltration inducing portion may be a space formed through a part of the position defining portion 40.
  • the penetration inducing portion may be formed between the positive electrode portion 22 and the negative electrode portion 21 and further may be formed to be inclined toward the negative electrode portion 21 toward the lower side, And may be formed as a through space (S).
  • the user can insert the sensor unit 30 subcutaneously through the infiltration inducing unit.
  • the infiltration inducing portion may be the penetrating space S but is not limited thereto and may be an identification mark distinguished from other portions of the position regulating portion 40.
  • the blood glucose meter 100 may be disposed on the through-hole S so that the sensor unit 30 and the position defining unit 40 are spaced apart from each other on the through-hole S, And a guide portion 50 for guiding the portion 30 to penetrate subcutaneously.
  • the guide portion 50 is configured such that the sensor portion 30 disposed on the through space S and the position defining portion 40 defining the through space S are spaced apart from each other .
  • the guide part 50 is disposed on the through space S so that the sensor part 30 inserted into the through space S is guided by the guide can do.
  • the guide portion 50 may be a pipe having a hollow shape.
  • the sensor unit 30 can be subcutaneously penetrated through the hollow formed by the guide unit 50.
  • the guide portion 50 may be attached to the position regulating portion 40 or may have a material different from that of the position regulating portion 40.
  • the guide part 50 may be connected to the sensor part 30 and may be moved in conjunction with the sensor part 30.
  • the user can install the position defining portion 40 on which the electrode portion 20 is mounted on the skin.
  • the lower surface of the position regulating portion 40 facing the skin may be formed with an adhesive layer so as not to be separated from a predetermined position of the skin, or may be fixed to a predetermined position of the human body with a thermal member such as a band .
  • the position defining portion 40 may be a pad having an adhesive layer formed on a lower surface thereof, or may be a case.
  • the user can fix the position regulating portion 40 at a predetermined position on the skin.
  • the (+) electrode unit 22 and the (-) electrode unit 21 can be fixed at a predetermined position of the skin by the position defining unit 40.
  • the user can subcutaneously infiltrate the sensor portion 30.
  • the user can subcutaneously infiltrate the sensor unit 30 through the infiltration induction unit provided in the position defining unit 40.
  • the extent to which the sensor unit 30 is subcutaneously infiltrated can be predetermined.
  • the degree of penetration into the sensor unit 30 can be predetermined because the sensor unit 30 is in direct / indirect contact with the position defining unit 40 and / or the guide unit 50.
  • the sensor unit 30 when a user applies an external force to infiltrate the sensor unit 30, the user can infiltrate the sensor unit 30 to a predetermined degree, When an external force is applied to the sensor unit 30, the sensor unit 30 directly or indirectly contacts the sensor unit 30 with the position defining unit 40 and / or the guide unit 50, . ≪ / RTI >
  • the position regulating portion 40 and / or the guide portion 50 not only define the positional relationship between the sensor portion 30 and the electrode portion 20, The degree of penetration into the subcutaneous tissue may be defined.
  • the electrode unit 20 may apply current to guide glucose to the (-) electrode unit 21 side.
  • the sensor unit 30 can measure blood glucose by reacting with glucose guided to the (-) electrode unit 21.
  • FIG. 4 is a diagram showing another embodiment of the blood glucose meter 100.
  • FIG. 4 is a diagram showing another embodiment of the blood glucose meter 100.
  • the infiltration inducing portion may be formed on the footprint A defined by the (-) electrode portion A21.
  • the infiltration inducing portion may be formed at a position where the infiltration inducing portion is surrounded by the (-) electrode portion A21 in at least one direction, and the sensor portion 30 penetrating subcutaneously through the infiltration inducing portion may be formed in the (- And can be disposed on the footprint A specified by the electrode section A21.
  • the blood glucose meter 100 includes the transmitter 10, the electrode unit 20, the sensor unit 30, and the controller 60 .
  • the control unit 60 is a configuration that implements control of current application of the electrode unit 20, calculation / calculation of data sensed by the sensor unit 30, and / or control of operation of the transmitter 10 .
  • the transmitter 10, the electrode unit 20, the sensor unit 30, the controller 60, the position regulating unit 40, and the guide unit 50 May be configured such that at least one is mutually desorbed from the other.
  • the electrode unit 20 may be detached from the position defining unit 40 to be replaced with a new electrode unit 20, and the guide unit 50 may be provided with the position defining unit 40, It may be removable.
  • the position specifying unit 40 may be detached from the transmitter 10.
  • the electrode unit 20 is moved by an external force of the user and penetrates subcutaneously through the penetration inducing unit.
  • the electrode unit 20 is not limited to the electrode unit 20, And may be used by the user in a state in which it is disposed at a predetermined position on the position defining portion 40.
  • the electrode portion 20 fixed to the position regulating portion 40 is provided on the skin and fixed to the position regulating portion 40
  • the sensor unit 30 may be subcutaneously infiltrated.
  • blood glucose meter 10 has been described for the purpose of measuring blood glucose, the technical idea of the present invention is not limited to the use of blood glucose measurement. It can also be used for other purposes.

Abstract

A blood glucose meter according to an embodiment of the present invention is placed on the skin to measure blood glucose, the blood glucose meter comprising: an electrode unit arranged at a certain position on the skin to apply a current to the body; and a sensor unit penetrating under the skin to measure glucose, wherein the electrode unit comprises a positive (+) electrode unit and a negative (-) electrode unit, and a separation distance between the end of the sensor unit and the negative (-) electrode unit is different from a separation distance between the end of the sensor unit and the positive (+) electrode unit.

Description

혈당 측정기 및 이를 이용한 혈당측정방법Blood glucose meter and method for measuring blood glucose using the same
본 발명은 혈당 측정기 및 이를 이용한 혈당측정방법에 관한 것으로서, 더욱 상세하게는 피부에 설치되어 혈당을 측정하는 혈당 측정기 및 이를 이용한 혈당측정방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blood glucose meter and a blood glucose measuring method using the same. More particularly, the present invention relates to a blood glucose meter for measuring blood glucose and a blood glucose measuring method using the same.
많은 진단시험이 혈액 또는 다른 체액에 있는 물질의 양 또는 존재를 평가하기 위해 사람에게 일상적으로 행해지고 있다.Many diagnostic tests are routinely performed on humans to assess the amount or presence of substances in blood or other body fluids.
당뇨병은 주된 건강 관심사이며, 보다 심한 형태의 상태인 타입 I(인슐린의존성) 당뇨병의 치료는 매일 1회 이상의 인슐린 주사를 필요로 한다. 인슐린은 혈액에서의 글루코스 또는 당의 이용을 제어하고, 고치지 않은 채로 있으면 케톤증이 될 수 있는 고혈당증을 예방한다.Diabetes is a major health concern, and treatment of Type I (insulin-dependent) diabetes, a more severe form of the condition, requires one or more insulin injections daily. Insulin controls the use of glucose or sugars in the blood and prevents hyperglycemia that can become ketosis if left untreated.
타입 I 당뇨병의 합병증을 피하거나 적어도 최소화하는 수단으로서 혈중 글루코스의 농도를 자주 모니터링하는 것은 필수적이다. 또한, 타입 II(비 인슐린의존성) 당뇨병이 있는 환자는 식이요법 및 운동에 의해 그 상태를 제어하면서, 주기적으로 혈중 글루코스의 농도를 모니터링하는 것이 필수적이다.It is essential to monitor blood glucose levels frequently as a means of avoiding or at least minimizing the complications of Type I diabetes. In addition, it is essential that patients with Type II (non-insulin dependent) diabetes monitor their blood glucose levels periodically, while controlling their condition by diet and exercise.
종래의 혈중 글루코스 모니터링 방법은 일반적으로 바늘 형태의 글루코스 센서를 이용한 침습형 글루코스 모니터링 시스템을 사용하였으나, 바늘 센서를 사용함에 따른 삽입 통증, 이물감, 감염 가능성 등의 문제점이 있었다. 또한, 바늘 센서에 우연히 접촉되는 미량의 클루코스만 측정하기 때문에, 정확도가 떨어지는 문제점이 있었다.Conventional blood glucose monitoring methods generally use an invasive glucose monitoring system using a needle-shaped glucose sensor. However, there has been a problem of insertion pain, foreign body sensation, infection possibility, and the like due to the use of a needle sensor. In addition, since only a very small amount of cluchose that comes into contact with the needle sensor is measured, there is a problem that accuracy is lowered.
상술한 바늘 센서의 삽입에 따른 단점들을 보완하고자, 역이온영동법을 이용한 비침습형 혈당측정 방법들이 개발되었다. 하지만, 역이동영동법을 이용한 혈당측정 방법은 세포간액을 피부 위로 추출하여 글루코스를 측정하기 때문에, 바늘 센서를 이용한 침습형 혈당측정 방법보다 더욱 미량의 클루코스를 측정하게 되어, 정확도가 더욱 떨어지는 문제점이 있었으며, 피부 타입이나 조건(땀, 체모 등)에 의해 영향을 많이 받는 문제점이 있었다.In order to compensate for the disadvantages of insertion of the needle sensor described above, noninvasive blood glucose measurement methods using a reverse ionization method have been developed. However, since the blood glucose measurement method using the reverse movement electrophoresis method measures the glucose by extracting the intracellular fluid onto the skin, it is possible to measure a much smaller amount of clearance than the invasive blood glucose measurement method using the needle sensor, (Sweat, body hair, etc.).
한편, 혈당 측정기에 관한 종래기술로는 대한민국등록특허 10-1512566호가 있다.On the other hand, Korean Patent No. 10-1512566 discloses a conventional blood glucose meter.
본 발명은 상기와 같은 문제를 해결하기 위한 것으로서, 이물감이 적으며 정확한 혈당을 측정할 수 있는 혈당 측정기 및 이를 이용한 혈당측정방법을 제공하고자 함이다.Disclosure of Invention Technical Problem [8] Accordingly, the present invention has been made in view of the above problems, and it is an object of the present invention to provide a blood glucose meter capable of measuring blood glucose with a small amount of foreign objects.
본 발명이 해결하고자 하는 과제가 상술한 과제로 제한되는 것은 아니며, 언급되지 아니한 과제들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.It is to be understood that the present invention is not limited to the above-described embodiments and that various changes and modifications may be made without departing from the spirit and scope of the present invention as defined by the following claims .
본 발명의 일 실시예에 따른 혈당 측정기는 피부에 설치되어 혈당을 측정하는 것으로서, 피부의 소정의 위치에 배치되어 체내에 전류를 인가하는 전극부; 및 피하에 침투되어 글루코스를 측정하는 센서부;를 포함하며, 상기 전극부는 (+)전극부 및 (-)전극부를 구비하고, 상기 센서부의 단부와 상기 (-)전극부 간의 이격거리는 상기 센서부의 단부와 상기 (+)전극부 간의 이격거리와 다르다.The blood glucose meter according to an embodiment of the present invention measures blood glucose by being installed on the skin. The blood glucose meter is disposed at a predetermined position of the skin and applies current to the body. (-) electrode unit, and the distance between the end of the sensor unit and the (-) electrode unit is smaller than the distance between the sensor unit and the (-) electrode unit, And the distance between the end portion and the (+) electrode portion.
본 발명의 일 실시예에 따른 혈당 측정기에 의하면 이물감이 적으며 정확한 혈당을 측정할 수 있는 장점이 있다.According to the blood glucose meter of the embodiment of the present invention, there is an advantage that the foreign body sensation is small and the blood glucose can be accurately measured.
본 발명의 효과가 상술한 효과들로 제한되는 것은 아니며, 언급되지 아니한 효과들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확히 이해될 수 있을 것이다.The effects of the present invention are not limited to the above-mentioned effects, and the effects not mentioned can be clearly understood by those skilled in the art from the present specification and the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 혈당 측정기가 인체에 설치된 것을 도시한 개략도.1 is a schematic view showing a blood glucose meter according to an embodiment of the present invention installed on a human body.
도 2 및 도 3은 본 발명의 일 실시예에 따른 혈당 측정기의 개략 단면도.2 and 3 are schematic sectional views of a blood glucose meter according to an embodiment of the present invention.
도 4는 본 발명의 혈당 측정기의 다른 일 실시예를 나타내는 개략 단면도.4 is a schematic sectional view showing another embodiment of the blood glucose meter of the present invention.
도 5는 본 발명의 혈당 측정기의 개략 블록도.5 is a schematic block diagram of a blood glucose meter of the present invention.
도 6은 본 발명의 다른 일 실시예에 따른 혈당측정방법의 개략 순서도.FIG. 6 is a schematic flowchart of a blood glucose measurement method according to another embodiment of the present invention. FIG.
이하에서는 도면을 참조하여 본 발명의 구체적인 실시예를 상세하게 설명한다. 다만, 본 발명의 사상은 제시되는 실시예에 제한되지 아니하고, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서 다른 구성요소를 추가, 변경, 삭제 등을 통하여, 퇴보적인 다른 발명이나 본 발명 사상의 범위 내에 포함되는 다른 실시예를 용이하게 제안할 수 있을 것이나, 이 또한 본원 발명 사상 범위 내에 포함된다고 할 것이다. Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings. It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the inventive concept. Other embodiments falling within the scope of the inventive concept may readily be suggested, but are also considered to be within the scope of the present invention.
본 발명의 일 실시예에 따른 혈당 측정기는 피부에 설치되어 혈당을 측정하는 것으로서, 피부의 소정의 위치에 배치되어 체내에 전류를 인가하는 전극부; 및 피하에 침투되어 글루코스를 측정하는 센서부;를 포함하며, 상기 전극부는 (+)전극부 및 (-)전극부를 구비하고, 상기 센서부의 단부와 상기 (-)전극부 간의 이격거리는 상기 센서부의 단부와 상기 (+)전극부 간의 이격거리와 다를 수 있다.The blood glucose meter according to an embodiment of the present invention measures blood glucose by being installed on the skin. The blood glucose meter is disposed at a predetermined position of the skin and applies current to the body. (-) electrode unit, and the distance between the end of the sensor unit and the (-) electrode unit is smaller than the distance between the sensor unit and the (-) electrode unit, And the distance between the end portion and the (+) electrode portion.
또, 상기 전극부와 상기 센서부간의 위치관계를 규정하는 위치 규정부;를 더 포함할 수 있다.The sensor unit may further include a position defining unit that defines a positional relationship between the electrode unit and the sensor unit.
또, 상기 전극부는 상기 위치 규정부 상의 소정의 위치에 고정되며, 상기 센서부는 상기 위치 규정부 상의 소정의 위치에서 피하에 침투될 수 있다.In addition, the electrode portion is fixed at a predetermined position on the position regulating portion, and the sensor portion can be subcutaneously penetrated at a predetermined position on the position regulating portion.
또, 상기 위치 규정부는 상기 센서부가 피하에 침투되는 위치를 규정하는 침투 유도부를 구비하고, 상기 센서부는 상기 침투 유도부를 통해 피하에 침투될 수 있다.The position regulating portion may include an infiltration inducing portion for defining a position where the sensor portion is subcutaneously injected, and the sensor portion may be subcutaneously infiltrated through the infiltration inducing portion.
또, 상기 침투 유도부는 관통공간으로 형성될 수 있다.In addition, the infiltration inducing portion may be formed as a through space.
또, 상기 관통공간 상에 배치되어 상기 관통공간 상에서 상기 센서부와 상기 위치 규정부가 상호 이격되도록 하고, 상기 센서부가 피하에 침투되도록 가이드하는 가이드부;를 더 포함할 수 있다.The sensor unit may further include a guide unit disposed on the through space to guide the sensor unit and the position defining unit apart from each other in the through space and to guide the sensor unit into the subcutaneous space.
또, 상기 센서부의 단부와 상기 (-)전극부 간의 이격거리는 상기 센서부의 단부와 상기 (+)전극부 간의 이격거리 보다 작을 수 있다.The distance between the end of the sensor part and the (-) electrode part may be smaller than the distance between the end of the sensor part and the (+) electrode part.
또, 상기 센서부의 단부는 (-)전극부가 차지하는 풋프린트(footprint) 내에 배치될 수 있다.In addition, the end of the sensor portion may be disposed in a footprint occupied by the negative (-) electrode portion.
본 발명의 다른 일 실시예에 따른 혈당측정방법는 상기 혈당 측정기를 이용하여 혈당을 측정하는 방법일 수 있다.The blood glucose measurement method according to another embodiment of the present invention may be a method of measuring blood glucose using the blood glucose meter.
각 실시예의 도면에 나타나는 동일한 사상의 범위 내의 기능이 동일한 구성요소는 동일한 참조부호를 사용하여 설명한다.The same reference numerals are used to designate the same components in the same reference numerals in the drawings of the embodiments.
도 1은 본 발명의 일 실시예에 따른 혈당 측정기가 인체에 설치된 것을 도시한 개략도이다.1 is a schematic view showing a blood glucose meter according to an embodiment of the present invention installed on a human body.
도 2 및 도 3은 본 발명의 일 실시예에 따른 혈당 측정기의 개략 단면도이다.2 and 3 are schematic sectional views of a blood glucose meter according to an embodiment of the present invention.
도 4는 본 발명의 혈당 측정기의 다른 일 실시예를 나타내는 개략 단면도이다.4 is a schematic sectional view showing another embodiment of the blood glucose meter of the present invention.
도 5는 본 발명의 혈당 측정기의 개략 블록도이며, 도 6은 본 발명의 다른 일 실시예에 따른 혈당측정방법의 개략 순서도이다.FIG. 5 is a schematic block diagram of a blood glucose meter of the present invention, and FIG. 6 is a schematic flowchart of a blood glucose measurement method according to another embodiment of the present invention.
첨부된 도면은 본 발명의 기술적 사상을 보다 명확하게 표현하기 위하여, 본 발명의 기술적 사상과 관련성이 떨어지거나 당업자로부터 용이하게 도출될 수 있는 부분은 간략화 하거나 생략하였다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
도 1에 도시된 바와 같이, 본 발명의 실시예에 따른 혈당 측정기(100)는 역이온영동을 응용하는 구성일 수 있다.As shown in FIG. 1, the blood glucose meter 100 according to the embodiment of the present invention may be configured to apply reverse ionization.
일례로, 상기 혈당 측정기(100)는 역이온영동을 응용하되 침습형/반침습형 혈당 측정원리를 응용한 구성일 수 있다.For example, the blood glucose meter 100 may be configured to apply an immunoassay / semi-invasive blood glucose measurement principle using reverse ionization.
일례로, 상기 혈당 측정기(100)는 송신기(10), 전극부(20) 및 글루코스 센서(30)를 포함할 수 있다.For example, the blood glucose meter 100 may include a transmitter 10, an electrode unit 20, and a glucose sensor 30.
일례로, 송신기(10)는 글루코스 센서(30)에서 측정한 글루코스 농도값 또는 혈당값과 관련된 데이터를 수신기를 포함하는 출력장치(미도시)에 전송하는 역할을 한다. For example, the transmitter 10 transmits data relating to the glucose concentration value or blood sugar value measured by the glucose sensor 30 to an output device (not shown) including the receiver.
출력장치는 공지된 다양한 형태의 출력장치(PC, 스마트폰, 시계형태의 출력장치 등)를 사용하는 것이 가능하다.The output device can use various known output devices (PC, smartphone, clock-type output device, etc.).
전극부(20)는 (-)극(21) 및 (+)극(22)을 포함하여 형성되며, 역이온영동에 의해 (-)극(21) 쪽으로 충분한 양의 글루코스가 모일 수 있도록 피부를 통하여 체내에 전류를 인가하는 역할을 한다.The electrode unit 20 is formed to include a negative pole 21 and a positive pole 22. The negative electrode 21 and the negative electrode 21 are formed by reversing ionization so that a sufficient amount of glucose can be collected toward the negative electrode 21 And is responsible for applying current to the body.
이때, 전극부(20)의 재질은 백금(Pt), 금(Au), 은(Ag) 및 이들에 탄소(C)를 포함하는 전극 또는 은/염화은(Ag/AgCl) 전극일 수 있으나, 이에 한정되는 것은 아니며, 다양한 재질로 전극부(20)를 형성하는 것이 가능하다. At this time, the material of the electrode unit 20 may be an electrode containing platinum (Pt), gold (Au), silver (Ag) and carbon (C) or a silver / silver chloride And it is possible to form the electrode portion 20 in various materials.
상기 전극부(20)는 공지된 임의의 방법, 예를 들면, 스크린 프린팅 방법 및 스퍼터링 등에 의하여 제조될 수 있다. The electrode portion 20 can be manufactured by any known method, for example, a screen printing method, sputtering or the like.
이때, 전극부(20)를 반침습 또는 완전 침습 방식의 바늘 형태로 형성하여 피부층 내부(반침습) 또는 피하층(완전 침습)으로 삽입하는 것도 가능하다.At this time, it is also possible to form the electrode unit 20 in the form of a semi-invasive or fully invasive needle and insert it into the skin layer (semi-invasive) or subcutaneous (complete invasion).
글루코스 센서(30)는 미세한 바늘 또는 바늘과 같은 구조물 형태로 형성될 수 있으며, 내부에 효소전극(미도시)을 형성하여 외과적인 방법으로 피하에 이식되어 세포 간액에서의 글루코스의 농도를 직접 측정하는 역할을 할 수 있다. The glucose sensor 30 may be formed in the form of a structure such as a fine needle or a needle, and an enzyme electrode (not shown) may be formed therein to be implanted subcutaneously in a surgical manner to directly measure the concentration of glucose in the intercellular fluid Can play a role.
세포 간액 내의 글루코스 농도와 혈관 내의 글루코스 농도는 서로 연동되어 변하기 때문에, 세포 간액 내의 글루코스의 농도와 혈관 내의 글루코스의 농도는 거의 비례하는 값을 갖는다.Since the concentration of glucose in the intracellular fluid and the concentration of glucose in the blood vessel are changed in synchronization with each other, the concentration of glucose in the intracellular fluid and the concentration of glucose in the blood vessel are almost proportional to each other.
본 발명에 사용되는 글루코스 센서(30)는 공지된 다양한 형태의 센서를 사용하는 것이 가능하다.The glucose sensor 30 used in the present invention can use various known types of sensors.
일례로, 글루코스 센서(30)는 시술에 의해 피하에 이식될 수도 있다.As an example, the glucose sensor 30 may be implanted subcutaneously by surgery.
즉, 글루코스 센서(30)는 시술에 의해 피하에 완전 이식 및 삽입되어 배치될 수도 있다.That is, the glucose sensor 30 may be placed under the subcutaneous implantation and inserted by a procedure.
본 발명에서 사용하는 글루코스 센서(30)를 통한 글루코스 농도 측정방법은 공지된 기술인 전기화학적 분석방법을 사용할 수 있으며, 전기화학적 분석방법이란, 효소전극(미도시)에 의해 추출된 글루코스로부터 산소를 소모하여 과산화수소를 생성시키고, 생성된 과산화수소에 적정 전위를 걸어 산화시킴으로써, 발생하는 전자의 양을 측정함으로써, 글루코스의 농도를 측정하는 방식을 의미할 수 있다.The method for measuring the glucose concentration through the glucose sensor 30 used in the present invention can be a known electrochemical analysis method. The electrochemical analysis method is a method in which oxygen is consumed from glucose extracted by an enzyme electrode (not shown) To generate hydrogen peroxide, and oxidizing the produced hydrogen peroxide by an appropriate potential to measure the amount of generated electrons, thereby measuring the concentration of glucose.
다만, 글루코스 센서(30)를 통한 글루코스 농도 측정방법은 앞서 설명한 방식에 한정되는 것은 아니며, 역이온영동에 의해 글루코스가 집중된 영역에 배치되어 집중된 영역 상의 글루코스를 측정할 수 있는 방법이라면 당업자의 입장에서 다양하게 변형가능 하다.However, the method of measuring the glucose concentration through the glucose sensor 30 is not limited to the above-described method. If the method is capable of measuring glucose on a concentrated region by being disposed in a region where glucose is concentrated by reverse- It can be variously modified.
이하, 도 1 및 도 6을 참고하여 본 발명의 실시예에 따른 혈당측정방법에 대하여 구체적으로 설명하도록 한다.Hereinafter, a blood glucose measurement method according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 and 6. FIG.
본 발명의 실시예에 따른 혈당측정방법은 전극부(20)를 피부에 접촉 및/또는 피하에 침투시킴과 동시에 글루코스 센서(30)를 삽입하는 단계(S10), 전극부(20)를 통하여 전류를 인가하는 단계(S20), 글루코스 센서(30)를 통해 글루코스의 농도를 측정하는 단계(S30)로 크게 나눌 수 있다. The blood glucose measurement method according to the embodiment of the present invention includes the step of inserting the glucose sensor 30 into the electrode unit 20 while contacting the skin with the skin and / (S20), and measuring the concentration of glucose (S30) through the glucose sensor (30).
이하, 각 단계별로 더욱 상세하게 설명하기로 한다.Hereinafter, each step will be described in more detail.
먼저, 전극부(20)를 피부에 접촉 및/또는 피하에 침투시킴과 동시에 (-)극(21) 방향으로 글루코스 센서(30)를 삽입할 수 있다. 이때, 전극부(20)를 반침습 또는 완전 침습 방식의 바늘 형태로 형성하여 피부층 내부(반침습) 또는 피하층(완전 침습)으로 삽입하는 것도 가능하다.First, the glucose sensor 30 can be inserted in the direction of the (-) pole 21 while allowing the electrode unit 20 to contact the skin and / or subcutaneously. At this time, it is also possible to form the electrode unit 20 in the form of a semi-invasive or fully invasive needle and insert it into the skin layer (semi-invasive) or subcutaneous (complete invasion).
글루코스 센서(30)는 미세한 바늘 형태로 내부에 효소전극(미도시)이 형성되어 있으며, 전극부(20)의 (-)극(21) 방향으로 피하에 삽입되어 세포 간액에서의 글루코스 농도를 직접 측정할 수 있다.The glucose sensor 30 has an enzyme electrode (not shown) formed therein in the form of a fine needle and is inserted subcutaneously in the (-) pole 21 direction of the electrode unit 20 to directly measure the glucose concentration in the intercellular fluid Can be measured.
이후, 전극부(20)를 통하여 전류를 인가시킨다. Thereafter, an electric current is applied through the electrode portion 20.
전극부(20)를 통해 전류가 인가되면, 경피 내 세포 간액에 전류가 인가되어 세포 간액 내 Na+등의 양이온은 (-)극(21) 방향으로, Cl-등의 음이온은 (+)극(22) 방향으로의 이온 흐름이 형성되고, 이러한 이온 흐름을 통해 세포간액 내의 글루코스가 도 1의 화살표 방향과 같이 (-)극(21) 방향으로 이동하면서 집중되어 농도가 높아지는 상태가 된다. When an electric current is applied through the electrode unit 20, a current is applied to the transdermal interstitial fluid, so that a cation such as Na + in the intracellular fluid flows in the (-) pole 21 direction and an anion such as Cl- 22), and glucose in the interstitial fluid flows through the ion flow as it moves in the (-) pole 21 direction as shown by the arrow in Fig.
이때, 글루코스가 자체로 이온성을 띠지는 않지만, Na+등의 양이온이 (-)극(21) 방향으로 이동하는 이온흐름에 편승하여 함께 (-)극(21) 방향으로 이동하게 된다.At this time, although the glucose itself does not become ionic, cations such as Na + migrate toward the (-) pole 21 together with the ion current moving in the (-) pole 21 direction.
(-)극(21) 방향으로 글루코스가 집중된 후, 글루코스 센서(30)를 통해 글루코스의 농도를 측정한다. The glucose concentration is measured through the glucose sensor 30 after the glucose concentration in the (-) pole 21 direction.
글루코스 센서(30)를 통한 글루코스의 농도 측정은 공지된 기술인 전기화학적 분석방법을 사용할 수 있다. 전기화학적 분석방법은 글루코스를 글루코스 센서(30) 내에 고정화되어 있는 포도당 산화효소에 의해 과산화수소를 생성하게 하고, 생성된 과산화수소에 일정 전압을 인가하여 산화되면서 발생되는 전류, 즉 전기량을 측정함으로써 글루코스의 농도를 측정할 수 있다.The concentration of glucose through the glucose sensor 30 can be measured by a known electrochemical analysis method. The electrochemical analysis method is a method in which glucose is caused to generate hydrogen peroxide by the glucose oxidase immobilized in the glucose sensor 30 and a constant voltage is applied to the generated hydrogen peroxide to measure the electric current, Can be measured.
종래의 침습방식은 전극 부젼의 소정영역에 자연적으로 유입된 글루코스만을 측정하는 것이어서 전극 주변에 유입되는 글루코스의 양이 적어서 측정의 정확도를 보장하기 어렵지만, 본 발명은 역이온영동을 이용하여 전극주변에 강제적으로 글루코스를 모이게 하여 집중시키는 방법이므로, 전극 주변에 유입되는 글루코스의 양이 많아서 측정의 정확도가 현저히 향상되는 효과가 있다.In the conventional method, only the glucose naturally flows into a predetermined region of the electrode, so that it is difficult to ensure the accuracy of the measurement because the amount of glucose introduced into the periphery of the electrode is small. However, Since the method of forcibly collecting and concentrating glucose, the amount of glucose introduced into the vicinity of the electrode is large, and the accuracy of measurement is remarkably improved.
측정된 글루코스 농도는 송신기(10)를 통해 체외에 있는 수신기를 포함하는 출력장치(미도시)로 송신되어, 출력장치(미도시)를 통해 측정된 글루코스 농도를 확인하는 것이 가능하다. The measured glucose concentration is transmitted to the output device (not shown) including the receiver located outside the body via the transmitter 10, and it is possible to confirm the glucose concentration measured through the output device (not shown).
정해진 시간 단위로 연속적으로 측정된 글루코스 농도는 출력장치(미도시)에 저장되어 수일간의 글루코스 농도를 기록하여 관리하는 것이 가능하다.The glucose concentration continuously measured in a predetermined time unit can be stored in an output device (not shown), and it is possible to record and manage the glucose concentration for several days.
상기와 같이, 본 발명의 실시예에 따른 혈당측정방법은 전극부(20)를 통해 인가된 전류로 인해 (-)극(21) 방향으로 글루코스가 집중된 후, (-)극(21) 방향으로 삽입된 글루코스 센서(30)를 통해 글루코스의 농도를 측정하기 때문에, 종래의 혈당측정방법에 비해 측정 정확도를 현저히 향상시킬 수 있다.As described above, in the blood glucose measurement method according to the embodiment of the present invention, the glucose is concentrated in the (-) pole 21 direction due to the current applied through the electrode unit 20, Since the concentration of glucose is measured through the inserted glucose sensor 30, the measurement accuracy can be remarkably improved as compared with the conventional blood glucose measurement method.
결국, 본 발명에 따른 역이온영동을 응용한 침습형 연속 혈당 측정기(100) 및 이를 이용한 혈당측정방법은 전극부(20)를 통해 전류를 인가함으로써, (-)극(21) 방향으로 글루코스를 집중시킨 후, (-)극(21) 방향으로 삽입된 글루코스 센서(30)를 통해 글루코스의 농도를 측정하기 때문에, 종래의 혈당 측정기(100)에 비해 측정 정확도를 현저히 향상시킬 수 있는 효과가 있다.As a result, the blood glucose measurement method using the invasive continuous blood glucose meter 100 and the blood glucose measurement method using the reverse ionization according to the present invention can be carried out by applying an electric current through the electrode unit 20, The concentration of glucose is measured through the glucose sensor 30 inserted in the (-) pole 21 direction, so that the measurement accuracy can be remarkably improved as compared with the conventional blood glucose meter 100 .
나아가, 글루코스 센서(30)가 피하에 침투되는 깊이를 작게 하여도 정확한 글루코스 농도의 측정이 가능하다는 점에서, 이물감을 현저히 낮출 수 있다.Furthermore, since the accurate glucose concentration can be measured even if the depth to which the glucose sensor 30 penetrates subcutaneously is made small, the foreign substance feeling can be remarkably lowered.
이하에서는, 도 2 및 도 3을 참조하여, 앞서 설명한 혈당 측정기(100)를 보다 자세히 설명하겠다.Hereinafter, the blood glucose meter 100 described above will be described in more detail with reference to FIG. 2 and FIG.
일례로, 전극부(20)는 피부의 소정의 위치에 배치되어 체내에 전류를 인가하는 구성일 수 있다.For example, the electrode unit 20 may be arranged at a predetermined position on the skin to apply a current to the body.
일례로, 전극부(20)는 피부의 표피 상에 배치될 수도 있고, 또는 진피, 피하지방층 등에 삽입 배치될 수도 있다.For example, the electrode portion 20 may be disposed on the epidermis of the skin, or may be inserted into the dermis, subcutaneous fat layer, or the like.
여기서, 글루코스 센서(30)(이하, 센서부로 지칭)는 피하에 침투되어 글루코스를 측정하는 구성일 수 있다.Here, the glucose sensor 30 (hereinafter, referred to as a sensor portion) may be a structure for penetrating subcutaneously to measure glucose.
센서부(30)는 직접 글루코스의 양을 측정할 수도 있으나, 글루코스와 접촉되어 발생될 수 있는 데이터 및/또는 화학적 변화를 획득하여 간접적으로 글루코스의 양을 측정할 수도 있다.The sensor unit 30 may directly measure the amount of glucose, but may also indirectly measure the amount of glucose by acquiring data and / or chemical changes that may be generated by contact with glucose.
일례로, 상기 전극부(20)는 (+)극(22)(이하, (+)전극부로 지칭) 및 (-)극(21)(이하, (-)전극부로 지칭)를 구비할 수 있으며, 상기 (+)전극부(22)와 상기 (-)전극부(21)는 소정 거리 이격되어 피부의 소정의 위치에 배치될 수 있다.For example, the electrode unit 20 may include a positive electrode 22 (hereinafter referred to as a positive electrode unit) and a negative electrode 21 (hereinafter referred to as a negative electrode unit) (+) Electrode portion 22 and the (-) electrode portion 21 may be spaced apart from each other by a predetermined distance, and may be disposed at a predetermined position of the skin.
여기서, 일례로, 피하에 침투된 상기 센서부(30)의 단부와 피부에 설치된 상기 (-)전극부(21) 간의 이격거리는 피하에 침투된 상기 센서부(30)의 단부와 피부에 설치된 상기 (+)전극부(22) 간의 이격거리와 다를 수 있다.The distance between the end of the sensor unit 30 subcutaneously subcutaneously and the (-) electrode unit 21 provided on the skin is determined by the distance between the end of the sensor unit 30 infiltrated subcutaneously, (+) Electrode portion 22 may be different.
이를 보다 자세히 설명하자면, 도 3에 도시된 바와 같이, 피하에 침투되어 소정의 위치에 배치된 상기 센서부(30)의 끝단(하측 단부)과 상기 (-)전극부(21) 간의 이격거리는 상기 센서부(30)의 끝단(하측 단부)과 상기 (+)전극부(22) 간의 이격거리와 다를 수 있다.3, the separation distance between the end (lower end) of the sensor unit 30 and the (-) electrode unit 21, which is subcutaneously placed at a predetermined position, The distance between the end of the sensor unit 30 (the lower end) and the (+) electrode unit 22 may be different.
일례로, 상기 센서부(30)의 단부와 상기 (-)전극부(21) 간의 이격거리는 상기 센서부(30)의 단부와 상기 (+)전극부(22) 간의 이격거리 보다 작을 수 있다.The distance between the end of the sensor unit 30 and the negative electrode unit 21 may be smaller than the distance between the end of the sensor unit 30 and the positive electrode unit 22.
즉, 상기 센서부(30)의 단부는 상기 (+)전극부(22)보다 (-)전극부(21) 쪽으로 치우쳐 배치될 수 있다.That is, the end portion of the sensor portion 30 may be disposed offset toward the (-) electrode portion 21 from the (+) electrode portion 22.
또한, 일례로, 상기 센서부(30)의 단부는 (-)전극부(21)가 차지하는 풋프린트(footprint, A) 내에 배치될 수 있다.In addition, for example, the end of the sensor unit 30 may be disposed within a footprint A occupied by the (-) electrode unit 21.
이를 보다 자세히 설명하자면, 상기 (-)전극부(21)가 피부의 소정의 위치에 배치되는 경우, 상기 (-)전극부(21)의 하측은 상기 (-)전극부(21)의 풋프린트(A)가 차지하는 일정 영역이 규정되며, 여기서, 상기 센서부(30)의 끝단은 상기 (-)전극부(21)가 규정하는 풋프린트(A) 내에 배치될 수 있다.(-) electrode unit 21 is disposed at a predetermined position on the skin, the lower side of the (-) electrode unit 21 is connected to the footprint of the (-) electrode unit 21, An end portion of the sensor unit 30 may be disposed within a footprint A defined by the (-) electrode unit 21.
그 결과, 상기 센서부(30)는 상기 (-)전극부(21)로 유도된 글루코스와 용이하게 접촉될 수 있다. As a result, the sensor unit 30 can be easily brought into contact with glucose guided to the (-) electrode unit 21.
앞서 설명한 상기 센서부(30)의 단부는 상기 센서부(30)의 형상으로 볼 때 하측 끝단을 의미할 수도 있으나, 글루코스와의 반응에서 볼 때 상기 센서부(30) 중 글루코스와 반응할 수 있는 부분의 끝단을 의미할 수도 있다.The end of the sensor unit 30 described above may refer to a lower end of the sensor unit 30, but it may be formed of a material capable of reacting with glucose in the sensor unit 30, It may mean the end of the part.
이하에서는, 도 2 및 도 3을 참조하여, 상기 전극부(20)와 상기 센서부(30)의 위치 관계에 대해 더욱 자세히 설명하겠다.Hereinafter, the positional relationship between the electrode unit 20 and the sensor unit 30 will be described in more detail with reference to FIG. 2 and FIG.
일례로, 혈당 측정기(100)는 상기 전극부(20)와 상기 센서부(30)간의 위치관계를 규정하는 위치 규정부(40)를 더 포함할 수 있다.For example, the blood glucose meter 100 may further include a position regulating unit 40 for regulating the positional relationship between the electrode unit 20 and the sensor unit 30.
일례로, 상기 위치 규정부(40)는 상기 (-)전극부(21)와 상기 (+)전극부(22) 간의 위치관계, 상기 센서부(30)와 상기 (+)전극부(22) 간의 위치관계 및/또는 상기 센서부(30)와 상기 (-)전극부(21) 간의 위치관계를 규정할 수도 있다.For example, the position regulating unit 40 may determine the positional relationship between the (-) electrode unit 21 and the (+) electrode unit 22, the positional relationship between the sensor unit 30 and the (+) electrode unit 22, And / or the positional relationship between the sensor unit 30 and the (-) electrode unit 21 may be defined.
위치관계라 함은 상기 전극부(20)와 상기 센서부(30)가 인체에 설치가 완료되었을 때, 상기 전극부(20)와 산기 센서부(30) 간의 위치, 상호 떨어진 거리 및/또는 각도 등을 의미할 수 있다.The positional relationship refers to a positional relationship between the electrode unit 20 and the acid sensor unit 30 when the electrode unit 20 and the sensor unit 30 are installed on the human body, And so on.
즉, 상기 전극부(20)가 피부에 설치되어 피부 상에 직/간접적으로 위치 고정되고, 상기 센서부(30)가 피하에 침투되되 외력을 가하여도 더 이상 깊이 침투되지 않는 최대의 침투 상태(인체에 설치가 완료된 상태)에서, 상기 전극부(20)와 상기 센서부(30) 간의 위치관계가 정의될 수 있다.That is, the electrode unit 20 is installed on the skin and fixed directly or indirectly to the skin. The sensor unit 30 is penetrated subcutaneously, and the maximum penetration state The positional relationship between the electrode unit 20 and the sensor unit 30 can be defined.
일례로, 상기 전극부(20)는 상기 위치 규정부(40) 상의 소정의 위치에 고정될 수 있다.For example, the electrode unit 20 may be fixed at a predetermined position on the position defining unit 40.
일례로, 상기 (+)전극부(22) 및/또는 상기 (-)전극부(21)는 상기 위치 규정부(40) 상의 소정의 위치에 고정될 수 있다.For example, the (+) electrode portion 22 and / or the (-) electrode portion 21 may be fixed at a predetermined position on the position defining portion 40.
일례로, 상기 전극부(20)는 상기 위치 규정부(40)의 하면 상에 스크린 프린팅 방법 및 스퍼터링 등에 의하여 형성될 수도 있고, 기계적 결합, 접착제 등에 의해 접착 고정될 수도 있다.For example, the electrode unit 20 may be formed on the lower surface of the position defining unit 40 by a screen printing method, sputtering, or the like, or may be adhesively fixed by a mechanical coupling, an adhesive, or the like.
그 결과, 상기 전극부(20)는 상기 위치 규정부(40) 하측 상의 소정의 위치에 위치 고정될 수 있다.As a result, the electrode unit 20 can be fixed at a predetermined position on the lower side of the position defining unit 40.
또한, 상기 센서부(30)는 상기 위치 규정부(40) 상의 소정의 위치에서 피하에 침투될 수 있다.In addition, the sensor unit 30 can be subcutaneously infiltrated at a predetermined position on the position defining unit 40. [
즉, 상기 위치 규정부(40)는 상기 센서부(30)가 피하로 침투되는 위치를 미리 규정할 수 있다.That is, the position regulating unit 40 may define the position at which the sensor unit 30 is subcutaneously infiltrated.
일례로, 상기 위치 규정부(40)는 상기 센서부(30)가 피하에 침투되는 위치를 규정하는 침투 유도부를 구비할 수 있으며, 상기 센서부(30)는 상기 침투 유도부를 통해 피하에 침투될 수 있다.For example, the position regulating portion 40 may include an infiltration inducing portion for defining a position at which the sensor portion 30 penetrates subcutaneously. The sensor portion 30 may be subcutaneously penetrated through the infiltration inducing portion .
즉, 상기 위치 규정부(40)는 상기 센서부(30)가 피하로 침투되는 위치를 미리 규정하는 상기 침투 유도부를 구비할 수 있다.That is, the position regulating unit 40 may include the infiltration inducing unit that previously defines the position where the sensor unit 30 is subcutaneously infiltrated.
그 결과, 상기 위치 규정부(40)는 상기 전극부(20)의 위치를 규정할 뿐만 아니라 상기 피하에 침투되는 상기 센서부(30)의 위치를 규정하여, 결과적으로 상기 전극부(20)와 상기 센서부(30) 간의 위치관계를 규정할 수 있다.As a result, the position regulating portion 40 not only defines the position of the electrode portion 20 but also defines the position of the sensor portion 30 penetrating the subcutaneous body, and consequently, the electrode portion 20 The positional relationship between the sensor units 30 can be defined.
여기서, 일례로, 상기 침투 유도부는 관통공간(S)으로 형성될 수 있다.Here, for example, the infiltration inducing portion may be formed as a through space S.
즉, 상기 침투 유도부는 상기 위치 규정부(40)의 일부가 관통되어 형성되는 공간일 수 있다.That is, the infiltration inducing portion may be a space formed through a part of the position defining portion 40.
일례로, 상기 침투 유도부는 상기 (+)전극부(22)와 상기 (-)전극부(21) 사이에 형성될수 있으며, 나아가 하측으로 갈수록 상기 (-)전극부(21)를 향하여 경사긴 상기 관통공간(S)으로 형성될 수 있다.The penetration inducing portion may be formed between the positive electrode portion 22 and the negative electrode portion 21 and further may be formed to be inclined toward the negative electrode portion 21 toward the lower side, And may be formed as a through space (S).
사용자는 상기 침투 유도부를 통해 상기 센서부(30)를 피하로 삽입시킬 수 있다.The user can insert the sensor unit 30 subcutaneously through the infiltration inducing unit.
상기 침투 유도부는 상기 관통공간(S)일 수도 있으나, 여기에 한정되는 것은 아니며, 상기 위치 규정부(40)의 다른 부분과 구별되는 식별 표시일 수도 있다.The infiltration inducing portion may be the penetrating space S but is not limited thereto and may be an identification mark distinguished from other portions of the position regulating portion 40. [
여기서, 일례로, 혈당 측정기(100)는 상기 관통공간(S) 상에 배치되어 상기 관통공간(S) 상에서 상기 센서부(30)와 상기 위치 규정부(40)가 상호 이격되도록 하고, 상기 센서부(30)가 피하에 침투되도록 가이드하는 가이드부(50)를 더 포함할 수 있다.Here, the blood glucose meter 100 may be disposed on the through-hole S so that the sensor unit 30 and the position defining unit 40 are spaced apart from each other on the through-hole S, And a guide portion 50 for guiding the portion 30 to penetrate subcutaneously.
일례로, 상기 가이드부(50)는 상기 관통공간(S) 상에 배치된 상기 센서부(30)와 상기 관통공간(S)을 규정하는 상기 위치 규정부(40)가 서로 이격되도록 하는 구성일 수 있다.For example, the guide portion 50 is configured such that the sensor portion 30 disposed on the through space S and the position defining portion 40 defining the through space S are spaced apart from each other .
나아가, 상기 가이드부(50)는 상기 관통공간(S) 상에 배치되어 상기 관통공간(S)으로 삽입되는 상기 센서부(30)가 상기 위치 규정부(40)로 향하지 않고 피하로 침투되도록 가이드할 수 있다.The guide part 50 is disposed on the through space S so that the sensor part 30 inserted into the through space S is guided by the guide can do.
일례로, 상기 가이드부(50)는 중공을 가지는 파이프 형상일 수 있다.For example, the guide portion 50 may be a pipe having a hollow shape.
상기 센서부(30)는 상기 가이드부(50)가 형성하는 중공을 지나 피하로 침투될 수 있다.The sensor unit 30 can be subcutaneously penetrated through the hollow formed by the guide unit 50.
일례로, 상기 가이드부(50)는 상기 위치 규정부(40)에 부착되어 형성될 수도 있으며, 상기 위치 규정부(40)와 다른 재질을 가질 수 있다.For example, the guide portion 50 may be attached to the position regulating portion 40 or may have a material different from that of the position regulating portion 40.
또한, 상기 가이드부(50)는 상기 센서부(30)와 연결되어 상기 센서부(30)와 연동되어 위치 이동될 수도 있다.The guide part 50 may be connected to the sensor part 30 and may be moved in conjunction with the sensor part 30.
이하에서는, 도 2 및 도 3을 참조하여 혈당 측정기(100) 및 혈당측정방법을 더욱 자세히 설명하겠다.Hereinafter, the blood glucose meter 100 and the blood glucose measurement method will be described in more detail with reference to FIG. 2 and FIG.
우선 사용자는, 상기 전극부(20)가 장착된 상기 위치 규정부(40)를 피부에 설치할 수 있다.First, the user can install the position defining portion 40 on which the electrode portion 20 is mounted on the skin.
일례로, 피부에 대향하는 상기 위치 규정부(40)의 하면은 피부의 소정의 위치로부터 이탈되지 않도록 접착층이 형성될 수도 있고 밴드와 같은 열결부재를 구비하여 인체의 소정의 위치에 고정될 수도 있다.For example, the lower surface of the position regulating portion 40 facing the skin may be formed with an adhesive layer so as not to be separated from a predetermined position of the skin, or may be fixed to a predetermined position of the human body with a thermal member such as a band .
일례로, 상기 위치 규정부(40)는 하면에 접착층이 형성된 패드 형상일 수도 있고, 케이스일 수도 있다.For example, the position defining portion 40 may be a pad having an adhesive layer formed on a lower surface thereof, or may be a case.
사용자는 상기 위치 규정부(40)를 피부의 소정의 위치에 위치 고정할 수 있다.The user can fix the position regulating portion 40 at a predetermined position on the skin.
그 결과, 상기 (+)전극부(22) 및 상기 (-)전극부(21)는 상기 위치 규정부(40)에 의해 피부의 소정의 위치에 위치 고정될 수 있다.As a result, the (+) electrode unit 22 and the (-) electrode unit 21 can be fixed at a predetermined position of the skin by the position defining unit 40.
상기 위치 규정부(40) 및 상기 전극부(20)를 피부의 소정의 위치에 배치한 후, 사용자는 상기 센서부(30)를 피하로 침투시킬 수 있다.After the position regulating portion 40 and the electrode portion 20 are disposed at predetermined positions on the skin, the user can subcutaneously infiltrate the sensor portion 30.
이 때, 사용자는 상기 위치 규정부(40)가 구비하는 상기 침투 유도부를 통해 상기 센서부(30)를 피하로 침투시킬 수 있다.At this time, the user can subcutaneously infiltrate the sensor unit 30 through the infiltration induction unit provided in the position defining unit 40. [
상기 센서부(30)가 피하로 침투되는 정도는 미리 정해질 수 있다.The extent to which the sensor unit 30 is subcutaneously infiltrated can be predetermined.
일례로, 상기 센서부(30)는 상기 위치 규정부(40) 및/또는 상기 가이드부(50)와 직/간접적으로 접촉됨으로 인해 피하로 침투되는 정도가 미리 정해질 수 있다.For example, the degree of penetration into the sensor unit 30 can be predetermined because the sensor unit 30 is in direct / indirect contact with the position defining unit 40 and / or the guide unit 50.
이를 보다 자세히 설명하자면, 사용자가 외력을 가해 상기 센서부(30)를 피하로 침투시키는 경우, 사용자는 상기 센서부(30)를 미리 정해진 정도까지만 침투시킬 수 있고, 이 보다 더 이상 침투시키고자 상기 센서부(30)에 외력을 가하는 경우 상기 센서부(30)와 상기 위치 규정부(40) 및/또는 상기 가이드부(50) 간에 직/간접적으로 접촉되어 더 이상 상기 센서부(30)가 피하로 침투되지 않을 수 있다.More specifically, when a user applies an external force to infiltrate the sensor unit 30, the user can infiltrate the sensor unit 30 to a predetermined degree, When an external force is applied to the sensor unit 30, the sensor unit 30 directly or indirectly contacts the sensor unit 30 with the position defining unit 40 and / or the guide unit 50, . ≪ / RTI >
결과적으로, 상기 위치 규정부(40) 및/또는 상기 가이드부(50)는 상기 센서부(30)와 상기 전극부(20) 간의 위치관계를 규정하는 것뿐만 아니라, 상기 센서부(30)가 피하로 침투되는 깊이의 정도를 규정할 수도 있다.As a result, the position regulating portion 40 and / or the guide portion 50 not only define the positional relationship between the sensor portion 30 and the electrode portion 20, The degree of penetration into the subcutaneous tissue may be defined.
상기 센서부(30)가 미리 정해진 피하의 소정의 위치에 삽입된 후, 상기 전극부(20)가 전류를 인가하여 상기 (-)전극부(21) 쪽으로 글루코스가 집중되도록 유도할 수 있다.After the sensor unit 30 is inserted at a prescribed predetermined subcutaneous position, the electrode unit 20 may apply current to guide glucose to the (-) electrode unit 21 side.
그 후, 상기 센서부(30)는 상기 (-)전극부(21) 쪽으로 유도된 글루코스와 반응하여 혈당을 측정할 수 있다.Thereafter, the sensor unit 30 can measure blood glucose by reacting with glucose guided to the (-) electrode unit 21.
도 4는 혈당 측정기(100)의 다른 일 실시예를 나타낸 도면이다.FIG. 4 is a diagram showing another embodiment of the blood glucose meter 100. FIG.
도 4에 도시한 바와 같이, 상기 침투 유도부는 상기 (-)전극부(A21)가 규정하는 풋프린트(A) 상에 형성될 수도 있다.As shown in FIG. 4, the infiltration inducing portion may be formed on the footprint A defined by the (-) electrode portion A21.
즉, 상기 침투 유도부는 적어도 일측 방향으로 상기 (-)전극부(A21)에 의해 포위되는 위치에 형성될 수 있으며, 상기 침투 유도부를 통해 피하로 침투되는 상기 센서부(30)는 상기 (-)전극부(A21)가 규정하는 풋프린트(A) 상에 배치될 수 있다.That is, the infiltration inducing portion may be formed at a position where the infiltration inducing portion is surrounded by the (-) electrode portion A21 in at least one direction, and the sensor portion 30 penetrating subcutaneously through the infiltration inducing portion may be formed in the (- And can be disposed on the footprint A specified by the electrode section A21.
도 5는 혈당 측정기(100)의 구성에 대한 개략 블록도로서, 혈당 측정기(100)는 상기 송신기(10), 상기 전극부(20), 상기 센서부(30) 및 제어부(60)를 포함할 수 있다.5 is a schematic block diagram of the configuration of the blood glucose meter 100. The blood glucose meter 100 includes the transmitter 10, the electrode unit 20, the sensor unit 30, and the controller 60 .
상기 제어부(60)는 상기 전극부(20)의 전류인가에 대한 제어, 상기 센서부(30)로부터 센싱되는 데이터의 연산/산출 및/또는 상기 송신기(10) 작동의 제어 등을 구현하는 구성일 수 있다.The control unit 60 is a configuration that implements control of current application of the electrode unit 20, calculation / calculation of data sensed by the sensor unit 30, and / or control of operation of the transmitter 10 .
일례로, 혈당 측정기(100)가 구성하는 상기 송신기(10), 상기 전극부(20), 상기 센서부(30), 상기 제어부(60), 상기 위치 규정부(40) 및 상기 가이드부(50)는 적어도 하나가 다른 어느 하나와 상호 탈착되도록 구성될 수 있다.For example, the transmitter 10, the electrode unit 20, the sensor unit 30, the controller 60, the position regulating unit 40, and the guide unit 50 May be configured such that at least one is mutually desorbed from the other.
즉, 일례로, 상기 전극부(20)는 상기 위치 규정부(40)와 탈착되어 새로운 상기 전극부(20)로 교체될 수 있으며, 상기 가이드부(50)는 상기 위치 규정부(40)와 탈착 가능할 수 있다.For example, the electrode unit 20 may be detached from the position defining unit 40 to be replaced with a new electrode unit 20, and the guide unit 50 may be provided with the position defining unit 40, It may be removable.
또한, 일례로, 상기 위치 규정부(40)는 상기 송신기(10)와 탈착될 수도 있다.In addition, for example, the position specifying unit 40 may be detached from the transmitter 10.
또한, 일례로, 상기 전극부(20)는 사용자의 외력에 의해 이동되어 상기 침투 유도부를 지나 피하에 침투되는 것으로 설명하였으나, 여기에 한정되는 것은 아니며, 상기 전극부(20)는 이미 상기 침투 유도부를 지나 상기 위치 규정부(40) 상의 소정의 위치에 배치된 상태에서 사용자에 의해 이용될 수도 있다.In addition, the electrode unit 20 is moved by an external force of the user and penetrates subcutaneously through the penetration inducing unit. However, the electrode unit 20 is not limited to the electrode unit 20, And may be used by the user in a state in which it is disposed at a predetermined position on the position defining portion 40.
즉, 사용자가 상기 위치 규정부(40)를 피부에 설치하는 경우, 상기 위치 규정부(40)에 고정된 상기 전극부(20)가 피부에 설치되는 동시에, 상기 위치 규정부(40)에 고정된 상기 센서부(30)가 피하에 침투될 수도 있다.That is, when the user sets the position regulating portion 40 on the skin, the electrode portion 20 fixed to the position regulating portion 40 is provided on the skin and fixed to the position regulating portion 40 The sensor unit 30 may be subcutaneously infiltrated.
앞서 설명한 혈당 측정기(10)는 혈당을 측정하는 용도로 설명하였으나, 본 발명의 기술적 사상은 혈당 측정의 용도에만 한정되는 것은 아니며, 인체, 동물 등에 설치되어 인체, 동물의 건강과 관련된 데이터를 획득하는 다른 용도로도 사용될 수 있다.Although the above-described blood glucose meter 10 has been described for the purpose of measuring blood glucose, the technical idea of the present invention is not limited to the use of blood glucose measurement. It can also be used for other purposes.
즉, 당업자는 본 발명의 기술적 사상을 다른 용도로 사용할 수 있도록 변형함은 자명하다.That is, those skilled in the art will appreciate that the technical idea of the present invention can be modified for other uses.
상기에서는 본 발명에 따른 실시예를 기준으로 본 발명의 구성과 특징을 설명하였으나 본 발명은 이에 한정되지 않으며, 본 발명의 사상과 범위 내에서 다양하게 변경 또는 변형할 수 있음은 본 발명이 속하는 기술분야의 당업자에게 명백한 것이며, 따라서 이와 같은 변경 또는 변형은 첨부된 특허청구범위에 속함을 밝혀둔다.While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, It will be apparent to those skilled in the art that changes or modifications may fall within the scope of the appended claims.

Claims (9)

  1. 피부에 설치되어 혈당을 측정하는 혈당 측정기에 있어서,A blood glucose meter installed on the skin for measuring blood glucose,
    피부의 소정의 위치에 배치되어 체내에 전류를 인가하는 전극부; 및An electrode unit disposed at a predetermined position of the skin to apply a current to the body; And
    피하에 침투되어 글루코스를 측정하는 센서부;를 포함하며,And a sensor portion penetrating into the subcutaneous tissue and measuring glucose,
    상기 전극부는,The electrode unit includes:
    (+)전극부 및 (-)전극부를 구비하고,(+) Electrode portion and (-) electrode portion,
    상기 센서부의 단부와 상기 (-)전극부 간의 이격거리는,The distance between the end of the sensor part and the (-
    상기 센서부의 단부와 상기 (+)전극부 간의 이격거리와 다른,A distance between the end of the sensor part and the (+) electrode part,
    혈당 측정기.Blood glucose meter.
  2. 제1항에 있어서,The method according to claim 1,
    상기 전극부와 상기 센서부간의 위치관계를 규정하는 위치 규정부;를 더 포함하는,And a position regulating portion that defines a positional relationship between the electrode portion and the sensor portion,
    혈당 측정기.Blood glucose meter.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 전극부는,The electrode unit includes:
    상기 위치 규정부 상의 소정의 위치에 고정되며,And a fixing member fixed at a predetermined position on the position defining portion,
    상기 센서부는,The sensor unit includes:
    상기 위치 규정부 상의 소정의 위치에서 피하에 침투되는,Wherein the positioning portion penetrates subcutaneously at a predetermined position on the position regulating portion,
    혈당 측정기.Blood glucose meter.
  4. 제3항에 있어서,The method of claim 3,
    상기 위치 규정부는,The position specifying unit
    상기 센서부가 피하에 침투되는 위치를 규정하는 침투 유도부를 구비하고,And an infiltration inducing portion for defining a position at which the sensor portion is subcutaneously infiltrated,
    상기 센서부는,The sensor unit includes:
    상기 침투 유도부를 통해 피하에 침투되는,And penetrating subcutaneously through the penetration inducing portion,
    혈당 측정기.Blood glucose meter.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 침투 유도부는,The infiltration inducing portion
    관통공간으로 형성되는,Which is formed as a through space,
    혈당 측정기.Blood glucose meter.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 관통공간 상에 배치되어 상기 관통공간 상에서 상기 센서부와 상기 위치 규정부가 상호 이격되도록 하고, 상기 센서부가 피하에 침투되도록 가이드하는 가이드부;를 더 포함하는,And a guide portion disposed on the through space to guide the sensor portion and the position defining portion to be spaced apart from each other on the through space and to guide the sensor portion to be subcutaneously penetrated,
    혈당 측정기.Blood glucose meter.
  7. 제1항에 있어서,The method according to claim 1,
    상기 센서부의 단부와 상기 (-)전극부 간의 이격거리는,The distance between the end of the sensor part and the (-
    상기 센서부의 단부와 상기 (+)전극부 간의 이격거리 보다 작은,A distance between the end of the sensor portion and the (+) electrode portion,
    혈당 측정기.Blood glucose meter.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 센서부의 단부는,The end of the sensor unit
    상기 (-)전극부가 차지하는 풋프린트(footprint) 내에 배치되는,Wherein the (-) electrode portion is disposed within a footprint occupied by the (-) electrode portion,
    혈당 측정기.Blood glucose meter.
  9. 제1항 내지 제8항에 중 어느 한 항에 따른 혈당 측정기를 이용하여 혈당을 측정하는 혈당측정방법.A blood glucose measurement method for measuring blood glucose using the blood glucose meter according to any one of claims 1 to 8.
PCT/KR2018/008815 2017-08-04 2018-08-03 Blood glucose meter and method for measuring blood glucose using same WO2019027277A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0098943 2017-08-04
KR1020170098943A KR20190014875A (en) 2017-08-04 2017-08-04 Invasive continuous glucose monitoring system applying reverse iontophoresis and continuous glucose monitoring method using thereof
KR10-2018-0090166 2018-08-02
KR1020180090166A KR102173405B1 (en) 2018-08-02 2018-08-02 Blood glucose test meter and Blood glucose test method using the same

Publications (1)

Publication Number Publication Date
WO2019027277A1 true WO2019027277A1 (en) 2019-02-07

Family

ID=65233453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008815 WO2019027277A1 (en) 2017-08-04 2018-08-03 Blood glucose meter and method for measuring blood glucose using same

Country Status (1)

Country Link
WO (1) WO2019027277A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113171090A (en) * 2021-03-12 2021-07-27 中山大学 Diabetes monitoring and treating device and system based on mesoporous microneedle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07275227A (en) * 1994-03-15 1995-10-24 Minimed Inc Endermic sensor insertion set
JP2013521942A (en) * 2010-03-16 2013-06-13 メドトロニック ミニメド インコーポレイテッド Analyte sensor device with improved electrode configuration, method of making and using the device
KR101288400B1 (en) * 2012-07-10 2013-08-02 주식회사 유엑스엔 Measuring method of blood sugar level, apparatus and system thereof
JP2016518883A (en) * 2013-03-15 2016-06-30 プロメセオン ファーマ,エルエルシー Devices, systems, and methods for transdermal delivery of compounds
KR20170000409A (en) * 2015-06-10 2017-01-03 엘지전자 주식회사 Potable Air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07275227A (en) * 1994-03-15 1995-10-24 Minimed Inc Endermic sensor insertion set
JP2013521942A (en) * 2010-03-16 2013-06-13 メドトロニック ミニメド インコーポレイテッド Analyte sensor device with improved electrode configuration, method of making and using the device
KR101288400B1 (en) * 2012-07-10 2013-08-02 주식회사 유엑스엔 Measuring method of blood sugar level, apparatus and system thereof
JP2016518883A (en) * 2013-03-15 2016-06-30 プロメセオン ファーマ,エルエルシー Devices, systems, and methods for transdermal delivery of compounds
KR20170000409A (en) * 2015-06-10 2017-01-03 엘지전자 주식회사 Potable Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113171090A (en) * 2021-03-12 2021-07-27 中山大学 Diabetes monitoring and treating device and system based on mesoporous microneedle
CN113171090B (en) * 2021-03-12 2023-09-26 中山大学 Diabetes monitoring and treatment device and system based on mesoporous microneedle

Similar Documents

Publication Publication Date Title
Vyskočil et al. The measurement of K e+ concentration changes in human muscles during volitional contractions
US5036861A (en) Method and apparatus for non-invasively monitoring plasma glucose levels
WO2011145807A2 (en) Device for examining nerve function
EP0269796B1 (en) Apparatus for detecting bioelectric signals
WO2017160015A1 (en) Sleep apnea monitoring system
JPH09503924A (en) Non-invasive glucose monitor
DE69519023T2 (en) IONTOPHORETIC SAMPLING DEVICE
WO2019027277A1 (en) Blood glucose meter and method for measuring blood glucose using same
WO2020226371A1 (en) Virtual hand illusion system for treatment of hemiplegia patient by using brain stimulus and operation method therefor
WO2016108485A1 (en) Guide device for injection needle puncture
WO2018221865A1 (en) Body-attachable pulse wave measuring device
WO2018222010A1 (en) Sensor applicator assembly for continuous glucose monitoring system
WO2019117653A1 (en) Active skin contact sensor
WO2017003251A1 (en) Wearable body temperature regulating device for maintaining constant body temperature of user by means of current applying method, and body temperature regulating method using same
WO2021020688A1 (en) Method for stabilizing continuous glucose monitoring system
WO2017061727A1 (en) Biosensor and sensing method thereby
WO2023200079A1 (en) Applicator and applicator assembly
WO2022250242A1 (en) Adhesive tape for body-attached device
WO2019027218A1 (en) Biometric signal-measuring device for measuring biometric signal of micro-animal and method for measuring same
WO2020080591A1 (en) Needle-type biosensor
WO2023277271A1 (en) Needle for inserting transcutaneous sensor, and needle assembly
WO2023277267A1 (en) Applicator for transcutaneous sensor, and applicator assembly
WO2023022423A2 (en) Fusion-type root canal length measurement device in which electronic apical foramen recognizer and digital endodontic file measurement device are fused
Opekun et al. Antimony electrodes: Mucosal potential differences and buffer composition adversely affect pH measurements in the stomach
WO2023013869A1 (en) Transcutaneous sensor applicator and applicator assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18841534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18841534

Country of ref document: EP

Kind code of ref document: A1