WO2019027009A1 - Nucleic acid complex - Google Patents

Nucleic acid complex Download PDF

Info

Publication number
WO2019027009A1
WO2019027009A1 PCT/JP2018/029079 JP2018029079W WO2019027009A1 WO 2019027009 A1 WO2019027009 A1 WO 2019027009A1 JP 2018029079 W JP2018029079 W JP 2018029079W WO 2019027009 A1 WO2019027009 A1 WO 2019027009A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
nucleic acid
reference example
mmol
Prior art date
Application number
PCT/JP2018/029079
Other languages
French (fr)
Japanese (ja)
Inventor
陽史 山田
宏徒 岩井
上原 啓嗣
康裕 鈴木
裕一 福田
達人 木内
Original Assignee
協和発酵キリン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和発酵キリン株式会社 filed Critical 協和発酵キリン株式会社
Publication of WO2019027009A1 publication Critical patent/WO2019027009A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing

Definitions

  • the present invention relates to a nucleic acid complex, a pharmaceutical composition containing the nucleic acid complex, and the like.
  • nucleic acid drugs As nucleic acid drugs, aptamers, antisenses, decoy nucleic acids, ribozymes, siRNAs, miRNAs and antimiRNAs are known. Nucleic acid drugs are expected to be clinically applicable to various diseases that have been considered difficult to treat up to now, because of their high versatility in which all genes in cells can be controlled. In addition, nucleic acid drugs are expected as next-generation drugs next to antibodies and small molecule drugs because of high target selectivity and activity in cells. However, the problem with nucleic acid medicines is that delivery to target tissues is difficult.
  • nucleic acid complex conjugate of a targeting compound and a nucleic acid
  • Targeting compounds include ligands capable of binding to extracellularly expressed receptors.
  • GalNAc N-acetyl-D-galactosamine
  • ASGPR asialoglycoprotein receptor
  • Patent Documents 1 and 2 disclose, for example, nucleic acid complexes shown below as complexes of a targeting compound and an oligonucleotide.
  • Patent Document 3 discloses a nucleic acid complex having the following structure having the same sugar ligand-tether unit as Patent Documents 1 and 2.
  • Patent Document 4 discloses a nucleic acid complex having a structure shown below as a sugar ligand-tether unit.
  • ⁇ 2-glycoprotein 1 (aka apolipoprotein H, also referred to as apoH) is a glycoprotein composed of 326 amino acids, and has a higher-order structure in which five domain structures are linked.
  • ⁇ 2GPI is considered to have various physiological actions, and is reported to be involved in platelet aggregation reaction, coagulation / fibrinolytic reaction, and uptake of oxidized LDL into macrophages (Non-patent Document 2).
  • ⁇ 2GPI is known to be the main corresponding antigen of antiphospholipid antibodies appearing in autoimmune diseases such as antiphospholipid antibody syndrome (APS) and systemic lupus erythematosus (SLE).
  • Anti- ⁇ 2GPI antibody is also deeply involved in the pathogenesis of diseases, and the complex formed by ⁇ 2GPI and anti- ⁇ 2GPI antibody is on the membrane of various cells such as vascular endothelial cells, monocytes, platelets and trophoblasts. It has become clear from studies using animal models and clinical research that it can generate activation signals to the receptor and, as a result, it can cause pathologies characteristic of APS such as thrombosis and pregnancy abnormalities (Non-patent Document 3) ).
  • ⁇ 2GPI is relatively high in blood at 50-500 ⁇ g / mL. It is not easy to continue to inhibit all these ⁇ 2GPI, for example, by general antibody drugs, which are present (Non-patent Document 4).
  • An object of the present invention is to provide a nucleic acid complex capable of suppressing the expression of ⁇ 2GPI.
  • Formula 1 (In the formula 1, X is a double stranded nucleic acid consisting of a sense strand and an antisense strand, comprising a duplex region of at least 11 base pairs, The double-stranded nucleic acid is an oligonucleotide chain of 17 to 30 nucleotides in length in the antisense strand, and any one of the target ⁇ 2GPI mRNA sequences described in Tables 1-1 to 1-16.
  • Formula 2 (In the formula 2, X, L1, L2 and S3 are as defined above, P1, P2, P3, P4, P5 and P6, and T1 and T2 are each independently absent, or -CO-, -NH-, -O-, -S-, -O-CO- , -S-CO-, -NH-CO-, -CO-O-, -CO-S- or -CO-NH-, Q1, Q2, Q3 and Q4 are each independently absent, or substituted or unsubstituted alkylene having 1 to 12 carbon atoms or-(CH 2 CH 2 O) n -CH 2 CH 2- , N is an integer of 0 to 99, B1 and B2 are each independently a bond or a structure represented by the following formula 2-1, and the terminal black dot in each structure is P2 or P3 or P5, respectively.
  • Formula 5 (In the equation 5, X, S3, P1, P2, P3, Q1, Q2, B1, T1, L1, p1, q1 and q2 are as defined above. ) [7] The nucleic acid complex according to [6], wherein P1 is -CO-NH-, -NH-CO- or -O-. [8] The nucleic acid complex according to [6] or [7], which has any one of structures represented by the following formulas 6-1 to 6-9.
  • Formula 6-1 Formula 6-2: Equation 6-3: Equation 6-4: Formula 6-5: Formula 6-6: Formula 6-7: Formula 6-8: Formula 6-9: (In the formulas 6-1 to 6-9, X, S3, P3, Q2, T1, L1 and q2 are as defined above.
  • nucleic acid complex according to any one of [1] to [11], wherein the 3 'end of the sense strand and the 5' end of the antisense strand form a blunt end.
  • X is a pair of sense strand / antisense strand selected from the group consisting of sense strand / antisense strand described in Table M1-1 to Table M1-18 or Table 1-1 to Table 1-16, The nucleic acid complex according to any one of [1] to [13].
  • Formula 7-8-1 (In formula 7-8-1, X is as defined above.)
  • a pharmaceutical composition comprising the nucleic acid complex according to any one of [1] to [16].
  • the pharmaceutical composition according to [17] for introduction into cells.
  • a method for suppressing the expression of the ⁇ 2 GPI gene including [22] [Beta] 2GPI-related diseases comprising administering the nucleic acid complex according to any one of [1] to [16] or the pharmaceutical composition according to any one of [17] to [19] to a mammal Treatment method.
  • a medicament for use in the treatment of a ⁇ 2GPI related disease comprising the nucleic acid complex according to any one of [1] to [16] or the pharmaceutical composition according to any one of [17] to [19] .
  • a therapeutic agent for a ⁇ 2GPI related disease comprising the nucleic acid complex according to any one of [1] to [16] or the pharmaceutical composition according to any one of [17] to [19].
  • the therapeutic agent according to [24], wherein the ⁇ 2 GPI related disease is an autoimmune disease or thrombosis.
  • a pharmaceutical composition containing the nucleic acid complex of the present invention can be administered to a mammal to treat various related diseases in vivo.
  • the nucleic acid complex of the present invention is a nucleic acid complex represented by the following formula 1.
  • Formula 1 :
  • X is a double stranded nucleic acid consisting of a sense strand and an antisense strand, comprising a duplex region of at least 11 base pairs
  • the double-stranded nucleic acid is an oligonucleotide chain of 17 to 30 nucleotides in length in the antisense strand, and any one of the target ⁇ 2GPI mRNA sequences described in Tables 1-1 to 1-16.
  • Complementary and The 3 'or 5' end of the sense strand is linked to S3, L1 and L2 are each independently a sugar ligand, S1, S2 and S3 are each independently a linker.
  • S1 and S2 can bind to the benzene ring in the ortho position, meta position and para position respectively with respect to the substitution position on the benzene ring of S3, but the nucleic acid complex represented by the following formula 1-1 It is preferred that it is a body. It is meant that the bond of S1 and S2 to the benzene ring in Formula 1 may be at any position other than the substitution position of S3 on the benzene ring.
  • Formula 1-1 :
  • Formula 1-1 X, L1, L2, S1, S2 and S3 are as defined above. In the present specification, the same meaning as described above will be described by exemplifying Formula 1-1: X, L1, L2, S1, and S2 in Formula 1-1, X, L1, It means that it may be the same group as the definition for each of L2, S1 and S2.
  • X is a double stranded nucleic acid consisting of a sense strand and an antisense strand and comprising a double stranded region of at least 11 base pairs.
  • the double-stranded nucleic acid is a target ⁇ 2GPI mRNA described in Tables 1-1 to 1-16 described later in the oligonucleotide strand having a chain length of 17 to 30 nucleotides in the antisense strand. Complementary to any of the sequences.
  • the 3 'or 5' end of the sense strand is linked to S3.
  • L1 and L2 are each independently a sugar ligand.
  • a sugar ligand means a group derived from a saccharide (such as monosaccharide, disaccharide, trisaccharide and polysaccharide) capable of binding to a receptor expressed in a target cell.
  • the moiety excluding the hydroxyl group involved in the binding of the saccharide constituting the sugar ligand is a group derived from the saccharide.
  • sugar ligand is meant.
  • a sugar ligand to be a target cell of an oligonucleotide may be selected.
  • monosaccharides include allose, altose, arabinose, cladinose, erythrose, erythrulose, fructose, D-fusitol, L-fusitol, fucosamine, fucose, fucose, galactosamine, D-galactosaminitol, N-acetyl-galactosamine, Galactose, glucosamine, N-acetyl-glucosamine, glucosaminitol, glucose, glucose-6-phosphate, gulose, glyceraldehyde, L-glycero-D-manno-heptose, glycerol, glycerone, gulose, idoses, liquisose, mannosamine , Mannose, mannose-6-phosphate, psicose, quinobose, quinovosamine, rhamnitol, rhamnosamine,
  • disaccharides, trisaccharides and polysaccharides include avequase, aclavose, amysetose, amylopectin, amylose, apiose, alkanose, alkanose, alkanose, alkanose, ascorbic acid, boibinose, cellobiose, cellotriose, cellulose, cacotriose, chalcose, chitin, colitos, Cyclodextrin, Dextrose, Dextrin, 2-Deoxyribose, 2-Deoxyglucose, Diginose, Digitulose, Digitose, Evalose, Evemitrose, Fructooligosaccharide, Galto-oligosaccharide (galto-oligosaccharide), Gentianose, Gentiobiose, Glucan, Glucogen, Glycogen , Hammellose, heparin, inulin, isolevoglucosenone, isoma Tose
  • Each monosaccharide in the saccharide may be in D-form or L-form, or may be a mixture of D-form and L-form in any proportion.
  • an amino sugar in saccharides galactosamine, glucosamine, glucosamine, mannosamine, fucosamine, quinosamine, neuraminic acid, muramic acid, lactose acid, lactose diamine, acosamine, dacrosamine, daunosamine, desosamine, forosamine, garosamine, canosamine, kansosamine (kansamine) Mikaminose, mycosamine, perosamine, pneuimosamine, purpurosamine, rhodosamine etc. are mentioned.
  • the amino group of the amino sugar may be substituted with an acetyl group or the like.
  • sialic acid-containing sugar chains include sugar chains containing NeuAc at the non-reducing end of the sugar chain, such as NeuAc-Gal-GlcNAc-containing sugar chains, Neu5Ac ⁇ (2-6) Gal ⁇ (1-3) GlcNAc, etc. Can be mentioned.
  • Each monosaccharide in the saccharide may be substituted by a substituent, as long as it can bind to the receptor expressed in the target cell, for example, a hydroxyl group may be substituted, and each monosaccharide
  • the hydrogen atom in may be substituted one or more with an azide and / or an aryl group which may be substituted.
  • sugar ligand it is preferable to select a sugar ligand that binds to a receptor expressed on the surface of a target cell corresponding to each target organ, for example, when the target cell is a hepatocyte, on the surface of a hepatocyte Sugar ligands to the expressed receptor are preferred, and sugar ligands to the asialoglycoprotein receptor (ASGPR) are more preferred.
  • ASGPR asialoglycoprotein receptor
  • sugar ligand for ASGPR mannose or N-acetylgalactosamine is preferable, and N-acetylgalactosamine is more preferable.
  • sugar ligands having higher affinity to ASGPR for example, sugar derivatives described in Bioorganic Medicinal Chemistry, 17, 7254 (2009), and Journal of American Chemical Society, 134, 1978 (2012), etc. are known. These may be used.
  • S1, S2 and S3 are linkers.
  • S1 and S2 are not particularly limited as long as they are structures that link the sugar ligands L1 and L2 with the benzene ring, and a known structure used in a nucleic acid complex may be adopted.
  • S1 and S2 may be the same or different.
  • the sugar ligands L1 and L2 are preferably linked to S1 and S2 by glycosidic bonds, and S1 and S2 may be combined with a benzene ring, for example, -CO-, -NH-, -O-, -S- And -O-CO-, -S-CO-, -NH-CO-, -CO-O-, -CO-S-, or -CO-NH- bond.
  • S3 is not particularly limited as long as it is a structure linking X, which is a double-stranded nucleic acid, and a benzene ring, and a known structure used in a nucleic acid complex may be adopted.
  • the oligonucleotide X is preferably linked to S3 by a phosphodiester bond, and S3 is linked to a benzene ring, for example, -CO-, -NH-, -O-, -S-, -O-CO. -, -S-CO-, -NH-CO-, -CO-O-, -CO-S- or -CO-NH- bond may be linked.
  • linkers of S1, S2 and S3 for example, WO 2009/073809, WO 2013/075035, WO 2015/105083, WO 2014/179620, WO 2015/006740
  • the structure disclosed in the above may be adopted.
  • the nucleic acid complex is preferably a nucleic acid complex having a structure represented by the following formula 2.
  • Formula 2 :
  • X, L1, L2 and S3 are as defined above, P1, P2, P3, P4, P5 and P6, and T1 and T2 are each independently absent, or -CO-, -NH-, -O-, -S-, -O-CO- , -S-CO-, -NH-CO-, -CO-O-, -CO-S- or -CO-NH-, Q1, Q2, Q3 and Q4 are each independently absent, or substituted or unsubstituted alkylene having 1 to 12 carbon atoms or-(CH 2 CH 2 O) n -CH 2 CH 2- , N is an integer of 0 to 99.
  • P1 and P4 are each independently absent, or -CO-, -NH-, -O-, -S-, -O-CO-, -S-CO-, -NH-CO-, -CO-O-, -CO-S- or -CO-NH-, but preferably -O-, -O-CO-, -NH-CO- or -CO-NH-, -O -, -NH-CO- or -CO-NH- is more preferable, and -NH-CO- is more preferable.
  • P1 or P4 is, for example, -NH-CO-, it has a partial structure of -NH-CO-benzene ring.
  • Q1, Q2, Q3 and Q4 are each independently absent, or substituted or unsubstituted alkylene having 1 to 12 carbon atoms or-(CH 2 CH 2 O) n -CH 2 CH 2- And n is an integer of 0 to 99, preferably substituted or unsubstituted alkylene having 1 to 12 carbon atoms, more preferably unsubstituted alkylene having 1 to 12 carbon atoms, and unsubstituted More preferably, it is an alkylene having 1 to 6 carbon atoms, and still more preferably an unsubstituted alkylene having 1 to 4 carbon atoms.
  • P2 and P5 are each independently absent, or -CO-, -NH-, -O-, -S-, -O-CO-, -S-CO-, -NH-CO-, -CO-O-, -CO-S- or -CO-NH-, but not present, preferably -CO-O- or -CO-NH-, preferably absent, -CO-NH It is more preferable that it is-.
  • P2 and P5 are, for example, -CO-NH-, they have partial structures of B1-CO-NH-Q1 and B2-CO-NH-Q3.
  • m5 and m6 are each independently an integer of 0 to 10, and the terminal black dot in the structure of Formula 3-1 to Formula 3-3 is a bonding point to B1 or B2 or P1 or P4, respectively is there.
  • B1 and B2 are each independently a bond or a structure represented by the following formula, and the terminal black dot in each structure is P2 or P3 or P5 or P6, respectively.
  • m1, m2, m3 and m4 are each independently an integer of 0 to 10.
  • B1 and B2 are preferably groups derived from amino acids including non-natural amino acids such as glutamic acid, aspartic acid, lysine and iminodiacetic acid, or amino alcohols such as 2-amino-1,3-propanediol, And when B2 is a group derived from glutamic acid and aspartic acid, it is preferable that the amino groups of glutamic acid and aspartic acid are respectively bonded to form -NH-CO- as P2 and P5, and B1 and B2 are lysine When it is a group derived from, it is preferable that the carboxyl group of lysine is respectively bonded to form -CO-NH- bond as P2 and P5, and when B1 and B2 are groups derived from iminodiacetic acid, The amino group of iminodiacetic acid is bonded to form -CO- bonded as P2 and P5, respectively. It is preferable to be. Specifically, B1 and B2 preferably have the following structures.
  • the nucleic acid complex is preferably a nucleic acid complex having a structure represented by the following formulas 4-1 to 4-9.
  • Formula 4-1 :
  • X, L1, L2, S3, P3, P6, T1, T2, Q2, Q4, q2 and q4 are as defined above.
  • P3 and P6 each independently do not exist, or -CO-, -NH-, -O-, -S-, -O-CO-, -S-CO-, -NH-CO-, -CO-O-, -CO-S- or -CO-NH-, but preferably -O-CO- or -NH-CO-, and more preferably -NH-CO-.
  • P3 and P6 are, for example, -NH-CO-, they have partial structures of B1-NH-CO-Q2 and B2-NH-CO-Q4, respectively.
  • T1 and T2 are each independently absent, or -CO-, -NH-, -O-, -S-, -O-CO-, -S-CO-, -NH-CO-, -CO-O-, -CO-S- or -CO-NH- is preferably -O- or -S-, more preferably -O-.
  • the nucleic acid complex is preferably a nucleic acid complex having a structure represented by the following formula 5.
  • P1 and P4, P2 and P5, P3 and P6, Q1 and Q3, Q2 and Q4, B1 and B2, T1 and T2, L1 and L2, p1 and p2, q1 and q3, and q2 and q4 in Equation 2. are the same.
  • X, S3, P1, P2, P3, Q1, Q2, B1, T1, L1, p1, q1 and q2 are as defined above. Further, X, S3, P1, P2, P3, Q1, Q2, B1, T1, L1, p1, q1 and q2 in Formula 5 may be the above-mentioned suitable groups, but P1 is —CO— It is preferable that it is NH-, -NH-CO- or -O-. It is preferable that — (P 2 ⁇ Q 1) q 1 ⁇ in the formula 5 is absent or has any structure represented by the above formulas 3-1 to 3-3.
  • the nucleic acid complex is preferably a nucleic acid complex having a structure represented by the following formulas 6-1 to 6-9.
  • Formula 6-1 :
  • Equation 6-3
  • Equation 6-4
  • X, S3, P3, Q2, T1 and L1 are as defined above.
  • the nucleic acid complex is preferably a nucleic acid complex having a structure represented by any one of the following formulas 7-1 to 7-9.
  • Formula 7-1 :
  • X, L1, L2 and S3 are as defined above.
  • L1 and L2 may be identical or different, and are preferably identical.
  • each alkylene group moiety is introduced with an alkylene chain having a different chain length, or an amide bond or the like is substituted with another bond to form formulas 7-1 to 7
  • Nucleic acid derivatives other than the nucleic acid complex having the structure represented by -9 can also be produced.
  • the nucleic acid complex is preferably a nucleic acid complex having a structure represented by the following formula 11.
  • Formula 11 :
  • L1, L2, S1 and S2 are each as defined above, P7 and P8 each independently do not exist, or -CO-, -NH-, -O-, -S-, -O-CO-, -S-CO-, -NH-CO-, -CO-O-, -CO-S- or -CO-NH-, Q5, Q6 and Q7 are each independently absent or alkylene substituted or unsubstituted C 1-12 or - (CH 2 CH 2 O) n8 -CH 2 CH 2 - and is, n8 Is an integer from 0 to 99, B3 is herein referred to as a blanker unit and is any structure represented by the following formula 11-1 and means a bond with Q5 and Q6, respectively, in a broken line: Formula 11-1:
  • substitution at a group having a triazole ring is any of the nitrogen atoms at positions 1 and 3 of the triazole ring.
  • q5 and q6 are each independently an integer of 0 to 10.
  • P7 is absent, or -CO-, -NH-, -O-, -S-, -O-CO-, -S-CO-, -NH-CO-, -CO-O-,- CO-S- or -CO-NH-, preferably -O-, -NH-CO- or -CO-NH-, more preferably -O- or -NH-CO- .
  • P7 is, for example, -O-, it has a partial structure of a benzene ring -O-.
  • P8 is absent, or -CO-, -NH-, -O-, -S-, -O-CO-, -S-CO-, -NH-CO-, -CO-O-,- CO—S— or —CO—NH—, when present, is preferably —CO—O— or —CO—NH—, more preferably —CO—NH—.
  • P8 is, for example, -CO-NH-, it has a partial structure of Q6-CO-NH-.
  • Q5, Q6 and Q7 are each independently absent or alkylene substituted or unsubstituted C 1-12 or - (CH 2 CH 2 O) n8 -CH 2 CH 2 - and is, n8 Is an integer of 0 to 99, preferably substituted or unsubstituted alkylene having 1 to 12 carbon atoms, more preferably unsubstituted alkylene having 1 to 12 carbon atoms, and unsubstituted unsubstituted carbon atoms An alkylene of 1 to 6 is more preferable, and an unsubstituted alkylene of 1 to 4 carbon atoms is still more preferable.
  • q5 - is, -O- (CH 2) m15 -NH- and -NH-CO- (CH 2) a m16 -NH, m15 and m16 are each independently 1 to 10 It is preferable that it is an integer of
  • the nucleic acid complex is preferably a nucleic acid complex having a structure represented by any one of the following formulas 12-1 to 12-12.
  • Formula 12-1 :
  • X, L1, L2, S1 and S2 are as defined above, and n1 'to n12' are each independently an integer of 1 to 10.
  • the nucleic acid complex of the present invention is a nucleic acid complex obtained by combining the structure described in formula 2 corresponding to S1 and S2 with the structure described in formula 11 corresponding to S3 in the nucleic acid complex represented by formula 1 Is preferred.
  • Formula 2 may be Formula 4-1 to Formula 4-9, Formula 6-1 to Formula 6-9, Formula 7-1 to Formula 7-9, and Formula When 2 is Expression 4-1 to Expression 4-9, Expression 6-1 to Expression 6-9, or Expression 7-1 to Expression 7-9, Expression 11 has Expression 12-1 to Expression 12-. It may be twelve.
  • the nucleic acid complex of the present invention is a nucleic acid complex represented by formula 1, which has a structure according to any one of formulas 4-1 to 4-9 corresponding to S1 and S2, and a formula 12 corresponding to S3.
  • a nucleic acid complex combining any one of the structures described in any one of the structures 1 to 12-12, any one of the structures described in the formulas 6-1 to 6-9 corresponding to S1 and S2, and A nucleic acid complex combining any one of the structures described in the corresponding formula 12-1 to the formula 12-12, any one of the structures described in the formula 7-1 to the formula 7-9 corresponding to S1 and S2 More preferably, it is a nucleic acid complex obtained by combining any one of the structures described in formulas 12-1 to 12-12 corresponding to S3.
  • the nucleic acid complex of the present invention is preferably represented by the following formula 7-8-1.
  • Formula 7-8-1 (In formula 7-8-1, X is as defined above.)
  • X in Formula 1 is a double-stranded nucleic acid consisting of a sense strand and an antisense strand and containing a double-stranded region of at least 11 base pairs, said double-stranded nucleic acid being in the antisense strand 17
  • An oligonucleotide chain of a chain length of 30 to 30 nucleotides is complementary to any of the target ⁇ 2GPI mRNA sequences listed in Table 1-1 to Table 1-16.
  • X binding to S3 is a sense strand constituting a double-stranded nucleic acid, which will be described later in Table 1-1 to Table 1- 16 or the sense strand represented by the sense strand sequence in Table M1-1 to Table M1-18.
  • nucleic acid containing a base sequence complementary to ⁇ 2GPI mRNA is referred to as antisense strand nucleic acid
  • a nucleic acid containing a base sequence complementary to the base sequence of antisense strand nucleic acid is also referred to as sense strand nucleic acid.
  • the double-stranded nucleic acid constituting the nucleic acid complex used in the present invention is a double-stranded nucleic acid having the ability to reduce or stop the expression of the ⁇ 2GPI gene when introduced into mammalian cells, which comprises a sense strand and an anti It is a double stranded nucleic acid having a sense strand.
  • the sense strand and the antisense strand have at least 11 base pairs, and at least 17 nucleotides and at most 30 nucleotides, ie, 17 to 30 nucleotides in the antisense strand.
  • An oligonucleotide strand of the following length is complementary to a target ⁇ 2GPI mRNA sequence selected from the group described in Tables 1-1 to 1-16.
  • the double-stranded nucleic acid constituting the nucleic acid complex used in the present invention may be any molecule obtained by polymerizing a nucleotide or a molecule having the same function as the nucleotide, for example, a polymer of ribonucleotide And RNA which is a polymer of deoxyribonucleotide, a chimeric nucleic acid consisting of RNA and DNA, and a nucleotide polymer in which at least one nucleotide of these nucleic acids is substituted with a molecule having the same function as the nucleotide.
  • uracil (U) can be read unambiguously as thymine (T).
  • nucleotide derivatives examples include nucleotide derivatives and the like.
  • the nucleotide derivative may be any molecule as long as the nucleotide is modified.
  • the affinity to the complementary strand nucleic acid is selected.
  • a ribonucleotide or a deoxyribonucleotide modified molecule is preferably used.
  • nucleotides examples include sugar-modified nucleotides, phosphodiester bond-modified nucleotides, base-modified nucleotides, and nucleotides in which at least one of a sugar moiety, a phosphodiester bond and a base has been modified.
  • the sugar moiety-modified nucleotide may be any one in which part or all of the chemical structure of the nucleotide sugar is modified or substituted with an arbitrary substituent or substituted with an arbitrary atom, but '-Modified nucleotides are preferably used.
  • the 2'-modified nucleotides such as 2'-OH group of the ribose is H, OR, R, R'OR, SH, SR, NH 2, NHR, NR 2, N 3, CN, F, Cl, Br and Substituted with a substituent selected from the group consisting of I, wherein R is alkyl or aryl, preferably alkyl of 1 to 6 carbons, and R ′ is alkylene, preferably alkylene of 1 to 6 carbons It is a nucleotide, more preferably a nucleotide in which the 2'-OH group is substituted with H, F or a methoxy group, still more preferably a nucleotide in which the 2'-OH group is substituted with F or a methoxy group.
  • 2′-OH group is 2- (methoxy) ethoxy group, 3-aminopropoxy group, 2-[(N, N-dimethylamino) oxy] ethoxy group, 3- (N, N-dimethylamino) propoxy group, 2- A substituent selected from the group consisting of [2- (N, N-dimethylamino) ethoxy] ethoxy group, 2- (methylamino) -2-oxoethoxy group, 2- (N-methylcarbamoyl) etoxy group and 2-cyanoetoxy group Also included are substituted nucleotides and the like.
  • the content of 2'-modified nucleotides is preferably 50 to 100%, more preferably 70 to 100%, still more preferably 90 to 100% with respect to nucleotides in the double stranded nucleic acid region. .
  • the content of 2′-modified nucleotides is preferably 20 to 100%, more preferably 40 to 100%, still more preferably 60 to 100%, based on the nucleotides of the sense strand.
  • the 2'-modified nucleotide is preferably contained in an amount of 20 to 100%, more preferably 40 to 100%, still more preferably 60 to 100%, with respect to the nucleotides of the antisense strand.
  • a phosphodiester bond modified nucleotide any one of those obtained by modifying or substituting a part or all of the chemical structure of phosphodiester bond of the nucleotide with an arbitrary substituent, or substituting with an arbitrary atom
  • a nucleotide in which a phosphodiester bond is substituted with a phosphorothioate bond a nucleotide in which a phosphodiester bond is substituted with a phosphorodithioate bond
  • a nucleotide in which a phosphodiester bond is substituted with an alkyl phosphonate bond phosphoric acid
  • the nucleotide etc. by which the diester bond was substituted by the phosphoroamidate bond etc. are mentioned.
  • any part or all of the chemical structure of the base of the nucleotide may be modified or substituted with any substituent, or any one substituted with any atom, for example, a base
  • the oxygen atom is substituted by a sulfur atom
  • the hydrogen atom is substituted by an alkyl group having 1 to 6 carbon atoms, halogen or the like
  • the methyl group is hydrogen, hydroxymethyl, an alkyl group having 2 to 6 carbon atoms, etc.
  • the amino group is substituted by an alkyl group having 1 to 6 carbon atoms, an alkanoyl group having 1 to 6 carbon atoms, an oxo group, a hydroxy group or the like.
  • nucleotide derivative a nucleotide or a nucleotide derivative in which at least one of sugar moiety, phosphodiester bond or base is modified, peptide, protein, sugar, lipid, phospholipid, phenazine, folate, phenanthridine, anthraquinone, acridine, Fluorescein, rhodamine, coumarin, dyes, etc., which are added with another chemical substance directly or through a linker, can also be mentioned, and specifically, 5'-polyamine adduct nucleotide derivative, cholesterol adduct nucleotide derivative, steroid adduct nucleotide derivative And bile acid-added nucleotide derivatives, vitamin-added nucleotide derivatives, Cy5-added nucleotide derivatives, Cy3-added nucleotide derivatives, 6-FAM-added nucleotide derivatives, biotin-added nucleo
  • the nucleotide derivative may form a cross-linked structure, such as an alkylene structure, a peptide structure, a nucleotide structure, an ether structure, an ester structure, and a structure combining at least one of these with other nucleotides or nucleotide derivatives in the nucleic acid.
  • complementary means a relationship capable of base pairing between two bases, for example, a loose hydrogen such as a relationship between adenine and thymine or uracil, and a relationship between guanine and cytosine. It refers to one that takes on a double helical structure as a whole double stranded region via a bond.
  • an antisense strand complementary to ⁇ 2GPI mRNA means that one or more bases may be substituted in the base sequence completely complementary to the partial base sequence of the mRNA.
  • the antisense strand is 1 to 8, preferably 1 to 6, preferably 1 to 4, 1 to 3, particularly 2 or 1 mismatched bases relative to the target sequence of the target gene. You may have.
  • the antisense strand when it is 21 bases long, it may have 6, 5, 4, 3, 2, 2 or 1 mismatched bases with respect to the target sequence of the target gene, The position of the mismatch may be at the 5 'end or 3' end of each sequence.
  • “complementary” includes a case where one nucleotide sequence is a sequence in which one or more bases are added and / or deleted in a base sequence completely complementary to the other nucleotide sequence.
  • ⁇ 2GPI mRNA and the antisense strand nucleic acid of the present invention have one or two bulge bases in the antisense strand and / or target ⁇ 2GPI mRNA region by addition and / or deletion of bases in the antisense strand. You may
  • the double-stranded nucleic acid as a drug used in the present invention is a nucleic acid containing a base sequence complementary to a part of the base sequence of ⁇ 2GPI mRNA and / or a base sequence complementary to the base sequence of the nucleic acid As long as it contains the nucleic acid, it may be composed of any nucleotide or its derivative.
  • a nucleic acid containing a base sequence complementary to a target ⁇ 2GPI mRNA sequence and a nucleic acid containing a base sequence complementary to the base sequence of the nucleic acid have at least 11 bases.
  • the length of the sequence capable of forming duplexes is usually 11 to 27 bases, preferably 15 to 25 bases, and 17 to 23 bases. Are more preferred, and 19 to 23 bases are even more preferred.
  • a nucleic acid containing a base sequence complementary to a target ⁇ 2GPI mRNA sequence is used, and among the nucleic acids, 1 to 3 bases, preferably 1 to 2 bases, Preferably, one in which one base is deleted, substituted or added may be used.
  • the nucleic acid which suppresses the expression of ⁇ 2GPI is a nucleic acid containing a base sequence complementary to the target ⁇ 2GPI mRNA sequence, and is a single-stranded nucleic acid which suppresses the expression of ⁇ 2GPI, or is complementary to the target ⁇ 2GPI mRNA sequence
  • a double-stranded nucleic acid consisting of a nucleic acid containing a specific base sequence and a nucleic acid containing a base sequence complementary to the base sequence of the nucleic acid, and suppressing expression of ⁇ 2GPI is preferably used.
  • the single-stranded antisense strand nucleic acid and the single-stranded antisense strand nucleic acid constituting the double-stranded nucleic acid may be identical or different, usually 11 to 30 bases, but identical or different, 17 to 27 bases Preferably, it consists of 17-25 bases, more preferably consists of 19-25 bases, still more preferably consists of 21-23 bases.
  • the double-stranded region if having an additional nucleotide or nucleotide derivative which does not form a double strand at the 3 'or 5' side following the double-stranded region, the overhang Call it (overhang).
  • the nucleotides constituting the overhang may be ribonucleotides, deoxyribonucleotides or derivatives thereof.
  • a double-stranded nucleic acid having an overhang one having an overhang consisting of 1 to 6 bases, usually 1 to 3 bases, at the 3 'end or 5' end of at least one strand is used, but from 2 bases Those having a protruding portion are preferably used, for example, those having a protruding portion consisting of dTdT (dT represents deoxythymidine) or UU (U represents uridine).
  • the overhang can be present only in the antisense strand, only in the sense strand, and in both the antisense and sense strands, but in the present invention, a double-stranded nucleic acid having an overhang in the antisense strand is preferably used.
  • the antisense strand is selected from the group described in Tables 1-1 to 1-16 in an oligonucleotide strand consisting of 17 to 30 nucleotides, which comprises a double-stranded region followed by an overhang. It is sufficiently complementary to the target ⁇ 2GPI mRNA sequence to be Furthermore, as the double-stranded nucleic acid of the present invention, for example, a nucleic acid molecule (WO 2005/089287) that produces a double-stranded nucleic acid by the action of ribonuclease such as Dicer or the like, or a protrusion at the 3 'end or the 5' end A double stranded nucleic acid which forms a blunt end, a double stranded nucleic acid (US2012 / 0040459) etc. which only the sense strand protruded can also be used.
  • a nucleic acid molecule WO 2005/089287
  • a nucleic acid consisting of the same sequence as the base sequence of the target gene or the base sequence of its complementary strand may be used.
  • a double-stranded nucleic acid consisting of a nucleic acid in which the 5 ′ end or 3 ′ end of the strand has been deleted by 1 to 4 bases and a nucleic acid containing a base sequence complementary to the base sequence of the nucleic acid may be used.
  • the double-stranded nucleic acid constituting the nucleic acid complex used in the present invention is a double-stranded RNA (dsRNA) in which the RNAs form a duplex, and a double-stranded DNA (dsDNA) in which the DNAs form a duplex.
  • dsRNA double-stranded RNA
  • dsDNA double-stranded DNA
  • a hybrid nucleic acid in which RNA and DNA form a duplex a hybrid nucleic acid in which RNA and DNA form a duplex.
  • one or both strands of the double strand may be a chimeric nucleic acid of DNA and RNA.
  • it is a double stranded RNA (dsRNA).
  • the second nucleotide from the 5 'end of the antisense strand of the nucleic acid complex of the present invention is preferably complementary to the second deoxyribonucleotide from the 3' end of the target ⁇ 2GPI mRNA sequence, and the 5 'end of the antisense strand More preferably, the 2nd to 7th nucleotides are completely complementary to the 2nd to 7th deoxyribonucleotides from the 3 'end of the target ⁇ 2 GPI mRNA sequence, and the 2nd to 11th nucleotides from the 5' end of the antisense strand It is further preferred that is completely complementary to the 2nd to 11th deoxyribonucleotides from the 3 'end of the target ⁇ 2GPI mRNA sequence.
  • the 11th nucleotide from the 5 'end of the antisense strand in the nucleic acid of the present invention is complementary to the 11th deoxyribonucleotide from the 3' end of the target ⁇ 2GPI mRNA sequence, and the 5 'end of the antisense strand
  • the 9th to 13th nucleotides are completely complementary to the 9th to 13th deoxyribonucleotides from the 3 'end of the target ⁇ 2GPI mRNA sequence, and the 7th to 15th nucleotides from the 5' end of the antisense strand More preferably, it is completely complementary to the 7th to 15th deoxyribonucleotides from the 3 'end of the target ⁇ 2GPI mRNA sequence.
  • the antisense and sense strands of the nucleic acid complex of the present invention are based on, for example, the nucleotide sequence (SEQ ID NO: 3541) of the cDNA (sense strand) of full-length mRNA of human ⁇ 2GPI registered as Genbank Accession No. NM — 000042 It can be designed.
  • Double stranded nucleic acids can be designed to interact with target sequences within the ⁇ 2 GPI gene sequence.
  • sequence of one strand of double stranded nucleic acid is complementary to the target site sequence described above.
  • Double stranded nucleic acids can be chemically synthesized using the methods described herein.
  • RNA may be produced enzymatically or by partial / total organic synthesis, and modified ribonucleotides can be introduced in vitro by enzymatic or organic synthesis.
  • each strand is chemically prepared. Methods for chemically synthesizing RNA molecules are known in the art [see Nucleic Acids Research, 1998, Volume 32, p. 936-948]. In general, double stranded nucleic acids can be synthesized by using solid phase oligonucleotide synthesis methods (e.g., Usman et al., U.S. Patent 5,804,683; U.S. Patent 5,831,071; U.S. Patent No. 5,998,203; U.S. Patent No.
  • Single-stranded nucleic acids are synthesized, deprotected, and prepared using the solid phase phosphoramidite method (see Nucleic Acids Research, 1993, Vol. 30, p. 2435-2443). Desalted on a NAP-5 column (Amersham Pharmacia Biotech, Piscataway, NJ). Oligomers are Amersham Source 15Q columns using a 15 minute linear gradient-1.0 cm. Purified using ion exchange high performance liquid chromatography (IE-HPLC) at .25 cm height (Amersham Pharmacia Biotech, Piscataway, NJ).
  • IE-HPLC ion exchange high performance liquid chromatography
  • Samples are monitored at 260 nm and peaks corresponding to full-length oligonucleotide species are collected, pooled, desalted on a NAP-5 column, and lyophilized.
  • each single stranded nucleic acid is determined by capillary electrophoresis (CE) on a Beckman PACE 5000 (Beckman Coulter, Inc., Fullerton, Calif.).
  • the CE capillary has an internal diameter of 100 ⁇ m and contains ssDNA 100R Gel (Beckman-Coulter).
  • ssDNA 100R Gel (Beckman-Coulter).
  • about 0.6 nmole of oligonucleotide is injected into the capillary and run at an electric field of 444 V / cm, detected by UV absorbance at 260 nm.
  • Denatured Tris-Borate-7 mol / L-Urea running buffer is purchased from Beckman-Coulter.
  • Single stranded nucleic acids that are at least 90% pure as assessed by CE are obtained for use in the experiments described below.
  • Compound identity is determined using the matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass on Voyager DE.TM. Biospectrometry workstation (Applied Biosystems, Foster City, Calif.) According to the manufacturer's recommended protocol. Verified by spectroscopy.
  • the relative molecular mass of single stranded nucleic acid can be obtained within 0.2% of the expected molecular mass.
  • Single stranded nucleic acid is resuspended at a concentration of 100 ⁇ mol / L in a buffer consisting of 100 mmol / L potassium acetate, 30 mmol / L HEPES, pH 7.5.
  • the complementary sense and antisense strands are mixed in equal molar amounts to obtain a final solution of 50 ⁇ mol / L double stranded nucleic acid.
  • the sample is heated to 95 ° C. for 5 minutes and allowed to cool to room temperature before use.
  • Double stranded nucleic acids are stored at -20 ° C.
  • Single stranded nucleic acids are lyophilized or stored at -80 ° C. in nuclease free water.
  • the sense strand and the antisense strand according to the present invention which comprises a duplex region of at least 11 base pairs, in the antisense strand, an oligonucleotide of 11 to 30 nucleotides in length, 1-1 from the group consisting of the antisense strand described in Tables 1-1 to 1-16 as a double-stranded nucleic acid complementary to the target ⁇ 2GPI mRNA sequence selected from the group described in 1-1 to Table 1-16
  • a double-stranded nucleic acid comprising the selected sequence, or a sequence selected from the group consisting of the sense strands described in Table M1-1 to Table M1-18, and Tables 1-1 to 1-16 described below Single-stranded nucleic acid or a pair of sense strands selected from the group consisting of sense strands / antisense strands described in Table M1-1 to Table M1-18 and Tables 1-1 to 1-16 described later Double stranded nucleic acids comprising the sequence of the antisense strand may
  • the double stranded nucleic acid constituting the nucleic acid complex used in the present invention are the sense strand and the anti in the table M1-1 to the table M1-18, and the table 1-1 to the table 1-16 described later. It is a double stranded nucleic acid consisting of a sense strand.
  • N (M) represents 2'-O-methyl-modified RNA
  • N (F) represents 2'-fluorine-modified RNA
  • represents phosphorothioate.
  • the 5 'terminal nucleotide of the antisense strand sequences described in Tables 1-1 to 1-16 and Tables M1-1 to M1-18 may be phosphorylated at the 5' end, It does not have to be, but is preferably phosphorylated.
  • the double-stranded nucleic acid containing the sequence of the sense strand / antisense strand described in Tables 1-1 to 1-16 described later has a relative expression amount of ⁇ 2GPI of 0.15 or less in the measurement of its knockdown activity desirable.
  • the method for producing the nucleic acid complex of the present invention will be described.
  • introduction and removal of protecting groups commonly used in synthetic organic chemistry Methods eg, Protective Groups in Organic Synthesis, third edition, by T. Greene, John Wiley & Sons Inc.
  • the target compound can be produced by using the method described in (1999), etc.].
  • the order of reaction processes, such as substituent introduction can also be changed as needed.
  • the nucleic acid polymer represented by Formula 1 can also be synthesized by solid phase synthesis.
  • the nucleic acid polymer represented by the formula 1 can be synthesized with reference to a synthesis method of a linker structure known as a nucleic acid complex.
  • the synthesis of the L1-benzene ring unit using S1 as a linker and the L2-benzene ring unit using S2 as a linker in the nucleic acid complex represented by formula 1 can be performed, for example, using the nucleic acid complex represented by formula 2 as an example. explain.
  • the L1-benzene ring unit and the L2-benzene ring unit in the nucleic acid complex represented by the formula 2 are linked by P1, P2, P3, P4, P5, and P6, and T1 and T2.
  • the partial structure of the L1-benzene ring unit can be produced by combining a compound having Q1 as a partial structure and a compound having B1 as a partial structure sequentially from the benzene ring. Separately synthesizing a compound having L1 and Q2 as a partial structure, and binding a compound having L1 and Q2 as a partial structure to a compound having a partial structure of an L1-benzene ring unit having a benzene ring and Q1 and B1 as a partial structure
  • L 1 -benzene ring unit structure can be produced.
  • the partial structure of L2-benzene ring unit can be produced by sequentially binding a compound having Q3 as a partial structure and a compound having B2 as a partial structure sequentially from the benzene ring . Separately synthesizing a compound having L2 and Q4 as a partial structure, and combining a compound having L2 and Q4 as a partial structure with a compound having a partial structure of L2-benzene ring unit having a benzene ring and Q3 and B2 as partial structures Thus, an L2-benzene ring unit structure can be produced.
  • an alkylene having 1 to 10 carbon atoms or a — (CH 2 CH 2 O) n —CH 2 CH 2 — terminal group is a hydroxyl group or a carboxyl group at both ends
  • compounds having an amino group and a thiol group are represented by the compound having B1 as a partial structure and the compound having B2 as a partial structure.
  • the compound having B1 as a partial structure and the compound having B2 as a partial structure have one of the structures represented by the following formula 2-1, and a hydroxyl group and a carboxyl group are represented by the black dots at the end of each structure, respectively.
  • compounds having an amino group or a thiol group are represented by the black dots at the end of each structure, respectively.
  • the compound having B1 as a partial structure and the compound having B2 as a partial structure include glycol, glutamic acid, aspartic acid, lysine, Tris, iminodiacetic acid, 2-amino-1,3-propanediol and the like. Glutamic acid, aspartic acid, lysine and iminodiacetic acid are preferred.
  • B1 and B2 preferably have the following structures.
  • a compound having L1, Q2 and B1 as a partial structure may be synthesized and then coupled to a compound having Q1 and a benzene ring to produce an L1-benzene ring unit structure.
  • a compound having L2, Q4 and B2 as a partial structure may be synthesized and then combined with Q3 and a compound having a benzene ring to produce an L2-benzene ring unit structure.
  • [L1-T1- (Q2- P3) q2 -] p1 -B1- and substructure is (P2-Q1) q1 a -P1-, [L2-T2- (Q3 -P6) q4 -]
  • the partial structure which is p2- B2- (P5-Q3) q3- P2- may be identical or different, but is preferably identical.
  • Examples of the unit corresponding to L1-T1-Q2 of the sugar ligand include L3-T1-Q2-COOH, L3-T1- (Q2-P3) q2-1 -Q2-NH 2 and the like.
  • L3-O-alkylene-COOH having 1 to 12 carbon atoms L-alkylene-CO-NH having 1 to 12 carbons, alkylene-NH 2 having 2 to 12 carbons, etc. may be mentioned.
  • L3 is not particularly limited as long as it is a sugar ligand derivative that becomes L1 by deprotecting.
  • the substituent of the sugar ligand is not particularly limited as long as it is a substituent generally used in the field of carbohydrate chemistry, but an Ac group is preferable.
  • the number of carbon atoms of the alkylene chain is appropriately increased or decreased, with reference to the method described in the Examples, and synthesis of L1-benzene ring unit using S1 as a linker and L2 benzene ring unit using S2 as a linker
  • the terminal amino group and the terminal carboxyl group can be selected from -CO-, -NH-, -O-, -S-, -O-CO-, -S-CO-, -NH-CO-, -CO-O-
  • the compound can be synthesized by using a compound converted into a group capable of forming a -CO-S- or -CO-NH- bond.
  • mannose or N-acetylgalactosamine is exemplified in the examples also for L1 sugar ligands, but other sugar ligands can be used instead.
  • the synthesis of the X-benzene ring unit using the S3 as a linker in the nucleic acid complex represented by the formula 1 will be described, for example, by taking the nucleic acid complex represented by the formula 12 as an example.
  • the X-benzene ring unit in the nucleic acid complex represented by Formula 12 has a bond represented by P7 and P8 in addition to the bond of the oligonucleotide.
  • the compound can be appropriately synthesized by selecting an appropriate raw material for forming the structure represented by Formula 12 with reference to the method of the binding reaction described in 1.).
  • the partial structure of the X-benzene ring unit can be produced by combining a compound having Q5 as a partial structure and a compound having B3 as a partial structure sequentially from the benzene ring.
  • a compound having X and Q7 as a partial structure or a compound having X and Q6 as a partial structure is separately synthesized, and a compound having X and Q7 as a partial structure or a compound having X and Q6 as a partial structure is a benzene ring and Q5
  • An X-benzene ring unit structure can be produced by combining with a compound having a partial structure of the X-benzene ring unit having a partial structure to construct a B3 portion.
  • an X-benzene ring unit structure can be produced by reacting a formed oligonucleotide to cause cycloaddition to form a triazole ring to construct a B3 moiety.
  • a compound having Q5 as a partial structure a compound having Q6 as a partial structure, and a compound having Q7 as a partial structure, an alkylene having 1 to 10 carbon atoms or- (CH 2 CH 2 O) n 8 -CH 2 CH 2-
  • the compound which has a hydroxyl group, a carboxyl group, an amino group, and a thiol group is mentioned at both ends.
  • the L1-benzene ring unit structure, the L2-benzene ring unit structure, and the X-benzene ring unit structure can be sequentially produced, but the L1-benzene ring unit structure and the L2-benzene ring unit structure are synthesized. Then, it is preferable to combine the X-benzene ring unit structure.
  • X having an oligonucleotide moiety is preferably introduced into the compound near the final step of sugar ligand complex synthesis.
  • R1 and R2 are each independently a hydrogen atom, t-butoxycarbonyl group (Boc group), benzyloxycarbonyl group (Z group), 9-fluorenylmethyloxycarbonyl group (Fmoc group), -CO-R4 Or -CO-B4-[(P9-Q8) q7- T3-L3] p3
  • P9 and T3 are each independently absent, or -CO-, -NH-, -O-, -S-, -O-CO-, -S-CO-, -NH-CO-, -CO-O-, -CO-S- or -CO-NH-
  • Q8 is absent or substituted or unsubstituted alkylene having 1 to 12 carbon atoms, or-(CH 2 CH 2 O) n 1 -CH 2 CH 2- , and n 1 is an integer of 0 to 99
  • B4 is each independently a bond or a structure represented by Formula 8-1 below, and
  • p3 is an integer of 1, 2 or 3 and q7 is an integer of 0 to 10
  • L3 is a sugar ligand
  • Y is —O— (CH 2 ) m 11 —NH— and —NH—CO— (CH 2 ) m 12 —NH
  • m 11 and m 12 are each independently an integer of 1 to 10
  • R3 is a hydrogen atom, t-butoxycarbonyl group, benzyloxycarbonyl group, 9-fluorenylmethyloxycarbonyl group, -CO-R4, -CO- (CH 2 CH 2 O) n2 -CH 2 CH 2 -N 3 or -CO-Q9- B5- (Q10-P10) q8- X1, and n2 is an integer of 0 to 99
  • P10 is absent, or -CO-, -NH-, -O-, -S-, -O-CO-, -S-CO-, -NH-CO-, -CO
  • substitution at a group having a triazole ring is any of the nitrogen atoms at positions 1 and 3 of the triazole ring.
  • q8 is an integer of 0 to 10
  • X 1 is a hydrogen atom or a solid support
  • R 4 is selected from the group consisting of t-butoxycarbonyl group, benzyloxycarbonyl group, amino group substituted or unsubstituted with 9-fluorenylmethyloxycarbonyl group, carboxy group, maleimide group, and aralkyloxycarbonyl group It is an alkyl group having 2 to 10 carbon atoms which is substituted by 1 or 2 substituents. )
  • R5 and R6 each independently represent a hydrogen atom, t-butoxycarbonyl group, benzyloxycarbonyl group, 9-fluorenylmethyloxycarbonyl group, -CO-R4 ', or -CO-Q11- (P11-Q11) ') Q9 -T4-L4,
  • P11 and T4 are each independently absent, or -CO-, -NH-, -O-, -S-, -O-CO-, -S-CO-, -NH-CO-, -CO-O-, -CO-S- or -CO-NH-
  • Q11 and Q11 ′ are absent or substituted or unsubstituted alkylene having 1 to 12 carbon atoms or- (CH 2 CH 2 O) n 4 -CH 2 CH 2- , and n 4 is an integer of 0 to 99
  • q9 is an integer of 0 to 10
  • L4 is a sugar ligand
  • substitution at a group having a triazole ring is any of the nitrogen atoms at positions 1 and 3 of the triazole ring.
  • q8 ' is an integer of 0 to 10
  • X1 ' is a hydrogen atom or a solid support
  • R 4 ′ is selected from the group consisting of t-butoxycarbonyl group, benzyloxycarbonyl group, amino group substituted or unsubstituted with 9-fluorenylmethyloxycarbonyl group, carboxy group, maleimide group, and aralkyloxycarbonyl group An alkyl group of 2 to 10 carbon atoms substituted with one or two substituents.
  • R7 and R8 are each independently a hydroxy group, a t-butoxy group, a benzyloxy group, -NH-R10 or -NH-Q12- (P12-Q12 ') q10- T4-L4, P12 and T4 are each independently absent, or -CO-, -NH-, -O-, -S-, -O-CO-, -S-CO-, -NH-CO-, -CO-O-, -CO-S- or -CO-NH-, Q12 and Q12 ′ are absent or substituted or unsubstituted alkylene having 1 to 12 carbon atoms or-(CH 2 CH 2 O) n 2 -CH 2 CH 2- , and n 2 is an integer of 0 to 99 And L4 is a sugar ligand, Y 2 is —O— (CH 2 ) m 9 —NH— and —NH—CO— (CH 2 ) m 10 —NH, and m
  • substitution at a group having a triazole ring is any of the nitrogen atoms at positions 1 and 3 of the triazole ring.
  • q11 is an integer of 0 to 10
  • X2 is a hydrogen atom or a solid support
  • R 10 is selected from the group consisting of t-butoxycarbonyl group, benzyloxycarbonyl group, amino group substituted or unsubstituted with 9-fluorenylmethyloxycarbonyl group, carboxy group, maleimide group, and aralkyloxycarbonyl group It is an alkyl group having 2 to 10 carbon atoms which is substituted by 1 or 2 substituents. )
  • the nucleic acid derivative in the present invention can be exemplified as a method for producing a compound having a partial structure represented by the formula (I ′).
  • P 1 represents a protecting group which can be deprotected by a base such as Fmoc
  • DMTr represents p, p′-dimethoxytrityl group
  • R represents a sugar ligand-tether unit
  • R ′ represents R in Each hydroxyl group of the sugar ligand is a group protected by a protecting group which can be deprotected by a base such as an acetyl group
  • Polymer is a solid phase carrier
  • Q ' is -CO-.
  • Step 1 Compound (I-B) is a compound (IA) and p, p'-dimethoxytrityl chloride in a solvent such as pyridine, optionally in the presence of a cosolvent, at a temperature between 0 ° C. and 100 ° C. Can be produced by reacting for 5 minutes to 100 hours.
  • a solvent such as pyridine
  • co-solvent for example, methanol, ethanol, dichloromethane, chloroform, 1,2-dichloroethane, toluene, ethyl acetate, acetonitrile, diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, dioxane, N, N-dimethylformamide (DMF) And N, N-dimethylacetamide, N-methylpyrrolidone, pyridine, water and the like, and these may be used alone or in combination.
  • DMF N-dimethylformamide
  • N-dimethylacetamide N-methylpyrrolidone
  • pyridine water and the like
  • Step 2 Compound (IC) is reacted with Compound (IB) without solvent or in the presence of 1 to 1000 equivalents of a secondary amine in a solvent at a temperature between room temperature and 200 ° C. for 5 minutes to 100 hours.
  • a solvent for example, methanol, ethanol, dichloromethane, chloroform, 1,2-dichloroethane, toluene, ethyl acetate, acetonitrile, diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, dioxane, N, N-dimethylformamide (DMF), Examples thereof include N, N-dimethylacetamide, N-methylpyrrolidone, pyridine, water and the like, which may be used alone or in combination.
  • secondary amines include diethylamine, piperidine and the like.
  • Step 3 Compound (1-E) is a compound (IC) and compound (ID), 1 to 30 equivalents of a base, a condensing agent, and optionally 0.01 to 30 equivalents without solvent or in a solvent C. for 5 minutes to 100 hours at a temperature between room temperature and 200.degree. C. in the presence of an additive.
  • a base for example, cesium carbonate, potassium carbonate, potassium hydroxide, sodium hydroxide, sodium methoxide, potassium tert-butoxide, triethylamine, diisopropylethylamine, N-methylmorpholine, pyridine, 1,8-diazabicyclo [5.4.
  • DBU 1,3-dicyclohexanecarbodiimide
  • EDC 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide ⁇ hydrochloride
  • carbonyldiimidazole benzotriazol-1-yloxytris (Dimethylamino) phosphonium hexaflurophosphate, (benzotriazol-1-yloxy) tripyrrolidinophosphonium hexafluorophosphate, O- (7-azabenzotriazol-1-yl) -N, N, N ′, N '-Tetramethyluronium hexafluorophosphate (HATU), O- (benzotriazol-1-yl) -N, N, N', N'-tetramethyl
  • additive examples include 1-hydroxybenzotriazole (HOBt), 4-dimethylaminopyridine (DMAP) and the like.
  • HOBt 1-hydroxybenzotriazole
  • DMAP 4-dimethylaminopyridine
  • ID can be obtained by a known method (see, for example, Journal of American Chemical Society, 136, 16958, (2014)) or a method analogous thereto.
  • Step 4 Compound (IF) is prepared by reacting Compound (IE) and succinic anhydride in a solvent in the presence of 1 to 30 equivalents of a base at a temperature between room temperature and 200 ° C. for 5 minutes to 100 hours.
  • IE Compound (IE)
  • succinic anhydride succinic anhydride
  • step 2 As the solvent, those exemplified in step 2 can be mentioned.
  • Step 5 The compound (IG) is obtained by using a compound (IF) and a terminally aminated solid phase carrier, 1 to 30 equivalents of a base, a condensing agent, and optionally 0. After reacting for 5 minutes to 100 hours at a temperature between room temperature and 200 ° C. in the presence of 01 to 30 equivalents of additive, for 5 minutes to 100 hours at a temperature between room temperature and 200 ° C. It can be produced by reaction.
  • the solvent those exemplified in step 2 can be mentioned.
  • the base, the condensing agent and the additive include those exemplified in Step 3.
  • the aminated solid phase carrier include long-chain alkylamine pore glass (LCAA-CPG) and the like, which can be obtained as commercial products.
  • the nucleic acid complex having a sugar ligand-tether-brancher unit represented by the formula (I ′) is a compound (IG) after extending the corresponding nucleotide chain by a known oligonucleotide chemical synthesis method. It can be produced by removal from the solid phase, deprotection of the protective group and purification.
  • oligonucleotide chemical synthesis methods include the phosphoroamidite method, the phosphorothioate method, the phosphotriester method, the CEM method (see Nucleic Acids Research, 35, 3287 (2007)), and the like, for example, ABI 3900 high. It can be synthesized by a throughput nucleic acid synthesizer (manufactured by Applied Biosystems).
  • Removal from solid phase, deprotection may be prepared by treatment with a base for 10 seconds to 72 hours after chemical synthesis of oligonucleotide in a solvent or in the absence of solvent, at a temperature between -80 ° C and 200 ° C. it can.
  • ammonia for example, ammonia, methylamine, dimethylamine, ethylamine, diethylamine, isopropylamine, diisopropylamine, piperidine, triethylamine, ethylenediamine, 1,8-diazabicyclo [5.4.0] -7-undecene (DBU), carbonate Potassium and the like can be mentioned.
  • DBU 1,8-diazabicyclo [5.4.0] -7-undecene
  • Examples of the solvent include water, methanol, ethanol, THF and the like.
  • oligonucleotide Purification of the oligonucleotide is possible by combining a C18 reverse phase column or an anion exchange column, preferably the two methods described above.
  • the nucleic acid complex purity after purification is desirably 90% or more, preferably 95% or more.
  • the compound (ID) can be divided into two units, divided into two steps, and condensed with the compound (IC).
  • the compound in step 3 Ethyl ester of the compound obtained by condensing (IC) and CH 3 CH 2 -O-CO-Q 4 '-CO-OH (Q 4' is as defined above) in the same manner as in step 3.
  • the compound is hydrolyzed with a base such as lithium hydroxide in a solvent such as ethanol or water, and then it is condensed with R′—NH 2 (R ′ is as defined above) to give the desired compound.
  • a base such as lithium hydroxide
  • R′ is as defined above
  • CH 3 CH 2 -O-CO -Q4'-CO-OH Q4 ' is as defined above
  • R'-NH 2 R' is as defined above
  • Q 4 ′ the substituted or unsubstituted C 1 to C 12 alkylene substituent and alkylene moiety are as defined above.
  • the nucleic acid derivative in the present invention can be exemplified as a method for producing a compound having a partial structure represented by formula (II ′).
  • TBDMS represents a t-butyldimethylsilyl group
  • Fmoc represents a 9-fluorenylmethyloxycarbonyl group
  • Step 7 Compound (II-A) can be prepared by reacting compound (IA), t-butyldimethylsilyl chloride and dimethylaminopyridine in a solvent such as N, N-dimethylformamide (DMF), preferably in the presence of 2 equivalents of a base The reaction can be carried out at a temperature between 0 ° C. and 100 ° C. for 5 minutes to 100 hours.
  • a solvent such as N, N-dimethylformamide (DMF)
  • a base those exemplified in Step 3 of Production Method 1 can be mentioned.
  • Step 8 Compound (II-B) can be produced using compound (II-A) under the same conditions as in step 1 of production method 1.
  • Step 9 Compound (II-C) is produced by reacting compound (II-B) with n-tetrabutylammonium fluoride (TBAF) in a solvent at a temperature between room temperature and 200 ° C. for 5 minutes to 100 hours. can do.
  • TBAF n-tetrabutylammonium fluoride
  • Step 10 Compound (II-D) can be produced using compound (II-C) under the same conditions as in step 2 of production method 1.
  • Step 11 Compound (II-E) can be produced using compound (II-D) and compound (ID) under the same conditions as in step 3 of production method 1.
  • Steps 12 to 14 Compound (II ′) can be produced using compound (II-E) under the same conditions as steps 4 to 6 of production method 1.
  • the compound (ID) can be divided into two units, divided into two steps, and condensed with the compound (II-C).
  • R-Q ' is -NH-CO-Q4'-CO- (Q4' is substituted or unsubstituted alkylene having 1 to 12 carbon atoms)
  • compound (II- C) and CH 3 CH 2 -O-CO-Q 4 '-CO-OH (Q 4' is as defined above) are condensed in the same manner as in step 11, and the ethyl ester of the obtained compound is ethanol or After hydrolysis with a base such as lithium hydroxide in a solvent such as water, the compound is further condensed with R′—NH 2 (R ′ is as defined above) to give the desired compound.
  • the nucleic acid derivative in the present invention can be exemplified as a method for producing a compound having a partial structure represented by formula (III ′).
  • Compound (III ′) can be produced using compound (III-A) under the same conditions as steps 1 to 6 of production method 1.
  • Compound (III-A) can be obtained as a commercial product.
  • Step 15 Compound (III-B) can be produced using compound (III-A) under the same conditions as in step 1 of production method 1.
  • Compound (III-A) can be purchased as a commercial product.
  • Step 16 Compound (III-C) can be produced using compound (III-B) under the same conditions as in step 2 of production method 1.
  • Step 17 Compound (III-E) can be produced using compound (III-C) under the same conditions as in step 3 of production method 1.
  • Steps 18 to 20 Compound (III ′) can be produced using compound (III-E) under the same conditions as in Steps 4 to 6 of Production Method 1.
  • the compound (ID) can be divided into two units, divided into two steps, and condensed with the compound (III-C).
  • the compound (III-) is C) and CH 3 CH 2 -O-CO-Q 4 '-CO-OH (wherein Q 4' is as defined above) are condensed in the same manner as in step 17 to obtain ethyl ester of the obtained compound as ethanol or After hydrolysis with a base such as lithium hydroxide in a solvent such as water, the compound is further condensed with R′—NH 2 (R ′ is as defined above) to give the desired compound.
  • the nucleic acid derivative in the present invention can be exemplified as a method for producing a compound having a partial structure represented by formula (IV ′).
  • Compound (IV ′) can be produced using compound (IV-A) under the same conditions as steps 1 to 6 of production method 1.
  • Compound (IV-A) can be obtained as a commercial product.
  • compound (ID) can be divided into two units, divided into two steps, and condensed with compound (IV-C).
  • compound (IV-C) when R'-Q 'is -NH-CO-Q4'-CO- (Q4' is substituted or unsubstituted alkylene having 1 to 12 carbon atoms), the compound in step 23 (IV-C) and CH 3 CH 2 —O—CO—Q 4 ′ —CO—OH (Q 4 ′ is as defined above) are condensed in the same manner as in step 23 to obtain ethyl ester of the compound obtained
  • the compound is hydrolyzed with a base such as lithium hydroxide in a solvent such as ethanol or water, and then it is condensed with R′—NH 2 (R ′ is as defined above) to give the desired compound.
  • the nucleic acid derivative in the present invention can be exemplified as a method for producing a compound having a partial structure represented by the formula (V ′).
  • Compound (V ′) can be produced using compound (IV-A) under the same conditions as steps 1 to 7 of production method 2.
  • Compound (IV-A) can be obtained as a commercial product.
  • the compound (ID) can also be divided into two units if necessary, divided into two steps, and condensed with the compound (VD).
  • the compound in step 31 (VD) and CH 3 CH 2 —O—CO—Q 4 ′ —CO—OH (Q 4 ′ is as defined above) are condensed in the same manner as in step 31 to obtain ethyl ester of the compound obtained
  • the compound is hydrolyzed with a base such as lithium hydroxide in a solvent such as ethanol or water, and then it is condensed with R′—NH 2 (R ′ is as defined above) to give the desired compound.
  • Manufacturing method 6 The method for producing the nucleic acid complex of the present invention in which a sugar ligand-tether-brancher unit is linked to the 5 'end of the oligonucleotide is exemplified below.
  • Step 35 Compound (I-H) comprises compound (II-E) and 2-cyanoethyl-N, N, N ′, N′-tetraisopropylphosphodiamidite in the presence of a base and a reaction accelerator either in the absence or in the presence of a solvent.
  • a reaction accelerator either in the absence or in the presence of a solvent.
  • C. at a temperature between room temperature and 200.degree. C., for 5 minutes to 100 hours.
  • the solvent those exemplified in step 2 of production method 1 can be mentioned.
  • As the base those exemplified in step 3 of production method 1 can be mentioned.
  • reaction accelerators include 1H-tetrazole, 4,5-dicyanoimidazole, 5-ethylthiotetrazole, 5-benzylthiotetrazole and the like, and they can be purchased as commercial products.
  • Step 36 The oligonucleotide chain is extended, and finally the compound (IH) is used to modify the 5 'end of the oligonucleotide with a sugar ligand-tether-brancher unit, followed by removal from the solid phase, deprotection of the protecting group Compound (I ′ ′) can be produced by performing and purification.
  • the removal from the solid phase, the deprotection of the protective group and the purification can be carried out in the same manner as in step 7 of production method 1, respectively.
  • Manufacturing method 7 The method for producing the nucleic acid complex of the present invention in which a sugar ligand-tether-brancher unit is linked to the 5 'end of the oligonucleotide is exemplified below.
  • Manufacturing method 8 The method for producing the nucleic acid complex of the present invention in which a sugar ligand-tether-brancher unit is linked to the 5 'end of the oligonucleotide is exemplified below.
  • Manufacturing method 9 The method for producing the nucleic acid complex of the present invention in which a sugar ligand-tether-brancher unit is linked to the 5 'end of the oligonucleotide is exemplified below.
  • Manufacturing method 10 The method for producing the nucleic acid complex of the present invention in which a sugar ligand-tether-brancher unit is linked to the 5 'end of the oligonucleotide is exemplified below.
  • Manufacturing method 11 Water or a suitable buffer of the sense strand having a sugar ligand-tether-brancher unit at the 3 'end or 5' end of the sense strand constituting the double stranded nucleic acid, and the antisense strand constituting the double stranded nucleic acid
  • a nucleic acid complex having double-stranded nucleic acid can be obtained by dissolving each in a liquid and mixing.
  • the buffer include acetate buffer, Tris buffer, citrate buffer, phosphate buffer, water and the like, and these may be used alone or in combination.
  • the mixing ratio of the sense strand to the antisense strand is preferably 0.5 to 2 equivalents, more preferably 0.9 to 1.1 equivalents, and 0.95 equivalents to 1 equivalent of the antisense strand per equivalent of the sense strand. More preferred is .05 equivalents.
  • an annealing treatment may be appropriately performed.
  • the annealing treatment is carried out by heating the mixture of sense strand and antisense strand to preferably 50 to 100 ° C., more preferably 60 to 100 ° C., still more preferably 80 to 100 ° C., and then gradually cooling to room temperature.
  • the annealing treatment is carried out by heating the mixture of sense strand and antisense strand to preferably 50 to 100 ° C., more preferably 60 to 100 ° C., still more preferably 80 to 100 ° C., and then gradually cooling to room temperature.
  • the antisense strand can be obtained according to the known oligonucleotide synthesis method described above.
  • the nucleic acid derivative in the present invention can be exemplified as a method for producing a compound having a partial structure represented by the formula (VI ′).
  • TBS represents a t-butyldimethylsilyl group
  • R 0 and R x are the same or different, and are hydrogen atoms
  • W is a C1-C10 alkylene, a C3-C8 cycloalkylene, or together with R0, a C4-C8 nitrogen-containing heterocyclic ring You may form.
  • Step 45 Compound (VI-B) can be produced using compound (VI-A) under the same conditions as in step 1 of production method 1.
  • Compound (VI-A) can be obtained as a commercially available product, or by a known method (eg, Bioorganic & Medical Chemistry Letters, 11: 383-386) or a method analogous thereto.
  • Step 46 Compound (VI-C) can be produced using compound (VI-B) under the same conditions as in step 2 of production method 1.
  • Step 47 Compound (VI-D) can be produced using compound (VI-C) under the same conditions as in step 3 of production method 1.
  • Step 48 Compound (VI-E) can be produced using compound (VI-D) under the same conditions as in step 2 of production method 1.
  • Step 49 Compound (VI-G) can be produced under the same conditions as in step 3 of production method 1 using compound (VI-E) and compound (VI-F).
  • Step 50 Compound (VI-H) can be produced using compound (VI-G) under the same conditions as in step 9 of production method 2.
  • Steps 51-53 Compound (VI ′) can be produced using compound (VI-H), compound (VI-I) and compound (VI-J) under the same conditions as in steps 4 to 6 of production method 1.
  • Steps 45 to 53 can be carried out by a known method (for example, the method described in WO 2015/105083) or a method analogous thereto.
  • Compound (VI-F) can be obtained by a known method (for example, a method described in Journal of American Chemical Society, 136, 16958, Trio, 2014), or a method according thereto be able to.
  • the sugar ligand-tether unit in formula 2 wherein P1 and P4 are -NH-CO-, -O-CO- or -S-CO- can be produced by the following method.
  • q 2 ′ is represents an integer smaller than 1 by q2
  • q4 ' represents an integer smaller by 1 than q4
  • Z represents H, OH, NH 2 , SH, a chlorine atom, a bromine atom, an iodine atom, methanesulfonyloxy, p-toluenesulfonyloxy or a carboxylic acid
  • B1 'and B2' are any of the structures of the following formulas And PG1, PG2, PG3, PG4, PG5, PG6 and PG7 each represent a suitable protecting group.
  • n1, m2, m3 or m4 each independently represent an integer of 0 to 10.
  • Step 54 Compound (VII-C) is obtained by adding Compound (VII-A) and Compound (VII-B) in a solvent such as tetrohydrofuran etc, triphenylphosphine polymer support, and under ice-cooling, diisopropylazodicarboxylate toluene It can be produced by reacting a solution.
  • a solvent such as tetrohydrofuran etc, triphenylphosphine polymer support, and under ice-cooling, diisopropylazodicarboxylate toluene It can be produced by reacting a solution.
  • a solvent such as tetrohydrofuran etc, triphenylphosphine polymer support, and under ice-cooling, diisopropylazodicarboxylate toluene It can be produced by reacting a solution.
  • the solvent those exemplified in step 2 of production process 1 can be mentioned.
  • Compound (VII-A) can
  • Step 55 Compound (VII-D) can be produced by reacting Compound (VII-C) in a solvent such as methanol under ice-cooling in the presence of a base.
  • a solvent such as methanol
  • a base those exemplified in Step 3 of Production Process 1 can be mentioned.
  • Step 56 Compound (VII-F) can be produced using compound (VII-D) and compound (VII-E) under the same conditions as in step 3 of production process 1.
  • Step 57 Compound (VII-H) can be produced using compound (VII-F) and compound (VII-G) under the same conditions as in step 3 of production process 1.
  • Step 58 Compound (VII-J) can be produced using compound (VII-H) and compound (VII-I) under the same conditions as in step 3 of production process 1. Also, by repeatedly performing the DP step and the step 58, a compound (VII-J) having a desired value of q1 can be produced.
  • Step 59 Compound (VII-L) can be produced using compound (VII-J) and compound (VII-K) under the same conditions as in step 3 of production process 1.
  • Step 60 Compound (VII-N) can be produced using compound (VII-L) and compound (VII-M) under the same conditions as in step 3 of production process 1.
  • Steps 61 to 63 Compound (VII ′) can be produced using compound (VII-O), compound (VII-P) and compound (VII-Q) under the same conditions as in step 3 of production process 1. Also, by repeatedly performing the DP step and the step 61, a compound (VII ′) having a desired q3 value can be produced.
  • Manufacturing method 14 A unit in which P7 is -O- in Formula 4 can be manufactured by the following method.
  • q5 ′ ′ is an integer smaller than 2 by q5
  • q5 ′ is an integer smaller than 1 by 5
  • Z2 is H, OH, NH 2 or SH
  • PG8 and PG9 each represent a suitable protecting group
  • LC represents a sugar ligand-tether unit
  • E represents a carboxylic acid or maleimide.
  • Step 64 Compound (VIII-C) can be produced using compound (VIII-A) and compound (VIII-B) under the same conditions as in step 3 of production process 1. Also, by repeatedly performing the DP step and the step 64, a compound (VIII-C) having a desired q5 ′ ′ value can be produced.
  • Compound (VIII-B) is commercially available, or “Experimental Chemistry Lecture 4th Edition Organic Synthesis, p. 258, Maruzen (1992)”, “March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7 th It can obtain by combining the method as described in Edition, or the method according to it.
  • Step 65 Compound (VIII ′) can be produced using compound (VIII-C) and compound (VIII-D) under the same conditions as in step 3 of production process 1.
  • Compound (VIII-D) is commercially available, or “Experimental Chemistry Lecture 4th Edition Organic Synthesis, p. 258, Maruzen (1992)”, “March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7 th It can obtain by combining the method as described in Edition, or the method according to it.
  • a sugar ligand-tether unit in which P1 and P4 in the formula 2 are -O- can be produced by the following method.
  • n1, m2, m3 and m4 are as defined above.
  • Step 66 Compound (IX-C) is prepared by dissolving Compound (IX-A) and Compound (IX-B) in a solvent such as N, N′-dimethylformamide, adding a base such as potassium hydrogen carbonate, and the like to room temperature to 200 ° C. The reaction can be carried out by reacting for 5 minutes to 100 hours.
  • a solvent such as N, N′-dimethylformamide
  • a base such as potassium hydrogen carbonate, and the like
  • Step 67 Compound (IX-E) is prepared by dissolving Compound (IX-C) and Compound (IX-D) in a solvent such as N, N′-dimethylformamide, adding a base such as potassium hydrogen carbonate, and the like to room temperature to 200 ° C. The reaction can be carried out by reacting for 5 minutes to 100 hours.
  • a solvent such as N, N′-dimethylformamide
  • a base such as potassium hydrogen carbonate, and the like
  • the reaction can be carried out by reacting for 5 minutes to 100 hours.
  • As the solvent those exemplified in step 2 of production process 1 can be mentioned.
  • As the base those exemplified in Step 3 of Production Process 1 can be mentioned.
  • Compound (IX-A) can be obtained as a commercial product.
  • Step 68 Compound (IX-G) can be produced using compound (IX-E) and compound (IX-F) under the same conditions as in step 3 of production process 1.
  • Step 69 Compound (IX-I) can be produced using compound (IX-G) and compound (IX-H) under the same conditions as in step 3 of production process 1. Also, by repeatedly performing the DP step and the step 69, it is possible to produce the compound (VII-J) having a desired value of q1.
  • Step 70 Compound (IX-K) can be produced using compound (IX-I) and compound (IX-J) under the same conditions as in step 3 of production process 1.
  • Step 71 Compound (IX-M) can be produced using compound (IX-K) and compound (IX-L) under the same conditions as in step 3 of production process 1.
  • Steps 72-74 The compound (IX ′) can be produced using compound (IX-M), compound (IX-N), compound (IX-O) and compound (IX-P) under the same conditions as in step 3 of production process 1. Can. Also, by repeatedly performing the DP step and the step 72, the compound (IX ′) having a desired value of q3 can be produced.
  • Compound (IX'-B), Compound (IX'-D), Compound (IX'-F), Compound (IX'-H), Compound (IX'-J), Compound (IX'-L), Compound (IX) IX'-N), compound (IX'-O) and compound (IX'-P) are commercially available products, or "Experimental Chemistry Lecture 4th Edition Organic Synthesis, p. 258, Maruzen (1992)", "March 's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7 th Edition "combining the methods described, or can be obtained by a method analogous thereto.
  • Manufacturing method 16 The following method can also be used as a method for producing the nucleic acid complex of Formula 1 to Formula 8.
  • Step 75 Compound (XB) can be produced by reacting compound (XIII ′ ′) with compound (XA) in a solvent at 0 ° C. to 100 ° C. for 10 seconds to 100 hours.
  • the solvent include water, phosphate buffer, sodium acetate buffer, dimethyl sulfoxide and the like, and these can be used alone or in combination.
  • Compound (VIII ′) can be obtained by using production method 14.
  • the compound (X-A) can be prepared by a known method (for example, Bioconjugate Chemistry, Vol. 21, pp. 187-202, 2010, or Current Protocols in Nucleic Acid Chemistry (Current Protocols) in Nucleic Acid Chemistry), September, 2010; CHAPTER: Unit 4.41) or an equivalent method.
  • Step 76 The compound (X ′) is produced by reacting the compound (X-B) at a temperature of room temperature and 200 ° C. for 5 minutes to 100 hours under conditions of pH 8 or more such as aqueous sodium carbonate solution or ammonia water Can.
  • Manufacturing method 17 The following method can also be used as a method for producing the nucleic acid complex of Formula 1 to Formula 8.
  • Step 77 The compound (XI-A) can be produced by a known method (for example, the method described in Bioconjugate Chemistry, Vol. 26, pp. 1451-1455, 2015) using the compound (VIII ′ ′ ′) It can obtain by the method according to it.
  • Compound (VIII ′ ′ ′) can be obtained by using production method 14.
  • Step 78 The compound (XI ′) can be produced using a compound (XI-A) and a compound (XI-B) according to a known method (eg, Bioconjugate Chemistry, vol. 26, p. 1451-1455, 2015) The methods described) or can be obtained by methods analogous thereto.
  • Compound (XI-B) can be obtained by the method described in Bioconjugate Chemistry, vol. 26, p. 1451-1455 (2015) or a method analogous thereto.
  • Step 79 As another method, compound (XI ′) can be obtained by a known method (see, for example, Bioconjugate Chemistry, 22: 1723-1728, 2011) or a method according thereto. It can be obtained directly from XI-A).
  • the nucleic acid complex in the present specification can also be obtained as a salt such as an acid addition salt, a metal salt, an ammonium salt, an organic amine addition salt, an amino acid addition salt and the like.
  • acid addition salts include inorganic acid salts such as hydrochlorides, sulfates and phosphates, and organic acid salts such as acetates, maleates, fumarates, citrates and methanesulfonates.
  • metal salts include alkali metal salts such as sodium salts and potassium salts, alkaline earth metal salts such as magnesium salts and calcium salts, aluminum salts, zinc salts and the like, and examples of ammonium salts include ammonium and tetramethyl Salts such as ammonium may be mentioned, organic amine addition salts may include addition salts such as morpholine and piperidine, and amino acid addition salts may include addition salts such as lysine, glycine and phenylalanine.
  • the complex When it is desired to prepare a salt of the nucleic acid complex of the present invention, the complex may be purified as it is when it is obtained in the form of the desired salt, or when it is obtained in free form, the complex Is dissolved or suspended in an appropriate solvent, the corresponding acid or base is added, and isolation and purification may be performed.
  • the complex salt when converting the counter ion that forms the complex salt to a different counter ion, the complex salt is dissolved or suspended in an appropriate solvent, and then an acid, a base and / or a salt (sodium chloride, chloride It may be isolated and purified by adding several equivalent to a large excess amount of an inorganic salt such as ammonium).
  • nucleic acid complexes of the present invention may have geometric isomers, stereoisomers such as optical isomers, tautomers etc., all possible isomers and their mixtures are also possible. Included in the present invention.
  • nucleic acid complex of the present invention may exist in the form of an adduct with water or various solvents, and these adducts are also included in the present invention.
  • nucleic acid complex of the present invention also includes those in which a part or all of the atoms in the molecule are substituted by atoms (isotopes) having different mass numbers (for example, deuterium atoms etc.).
  • the pharmaceutical composition of the present invention comprises the nucleic acid complex represented by Formula 1.
  • the nucleic acid complex of the present invention is recognized by the target cell by having the L1 and L2 sugar ligands, and is introduced into the cell.
  • the nucleic acid complex of the present invention can be administered to a mammal to suppress or reduce the expression of a target gene in vivo, and can be used to treat a disease associated with the target gene.
  • the nucleic acid complex of the present invention is used as a therapeutic agent or a prophylactic agent, it is desirable to use the most effective administration route for treatment as a therapeutic agent or a prophylactic agent, and it is not particularly limited.
  • Administration, subcutaneous administration, intramuscular administration and the like can be mentioned, preferably subcutaneous administration.
  • the dose varies depending on the condition, age, administration route and the like of the administration subject, it may be administered, for example, such that the daily dose converted to double-stranded oligonucleotide is 0.1 ⁇ g to 1000 mg, daily administration More preferably, the amount is 1 to 100 mg.
  • preparations suitable for intravenous administration or intramuscular administration include injections, and it is possible to use the prepared solution as it is, for example, in the form of injections, etc.
  • the solvent is removed and used by lyophilization, the solution is used by lyophilization, and / or the solution with an excipient such as mannitol, lactose, trehalose, maltose or glycine is used by lyophilization. It can also be done.
  • an injection can be prepared by adding an antioxidant such as citric acid, ascorbic acid, cysteine or EDTA, or an isotonic agent such as glycerin, glucose or sodium chloride.
  • an antioxidant such as citric acid, ascorbic acid, cysteine or EDTA
  • an isotonic agent such as glycerin, glucose or sodium chloride.
  • a cryopreservative such as glycerin can be added and cryopreserved.
  • the double stranded nucleic acid in the composition of the present invention can be introduced into cells by administering the composition of the present invention to mammalian cells.
  • the introduction of the nucleic acid complex of the present invention into mammalian cells in vivo may be carried out according to known transfection procedures which can be carried out in vivo.
  • the composition of the present invention can be delivered to the liver by intravenous administration to mammals including humans, and the double stranded nucleic acid in the composition of the present invention can be introduced into the liver or hepatocytes.
  • the expression of the ⁇ 2GPI gene in the hepatocytes can be reduced to treat or prevent ⁇ 2GPI related diseases.
  • the ⁇ 2GPI-related diseases include autoimmune diseases or thrombosis, and more specifically include systemic lupus erythematosus (SLE), antiphospholipid antibody syndrome, hemodialysis complications in patients with end-stage renal failure and arteriosclerosis.
  • the administration subject is a mammal, preferably a human.
  • the nucleic acid complex in the present invention can also be used as a tool for verifying the efficacy of suppressing the ⁇ 2GPI gene in an in vivo drug efficacy evaluation model for the therapeutic or preventive agent for the above-mentioned diseases.
  • an in vivo efficacy evaluation model lupus anticoagulant (LA) test and the like can be mentioned.
  • LA is a kind of antiphospholipid antibody like anti- ⁇ 2GPI antibody, and exhibits an activity of inhibiting phospholipid-dependent coagulation reaction of collected blood in vitro.
  • LA mainly appears in diseases such as SLE and APS, and many have been reported to be correlated with the onset or pathogenesis of thrombosis and infertility like anti- ⁇ 2GPI antibodies (“blood”, 2003, Vol. 101, No. 5, p1827-1832). And, it is also reported that the anti- ⁇ 2GPI antibody exerts ⁇ 2GPI-dependent LA activity because it acquires phospholipid binding activity via ⁇ 2GPI (“Thrombosis and Haemostasis”, 1998, 79, No. 1, p 79-86). Furthermore, it has been reported that this ⁇ 2GPI-dependent LA strongly correlates with the onset rate of the pathological condition (“blood”, 2004, Vol. 104, No. 12, p 3598-3602).
  • LA can be detected by measuring activated partial thromboplastin time, kaolin clotting time and / or diluted Russell's snake venom time (dRVVT).
  • the dose varies depending on the condition, age, administration route and the like of the administration subject, it may be administered, for example, such that the daily dose converted to double-stranded nucleic acid is 0.1 ⁇ g to 1000 mg. It is preferable to administer to 1 to 100 mg.
  • the invention also relates to nucleic acid complexes for use in the treatment of diseases; pharmaceutical compositions for use in the treatment of diseases; use of nucleic acid complexes for the treatment of diseases; in the manufacture of a medicament for the treatment of diseases
  • a nucleic acid complex for use in the manufacture of a medicament for treating a disease a method for treating or preventing a disease comprising administering an effective amount of the nucleic acid complex to a subject in need thereof; provide.
  • Mobile phase A aqueous solution containing 0.1% formic acid
  • B acetonitrile solution gradient: linear gradient (10 minutes-90%) of mobile phase B (3 minutes)
  • Synthesis step 1 of compound RE1-4 The compound RE1-1 (0.9602 g, 2.1460 mmol) is dissolved in N, N'-dimethylformamide (10 mL), N-Boc-ethylenediamine (manufactured by Sigma-Aldrich, 0.6877 g, 4.292 mmol), diisopropylethylamine (1.90 mL) , 10.87 mmol), and 2- (1H-benzotriazol-1-yl) -1,1,3,3-tetramethyluronium hexafluorophosphate (manufactured by Wako Pure Chemical Industries, Ltd., 1.6437 g, 4.3229 mmol) was added and stirred overnight at room temperature.
  • Reference Example 3 Step 7 Reference Example 3 Compound RE 3-7 (180 mg, 0.406 mmol) synthesized in step 6 N ⁇ , N ⁇ -bis (tert-butoxycarbonyl) -L-lysine (manufactured by Nova Biochem, 295 mg, 0.852 mmol), diisopropylethylamine ( Add 0.354 mL, 2.029 mmol) and 2- (1H-benzotriazol-1-yl) -1,1,3,3-tetramethyluronium hexafluorophosphate (324 mg, 0.852 mmol) at room temperature And stirred overnight. The reaction mixture was ice-cooled, 10% aqueous citric acid solution was added, and the mixture was extracted with chloroform.
  • Reference Example 4 Step 1 Compound RE4-1 synthesized by the method described in Reference Example 3 (compound RE3-5, 0.5716 g, 0.7582 mmol in Reference Example 3), Bioconjugate Chemistry, Volume 22, pp. 690-699, Dodecanoic acid monobenzyl ester (0.4859 g, 1.5164 mmol), diisopropylethylamine (0.662 mL, 3.79 mmol) synthesized by the method described in 2011, and 2- (1H-benzotriazol-1-yl) -1,1 3,3,3-tetramethyluronium hexafluorophosphate (0.5766 g, 1.516 mmol) was dissolved in N, N dimethylformamide (12 mL) and stirred at room temperature for 1 hour.
  • Reference Example 4 Step 3 Reference Example 4 Compound RE4-3 (0.437 g, 0.7143 mmol) synthesized in step 2, N ⁇ , N ⁇ -bis (tert-butoxycarbonyl) -L-lysine (manufactured by Nova Biochem, 0.5483 g, 1.583 mmol), diisopropylethylamine ( Add 0.624 mL, 3.57 mmol) and 2- (1H-benzotriazol-1-yl) -1,1,3,3-tetramethyluronium hexafluorophosphate (0.5703 g, 1.5 mmol) to room temperature. The mixture was stirred for 2 hours.
  • Reference Example 6 Step 2
  • Reference Example 6 Compound RE6-3 was quantitatively obtained in the same manner as in step 4 of reference example 3 using compound RE6-2 (0.9622 g, 1.952 mmol) synthesized in step 1.
  • Reference Example 6 Step 3 Reference Example 6 Compound RE6-3 (0.1146 g, 0.290 mmol) synthesized in step 2 and N-succinimidyl 15-azido-4,7,10,13-tetraoxapentadecanoic acid (N3-PEG4-NHS, Tokyo Chemical Industry Co., Ltd. Compound RE6-4 was quantitatively obtained in the same manner as in step 2 of Reference Example 5, using company-made, 0.0750 g, 0.1931 mmol).
  • Reference Example 6 Step 5
  • Reference Example 6 The process of Reference Example 3 using compound RE6-5 (0.1252 g, 0.193 mmol) synthesized in step 4 and L-glutamic acid di-tert-butyl ester (manufactured by Watanabe Kagaku Co., Ltd., 0.1180 g, 0.399 mmol).
  • Compound RE6-6 (0.0521 g, yield 24%) was obtained in the same manner as 3.
  • Reference Example 7 Step 1 Compound RE7-1 (RE 3-9 in Example 3; 0.2586 g, 0.3695 mmol) synthesized by the method described in Reference Example 3 and Journal of American Chemical Society (Journal of American Chemical Society), Volume 136 Compound RE7- described in Reference Example 1 using the compound RE-1 (0.8559 g, 1.7927 mmol) described in Reference Example 1 synthesized by the method described in Chem. 2 (0.5272 g, yield 61%) were obtained.
  • Reference Example 7 Step 2
  • Reference Example 7 Compound RE7-2 (0.1524 g, yield 61%) was obtained in the same manner as in step 1 of reference example 5 using compound RE7-2 (0.2653 g, 0.1097 mmol) synthesized in step 1.
  • Reference Example 10 Step 3 Reference Example 10 Compound RE10- was prepared using Compound D1 (0.1091 g, 0.044 mmol) synthesized in Step 2 and Compound RE2-3 (0.0748 g, 0.184 mmol) of Reference Example 2 in the same manner as in Step 3 of Reference Example 3. 3 was obtained as a crude product.
  • Reference Example 10 Step 5 Reference Example 10 Compound RE10-4 synthesized in step 4 (0.0816 g, 0.02734 mmol), O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium hexafluorophosphate (0.0221 g, 0.05827 mmol) and diisopropylethylamine (0.02 mL, 0.1094 mmol) are dissolved in N, N-dimethylformamide (4 mL), LCAA-CPG (Chem Gene, 0.4882 g) is added, and the mixture is allowed to reach room temperature. Stir overnight.
  • O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium hexafluorophosphate 0.0221 g, 0.05827 mmol
  • diisopropylethylamine 0.02 mL, 0.1094 mmol
  • the mixture was filtered off, washed successively with dichloromethane, 10% methanol solution in dichloromethane and diethyl ether, and then reacted with acetic anhydride / pyridine solution to obtain compound C1 (49.5 ⁇ mol / g, yield 89%) .
  • the yield was calculated from the introduction ratio to the solid phase carrier which can be calculated from the absorption derived from the DMTr group by adding 1% trifluoroacetic acid / dichloromethane solution to the solid phase carrier.
  • Compound RE 11-2 (1.050) was prepared according to the method described in Compound RE 11-1 (1.200 g, 3.640 mmol), Journal of Medicinal Chemistry, Volume 59, 2718-2733 (2016). g, 50% yield) was synthesized.
  • Compound RE 13-1 (Compound RE 1-1, 898.0 mg, 2.007 mmol in Reference Example 1) was dissolved in dichloromethane (15 mL), 1-hydroxybenzotriazole monohydrate (338.0 mg, 2.208 mmol), 1- (1 Add 3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (343 mg, 2.208 mmol), and N-1-Z-l, 3-diaminopropane hydrochloride (0.4910 mL, 2.208 mmol), and add 3 hours at room temperature. It stirred.
  • Reference Example 15 Dissolve iminodiacetic acid (manufactured by Tokyo Chemical Industry Co., Ltd., 1.5 g, 6.43 mmol,) in methylene chloride (30 mL), pentafluorotrifluoroacetic acid (manufactured by Tokyo Chemical Industry Co., Ltd., 2.75 mL, 16.08 mmol), triethylamine (4.48) mL, 32.2 mmol) was added and stirred for 4 hours. To the reaction solution was added 10% aqueous citric acid solution, and the mixture was extracted with chloroform, and then the organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate.
  • Reference Example 16 Step 1 Using Compound RE16-1 (1.855 g, 3.19 mmol) synthesized by the method described in Reference Example 11 using N- (t-butoxycarbonyl) -L-glutamic acid (manufactured by Tokyo Chemical Industry Co., Ltd.), Reference Example 15 A crude purified product of compound RE16-2 was obtained in the same manner as in the step 1). ESI-MS m / z: 1105 (M + H) +
  • Reference Example 20 Step 1 The same method as in step 3 of Reference Example 3 using compound RE20-1 (AstaTech, 100 mg, 1.148 mmol) and Fmoc-Ser (tBuMe2Si) -OH (Watanabe Chemical Industry, 532 mg, 1.205 mmol) Thus, compound RE20-2 (410 mg, yield 70%) was obtained.
  • Reference Example 22 step 1 A crude product of compound RE22-2 was obtained in the same manner as in step 1 of Reference Example 2 using compound RE22-1 (manufactured by Tokyo Chemical Industry Co., Ltd., 1.2 g, 4.24 mmol).
  • Reference Example 22 Process 3 Compound RE22- was prepared by the same method as in step 3 of Reference Example 3 using compound RE22-3 (1.15 g, 3.16 mmol) and Fmoc-Ser (tBuMe2Si) -OH (manufactured by Watanabe Chemical Industries, Ltd., 1.677 g, 3.8 mmol). 4 (560 mg, 31% yield) was obtained.
  • 1 H-NMR 400 MHz, CDCl 3 ) ⁇ : 0.00-0.07 (6 H, m), 0.83-0.89 (9 H, m), 3.18-3.26 (2 H, m), 3.39-3. 46 (2 H, m), 3.61- 3.68 (1 H, m), 3. 76 (6 H, s), 3.
  • Reference Example 23 The compounds RE23-1 to RE23-5 listed in Table Y-1 and Fmoc-Ser (tBuMe 2 Si) -OH were listed in Table Y-2 in the same manner as in Reference Example 22. Compounds RE23-6 to RE23-10 were obtained. The compound RE23-11 described in Table Y-2 was obtained in the same manner as in Reference Example 22 using the compound RE22-3 in Reference Example 22 and Fmoc-Thr (tBuMe 2 Si) -OH. The compound RE23-12 described in Table Y-2 is obtained in the same manner as in Reference Example 22 using the compound RE23-1 and Fmoc-Thr (tBuMe 2 Si) -OH described in Table Y-1. The The NMR analysis data of the compound synthesized according to this example is shown in Table Y-3.
  • Compound RE24-2 was obtained in the same manner as in Step 2 of Reference Example 2 using Compound RE24-1 (compound RE22-4 in Reference Example 22; 2.487 g, 3.16 mmol) synthesized by the method described in Reference Example 22. (1.2 g, 67% yield).
  • Reference Example 25 Compounds RE25-1 to RE25-7 described in Table Z-1 were obtained in the same manner as in Reference Example 24 using compounds RE23-6 to RE23-12 described in Table Y-2. The mass spectrometry results of the compound synthesized according to this example are shown in Table Z-2.
  • Reference example 26 process 1 Compound RE26-1 (2.00 g, 9.47 mmol) was dissolved in N, N'-dimethylformamide (40 mL), iminodiacetic acid di-tert-butyl ester (5.11 g, 20.84 mmol) at room temperature, 1- ( 3-Dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (4.00 g, 20.84 mmol) and 1-hydroxybenzotriazole monohydrate (145 mg, 0.947 mmol) were added and stirred for 2 hours.
  • Reference Example 28 step 1 Compound RE28-1 (Compound RE 26-3, 474 mg, 0.744 mmol in Reference Example 26) synthesized by the method described in Reference Example 26 is dissolved in N, N'-dimethylformamide (10 mL), and a journal is prepared at room temperature. Trans-cyclohexane-1,4-dicarboxylic acid monobenzyl ester (0.234 mg, 0.893) synthesized by the method described in Journal of Medicinal Chemistry, Vol. 54, p. 2433-2446, 2011.
  • Reference Example 31 step 1 Dissolve 4-nitroisophthalic acid RE31-1 (500 mg, 2.37 mmol) and N-Boc-ethylenediamine (808 mg, 5.21 mmol) in N, N'-dimethylformamide (10 mL) and use triethylamine (0.90) at room temperature. Add 1 mL (7.11 mmol), 1-hydroxybenzotriazole monohydrate (703 mg, 5.21 mmol) and 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (1.36 g, 7.11 mmol) to Stir for hours. The reaction mixture was worked up, and the crude product was purified by silica gel column chromatography to obtain compound RE31-2 (650 mg, yield 55%).
  • Reference example 32 process 1 Dissolve 3,5-dinitrobenzoic acid RE 32-1 (500 mg, 2.36 mmol) and N-Cbz-ethylenediamine (588 mg, 2.83 mmol) in N, N'-dimethylformamide (5.0 mL) and use triethylamine at room temperature Add (0.65 mL, 4.72 mmol), 1-Hydroxybenzotriazole monohydrate (380 mg, 2.83 mmol) and 1- (3-Dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (675 mg, 3.54 mmol) Stir for 16 hours. The reaction mixture was worked up, and the crude product was purified by silica gel column chromatography to obtain compound RE32-2 (445 mg, yield 48%).
  • Reference example 32 process 2 Compound RE32-2 (200 mg, 0.515 mmol) is dissolved in ethanol (5.0 mL), tin (II) chloride (584 mg, 3.09 mmol) and concentrated hydrochloric acid (0.2 mL) are added at room temperature, and Stir for hours. The reaction mixture was worked up to give compound RE32-3 (180 mg, quantitative). ESI-MS m / z: 329 (M + H) +
  • Reference Example 37 Step 1 Compound RE 37-1 (Compound RE 13-2 in Reference Example 13, 430 mg, 0.674 mmol) synthesized by the method described in Reference Example 13 was dissolved in N, N′-dimethylformamide (6 mL), % Palladium carbon powder (water content, 54.29%; 79 mg) was added and stirred for 4 hours under hydrogen atmosphere. The reaction solution was filtered. The compound RE26-5 (105.0 mg, 0.148 mmol) in Reference Example 26, 1-hydroxybenzotriazole monohydrate (11. 31 mg, 0.074 mmol), and 1- (3-dimethylaminopropyl) -3-ethyl were added to the filtrate.
  • Reference Example 39 Step 1 Compound RE 39-1 (Compound RE 13-2, 418 mg, 0.655 mmol in Reference Example 13) synthesized by the method described in Reference Example 13 was dissolved in N, N′-dimethylformamide (6 mL), % Palladium carbon powder (hydrous, 54.29%; 77 mg) was added and stirred for 5 hours under hydrogen atmosphere. The reaction solution was filtered. The compound RE27-6 (85 mg, 0.144 mmol), 1-hydroxybenzotriazole monohydrate (121.0 mg, 0.791 mmol), and 1- (3-dimethylaminopropyl) -3 which were synthesized in Reference Example 27 were added to the filtrate.
  • Reference Example 45 Step 1 Compound RE 45-1 (Compound RE 32-3, 75.0 mg, 0.228 mmol in Reference Example 32) synthesized by the method described in Reference Example 32 is dissolved in N, N'-dimethylformamide (3.0 mL), and the reaction is performed at room temperature Compound RE 14-3 of Example 14 (574 mg, 0.571 mmol), diisopropylethylamine (0.199 mL, 1.14 mmol), O- (7-azabenzotriazol-1-yl) -N, N, N ′, N′-tetra Methyluronium hexafluorophosphate (217 mg, 0.571 mmol) was added and stirred overnight.
  • Reference Example 47 Step 1 Using compound RE47-1 (compound RE33-4 in Reference Example 33, 0.101 g, 0.282 mmol) synthesized by the method described in Reference Example 33, Compound RE15-2 (0.607 g, 0.613 mmol) of Reference Example 15 was synthesized. The compound RE47-2 (0.25 g, yield 39%) was obtained by the same method as used in Step 3 of Reference Example 3. ESI-MS m / z: 2304 (M + H) +
  • a compound A6 was synthesized by the same method as the synthesis of the compound A1 of Reference Example 8 using the compound RE49-1 (0.048 g, 0.021 mmol) and N-succinimidyl 3-maleimidopropionate (manufactured by Tokyo Chemical Industry Co., Ltd., 0.017 g, 0.064 mmol). (0.040 g, 78% yield) was obtained.
  • Reference Example 51 step 1 Compound RE51-1 (0.122 g, 0.054 mmol) synthesized by the method described in Reference Example 7 and the method described in Bioconjugate Chemistry, Vol. 22, pp. 690-699, 2011 and A compound RE51-2 (0.076 g, yield 56%) was obtained in the same manner as in Reference Example 4, step 1, using hexanoic acid monobenzyl ester synthesized using a similar method.
  • Reference Example 59 step 1 Method similar to step 3 of Reference Example 3 using compound D10 (74.1 mg, 0.029 mmol) synthesized by the method described in Reference Example 46 and compound RE22-2 (15 mg, 0.027 mmol) of Reference Example 22; Alternatively, a crude organism of compound RE59-1 was obtained by the method described in Bioconjugate Chemistry, Vol. 26, pp. 1451-1455 (2015). ESI-MS m / z: 1392 (M + H) + , detected as de-DMTr body
  • Reference Example 60 Tables P-1 and P-2 in the same manner as in Reference Example 59, Steps 1 and 2, using Compound D1 and Compound RE20-4 of the structure of Reference Example 20 described in Table Z-1 or Reference Example 20 The compound described in was obtained.
  • the mass spectrometry results of the compound synthesized according to this example are shown in Table P-3.
  • Step 1 Reference Example Compound A1 and a terminal thiolated oligonucleotide synthesized by the method described in Molecules, Vol. 17, p. 13825-13843, 2012 were added and allowed to stand at room temperature for 4 hours. Sodium carbonate was added to the reaction mixture and allowed to stand overnight at 4 ° C.
  • Step 2 Compound 1-1 (3′-b2GPI-ssRNA) synthesized in step 1 was prepared in a mixed buffer (100 mmol / L potassium acetate, 30 mmol / L 2- [4- (2-hydroxyethyl) piperazin-1-yl The concentration was adjusted (50 ⁇ mol / L) with ethanesulfonic acid, HEPES) -KOH (pH 7.4), 2 mmol / L magnesium acetate). Equal amounts of the sense strand and the antisense strand (50 ⁇ mol / L) were mixed and allowed to stand at 80 ° C. for 10 minutes. Antisense strand sequences are as described in Table R-3. The temperature was gradually lowered and allowed to stand at 37 ° C. for 1 hour to obtain a double-stranded compound 1-2.
  • Step 1 Reference Example Compound D5 is used to add an amino-terminal modified oligonucleotide synthesized by the method described in Molecules, Vol. 17, p. 13825-13843, 2012, to obtain bioconjugate chemistry. 22: 1723-1728 (2011) or Bioconjugate Chemistry, 26: 1451-1455 (2015). Purification by the method described in Example 1 gave compound 8-1.
  • Step 2 Compound 8-2 was obtained in the same manner as in Step 2 of Example 1.
  • Compound 10-2 was synthesized in the same manner as in Example 8 using Reference Example Compound D1.
  • Step 1 A 0.2 ⁇ mol scale was performed using a nucleic acid synthesizer (Ultra Fast Parallel Synthesizer, manufactured by Sigma, hereinafter UFPS).
  • Compound C16 was used as a solid phase carrier.
  • Dimethoxytrityl dT phosphoramidite (SAFC-PROLIGO) was adjusted to 0.06 mol / L with acetonitrile.
  • the condensation reaction was carried out for 10 minutes each using acetonitrile solution of 5-benzylthio-1H-tetrazole (SAFC-PROLIGO) and 0.06 mol / L dT phosphoramidite as a phosphoroamidite activator.
  • Step 2 Compound 11-2 was obtained in the same manner as in Example 1, step 2.
  • the compound 12-2 was obtained in the same manner as in Example 8.
  • Example 14 Synthesis of Compounds 14-2 to 19-2
  • Compound 14-1 was prepared in the same manner as in Example 12, except that the nucleotide sequence of the nucleic acid of Compound 12-2 described in Example 12 was changed.
  • Compound 14-2 to compound 19-2 were synthesized via .about.19-1.
  • N (M) represents 2'-O-methyl-modified RNA
  • N (F) represents 2'-fluorine-modified RNA
  • represents phosphorothioate.
  • N (M) represents 2'-O-methyl modified RNA
  • N (F) represents 2'-fluorine modified RNA
  • p represents phosphorylation at the 5 'end
  • represents phosphorothioate.
  • Reference Test Example 1 Measurement of the knockdown activity of ⁇ 2GPI mRNA HepG2 cells (obtained from ATCC, ATCC No .: HB-8065), a cell line derived from human liver cancer, in a 96-well culture plate, 5,000 cells / 80 ⁇ L / well It sowed so that it might become.
  • MEM medium Life Technology, catalog number 11095-0978 containing 10% fetal bovine serum (FBS) was used.
  • RNAiMax transfection reagent (Life Technology, catalog number: 1401251) described in Table 1-1 to Table 1-16 are treated with Opti-MEM medium (Life technology, catalog number 11058-021) Dilute and add 20 ⁇ l of the siRNA / RNAiMax mixed solution to each 96 well culture plate so that the final concentration of double stranded nucleic acid is 100 pmol / L, and culture for 24 hours at 37 ° C, 5% CO 2 did. Thereafter, the cells are washed with PBS (Phosphate buffered saline), and each plate is described in the instruction attached to the product using a Cells-to-Ct kit (Applied Biosystems, catalog number: AM1728).
  • PBS Phosphate buffered saline
  • CDNA was synthesized according to the method. Add 5 ⁇ l of this cDNA to the MicroAmp Optical 96-well plate (Applied Biosystems, catalog number 4326659), and further add 10 ⁇ l of TaqMan Gene Expression Master Mix (Applied Biosystems, catalog number 4369016), 3 ⁇ l of UltraPure Distilled Water (Life Technologies) Corporation catalog number: 10977-015), 1 ⁇ L of human ⁇ 2GPI probe, 1 ⁇ L of human GAPDH probe were added.
  • Real-time PCR of human ⁇ 2GPI gene and human GAPDH was performed using ABI 7900 HT real-time PCR system.
  • GAPDH is a constitutively expressed gene and was measured as an internal control, and the ⁇ 2GPI expression level was corrected.
  • the amount of ⁇ 2GPI mRNA was 1.0, and the relative expression amount of ⁇ 2GPI mRNA was calculated when each siRNA was introduced. This experiment was performed three times, and the average value of the relative expression amount of ⁇ 2GPI mRNA is shown in Tables 1-1 to 1-16.
  • Test Example 1 In Vitro Knockdown Test of Nucleic Acid Complex on Human Primary Hepatocytes The in vitro knockdown activity of human primary hepatocytes was measured for each of the nucleic acid complexes obtained in Examples 1-19. Each nucleic acid complex diluted with Optimem (Opti-MEM) (Thermo Fisher Scientific, catalog number 31985) is brought to a final concentration of 100, 30, 10 or 3 nmol / L in 96 wells.
  • Optimem Opti-MEM
  • Human primary hepatocytes (Bioprediction International, catalog number HEP 187) suspended in plating medium (Bioprediction International, catalog number LV 0304-2) after dispensing 20 ⁇ l each into a culture plate
  • the cells were seeded at a cell number of 10000 cells / 80 ⁇ L / well and cultured at 37 ° C., 5% CO 2 for 6 hours, after which the culture supernatant was carefully removed, and the incubation medium (Biopredic International, Inc. , Catalog No. LV 0304-2), and each nucleic acid complex was subjected to human primary hepatocytes.
  • the incubation medium Biopredic International, Inc. , Catalog No. LV 0304-2
  • the cells to which each nucleic acid complex has been added are cultured in a 5% CO 2 incubator at 37 ° C. for 18 hours, washed with ice-cold phosphate buffered saline (DPBS) (manufactured by Nacalai Tesque), and superprep cell Total RNA was recovered and the obtained total RNA was templated according to the method described in the instruction attached to the product, using Lysis and T kit ForQ PCR (Toyobo Co., Ltd., catalog number SCQ-201). The cDNA was prepared by reverse transcription reaction.
  • DPBS ice-cold phosphate buffered saline
  • the expression rate of ⁇ 2GPI mRNA was determined from the semiquantitative value of ⁇ 2GPI mRNA, where the semiquantitative value of ⁇ 2GPI mRNA in the negative control similarly measured was 1 as well.
  • the results of the expression rate of the obtained ⁇ 2GPI mRNA are shown in Table S1 and Table S2. As apparent from Tables S1 and S2, each nucleic acid complex suppressed the expression of mRNA of ⁇ 2 GPI gene after addition to human primary hepatocytes.
  • CD1 (1-CD-1) -derived mouse primary hepatocytes (Thermo Fisher Scientific, catalog number MSCP 10) suspended in (Thermo Fisher Scientific, Catalog No. A12176-01), cell number 10000 cells / 80 [mu] L were seeded so that / well, 37 ° C., the After incubation for 6 hours under 5% CO 2, culture Each nucleic acid complex was added to mouse primary hepatocytes by carefully removing the supernatant and adding Williams Emedium containing Primary Hepatocyte Maintenance Supplements (Thermo Fisher Scientific, catalog number CM4000). Provided for. In addition, as a negative control group, cells treated with nothing were seeded.
  • the cells to which each nucleic acid complex has been added are cultured in a 5% CO 2 incubator at 37 ° C. for 18 hours, washed with ice-cold phosphate buffered saline (DPBS) (manufactured by Nacalai Tesque) and superprep cell Total RNA was recovered and the obtained total RNA was templated according to the method described in the instruction attached to the product, using Lysis and T kit ForQ PCR (Toyobo Co., Ltd., catalog number SCQ-201). The cDNA was prepared by reverse transcription reaction.
  • DPBS ice-cold phosphate buffered saline
  • the expression rate of ⁇ 2GPI mRNA was determined from the semiquantitative value of ⁇ 2GPI mRNA, where the semiquantitative value of ⁇ 2GPI mRNA in the negative control similarly measured was 1 as well.
  • the expression rates of the obtained ⁇ 2GPI mRNA are shown in Table S3 and Table S4.
  • each nucleic acid complex suppressed the expression of mRNA of ⁇ 2 GPI gene after addition to mouse primary hepatocytes.
  • Test Example 3 In Vivo Knockdown Test of Nucleic Acid Complex in Mouse
  • DPBS phosphate buffered saline
  • BALB / cA obtained from CLEA Japan, Inc.
  • each nucleic acid complex was injected subcutaneously to the mice at 3 mg / kg or 1 mg / kg, respectively.
  • BALB / cA obtained from CLEA Japan, Inc.
  • each nucleic acid complex was injected subcutaneously to the mice at 3 mg / kg or 1 mg / kg, respectively.
  • DPBS phosphate buffered saline
  • nucleic acid complex of the present invention is administered to mice to reduce the expression of the ⁇ 2GPI gene in the liver.
  • the nucleic acid complex of the present invention can be administered to mammals and used in vivo to treat ⁇ 2 GPI related diseases.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Endocrinology (AREA)
  • Reproductive Health (AREA)
  • Diabetes (AREA)
  • Transplantation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention provides a nucleic acid complex represented by formula 1, the nucleic acid complex being capable of suppressing the expression of β2GPI. Formula 1: (in formula 1, X is a double-stranded nucleic acid that comprises a sense strand and an antisense strand and includes a duplex region of at least 11 base pairs; the double-stranded nucleic acid is complementary with any of the β2GPI mRNA sequences of interest described in Tables 1-1 to 1-16 in an oligonucleotide strand having a strand length of 17-30 nucleotides in the antisense strand, and the 3' end or 5' end of the sense strand binds to S3; L1 and L2 each independently a sugar ligand; and S1, S2, and S3 each independently represent a linker.)

Description

核酸複合体Nucleic acid complex
 本発明は、核酸複合体および該核酸複合体を含む医薬組成物等に関する。 The present invention relates to a nucleic acid complex, a pharmaceutical composition containing the nucleic acid complex, and the like.
 核酸医薬として、アプタマー、アンチセンス、デコイ核酸、リボザイム、siRNA、miRNAおよびantimiRNA等が知られている。核酸医薬は、細胞内のあらゆる遺伝子を制御できる汎用性の高さから、今まで治療困難とされてきたさまざまな疾患への臨床応用が期待されている。
 また、核酸医薬は、細胞内における標的選択性と活性の高さから、抗体、低分子医薬に次ぐ、次世代医薬として期待されている。
 しかしながら、核酸医薬は、標的組織への送達が困難であることが問題点として挙げられる。
As nucleic acid drugs, aptamers, antisenses, decoy nucleic acids, ribozymes, siRNAs, miRNAs and antimiRNAs are known. Nucleic acid drugs are expected to be clinically applicable to various diseases that have been considered difficult to treat up to now, because of their high versatility in which all genes in cells can be controlled.
In addition, nucleic acid drugs are expected as next-generation drugs next to antibodies and small molecule drugs because of high target selectivity and activity in cells.
However, the problem with nucleic acid medicines is that delivery to target tissues is difficult.
 インビボにおける効果的な核酸医薬の送達法の1つとして、標的化化合物と核酸との核酸複合体(コンジュゲート)を用いることが報告されている。標的化化合物としては、細胞外に発現する受容体に結合可能なリガンドが挙げられる。その中でも特に、肝細胞に極めて高発現しているアシアロ糖タンパク質受容体(ASGPR)に結合可能であるリガンドとしてN-アセチル-D-ガラクトサミン(GalNAc)等を利用した核酸複合体が複数報告されている。近年では、これらのリガンドとsiRNA類とを結合した核酸複合体が肝細胞に効率的に送達されることが報告されている(非特許文献1)。 The use of a nucleic acid complex (conjugate) of a targeting compound and a nucleic acid has been reported as one of the effective nucleic acid drug delivery methods in vivo. Targeting compounds include ligands capable of binding to extracellularly expressed receptors. Among them, in particular, a plurality of nucleic acid complexes using N-acetyl-D-galactosamine (GalNAc) or the like as a ligand capable of binding to asialoglycoprotein receptor (ASGPR) which is extremely expressed in liver cells is reported. There is. In recent years, it has been reported that nucleic acid complexes in which these ligands and siRNAs are bound are efficiently delivered to hepatocytes (Non-patent Document 1).
 標的化化合物とオリゴヌクレオチドの複合体として、特許文献1および2には、例えば、以下に示す核酸複合体が開示されている。 Patent Documents 1 and 2 disclose, for example, nucleic acid complexes shown below as complexes of a targeting compound and an oligonucleotide.
Figure JPOXMLDOC01-appb-C000036
(式中、Acはアセチル基を表す。以下、本明細書において同様である。)
Figure JPOXMLDOC01-appb-C000036
(In the formula, Ac represents an acetyl group. Hereinafter, the same applies in the present specification.)
 また、特許文献3には、特許文献1および2と同様の糖リガンド-テザーユニットを有する以下の構造を有する核酸複合体が開示されている。 Patent Document 3 discloses a nucleic acid complex having the following structure having the same sugar ligand-tether unit as Patent Documents 1 and 2.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 また、特許文献4には、糖リガンド-テザーユニットとして、以下に示す構造を有する核酸複合体が開示されている。 Patent Document 4 discloses a nucleic acid complex having a structure shown below as a sugar ligand-tether unit.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 一方、β2-Glycoprotein1(β2GPI)(別名apolipoprotein H、apoHとも言う)は、326アミノ酸から構成される糖蛋白質であり、5つのドメイン構造が連なった高次構造を有する。β2GPIは多彩な生理作用を有すると考えられており、血小板凝集反応、凝固・線溶反応、酸化LDLのマクロファージへの取り込みに関与していることが報告されている(非特許文献2)。 On the other hand, β2-glycoprotein 1 (β2GPI) (aka apolipoprotein H, also referred to as apoH) is a glycoprotein composed of 326 amino acids, and has a higher-order structure in which five domain structures are linked. β2GPI is considered to have various physiological actions, and is reported to be involved in platelet aggregation reaction, coagulation / fibrinolytic reaction, and uptake of oxidized LDL into macrophages (Non-patent Document 2).
 疾患との関連について、β2GPIは抗リン脂質抗体症候群(APS)や全身性エリテマトーデス(SLE)といった自己免疫疾患において出現する抗リン脂質抗体の主要な対応抗原であることが知られている。抗β2GPI抗体は疾患の病態形成にも深く関与しており、β2GPIと抗β2GPI抗体によって形成される複合体は血管内皮細胞、単球、血小板、栄養芽細胞(trophoblast)といった様々な細胞の膜上受容体に活性化シグナルを発生させ、その結果、血栓症や妊娠異常といったAPSに特徴的な病態を引き起こし得ることが動物モデルを用いた研究ならびに臨床研究より明らかとなっている(非特許文献3)。β2GPIおよび抗β2GPI抗体からなる免疫複合体の形成を特異的に阻害することにより、上記の疾患を予防あるいは治療できると期待できるが、β2GPIは血中に50-500μg/mLという比較的高濃度で存在しており、これら全てのβ2GPIを例えば一般的な抗体医薬によって阻害し続けることは容易ではない(非特許文献4)。 Regarding the association with disease, β2GPI is known to be the main corresponding antigen of antiphospholipid antibodies appearing in autoimmune diseases such as antiphospholipid antibody syndrome (APS) and systemic lupus erythematosus (SLE). Anti-β2GPI antibody is also deeply involved in the pathogenesis of diseases, and the complex formed by β2GPI and anti-β2GPI antibody is on the membrane of various cells such as vascular endothelial cells, monocytes, platelets and trophoblasts. It has become clear from studies using animal models and clinical research that it can generate activation signals to the receptor and, as a result, it can cause pathologies characteristic of APS such as thrombosis and pregnancy abnormalities (Non-patent Document 3) ). Although it can be expected that the above-mentioned diseases can be prevented or treated by specifically inhibiting the formation of an immune complex consisting of β2GPI and anti-β2GPI antibodies, β2GPI is relatively high in blood at 50-500 μg / mL. It is not easy to continue to inhibit all these β2GPI, for example, by general antibody drugs, which are present (Non-patent Document 4).
国際公開第2009/073809号International Publication No. 2009/073809 国際公開第2013/075035号International Publication No. 2013/075035 国際公開第2015/105083号International Publication No. 2015/105083 国際公開第2014/179620号International Publication No. 2014/179620
 本発明の目的は、β2GPIの発現を抑制することが可能な核酸複合体を提供することにある。 An object of the present invention is to provide a nucleic acid complex capable of suppressing the expression of β2GPI.
 本発明は、以下に関する。
[1]
 下記式1で表される核酸複合体。
式1:
Figure JPOXMLDOC01-appb-C000039
(式1中、
 Xは、センス鎖およびアンチセンス鎖からなり、少なくとも11個の塩基対の二重鎖領域を含む二本鎖核酸であり、
  該二本鎖核酸は、該アンチセンス鎖中の、17個~30個のヌクレオチドの鎖長のオリゴヌクレオチド鎖において、表1-1~表1-16に記載された標的β2GPI mRNA配列のいずれかと相補的であり、
  該センス鎖の3’末端または5’末端はS3に結合し、
 L1およびL2は、それぞれ独立して、糖リガンドであり、
 S1、S2およびS3は、それぞれ独立して、リンカーである。)
[2]
 下記式2で表される構造を有する、[1]に記載の核酸複合体。
式2:
Figure JPOXMLDOC01-appb-C000040
(式2中、
 X、L1、L2およびS3は、それぞれ前記と同義であり、
 P1、P2、P3、P4、P5およびP6、ならびにT1およびT2は、それぞれ独立して、存在しないか、または、-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-もしくは-CO-NH-であり、
 Q1、Q2、Q3およびQ4は、それぞれ独立して、存在しないか、または、置換もしくは無置換の炭素数1~12のアルキレンまたは-(CHCHO)-CHCH-であり、nは0~99の整数であり、
 B1およびB2は、それぞれ独立して、結合手であるか、または、下記式2-1で表されるいずれかの構造であり、各構造における末端の黒丸点は、それぞれ、P2またはP3あるいはP5またはP6との結合点であり、m1、m2、m3およびm4は、それぞれ独立して、0~10の整数であり、
式2-1:
Figure JPOXMLDOC01-appb-C000041
 p1およびp2は、それぞれ独立して、1、2または3の整数であり、
 q1、q2、q3およびq4は、それぞれ独立して、0~10の整数であり、
 ただし、p1およびp2がそれぞれ2または3の整数であるとき、それぞれのP3およびP6、Q2およびQ4、T1およびT2ならびにL1およびL2は、同一または異なっていてもよく、q1~q4が2~10のとき、それぞれの-[P2-Q1]-,-[Q2-P3]-,-[P5-Q3]-,-[Q4-P6]-の組み合わせは同一または異なっていてもよい。)
[3]
 P1およびP4が、それぞれ独立して、-CO-NH-、-NH-CO-または-O-である[2]に記載の核酸複合体。
[4]
 -[P2-Q1]q1-および-[P5-Q3]q3-がそれぞれ独立して、存在しないか、または下記式3-1~式3-3で表されるいずれかの構造である、[2]または[3]に記載の核酸複合体。
式3-1:
Figure JPOXMLDOC01-appb-C000042
式3-2:
Figure JPOXMLDOC01-appb-C000043
式3-3:
Figure JPOXMLDOC01-appb-C000044
(式3-1~式3-3中、
 m5およびm6は、それぞれ独立して、0~10の整数であり、式3-1~式3-3の構造における末端の黒丸点は、それぞれ、B1またはB2あるいはP1またはP4との結合点である。)
[5]
 下記式4-1~式4-9で表されるいずれかの構造を有する、[2]~[4]のいずれか1項に記載の核酸複合体。
式4-1:
Figure JPOXMLDOC01-appb-C000045
式4-2:
Figure JPOXMLDOC01-appb-C000046
式4-3:
Figure JPOXMLDOC01-appb-C000047
式4-4:
Figure JPOXMLDOC01-appb-C000048
式4-5:
Figure JPOXMLDOC01-appb-C000049
式4-6:
式4-7:
Figure JPOXMLDOC01-appb-C000051
式4-8:
Figure JPOXMLDOC01-appb-C000052
式4-9:
Figure JPOXMLDOC01-appb-C000053
(式4-1~4-9中、
 X、L1、L2、S3、P3、P6、T1、T2、Q2、Q4、q2およびq4はそれぞれ前記と同義である。)
[6]
 下記式5で表される構造を有する、[1]に記載の核酸複合体。
式5:
Figure JPOXMLDOC01-appb-C000054
(式5中、
 X、S3、P1、P2、P3、Q1、Q2、B1、T1、L1、p1、q1およびq2はそれぞれ前記と同義である。)
[7]
 P1が-CO-NH-、-NH-CO-または-O-である[6]に記載の核酸複合体。
[8]
 下記式6-1~式6-9で表されるいずれかの構造を有する、[6]または[7]に記載の核酸複合体。
式6-1:
Figure JPOXMLDOC01-appb-C000055
式6-2:
Figure JPOXMLDOC01-appb-C000056
式6-3:
Figure JPOXMLDOC01-appb-C000057
式6-4:
Figure JPOXMLDOC01-appb-C000058
式6-5:
Figure JPOXMLDOC01-appb-C000059
式6-6:
Figure JPOXMLDOC01-appb-C000060
式6-7:
Figure JPOXMLDOC01-appb-C000061
式6-8:
Figure JPOXMLDOC01-appb-C000062
式6-9:
Figure JPOXMLDOC01-appb-C000063
(式6-1~6-9中、
 X、S3、P3、Q2、T1、L1およびq2は、それぞれ前記と同義である。)
[9]
 下記式7-1~式7-9で表されるいずれかの構造を有する、[2]~[5]のいずれか1項に記載の核酸複合体。
式7-1:
Figure JPOXMLDOC01-appb-C000064
式7-2:
Figure JPOXMLDOC01-appb-C000065
式7-3:
Figure JPOXMLDOC01-appb-C000066
式7-4:
Figure JPOXMLDOC01-appb-C000067
式7-5:
Figure JPOXMLDOC01-appb-C000068
式7-6:
Figure JPOXMLDOC01-appb-C000069
式7-7:
Figure JPOXMLDOC01-appb-C000070
式7-8:
Figure JPOXMLDOC01-appb-C000071
式7-9:
Figure JPOXMLDOC01-appb-C000072
(式7-1~7-9中、
 X、S3、L1およびL2は、それぞれ前記と同義である。)
[10]
 前記糖リガンドが、N-アセチルガラクトサミンである、[1]~[9]のいずれか1項に記載の核酸複合体。
[11]
 前記二本鎖核酸が修飾ヌクレオチドを含む、[1]~[10]のいずれか1項に記載の核酸複合体。
[12]
 センス鎖の3’末端およびアンチセンス鎖の5’末端は、平滑末端を形成する、[1]~[11]のいずれか1項に記載の核酸複合体。
[13]
 前記二本鎖核酸が、糖部修飾ヌクレオチドを含む、[1]~[12]のいずれか1項に記載の核酸複合体。
[14]
 Xが、表M1-1~表M1-18または表1-1~表1-16に記載のセンス鎖/アンチセンス鎖から成る群から選択される1対のセンス鎖/アンチセンス鎖である、[1]~[13]のいずれか1項に記載の核酸複合体。
[15]
 下記式7-8-1で表される構造を有する、[1]~[14]のいずれか1項に記載の核酸複合体。
式7-8-1:
Figure JPOXMLDOC01-appb-C000073
(式7-8-1中、Xは前記と同義である。)
[16]
 Xが、表M1-1~表M1-18における、CHOO96、CHOO99、CH0125、CH0126、CH0318、CH0943およびCH1139からなる群から選択される二本鎖核酸である[15]に記載の核酸複合体。
[17]
 [1]~[16]のいずれか1項に記載の核酸複合体を含む、医薬組成物。
[18]
 細胞内に導入するための、[17]に記載の医薬組成物。
[19]
 静脈内投与または皮下投与される、[17]または[18]に記載の医薬組成物。
[20]
 [1]~[16]のいずれか1項に記載の核酸複合体または[17]~[19]のいずれか1項に記載の医薬組成物を、それを必要とする患者に投与することを含む、疾患の治療または予防方法。
[21]
 [1]~[16]のいずれか1項に記載の核酸複合体または[17]~[19]のいずれか1項に記載の医薬組成物を用いて二本鎖核酸を細胞内に導入することを含む、β2GPI遺伝子の発現を抑制する方法。
[22]
 [1]~[16]のいずれか1項に記載の核酸複合体または[17]~[19]のいずれか1項に記載の医薬組成物を哺乳動物に投与することを含む、β2GPI関連疾患の治療方法。
[23]
 [1]~[16]のいずれか1項に記載の核酸複合体または[17]~[19]のいずれか1項に記載の医薬組成物を含む、β2GPI関連疾患の治療に用いるための医薬。
[24]
 [1]~[16]のいずれか1項に記載の核酸複合体または[17]~[19]のいずれか1項に記載の医薬組成物を含む、β2GPI関連疾患の治療剤。
[25]
 β2GPI関連疾患が、自己免疫疾患または血栓症である、[22]に記載の治療方法。
[26]
 β2GPI関連疾患が、自己免疫疾患または血栓症である、[23]に記載の医薬。
[27]
 β2GPI関連疾患が、自己免疫疾患または血栓症である、[24]に記載の治療剤。
The present invention relates to the following.
[1]
A nucleic acid complex represented by the following formula 1.
Formula 1:
Figure JPOXMLDOC01-appb-C000039
(In the formula 1,
X is a double stranded nucleic acid consisting of a sense strand and an antisense strand, comprising a duplex region of at least 11 base pairs,
The double-stranded nucleic acid is an oligonucleotide chain of 17 to 30 nucleotides in length in the antisense strand, and any one of the target β2GPI mRNA sequences described in Tables 1-1 to 1-16. Complementary and
The 3 'or 5' end of the sense strand is linked to S3,
L1 and L2 are each independently a sugar ligand,
S1, S2 and S3 are each independently a linker. )
[2]
The nucleic acid complex according to [1], which has a structure represented by the following formula 2.
Formula 2:
Figure JPOXMLDOC01-appb-C000040
(In the formula 2,
X, L1, L2 and S3 are as defined above,
P1, P2, P3, P4, P5 and P6, and T1 and T2 are each independently absent, or -CO-, -NH-, -O-, -S-, -O-CO- , -S-CO-, -NH-CO-, -CO-O-, -CO-S- or -CO-NH-,
Q1, Q2, Q3 and Q4 are each independently absent, or substituted or unsubstituted alkylene having 1 to 12 carbon atoms or-(CH 2 CH 2 O) n -CH 2 CH 2- , N is an integer of 0 to 99,
B1 and B2 are each independently a bond or a structure represented by the following formula 2-1, and the terminal black dot in each structure is P2 or P3 or P5, respectively. Or a point of attachment to P6, and m1, m2, m3 and m4 are each independently an integer of 0 to 10,
Formula 2-1:
Figure JPOXMLDOC01-appb-C000041
p1 and p2 are each independently an integer of 1, 2 or 3;
q1, q2, q3 and q4 are each independently an integer of 0 to 10,
However, when p1 and p2 are integers of 2 or 3, respectively, P3 and P6, Q2 and Q4, T1 and T2 and L1 and L2 may be the same or different, and q1 to q4 are 2 to 10 And each of the combinations of-[P2-Q1]-,-[Q2-P3]-,-[P5-Q3]-and-[Q4-P6]-may be the same or different. )
[3]
The nucleic acid complex according to [2], wherein P1 and P4 are each independently -CO-NH-, -NH-CO- or -O-.
[4]
-[P2-Q1] q1 - and- [P5-Q3] q3 -each independently do not exist, or any one of structures represented by the following formulas 3-1 to 3-3: The nucleic acid complex as described in 2] or [3].
Formula 3-1:
Figure JPOXMLDOC01-appb-C000042
Formula 3-2:
Figure JPOXMLDOC01-appb-C000043
Formula 3-3:
Figure JPOXMLDOC01-appb-C000044
(In Formula 3-1 to Formula 3-3,
m5 and m6 are each independently an integer of 0 to 10, and the terminal black dot in the structure of Formula 3-1 to Formula 3-3 is a bonding point to B1 or B2 or P1 or P4, respectively is there. )
[5]
The nucleic acid complex according to any one of [2] to [4], which has any of the structures represented by the following formulas 4-1 to 4-9.
Formula 4-1:
Figure JPOXMLDOC01-appb-C000045
Equation 4-2:
Figure JPOXMLDOC01-appb-C000046
Equation 4-3:
Figure JPOXMLDOC01-appb-C000047
Formula 4-4:
Figure JPOXMLDOC01-appb-C000048
Formula 4-5:
Figure JPOXMLDOC01-appb-C000049
Formula 4-6:
Equation 4-7:
Figure JPOXMLDOC01-appb-C000051
Formula 4-8:
Figure JPOXMLDOC01-appb-C000052
Formula 4-9:
Figure JPOXMLDOC01-appb-C000053
(In the formulas 4-1 to 4-9,
X, L1, L2, S3, P3, P6, T1, T2, Q2, Q4, q2 and q4 are as defined above. )
[6]
The nucleic acid complex according to [1], having a structure represented by the following formula 5.
Formula 5:
Figure JPOXMLDOC01-appb-C000054
(In the equation 5,
X, S3, P1, P2, P3, Q1, Q2, B1, T1, L1, p1, q1 and q2 are as defined above. )
[7]
The nucleic acid complex according to [6], wherein P1 is -CO-NH-, -NH-CO- or -O-.
[8]
The nucleic acid complex according to [6] or [7], which has any one of structures represented by the following formulas 6-1 to 6-9.
Formula 6-1:
Figure JPOXMLDOC01-appb-C000055
Formula 6-2:
Figure JPOXMLDOC01-appb-C000056
Equation 6-3:
Figure JPOXMLDOC01-appb-C000057
Equation 6-4:
Figure JPOXMLDOC01-appb-C000058
Formula 6-5:
Figure JPOXMLDOC01-appb-C000059
Formula 6-6:
Figure JPOXMLDOC01-appb-C000060
Formula 6-7:
Figure JPOXMLDOC01-appb-C000061
Formula 6-8:
Figure JPOXMLDOC01-appb-C000062
Formula 6-9:
Figure JPOXMLDOC01-appb-C000063
(In the formulas 6-1 to 6-9,
X, S3, P3, Q2, T1, L1 and q2 are as defined above. )
[9]
The nucleic acid complex according to any one of [2] to [5], which has any one of structures represented by the following formulas 7-1 to 7-9.
Formula 7-1:
Figure JPOXMLDOC01-appb-C000064
Equation 7-2:
Figure JPOXMLDOC01-appb-C000065
Formula 7-3:
Figure JPOXMLDOC01-appb-C000066
Equation 7-4:
Figure JPOXMLDOC01-appb-C000067
Formula 7-5:
Figure JPOXMLDOC01-appb-C000068
Formula 7-6:
Figure JPOXMLDOC01-appb-C000069
Formula 7-7:
Figure JPOXMLDOC01-appb-C000070
Formula 7-8:
Figure JPOXMLDOC01-appb-C000071
Formula 7-9:
Figure JPOXMLDOC01-appb-C000072
(In the formulas 7-1 to 7-9,
X, S3, L1 and L2 are as defined above. )
[10]
The nucleic acid complex according to any one of [1] to [9], wherein the sugar ligand is N-acetylgalactosamine.
[11]
The nucleic acid complex according to any one of [1] to [10], wherein the double stranded nucleic acid comprises a modified nucleotide.
[12]
The nucleic acid complex according to any one of [1] to [11], wherein the 3 'end of the sense strand and the 5' end of the antisense strand form a blunt end.
[13]
The nucleic acid complex according to any one of [1] to [12], wherein the double stranded nucleic acid comprises a sugar moiety-modified nucleotide.
[14]
X is a pair of sense strand / antisense strand selected from the group consisting of sense strand / antisense strand described in Table M1-1 to Table M1-18 or Table 1-1 to Table 1-16, The nucleic acid complex according to any one of [1] to [13].
[15]
The nucleic acid complex according to any one of [1] to [14], which has a structure represented by the following formula 7-8-1.
Formula 7-8-1:
Figure JPOXMLDOC01-appb-C000073
(In formula 7-8-1, X is as defined above.)
[16]
The nucleic acid complex according to [15], wherein X is a double stranded nucleic acid selected from the group consisting of CHOO96, CHOO99, CH0125, CH0126, CH0318, CH0943 and CH1139 in Tables M1-1 to M1-18.
[17]
A pharmaceutical composition comprising the nucleic acid complex according to any one of [1] to [16].
[18]
The pharmaceutical composition according to [17], for introduction into cells.
[19]
The pharmaceutical composition according to [17] or [18], which is administered intravenously or subcutaneously.
[20]
Administering the nucleic acid complex according to any one of [1] to [16] or the pharmaceutical composition according to any one of [17] to [19] to a patient in need thereof And methods of treating or preventing the disease.
[21]
Introducing a double stranded nucleic acid into a cell using the nucleic acid complex according to any one of [1] to [16] or the pharmaceutical composition according to any one of [17] to [19] A method for suppressing the expression of the β2 GPI gene, including
[22]
[Beta] 2GPI-related diseases comprising administering the nucleic acid complex according to any one of [1] to [16] or the pharmaceutical composition according to any one of [17] to [19] to a mammal Treatment method.
[23]
A medicament for use in the treatment of a β2GPI related disease, comprising the nucleic acid complex according to any one of [1] to [16] or the pharmaceutical composition according to any one of [17] to [19] .
[24]
A therapeutic agent for a β2GPI related disease, comprising the nucleic acid complex according to any one of [1] to [16] or the pharmaceutical composition according to any one of [17] to [19].
[25]
The therapeutic method according to [22], wherein the β2GPI related disease is an autoimmune disease or thrombosis.
[26]
The medicament according to [23], wherein the β2 GPI related disease is an autoimmune disease or thrombosis.
[27]
The therapeutic agent according to [24], wherein the β2 GPI related disease is an autoimmune disease or thrombosis.
 例えば本発明の核酸複合体を含む医薬組成物を、哺乳動物に投与して、生体内において、各種関連疾患を治療することができる。 For example, a pharmaceutical composition containing the nucleic acid complex of the present invention can be administered to a mammal to treat various related diseases in vivo.
 本発明の核酸複合体は、下記式1で表される核酸複合体である。
式1:
The nucleic acid complex of the present invention is a nucleic acid complex represented by the following formula 1.
Formula 1:
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
 式1中、
 Xは、センス鎖およびアンチセンス鎖からなり、少なくとも11個の塩基対の二重鎖領域を含む二本鎖核酸であり、
  該二本鎖核酸は、該アンチセンス鎖中の、17個~30個のヌクレオチドの鎖長のオリゴヌクレオチド鎖において、表1-1~表1-16に記載された標的β2GPI mRNA配列のいずれかと相補的であり、
  該センス鎖の3’末端または5’末端はS3に結合し、
 L1およびL2は、それぞれ独立して、糖リガンドであり、
 S1、S2およびS3は、それぞれ独立して、リンカーである。
In formula 1,
X is a double stranded nucleic acid consisting of a sense strand and an antisense strand, comprising a duplex region of at least 11 base pairs,
The double-stranded nucleic acid is an oligonucleotide chain of 17 to 30 nucleotides in length in the antisense strand, and any one of the target β2GPI mRNA sequences described in Tables 1-1 to 1-16. Complementary and
The 3 'or 5' end of the sense strand is linked to S3,
L1 and L2 are each independently a sugar ligand,
S1, S2 and S3 are each independently a linker.
 本発明において、S1およびS2は、S3のベンゼン環上の置換位置に対して、それぞれオルト位、メタ位、パラ位でベンゼン環と結合し得るが、下記式1-1で表される核酸複合体であることが好適である。式1におけるS1およびS2のベンゼン環への結合手は、ベンゼン環上のS3の置換位置以外で任意の位置であり得ることを意味する。
式1-1:
In the present invention, S1 and S2 can bind to the benzene ring in the ortho position, meta position and para position respectively with respect to the substitution position on the benzene ring of S3, but the nucleic acid complex represented by the following formula 1-1 It is preferred that it is a body. It is meant that the bond of S1 and S2 to the benzene ring in Formula 1 may be at any position other than the substitution position of S3 on the benzene ring.
Formula 1-1:
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
 式1-1中、
 X、L1、L2、S1、S2およびS3は、それぞれ前記と同義である。
 本明細書において、前記と同義とは、式1-1中を例示して説明すると、式1-1中のX、L1、L2、S1およびS2それぞれについて、式1において前記するX、L1、L2、S1およびS2それぞれについての定義と同様の基であり得ることを意味している。
In Formula 1-1,
X, L1, L2, S1, S2 and S3 are as defined above.
In the present specification, the same meaning as described above will be described by exemplifying Formula 1-1: X, L1, L2, S1, and S2 in Formula 1-1, X, L1, It means that it may be the same group as the definition for each of L2, S1 and S2.
 本発明において、Xは、センス鎖およびアンチセンス鎖からなり、少なくとも11個の塩基対の二重鎖領域を含む二本鎖核酸である。
 また、該二本鎖核酸は、該アンチセンス鎖中の、17個~30個のヌクレオチドの鎖長のオリゴヌクレオチド鎖において、後述する表1-1~表1-16に記載された標的β2GPI mRNA配列のいずれかと相補的である。
 さらにまた、該センス鎖の3’末端または5’末端はS3に結合する。
In the present invention, X is a double stranded nucleic acid consisting of a sense strand and an antisense strand and comprising a double stranded region of at least 11 base pairs.
In addition, the double-stranded nucleic acid is a target β2GPI mRNA described in Tables 1-1 to 1-16 described later in the oligonucleotide strand having a chain length of 17 to 30 nucleotides in the antisense strand. Complementary to any of the sequences.
Furthermore, the 3 'or 5' end of the sense strand is linked to S3.
 L1およびL2は、それぞれ独立して、糖リガンドである。
 本発明において、糖リガンドとしては、標的細胞に発現している受容体に結合可能な糖類(単糖、二糖、三糖および多糖等)に由来する基を意味する。本発明においては、糖リガンドがO-結合によりS1およびS2のリンカーに結合している場合には、糖リガンドを構成する糖類の結合に関与する水酸基を除いた部分が糖類に由来する基としての糖リガンドを意味する。
 本発明においては、オリゴヌクレオチドの標的細胞となる糖リガンドを選択すればよい。
 単糖としては、例えば、アロース、アルトース、アラビノース、クラジノース、エリトロース、エリスルロース、フルクトース、D-フシトール、L-フシトール、フコサミン、フコース、フクロース、ガラクトサミン、D-ガラクトサミニトール、N-アセチル-ガラクトサミン、ガラクトース、グルコサミン、N-アセチル-グルコサミン、グルコサミニトール、グルコース、グルコース-6-リン酸、グロース、グリセルアルデヒド、L-グリセロ-D-マンノ-ヘプトース、グリセロール、グリセロン、グロース、イドース、リキソース、マンノサミン、マンノース、マンノース-6-リン酸、プシコース、キノボース、キノボサミン、ラムニトール、ラムノサミン、ラムノース、リボース、リブロース、セドヘプツロース、ソルボース、タガトース、タロース、酒石酸、トレオース、キシロース、およびキシルロース等が挙げられる。
 二糖、三糖、多糖としては、例えば、アベクオース、アクラボース、アミセトース、アミロペクチン、アミロース、アピオース、アルカノース、アスカリロース、アスコルビン酸、ボイビノース、セロビオース、セロトリオース、セルロース、カコトリオース、カルコース、キチン、コリトース、シクロデキストリン、シマロース、デキストリン、2-デオキシリボース、2-デオキシグルコース、ジギノース、ジギタロース、ジギトキソース、エバロース、エベミトロース(evemitrose)、フルクトオリゴ糖、ガルトオリゴ糖(galto-oligosaccharide)、ゲンチアノース、ゲンチオビオース、グルカン、グルコーゲン、グリコーゲン、ハマメロース、ヘパリン、イヌリン、イソレボグルコセノン、イソマルトース、イソマルトトリオース、イソパノース、コジビオース、ラクトース、ラクトサミン、ラクトースジアミン、ラミナラビオース、レボグルコサン、レボグルコセノン、β-マルトース、マルトリオース、マンナン-オリゴ糖、マンニノトリオース、メレチトース、メリビオース、ムラミン酸、ミカロース、ミシノース、ノイラミン酸、シアル酸含有糖鎖、ニゲロース、ノジリミシン、ノビオース、オレアンドロース、パノース、パラトース、プランテオース、プリメベロース、ラフィノース、ロジノース、ルチノース、サルメントース、セドヘプツロース、セドヘプツロサン、ソラトリオース、ソホロース、スタキオース、ストレプトース、スクロース、α,α-トレハロース、トラハロサミン、ツラノース、チベロース、キシロビオース、ウンベリフェロース等が挙げられる。
L1 and L2 are each independently a sugar ligand.
In the present invention, a sugar ligand means a group derived from a saccharide (such as monosaccharide, disaccharide, trisaccharide and polysaccharide) capable of binding to a receptor expressed in a target cell. In the present invention, when the sugar ligand is bound to the S1 and S2 linkers by O-bond, the moiety excluding the hydroxyl group involved in the binding of the saccharide constituting the sugar ligand is a group derived from the saccharide. By sugar ligand is meant.
In the present invention, a sugar ligand to be a target cell of an oligonucleotide may be selected.
Examples of monosaccharides include allose, altose, arabinose, cladinose, erythrose, erythrulose, fructose, D-fusitol, L-fusitol, fucosamine, fucose, fucose, galactosamine, D-galactosaminitol, N-acetyl-galactosamine, Galactose, glucosamine, N-acetyl-glucosamine, glucosaminitol, glucose, glucose-6-phosphate, gulose, glyceraldehyde, L-glycero-D-manno-heptose, glycerol, glycerone, gulose, idoses, liquisose, mannosamine , Mannose, mannose-6-phosphate, psicose, quinobose, quinovosamine, rhamnitol, rhamnosamine, rhamnose, ribose, ribulose, sedoheptulose, sorbo Scan, tagatose, talose, tartaric acid, threose, and xylose, and xylulose and the like.
Examples of disaccharides, trisaccharides and polysaccharides include avequase, aclavose, amysetose, amylopectin, amylose, apiose, alkanose, alkanose, alkanose, alkanose, ascorbic acid, boibinose, cellobiose, cellotriose, cellulose, cacotriose, chalcose, chitin, colitos, Cyclodextrin, Dextrose, Dextrin, 2-Deoxyribose, 2-Deoxyglucose, Diginose, Digitulose, Digitose, Evalose, Evemitrose, Fructooligosaccharide, Galto-oligosaccharide (galto-oligosaccharide), Gentianose, Gentiobiose, Glucan, Glucogen, Glycogen , Hammellose, heparin, inulin, isolevoglucosenone, isoma Tose, Isomaltotriose, Isopanose, Codibiose, Lactose, Lactosamine, Lactosamine, Laminarabiose, Levoglucosan, Levoglucosenone, Beta-Maltose, Martriose, Mannan-Oligosaccharide, Manninotriose, Meleticose, Melibiose, Muramic Acid, Micarose, Misinose , Neuraminic acid, sialic acid-containing sugar chain, nigerose, nojirimycin, nobiose, oleandrosose, panose, paratose, plumoseose, primosevelose, raffinose, rhainose, rutinose, salmentose, sedoheptulose, sedohepturosan, solatriose, sophorose, stachyose, streptose , Α, α-Trehalose, trahalosamine, turanose, tivelose, xylobio Vinegar, umbelliferose, and the like.
 糖類における各単糖は、D体またはL体であってもよく、D体とL体の任意割合による混合物であってもよい。
 糖類は、デオキシ糖(アルコールヒドロキシ基を水素原子に置換したもの)、アミノ糖(アルコールヒドロキシ基をアミノ基に置換したもの)、チオ糖(アルコールヒドロキシ基をチオールに置換したもの、またはC=OをC=Sに置換したもの、または環酸素を硫黄に置換したもの)、セレノ糖、テルロ糖、アザ糖(環炭素を窒素に置換したもの)、イミノ糖(環酸素を窒素に置換したもの)、ホスファノ糖(環酸素をリンに置換したもの)、ホスファ糖(環炭素をリンに置換したもの)、C-置換単糖(非末端炭素原子における水素原子を炭素原子で置換したもの)、不飽和単糖、アルジトール(カルボニル基をCHOH基で置換したもの)、アルドン酸(アルデヒド基をカルボキシ基に置換したもの)、ケトアルドン酸、ウロン酸、アルダル酸等を含んでいてもよい。
 アミノ糖としては、糖類におけるアミノ単糖として、ガラクトサミン、グルコサミン、マンノサミン、フコサミン、キノボサミン、ノイラミン酸、ムラミン酸、ラクトースジアミン、アコサミン、バシロサミン、ダウノサミン、デソサミン、フォロサミン、ガロサミン、カノサミン、カンソサミン(kansosamine)、ミカミノース、ミコサミン、ペロサミン、プノイモサミン、プルプロサミン(purpurosamine)、ロドサミン等が挙げられる。また、アミノ糖のアミノ基は、アセチル基等で置換されていてもよい。
 シアル酸含有糖鎖としては、NeuAcを糖鎖非還元末端に含有する糖鎖が挙げられ、NeuAc-Gal-GlcNAcを含有する糖鎖や、Neu5Acα(2-6)Galβ(1-3)GlcNAc等が挙げられる。
 糖類における各単糖は、標的細胞に発現している受容体に結合可能であることを限度として、置換基で置換されていてもよく、例えば、水酸基が置換されていてもよく、各単糖における水素原子がアジドおよび/または置換されていてもよいアリール基で1~複数置換されていてもよい。
Each monosaccharide in the saccharide may be in D-form or L-form, or may be a mixture of D-form and L-form in any proportion.
The saccharides may be deoxy sugars (alcohol hydroxy group substituted with hydrogen atom), amino sugars (alcohol hydroxy group substituted with amino group), thio sugars (alcohol hydroxy group substituted with thiol), or C = O Is substituted by C = S, or ring oxygen is substituted by sulfur), seleno sugar, telluro sugar, aza sugar (ring carbon is substituted by nitrogen), imino sugar (ring oxygen is substituted by nitrogen) ), Phosphanosugars (in which ring oxygen is substituted by phosphorus), phosphasaccharides (in which ring carbon is substituted by phosphorus), C-substituted monosaccharides (in which hydrogen atoms at non-terminal carbon atoms are substituted by carbon atoms), Unsaturated monosaccharide, alditol (the carbonyl group is substituted by CHOH group), aldonic acid (the aldehyde group is substituted by carboxy group), ketoaldonic acid, uronic acid, Etc. may contain an Dal acid.
As an amino sugar in saccharides, galactosamine, glucosamine, glucosamine, mannosamine, fucosamine, quinosamine, neuraminic acid, muramic acid, lactose acid, lactose diamine, acosamine, dacrosamine, daunosamine, desosamine, forosamine, garosamine, canosamine, kansosamine (kansamine) Mikaminose, mycosamine, perosamine, pneuimosamine, purpurosamine, rhodosamine etc. are mentioned. In addition, the amino group of the amino sugar may be substituted with an acetyl group or the like.
Examples of sialic acid-containing sugar chains include sugar chains containing NeuAc at the non-reducing end of the sugar chain, such as NeuAc-Gal-GlcNAc-containing sugar chains, Neu5Acα (2-6) Galβ (1-3) GlcNAc, etc. Can be mentioned.
Each monosaccharide in the saccharide may be substituted by a substituent, as long as it can bind to the receptor expressed in the target cell, for example, a hydroxyl group may be substituted, and each monosaccharide The hydrogen atom in may be substituted one or more with an azide and / or an aryl group which may be substituted.
 糖リガンドとしては、標的とする各臓器に対応して標的細胞の表面に発現する受容体に結合する糖リガンドを選択することが好ましく、例えば、標的細胞が肝細胞である場合、肝細胞表面に発現する受容体に対する糖リガンドが好ましく、アシアロ糖タンパク質受容体(ASGPR)に対する糖リガンドがより好ましい。 As a sugar ligand, it is preferable to select a sugar ligand that binds to a receptor expressed on the surface of a target cell corresponding to each target organ, for example, when the target cell is a hepatocyte, on the surface of a hepatocyte Sugar ligands to the expressed receptor are preferred, and sugar ligands to the asialoglycoprotein receptor (ASGPR) are more preferred.
 ASGPRに対する糖リガンドとしては、マンノースまたはN-アセチルガラクトサミンが好ましく、N-アセチルガラクトサミンがより好ましい。
 ASGPRに対してより親和性の高い糖リガンドとして、例えばBioorganic Medicinal Chemistry, 17,7254 (2009)、およびJournal of American Chemical Society, 134, 1978 (2012)等に記載の糖誘導体が知られており、これらを用いてもよい。
As a sugar ligand for ASGPR, mannose or N-acetylgalactosamine is preferable, and N-acetylgalactosamine is more preferable.
As sugar ligands having higher affinity to ASGPR, for example, sugar derivatives described in Bioorganic Medicinal Chemistry, 17, 7254 (2009), and Journal of American Chemical Society, 134, 1978 (2012), etc. are known. These may be used.
 本発明において、S1、S2およびS3は、リンカーである。
 S1とS2は、糖リガンドであるL1とL2と、ベンゼン環とを連結する構造であれば特に限定されるものではなく、核酸複合体において用いられる公知の構造を採用してもよい。S1とS2は、同一であってもよく、異なっていてもよい。
 糖リガンドであるL1とL2は、S1およびS2とグリコシド結合により連結していることが好ましく、S1およびS2は、ベンゼン環と、例えば、-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-もしくは-CO-NH-結合によりそれぞれ連結していてもよい。
In the present invention, S1, S2 and S3 are linkers.
S1 and S2 are not particularly limited as long as they are structures that link the sugar ligands L1 and L2 with the benzene ring, and a known structure used in a nucleic acid complex may be adopted. S1 and S2 may be the same or different.
The sugar ligands L1 and L2 are preferably linked to S1 and S2 by glycosidic bonds, and S1 and S2 may be combined with a benzene ring, for example, -CO-, -NH-, -O-, -S- And -O-CO-, -S-CO-, -NH-CO-, -CO-O-, -CO-S-, or -CO-NH- bond.
 S3は、二本鎖核酸であるXと、ベンゼン環とを連結する構造であれば特に限定されるものではなく、核酸複合体において用いられる公知の構造を採用してよい。
 オリゴヌクレオチドであるXは、S3とホスホジエステル結合により連結していることが好ましく、S3は、ベンゼン環と、例えば、-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-もしくは-CO-NH-結合により連結していてもよい。
S3 is not particularly limited as long as it is a structure linking X, which is a double-stranded nucleic acid, and a benzene ring, and a known structure used in a nucleic acid complex may be adopted.
The oligonucleotide X is preferably linked to S3 by a phosphodiester bond, and S3 is linked to a benzene ring, for example, -CO-, -NH-, -O-, -S-, -O-CO. -, -S-CO-, -NH-CO-, -CO-O-, -CO-S- or -CO-NH- bond may be linked.
 S1、S2およびS3のリンカーとしては、例えば、国際公開第2009/073809号、国際公開第2013/075035号、国際公開第2015/105083号、国際公開第2014/179620号、国際公開第2015/006740号に開示される構造を採用してもよい。 As linkers of S1, S2 and S3, for example, WO 2009/073809, WO 2013/075035, WO 2015/105083, WO 2014/179620, WO 2015/006740 The structure disclosed in the above may be adopted.
 本発明において、核酸複合体は、下記式2で表される構造を有する核酸複合体であることが好適である。
式2:
In the present invention, the nucleic acid complex is preferably a nucleic acid complex having a structure represented by the following formula 2.
Formula 2:
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
 式2中、
 X、L1、L2およびS3は、それぞれ前記と同義であり、
 P1、P2、P3、P4、P5およびP6、ならびにT1およびT2は、それぞれ独立して、存在しないか、または、-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-もしくは-CO-NH-であり、
 Q1、Q2、Q3およびQ4は、それぞれ独立して、存在しないか、または、置換もしくは無置換の炭素数1~12のアルキレンまたは-(CHCHO)-CHCH-であり、nは0~99の整数である。
In formula 2,
X, L1, L2 and S3 are as defined above,
P1, P2, P3, P4, P5 and P6, and T1 and T2 are each independently absent, or -CO-, -NH-, -O-, -S-, -O-CO- , -S-CO-, -NH-CO-, -CO-O-, -CO-S- or -CO-NH-,
Q1, Q2, Q3 and Q4 are each independently absent, or substituted or unsubstituted alkylene having 1 to 12 carbon atoms or-(CH 2 CH 2 O) n -CH 2 CH 2- , N is an integer of 0 to 99.
 P1およびP4は、それぞれ独立して、存在しないか、または、-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-もしくは-CO-NH-であるが、-O-、-O-CO-、-NH-CO-または-CO-NH-であることが好ましく、-O-、-NH-CO-または-CO-NH-であることがより好ましく、-NH-CO-であることがさらに好ましい。
 P1またはP4が、例えば、-NH-CO-である場合、-NH-CO-ベンゼン環という部分構造を有する。
P1 and P4 are each independently absent, or -CO-, -NH-, -O-, -S-, -O-CO-, -S-CO-, -NH-CO-, -CO-O-, -CO-S- or -CO-NH-, but preferably -O-, -O-CO-, -NH-CO- or -CO-NH-, -O -, -NH-CO- or -CO-NH- is more preferable, and -NH-CO- is more preferable.
When P1 or P4 is, for example, -NH-CO-, it has a partial structure of -NH-CO-benzene ring.
 Q1、Q2、Q3およびQ4は、それぞれ独立して、存在しないか、または、置換もしくは無置換の炭素数1~12のアルキレンまたは-(CHCHO)-CHCH-であり、nは0~99の整数であるが、置換もしくは無置換の炭素数1~12のアルキレンであることが好ましく、無置換の炭素数1~12のアルキレンであることがより好ましく、無置換の炭素数1~6のアルキレンであることがさらに好ましく、無置換の炭素数1~4のアルキレンであることがよりさらに好ましい。 Q1, Q2, Q3 and Q4 are each independently absent, or substituted or unsubstituted alkylene having 1 to 12 carbon atoms or-(CH 2 CH 2 O) n -CH 2 CH 2- And n is an integer of 0 to 99, preferably substituted or unsubstituted alkylene having 1 to 12 carbon atoms, more preferably unsubstituted alkylene having 1 to 12 carbon atoms, and unsubstituted More preferably, it is an alkylene having 1 to 6 carbon atoms, and still more preferably an unsubstituted alkylene having 1 to 4 carbon atoms.
 P2およびP5は、それぞれ独立して、存在しないか、または、-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-もしくは-CO-NH-であるが、存在しないか、-CO-O-または-CO-NH-であることが好ましく、存在しないか、-CO-NH-であることがより好ましい。P2およびP5が、例えば、-CO-NH-である場合、B1-CO-NH-Q1およびB2-CO-NH-Q3という部分構造を有する。 P2 and P5 are each independently absent, or -CO-, -NH-, -O-, -S-, -O-CO-, -S-CO-, -NH-CO-, -CO-O-, -CO-S- or -CO-NH-, but not present, preferably -CO-O- or -CO-NH-, preferably absent, -CO-NH It is more preferable that it is-. When P2 and P5 are, for example, -CO-NH-, they have partial structures of B1-CO-NH-Q1 and B2-CO-NH-Q3.
 -[P2-Q1]q1-および-[P5-Q3]q3-がそれぞれ独立して、存在しないか、または下記式3-1~式3-3で表されるいずれかの構造であることが好適である。
式3-1:
-[P2-Q1] q1 - and- [P5-Q3] q3 -each independently do not exist or have any of the structures represented by the following formulas 3-1 to 3-3 It is suitable.
Formula 3-1:
Figure JPOXMLDOC01-appb-C000077
式3-2:
Figure JPOXMLDOC01-appb-C000077
Formula 3-2:
Figure JPOXMLDOC01-appb-C000078
式3-3:
Figure JPOXMLDOC01-appb-C000078
Formula 3-3:
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
 式3-1~3-3中、
 m5およびm6は、それぞれ独立して、0~10の整数であり、式3-1~式3-3の構造における末端の黒丸点は、それぞれ、B1またはB2あるいはP1またはP4との結合点である。
In formulas 3-1 to 3-3,
m5 and m6 are each independently an integer of 0 to 10, and the terminal black dot in the structure of Formula 3-1 to Formula 3-3 is a bonding point to B1 or B2 or P1 or P4, respectively is there.
 B1およびB2は、それぞれ独立して、結合手であるか、または、下記式で表されるいずれかの構造であり、各構造における末端の黒丸点は、それぞれ、P2またはP3あるいはP5またはP6との結合点であり、m1、m2、m3およびm4は、それぞれ独立して、0~10の整数である。 B1 and B2 are each independently a bond or a structure represented by the following formula, and the terminal black dot in each structure is P2 or P3 or P5 or P6, respectively. And m1, m2, m3 and m4 are each independently an integer of 0 to 10.
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
 B1およびB2は、グルタミン酸、アスパラギン酸、リジン、イミノ二酢酸等の非天然アミノ酸を含むアミノ酸、または2-アミノ-1,3-プロパンジオール等のアミノアルコールに由来する基であることが好ましく、B1およびB2がグルタミン酸およびアスパラギン酸に由来する基である場合、グルタミン酸およびアスパラギン酸のアミノ基がそれぞれ結合して、P2およびP5として、-NH-CO-結合であることが好ましく、B1およびB2がリジンに由来する基である場合、リジンのカルボキシル基がそれぞれ結合して、P2およびP5として、-CO-NH-結合であることが好ましく、B1およびB2がイミノ二酢酸に由来する基である場合、イミノ二酢酸のアミノ基がそれぞれ結合して、P2およびP5として、-CO-結合となることが好ましい。B1およびB2は、具体的には、以下の構造を持つことが好ましい。 B1 and B2 are preferably groups derived from amino acids including non-natural amino acids such as glutamic acid, aspartic acid, lysine and iminodiacetic acid, or amino alcohols such as 2-amino-1,3-propanediol, And when B2 is a group derived from glutamic acid and aspartic acid, it is preferable that the amino groups of glutamic acid and aspartic acid are respectively bonded to form -NH-CO- as P2 and P5, and B1 and B2 are lysine When it is a group derived from, it is preferable that the carboxyl group of lysine is respectively bonded to form -CO-NH- bond as P2 and P5, and when B1 and B2 are groups derived from iminodiacetic acid, The amino group of iminodiacetic acid is bonded to form -CO- bonded as P2 and P5, respectively. It is preferable to be. Specifically, B1 and B2 preferably have the following structures.
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
 p1およびp2がそれぞれ2または3の整数であるとき、それぞれのP3およびP6、Q2およびQ4、T1およびT2ならびにL1およびL2は、同一または異なっていてもよい。
 q1~q4が2~10のとき、それぞれの-[P2-Q1]-,-[Q2-P3]-,-[P5-Q3]-,-[Q4-P6]-の組み合わせは同一または異なっていてもよい。それぞれの-[P2-Q1]-,-[Q2-P3]-,-[P5-Q3]-,および-[Q4-P6]-の組み合わせが同一または異なるとは、-[P2-Q1]-,-[Q2-P3]-,-[P5-Q3]-,および-[Q4-P6]-で示される各2~10の単位が、同一である場合と異なる場合があることを意味する。
When p1 and p2 are integers of 2 or 3, respectively, P3 and P6, Q2 and Q4, T1 and T2 and L1 and L2 may be the same or different.
When q1 to q4 are 2 to 10, the combinations of-[P2-Q1]-,-[Q2-P3]-,-[P5-Q3]-and-[Q4-P6]-are the same or different. May be The combinations of-[P2-Q1]-,-[Q2-P3]-,-[P5-Q3]-, and-[Q4-P6]-are identical or different from each other as-[P2-Q1]- It means that each 2 to 10 unit represented by,-[Q2-P3]-,-[P5-Q3]-, and-[Q4-P6]-may be identical or different.
 本発明において、核酸複合体は、下記式4-1~4-9で表される構造を有する核酸複合体であることが好適である。
式4-1:
In the present invention, the nucleic acid complex is preferably a nucleic acid complex having a structure represented by the following formulas 4-1 to 4-9.
Formula 4-1:
Figure JPOXMLDOC01-appb-C000082
式4-2:
Figure JPOXMLDOC01-appb-C000082
Equation 4-2:
Figure JPOXMLDOC01-appb-C000083
式4-3:
Figure JPOXMLDOC01-appb-C000083
Equation 4-3:
Figure JPOXMLDOC01-appb-C000084
式4-4:
Figure JPOXMLDOC01-appb-C000084
Formula 4-4:
Figure JPOXMLDOC01-appb-C000085
式4-5:
Figure JPOXMLDOC01-appb-C000085
Formula 4-5:
Figure JPOXMLDOC01-appb-C000086
式4-6:
Figure JPOXMLDOC01-appb-C000086
Formula 4-6:
Figure JPOXMLDOC01-appb-C000087
式4-7:
Figure JPOXMLDOC01-appb-C000087
Equation 4-7:
Figure JPOXMLDOC01-appb-C000088
式4-8:
Figure JPOXMLDOC01-appb-C000088
Formula 4-8:
Figure JPOXMLDOC01-appb-C000089
式4-9:
Figure JPOXMLDOC01-appb-C000089
Formula 4-9:
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
 式4-1~4-9中、
 X、L1、L2、S3、P3、P6、T1、T2、Q2、Q4、q2およびq4はそれぞれ前記と同義である。
In formulas 4-1 to 4-9,
X, L1, L2, S3, P3, P6, T1, T2, Q2, Q4, q2 and q4 are as defined above.
 P3およびP6は、それぞれ独立して、存在しないか、または、-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-もしくは-CO-NH-であるが、-O-CO-または-NH-CO-であることが好ましく、-NH-CO-であることがより好ましい。P3およびP6が、例えば、-NH-CO-である場合、それぞれ、B1-NH-CO-Q2およびB2-NH-CO-Q4という部分構造を有する。 P3 and P6 each independently do not exist, or -CO-, -NH-, -O-, -S-, -O-CO-, -S-CO-, -NH-CO-, -CO-O-, -CO-S- or -CO-NH-, but preferably -O-CO- or -NH-CO-, and more preferably -NH-CO-. When P3 and P6 are, for example, -NH-CO-, they have partial structures of B1-NH-CO-Q2 and B2-NH-CO-Q4, respectively.
 T1およびT2は、それぞれ独立して、存在しないか、または、-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-もしくは-CO-NH-であるが、-O-または-S-であることが好ましく、-O-であることがより好ましい。 T1 and T2 are each independently absent, or -CO-, -NH-, -O-, -S-, -O-CO-, -S-CO-, -NH-CO-, -CO-O-, -CO-S- or -CO-NH- is preferably -O- or -S-, more preferably -O-.
 本発明において、核酸複合体は、下記式5で表される構造を有する核酸複合体であることが好適である。
 式5では、式2におけるP1とP4、P2とP5、P3とP6、Q1とQ3、Q2とQ4、B1とB2、T1とT2、L1とL2、p1とp2、q1とq3ならびにq2とq4がそれぞれ同一である。
式5:
In the present invention, the nucleic acid complex is preferably a nucleic acid complex having a structure represented by the following formula 5.
In Equation 5, P1 and P4, P2 and P5, P3 and P6, Q1 and Q3, Q2 and Q4, B1 and B2, T1 and T2, L1 and L2, p1 and p2, q1 and q3, and q2 and q4 in Equation 2. Are the same.
Formula 5:
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
 式5中、
 X、S3、P1、P2、P3、Q1、Q2、B1、T1、L1、p1、q1およびq2はそれぞれ前記と同義である。
 また、式5におけるX、S3、P1、P2、P3、Q1、Q2、B1、T1、L1、p1、q1およびq2は、各々、上述した好適な基であって良いが、P1が-CO-NH-、-NH-CO-または-O-であることが好ましい。
 式5における-(P2-Q1)q1-は、存在しないか、または上記式3-1~式3-3で表されるいずれかの構造であることが好適である。
In the equation 5,
X, S3, P1, P2, P3, Q1, Q2, B1, T1, L1, p1, q1 and q2 are as defined above.
Further, X, S3, P1, P2, P3, Q1, Q2, B1, T1, L1, p1, q1 and q2 in Formula 5 may be the above-mentioned suitable groups, but P1 is —CO— It is preferable that it is NH-, -NH-CO- or -O-.
It is preferable that — (P 2 −Q 1) q 1 − in the formula 5 is absent or has any structure represented by the above formulas 3-1 to 3-3.
 本発明において、核酸複合体は、下記式6-1~6-9で表される構造を有する核酸複合体であることが好適である。
式6-1:
In the present invention, the nucleic acid complex is preferably a nucleic acid complex having a structure represented by the following formulas 6-1 to 6-9.
Formula 6-1:
Figure JPOXMLDOC01-appb-C000092
式6-2:
Figure JPOXMLDOC01-appb-C000092
Formula 6-2:
Figure JPOXMLDOC01-appb-C000093
式6-3:
Figure JPOXMLDOC01-appb-C000093
Equation 6-3:
Figure JPOXMLDOC01-appb-C000094
式6-4:
Figure JPOXMLDOC01-appb-C000094
Equation 6-4:
Figure JPOXMLDOC01-appb-C000095
式6-5:
Figure JPOXMLDOC01-appb-C000095
Formula 6-5:
Figure JPOXMLDOC01-appb-C000096
 
式6-6:
Figure JPOXMLDOC01-appb-C000096

Formula 6-6:
Figure JPOXMLDOC01-appb-C000097
式6-7:
Figure JPOXMLDOC01-appb-C000097
Formula 6-7:
Figure JPOXMLDOC01-appb-C000098
式6-8:
Figure JPOXMLDOC01-appb-C000098
Formula 6-8:
Figure JPOXMLDOC01-appb-C000099
式6-9:
Figure JPOXMLDOC01-appb-C000099
Formula 6-9:
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
 式6-1~式6-9中、
 X、S3、P3、Q2、T1、およびL1は、それぞれ前記と同義である。
In Formula 6-1 to Formula 6-9,
X, S3, P3, Q2, T1 and L1 are as defined above.
 本発明において、核酸複合体は、下記式7-1~式7-9のいずれかで表される構造を有する核酸複合体であることが好適である。
式7-1:
In the present invention, the nucleic acid complex is preferably a nucleic acid complex having a structure represented by any one of the following formulas 7-1 to 7-9.
Formula 7-1:
Figure JPOXMLDOC01-appb-C000101
式7-2:
Figure JPOXMLDOC01-appb-C000101
Equation 7-2:
Figure JPOXMLDOC01-appb-C000102
式7-3:
Figure JPOXMLDOC01-appb-C000102
Formula 7-3:
Figure JPOXMLDOC01-appb-C000103
式7-4:
Figure JPOXMLDOC01-appb-C000103
Equation 7-4:
Figure JPOXMLDOC01-appb-C000104
式7-5:
Figure JPOXMLDOC01-appb-C000104
Formula 7-5:
Figure JPOXMLDOC01-appb-C000105
式7-6:
Figure JPOXMLDOC01-appb-C000105
Formula 7-6:
Figure JPOXMLDOC01-appb-C000106
式7-7:
Figure JPOXMLDOC01-appb-C000106
Formula 7-7:
Figure JPOXMLDOC01-appb-C000107
式7-8:
Figure JPOXMLDOC01-appb-C000107
Formula 7-8:
Figure JPOXMLDOC01-appb-C000108
式7-9:
Figure JPOXMLDOC01-appb-C000108
Formula 7-9:
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000109
 式7-1~式7-9中、
 X、L1、L2およびS3は、それぞれ前記と同義である。L1とL2は同一であってもよく、異なっていてもよく、同一であることが好適である。
 式7-1~式7-9において、各アルキレン基部分を鎖長の異なるアルキレン鎖を導入することにより、また、アミド結合等を他の結合に置換することにより、式7-1~式7-9で表される構造を有する核酸複合体以外の核酸誘導体を製造することもできる。
In formulas 7-1 to 7-9,
X, L1, L2 and S3 are as defined above. L1 and L2 may be identical or different, and are preferably identical.
In formulas 7-1 to 7-9, each alkylene group moiety is introduced with an alkylene chain having a different chain length, or an amide bond or the like is substituted with another bond to form formulas 7-1 to 7 Nucleic acid derivatives other than the nucleic acid complex having the structure represented by -9 can also be produced.
 本発明において、核酸複合体は、下記式11で表される構造を有する核酸複合体であることが好適である。
式11:
In the present invention, the nucleic acid complex is preferably a nucleic acid complex having a structure represented by the following formula 11.
Formula 11:
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000110
 式11中、
 L1、L2、S1およびS2は、それぞれ前記と同義であり、
 P7およびP8は、それぞれ独立して、存在しないか、または、-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-もしくは-CO-NH-であり、
 Q5、Q6およびQ7は、それぞれ独立して、存在しないか、または、置換もしくは無置換の炭素数1~12のアルキレンまたは-(CHCHO)n8-CHCH-であり、n8は0~99の整数であり、
 B3は、本明細書中ではブランチャーユニットと呼ばれ、下記式11-1で表されるいずれかの構造であり、破線において、それぞれ、Q5およびQ6との結合手を意味し、
式11-1:
In formula 11,
L1, L2, S1 and S2 are each as defined above,
P7 and P8 each independently do not exist, or -CO-, -NH-, -O-, -S-, -O-CO-, -S-CO-, -NH-CO-, -CO-O-, -CO-S- or -CO-NH-,
Q5, Q6 and Q7 are each independently absent or alkylene substituted or unsubstituted C 1-12 or - (CH 2 CH 2 O) n8 -CH 2 CH 2 - and is, n8 Is an integer from 0 to 99,
B3 is herein referred to as a blanker unit and is any structure represented by the following formula 11-1 and means a bond with Q5 and Q6, respectively, in a broken line:
Formula 11-1:
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000111
 式11-1中、トリアゾール環を有する基における置換は、該トリアゾール環の1位および3位の窒素原子のいずれかである。
 q5およびq6は、それぞれ独立して、0~10の整数である。
In Formula 11-1, substitution at a group having a triazole ring is any of the nitrogen atoms at positions 1 and 3 of the triazole ring.
q5 and q6 are each independently an integer of 0 to 10.
 P7は、存在しないか、または、-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-もしくは-CO-NH-であるが、-O-、-NH-CO-または-CO-NH-であることが好ましく、-O-または-NH-CO-であることがより好ましい。。P7が、例えば、-O-である場合、ベンゼン環-O-という部分構造を有する。 P7 is absent, or -CO-, -NH-, -O-, -S-, -O-CO-, -S-CO-, -NH-CO-, -CO-O-,- CO-S- or -CO-NH-, preferably -O-, -NH-CO- or -CO-NH-, more preferably -O- or -NH-CO- . . When P7 is, for example, -O-, it has a partial structure of a benzene ring -O-.
 P8は、存在しないか、または、-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-もしくは-CO-NH-であるが、存在する場合、-CO-O-または-CO-NH-であることが好ましく、-CO-NH-であることがより好ましい。P8が、例えば、-CO-NH-である場合、Q6-CO-NH-という部分構造を有する。 P8 is absent, or -CO-, -NH-, -O-, -S-, -O-CO-, -S-CO-, -NH-CO-, -CO-O-,- CO—S— or —CO—NH—, when present, is preferably —CO—O— or —CO—NH—, more preferably —CO—NH—. When P8 is, for example, -CO-NH-, it has a partial structure of Q6-CO-NH-.
 Q5、Q6およびQ7は、それぞれ独立して、存在しないか、または、置換もしくは無置換の炭素数1~12のアルキレンまたは-(CHCHO)n8-CHCH-であり、n8は0~99の整数であるが、置換もしくは無置換の炭素数1~12のアルキレンであることが好ましく、無置換の炭素数1~12のアルキレンであることがより好ましく、無置換の炭素数1~6のアルキレンであることがさらに好ましく、無置換の炭素数1~4のアルキレンであることがよりさらに好ましい。 Q5, Q6 and Q7 are each independently absent or alkylene substituted or unsubstituted C 1-12 or - (CH 2 CH 2 O) n8 -CH 2 CH 2 - and is, n8 Is an integer of 0 to 99, preferably substituted or unsubstituted alkylene having 1 to 12 carbon atoms, more preferably unsubstituted alkylene having 1 to 12 carbon atoms, and unsubstituted unsubstituted carbon atoms An alkylene of 1 to 6 is more preferable, and an unsubstituted alkylene of 1 to 4 carbon atoms is still more preferable.
 -(P7-Q5)q5-は、-O-(CHm15-NH-および-NH-CO-(CHm16-NHであり、m15およびm16は、それぞれ独立して、1~10の整数であることが好適である。 - (P7-Q5) q5 - is, -O- (CH 2) m15 -NH- and -NH-CO- (CH 2) a m16 -NH, m15 and m16 are each independently 1 to 10 It is preferable that it is an integer of
 本発明において、核酸複合体は、下記式12-1~式12-12のいずれかで表される構造を有する核酸複合体であることが好適である。
式12-1:
In the present invention, the nucleic acid complex is preferably a nucleic acid complex having a structure represented by any one of the following formulas 12-1 to 12-12.
Formula 12-1:
Figure JPOXMLDOC01-appb-C000112
式12-2:
Figure JPOXMLDOC01-appb-C000112
Formula 12-2:
Figure JPOXMLDOC01-appb-C000113
式12-3:
Figure JPOXMLDOC01-appb-C000113
Formula 12-3:
Figure JPOXMLDOC01-appb-C000114
式12-4:
Figure JPOXMLDOC01-appb-C000114
Formula 12-4:
Figure JPOXMLDOC01-appb-C000115
式12-5:
Figure JPOXMLDOC01-appb-C000115
Formula 12-5:
Figure JPOXMLDOC01-appb-C000116
式12-6:
Figure JPOXMLDOC01-appb-C000116
Formula 12-6:
Figure JPOXMLDOC01-appb-C000117
式12-7:
Figure JPOXMLDOC01-appb-C000117
Formula 12-7:
Figure JPOXMLDOC01-appb-C000118
式12-8:
Figure JPOXMLDOC01-appb-C000118
Formula 12-8:
Figure JPOXMLDOC01-appb-C000119
式12-9:
Figure JPOXMLDOC01-appb-C000119
Formula 12-9:
Figure JPOXMLDOC01-appb-C000120
式12-10:
Figure JPOXMLDOC01-appb-C000120
Formula 12-10:
Figure JPOXMLDOC01-appb-C000121
式12-11:
Figure JPOXMLDOC01-appb-C000121
Formula 12-11:
Figure JPOXMLDOC01-appb-C000122
式12-12:
Figure JPOXMLDOC01-appb-C000122
Formula 12-12:
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000123
 式12-1~12-12中、
 X、L1、L2、S1およびS2は、それぞれ前記と同義であり、n1’~n12’はそれぞれ独立して、1~10の整数である。
In formulas 12-1 to 12-12,
X, L1, L2, S1 and S2 are as defined above, and n1 'to n12' are each independently an integer of 1 to 10.
 本発明の核酸複合体は、式1で表される核酸複合体において、S1およびS2に対応する式2に記載の構造と、S3に対応する式11に記載の構造とを組み合わせた核酸複合体であることが好ましい。式2が、式4-1~式4-9であってもよく、式6-1~式6-9であってもよく、式7-1~式7-9であってもよく、式2が、式4-1~式4-9、式6-1~式6-9、あるいは式7-1~式7-9である場合に、式11が、式12-1~式12-12であってもよい。本発明の核酸複合体は、式1で表される核酸複合体において、S1およびS2に対応する式4-1~式4-9に記載のいずれか1つの構造、およびS3に対応する式12-1~式12-12に記載のいずれか1つの構造とを組み合わせた核酸複合体、S1およびS2に対応する式6-1~式6-9に記載のいずれか1つの構造および、S3に対応する式12-1~式12-12に記載のいずれか1つの構造とを組み合わせた核酸複合体、S1およびS2に対応する式7-1~式7-9に記載のいずれか1つの構造および、S3に対応する式12-1~式12-12に記載のいずれか1つの構造を組み合わせた核酸複合体であることがより好適である。 The nucleic acid complex of the present invention is a nucleic acid complex obtained by combining the structure described in formula 2 corresponding to S1 and S2 with the structure described in formula 11 corresponding to S3 in the nucleic acid complex represented by formula 1 Is preferred. Formula 2 may be Formula 4-1 to Formula 4-9, Formula 6-1 to Formula 6-9, Formula 7-1 to Formula 7-9, and Formula When 2 is Expression 4-1 to Expression 4-9, Expression 6-1 to Expression 6-9, or Expression 7-1 to Expression 7-9, Expression 11 has Expression 12-1 to Expression 12-. It may be twelve. The nucleic acid complex of the present invention is a nucleic acid complex represented by formula 1, which has a structure according to any one of formulas 4-1 to 4-9 corresponding to S1 and S2, and a formula 12 corresponding to S3. A nucleic acid complex combining any one of the structures described in any one of the structures 1 to 12-12, any one of the structures described in the formulas 6-1 to 6-9 corresponding to S1 and S2, and A nucleic acid complex combining any one of the structures described in the corresponding formula 12-1 to the formula 12-12, any one of the structures described in the formula 7-1 to the formula 7-9 corresponding to S1 and S2 More preferably, it is a nucleic acid complex obtained by combining any one of the structures described in formulas 12-1 to 12-12 corresponding to S3.
 本発明の核酸複合体は、下記式7-8-1で表されることが好ましい。
式7-8-1:
Figure JPOXMLDOC01-appb-C000124
(式7-8-1中、Xは前記と同義である。)
The nucleic acid complex of the present invention is preferably represented by the following formula 7-8-1.
Formula 7-8-1:
Figure JPOXMLDOC01-appb-C000124
(In formula 7-8-1, X is as defined above.)
 式1におけるXは、センス鎖およびアンチセンス鎖からなり、少なくとも11個の塩基対の二重鎖領域を含む二本鎖核酸であり、該二本鎖核酸は、該アンチセンス鎖中の、17個~30個のヌクレオチドの鎖長のオリゴヌクレオチド鎖において、表1-1~表1-16に記載された標的β2GPI mRNA配列のいずれかと相補的である。センス鎖の3’末端または5’末端がS3に結合するため、式1において、S3と結合するXは、二本鎖核酸を構成するセンス鎖であり、後述する表1-1~表1-16または表M1-1~表M1-18中のセンス鎖配列であらわされるセンス鎖である。 X in Formula 1 is a double-stranded nucleic acid consisting of a sense strand and an antisense strand and containing a double-stranded region of at least 11 base pairs, said double-stranded nucleic acid being in the antisense strand 17 An oligonucleotide chain of a chain length of 30 to 30 nucleotides is complementary to any of the target β2GPI mRNA sequences listed in Table 1-1 to Table 1-16. Since the 3 'end or the 5' end of the sense strand is linked to S3, in the formula 1, X binding to S3 is a sense strand constituting a double-stranded nucleic acid, which will be described later in Table 1-1 to Table 1- 16 or the sense strand represented by the sense strand sequence in Table M1-1 to Table M1-18.
 本発明において、β2GPI mRNAに対して相補的な塩基配列を含む核酸をアンチセンス鎖核酸と称し、アンチセンス鎖核酸の塩基配列に対して相補的な塩基配列を含む核酸をセンス鎖核酸とも称する。 In the present invention, a nucleic acid containing a base sequence complementary to β2GPI mRNA is referred to as antisense strand nucleic acid, and a nucleic acid containing a base sequence complementary to the base sequence of antisense strand nucleic acid is also referred to as sense strand nucleic acid.
 本発明で用いられる核酸複合体を構成する二本鎖核酸は、哺乳動物細胞に導入された場合、β2GPI遺伝子の発現を低下または停止させる能力を有する二本鎖核酸であって、センス鎖およびアンチセンス鎖を有する二本鎖核酸である。また、該センス鎖と該アンチセンス鎖とは少なくとも11個の塩基対を有し、該アンチセンス鎖中の、少なくとも17個のヌクレオチドかつ多くとも30個の、すなわち、17個~30個のヌクレオチドの鎖長のオリゴヌクレオチド鎖が、表1-1~表1-16に記載された群から選択される標的β2GPI mRNA配列と相補的である。 The double-stranded nucleic acid constituting the nucleic acid complex used in the present invention is a double-stranded nucleic acid having the ability to reduce or stop the expression of the β2GPI gene when introduced into mammalian cells, which comprises a sense strand and an anti It is a double stranded nucleic acid having a sense strand. In addition, the sense strand and the antisense strand have at least 11 base pairs, and at least 17 nucleotides and at most 30 nucleotides, ie, 17 to 30 nucleotides in the antisense strand. An oligonucleotide strand of the following length is complementary to a target β2GPI mRNA sequence selected from the group described in Tables 1-1 to 1-16.
 本発明で用いられる核酸複合体を構成する二本鎖核酸としては、ヌクレオチドまたは該ヌクレオチドと同等の機能を有する分子が重合した分子であればいかなる分子であってもよく、例えばリボヌクレオチドの重合体であるRNA、デオキシリボヌクレオチドの重合体であるDNA、RNAとDNAとからなるキメラ核酸、およびこれらの核酸の少なくとも一つのヌクレオチドが該ヌクレオチドと同等の機能を有する分子で置換されたヌクレオチド重合体が挙げられる。また、これらの核酸内にヌクレオチドと同等の機能を有する分子を少なくとも一つ含む誘導体も、本発明で用いられる薬物としての二本鎖核酸に含まれる。またウラシル(U)は、チミン(T)に一義的に読み替えることができる。 The double-stranded nucleic acid constituting the nucleic acid complex used in the present invention may be any molecule obtained by polymerizing a nucleotide or a molecule having the same function as the nucleotide, for example, a polymer of ribonucleotide And RNA which is a polymer of deoxyribonucleotide, a chimeric nucleic acid consisting of RNA and DNA, and a nucleotide polymer in which at least one nucleotide of these nucleic acids is substituted with a molecule having the same function as the nucleotide. Be In addition, derivatives containing at least one molecule having a function equivalent to a nucleotide in these nucleic acids are also included in the double stranded nucleic acid as a drug used in the present invention. Moreover, uracil (U) can be read unambiguously as thymine (T).
 ヌクレオチドと同等の機能を有する分子としては、例えばヌクレオチド誘導体等が挙げられる。ヌクレオチド誘導体としては、ヌクレオチドに修飾を施した分子であればいかなる分子であってもよいが、例えばRNAまたはDNAと比較して、ヌクレアーゼ耐性の向上もしくは安定化させるため、相補鎖核酸とのアフィニティーを上げるため、細胞透過性を上げるため、または可視化させるために、リボヌクレオチドまたはデオキシリボヌクレオチドに修飾を施した分子等が好適に用いられる。 Examples of molecules having the same function as nucleotides include nucleotide derivatives and the like. The nucleotide derivative may be any molecule as long as the nucleotide is modified. For example, in order to improve or stabilize nuclease resistance as compared to RNA or DNA, the affinity to the complementary strand nucleic acid is selected. In order to increase, to increase cell permeability, or to visualize, a ribonucleotide or a deoxyribonucleotide modified molecule is preferably used.
 ヌクレオチドに修飾を施した分子としては、例えば糖部修飾ヌクレオチド、リン酸ジエステル結合修飾ヌクレオチド、塩基修飾ヌクレオチド、ならびに糖部、リン酸ジエステル結合および塩基の少なくとも一つが修飾されたヌクレオチド等が挙げられる。 Examples of molecules in which nucleotides have been modified include sugar-modified nucleotides, phosphodiester bond-modified nucleotides, base-modified nucleotides, and nucleotides in which at least one of a sugar moiety, a phosphodiester bond and a base has been modified.
 糖部修飾ヌクレオチドとしては、ヌクレオチドの糖の化学構造の一部あるいは全てに対し、任意の置換基で修飾もしくは置換したもの、または任意の原子で置換したものであればいかなるものでもよいが、2’-修飾ヌクレオチドが好ましく用いられる。 The sugar moiety-modified nucleotide may be any one in which part or all of the chemical structure of the nucleotide sugar is modified or substituted with an arbitrary substituent or substituted with an arbitrary atom, but '-Modified nucleotides are preferably used.
 2’-修飾ヌクレオチドとしては、例えばリボースの2’-OH基がH、OR、R、R’OR、SH、SR、NH2、NHR、NR2、N3、CN、F、Cl、BrおよびIからなる群(Rはアルキルまたはアリール、好ましくは炭素数1~6のアルキルであり、R’はアルキレン、好ましくは炭素数1~6のアルキレンである)から選択される置換基で置換されたヌクレオチドであり、より好ましくは2’-OH基がH、Fまたはメトキシ基で置換されたヌクレオチドであり、さらに好ましくは2’-OH基がFまたはメトキシ基で置換されたヌクレオチドである。また、2’-OH基が2-(methoxy)ethoxy基、3-aminopropoxy基、2-[(N,N-dimethylamino)oxy]ethoxy基、3-(N,N-dimethylamino)propoxy基、2-[2-(N,N-dimethylamino)ethoxy]ethoxy基、2-(methylamino)-2-oxoethoxy基、2-(N-methylcarbamoyl)etoxy 基および2-cyanoetoxy 基からなる群から選択される置換基で置換されたヌクレオチド等も挙げられる。
 二本鎖核酸領域内のヌクレオチドに対して、2’-修飾ヌクレオチドは、50~100%含まれることが好ましく、70~100%含まれることがより好ましく、90~100%含まれることがさらに好ましい。また、センス鎖のヌクレオチドに対して、2’-修飾ヌクレオチドは、20~100%含まれることが好ましく、40~100%含まれることがより好ましく、60%~100%含まれることがさらに好ましい。また、アンチセンス鎖のヌクレオチドに対して、2’-修飾ヌクレオチドは、20~100%含まれることが好ましく、40~100%含まれることがより好ましく、60~100%含まれることがより好ましい。
The 2'-modified nucleotides, such as 2'-OH group of the ribose is H, OR, R, R'OR, SH, SR, NH 2, NHR, NR 2, N 3, CN, F, Cl, Br and Substituted with a substituent selected from the group consisting of I, wherein R is alkyl or aryl, preferably alkyl of 1 to 6 carbons, and R ′ is alkylene, preferably alkylene of 1 to 6 carbons It is a nucleotide, more preferably a nucleotide in which the 2'-OH group is substituted with H, F or a methoxy group, still more preferably a nucleotide in which the 2'-OH group is substituted with F or a methoxy group. In addition, 2′-OH group is 2- (methoxy) ethoxy group, 3-aminopropoxy group, 2-[(N, N-dimethylamino) oxy] ethoxy group, 3- (N, N-dimethylamino) propoxy group, 2- A substituent selected from the group consisting of [2- (N, N-dimethylamino) ethoxy] ethoxy group, 2- (methylamino) -2-oxoethoxy group, 2- (N-methylcarbamoyl) etoxy group and 2-cyanoetoxy group Also included are substituted nucleotides and the like.
The content of 2'-modified nucleotides is preferably 50 to 100%, more preferably 70 to 100%, still more preferably 90 to 100% with respect to nucleotides in the double stranded nucleic acid region. . The content of 2′-modified nucleotides is preferably 20 to 100%, more preferably 40 to 100%, still more preferably 60 to 100%, based on the nucleotides of the sense strand. The 2'-modified nucleotide is preferably contained in an amount of 20 to 100%, more preferably 40 to 100%, still more preferably 60 to 100%, with respect to the nucleotides of the antisense strand.
 リン酸ジエステル結合修飾ヌクレオチドとしては、ヌクレオチドのリン酸ジエステル結合の化学構造の一部あるいは全てに対し、任意の置換基で修飾もしくは置換したもの、または任意の原子で置換したものであればいかなるものでもよく、例えば、リン酸ジエステル結合がホスホロチオエート結合に置換されたヌクレオチド、リン酸ジエステル結合がホスホロジチオエート結合に置換されたヌクレオチド、リン酸ジエステル結合がアルキルホスホネート結合に置換されたヌクレオチド、リン酸ジエステル結合がホスホロアミデート結合に置換されたヌクレオチド等が挙げられる。 As a phosphodiester bond modified nucleotide, any one of those obtained by modifying or substituting a part or all of the chemical structure of phosphodiester bond of the nucleotide with an arbitrary substituent, or substituting with an arbitrary atom For example, a nucleotide in which a phosphodiester bond is substituted with a phosphorothioate bond, a nucleotide in which a phosphodiester bond is substituted with a phosphorodithioate bond, a nucleotide in which a phosphodiester bond is substituted with an alkyl phosphonate bond, phosphoric acid The nucleotide etc. by which the diester bond was substituted by the phosphoroamidate bond etc. are mentioned.
 塩基修飾ヌクレオチドとしては、ヌクレオチドの塩基の化学構造の一部あるいは全てに対し、任意の置換基で修飾もしくは置換したもの、または任意の原子で置換したものであればいかなるものでもよく、例えば、塩基内の酸素原子が硫黄原子で置換されたもの、水素原子が炭素数1~6のアルキル基、ハロゲン等で置換されたもの、メチル基が水素、ヒドロキシメチル、炭素数2~6のアルキル基等で置換されたもの、アミノ基が炭素数1~6のアルキル基、炭素数1~6のアルカノイル基、オキソ基、ヒドロキシ基等に置換されたものが挙げられる。 As the base-modified nucleotide, any part or all of the chemical structure of the base of the nucleotide may be modified or substituted with any substituent, or any one substituted with any atom, for example, a base In which the oxygen atom is substituted by a sulfur atom, the hydrogen atom is substituted by an alkyl group having 1 to 6 carbon atoms, halogen or the like, the methyl group is hydrogen, hydroxymethyl, an alkyl group having 2 to 6 carbon atoms, etc. And those in which the amino group is substituted by an alkyl group having 1 to 6 carbon atoms, an alkanoyl group having 1 to 6 carbon atoms, an oxo group, a hydroxy group or the like.
 ヌクレオチド誘導体としては、ヌクレオチドまたは糖部、リン酸ジエステル結合もしくは塩基の少なくとも一つが修飾されたヌクレオチド誘導体に、ペプチド、蛋白質、糖、脂質、リン脂質、フェナジン、フォレート、フェナントリジン、アントラキノン、アクリジン、フルオレセイン、ローダミン、クマリン、色素等、別の化学物質を、直接またはリンカーを介して付加したものも挙げられ、具体的には、5’-ポリアミン付加ヌクレオチド誘導体、コレステロール付加ヌクレオチド誘導体、ステロイド付加ヌクレオチド誘導体、胆汁酸付加ヌクレオチド誘導体、ビタミン付加ヌクレオチド誘導体、Cy5付加ヌクレオチド誘導体、Cy3付加ヌクレオチド誘導体、6-FAM付加ヌクレオチド誘導体、およびビオチン付加ヌクレオチド誘導体等が挙げられる。
 ヌクレオチド誘導体は、核酸内の他のヌクレオチドまたはヌクレオチド誘導体とアルキレン構造、ペプチド構造、ヌクレオチド構造、エーテル構造、エステル構造、およびこれらの少なくとも一つを組み合わせた構造等の架橋構造を形成してもよい。
As a nucleotide derivative, a nucleotide or a nucleotide derivative in which at least one of sugar moiety, phosphodiester bond or base is modified, peptide, protein, sugar, lipid, phospholipid, phenazine, folate, phenanthridine, anthraquinone, acridine, Fluorescein, rhodamine, coumarin, dyes, etc., which are added with another chemical substance directly or through a linker, can also be mentioned, and specifically, 5'-polyamine adduct nucleotide derivative, cholesterol adduct nucleotide derivative, steroid adduct nucleotide derivative And bile acid-added nucleotide derivatives, vitamin-added nucleotide derivatives, Cy5-added nucleotide derivatives, Cy3-added nucleotide derivatives, 6-FAM-added nucleotide derivatives, biotin-added nucleotide derivatives, and the like.
The nucleotide derivative may form a cross-linked structure, such as an alkylene structure, a peptide structure, a nucleotide structure, an ether structure, an ester structure, and a structure combining at least one of these with other nucleotides or nucleotide derivatives in the nucleic acid.
 本明細書において「相補」とは、2つの塩基間で塩基対合をし得る関係を意味し、例えば、アデニンとチミンまたはウラシルとの関係、並びにグアニンとシトシンとの関係のように緩やかな水素結合を介して、二重鎖領域全体として2重螺旋構造をとるものをいう。 In the present specification, "complementary" means a relationship capable of base pairing between two bases, for example, a loose hydrogen such as a relationship between adenine and thymine or uracil, and a relationship between guanine and cytosine. It refers to one that takes on a double helical structure as a whole double stranded region via a bond.
 本明細書において「相補的」とは、2つのヌクレオチド配列が完全に相補する場合だけでなく、該ヌクレオチド配列間で0~30%、0~20%または0~10%のミスマッチ塩基を有することができ、例えば、β2GPI mRNAに対して相補的なアンチセンス鎖は、該mRNAの部分塩基配列と完全に相補する塩基配列において、1つまたは複数の塩基の置換を含んでよいことを意味する。具体的には、アンチセンス鎖は、標的遺伝子の標的配列に対して1~8個、好ましくは1~6個、1~4個、1~3個、特に2個または1個のミスマッチ塩基を有していてもよい。例えば、アンチセンス鎖が21塩基長の場合には、標的遺伝子の標的配列に対して6個、5個、4個、3個、2個または1個のミスマッチ塩基を有してもよく、そのミスマッチの位置は、それぞれの配列の5’末端または3’末端であってもよい。
 また、「相補的」とは、一方のヌクレオチド配列が、他方のヌクレオチド配列と完全に相補する塩基配列において、1つまたは複数の塩基が付加および/または欠失した配列である場合を包含する。例えば、β2GPI mRNAと本発明のアンチセンス鎖核酸とは、アンチセンス鎖における塩基の付加および/または欠失により、アンチセンス鎖および/または標的β2GPI mRNA領域に1個または2個のバルジ塩基を有してもよい。
In the present specification, "complementary" means not only perfect complementation of two nucleotide sequences but also having 0 to 30%, 0 to 20% or 0 to 10% of mismatched bases between the nucleotide sequences. For example, an antisense strand complementary to β2GPI mRNA means that one or more bases may be substituted in the base sequence completely complementary to the partial base sequence of the mRNA. Specifically, the antisense strand is 1 to 8, preferably 1 to 6, preferably 1 to 4, 1 to 3, particularly 2 or 1 mismatched bases relative to the target sequence of the target gene. You may have. For example, when the antisense strand is 21 bases long, it may have 6, 5, 4, 3, 2, 2 or 1 mismatched bases with respect to the target sequence of the target gene, The position of the mismatch may be at the 5 'end or 3' end of each sequence.
In addition, “complementary” includes a case where one nucleotide sequence is a sequence in which one or more bases are added and / or deleted in a base sequence completely complementary to the other nucleotide sequence. For example, β2GPI mRNA and the antisense strand nucleic acid of the present invention have one or two bulge bases in the antisense strand and / or target β2GPI mRNA region by addition and / or deletion of bases in the antisense strand. You may
 本発明で用いられる薬物としての二本鎖核酸は、β2GPI mRNAの一部の塩基配列に対して相補的な塩基配列を含む核酸および/または該核酸の塩基配列に対して相補的な塩基配列を含む核酸であれば、いずれのヌクレオチドまたはその誘導体から構成されていてもよい。本発明の二本鎖核酸は、標的β2GPI mRNA配列に対して相補的な塩基配列を含む核酸と、該核酸の塩基配列に対して相補的な塩基配列を含む核酸とが、少なくとも11個の塩基対の二重鎖を形成することができればいずれの長さでもよいが、二重鎖を形成できる配列の長さは、通常11~27塩基であり、15~25塩基が好ましく、17~23塩基がより好ましく、19~23塩基がさらに好ましい。 The double-stranded nucleic acid as a drug used in the present invention is a nucleic acid containing a base sequence complementary to a part of the base sequence of β2GPI mRNA and / or a base sequence complementary to the base sequence of the nucleic acid As long as it contains the nucleic acid, it may be composed of any nucleotide or its derivative. In the double-stranded nucleic acid of the present invention, a nucleic acid containing a base sequence complementary to a target β2GPI mRNA sequence and a nucleic acid containing a base sequence complementary to the base sequence of the nucleic acid have at least 11 bases. Although any length may be used as long as it can form paired duplexes, the length of the sequence capable of forming duplexes is usually 11 to 27 bases, preferably 15 to 25 bases, and 17 to 23 bases. Are more preferred, and 19 to 23 bases are even more preferred.
 本発明の核酸複合体のアンチセンス鎖としては、標的β2GPI mRNA配列に対して相補的な塩基配列を含む核酸が用いられるが、該核酸のうち1~3塩基、好ましくは1~2塩基、より好ましくは1塩基が欠失、置換または付加したものを用いてもよい。 As the antisense strand of the nucleic acid complex of the present invention, a nucleic acid containing a base sequence complementary to a target β2GPI mRNA sequence is used, and among the nucleic acids, 1 to 3 bases, preferably 1 to 2 bases, Preferably, one in which one base is deleted, substituted or added may be used.
 β2GPIの発現を抑制する核酸としては、標的β2GPI mRNA配列に対して相補的な塩基配列を含む核酸であって、かつβ2GPIの発現を抑制する一本鎖核酸、もしくは標的β2GPI mRNA配列に対して相補的な塩基配列を含む核酸と、該核酸の塩基配列に対して相補的な塩基配列を含む核酸とからなり、かつβ2GPIの発現を抑制する二本鎖核酸が好適に用いられる。 The nucleic acid which suppresses the expression of β2GPI is a nucleic acid containing a base sequence complementary to the target β2GPI mRNA sequence, and is a single-stranded nucleic acid which suppresses the expression of β2GPI, or is complementary to the target β2GPI mRNA sequence A double-stranded nucleic acid consisting of a nucleic acid containing a specific base sequence and a nucleic acid containing a base sequence complementary to the base sequence of the nucleic acid, and suppressing expression of β2GPI is preferably used.
 二本鎖核酸を構成する一本鎖のアンチセンス鎖核酸及びセンス鎖核酸は、それぞれ同一または異なって、通常11~30塩基からなるが、それぞれ同一または異なって、17~27塩基からなることが好ましく、17~25塩基からなることがより好ましく、19~25塩基からなることがさらに好ましく、21~23塩基からなることがよりさらに好ましい。 The single-stranded antisense strand nucleic acid and the single-stranded antisense strand nucleic acid constituting the double-stranded nucleic acid may be identical or different, usually 11 to 30 bases, but identical or different, 17 to 27 bases Preferably, it consists of 17-25 bases, more preferably consists of 19-25 bases, still more preferably consists of 21-23 bases.
 本発明で用いられる薬物としての二本鎖核酸において、二重鎖領域に続く3’側または5’側に二重鎖を形成しない追加のヌクレオチドまたはヌクレオチド誘導体を有する場合には、これを突出部(オーバーハング)と呼ぶ。突出部を有する場合には、突出部を構成するヌクレオチドはリボヌクレオチド、デオキシリボヌクレオチドまたはこれらの誘導体であってもよい。 In the double-stranded nucleic acid as a drug used in the present invention, the double-stranded region, if having an additional nucleotide or nucleotide derivative which does not form a double strand at the 3 'or 5' side following the double-stranded region, the overhang Call it (overhang). In the case of having an overhang, the nucleotides constituting the overhang may be ribonucleotides, deoxyribonucleotides or derivatives thereof.
 突出部を有する二本鎖核酸としては、少なくとも一方の鎖の3’末端または5’末端に1~6塩基、通常は1~3塩基からなる突出部を有するものが用いられるが、2塩基からなる突出部を有するものが好ましく用いられ、例えば、dTdT(dTはデオキシチミジンを表す)またはUU(Uはウリジンを表す)からなる突出部を有するものが挙げられる。突出部は、アンチセンス鎖のみ、センス鎖のみ、およびアンチセンス鎖とセンス鎖の両方に有することができるが、本発明において、アンチセンス鎖に突出部を有する二本鎖核酸が好ましく用いられる。なお、アンチセンス鎖は、二重鎖領域とそれに続く突出部とを含む、17個~30個のヌクレオチドからなるオリゴヌクレオチド鎖において、表1-1~表1-16に記載された群から選択される標的β2GPI mRNA配列と十分に相補的である。さらに、本発明の二本鎖核酸としては、例えばDicer等のリボヌクレアーゼの作用により二本鎖核酸を生成する核酸分子(WO2005/089287)や、3’末端や5’末端の突出部を有さず平滑末端を形成する二本鎖核酸、センス鎖のみが突出した二本鎖核酸(US2012/0040459)等を用いることもできる。 As a double-stranded nucleic acid having an overhang, one having an overhang consisting of 1 to 6 bases, usually 1 to 3 bases, at the 3 'end or 5' end of at least one strand is used, but from 2 bases Those having a protruding portion are preferably used, for example, those having a protruding portion consisting of dTdT (dT represents deoxythymidine) or UU (U represents uridine). The overhang can be present only in the antisense strand, only in the sense strand, and in both the antisense and sense strands, but in the present invention, a double-stranded nucleic acid having an overhang in the antisense strand is preferably used. The antisense strand is selected from the group described in Tables 1-1 to 1-16 in an oligonucleotide strand consisting of 17 to 30 nucleotides, which comprises a double-stranded region followed by an overhang. It is sufficiently complementary to the target β2GPI mRNA sequence to be Furthermore, as the double-stranded nucleic acid of the present invention, for example, a nucleic acid molecule (WO 2005/089287) that produces a double-stranded nucleic acid by the action of ribonuclease such as Dicer or the like, or a protrusion at the 3 'end or the 5' end A double stranded nucleic acid which forms a blunt end, a double stranded nucleic acid (US2012 / 0040459) etc. which only the sense strand protruded can also be used.
 本発明で用いられる核酸複合体を構成する二本鎖核酸としては、標的遺伝子の塩基配列またはその相補鎖の塩基配列と同一の配列からなる核酸を用いてもよいが、該核酸の少なくとも一方の鎖の5’末端または3’末端が1~4塩基削除された核酸と、該核酸の塩基配列に対して相補的な塩基配列を含む核酸とからなる二本鎖核酸を用いてもよい。 As the double-stranded nucleic acid constituting the nucleic acid complex used in the present invention, a nucleic acid consisting of the same sequence as the base sequence of the target gene or the base sequence of its complementary strand may be used. A double-stranded nucleic acid consisting of a nucleic acid in which the 5 ′ end or 3 ′ end of the strand has been deleted by 1 to 4 bases and a nucleic acid containing a base sequence complementary to the base sequence of the nucleic acid may be used.
 本発明で用いられる核酸複合体を構成する二本鎖核酸は、RNA同士が二重鎖を形成した二本鎖RNA(dsRNA)、DNA同士が二重鎖を形成した二本鎖DNA(dsDNA)、またはRNAとDNAが二重鎖を形成したハイブリッド核酸であってもよい。あるいは、二本鎖のうちの一方もしくは両方の鎖がDNAとRNAとのキメラ核酸であってもよい。好ましくは二本鎖RNA(dsRNA)である。 The double-stranded nucleic acid constituting the nucleic acid complex used in the present invention is a double-stranded RNA (dsRNA) in which the RNAs form a duplex, and a double-stranded DNA (dsDNA) in which the DNAs form a duplex. Or a hybrid nucleic acid in which RNA and DNA form a duplex. Alternatively, one or both strands of the double strand may be a chimeric nucleic acid of DNA and RNA. Preferably, it is a double stranded RNA (dsRNA).
 本発明の核酸複合体のアンチセンス鎖の5’末端から2番目のヌクレオチドは、標的β2GPI mRNA配列の3’末端から2番目のデオキシリボヌクレオチドと相補であることが好ましく、アンチセンス鎖の5’末端から2~7番目のヌクレオチドが、標的β2GPI mRNA配列の3’末端から2~7番目のデオキシリボヌクレオチドと完全に相補であることがより好ましく、アンチセンス鎖の5’末端から2~11番目のヌクレオチドが、標的β2GPI mRNA配列の3’末端から2~11番目のデオキシリボヌクレオチドと完全に相補であることがさらに好ましい。また、本発明の核酸におけるアンチセンス鎖の5’末端から11番目のヌクレオチドが、標的β2GPI mRNA配列の3’末端から11番目のデオキシリボヌクレオチドと相補であることが好ましく、アンチセンス鎖の5’末端から9~13番目のヌクレオチドが、標的β2GPI mRNA配列の3’末端から9~13番目のデオキシリボヌクレオチドと完全に相補であることがより好ましく、アンチセンス鎖の5’末端から7~15番目のヌクレオチドが、標的β2GPI mRNA配列の3’末端から7~15番目のデオキシリボヌクレオチドと完全に相補であることがさらに好ましい。 The second nucleotide from the 5 'end of the antisense strand of the nucleic acid complex of the present invention is preferably complementary to the second deoxyribonucleotide from the 3' end of the target β2GPI mRNA sequence, and the 5 'end of the antisense strand More preferably, the 2nd to 7th nucleotides are completely complementary to the 2nd to 7th deoxyribonucleotides from the 3 'end of the target β2 GPI mRNA sequence, and the 2nd to 11th nucleotides from the 5' end of the antisense strand It is further preferred that is completely complementary to the 2nd to 11th deoxyribonucleotides from the 3 'end of the target β2GPI mRNA sequence. In addition, it is preferable that the 11th nucleotide from the 5 'end of the antisense strand in the nucleic acid of the present invention is complementary to the 11th deoxyribonucleotide from the 3' end of the target β2GPI mRNA sequence, and the 5 'end of the antisense strand It is more preferable that the 9th to 13th nucleotides are completely complementary to the 9th to 13th deoxyribonucleotides from the 3 'end of the target β2GPI mRNA sequence, and the 7th to 15th nucleotides from the 5' end of the antisense strand More preferably, it is completely complementary to the 7th to 15th deoxyribonucleotides from the 3 'end of the target β2GPI mRNA sequence.
 本発明の核酸複合体のアンチセンス鎖およびセンス鎖は、例えば、Genbank Accession No.NM_000042として登録されているヒトβ2GPIの完全長mRNAのcDNA(センス鎖)の塩基配列(配列番号3541)に基づいて設計することができる。 The antisense and sense strands of the nucleic acid complex of the present invention are based on, for example, the nucleotide sequence (SEQ ID NO: 3541) of the cDNA (sense strand) of full-length mRNA of human β2GPI registered as Genbank Accession No. NM — 000042 It can be designed.
 二本鎖核酸は、β2GPI遺伝子配列内の標的配列と相互作用するように設計することができる。 Double stranded nucleic acids can be designed to interact with target sequences within the β2 GPI gene sequence.
 二本鎖核酸の1つの鎖の配列は、上記した標的部位配列に対して相補的である。二本鎖核酸は、本明細書に記述された方法を使用して、化学的に合成することができる。 The sequence of one strand of double stranded nucleic acid is complementary to the target site sequence described above. Double stranded nucleic acids can be chemically synthesized using the methods described herein.
 RNAは、酵素的または部分/全有機合成によって生成してもよく、また修飾されたリボヌクレオチドは、インビトロで酵素的または有機合成によって導入することができる。一つの態様において、それぞれの鎖は、化学的に調製される。RNA分子を化学的に合成する方法は、当該技術分野において公知である[ヌクレイックアシッズリサーチ(Nucleic Acids Research)、1998年、第32巻、p.936-948参照]。一般に、二本鎖核酸は、固相オリゴヌクレオチド合成法を使用することによって合成することができる(たとえば、Usman et al.,米国特許第5,804,683号明細書;米国特許第5,831,071号明細書;米国特許第5,998,203号明細書;米国特許第6,117,657号明細書;米国特許第6,353,098号明細書;米国特許第6,362,323号明細書;米国特許第6,437,117号明細書;米国特許第6,469,158号明細書;Scaringe et al.,米国特許第6,111,086号明細書;米国特許第6,008,400号明細書;米国特許第6,111,086号明細書を参照)。 The RNA may be produced enzymatically or by partial / total organic synthesis, and modified ribonucleotides can be introduced in vitro by enzymatic or organic synthesis. In one embodiment, each strand is chemically prepared. Methods for chemically synthesizing RNA molecules are known in the art [see Nucleic Acids Research, 1998, Volume 32, p. 936-948]. In general, double stranded nucleic acids can be synthesized by using solid phase oligonucleotide synthesis methods (e.g., Usman et al., U.S. Patent 5,804,683; U.S. Patent 5,831,071; U.S. Patent No. 5,998,203; U.S. Patent No. 6,117,657; U.S. Patent No. 6,353,098; U.S. Patent No. 6,362,323; U.S. Patent No. 6,437,117; U.S. Patent No. 6,469,158; Scaringe et al. U.S. Patent No. 6,111,086; U.S. Patent No. 6,008,400; U.S. Patent No. 6,111,086).
 一本鎖核酸は、固相ホスホロアミダイト法(ヌクレイックアシッズリサーチ(Nucleic Acids Research)、1993年、第30巻、p.2435-2443参照)を使用して合成され、脱保護され、およびNAP-5カラム(Amersham Pharmacia Biotech、Piscataway、NJ)上で脱塩される。オリゴマーは、15分工程のリニア勾配を使用するAmersham Source 15Qカラム-1.0cm。高さ.25 cm (Amersham Pharmacia Biotech、Piscataway、NJ)でのイオン交換高性能液体クロマトグラフィー(IE-HPLC)を使用して精製する。勾配は、90:10の緩衝液A:Bから52:48の緩衝液A:Bに変化し、緩衝液Aは100mmol/L Tris pH 8.5であり、および緩衝液Bは、100mmol/L Tris pH 8.5(1mol/LのNaCl)である。試料は、260nmにてモニターされ、全長オリゴヌクレオチド種に対応するピークは、収集され、プールされ、NAP-5カラムで脱塩され、および凍結乾燥される。 Single-stranded nucleic acids are synthesized, deprotected, and prepared using the solid phase phosphoramidite method (see Nucleic Acids Research, 1993, Vol. 30, p. 2435-2443). Desalted on a NAP-5 column (Amersham Pharmacia Biotech, Piscataway, NJ). Oligomers are Amersham Source 15Q columns using a 15 minute linear gradient-1.0 cm. Purified using ion exchange high performance liquid chromatography (IE-HPLC) at .25 cm height (Amersham Pharmacia Biotech, Piscataway, NJ). The gradient changes from 90: 10 buffer A: B to 52: 48 buffer A: B, buffer A is 100 mmol / L Tris pH 8.5, and buffer B is 100 mmol / L Tris pH It is 8.5 (1 mol / L NaCl). Samples are monitored at 260 nm and peaks corresponding to full-length oligonucleotide species are collected, pooled, desalted on a NAP-5 column, and lyophilized.
 各一本鎖核酸の純度は、Beckman PACE 5000(Beckman Coulter、Inc., Fullerton, Calif)でのキャピラリー電気泳動(CE)によって決定される。CEキャピラリーは、100μmの内径を有し、ssDNA 100R Gel(Beckman-Coulter)を含む。典型的には、約0.6nmoleのオリゴヌクレオチドをキャピラリーに注射して、444V/cmの電界において実行して、260nmにおけるUV吸光度によって検出される。変性トリス-ホウ酸-7mol/L-尿素泳動緩衝液は、Beckman-Coulterから購入する。以下に記述した実験に使用するための、CEによって評価すると少なくとも90%純粋である一本鎖核酸が得られる。化合物同一性は、製造業者の推奨プロトコルにしたがって、Voyager DE.TM.Biospectometryワークステーション(Applied Biosystems、Foster City,、Calif.)でのマトリックス支援レーザー脱離イオン化-飛行時間型(MALDI-TOF)質量分光法によって検証される。一本鎖核酸の相対的な分子質量は、予想される分子質量の0.2%以内で得ることができる。 The purity of each single stranded nucleic acid is determined by capillary electrophoresis (CE) on a Beckman PACE 5000 (Beckman Coulter, Inc., Fullerton, Calif.). The CE capillary has an internal diameter of 100 μm and contains ssDNA 100R Gel (Beckman-Coulter). Typically, about 0.6 nmole of oligonucleotide is injected into the capillary and run at an electric field of 444 V / cm, detected by UV absorbance at 260 nm. Denatured Tris-Borate-7 mol / L-Urea running buffer is purchased from Beckman-Coulter. Single stranded nucleic acids that are at least 90% pure as assessed by CE are obtained for use in the experiments described below. Compound identity is determined using the matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass on Voyager DE.TM. Biospectrometry workstation (Applied Biosystems, Foster City, Calif.) According to the manufacturer's recommended protocol. Verified by spectroscopy. The relative molecular mass of single stranded nucleic acid can be obtained within 0.2% of the expected molecular mass.
 一本鎖核酸は、100mmol/L 酢酸カリウム、30mmol/L HEPES、pH 7.5からなる緩衝液中に100μmol/L濃度にて再懸濁させる。相補的センス鎖およびアンチセンス鎖を同等のモル量で混合して、50μmol/L二本鎖核酸の最終溶液を得る。試料を95℃まで5分間加熱して、使用前に室温に冷却させる。二本鎖核酸は、-20℃にて保存する。一本鎖核酸は、凍結乾燥させるか、またはヌクレアーゼフリー水中に、-80℃で貯蔵する。 Single stranded nucleic acid is resuspended at a concentration of 100 μmol / L in a buffer consisting of 100 mmol / L potassium acetate, 30 mmol / L HEPES, pH 7.5. The complementary sense and antisense strands are mixed in equal molar amounts to obtain a final solution of 50 μmol / L double stranded nucleic acid. The sample is heated to 95 ° C. for 5 minutes and allowed to cool to room temperature before use. Double stranded nucleic acids are stored at -20 ° C. Single stranded nucleic acids are lyophilized or stored at -80 ° C. in nuclease free water.
 本発明におけるセンス鎖およびアンチセンス鎖からなり、少なくとも11個の塩基対の二重鎖領域を含み、該アンチセンス鎖中の、11個~30個のヌクレオチドの鎖長のオリゴヌクレオチド鎖において、表1-1~表1-16に記載された群から選択される標的β2GPI mRNA配列と相補的な二本鎖核酸として、表1-1~1-16に記載されたアンチセンス鎖から成る群から選択される配列を含む二本鎖核酸か、表M1-1~表M1-18、ならびに後述する表1-1~1-16に記載されたセンス鎖から成る群から選択される配列を含む二本鎖核酸か、あるいは表M1-1~表M1-18、ならびに後述する表1-1~表1-16に記載のセンス鎖/アンチセンス鎖から成る群から選択される1対のセンス鎖/アンチセンス鎖の配列を含む二本鎖核酸を用いてよい。すなわち、本発明で用いられる核酸複合体を構成する二本鎖核酸の具体例は、表M1-1~表M1-18、ならびに後述する表1-1~表1-16中のセンス鎖およびアンチセンス鎖から成る二本鎖核酸である。なお、表M1-1~表M1-18中、N(M)は2’-O-メチル修飾RNA、N(F)は2’-フッ素修飾RNA、および^はホスホロチオエートを示す。また、表1-1~表1-16、および表M1-1~表M1-18に記載のアンチセンス鎖配列の5’末端ヌクレオチドは、5’末端においてリン酸化されていてもよく、リン酸化されていなくてもよいが、リン酸化されていることが好ましい。
 後述する表1-1~1-16に記載のセンス鎖/アンチセンス鎖の配列を含む二本鎖核酸は、そのノックダウン活性の測定において、β2GPIの相対的発現量が0.15以下であるものが望ましい。
The sense strand and the antisense strand according to the present invention, which comprises a duplex region of at least 11 base pairs, in the antisense strand, an oligonucleotide of 11 to 30 nucleotides in length, 1-1 from the group consisting of the antisense strand described in Tables 1-1 to 1-16 as a double-stranded nucleic acid complementary to the target β2GPI mRNA sequence selected from the group described in 1-1 to Table 1-16 A double-stranded nucleic acid comprising the selected sequence, or a sequence selected from the group consisting of the sense strands described in Table M1-1 to Table M1-18, and Tables 1-1 to 1-16 described below Single-stranded nucleic acid or a pair of sense strands selected from the group consisting of sense strands / antisense strands described in Table M1-1 to Table M1-18 and Tables 1-1 to 1-16 described later Double stranded nucleic acids comprising the sequence of the antisense strand may be used. That is, specific examples of the double stranded nucleic acid constituting the nucleic acid complex used in the present invention are the sense strand and the anti in the table M1-1 to the table M1-18, and the table 1-1 to the table 1-16 described later. It is a double stranded nucleic acid consisting of a sense strand. In Tables M1-1 to M1-18, N (M) represents 2'-O-methyl-modified RNA, N (F) represents 2'-fluorine-modified RNA, and ^ represents phosphorothioate. In addition, the 5 'terminal nucleotide of the antisense strand sequences described in Tables 1-1 to 1-16 and Tables M1-1 to M1-18 may be phosphorylated at the 5' end, It does not have to be, but is preferably phosphorylated.
The double-stranded nucleic acid containing the sequence of the sense strand / antisense strand described in Tables 1-1 to 1-16 described later has a relative expression amount of β2GPI of 0.15 or less in the measurement of its knockdown activity desirable.
Figure JPOXMLDOC01-appb-T000125
Figure JPOXMLDOC01-appb-T000125
Figure JPOXMLDOC01-appb-T000126
Figure JPOXMLDOC01-appb-T000126
Figure JPOXMLDOC01-appb-T000127
Figure JPOXMLDOC01-appb-T000127
Figure JPOXMLDOC01-appb-T000128
Figure JPOXMLDOC01-appb-T000128
Figure JPOXMLDOC01-appb-T000129
Figure JPOXMLDOC01-appb-T000129
Figure JPOXMLDOC01-appb-T000130
Figure JPOXMLDOC01-appb-T000130
Figure JPOXMLDOC01-appb-T000131
Figure JPOXMLDOC01-appb-T000131
Figure JPOXMLDOC01-appb-T000132
Figure JPOXMLDOC01-appb-T000132
Figure JPOXMLDOC01-appb-T000133
Figure JPOXMLDOC01-appb-T000133
Figure JPOXMLDOC01-appb-T000134
Figure JPOXMLDOC01-appb-T000134
Figure JPOXMLDOC01-appb-T000135
Figure JPOXMLDOC01-appb-T000135
Figure JPOXMLDOC01-appb-T000136
Figure JPOXMLDOC01-appb-T000136
Figure JPOXMLDOC01-appb-T000137
Figure JPOXMLDOC01-appb-T000137
Figure JPOXMLDOC01-appb-T000138
Figure JPOXMLDOC01-appb-T000138
Figure JPOXMLDOC01-appb-T000139
Figure JPOXMLDOC01-appb-T000139
Figure JPOXMLDOC01-appb-T000140
Figure JPOXMLDOC01-appb-T000140
Figure JPOXMLDOC01-appb-T000141
Figure JPOXMLDOC01-appb-T000141
Figure JPOXMLDOC01-appb-T000142
Figure JPOXMLDOC01-appb-T000142
 本発明の核酸複合体の製造法について説明する。なお、以下に示す製造法において、定義した基が該製造法の条件下で変化するかまたは該製造法を実施するのに不適切な場合、有機合成化学で常用される保護基の導入および除去方法[例えば、プロテクティブ・グループス・イン・オーガニック・シンセシス第3版(Protective Groups in Organic Synthesis, third edition)、グリーン(T.W.Greene)著、John Wiley&Sons Inc.(1999年)等に記載の方法]等を用いることにより、目的化合物を製造することができる。また、必要に応じて置換基導入等の反応工程の順序を変えることもできる。
 式1で表される核酸重合体は、固相合成によっても合成することができる。
The method for producing the nucleic acid complex of the present invention will be described. In the preparation methods shown below, when the defined group changes under the conditions of the preparation method or is unsuitable for carrying out the preparation method, introduction and removal of protecting groups commonly used in synthetic organic chemistry Methods [eg, Protective Groups in Organic Synthesis, third edition, by T. Greene, John Wiley & Sons Inc. The target compound can be produced by using the method described in (1999), etc.]. Moreover, the order of reaction processes, such as substituent introduction, can also be changed as needed.
The nucleic acid polymer represented by Formula 1 can also be synthesized by solid phase synthesis.
 式1で表される核酸重合体は、核酸複合体として公知のリンカー構造の合成方法を参考にして合成することができる。
 式1で表される核酸複合体における、S1をリンカーとしたL1-ベンゼン環ユニットやS2をリンカーとしたL2-ベンゼン環ユニットの合成は、例えば、式2で表される核酸複合体を例として説明する。
 式2で表される核酸複合体におけるL1-ベンゼン環ユニットやL2-ベンゼン環ユニットは、P1、P2、P3、P4、P5、およびP6ならびにT1およびT2により連結している。
 P1、P2、P3、P4、P5、およびP6ならびにT1およびT2の-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-または-CO-NH-結合は、例えば、第4版実験化学講座19「有機化合物の合成I」丸善(1992年)、第4版実験化学講座20「有機化合物の合成II」、丸善(1992年))等に記載の結合反応の方法を参考にして、式2で表される構造を形成するのに適切な原料を選択することにより適宜合成することができる。
 また、ベンゼン環から順次、Q1を部分構造として有する化合物、B1を部分構造として有する化合物を結合させることで、L1-ベンゼン環ユニットの部分構造を製造することができる。
 L1とQ2を部分構造として有する化合物を別途合成し、L1とQ2を部分構造として有する化合物をベンゼン環、Q1およびB1を部分構造として有するL1-ベンゼン環ユニットの部分構造を有する化合物と結合させることにより、L1-ベンゼン環ユニット構造を製造することができる。
 L2-ベンゼン環ユニットについても同様に、ベンゼン環から順次、Q3を部分構造として有する化合物、B2を部分構造として有する化合物を結合させることで、L2-ベンゼン環ユニットの部分構造を製造することができる。
 L2とQ4を部分構造として有する化合物を別途合成し、L2とQ4を部分構造として有する化合物をベンゼン環、Q3およびB2を部分構造として有するL2-ベンゼン環ユニットの部分構造を有する化合物と結合させることにより、L2-ベンゼン環ユニット構造を製造することができる。
The nucleic acid polymer represented by the formula 1 can be synthesized with reference to a synthesis method of a linker structure known as a nucleic acid complex.
The synthesis of the L1-benzene ring unit using S1 as a linker and the L2-benzene ring unit using S2 as a linker in the nucleic acid complex represented by formula 1 can be performed, for example, using the nucleic acid complex represented by formula 2 as an example. explain.
The L1-benzene ring unit and the L2-benzene ring unit in the nucleic acid complex represented by the formula 2 are linked by P1, P2, P3, P4, P5, and P6, and T1 and T2.
P1, P2, P3, P4, P5, and P6 and T1 and T2 of -CO-, -NH-, -O-, -S-, -O-CO-, -S-CO-, -NH-CO- , -CO-O-, -CO-S- or -CO-NH- bond, for example, 4th edition Experimental Chemistry Lecture 19 "Synthesis of organic compounds I" Maruzen (1992), 4th edition Experimental Chemistry Lecture 20 Based on the method of coupling reaction described in “Synthesis of organic compounds II”, Maruzen (1992), etc., synthesis is appropriately carried out by selecting appropriate raw materials for forming the structure represented by Formula 2. be able to.
In addition, the partial structure of the L1-benzene ring unit can be produced by combining a compound having Q1 as a partial structure and a compound having B1 as a partial structure sequentially from the benzene ring.
Separately synthesizing a compound having L1 and Q2 as a partial structure, and binding a compound having L1 and Q2 as a partial structure to a compound having a partial structure of an L1-benzene ring unit having a benzene ring and Q1 and B1 as a partial structure Thus, L 1 -benzene ring unit structure can be produced.
Similarly for L2-benzene ring unit, the partial structure of L2-benzene ring unit can be produced by sequentially binding a compound having Q3 as a partial structure and a compound having B2 as a partial structure sequentially from the benzene ring .
Separately synthesizing a compound having L2 and Q4 as a partial structure, and combining a compound having L2 and Q4 as a partial structure with a compound having a partial structure of L2-benzene ring unit having a benzene ring and Q3 and B2 as partial structures Thus, an L2-benzene ring unit structure can be produced.
 Q1を部分構造として有する化合物、Q3を部分構造として有する化合物としては、炭素数1~10のアルキレンまたは-(CHCHO)-CHCH-の両末端に、水酸基、カルボキシル基、アミノ基、チオール基を有する化合物が挙げられる。
 B1を部分構造として有する化合物、B2を部分構造として有する化合物としては、下記式2-1で表されるいずれかの構造を有し、各構造における末端の黒丸点において、それぞれ、水酸基、カルボキシル基、アミノ基、またはチオール基を有する化合物が挙げられる。
式2-1:
As a compound having Q1 as a partial structure and a compound having Q3 as a partial structure, an alkylene having 1 to 10 carbon atoms or a — (CH 2 CH 2 O) n —CH 2 CH 2 — terminal group is a hydroxyl group or a carboxyl group at both ends And compounds having an amino group and a thiol group.
The compound having B1 as a partial structure and the compound having B2 as a partial structure have one of the structures represented by the following formula 2-1, and a hydroxyl group and a carboxyl group are represented by the black dots at the end of each structure, respectively. And compounds having an amino group or a thiol group.
Formula 2-1:
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000143
 B1を部分構造として有する化合物、B2を部分構造として有する化合物の具体例としては、グリコール、グルタミン酸、アスパラギン酸、リジン、Tris、イミノ二酢酸、2-アミノ-1,3-プロパンジオール等が挙げられ、グルタミン酸、アスパラギン酸、リジン、イミノ二酢酸が好ましい。具体的には、B1およびB2は以下の構造が好ましい。
Figure JPOXMLDOC01-appb-C000144
Specific examples of the compound having B1 as a partial structure and the compound having B2 as a partial structure include glycol, glutamic acid, aspartic acid, lysine, Tris, iminodiacetic acid, 2-amino-1,3-propanediol and the like. Glutamic acid, aspartic acid, lysine and iminodiacetic acid are preferred. Specifically, B1 and B2 preferably have the following structures.
Figure JPOXMLDOC01-appb-C000144
 L1、Q2およびB1を部分構造として有する化合物を合成してから、Q1とベンゼン環を有する化合物と結合することにより、L1-ベンゼン環ユニット構造を製造してもよい。
 L2、Q4およびB2を部分構造として有する化合物を合成してから、Q3とベンゼン環を有する化合物と結合することにより、L2-ベンゼン環ユニット構造を製造してもよい。
 本発明においては、[L1-T1-(Q2-P3)q2-]p1-B1-(P2-Q1)q1-P1-である部分構造と、[L2-T2-(Q3-P6)q4-]p2-B2-(P5-Q3)q3-P2-である部分構造とは同一または異なっていても良いが、同一であることが好ましい。
A compound having L1, Q2 and B1 as a partial structure may be synthesized and then coupled to a compound having Q1 and a benzene ring to produce an L1-benzene ring unit structure.
A compound having L2, Q4 and B2 as a partial structure may be synthesized and then combined with Q3 and a compound having a benzene ring to produce an L2-benzene ring unit structure.
In the present invention, [L1-T1- (Q2- P3) q2 -] p1 -B1- and substructure is (P2-Q1) q1 a -P1-, [L2-T2- (Q3 -P6) q4 -] The partial structure which is p2- B2- (P5-Q3) q3- P2- may be identical or different, but is preferably identical.
 糖リガンドのL1-T1-Q2に相当するユニットとして、例えば、L3-T1-Q2-COOH、L3-T1-(Q2-P3)q2-1-Q2-NH等が挙げられる。具体的には、L3-O―炭素数1~12のアルキレン―COOHや、L3-炭素数1~12のアルキレン-CO-NH-炭素数2~12のアルキレン-NH等が挙げられる。
 L3は、脱保護することにより、L1となる糖リガンド誘導体であれば特に限定されない。糖リガンドの置換基としては、糖質化学の分野で汎用される置換基であれば特に限定されないが、Ac基が好ましい。
Examples of the unit corresponding to L1-T1-Q2 of the sugar ligand include L3-T1-Q2-COOH, L3-T1- (Q2-P3) q2-1 -Q2-NH 2 and the like. Specifically, L3-O-alkylene-COOH having 1 to 12 carbon atoms, L-alkylene-CO-NH having 1 to 12 carbons, alkylene-NH 2 having 2 to 12 carbons, etc. may be mentioned.
L3 is not particularly limited as long as it is a sugar ligand derivative that becomes L1 by deprotecting. The substituent of the sugar ligand is not particularly limited as long as it is a substituent generally used in the field of carbohydrate chemistry, but an Ac group is preferable.
 S1をリンカーとしたL1-ベンゼン環ユニットやS2をリンカーとしたL2-ベンゼン環ユニットの合成は、具体的には実施例に記載の方法を参考にして、アルキレン鎖の炭素数を適宜増減し、また、末端アミノ基や末端カルボキシル基を、-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-または-CO-NH-結合を形成し得る基に変換した化合物を用いることにより、合成することができる。また、L1の糖リガンドについても、実施例においては、マンノースまたはN-アセチルガラクトサミンを例示しているが、他の糖リガンドに変更して実施することができる。 Specifically, referring to the method described in the examples, the number of carbon atoms of the alkylene chain is appropriately increased or decreased, with reference to the method described in the Examples, and synthesis of L1-benzene ring unit using S1 as a linker and L2 benzene ring unit using S2 as a linker In addition, the terminal amino group and the terminal carboxyl group can be selected from -CO-, -NH-, -O-, -S-, -O-CO-, -S-CO-, -NH-CO-, -CO-O- The compound can be synthesized by using a compound converted into a group capable of forming a -CO-S- or -CO-NH- bond. In addition, mannose or N-acetylgalactosamine is exemplified in the examples also for L1 sugar ligands, but other sugar ligands can be used instead.
 式1で表される核酸複合体における、S3をリンカーとしたX-ベンゼン環ユニットの合成は、例えば、式12で表される核酸複合体を例として説明する。
 式12で表される核酸複合体におけるX-ベンゼン環ユニットは、オリゴヌクレオチドの結合以外に、P7およびP8により表される結合を有する。
 P7およびP8の-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-または-CO-NH-結合は、例えば、第4版実験化学講座19「有機化合物の合成I」丸善(1992年)、第4版実験化学講座20「有機化合物の合成II」、丸善(1992年))に記載の結合反応の方法を参考にして、式12で表される構造を形成するのに適切な原料を選択することにより適宜合成することができる。
 また、ベンゼン環から順次、Q5を部分構造として有する化合物、B3を部分構造として有する化合物を結合させることで、X-ベンゼン環ユニットの部分構造を製造することができる。
The synthesis of the X-benzene ring unit using the S3 as a linker in the nucleic acid complex represented by the formula 1 will be described, for example, by taking the nucleic acid complex represented by the formula 12 as an example.
The X-benzene ring unit in the nucleic acid complex represented by Formula 12 has a bond represented by P7 and P8 in addition to the bond of the oligonucleotide.
-CO-, -NH-, -O-, -S-, -O-CO-, -S-CO-, -NH-CO-, -CO-O-, -CO-S- or P7 and P8 -CO-NH- bond, for example, 4th edition Experimental chemistry course 19 "Synthesis of organic compounds I" Maruzen (1992), 4th edition experimental chemistry course 20 "Synthesis of organic compounds II", Maruzen (1992) The compound can be appropriately synthesized by selecting an appropriate raw material for forming the structure represented by Formula 12 with reference to the method of the binding reaction described in 1.).
In addition, the partial structure of the X-benzene ring unit can be produced by combining a compound having Q5 as a partial structure and a compound having B3 as a partial structure sequentially from the benzene ring.
 XとQ7を部分構造として有する化合物や、XとQ6を部分構造として有する化合物を別途合成し、XとQ7を部分構造として有する化合物やXとQ6を部分構造として有する化合物をベンゼン環およびQ5を部分構造として有するX-ベンゼン環ユニットの部分構造を有する化合物と結合させて、B3部分を構築することにより、X-ベンゼン環ユニット構造を製造することができる。
 具体的には、ベンゼン環およびQ5を部分構造として有するX-ベンゼン環ユニットの部分構造を有する化合物の末端にアジド基を有する場合を例にとると、実施例に開示するような末端結合性官能基化したオリゴヌクレオチドを反応させることにより、環化付加させて、トリアゾール環を形成させて、B3部分を構築することにより、X-ベンゼン環ユニット構造を製造することができる。
A compound having X and Q7 as a partial structure or a compound having X and Q6 as a partial structure is separately synthesized, and a compound having X and Q7 as a partial structure or a compound having X and Q6 as a partial structure is a benzene ring and Q5 An X-benzene ring unit structure can be produced by combining with a compound having a partial structure of the X-benzene ring unit having a partial structure to construct a B3 portion.
Specifically, in the case of having an azido group at the end of a compound having a partial structure of a benzene ring and an X-benzene ring unit having a partial structure of Q5, for example, a terminal bonding functional as disclosed in the Examples. An X-benzene ring unit structure can be produced by reacting a formed oligonucleotide to cause cycloaddition to form a triazole ring to construct a B3 moiety.
 Q5を部分構造として有する化合物、Q6を部分構造として有する化合物、Q7を部分構造として有する化合物としては、炭素数1~10のアルキレンまたは-(CHCHO)n8-CHCH-の両末端に、水酸基、カルボキシル基、アミノ基、チオール基を有する化合物が挙げられる。 As a compound having Q5 as a partial structure, a compound having Q6 as a partial structure, and a compound having Q7 as a partial structure, an alkylene having 1 to 10 carbon atoms or- (CH 2 CH 2 O) n 8 -CH 2 CH 2- The compound which has a hydroxyl group, a carboxyl group, an amino group, and a thiol group is mentioned at both ends.
 L1-ベンゼン環ユニット構造、L2-ベンゼン環ユニット構造と、X-ベンゼン環ユニット構造とは、それぞれ順次製造していくことができるが、L1-ベンゼン環ユニット構造およびL2-ベンゼン環ユニット構造を合成してから、X-ベンゼン環ユニット構造を結合させることが好ましい。特に、オリゴヌクレオチド部分を有するXについては、糖リガンド複合体合成の最終工程近くで化合物内に導入することが好ましい。 The L1-benzene ring unit structure, the L2-benzene ring unit structure, and the X-benzene ring unit structure can be sequentially produced, but the L1-benzene ring unit structure and the L2-benzene ring unit structure are synthesized. Then, it is preferable to combine the X-benzene ring unit structure. In particular, X having an oligonucleotide moiety is preferably introduced into the compound near the final step of sugar ligand complex synthesis.
 本発明においては、下記式8~式10で表される化合物が合成中間体として得られる。
式8:
In the present invention, compounds represented by the following formulas 8 to 10 are obtained as synthesis intermediates.
Formula 8:
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000145
(式8中、
 R1およびR2は、それぞれ独立して、水素原子、t-ブトキシカルボニル基(Boc基)、ベンジルオキシカルボニル基(Z基)、9-フルオレニルメチルオキシカルボニル基(Fmoc基)、-CO-R4、または-CO-B4-[(P9-Q8)q7-T3-L3]p3であり、
 P9およびT3は、それぞれ独立して、存在しないか、または、-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-もしくは-CO-NH-であり、
 Q8は、存在しないか、または、置換もしくは無置換の炭素数1~12のアルキレンまたは-(CHCHO)n1-CHCH-であり、n1は0~99の整数であり、
 B4は、それぞれ独立して、結合手であるか、または、下記式8-1で表されるいずれかの構造であり、各構造における末端の黒丸点は、それぞれ、カルボニル基またはP9との結合点であり、m7、m8、m9およびm10は、それぞれ独立して、0~10の整数であり、
式8-1:
(In the equation 8,
R1 and R2 are each independently a hydrogen atom, t-butoxycarbonyl group (Boc group), benzyloxycarbonyl group (Z group), 9-fluorenylmethyloxycarbonyl group (Fmoc group), -CO-R4 Or -CO-B4-[(P9-Q8) q7- T3-L3] p3 ,
P9 and T3 are each independently absent, or -CO-, -NH-, -O-, -S-, -O-CO-, -S-CO-, -NH-CO-, -CO-O-, -CO-S- or -CO-NH-,
Q8 is absent or substituted or unsubstituted alkylene having 1 to 12 carbon atoms, or-(CH 2 CH 2 O) n 1 -CH 2 CH 2- , and n 1 is an integer of 0 to 99,
B4 is each independently a bond or a structure represented by Formula 8-1 below, and the terminal black dot in each structure is a bond to a carbonyl group or P9, respectively And m7, m8, m9 and m10 are each independently an integer of 0 to 10,
Formula 8-1:
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000146
 p3は、1、2または3の整数であり、
 q7は、0~10の整数であり、
 L3は、糖リガンドであり、
 Yは-O-(CHm11-NH-および-NH-CO-(CHm12-NHであり、m11およびm12は、それぞれ独立して、1~10の整数であり、
 R3は、水素原子、t-ブトキシカルボニル基、ベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、-CO-R4、-CO-(CHCHO)n2-CHCH-N、または-CO-Q9-B5-(Q10-P10)q8-X1あり、n2は0~99の整数であり、
 P10は、存在しないか、または、-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-もしくは-CO-NH-であり、
 Q9およびQ10は、それぞれ独立して、存在しないか、または、置換もしくは無置換の炭素数1~12のアルキレンまたは-(CHCHO)n3-CHCH-であり、n3は0~99の整数であり、
 B5は、下記式8-2で表されるいずれかの構造であり、破線において、それぞれ、Q9およびQ10との結合手を意味し、
式8-2:
p3 is an integer of 1, 2 or 3 and
q7 is an integer of 0 to 10,
L3 is a sugar ligand,
Y is —O— (CH 2 ) m 11 —NH— and —NH—CO— (CH 2 ) m 12 —NH, and m 11 and m 12 are each independently an integer of 1 to 10,
R3 is a hydrogen atom, t-butoxycarbonyl group, benzyloxycarbonyl group, 9-fluorenylmethyloxycarbonyl group, -CO-R4, -CO- (CH 2 CH 2 O) n2 -CH 2 CH 2 -N 3 or -CO-Q9- B5- (Q10-P10) q8- X1, and n2 is an integer of 0 to 99,
P10 is absent, or -CO-, -NH-, -O-, -S-, -O-CO-, -S-CO-, -NH-CO-, -CO-O-,- CO-S- or -CO-NH-,
Q9 and Q10 are each independently absent, or substituted or unsubstituted alkylene having 1 to 12 carbon atoms or- (CH 2 CH 2 O) n 3 -CH 2 CH 2- , and n3 is 0 It is an integer of ~ 99,
B5 is any structure represented by the following formula 8-2, and in broken lines, means a bond with Q9 and Q10, respectively
Formula 8-2:
Figure JPOXMLDOC01-appb-C000147
Figure JPOXMLDOC01-appb-C000147
 式8-2中、トリアゾール環を有する基における置換は、該トリアゾール環の1位および3位の窒素原子のいずれかである。
 q8は、0~10の整数であり、
 X1は、水素原子または固相担体であり、
 R4は、t-ブトキシカルボニル基、ベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基で置換もしくは無置換のアミノ基、カルボキシ基、マレイミド基、およびアラルキルオキシカルボニル基からなる群から選択される1または2個の置換基で置換された炭素数2~10のアルキル基である。)
In Formula 8-2, substitution at a group having a triazole ring is any of the nitrogen atoms at positions 1 and 3 of the triazole ring.
q8 is an integer of 0 to 10,
X 1 is a hydrogen atom or a solid support,
R 4 is selected from the group consisting of t-butoxycarbonyl group, benzyloxycarbonyl group, amino group substituted or unsubstituted with 9-fluorenylmethyloxycarbonyl group, carboxy group, maleimide group, and aralkyloxycarbonyl group It is an alkyl group having 2 to 10 carbon atoms which is substituted by 1 or 2 substituents. )
 本発明においては、下記式9で表される化合物が合成中間体として得られる。
式9:
In the present invention, a compound represented by the following formula 9 is obtained as a synthetic intermediate.
Formula 9:
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000148
(式9中、
 R5およびR6は、それぞれ独立して、水素原子、t-ブトキシカルボニル基、ベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、-CO-R4’、または-CO-Q11-(P11-Q11’)q9-T4-L4であり、
 P11およびT4は、それぞれ独立して、存在しないか、または、-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-もしくは-CO-NH-であり、
 Q11およびQ11’は、存在しないか、または、置換もしくは無置換の炭素数1~12のアルキレンまたは-(CHCHO)n4-CHCH-であり、n4は0~99の整数であり、
 q9は、0~10の整数であり、
 L4は、糖リガンドであり、
 Y’は-O-(CHm11’-NH-および-NH-CO-(CHm12’-NHであり、m11’およびm12’は、それぞれ独立して、1~10の整数であり、
 R3’は、水素原子、t-ブトキシカルボニル基、ベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、-CO-R4’、-CO-(CHCHO)n2’-CHCH-N、または-CO-Q9’-B5’-(Q10’-P10’)q8’-X1’であり、n2’は0~99の整数であり、
 P10’は、存在しないか、または、-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-もしくは-CO-NH-であり、
 Q9’およびQ10’は、それぞれ独立して、存在しないか、または、置換もしくは無置換の炭素数1~12のアルキレンまたは-(CHCHO)n3’-CHCH-であり、n3’は0~99の整数であり、
 B5’は、下記式9-1で表されるいずれかの構造であり、破線において、それぞれ、Q9’およびQ10’との結合手を意味し、
式9-1:
(In the equation 9,
R5 and R6 each independently represent a hydrogen atom, t-butoxycarbonyl group, benzyloxycarbonyl group, 9-fluorenylmethyloxycarbonyl group, -CO-R4 ', or -CO-Q11- (P11-Q11) ') Q9 -T4-L4,
P11 and T4 are each independently absent, or -CO-, -NH-, -O-, -S-, -O-CO-, -S-CO-, -NH-CO-, -CO-O-, -CO-S- or -CO-NH-,
Q11 and Q11 ′ are absent or substituted or unsubstituted alkylene having 1 to 12 carbon atoms or- (CH 2 CH 2 O) n 4 -CH 2 CH 2- , and n 4 is an integer of 0 to 99 And
q9 is an integer of 0 to 10,
L4 is a sugar ligand,
Y 'is -O- (CH 2) m11' 'is -NH, m11' -NH- and -NH-CO- (CH 2) m12 and m12 'are each independently an integer from 1 to 10 Yes,
R3 'is a hydrogen atom, t-butoxycarbonyl group, benzyloxycarbonyl group, 9-fluorenylmethyloxycarbonyl group, -CO-R4', - CO- (CH 2 CH 2 O) n2 '-CH 2 CH 2 -N 3 or -CO-Q9'-B5 '-(Q10'-P10') q8'- X1 ', and n2' is an integer of 0 to 99,
P10 'is absent, or -CO-, -NH-, -O-, -S-, -O-CO-, -S-CO-, -NH-CO-, -CO-O-, -CO-S- or -CO-NH-,
Q9 'and Q10' are each independently absent or alkylene substituted or unsubstituted 1 to 12 carbon atoms or - (CH 2 CH 2 O) n3 '-CH 2 CH 2 - and is, n3 'is an integer of 0 to 99,
B5 'is any structure represented by the following formula 9-1 and means a bond with Q9' and Q10 ', respectively, in a broken line,
Formula 9-1:
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000149
 式9-1中、トリアゾール環を有する基における置換は、該トリアゾール環の1位および3位の窒素原子のいずれかである。
q8'は、0~10の整数であり、
X1’は、水素原子または固相担体であり、
R4’は、t-ブトキシカルボニル基、ベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基で置換もしくは無置換のアミノ基、カルボキシ基、マレイミド基、およびアラルキルオキシカルボニル基からなる群から選択される1または2個の置換基で置換された炭素数2~10のアルキル基である。)
In Formula 9-1, substitution at a group having a triazole ring is any of the nitrogen atoms at positions 1 and 3 of the triazole ring.
q8 'is an integer of 0 to 10,
X1 'is a hydrogen atom or a solid support,
R 4 ′ is selected from the group consisting of t-butoxycarbonyl group, benzyloxycarbonyl group, amino group substituted or unsubstituted with 9-fluorenylmethyloxycarbonyl group, carboxy group, maleimide group, and aralkyloxycarbonyl group An alkyl group of 2 to 10 carbon atoms substituted with one or two substituents. )
 本発明においては、下記式10で表される化合物が合成中間体として得られる。
式10:
In the present invention, a compound represented by the following formula 10 is obtained as a synthetic intermediate.
Formula 10:
Figure JPOXMLDOC01-appb-C000150
Figure JPOXMLDOC01-appb-C000150
 式10中、
 R7およびR8は、それぞれ独立して、ヒドロキシ基、t-ブトキシ基、ベンジルオキシ基、-NH-R10、または-NH-Q12-(P12-Q12’)q10-T4-L4であり、
 P12およびT4は、それぞれ独立して、存在しないか、または、-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-もしくは-CO-NH-であり、
 Q12およびQ12’は、存在しないか、または、置換もしくは無置換の炭素数1~12のアルキレンまたは-(CHCHO)n2-CHCH-であり、n2は0~99の整数であり、
 L4は、糖リガンドであり、
 Y2は-O-(CH)m9-NH-および-NH-CO-(CH)m10-NHであり、m9、m10は、それぞれ独立して、1~10の整数であり、
 q10は、0~10の整数であり、
 R9は、水素原子、t-ブトキシカルボニル基、ベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、-CO-R10、-CO-(CHCHO)n6-CHCH-N、または-CO-Q13-B6-(Q14-P13)q11-X2であり、n6は0~99の整数であり、
 P13は、存在しないか、または、-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-もしくは-CO-NH-であり、
 Q13およびQ14は、それぞれ独立して、存在しないか、または、置換もしくは無置換の炭素数1~12のアルキレンまたは-(CHCHO)n7-CHCH-であり、n7は0~99の整数であり、
 B6は、下記式10-1で表されるいずれかの構造であり、破線において、それぞれ、Q13およびQ14との結合手を意味し、
式10-1:
In formula 10,
R7 and R8 are each independently a hydroxy group, a t-butoxy group, a benzyloxy group, -NH-R10 or -NH-Q12- (P12-Q12 ') q10- T4-L4,
P12 and T4 are each independently absent, or -CO-, -NH-, -O-, -S-, -O-CO-, -S-CO-, -NH-CO-, -CO-O-, -CO-S- or -CO-NH-,
Q12 and Q12 ′ are absent or substituted or unsubstituted alkylene having 1 to 12 carbon atoms or-(CH 2 CH 2 O) n 2 -CH 2 CH 2- , and n 2 is an integer of 0 to 99 And
L4 is a sugar ligand,
Y 2 is —O— (CH 2 ) m 9 —NH— and —NH—CO— (CH 2 ) m 10 —NH, and m 9 and m 10 are each independently an integer of 1 to 10,
q10 is an integer of 0 to 10,
R9 is hydrogen, t-butoxycarbonyl group, benzyloxycarbonyl group, 9-fluorenylmethyloxycarbonyl group, -CO-R10, -CO- (CH 2 CH 2 O) n6 -CH 2 CH 2 -N 3 or -CO-Q13-B6- (Q14-P13) q11- X2, and n6 is an integer of 0 to 99,
P13 is absent, or -CO-, -NH-, -O-, -S-, -O-CO-, -S-CO-, -NH-CO-, -CO-O-,- CO-S- or -CO-NH-,
Q13 and Q14 are each independently absent, or substituted or unsubstituted alkylene having 1 to 12 carbon atoms or- (CH 2 CH 2 O) n 7 -CH 2 CH 2- , and n 7 is 0 It is an integer of ~ 99,
B6 is any structure represented by the following formula 10-1 and means a bond with Q13 and Q14, respectively, in a broken line,
Formula 10-1:
Figure JPOXMLDOC01-appb-C000151
Figure JPOXMLDOC01-appb-C000151
 式10-1中、トリアゾール環を有する基における置換は、該トリアゾール環の1位および3位の窒素原子のいずれかである。
 q11は、0~10の整数であり、
 X2は、水素原子または固相担体であり、
 R10は、t-ブトキシカルボニル基、ベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基で置換もしくは無置換のアミノ基、カルボキシ基、マレイミド基、およびアラルキルオキシカルボニル基からなる群から選択される1または2個の置換基で置換された炭素数2~10のアルキル基である。)
In Formula 10-1, substitution at a group having a triazole ring is any of the nitrogen atoms at positions 1 and 3 of the triazole ring.
q11 is an integer of 0 to 10,
X2 is a hydrogen atom or a solid support,
R 10 is selected from the group consisting of t-butoxycarbonyl group, benzyloxycarbonyl group, amino group substituted or unsubstituted with 9-fluorenylmethyloxycarbonyl group, carboxy group, maleimide group, and aralkyloxycarbonyl group It is an alkyl group having 2 to 10 carbon atoms which is substituted by 1 or 2 substituents. )
 以下、本発明に関連して、製造方法を一例として示す。なお、以下の製造方法1~製造方法17に関する記載において、本発明の核酸誘導体等における式1~式12で表される化合物とで、基を表す記号として同一の記号が用いられているものがあるが、両者は切り離して理解されるものであり、製造方法1~製造方法12に対して記載される基の説明により、本発明が限定的に解釈されるものではない。また、本発明における核酸誘導体に関し、オリゴヌクレオチドを表すXを、製造方法1~製造方法17では、-O-Xとして記載する。 Hereinafter, the manufacturing method will be shown as an example in connection with the present invention. In the following description relating to Production Method 1 to Production Method 17, a compound represented by Formula 1 to Formula 12 in a nucleic acid derivative etc. of the present invention, wherein the same symbol is used as a symbol representing a group Although both are understood separately, the description of the groups described for Production Method 1 to Production Method 12 does not limit the present invention. In addition, with regard to the nucleic acid derivative in the present invention, X representing an oligonucleotide is described as —O—X in production methods 1 to 17.
  製造方法1
 本発明における核酸誘導体は、式(I’)で表される部分構造を有する化合物の製造方法として、その製造方法を例示することができる。
Manufacturing method 1
The nucleic acid derivative in the present invention can be exemplified as a method for producing a compound having a partial structure represented by the formula (I ′).
Figure JPOXMLDOC01-appb-C000152
Figure JPOXMLDOC01-appb-C000152
(式中、P1はFmoc等の塩基により脱保護可能な保護基であり、DMTrはp,p’-ジメトキシトリチル基を表し、Rは糖リガンド-テザーユニットを表し、R’は、R中の糖リガンドの各水酸基がアセチル基等の塩基で脱保護可能な保護基で保護された基を表し、Polymerは固相担体を表し、Q’は-CO-である。) (Wherein, P 1 represents a protecting group which can be deprotected by a base such as Fmoc, DMTr represents p, p′-dimethoxytrityl group, R represents a sugar ligand-tether unit, R ′ represents R in Each hydroxyl group of the sugar ligand is a group protected by a protecting group which can be deprotected by a base such as an acetyl group, Polymer is a solid phase carrier, and Q 'is -CO-.
工程1
 化合物(I-B)は、化合物(I-A)とp,p’-ジメトキシトリチルクロリドを、ピリジン等の溶媒中、必要に応じて共溶媒の存在下、0℃と100℃の間の温度で、5分間~100時間反応させることにより製造することができる。
 共溶媒としては、例えばメタノール、エタノール、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、トルエン、酢酸エチル、アセトニトリル、ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、ジオキサン、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド、N-メチルピロリドン、ピリジン、水等があげられ、これらは単独でまたは混合して用いられる。
Step 1
Compound (I-B) is a compound (IA) and p, p'-dimethoxytrityl chloride in a solvent such as pyridine, optionally in the presence of a cosolvent, at a temperature between 0 ° C. and 100 ° C. Can be produced by reacting for 5 minutes to 100 hours.
As a co-solvent, for example, methanol, ethanol, dichloromethane, chloroform, 1,2-dichloroethane, toluene, ethyl acetate, acetonitrile, diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, dioxane, N, N-dimethylformamide (DMF) And N, N-dimethylacetamide, N-methylpyrrolidone, pyridine, water and the like, and these may be used alone or in combination.
工程2
 化合物(I-C)は、化合物(I-B)を、無溶媒でまたは溶媒中、1~1000当量の2級アミン存在下、室温と200℃の間の温度で、5分間~100時間反応させることにより製造することができる。
 溶媒としては、例えばメタノール、エタノール、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、トルエン、酢酸エチル、アセトニトリル、ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、ジオキサン、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド、N-メチルピロリドン、ピリジン、水等があげられ、これらは単独でまたは混合して用いられる。
 2級アミンとしては、例えばジエチルアミン、ピペリジン等が挙げられる。
Step 2
Compound (IC) is reacted with Compound (IB) without solvent or in the presence of 1 to 1000 equivalents of a secondary amine in a solvent at a temperature between room temperature and 200 ° C. for 5 minutes to 100 hours. It can be manufactured by
As the solvent, for example, methanol, ethanol, dichloromethane, chloroform, 1,2-dichloroethane, toluene, ethyl acetate, acetonitrile, diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, dioxane, N, N-dimethylformamide (DMF), Examples thereof include N, N-dimethylacetamide, N-methylpyrrolidone, pyridine, water and the like, which may be used alone or in combination.
Examples of secondary amines include diethylamine, piperidine and the like.
工程3
 化合物(1-E)は、化合物(I-C)と化合物(I-D)を、無溶媒でまたは溶媒中、1~30当量の塩基、縮合剤および必要に応じて0.01~30当量の添加剤の存在下、室温と200 ℃の間の温度で、5分間~100時間反応させることにより製造することができる。
 溶媒としては、工程2で例示したものが挙げられる。
 塩基としては、例えば炭酸セシウム、炭酸カリウム、水酸化カリウム、水酸化ナトリウム、ナトリウムメトキシド、カリウム tert-ブトキシド、トリエチルアミン、ジイソプロピルエチルアミン、N-メチルモルホリン、ピリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)、N,N-ジメチル-4-アミノピリジン(DMAP)等が挙げられる。
 縮合剤としては、例えば1,3-ジシクロヘキサンカルボジイミド(DCC)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド・塩酸塩(EDC)、カルボニルジイミダゾール、ベンゾトリアゾール-1-イルオキシトリス(ジメチルアミノ)ホスホニウムヘキサフルホロホスファート、(ベンゾトリアゾール-1-イルオキシ)トリピロリジノホスホニウム ヘキサフルオロホスファート、O-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム ヘキサフルオロホスファート(HATU)、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム ヘキサフルオロホスファート(HBTU)、ヨウ化 2-クロロ-1-メチルピリジニウム等が挙げられる。
 添加剤としては、例えば1-ヒドロキシベンゾトリアゾール(HOBt)、4-ジメチルアミノピリジン(DMAP)等が挙げられる。
 化合物(I-D)は、公知の方法(例えば、Journal of American Chemical Society, 136, 16958, (2014)を参照)もしくはそれに準じた方法で得ることができる。
Step 3
Compound (1-E) is a compound (IC) and compound (ID), 1 to 30 equivalents of a base, a condensing agent, and optionally 0.01 to 30 equivalents without solvent or in a solvent C. for 5 minutes to 100 hours at a temperature between room temperature and 200.degree. C. in the presence of an additive.
As the solvent, those exemplified in step 2 can be mentioned.
As a base, for example, cesium carbonate, potassium carbonate, potassium hydroxide, sodium hydroxide, sodium methoxide, potassium tert-butoxide, triethylamine, diisopropylethylamine, N-methylmorpholine, pyridine, 1,8-diazabicyclo [5.4. 0] -7-Undecene (DBU), N, N-dimethyl-4-aminopyridine (DMAP) and the like.
As the condensing agent, for example, 1,3-dicyclohexanecarbodiimide (DCC), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide · hydrochloride (EDC), carbonyldiimidazole, benzotriazol-1-yloxytris (Dimethylamino) phosphonium hexaflurophosphate, (benzotriazol-1-yloxy) tripyrrolidinophosphonium hexafluorophosphate, O- (7-azabenzotriazol-1-yl) -N, N, N ′, N '-Tetramethyluronium hexafluorophosphate (HATU), O- (benzotriazol-1-yl) -N, N, N', N'-tetramethyluronium hexafluorophosphate (HBTU), iodide 2 And -chloro-1-methylpyridinium and the like.
Examples of the additive include 1-hydroxybenzotriazole (HOBt), 4-dimethylaminopyridine (DMAP) and the like.
Compound (ID) can be obtained by a known method (see, for example, Journal of American Chemical Society, 136, 16958, (2014)) or a method analogous thereto.
工程4
 化合物(I-F)は、化合物(I-E)とコハク酸無水物を、溶媒中、1~30当量の塩基存在下、室温と200℃の間の温度で、5分間~100時間反応させることにより製造することができる。
Step 4
Compound (IF) is prepared by reacting Compound (IE) and succinic anhydride in a solvent in the presence of 1 to 30 equivalents of a base at a temperature between room temperature and 200 ° C. for 5 minutes to 100 hours. Can be manufactured by
 溶媒としては、工程2で例示したものが挙げられる。 As the solvent, those exemplified in step 2 can be mentioned.
 塩基としては、工程3で例示したものが挙げられる。 As the base, those exemplified in Step 3 can be mentioned.
工程5
 化合物(I-G)は、化合物(I-F)と末端がアミノ化された固相担体とを、無溶媒でまたは溶媒中、1~30当量の塩基、縮合剤および必要に応じて0.01~30当量の添加剤の存在下、室温と200℃の間の温度で、5分間~100時間反応した後、無水酢酸/ピリジン溶液と室温と200℃の間の温度で5分間~100時間反応させることにより製造することができる。
 溶媒としては、工程2で例示したものが挙げられる。
 塩基、縮合剤および添加剤としては、それぞれ工程3で例示したものがあげられる。
 アミノ化された固相担体としては、例えば長鎖アルキルアミン細孔性ガラス(LCAA-CPG)等 があげられ、これらは市販品として得ることができる。
Step 5
The compound (IG) is obtained by using a compound (IF) and a terminally aminated solid phase carrier, 1 to 30 equivalents of a base, a condensing agent, and optionally 0. After reacting for 5 minutes to 100 hours at a temperature between room temperature and 200 ° C. in the presence of 01 to 30 equivalents of additive, for 5 minutes to 100 hours at a temperature between room temperature and 200 ° C. It can be produced by reaction.
As the solvent, those exemplified in step 2 can be mentioned.
Examples of the base, the condensing agent and the additive include those exemplified in Step 3.
Examples of the aminated solid phase carrier include long-chain alkylamine pore glass (LCAA-CPG) and the like, which can be obtained as commercial products.
工程6
 式(I’)で表される糖リガンド-テザー-ブランチャーユニットを有する核酸複合体は、化合物(I-G)を用い、公知のオリゴヌクレオチド化学合成法で対応するヌクレオチド鎖を伸長した後に、固相からの脱離、保護基の脱保護および精製を行うことで製造することができる。
Step 6
The nucleic acid complex having a sugar ligand-tether-brancher unit represented by the formula (I ′) is a compound (IG) after extending the corresponding nucleotide chain by a known oligonucleotide chemical synthesis method. It can be produced by removal from the solid phase, deprotection of the protective group and purification.
 公知のオリゴヌクレオチド化学合成法としては、ホスホロアミダイト法、ホスホロチオエート法、ホスホトリエステル法、CEM法 (Nucleic Acids Research, 35, 3287 (2007)を参照)等をあげることができ、例えば、ABI3900ハイスループット核酸合成機(アプライドバイオシステムズ社製)により合成することができる。 Examples of known oligonucleotide chemical synthesis methods include the phosphoroamidite method, the phosphorothioate method, the phosphotriester method, the CEM method (see Nucleic Acids Research, 35, 3287 (2007)), and the like, for example, ABI 3900 high. It can be synthesized by a throughput nucleic acid synthesizer (manufactured by Applied Biosystems).
 固相からの脱離、脱保護は、オリゴヌクレオチド化学合成後、溶媒または無溶媒中、-80 ℃から200 ℃の間の温度で、10秒間から72時間塩基で処理することにより製造することができる。 Removal from solid phase, deprotection may be prepared by treatment with a base for 10 seconds to 72 hours after chemical synthesis of oligonucleotide in a solvent or in the absence of solvent, at a temperature between -80 ° C and 200 ° C. it can.
 塩基としては、例えばアンモニア、メチルアミン、ジメチルアミン、エチルアミン、ジエチルアミン、イソプロピルアミン、ジイソプロピルアミン、ピペリジン、トリエチルアミン、エチレンジアミン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)、炭酸カリウム等が挙げられる。 As the base, for example, ammonia, methylamine, dimethylamine, ethylamine, diethylamine, isopropylamine, diisopropylamine, piperidine, triethylamine, ethylenediamine, 1,8-diazabicyclo [5.4.0] -7-undecene (DBU), carbonate Potassium and the like can be mentioned.
 溶媒としては、水、メタノール、エタノール、THF等が挙げられる。 Examples of the solvent include water, methanol, ethanol, THF and the like.
 オリゴヌクレオチドの精製は、C18逆相カラムあるいは陰イオン交換カラム、好ましくは前述2つの手法を組み合わせにより可能である。精製後の核酸複合体純度は、90%以上、好ましくは95%以上とするのが望ましい。 Purification of the oligonucleotide is possible by combining a C18 reverse phase column or an anion exchange column, preferably the two methods described above. The nucleic acid complex purity after purification is desirably 90% or more, preferably 95% or more.
 また、上記工程3において、必要により、化合物(I-D)を二つのユニットに分割し、2段階に分けて化合物(I-C)と縮合することで行うこともできる。具体的には、例えばR-Q’がR-NH-CO-Q4’-CO-である場合(Q4’は置換もしくは無置換の炭素数1~12のアルキレンである)、工程3において、化合物(I-C)と、CHCH-O-CO-Q4’-CO-OH(Q4’は前記と同義)とを、工程3と同様の方法で縮合させ、得られた化合物のエチルエステルをエタノールや水等の溶媒中、水酸化リチウム等の塩基で加水分解した後に、さらにR’-NH(R’は前記と同義)と縮合させることで目的とする化合物を得ることができる。なお、CHCH-O-CO-Q4’-CO-OH(Q4’は前記と同義)およびR’-NH(R’は前記と同義)は、公知の方法(例えば、Journal of American Chemical Society, 136, 16958 (2014)を参照)もしくはそれに準じた方法で得ることができる。ここで、Q4’において、置換もしくは無置換の炭素数1~12のアルキレンにおける置換基およびアルキレン部分は上記と同様である。 In addition, in the above step 3, if necessary, the compound (ID) can be divided into two units, divided into two steps, and condensed with the compound (IC). Specifically, for example, when R-Q 'is R-NH-CO-Q4'-CO- (Q4' is substituted or unsubstituted alkylene having 1 to 12 carbon atoms), the compound in step 3 Ethyl ester of the compound obtained by condensing (IC) and CH 3 CH 2 -O-CO-Q 4 '-CO-OH (Q 4' is as defined above) in the same manner as in step 3. The compound is hydrolyzed with a base such as lithium hydroxide in a solvent such as ethanol or water, and then it is condensed with R′—NH 2 (R ′ is as defined above) to give the desired compound. Incidentally, CH 3 CH 2 -O-CO -Q4'-CO-OH (Q4 ' is as defined above) and R'-NH 2 (R' is as defined above), a known method (for example, Journal of American Chemical Society, 136, 16958 (2014)) or a method analogous thereto. Here, in Q 4 ′, the substituted or unsubstituted C 1 to C 12 alkylene substituent and alkylene moiety are as defined above.
 Qが-CO-である場合を例示して示しているが、Qが-CO-でない場合の化合物についても、Qの構造を適宜変更することにより、上記と同様の方法、公知の方法またはこれらを組み合わせ、適宜反応条件を変更することにより調製することができる。 Although the case where Q is -CO- is illustrated as an example, the same method as in the above, known methods or these are also applied to compounds where Q is not -CO- by appropriately changing the structure of Q. Can be prepared by combining and changing the reaction conditions appropriately.
  製造方法2
 本発明における核酸誘導体は、式(II’)で表される部分構造を有する化合物の製造方法として、その製造方法を例示することができる。
Manufacturing method 2
The nucleic acid derivative in the present invention can be exemplified as a method for producing a compound having a partial structure represented by formula (II ′).
Figure JPOXMLDOC01-appb-C000153
Figure JPOXMLDOC01-appb-C000153
(式中、DMTr、R、R’、X、Q’、およびPolymerは前記と同義。TBDMSはt-ブチルジメチルシリル基、Fmocは9-フルオレニルメチルオキシカルボニル基を表す) (Wherein, DMTr, R, R ′, X, Q ′, and Polymer are as defined above. TBDMS represents a t-butyldimethylsilyl group, and Fmoc represents a 9-fluorenylmethyloxycarbonyl group)
工程7
 化合物(II-A)は、化合物(I-A)、t-ブチルジメチルシリルクロリドおよびジメチルアミノピリジンをN,N-ジメチルホルムアミド(DMF)等の溶媒中、好ましくは2等量の塩基の存在下、0℃~100℃の間の温度で、5分間~100時間反応させることにより製造することができる。
 塩基としては、製造方法1の工程3で例示したものが挙げられる。
Step 7
Compound (II-A) can be prepared by reacting compound (IA), t-butyldimethylsilyl chloride and dimethylaminopyridine in a solvent such as N, N-dimethylformamide (DMF), preferably in the presence of 2 equivalents of a base The reaction can be carried out at a temperature between 0 ° C. and 100 ° C. for 5 minutes to 100 hours.
As the base, those exemplified in Step 3 of Production Method 1 can be mentioned.
工程8
 化合物(II-B)は、化合物(II-A)を用い、製造方法1の工程1と同様の条件にて製造することができる。
Step 8
Compound (II-B) can be produced using compound (II-A) under the same conditions as in step 1 of production method 1.
工程9
 化合物(II-C)は、化合物(II-B)とフッ化n-テトラブチルアンモニウム(TBAF)を、溶媒中、室温と200℃の間の温度で、5分間~100時間反応させることにより製造することができる。
 溶媒としては、工程2で例示したものが挙げられる。
Step 9
Compound (II-C) is produced by reacting compound (II-B) with n-tetrabutylammonium fluoride (TBAF) in a solvent at a temperature between room temperature and 200 ° C. for 5 minutes to 100 hours. can do.
As the solvent, those exemplified in step 2 can be mentioned.
工程10
 化合物(II-D)は、化合物(II-C)を用い、製造方法1の工程2と同様の条件にて製造することができる。
Step 10
Compound (II-D) can be produced using compound (II-C) under the same conditions as in step 2 of production method 1.
工程11
 化合物(II-E)は、化合物(II-D)および化合物(I-D)を用い、製造方法1の工程3と同様の条件にて製造することができる。
Step 11
Compound (II-E) can be produced using compound (II-D) and compound (ID) under the same conditions as in step 3 of production method 1.
工程12~14
 化合物(II’)は、化合物(II-E)を用い、製造方法1の工程4~工程6と同様の条件にて製造することができる。
Steps 12 to 14
Compound (II ′) can be produced using compound (II-E) under the same conditions as steps 4 to 6 of production method 1.
 また、上記工程11において、必要により、化合物(I-D)を二つのユニットに分割し、2段階に分けて化合物(II-C)と縮合することで行うこともできる。具体的には、例えばR-Q’が-NH-CO-Q4’-CO-である場合(Q4’は置換もしくは無置換の炭素数1~12のアルキレン)、工程11において、化合物(II-C)と、CHCH-O-CO-Q4’-CO-OH(Q4’は前記と同義)とを、工程11と同様の方法で縮合させ、得られた化合物のエチルエステルをエタノールや水等の溶媒中、水酸化リチウム等の塩基で加水分解した後に、さらにR’-NH(R’は前記と同義)と縮合させることで目的とする化合物を得ることができる。なお、CHCH-O-CO-Q4’-CO-OH(Q4’は前記と同義)およびR’-NH(R’は前記と同義)は、公知の方法(例えば、Journal of American Chemical Society, 136, 16958 (2014)を参照)もしくはそれに準じた方法で得ることができる。 In addition, in the above-mentioned step 11, if necessary, the compound (ID) can be divided into two units, divided into two steps, and condensed with the compound (II-C). Specifically, for example, when R-Q 'is -NH-CO-Q4'-CO- (Q4' is substituted or unsubstituted alkylene having 1 to 12 carbon atoms), compound (II- C) and CH 3 CH 2 -O-CO-Q 4 '-CO-OH (Q 4' is as defined above) are condensed in the same manner as in step 11, and the ethyl ester of the obtained compound is ethanol or After hydrolysis with a base such as lithium hydroxide in a solvent such as water, the compound is further condensed with R′—NH 2 (R ′ is as defined above) to give the desired compound. Incidentally, CH 3 CH 2 -O-CO -Q4'-CO-OH (Q4 ' is as defined above) and R'-NH 2 (R' is as defined above), a known method (for example, Journal of American Chemical Society, 136, 16958 (2014)) or a method analogous thereto.
 Qが-CO-である場合を例示して示しているが、Qが-CO-でない場合の化合物についても、Qの構造を適宜変更することにより、上記と同様の方法、公知の方法またはこれらを組み合わせ、適宜反応条件を変更することにより調製することができる。 Although the case where Q is -CO- is illustrated as an example, the same method as in the above, known methods or these are also applied to compounds where Q is not -CO- by appropriately changing the structure of Q. Can be prepared by combining and changing the reaction conditions appropriately.
  製造方法3
 本発明における核酸誘導体は、式(III’)で表される部分構造を有する化合物の製造方法として、その製造方法を例示することができる。
Manufacturing method 3
The nucleic acid derivative in the present invention can be exemplified as a method for producing a compound having a partial structure represented by formula (III ′).
Figure JPOXMLDOC01-appb-C000154
Figure JPOXMLDOC01-appb-C000154
(式中、DMTr、Fmoc、R、R’、Q’、XおよびPolymerは前記と同義である。) (Wherein, DMTr, Fmoc, R, R ′, Q ′, X and Polymer are as defined above)
 化合物(III’)は、化合物(III-A)を用い、製造方法1の工程1から工程6と同様の条件にて製造することができる。なお、化合物(III-A)は市販品として得ることができる。 Compound (III ′) can be produced using compound (III-A) under the same conditions as steps 1 to 6 of production method 1. Compound (III-A) can be obtained as a commercial product.
工程15
 化合物(III-B)は、化合物(III-A)を用い、製造法1の工程1と同様の条件にて製造することができる。
 化合物(III-A)は市販品として購入することができる。
Step 15
Compound (III-B) can be produced using compound (III-A) under the same conditions as in step 1 of production method 1.
Compound (III-A) can be purchased as a commercial product.
工程16
 化合物(III-C)は、化合物(III-B)を用い、製造法1の工程2と同様の条件にて製造することができる。
Step 16
Compound (III-C) can be produced using compound (III-B) under the same conditions as in step 2 of production method 1.
工程17
 化合物(III-E)は、化合物(III-C)を用い、製造法1の工程3と同様の条件にて製造することができる。
Step 17
Compound (III-E) can be produced using compound (III-C) under the same conditions as in step 3 of production method 1.
工程18~20
 化合物(III’)は、化合物(III-E)を用い、製造方法1の工程4~工程6と同様の条件にて製造することができる。
Steps 18 to 20
Compound (III ′) can be produced using compound (III-E) under the same conditions as in Steps 4 to 6 of Production Method 1.
 また、上記工程17において、必要により、化合物(I-D)を二つのユニットに分割し、2段階に分けて化合物(III-C)と縮合することで行うこともできる。具体的には、例えばR-Q’が-NH-CO-Q4’-CO-である場合(Q4’は置換もしくは無置換の炭素数1~12のアルキレン)、工程17において、化合物(III-C)と、CHCH-O-CO-Q4’-CO-OH(Q4’は前記と同義)とを、工程17と同様の方法で縮合させ、得られた化合物のエチルエステルをエタノールや水等の溶媒中、水酸化リチウム等の塩基で加水分解した後に、さらにR’-NH(R’は前記と同義)と縮合させることで目的とする化合物を得ることができる。なお、CHCH-O-CO-Q4’-CO-OH(Q4’は前記と同義)およびR’-NH(R’は前記と同義)は、公知の方法(例えば、Journal of American Chemical Society,136, 16958 (2014)を参照)もしくはそれに準じた方法で得ることができる。 In addition, in the above-mentioned step 17, if necessary, the compound (ID) can be divided into two units, divided into two steps, and condensed with the compound (III-C). Specifically, for example, when R-Q 'is -NH-CO-Q4'-CO- (Q4' is a substituted or unsubstituted alkylene having 1 to 12 carbon atoms), the compound (III-) is C) and CH 3 CH 2 -O-CO-Q 4 '-CO-OH (wherein Q 4' is as defined above) are condensed in the same manner as in step 17 to obtain ethyl ester of the obtained compound as ethanol or After hydrolysis with a base such as lithium hydroxide in a solvent such as water, the compound is further condensed with R′—NH 2 (R ′ is as defined above) to give the desired compound. Incidentally, CH 3 CH 2 -O-CO -Q4'-CO-OH (Q4 ' is as defined above) and R'-NH 2 (R' is as defined above), a known method (for example, Journal of American Chemical Society, 136, 16958 (2014)) or a method analogous thereto.
 Qが-CO-である場合を例示して示しているが、Qが-CO-でない場合の化合物についても、Qの構造を適宜変更することにより、上記と同様の方法、公知の方法またはこれらを組み合わせ、適宜反応条件を変更することにより調製することができる。 Although the case where Q is -CO- is illustrated as an example, the same method as in the above, known methods or these are also applied to compounds where Q is not -CO- by appropriately changing the structure of Q. Can be prepared by combining and changing the reaction conditions appropriately.
  製造方法4
 本発明における核酸誘導体は、式(IV’)で表される部分構造を有する化合物の製造方法として、その製造方法を例示することができる。
Manufacturing method 4
The nucleic acid derivative in the present invention can be exemplified as a method for producing a compound having a partial structure represented by formula (IV ′).
Figure JPOXMLDOC01-appb-C000155
Figure JPOXMLDOC01-appb-C000155
(式中、DMTr、Fmoc、R、R’、Q’、XおよびPolymerは前記と同義である。) (Wherein, DMTr, Fmoc, R, R ′, Q ′, X and Polymer are as defined above)
 化合物(IV’)は、化合物(IV-A)を用い、製造方法1の工程1から工程6と同様の条件にて製造することができる。なお、化合物(IV-A)は市販品として得ることができる。 Compound (IV ′) can be produced using compound (IV-A) under the same conditions as steps 1 to 6 of production method 1. Compound (IV-A) can be obtained as a commercial product.
 また、上記工程23において、必要により、化合物(I-D)を二つのユニットに分割し、2段階に分けて化合物(IV-C)と縮合することで行うこともできる。具体的には、例えばR’-Q’が-NH-CO-Q4’-CO-である場合(Q4’は置換もしくは無置換の炭素数1~12のアルキレンである)、工程23において、化合物(IV-C)と、CHCH-O-CO-Q4’-CO-OH(Q4’は前記と同義)とを、工程23と同様の方法で縮合させ、得られた化合物のエチルエステルをエタノールや水等の溶媒中、水酸化リチウム等の塩基で加水分解した後に、さらにR’-NH(R’は前記と同義)と縮合させることで目的とする化合物を得ることができる。なお、CHCH-O-CO-Q4’-CO-OH(Q4’は前記と同義)およびR’-NH2(R’は前記と同義)は、公知の方法(例えば、Journal of American Chemical Society, 136, 16958 (2014)を参照)もしくはそれに準じた方法で得ることができる。 In addition, in the above-mentioned step 23, if necessary, compound (ID) can be divided into two units, divided into two steps, and condensed with compound (IV-C). Specifically, for example, when R'-Q 'is -NH-CO-Q4'-CO- (Q4' is substituted or unsubstituted alkylene having 1 to 12 carbon atoms), the compound in step 23 (IV-C) and CH 3 CH 2 —O—CO—Q 4 ′ —CO—OH (Q 4 ′ is as defined above) are condensed in the same manner as in step 23 to obtain ethyl ester of the compound obtained The compound is hydrolyzed with a base such as lithium hydroxide in a solvent such as ethanol or water, and then it is condensed with R′—NH 2 (R ′ is as defined above) to give the desired compound. Incidentally, CH 3 CH 2 -O-CO -Q4'-CO-OH (Q4 ' is as defined above) and R'-NH2 (R' is as defined above), a known method (for example, Journal of American Chemical Society, 136, 16958 (2014)) or a similar method.
 Qが-CO-である場合を例示して示しているが、Qが-CO-でない場合の化合物についても、Qの構造を適宜変更することにより、上記と同様の方法、公知の方法またはこれらを組み合わせ、適宜反応条件を変更することにより調製することができる。 Although the case where Q is -CO- is illustrated as an example, the same method as in the above, known methods or these are also applied to compounds where Q is not -CO- by appropriately changing the structure of Q. Can be prepared by combining and changing the reaction conditions appropriately.
  製造方法5
 本発明における核酸誘導体は、式(V’)で表される部分構造を有する化合物の製造方法として、その製造方法を例示することができる。
Manufacturing method 5
The nucleic acid derivative in the present invention can be exemplified as a method for producing a compound having a partial structure represented by the formula (V ′).
Figure JPOXMLDOC01-appb-C000156
Figure JPOXMLDOC01-appb-C000156
(式中、DMTr、R、R’、X、Q’、TBDMS、FmocおよびPolymerは前記と同義。) (Wherein, DMTr, R, R ′, X, Q ′, TBDMS, Fmoc and Polymer are as defined above)
 化合物(V’)は、化合物(IV-A)を用い、製造方法2の工程1から工程7と同様の条件にて製造することができる。なお、化合物(IV-A)は市販品として得ることができる。 Compound (V ′) can be produced using compound (IV-A) under the same conditions as steps 1 to 7 of production method 2. Compound (IV-A) can be obtained as a commercial product.
 また、上記工程31において、必要により、化合物(I-D)を二つのユニットに分割し、2段階に分けて化合物(V-D)と縮合することで行うこともできる。具体的には、例えばR’-Q’が-NH-CO-Q4’-CO-である場合(Q4’は置換もしくは無置換の炭素数1~12のアルキレンである)、工程31において、化合物(V-D)と、CHCH-O-CO-Q4’-CO-OH(Q4’は前記と同義)とを、工程31と同様の方法で縮合させ、得られた化合物のエチルエステルをエタノールや水等の溶媒中、水酸化リチウム等の塩基で加水分解した後に、さらにR’-NH(R’は前記と同義)と縮合させることで目的とする化合物を得ることができる。なお、CHCH-O-CO-Q4’-CO-OH(Q4’は前記と同義)およびR’-NH(R’は前記と同義)は、公知の方法(例えば、Journal of American Chemical Society, 136, 16958 (2014)を参照)もしくはそれに準じた方法で得ることができる。 In addition, in the above-mentioned step 31, the compound (ID) can also be divided into two units if necessary, divided into two steps, and condensed with the compound (VD). Specifically, for example, when R'-Q 'is -NH-CO-Q4'-CO- (Q4' is substituted or unsubstituted alkylene having 1 to 12 carbon atoms), the compound in step 31 (VD) and CH 3 CH 2 —O—CO—Q 4 ′ —CO—OH (Q 4 ′ is as defined above) are condensed in the same manner as in step 31 to obtain ethyl ester of the compound obtained The compound is hydrolyzed with a base such as lithium hydroxide in a solvent such as ethanol or water, and then it is condensed with R′—NH 2 (R ′ is as defined above) to give the desired compound. Incidentally, CH 3 CH 2 -O-CO -Q4'-CO-OH (Q4 ' is as defined above) and R'-NH 2 (R' is as defined above), a known method (for example, Journal of American Chemical Society, 136, 16958 (2014)) or a method analogous thereto.
 Qが-CO-である場合を例示して示してるが、Qが-CO-でない場合の化合物についても、Q-OHの構造を適宜変更することにより、上記と同様の方法、公知の方法またはこれらを組み合わせ、適宜反応条件を変更することにより調製することができる。 Although the case where Q is -CO- is illustrated as an example, the method similar to the above, the known method or the method described above is also applied to the compound where Q is not -CO- by appropriately changing the structure of Q-OH. It can prepare by combining these and changing reaction conditions suitably.
  製造方法6
 オリゴヌクレオチドの5’末端に糖リガンド-テザー-ブランチャーユニットが結合した、本発明の核酸複合体の製造方法を以下に例示する。
Manufacturing method 6
The method for producing the nucleic acid complex of the present invention in which a sugar ligand-tether-brancher unit is linked to the 5 'end of the oligonucleotide is exemplified below.
Figure JPOXMLDOC01-appb-C000157
(式中、R、R’、Q’、DMTrおよびXは前記と同義である)
Figure JPOXMLDOC01-appb-C000157
(Wherein, R, R ′, Q ′, DMTr and X are as defined above)
工程35
 化合物(I-H)は、化合物(II-E)と2-シアノエチル-N,N,N’,N’-テトライソプロピルホスホジアミダイトを、無溶媒でまたは溶媒中、塩基および反応促進剤共存下、室温と200℃の間の温度で、5分間~100時間反応させることにより製造することができる。
 溶媒としては、製造方法1の工程2で例示したものがあげられる。
 塩基としては、製造方法1の工程3で例示したものがあげられる。
 反応促進剤としては、例えば、1H-テトラゾール、4,5-ジシアノイミダゾール、5-エチルチオテトラゾール、5-ベンジルチオテトラゾール等があげられ、市販品として購入できる。
Step 35
Compound (I-H) comprises compound (II-E) and 2-cyanoethyl-N, N, N ′, N′-tetraisopropylphosphodiamidite in the presence of a base and a reaction accelerator either in the absence or in the presence of a solvent. C., at a temperature between room temperature and 200.degree. C., for 5 minutes to 100 hours.
As the solvent, those exemplified in step 2 of production method 1 can be mentioned.
As the base, those exemplified in step 3 of production method 1 can be mentioned.
Examples of reaction accelerators include 1H-tetrazole, 4,5-dicyanoimidazole, 5-ethylthiotetrazole, 5-benzylthiotetrazole and the like, and they can be purchased as commercial products.
工程36
 オリゴヌクレオチド鎖を伸長し、最後に化合物(I-H)を用い、オリゴヌクレオチドの5’末端を糖リガンド-テザー-ブランチャーユニットで修飾した後、固相からの脱離、保護基の脱保護および精製を行うことにより、化合物(I’’)を製造することができる。ここで、固相からの脱離、保護基の脱保護および精製は、それぞれ製造方法1の工程7と同様にして製造できる。
Step 36
The oligonucleotide chain is extended, and finally the compound (IH) is used to modify the 5 'end of the oligonucleotide with a sugar ligand-tether-brancher unit, followed by removal from the solid phase, deprotection of the protecting group Compound (I ′ ′) can be produced by performing and purification. Here, the removal from the solid phase, the deprotection of the protective group and the purification can be carried out in the same manner as in step 7 of production method 1, respectively.
  製造方法7
 オリゴヌクレオチドの5’末端に糖リガンド-テザー-ブランチャーユニットが結合した、本発明の核酸複合体の製造方法を以下に例示する。
Manufacturing method 7
The method for producing the nucleic acid complex of the present invention in which a sugar ligand-tether-brancher unit is linked to the 5 'end of the oligonucleotide is exemplified below.
 製造方法6の工程35および36と同様の条件にて製造することができる。 It can manufacture on the conditions similar to the processes 35 and 36 of the manufacturing method 6.
Figure JPOXMLDOC01-appb-C000158
Figure JPOXMLDOC01-appb-C000158
(式中、R、R’、Q’、DMTrおよびXは前記と同義である) (Wherein, R, R ', Q', DMTr and X are as defined above)
  製造方法8
 オリゴヌクレオチドの5’末端に糖リガンド-テザー-ブランチャーユニットが結合した、本発明の核酸複合体の製造方法を以下に例示する。
Manufacturing method 8
The method for producing the nucleic acid complex of the present invention in which a sugar ligand-tether-brancher unit is linked to the 5 'end of the oligonucleotide is exemplified below.
 製造方法6の工程35および36と同様の条件にて製造することができる。 It can manufacture on the conditions similar to the processes 35 and 36 of the manufacturing method 6.
Figure JPOXMLDOC01-appb-C000159
Figure JPOXMLDOC01-appb-C000159
(式中、R、R’、Q’、DMTrおよびXは前記と同義である) (Wherein, R, R ', Q', DMTr and X are as defined above)
  製造方法9
 オリゴヌクレオチドの5’末端に糖リガンド-テザー-ブランチャーユニットが結合した、本発明の核酸複合体の製造方法を以下に例示する。
Manufacturing method 9
The method for producing the nucleic acid complex of the present invention in which a sugar ligand-tether-brancher unit is linked to the 5 'end of the oligonucleotide is exemplified below.
 製造方法6の工程35および36と同様の条件にて製造することができる。 It can manufacture on the conditions similar to the processes 35 and 36 of the manufacturing method 6.
Figure JPOXMLDOC01-appb-C000160
Figure JPOXMLDOC01-appb-C000160
(式中、R、R’、Q’、DMTrおよびXは前記と同義である) (Wherein, R, R ', Q', DMTr and X are as defined above)
  製造方法10
 オリゴヌクレオチドの5’末端に糖リガンド-テザー-ブランチャーユニットが結合した、本発明の核酸複合体の製造方法を以下に例示する。
Manufacturing method 10
The method for producing the nucleic acid complex of the present invention in which a sugar ligand-tether-brancher unit is linked to the 5 'end of the oligonucleotide is exemplified below.
 製造方法6の工程35および36と同様の条件にて製造することができる。 It can manufacture on the conditions similar to the processes 35 and 36 of the manufacturing method 6.
Figure JPOXMLDOC01-appb-C000161
Figure JPOXMLDOC01-appb-C000161
(式中、R、R’、Q’、DMTrおよびXは前記と同義である) (Wherein, R, R ', Q', DMTr and X are as defined above)
  製造方法11
 二本鎖核酸を構成するセンス鎖の3末端’または5’末端に糖リガンド-テザー-ブランチャーユニットを有するセンス鎖と、二本鎖核酸を構成するアンチセンス鎖とを、水または適当な緩衝液にそれぞれ溶解し、混合することにより二本鎖核酸を有する核酸複合体を得ることができる。
 緩衝液としては、例えば酢酸緩衝液、トリス緩衝液、クエン酸緩衝液、リン酸緩衝液、水等が挙げられ、これらを単独または混合して用いられる。
Manufacturing method 11
Water or a suitable buffer of the sense strand having a sugar ligand-tether-brancher unit at the 3 'end or 5' end of the sense strand constituting the double stranded nucleic acid, and the antisense strand constituting the double stranded nucleic acid A nucleic acid complex having double-stranded nucleic acid can be obtained by dissolving each in a liquid and mixing.
Examples of the buffer include acetate buffer, Tris buffer, citrate buffer, phosphate buffer, water and the like, and these may be used alone or in combination.
 センス鎖とアンチセンス鎖の混合比としては、センス鎖1当量に対してアンチセンス鎖が0.5~2当量が好ましく、0.9~1.1当量がより好ましく、0.95当量~1.05当量がさらに好ましい。 The mixing ratio of the sense strand to the antisense strand is preferably 0.5 to 2 equivalents, more preferably 0.9 to 1.1 equivalents, and 0.95 equivalents to 1 equivalent of the antisense strand per equivalent of the sense strand. More preferred is .05 equivalents.
 また、該センス鎖と該アンチセンス鎖を混合後、適宜アニーリング処理を行ってもよい。アニーリング処理は、センス鎖とアンチセンス鎖の混合物を、好ましくは50~100℃、より好ましくは60~100℃、さらに好ましくは80~100℃に加熱した後に、室温まで徐冷することにより行うことができる。 In addition, after mixing the sense strand and the antisense strand, an annealing treatment may be appropriately performed. The annealing treatment is carried out by heating the mixture of sense strand and antisense strand to preferably 50 to 100 ° C., more preferably 60 to 100 ° C., still more preferably 80 to 100 ° C., and then gradually cooling to room temperature. Can.
 アンチセンス鎖は、上記の公知オリゴヌクレオチド合成法に準じて得ることができる。 The antisense strand can be obtained according to the known oligonucleotide synthesis method described above.
  製造方法12
 本発明における核酸誘導体は、式(VI’)で表される部分構造を有する化合物の製造方法として、その製造方法を例示することができる。
Manufacturing method 12
The nucleic acid derivative in the present invention can be exemplified as a method for producing a compound having a partial structure represented by the formula (VI ′).
Figure JPOXMLDOC01-appb-C000162
Figure JPOXMLDOC01-appb-C000162
(式中、DMTr、R、R’、X、Q’、Polymer、およびFmocは前記と同義であり、TBSはt-ブチルジメチルシリル基を表し、R0およびRxは、同一または異なって、水素原子、C1~C10のアルキレンまたはC3-C8のシクロアルキレンを表し、WはC1~C10のアルキレン、C3-C8のシクロアルキレンであるか、R0と一緒になって、C4-C8の含窒素複素環を形成してもよい。) (Wherein, DMTr, R, R ′, X, Q ′, Polymer, and Fmoc are as defined above, TBS represents a t-butyldimethylsilyl group, R 0 and R x are the same or different, and are hydrogen atoms , A C1-C10 alkylene or a C3-C8 cycloalkylene, W is a C1-C10 alkylene, a C3-C8 cycloalkylene, or together with R0, a C4-C8 nitrogen-containing heterocyclic ring You may form.)
工程45
 化合物(VI-B)は化合物(VI-A)を用い、製造方法1の工程1と同様の条件にて製造することができる。
 化合物(VI-A)は市販品として、または公知の方法(例えばバイオオーガニック・アンド・メディシナル・ケミストリー・レターズ,第11巻,383-386頁)もしくはそれに準じた方法で得ることができる。
Step 45
Compound (VI-B) can be produced using compound (VI-A) under the same conditions as in step 1 of production method 1.
Compound (VI-A) can be obtained as a commercially available product, or by a known method (eg, Bioorganic & Medical Chemistry Letters, 11: 383-386) or a method analogous thereto.
工程46
 化合物(VI-C)は化合物(VI-B)を用い、製造方法1の工程2と同様の条件にて製造することができる。
Step 46
Compound (VI-C) can be produced using compound (VI-B) under the same conditions as in step 2 of production method 1.
工程47
 化合物(VI-D)は化合物(VI-C)を用い、製造方法1の工程3と同様の条件にて製造することができる。
Step 47
Compound (VI-D) can be produced using compound (VI-C) under the same conditions as in step 3 of production method 1.
工程48
 化合物(VI-E)は化合物(VI-D)を用い、製造方法1の工程2と同様の条件にて製造することができる。
Step 48
Compound (VI-E) can be produced using compound (VI-D) under the same conditions as in step 2 of production method 1.
工程49
 化合物(VI-G)は化合物(VI-E)と化合物(VI-F)とを用い、製造方法1の工程3と同様の条件にて製造することができる。
Step 49
Compound (VI-G) can be produced under the same conditions as in step 3 of production method 1 using compound (VI-E) and compound (VI-F).
工程50
 化合物(VI-H)は化合物(VI-G)を用い、製造方法2の工程9と同様の条件にて製造することができる。
Step 50
Compound (VI-H) can be produced using compound (VI-G) under the same conditions as in step 9 of production method 2.
工程51~53
 化合物(VI’)は化合物(VI-H)、化合物(VI-I)および化合物(VI-J)を用い、製造方法1の工程4~6と同様の条件にて製造することができる。
Steps 51-53
Compound (VI ′) can be produced using compound (VI-H), compound (VI-I) and compound (VI-J) under the same conditions as in steps 4 to 6 of production method 1.
 工程45~53は公知の方法(例えば国際公開第2015/105083号記載の方法)、またはそれに準じた方法でも実施することができる。
 化合物(VI-F)は公知の方法(例えば、ジャーナル・オブ・アメリカン・ケミカル・ソサイエティ(Journal of American Chemical Society), 136巻, 16958貢, 2014年記載の方法)、またはそれに準じた方法で得ることができる。
Steps 45 to 53 can be carried out by a known method (for example, the method described in WO 2015/105083) or a method analogous thereto.
Compound (VI-F) can be obtained by a known method (for example, a method described in Journal of American Chemical Society, 136, 16958, Trio, 2014), or a method according thereto be able to.
  製造方法13
 式2においてP1およびP4が-NH-CO-、-O-CO-または-S-CO-である、糖リガンド-テザーーユニットは以下の方法で製造することができる。
Manufacturing method 13
The sugar ligand-tether unit in formula 2 wherein P1 and P4 are -NH-CO-, -O-CO- or -S-CO- can be produced by the following method.
Figure JPOXMLDOC01-appb-C000163
Figure JPOXMLDOC01-appb-C000163
(式中、Q1、Q2、Q3、Q4、Q5、P2、P3、P5、P6、P7、T1、T2、L1、L2、q1、q2、q3およびq4はそれぞれ前記と同義であり、q2’はq2より1小さい整数を表し、q4’はq4より1小さい整数を表し、P1’およびP4’は、それぞれ独立して、-NH-CO-、-O-CO-または-S-CO-を表し、ZはH、OH、NH、SH、塩素原子、臭素原子、ヨウ素原子、メタンスルホニルオキシ、p-トルエンスルホニルオキシまたはカルボン酸を表し、B1’およびB2’は下記式の構造体のいずれか1つを表し、PG1、PG2、PG3、PG4、PG5、PG6およびPG7はそれぞれ適切な保護基を表す。)
式:
(Wherein, Q 1, Q 2, Q 3, Q 4, Q 5, P 2, P 3, P 5, P 6, P 7, T 1, T 2, L 1, L 2, q 1, q 2, q 3 and q 4 are as defined above, and q 2 ′ is represents an integer smaller than 1 by q2, q4 'represents an integer smaller by 1 than q4, P1' and P4 'each independently represent -NH-CO-, -O-CO- or -S-CO- , Z represents H, OH, NH 2 , SH, a chlorine atom, a bromine atom, an iodine atom, methanesulfonyloxy, p-toluenesulfonyloxy or a carboxylic acid, and B1 'and B2' are any of the structures of the following formulas And PG1, PG2, PG3, PG4, PG5, PG6 and PG7 each represent a suitable protecting group.)
formula:
Figure JPOXMLDOC01-appb-C000164
Figure JPOXMLDOC01-appb-C000164
m1、m2、m3またはm4はそれぞれ独立して、0~10の整数を表す。 m1, m2, m3 or m4 each independently represent an integer of 0 to 10.
工程54
 化合物(VII-C)は、化合物(VII-A)と化合物(VII-B)を、テトロヒドロフラン等の溶媒中、トリフェニルホスフィンポリマー担持体を加え、氷冷下、ジイソプロピルアゾジカルボキシレートトルエン溶液を反応させることにより製造することができる。
 溶媒としては製造工程1の工程2で例示したものが挙げられる。
 化合物(VII-A)は市販品として得ることができる。
Step 54
Compound (VII-C) is obtained by adding Compound (VII-A) and Compound (VII-B) in a solvent such as tetrohydrofuran etc, triphenylphosphine polymer support, and under ice-cooling, diisopropylazodicarboxylate toluene It can be produced by reacting a solution.
As the solvent, those exemplified in step 2 of production process 1 can be mentioned.
Compound (VII-A) can be obtained as a commercial product.
工程55
 化合物(VII-D)は化合物(VII-C)を用い、メタノール等の溶媒中、氷冷下、塩基の存在下、反応させることにより製造することができる。
 溶媒としては、製造工程1の工程2で例示したものが挙げられる。
 塩基としては、製造工程1の工程3で例示したものが挙げられる。
Step 55
Compound (VII-D) can be produced by reacting Compound (VII-C) in a solvent such as methanol under ice-cooling in the presence of a base.
As the solvent, those exemplified in step 2 of production process 1 can be mentioned.
As the base, those exemplified in Step 3 of Production Process 1 can be mentioned.
工程56
 化合物(VII-F)は化合物(VII-D)および化合物(VII-E)を用い、製造工程1の工程3と同様の条件で製造することができる。
Step 56
Compound (VII-F) can be produced using compound (VII-D) and compound (VII-E) under the same conditions as in step 3 of production process 1.
工程57
 化合物(VII-H)は化合物(VII-F)および化合物(VII-G)を用い、製造工程1の工程3と同様の条件で製造することができる。
Step 57
Compound (VII-H) can be produced using compound (VII-F) and compound (VII-G) under the same conditions as in step 3 of production process 1.
工程58
 化合物(VII-J)は化合物(VII-H)および化合物(VII-I)を用い、製造工程1の工程3と同様の条件で製造することができる。
 また、DP工程と工程58を繰り返し行うことで、望みのq1の値をもつ化合物(VII-J)を製造することができる。
Step 58
Compound (VII-J) can be produced using compound (VII-H) and compound (VII-I) under the same conditions as in step 3 of production process 1.
Also, by repeatedly performing the DP step and the step 58, a compound (VII-J) having a desired value of q1 can be produced.
工程59
 化合物(VII-L)は化合物(VII-J)および化合物(VII-K)を用い、製造工程1の工程3と同様の条件で製造することができる。
Step 59
Compound (VII-L) can be produced using compound (VII-J) and compound (VII-K) under the same conditions as in step 3 of production process 1.
工程60
 化合物(VII-N)は化合物(VII-L)および化合物(VII-M)を用い、製造工程1の工程3と同様の条件で製造することができる。
Step 60
Compound (VII-N) can be produced using compound (VII-L) and compound (VII-M) under the same conditions as in step 3 of production process 1.
工程61~63
 化合物(VII’)は化合物(VII-O)、化合物(VII-P)および化合物 (VII-Q)を用い、製造工程1の工程3と同様の条件で製造することができる。
 また、DP工程と工程61を繰り返し行うことで、望みのq3の値をもつ化合物(VII’)を製造することができる。
Steps 61 to 63
Compound (VII ′) can be produced using compound (VII-O), compound (VII-P) and compound (VII-Q) under the same conditions as in step 3 of production process 1.
Also, by repeatedly performing the DP step and the step 61, a compound (VII ′) having a desired q3 value can be produced.
工程DP
 有機合成化学で常用される方法[例えば、プロテクティブ・グループス・イン・オーガニック・シンセシス第3版(Protective Groups in Organic Synthesis, third edition)、グリーン(T.W.Greene)著、John Wiley&Sons Inc.(1999年)等に記載の方法等]を適切に用いることで製造することができる。
 化合物(VII-B)、化合物(VII-E)、化合物(VII-G)、化合物(VII-I)、化合物(VII-K)、化合物(VII-M)、化合物(VII-O)、化合物(VII-P)および化合物(VII-Q)は市販品として、または「実験化学講座第4版 有機合成、p. 258、丸善(1992年)」、「March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7th Edition」に記載の方法を組み合わせること、もしくはそれに準じた方法で得ることができる。
Process DP
Methods commonly used in organic synthesis chemistry [eg Protective Groups in Organic Synthesis, third edition), by T. W. Greene, John Wiley & Sons Inc. (1999), etc.] can be used appropriately.
Compound (VII-B), Compound (VII-E), Compound (VII-G), Compound (VII-I), Compound (VII-K), Compound (VII-M), Compound (VII-O), Compound (VII-P) and the compound (VII-Q) are commercially available, or “Experimental Chemistry Lecture 4th Edition Organic Synthesis, p. 258, Maruzen (1992)”, “March's Advanced Organic Chemistry: Reactions, Mechanisms , And Structure, 7 th Edition "can be obtained by combining the methods described in the above or similar methods.
  製造方法14
 式4においてP7が-O-である、ユニットは以下の方法で製造することができる。
Manufacturing method 14
A unit in which P7 is -O- in Formula 4 can be manufactured by the following method.
Figure JPOXMLDOC01-appb-C000165
Figure JPOXMLDOC01-appb-C000165
(式中、Q5、P7、q5はそれぞれ前記と同義であり、q5’’はq5より2小さい整数を表し、q5’はq5より1小さい整数を表し、Z2はH、OH、NHまたはSHを表し、PG8およびPG9はそれぞれ適切な保護基を表し、LCは糖リガンド-テザーユニットを表し、Eはカルボン酸またはマレイミドを表す。) (Wherein, Q5, P7, q5 are as defined above, q5 ′ ′ is an integer smaller than 2 by q5, q5 ′ is an integer smaller than 1 by 5, and Z2 is H, OH, NH 2 or SH , PG8 and PG9 each represent a suitable protecting group, LC represents a sugar ligand-tether unit, and E represents a carboxylic acid or maleimide.)
工程64
 化合物(VIII-C)は化合物(VIII-A)および化合物(VIII-B)を用い、製造工程1の工程3と同様の条件で製造することができる。
 また、DP工程と工程64を繰り返し行うことで、望みのq5’’の値をもつ化合物(VIII-C)を製造することができる。 化合物(VIII-B)は市販品として、または「実験化学講座第4版 有機合成、p. 258、丸善(1992年)」、「March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7th Edition」に記載の方法を組み合わせること、もしくはそれに準じた方法で得ることができる。
Step 64
Compound (VIII-C) can be produced using compound (VIII-A) and compound (VIII-B) under the same conditions as in step 3 of production process 1.
Also, by repeatedly performing the DP step and the step 64, a compound (VIII-C) having a desired q5 ′ ′ value can be produced. Compound (VIII-B) is commercially available, or “Experimental Chemistry Lecture 4th Edition Organic Synthesis, p. 258, Maruzen (1992)”, “March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7 th It can obtain by combining the method as described in Edition, or the method according to it.
工程65
 化合物(VIII’)は化合物(VIII-C)および化合物(VIII-D)を用い、製造工程1の工程3と同様の条件で製造することができる。
 化合物(VIII-D)は市販品として、または「実験化学講座第4版 有機合成、p. 258、丸善(1992年)」、「March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7th Edition」に記載の方法を組み合わせること、もしくはそれに準じた方法で得ることができる。
Step 65
Compound (VIII ′) can be produced using compound (VIII-C) and compound (VIII-D) under the same conditions as in step 3 of production process 1.
Compound (VIII-D) is commercially available, or “Experimental Chemistry Lecture 4th Edition Organic Synthesis, p. 258, Maruzen (1992)”, “March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7 th It can obtain by combining the method as described in Edition, or the method according to it.
工程DP
 有機合成化学で常用される方法[例えば、プロテクティブ・グループス・イン・オーガニック・シンセシス第3版(Protective Groups in Organic Synthesis, third edition)、グリーン(T.W.Greene)著、John Wiley&Sons Inc.(1999年)等に記載の方法等]を適切に用いることで製造することができる。
Process DP
Methods commonly used in organic synthesis chemistry [eg Protective Groups in Organic Synthesis, third edition), by T. W. Greene, John Wiley & Sons Inc. (1999), etc.] can be used appropriately.
  製造方法15
 式2においてP1およびP4が-O-である、糖リガンド-テザーユニットは以下の方法で製造することができる。
Manufacturing method 15
A sugar ligand-tether unit in which P1 and P4 in the formula 2 are -O- can be produced by the following method.
Figure JPOXMLDOC01-appb-C000166
Figure JPOXMLDOC01-appb-C000166
(式中、Q1、Q2、Q3、Q4、P2、P3、P5、P6、T1、T2、L1、L2、q1、q2、q3、q4、q2’、q4’ 、Z、B1’、B2’はそれぞれ前記と同義であり、PG10、PG11、PG12、PG13、PG14およびPG15はそれぞれ適切な保護基を表す)
式:
(Wherein, Q1, Q2, Q3, Q4, P2, P3, P5, P6, T1, T2, L1, L2, q1, q2, q3, q4, q2 ', q4', Z, B1 ', B2' are And PG10, PG11, PG12, PG13, PG14 and PG15 each represent a suitable protecting group.
formula:
Figure JPOXMLDOC01-appb-C000167
Figure JPOXMLDOC01-appb-C000167
m1、m2、m3およびm4は前記と同義である。 m1, m2, m3 and m4 are as defined above.
工程66
 化合物(IX-C)は化合物(IX-A)と化合物(IX-B)をN,N’-ジメチルホルムアミドな等の溶媒に溶解し、炭酸水素カリウム等の塩基を加えて、室温~200℃にて5分間~100時間反応させることにより製造することができる。
 溶媒としては、製造工程1の工程2に例示したものが挙げられる。
 塩基としては、製造工程1の工程3で例示したものが挙げられる。
Step 66
Compound (IX-C) is prepared by dissolving Compound (IX-A) and Compound (IX-B) in a solvent such as N, N′-dimethylformamide, adding a base such as potassium hydrogen carbonate, and the like to room temperature to 200 ° C. The reaction can be carried out by reacting for 5 minutes to 100 hours.
As the solvent, those exemplified in step 2 of production process 1 can be mentioned.
As the base, those exemplified in Step 3 of Production Process 1 can be mentioned.
工程67
 化合物(IX-E)は化合物化合物(IX-C)と化合物(IX-D)をN, N’-ジメチルホルムアミド等の溶媒に溶解し、炭酸水素カリウム等の塩基を加えて、室温~200℃で5分間~100時間反応させることにより製造することができる。
 溶媒としては、製造工程1の工程2で例示したものが挙げられる。
 塩基としては、製造工程1の工程3で例示したものが挙げられる。
 化合物(IX-A)は市販品として得ることができる。
Step 67
Compound (IX-E) is prepared by dissolving Compound (IX-C) and Compound (IX-D) in a solvent such as N, N′-dimethylformamide, adding a base such as potassium hydrogen carbonate, and the like to room temperature to 200 ° C. The reaction can be carried out by reacting for 5 minutes to 100 hours.
As the solvent, those exemplified in step 2 of production process 1 can be mentioned.
As the base, those exemplified in Step 3 of Production Process 1 can be mentioned.
Compound (IX-A) can be obtained as a commercial product.
工程68
 化合物(IX-G)は化合物(IX-E)および化合物(IX-F)を用い、製造工程1の工程3と同様の条件で製造することができる。
Step 68
Compound (IX-G) can be produced using compound (IX-E) and compound (IX-F) under the same conditions as in step 3 of production process 1.
工程69
 化合物(IX-I)は化合物(IX-G)および化合物(IX-H)を用い、製造工程1の工程3と同様の条件で製造することができる。
 また、DP工程と工程69を繰り返し行うことで、望みのq1の値をもつ化合物(VII-J)を製造することができる。
Step 69
Compound (IX-I) can be produced using compound (IX-G) and compound (IX-H) under the same conditions as in step 3 of production process 1.
Also, by repeatedly performing the DP step and the step 69, it is possible to produce the compound (VII-J) having a desired value of q1.
工程70
 化合物(IX-K)は化合物(IX-I)および化合物(IX-J)を用い、製造工程1の工程3と同様の条件で製造することができる。
Step 70
Compound (IX-K) can be produced using compound (IX-I) and compound (IX-J) under the same conditions as in step 3 of production process 1.
工程71
 化合物(IX-M)は化合物(IX-K)および化合物(IX-L)を用い、製造工程1の工程3と同様の条件で製造することができる。
Step 71
Compound (IX-M) can be produced using compound (IX-K) and compound (IX-L) under the same conditions as in step 3 of production process 1.
工程72-74
 化合物(IX’)は化合物(IX-M), 化合物(IX-N), 化合物(IX-O)および化合物(IX-P)を用い、製造工程1の工程3と同様の条件で製造することができる。
 また、DP工程と工程72を繰り返し行うことで、望みのq3の値をもつ化合物(IX’)を製造することができる。
Steps 72-74
The compound (IX ′) can be produced using compound (IX-M), compound (IX-N), compound (IX-O) and compound (IX-P) under the same conditions as in step 3 of production process 1. Can.
Also, by repeatedly performing the DP step and the step 72, the compound (IX ′) having a desired value of q3 can be produced.
工程DP
 有機合成化学で常用される方法[例えば、プロテクティブ・グループス・イン・オーガニック・シンセシス第3版(Protective Groups in Organic Synthesis, third edition)、グリーン(T.W.Greene)著、John Wiley&Sons Inc.(1999年)等に記載の方法等]を適切に用いることで製造することができる。
Process DP
Methods commonly used in organic synthesis chemistry [eg Protective Groups in Organic Synthesis, third edition), by T. W. Greene, John Wiley & Sons Inc. (1999), etc.] can be used appropriately.
 化合物(IX’-B), 化合物(IX’-D), 化合物(IX’-F), 化合物(IX’-H), 化合物(IX’-J), 化合物(IX’-L), 化合物(IX’-N), 化合物(IX’-O)および化合物(IX’-P)は市販品として、または「実験化学講座第4版 有機合成、p. 258、丸善(1992年)」、「March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7th Edition」に記載の方法を組み合わせること、もしくはそれに準じた方法で得ることができる。 Compound (IX'-B), Compound (IX'-D), Compound (IX'-F), Compound (IX'-H), Compound (IX'-J), Compound (IX'-L), Compound (IX) IX'-N), compound (IX'-O) and compound (IX'-P) are commercially available products, or "Experimental Chemistry Lecture 4th Edition Organic Synthesis, p. 258, Maruzen (1992)", "March 's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7 th Edition "combining the methods described, or can be obtained by a method analogous thereto.
  製造方法16
 式1~式8の核酸複合体の製造方法として、以下の方法も用いることができる。
Manufacturing method 16
The following method can also be used as a method for producing the nucleic acid complex of Formula 1 to Formula 8.
Figure JPOXMLDOC01-appb-C000168
Figure JPOXMLDOC01-appb-C000168
(式中、LC、Q5、Q6、Q7、P7、P8、q5’、q6およびXは前記と同義である。) (Wherein, LC, Q5, Q6, Q7, P7, P8, q5 ', q6 and X are as defined above)
工程75
 化合物(X-B)は化合物(XIII’’)と化合物(X-A)を溶媒中、0℃~100℃で10秒間~100時間反応させることにより製造することができる。
 溶媒としては水、リン酸緩衝液、酢酸ナトリウム緩衝液、ジメチルスルホキシド等があげられ、これらは単独でまたは混合して用いられる。
 化合物(VIII’)は製造法14を用いることで、得ることができる。
Step 75
Compound (XB) can be produced by reacting compound (XIII ′ ′) with compound (XA) in a solvent at 0 ° C. to 100 ° C. for 10 seconds to 100 hours.
Examples of the solvent include water, phosphate buffer, sodium acetate buffer, dimethyl sulfoxide and the like, and these can be used alone or in combination.
Compound (VIII ′) can be obtained by using production method 14.
 化合物(X-A)は公知の方法(例えばバイオコンジュゲート・ケミストリー(Bioconjugate Chemistry), 第21巻, 187-202頁, 2010年、またはカレント・プロトコールズ・イン・ヌクレイック・アシッド・ケミストリー (Current Protocols in Nucleic Acid Chemistry), 2010年, 9月; CHAPTER: Unit 4.41)もしくはそれに準じた方法で得ることができる。 The compound (X-A) can be prepared by a known method (for example, Bioconjugate Chemistry, Vol. 21, pp. 187-202, 2010, or Current Protocols in Nucleic Acid Chemistry (Current Protocols) in Nucleic Acid Chemistry), September, 2010; CHAPTER: Unit 4.41) or an equivalent method.
工程76
 化合物(X’)は化合物(X-B)を用いて炭酸ナトリウム水溶液またはアンモニア水中等pH8以上の条件下、室温と200℃の間の温度で、5分間~100時間反応させることにより製造することができる。
Step 76
The compound (X ′) is produced by reacting the compound (X-B) at a temperature of room temperature and 200 ° C. for 5 minutes to 100 hours under conditions of pH 8 or more such as aqueous sodium carbonate solution or ammonia water Can.
  製造方法17
 式1~式8の核酸複合体の製造方法として、以下の方法も用いることができる。
Manufacturing method 17
The following method can also be used as a method for producing the nucleic acid complex of Formula 1 to Formula 8.
Figure JPOXMLDOC01-appb-C000169
Figure JPOXMLDOC01-appb-C000169
(式中、LC、Q5、Q6、Q7、P7、P8、q5’、q6およびXは前記と同義である。) (Wherein, LC, Q5, Q6, Q7, P7, P8, q5 ', q6 and X are as defined above)
工程77
 化合物(XI-A)は化合物(VIII’’’)を用いて、公知の方法(例えばバイオコンジュゲート・ケミストリー(Bioconjugate Chemistry), 第26巻, 1451-1455頁, 2015年に記載の方法)またはそれに準じた方法で得ることができる。
 化合物(VIII’’’)は製造法14を用いることで、得ることができる。
Step 77
The compound (XI-A) can be produced by a known method (for example, the method described in Bioconjugate Chemistry, Vol. 26, pp. 1451-1455, 2015) using the compound (VIII ′ ′ ′) It can obtain by the method according to it.
Compound (VIII ′ ′ ′) can be obtained by using production method 14.
工程78
 化合物(XI’)は化合物(XI-A)と化合物(XI-B)を用いて、公知の方法(例えばバイオコンジュゲート・ケミストリー(Bioconjugate Chemistry), 第26巻, 1451-1455頁, 2015年に記載の方法)またははそれに準じた方法で得ることができる。
化合物(XI-B)はバイオコンジュゲート・ケミストリー(Bioconjugate Chemistry), 第26巻, 1451-1455頁, 2015年に記載の方法)またははそれに準じた方法で得ることができる。
Step 78
The compound (XI ′) can be produced using a compound (XI-A) and a compound (XI-B) according to a known method (eg, Bioconjugate Chemistry, vol. 26, p. 1451-1455, 2015) The methods described) or can be obtained by methods analogous thereto.
Compound (XI-B) can be obtained by the method described in Bioconjugate Chemistry, vol. 26, p. 1451-1455 (2015) or a method analogous thereto.
工程79
 また別の方法として、化合物(XI’)は、公知の方法(例えばバイオコンジュゲートケミストリー(Bioconjugate Chemistry), 第22巻,1723-1728頁, 2011年を参照)あるいはそれに準じた方法で、化合物(XI-A)から直接得ることができる。
Step 79
As another method, compound (XI ′) can be obtained by a known method (see, for example, Bioconjugate Chemistry, 22: 1723-1728, 2011) or a method according thereto. It can be obtained directly from XI-A).
 本明細書における核酸複合体は、例えば酸付加塩、金属塩、アンモニウム塩、有機アミン付加塩、アミノ酸付加塩等の塩として得ることも可能である。 The nucleic acid complex in the present specification can also be obtained as a salt such as an acid addition salt, a metal salt, an ammonium salt, an organic amine addition salt, an amino acid addition salt and the like.
 酸付加塩としては、例えば塩酸塩、硫酸塩、リン酸塩等の無機酸塩、酢酸塩、マレイン酸塩、フマル酸塩、クエン酸塩、メタンスルホン酸塩等の有機酸塩が挙げられ、金属塩としては、例えばナトリウム塩、カリウム塩等のアルカリ金属塩、マグネシウム塩、カルシウム塩等のアルカリ土類金属塩、アルミニウム塩、亜鉛塩等が挙げられ、アンモニウム塩としては、例えばアンモニウム、テトラメチルアンモニウム等の塩が挙げられ、有機アミン付加塩としては、例えば、モルホリン、ピペリジン等の付加塩が挙げられ、アミノ酸付加塩としては、例えば、リジン、グリシン、フェニルアラニン等の付加塩が挙げられる。 Examples of acid addition salts include inorganic acid salts such as hydrochlorides, sulfates and phosphates, and organic acid salts such as acetates, maleates, fumarates, citrates and methanesulfonates. Examples of metal salts include alkali metal salts such as sodium salts and potassium salts, alkaline earth metal salts such as magnesium salts and calcium salts, aluminum salts, zinc salts and the like, and examples of ammonium salts include ammonium and tetramethyl Salts such as ammonium may be mentioned, organic amine addition salts may include addition salts such as morpholine and piperidine, and amino acid addition salts may include addition salts such as lysine, glycine and phenylalanine.
 本明細書の核酸複合体の塩を調製したい場合には、該複合体が所望の塩の形で得られるときはそのまま精製すればよく、また、遊離の形で得られるときは、該複合体を適当な溶媒に溶解または懸濁し、対応する酸または塩基を加え、単離・精製すればよい。また、該複合体塩を形成する対イオンを異なる対イオンに変換する際には、該複合体塩を適当な溶媒に溶解または懸濁した後、酸、塩基および/または塩(塩化ナトリウム、塩化アンモニウム等の無機塩等)を数当量~大過剰量加えて単離、精製すればよい。 When it is desired to prepare a salt of the nucleic acid complex of the present invention, the complex may be purified as it is when it is obtained in the form of the desired salt, or when it is obtained in free form, the complex Is dissolved or suspended in an appropriate solvent, the corresponding acid or base is added, and isolation and purification may be performed. In addition, when converting the counter ion that forms the complex salt to a different counter ion, the complex salt is dissolved or suspended in an appropriate solvent, and then an acid, a base and / or a salt (sodium chloride, chloride It may be isolated and purified by adding several equivalent to a large excess amount of an inorganic salt such as ammonium).
 本明細書の核酸複合体の中には、幾何異性体、光学異性体等の立体異性体、互変異性体等が存在し得るものもあるが、全ての可能な異性体およびそれらの混合物も本発明に包含される。 Although some of the nucleic acid complexes of the present invention may have geometric isomers, stereoisomers such as optical isomers, tautomers etc., all possible isomers and their mixtures are also possible. Included in the present invention.
 また、本明細書の核酸複合体は、水または各種溶媒との付加物の形で存在することもああり、これらの付加物も本発明に包含される。 Also, the nucleic acid complex of the present invention may exist in the form of an adduct with water or various solvents, and these adducts are also included in the present invention.
 さらに、本発明の核酸複合体は、分子中の一部あるいは全部の原子が質量数の異なる原子(同位体)(例えば、重水素原子等)で置換されたものも包含される。 Furthermore, the nucleic acid complex of the present invention also includes those in which a part or all of the atoms in the molecule are substituted by atoms (isotopes) having different mass numbers (for example, deuterium atoms etc.).
 本発明の医薬組成物は、式1で表される核酸複合体を含む。本発明の核酸複合体は、L1およびL2の糖リガンドを有することにより、標的細胞に認識され、細胞内に導入される。
 本発明の核酸複合体は、哺乳動物に投与して、生体内において、標的遺伝子の発現を低下または停止させることで抑制し、標的遺伝子に関連する疾患の治療に用いることができる。
 本発明の核酸複合体を治療剤または予防剤として使用する場合、投与経路としては、治療に際し最も効果的な投与経路を使用するのが望ましく、特に限定されるものではないが、例えば、静脈内投与、皮下投与及び筋肉内投与等が挙げられ、好ましくは皮下投与である。
 投与量は、投与対象の病状や年齢、投与経路等によって異なるが、例えば二本鎖のオリゴヌクレオチドに換算した1日投与量が0.1μg~1000 mgとなるように投与すればよく、1日投与量が1~100 mgとなるように投与することがより好ましい。
The pharmaceutical composition of the present invention comprises the nucleic acid complex represented by Formula 1. The nucleic acid complex of the present invention is recognized by the target cell by having the L1 and L2 sugar ligands, and is introduced into the cell.
The nucleic acid complex of the present invention can be administered to a mammal to suppress or reduce the expression of a target gene in vivo, and can be used to treat a disease associated with the target gene.
When the nucleic acid complex of the present invention is used as a therapeutic agent or a prophylactic agent, it is desirable to use the most effective administration route for treatment as a therapeutic agent or a prophylactic agent, and it is not particularly limited. Administration, subcutaneous administration, intramuscular administration and the like can be mentioned, preferably subcutaneous administration.
Although the dose varies depending on the condition, age, administration route and the like of the administration subject, it may be administered, for example, such that the daily dose converted to double-stranded oligonucleotide is 0.1 μg to 1000 mg, daily administration More preferably, the amount is 1 to 100 mg.
 静脈内投与または筋肉内投与に適当な製剤としては、例えば注射剤があげられ、調製した液剤をそのまま例えば注射剤等の形態として用いることも可能であるが、該液剤から例えば濾過、遠心分離等によって溶媒を除去して使用することも、該液剤を凍結乾燥して使用する、および/または例えばマンニトール、ラクトース、トレハロース、マルトースもしくはグリシン等の賦形剤を加えた液剤を凍結乾燥して使用することもできる。
 注射剤の場合、液剤または溶媒を除去または凍結乾燥した組成物に、例えば水、酸、アルカリ、種々の緩衝液、生理食塩水またはアミノ酸輸液等を混合して注射剤を調製することが好ましい。また、例えばクエン酸、アスコルビン酸、システインもしくはEDTA等の抗酸化剤、またはグリセリン、ブドウ糖もしくは塩化ナトリウム等の等張化剤等を添加して注射剤を調製することも可能である。また、例えばグリセリン等の凍結保存剤を加えて凍結保存することもできる。
Examples of preparations suitable for intravenous administration or intramuscular administration include injections, and it is possible to use the prepared solution as it is, for example, in the form of injections, etc. The solvent is removed and used by lyophilization, the solution is used by lyophilization, and / or the solution with an excipient such as mannitol, lactose, trehalose, maltose or glycine is used by lyophilization. It can also be done.
In the case of injection, it is preferable to prepare an injection by mixing, for example, water, acid, alkali, various buffers, physiological saline, amino acid infusion, etc. into a solution or a composition from which a solvent or solvent has been removed or lyophilized. For example, an injection can be prepared by adding an antioxidant such as citric acid, ascorbic acid, cysteine or EDTA, or an isotonic agent such as glycerin, glucose or sodium chloride. For example, a cryopreservative such as glycerin can be added and cryopreserved.
 本発明の組成物を、哺乳動物の細胞に投与することで、本発明の組成物中の二本鎖核酸を細胞内に導入することができる。 The double stranded nucleic acid in the composition of the present invention can be introduced into cells by administering the composition of the present invention to mammalian cells.
 インビボにおける本発明の核酸複合体の哺乳動物の細胞への導入方法は、インビボにおいて行うことのできる公知のトランスフェクションの手順に従って行えばよい。本発明の組成物を、人を含む哺乳動物に静脈内投与することで、肝臓へ送達され、肝臓または肝細胞内に本発明の組成物中の二本鎖核酸を導入することができる。 The introduction of the nucleic acid complex of the present invention into mammalian cells in vivo may be carried out according to known transfection procedures which can be carried out in vivo. The composition of the present invention can be delivered to the liver by intravenous administration to mammals including humans, and the double stranded nucleic acid in the composition of the present invention can be introduced into the liver or hepatocytes.
 肝臓または肝細胞内に本発明の組成物中の二本鎖核酸が導入されると、その肝細胞内のβ2GPI遺伝子の発現を低下させ、β2GPI関連疾患を治療あるいは予防することができる。β2GPI関連疾患としては、自己免疫疾患または血栓症が挙げられ、より具体的には全身性エリテマトーデス(SLE)、抗リン脂質抗体症候群、末期腎不全患者における血液透析合併症および動脈硬化が挙げられる。
投与対象は、哺乳動物であり、ヒトであることが好ましい。
When the double stranded nucleic acid in the composition of the present invention is introduced into the liver or hepatocytes, the expression of the β2GPI gene in the hepatocytes can be reduced to treat or prevent β2GPI related diseases. The β2GPI-related diseases include autoimmune diseases or thrombosis, and more specifically include systemic lupus erythematosus (SLE), antiphospholipid antibody syndrome, hemodialysis complications in patients with end-stage renal failure and arteriosclerosis.
The administration subject is a mammal, preferably a human.
 また、本発明における核酸複合体は、前記疾患の治療剤または予防剤に関するインビボの薬効評価モデルにおいて、β2GPI遺伝子を抑制することの有効性を検証するためのツールとして使用することもできる。インビボの薬効評価モデルとしては、ループスアンチコアグラント(LA)試験等が挙げられる。ここで、LAは、抗β2GPI抗体と同じく抗リン脂質抗体の一種であり、採血した血液のリン脂質依存性凝固反応をインビトロで阻害する活性を示す。LAは主にSLEやAPSといった疾患で出現し、抗β2GPI抗体と同様に血栓症や不育症の発症あるいは病態と相関することが数多く報告されている(“ブラッド(blood)”、2003年、第101巻、第5号、p1827-1832)。そして、抗β2GPI抗体は、β2GPIを介してリン脂質結合活性を獲得することから、β2GPI依存的なLA活性を発揮することも報告されている(“トロンボシスアンドヘモスタシス(Thrombosis and Haemostasis)”、1998、第79巻、第1号、p79-86)。さらに、このβ2GPI依存性LAは病態の発症率と強く相関することが報告されており(“ブラッド(blood)”、2004年、第104巻、第12号、p3598-3602)
、血中β2GPIの発現抑制によってLA活性を解除できれば、β2GPI関連疾患に対する新規かつ有効な治療法を提供可能であると考えられる。臨床検査においてLAは、活性化部分トロンボプラスチン時間、カオリン凝固時間および/または希釈ラッセル蛇毒時間(dRVVT)を測定することで検出することができる。
In addition, the nucleic acid complex in the present invention can also be used as a tool for verifying the efficacy of suppressing the β2GPI gene in an in vivo drug efficacy evaluation model for the therapeutic or preventive agent for the above-mentioned diseases. As an in vivo efficacy evaluation model, lupus anticoagulant (LA) test and the like can be mentioned. Here, LA is a kind of antiphospholipid antibody like anti-β2GPI antibody, and exhibits an activity of inhibiting phospholipid-dependent coagulation reaction of collected blood in vitro. LA mainly appears in diseases such as SLE and APS, and many have been reported to be correlated with the onset or pathogenesis of thrombosis and infertility like anti-β2GPI antibodies (“blood”, 2003, Vol. 101, No. 5, p1827-1832). And, it is also reported that the anti-β2GPI antibody exerts β2GPI-dependent LA activity because it acquires phospholipid binding activity via β2GPI (“Thrombosis and Haemostasis”, 1998, 79, No. 1, p 79-86). Furthermore, it has been reported that this β2GPI-dependent LA strongly correlates with the onset rate of the pathological condition (“blood”, 2004, Vol. 104, No. 12, p 3598-3602).
If it is possible to release LA activity by suppressing the expression of β2GPI in blood, it is considered possible to provide a novel and effective treatment for β2GPI related diseases. In clinical tests LA can be detected by measuring activated partial thromboplastin time, kaolin clotting time and / or diluted Russell's snake venom time (dRVVT).
 投与量は、投与対象の病状や年齢、投与経路等によって異なるが、例えば二本鎖核酸に換算した1日投与量が0.1μg~1000 mgとなるように投与すればよく、1日投与量が1~100 mgとなるように投与することが好ましい。 Although the dose varies depending on the condition, age, administration route and the like of the administration subject, it may be administered, for example, such that the daily dose converted to double-stranded nucleic acid is 0.1 μg to 1000 mg. It is preferable to administer to 1 to 100 mg.
 また、本発明は、疾患の治療に使用するための核酸複合体;疾患の治療に使用するための医薬組成物;疾患を治療するための核酸複合体の使用;疾患の治療用医薬の製造における核酸複合体の使用;疾患の治療用医薬の製造に使用するための核酸複合体;有効量の核酸複合体を、その必要のある対象に投与することを含む、疾患の治療または予防方法;を提供する。 The invention also relates to nucleic acid complexes for use in the treatment of diseases; pharmaceutical compositions for use in the treatment of diseases; use of nucleic acid complexes for the treatment of diseases; in the manufacture of a medicament for the treatment of diseases A nucleic acid complex for use in the manufacture of a medicament for treating a disease; a method for treating or preventing a disease comprising administering an effective amount of the nucleic acid complex to a subject in need thereof; provide.
 次に、参考例、実施例および試験例により、本発明を具体的に説明する。ただし、本発明はこれら実施例および試験例に限定されるものではない。なお、実施例および参考例に示されたプロトン核磁気共鳴スペクトル(1H NMR)は、270MHz、300MHzまたは400MHzで測定されたものであり、化合物および測定条件によっては交換性プロトンが明瞭には観測されないことがある。また、シグナルの多重度の表記としては通常用いられるものを用いているが、brとはbroadを意味し、見かけ上幅広いシグナルであることを表す。
 UPLC分析は以下の条件を用いた。
移動相A: 0.1%ギ酸含有水溶液、B: アセトニトリル溶液
グラジエント: 移動相Bが10%-90%のリニアグラジエント(3分間)
カラム: Waters社製ACQUITY UPLC BEH C18 (1.7 μm、内経 2.1 x 50 mm)
流速: 0.8 mL/min
PDA検出波長: 254 nm (検出範囲190-800 nm)
Next, the present invention will be specifically described by way of reference examples, examples and test examples. However, the present invention is not limited to these examples and test examples. The proton nuclear magnetic resonance spectra ( 1 H NMR) shown in Examples and Reference Examples were measured at 270 MHz, 300 MHz or 400 MHz, and exchangeable protons were clearly observed depending on the compound and measurement conditions. It may not be. Moreover, although the thing normally used is used as a description of the multiplicity of a signal, br means broad, and it represents that it is an apparently wide signal.
The following conditions were used for UPLC analysis.
Mobile phase A: aqueous solution containing 0.1% formic acid, B: acetonitrile solution gradient: linear gradient (10 minutes-90%) of mobile phase B (3 minutes)
Column: Waters ACQUITY UPLC BEH C18 (1.7 μm, internal diameter 2.1 x 50 mm)
Flow rate: 0.8 mL / min
PDA detection wavelength: 254 nm (detection range 190-800 nm)
 表X-1~表X-4に参考例化合物を示す。 Reference Example compounds are shown in Table X-1 to Table X-4.
Figure JPOXMLDOC01-appb-T000170
Figure JPOXMLDOC01-appb-T000170
Figure JPOXMLDOC01-appb-T000171
Figure JPOXMLDOC01-appb-T000171
Figure JPOXMLDOC01-appb-T000172
Figure JPOXMLDOC01-appb-T000172
Figure JPOXMLDOC01-appb-T000173
Figure JPOXMLDOC01-appb-T000173
Figure JPOXMLDOC01-appb-T000174
Figure JPOXMLDOC01-appb-T000174
Figure JPOXMLDOC01-appb-T000175
Figure JPOXMLDOC01-appb-T000175
Figure JPOXMLDOC01-appb-T000176
Figure JPOXMLDOC01-appb-T000176
Figure JPOXMLDOC01-appb-T000177
Figure JPOXMLDOC01-appb-T000177
Figure JPOXMLDOC01-appb-T000178
Figure JPOXMLDOC01-appb-T000178
Figure JPOXMLDOC01-appb-T000179
Figure JPOXMLDOC01-appb-T000179
参考例1 Reference Example 1
Figure JPOXMLDOC01-appb-C000180
Figure JPOXMLDOC01-appb-C000180
化合物RE1-2の合成
 ジャーナル・オブ・アメリカン・ケミカル・ソサイエティー (Journal of American Chemical Society), 第136巻, 16958-16961頁, 2014年に記載された方法で合成した化合物RE1-1 (0.8755g, 1.9567 mmol)をテトラヒドロフラン (10 mL)に溶解し、1, 3-ジシクロヘキサンカルボジイミド(DCC, 0.4247 g, 2.0584 mmol)とN-ヒドロキシスクシミド (0.2412 g, 2.0958 mmol)を室温にて一晩撹拌した。反応混合物から析出した固体を除き、減圧下、溶媒を留去した。得られた混合物をN, N’-ジメチルホルムアミド (DMF)に溶解し、2-アミノエチルマレイミド臭酸塩 (0.6479 g, 2.5491 mmol)とジイソプロピルエチルアミン (1.7 mL, 9.7835 mmol)を加えた後、室温で一晩撹拌した。減圧下、反応液の溶媒を留去し、逆相カラムクロマトグラフィー (水/メタノール=80/20)で溶出させることにより、化合物RE1-2 (0.8502 g, 収率76%)を得た。
ESI-MS m/z: 570 (M + H)+;
1H-NMR (DMSO-D6) δ: 1.45-1.56 (4H, m), 1.78 (3H, s), 1.90 (3H, s), 1.97 (2H, t, J= 7.0 Hz), 2.00 (3H, s), 2.11 (3H, s), 3.18-3.19 (2H, m), 3.38-3.45 (3H, m), 3.64-3.71 (1H, m), 3.85-3.89 (1H, m), 4.01-4.04 (3H, m), 4.48 (1H, d, J= 8.6 Hz), 4.95-4.98 (1H, m), 5.21 (1H, d, J = 3.5 Hz), 6.99 (2H, s), 7.81-7.87 (2H, m).
Synthesis of Compound RE1-2 Compound RE1-1 synthesized by the method described in Journal of American Chemical Society, Volume 136, pp. 16958-16961, 2014 (0.8755 g, Dissolve 1.9567 mmol) in tetrahydrofuran (10 mL) and stir 1, 3-dicyclohexanecarbodiimide (DCC, 0.4247 g, 2.0584 mmol) and N-hydroxysuccinimide (0.2412 g, 2.0958 mmol) at room temperature overnight did. The solid precipitated from the reaction mixture was removed, and the solvent was evaporated under reduced pressure. The resulting mixture is dissolved in N, N'-dimethylformamide (DMF), and 2-aminoethylmaleimide hydrobromide (0.6479 g, 2.5491 mmol) and diisopropylethylamine (1.7 mL, 9.7835 mmol) are added, and then room temperature is obtained. Stir overnight. The solvent of the reaction mixture was evaporated under reduced pressure, and elution was performed with reverse phase column chromatography (water / methanol = 80/20) to give compound RE1-2 (0.8502 g, yield 76%).
ESI-MS m / z: 570 (M + H) + ;
1 H-NMR (DMSO-D 6 ) δ: 1.45-1.56 (4H, m), 1.78 (3H, s), 1.90 (3H, s), 1.97 (2H, t, J = 7.0 Hz), 2.00 (3H , s), 2.11 (3H, s), 3.18-3.19 (2H, m), 3.38-3.45 (3H, m), 3.64-3.71 (1H, m), 3.85-3.89 (1H, m), 4.01-4.04 (3H, m), 4.48 (1H, d, J = 8.6 Hz), 4.95-4.98 (1H, m), 5.21 (1 H, d, J = 3.5 Hz), 6.99 (2H, s), 7.81-7.87 ( 2H, m).
化合物RE1-4の合成
工程1
 化合物RE1-1 (0.9602 g, 2.1460 mmol)をN,N’-ジメチルホルムアミド (10 mL)に溶解し、N-Boc-エチレンジアミン (シグマアルドリッチ社製, 0.6877 g, 4.292 mmol)、ジイソプロピルエチルアミン (1.90 mL, 10.87 mmol)、および2-(1H-ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウム ヘキサフルオロリン酸塩 (和光純薬工業社製, 1.6437 g, 4.3229 mmol)を加えて、室温にて終夜攪拌した。反応液に水を加え、クロロホルムで2回抽出した後、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下、溶媒を留去し、化合物RE1-3の粗精製物を得た。
ESI-MS m/z: 590 (M + H)+
Synthesis step 1 of compound RE1-4
The compound RE1-1 (0.9602 g, 2.1460 mmol) is dissolved in N, N'-dimethylformamide (10 mL), N-Boc-ethylenediamine (manufactured by Sigma-Aldrich, 0.6877 g, 4.292 mmol), diisopropylethylamine (1.90 mL) , 10.87 mmol), and 2- (1H-benzotriazol-1-yl) -1,1,3,3-tetramethyluronium hexafluorophosphate (manufactured by Wako Pure Chemical Industries, Ltd., 1.6437 g, 4.3229 mmol) Was added and stirred overnight at room temperature. Water was added to the reaction solution, and the mixture was extracted twice with chloroform, and then the organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to give a crude purified product of compound RE1-3.
ESI-MS m / z: 590 (M + H) +
工程2
 化合物RE1-4の合成工程1で合成した化合物RE1-3 (1.2654 g, 2.1460mmol)をジクロロメタン (15 mL)に溶解し、トリフルオロ酢酸 (4 mL)を加えて、室温にて一晩攪拌した。反応液に水を加え、酢酸エチルで抽出した後、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下、溶媒を留去し、逆相カラムクロマトグラフィー (水/メタノール=80/20)で溶出させることにより、化合物RE1-4 (0.3879 g, 収率37 %)を得た。
ESI-MS m/z: 490 (M + H)+;
1H-NMR (DMSO-D6) δ: 1.46-1.52 (4H, m), 1.78 (3H, s), 1.90 (3H, s), 2.00 (3H, s), 2.08 (2H, t, J = 7.4 Hz), 2.11 (3H, s), 2.85 (2H, t, J = 6.3 Hz), 3.27 (2H, dd, J = 12.3, 6.2 Hz), 3.67-3.69 (1H, m), 3.68-3.73 (1H, m), 3.86-3.90 (1H, m), 4.01-4.04 (3H, m), 4.49 (1H, d, J = 8.4 Hz), 4.97 (1H, dd, J = 11.3, 3.4 Hz), 5.22 (1H, d, J = 3.5 Hz), 7.86 (1H, d, J = 9.1 Hz), 7.95-8.02 (1H, m).
Step 2
Compound RE1-4 Compound RE1-3 (1.2654 g, 2.1460 mmol) synthesized in step 1 was dissolved in dichloromethane (15 mL), trifluoroacetic acid (4 mL) was added, and the mixture was stirred overnight at room temperature. . Water was added to the reaction solution, and the mixture was extracted with ethyl acetate, and then the organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure and the residue was eluted with reverse phase column chromatography (water / methanol = 80/20) to obtain Compound RE1-4 (0.3879 g, yield 37%).
ESI-MS m / z: 490 (M + H) + ;
1 H-NMR (DMSO-D 6 ) δ: 1.46 to 1.52 (4H, m), 1.78 (3H, s), 1.90 (3H, s), 2.00 (3H, s), 2.08 (2H, t, J = 7.4 Hz), 2.11 (3 H, s), 2. 85 (2 H, t, J = 6.3 Hz), 3. 27 (2 H, dd, J = 12.3, 6.2 Hz), 3.67-3.69 (1 H, m), 3.68-3. 73 (3. 1H, m), 3.86-3.90 (1H, m), 4.01-4.04 (3H, m), 4.49 (1H, d, J = 8.4 Hz), 4.97 (1 H, dd, J = 11.3, 3.4 Hz), 5.22 (1H, d, J = 3.5 Hz), 7.86 (1 H, d, J = 9.1 Hz), 7.95-8.02 (1 H, m).
参考例2 Reference Example 2
Figure JPOXMLDOC01-appb-C000181
Figure JPOXMLDOC01-appb-C000181
参考例2工程1
 (9H-フルオレン-9-イル)メチル((2R,3R)-1,3-ジヒドロキシブタン-2-イル)カルバマート (化合物RE2-1, Chem-Impex International, Inc社製, 1.50 g, 4.58 mmol)をピリジン (20 mL)に溶解し、氷冷下、4,4’-ジメトキシトリチルクロライド (東京化成工業社製, 1.71 g, 5.04 mmol)を加えた後、室温にて2時間攪拌した。反応液を氷冷し、10%クエン酸水溶液を加え、酢酸エチルで抽出した後、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル=90/10)で精製することにより、化合物RE2-2 (1.07 g, 収率37%)を得た。
ESI-MS m/z: 630 (M + H)+
Reference Example 2 Step 1
(9H-fluoren-9-yl) methyl ((2R, 3R) -1,3-dihydroxybutane-2-yl) carbamate (Compound RE2-1, Chem-Impex International, Inc., 1.50 g, 4.58 mmol) The residue was dissolved in pyridine (20 mL), and 4,4′-dimethoxytrityl chloride (manufactured by Tokyo Chemical Industry Co., Ltd., 1.71 g, 5.04 mmol) was added under ice-cooling, followed by stirring at room temperature for 2 hours. The reaction mixture was ice-cooled, 10% aqueous citric acid solution was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (hexane / ethyl acetate = 90/10) to give compound RE2-2 (1.07 g, yield 37%).
ESI-MS m / z: 630 (M + H) +
参考例2工程2
 参考例2の工程1で合成した化合物RE2-2 (1.07 g, 1.699 mmol)をN,N-ジメチルホルムアミド (10 mL)に溶解し、室温にてピペリジン (0.336 mL, 3.40 mmol)を加えて3時間攪拌した。反応液に水を加え、酢酸エチルで抽出した後、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下、溶媒を留去し、残渣をアミノシリカゲルカラムクロマトグラフィー (クロロホルム/メタノール=90/10)で精製することにより、化合物RE2-3 (0.59 g, 収率85 %)を得た。
ESI-MS m/z: 408 (M + H)+
Reference Example 2 Step 2
The compound RE2-2 (1.07 g, 1.699 mmol) synthesized in step 1 of Reference Example 2 is dissolved in N, N-dimethylformamide (10 mL), and piperidine (0.336 mL, 3.40 mmol) is added at room temperature to obtain 3 Stir for hours. Water was added to the reaction solution, and the mixture was extracted with ethyl acetate, and then the organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure, and the residue was purified by amino silica gel column chromatography (chloroform / methanol = 90/10) to give compound RE2-3 (0.59 g, yield 85%).
ESI-MS m / z: 408 (M + H) +
参考例3 Reference Example 3
Figure JPOXMLDOC01-appb-C000182
Figure JPOXMLDOC01-appb-C000182
参考例3工程1
 5-ヒドロキシイソフタル酸ジメチル(化合物RE3-1, 和光純薬工業社製, 5.0443 g, 24 mmol)をテトラヒドロフラン (和光純薬工業社製25 mL)に溶解し、2-(tert-ブトキシカルボニルアミノ)-1-エタノール (東京化成工業社製, 4.0343 g, 25.03 mmol)、およびトリフェニルホスフィン ポリマー担持体 (シグマアルドリッチ社製, 6.61 g, 25.2 mmol)を加えた後、氷冷下、40%ジイソプロピルアゾジカルボキシレート(DIAD)トルエン溶液 (東京化成工業社製, 13.26 mL, 25.2 mmol)を加え、室温にて一晩攪拌した。反応液をろ過し、減圧下、ろ液を留去した後、残渣をアミノシリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル=95/5~80/20)で精製することにより、化合物RE3-2 (5.3071 g, 収率63%)を得た。
ESI-MS m/z: 254 (M + H)+, 脱Boc体として検出
Reference Example 3 Step 1
Dimethyl 5-hydroxyisophthalate (Compound RE3-1, manufactured by Wako Pure Chemical Industries, Ltd., 5.0443 g, 24 mmol) is dissolved in tetrahydrofuran (25 mL manufactured by Wako Pure Chemical Industries, Ltd.), and 2- (tert-butoxycarbonylamino) After adding -1-ethanol (manufactured by Tokyo Chemical Industry Co., Ltd., 4.0343 g, 25.03 mmol), and triphenylphosphine polymer support (manufactured by Sigma Aldrich, 6.61 g, 25.2 mmol), 40% diisopropylazo under ice cooling Dicarboxylate (DIAD) toluene solution (manufactured by Tokyo Chemical Industry Co., Ltd., 13.26 mL, 25.2 mmol) was added, and the mixture was stirred overnight at room temperature. The reaction solution is filtered, the filtrate is evaporated under reduced pressure, and the residue is purified by amino silica gel column chromatography (hexane / ethyl acetate = 95 / 5-80 / 20) to give compound RE3-2 (5.3071). g, yield 63%).
ESI-MS m / z: 254 (M + H) + , detected as a de-Boc derivative
参考例3工程2
 参考例3工程1で合成した化合物RE3-2 (5.3071g, 15.02 mmol)をメタノール (25 mL)に溶解し、氷冷下、2mol/L水酸化ナトリウム水溶液 (和光純薬工業社製, 13 mL)を加え、室温にて4時間攪拌した。反応液を氷冷し、10%クエン酸水溶液を加え、酢酸エチルで抽出した後、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下、溶媒を留去することにより、化合物RE3-3を定量的に得た。
ESI-MS m/z: 324 (M - H)-
Reference Example 3 Step 2
Reference Example 3 The compound RE3-2 (5.3071 g, 15.02 mmol) synthesized in step 1 was dissolved in methanol (25 mL), and under ice-cooling, 2 mol / L aqueous sodium hydroxide solution (Wako Pure Chemical Industries, 13 mL) ) Was added and stirred at room temperature for 4 hours. The reaction mixture was ice-cooled, 10% aqueous citric acid solution was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. Compound RE3-3 was quantitatively obtained by distilling off the solvent under reduced pressure.
ESI-MS m / z: 324 (M-H) -
参考例3工程3
 参考例3工程2で合成した化合物RE3-3 (1.9296 g, 5.93 mmol)をN, N’-ジメチルホルムアミド (70 mL)に溶解し、N-1-(9H-フルオレン-9-イルメトキシカルボニル)-エチレンジアミン塩酸塩 (3.3493 g, 11.86mmol)、ジイソプロピルエチルアミン (5.18 mL, 29.7 mmol)、および2-(1H-ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオロリン酸塩 (4.5168 g,  11.88 mmol)を加えて、室温にて4時間攪拌した。反応液を氷冷し、10%クエン酸水溶液を加え、クロロホルムで抽出した後、有機層を飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー (クロロホルム/メタノール)で精製することにより、化合物RE3-4 (3.4407 g, 収率68%)を得た。
ESI-MS m/z: 898 (M + HCOO)-
Reference Example 3 Step 3
Reference Example 3 The compound RE3-3 (1.9296 g, 5.93 mmol) synthesized in step 2 was dissolved in N, N'-dimethylformamide (70 mL) to give N-1- (9H-fluoren-9-ylmethoxycarbonyl). -Ethylenediamine hydrochloride (3.3493 g, 11.86 mmol), diisopropylethylamine (5.18 mL, 29.7 mmol), and 2- (1H-benzotriazol-1-yl) -1,1,3,3-tetramethyluronium hexafluoro Phosphate (4.5168 g, 11.88 mmol) was added and stirred at room temperature for 4 hours. The reaction mixture was ice-cooled, 10% aqueous citric acid solution was added, and extracted with chloroform. The organic layer was washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine, and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (chloroform / methanol) to give compound RE3-4 (3.4407 g, yield 68%).
ESI-MS m / z: 898 (M + HCOO) -
参考例3工程4
 参考例3工程3で合成した化合物RE3-4 (1.6087 g, 1.884mmol)をジクロロメタン (20 mL)に溶解し、氷冷下、トリフルオロ酢酸 (5mL, 64.9 mmol)を加えて、室温にて4時間攪拌した。反応液を減圧下、溶媒を留去することにより、化合物RE3-5 (2.4079 g)を定量的に得た。
ESI-MS m/z: 798(M + HCOO)-
Reference Example 3 Step 4
Reference Example 3 The compound RE3-4 (1.6087 g, 1.884 mmol) synthesized in step 3 is dissolved in dichloromethane (20 mL), trifluoroacetic acid (5 mL, 64.9 mmol) is added under ice cooling, and the reaction is carried out at room temperature 4 Stir for hours. The reaction mixture was evaporated under reduced pressure and the solvent was evaporated to quantitatively obtain Compound RE3-5 (2.4079 g).
ESI-MS m / z: 798 (M + HCOO) -
参考例3工程5
 参考例3工程4で合成した化合物RE3-5 (386 mg, 0.512 mmol)をテトラヒドロフラン (10 mL)に溶解し、氷冷下、塩化ベンゾイル (175 mg, 1.024mmol)を加えて、室温にて1時間攪拌した。反応液を減圧下、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール)で精製することにより、化合物RE3-6 (373 mg, 収率82%)を得た。
ESI-MS m/z: 888(M + H)+
Reference Example 3 Step 5
Reference Example 3 The compound RE3-5 (386 mg, 0.512 mmol) synthesized in step 4 is dissolved in tetrahydrofuran (10 mL), benzoyl chloride (175 mg, 1.024 mmol) is added under ice-cooling, and 1 at room temperature. Stir for hours. The solvent was distilled off under reduced pressure of the reaction liquid, and the residue was purified by silica gel column chromatography (chloroform / methanol) to obtain compound RE3-6 (373 mg, yield 82%).
ESI-MS m / z: 888 (M + H) +
参考例3工程6
 参考例3工程5で合成した化合物RE3-6 (108 mg, 0.122 mmol)をジクロロメタン (5 mL)に溶解し、室温にてジエチルアミン (0.5 mL,4.8 mmol)を加えて1時間攪拌した。減圧下、溶媒を留去することにより、化合物RE3-7 (54.9 mg)を定量的に得た。
ESI-MS m/z: 444(M + H)+
Reference Example 3 Step 6
The compound RE3-6 (108 mg, 0.122 mmol) synthesized in Reference Example 3 step 5 was dissolved in dichloromethane (5 mL), diethylamine (0.5 mL, 4.8 mmol) was added at room temperature, and the mixture was stirred for 1 hour. The solvent was evaporated under reduced pressure to quantitatively obtain Compound RE3-7 (54.9 mg).
ESI-MS m / z: 444 (M + H) +
参考例3工程7
 参考例3工程6で合成した化合物RE3-7 (180 mg, 0.406mmol)、Nα,Nε-ビス(tert-ブトキシカルボニル)-L-リジン (ノババイオケム社製, 295 mg, 0.852 mmol)、ジイソプロピルエチルアミン (0.354 mL,2.029 mmol)、および2-(1H-ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオロリン酸塩 (324 mg, 0.852 mmol)を加えて、室温にて終夜攪拌した。反応液を氷冷し、10%クエン酸水溶液を加え、クロロホルムで抽出した後、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下、溶媒を留去し、残渣をアミノシリカゲルカラムクロマトグラフィー (クロロホルム/メタノール)で精製することにより、化合物RE3-8 (450 mg)を定量的に得た。
ESI-MS m/z: 1101(M + H)+
Reference Example 3 Step 7
Reference Example 3 Compound RE 3-7 (180 mg, 0.406 mmol) synthesized in step 6 Nα, Nε-bis (tert-butoxycarbonyl) -L-lysine (manufactured by Nova Biochem, 295 mg, 0.852 mmol), diisopropylethylamine ( Add 0.354 mL, 2.029 mmol) and 2- (1H-benzotriazol-1-yl) -1,1,3,3-tetramethyluronium hexafluorophosphate (324 mg, 0.852 mmol) at room temperature And stirred overnight. The reaction mixture was ice-cooled, 10% aqueous citric acid solution was added, and the mixture was extracted with chloroform. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure, and the residue was purified by amino silica gel column chromatography (chloroform / methanol) to quantitatively obtain Compound RE3-8 (450 mg).
ESI-MS m / z: 1101 (M + H) +
参考例3工程8
 参考例3工程7で合成した化合物RE3-8 (2.1558 g, 1.9593 mmol)をジクロロメタン(20 mL)に溶解し、氷冷下、トリフルオロ酢酸 (5 mL)を加えて、室温にて4時間攪拌した。反応液を減圧下、溶媒を留去することにより、化合物RE3-9を定量的に得た。
ESI-MS m/z: 700(M + H)+
Reference Example 3 Step 8
Reference Example 3 Compound RE3-8 (2.1558 g, 1.9593 mmol) synthesized in step 7 was dissolved in dichloromethane (20 mL), trifluoroacetic acid (5 mL) was added under ice cooling, and the mixture was stirred at room temperature for 4 hours did. The reaction mixture was evaporated under reduced pressure to distill off the solvent, whereby compound RE3-9 was quantitatively obtained.
ESI-MS m / z: 700 (M + H) +
参考例4 Reference Example 4
Figure JPOXMLDOC01-appb-C000183
(図中、Bnはベンジル基を表す。)
Figure JPOXMLDOC01-appb-C000183
(In the figure, Bn represents a benzyl group.)
参考例4工程1
 参考例3に記載の方法で合成した化合物RE4-1(参考例3における化合物RE3-5, 0.5716 g, 0.7582 mmol)、バイオコンジュゲート・ケミストリー (Bioconjugate Chemistry), 第22巻, 690-699頁, 2011年に記載された方法で合成したドデカン酸モノベンジルエステル (0.4859g, 1.5164 mmol)、ジイソプロピルエチルアミン (0.662 mL, 3.79 mmol)、および2-(1H-ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオロリン酸塩 (0.5766 g, 1.516 mmol)をN,Nジメチルホルムアミド(12 mL)に溶解し、室温にて1時間攪拌した。反応液を氷冷し、飽和クエン酸水溶液を加え、クロロホルムで抽出した後、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー (クロロホルム/メタノール)で精製することにより、化合物RE4-2 (0.88 g, 収率84%)を得た。
ESI-MS m/z: 1057(M + H)+
Reference Example 4 Step 1
Compound RE4-1 synthesized by the method described in Reference Example 3 (compound RE3-5, 0.5716 g, 0.7582 mmol in Reference Example 3), Bioconjugate Chemistry, Volume 22, pp. 690-699, Dodecanoic acid monobenzyl ester (0.4859 g, 1.5164 mmol), diisopropylethylamine (0.662 mL, 3.79 mmol) synthesized by the method described in 2011, and 2- (1H-benzotriazol-1-yl) -1,1 3,3,3-tetramethyluronium hexafluorophosphate (0.5766 g, 1.516 mmol) was dissolved in N, N dimethylformamide (12 mL) and stirred at room temperature for 1 hour. The reaction mixture was ice-cooled, saturated aqueous citric acid solution was added, and the mixture was extracted with chloroform. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (chloroform / methanol) to give compound RE4-2 (0.88 g, yield 84%).
ESI-MS m / z: 1057 (M + H) +
参考例4工程2
 参考例4工程1で合成した化合物RE4-2 (0.7545 g, 0.714 mmol)をジクロロメタンテトラヒドロフラン (20 mL)に溶解し、室温にてジエチルアミン (5 mL,47.9 mmol)を加えて終夜攪拌した。減圧下、溶媒を留去することにより、化合物RE4-3を定量的に得た。
ESI-MS m/z: 612(M + H)+
Reference Example 4 Step 2
The compound RE4-2 (0.7545 g, 0.714 mmol) synthesized in Reference Example 4 step 1 was dissolved in dichloromethane-tetrahydrofuran (20 mL), diethylamine (5 mL, 47.9 mmol) was added at room temperature, and the mixture was stirred overnight. Compound RE4-3 was quantitatively obtained by distilling off the solvent under reduced pressure.
ESI-MS m / z: 612 (M + H) +
参考例4工程3
 参考例4工程2で合成した化合物RE4-3 (0.437 g, 0.7143 mmol)、Nα,Nε-ビス(tert-ブトキシカルボニル)-L-リジン (ノババイオケム社製, 0.5483 g, 1.583 mmol)、ジイソプロピルエチルアミン (0.624 mL, 3.57 mmol)、2-(1H-ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオロリン酸塩 (0.5703 g, 1.5 mmol)を加えて、室温にて2時間攪拌した。反応液に10%クエン酸水溶液を加え、酢酸エチルで抽出した後、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下、溶媒を留去することにより、化合物RE4-4の粗生成物を得た。
ESI-MS m/z: 1269(M + H)+
Reference Example 4 Step 3
Reference Example 4 Compound RE4-3 (0.437 g, 0.7143 mmol) synthesized in step 2, Nα, Nε-bis (tert-butoxycarbonyl) -L-lysine (manufactured by Nova Biochem, 0.5483 g, 1.583 mmol), diisopropylethylamine ( Add 0.624 mL, 3.57 mmol) and 2- (1H-benzotriazol-1-yl) -1,1,3,3-tetramethyluronium hexafluorophosphate (0.5703 g, 1.5 mmol) to room temperature. The mixture was stirred for 2 hours. To the reaction mixture was added 10% aqueous citric acid solution, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to give a crude product of compound RE4-4.
ESI-MS m / z: 1269 (M + H) +
参考例4工程4
 参考例4工程3で合成した化合物RE4-4 (0.906 g, 0.7143 mmol)をジクロロメタン (12 mL)に溶解し、氷冷下、トリフルオロ酢酸 (3mL, 38.9 mmol)を加えて、室温にて4時間攪拌した。反応液を減圧下、溶媒を留去することにより、化合物RE4-5の粗生成物を得た。
ESI-MS m/z: 869(M + H)+
Reference Example 4 Step 4
Reference Example 4 The compound RE4-4 (0.906 g, 0.7143 mmol) synthesized in step 3 was dissolved in dichloromethane (12 mL), trifluoroacetic acid (3 mL, 38.9 mmol) was added under ice-cooling, and 4 was added at room temperature. Stir for hours. The solvent of the reaction mixture was evaporated under reduced pressure to give a crude product of compound RE4-5.
ESI-MS m / z: 869 (M + H) +
参考例5 Reference Example 5
Figure JPOXMLDOC01-appb-C000184
Figure JPOXMLDOC01-appb-C000184
参考例5工程1
 参考例3に記載の方法で合成した化合物RE5-1 (参考例3におけるRE3-8, 100 mg, 0.091 mmol)をメタノール (3 mL)に溶解し、酢酸 (2 μL)を添加した後、パラジウム/炭素による接触水素還元を行った。得られた溶液留分を減圧下、溶媒を留去することにより、化合物RE5-2を定量的に得た。
ESI-MS m/z: 967 (M + H)+
Reference Example 5 Step 1
The compound RE5-1 (RE 3-8, 100 mg, 0.091 mmol in Reference Example 3) synthesized by the method described in Reference Example 3 is dissolved in methanol (3 mL), acetic acid (2 μL) is added, and then palladium is added. / Catalytic hydrogen reduction by carbon was performed. The solvent of the obtained solution fraction was evaporated under reduced pressure to quantitatively obtain Compound RE5-2.
ESI-MS m / z: 967 (M + H) +
参考例5工程2
 化合物RE5-2 (50 mg, 0.052 mmol)およびN-(6-マレイミドカプロイルオキシ)スクシミド (48 mg, 0.155 mmol)をテトラヒドロフラン (2 mL)に溶解し、ジイソプロピルエチルアミン (0.045 mL, 0.259  mmol)を加えて、室温にて終夜攪拌した。減圧下、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール)で精製することにより、化合物RE5-3 (18 mg, 収率30%)を得た。
ESI-MS m/z: 1160 (M + H)+
Reference Example 5 Step 2
Compound RE5-2 (50 mg, 0.052 mmol) and N- (6-maleimidocaproyloxy) succinimide (48 mg, 0.155 mmol) are dissolved in tetrahydrofuran (2 mL) and diisopropylethylamine (0.045 mL, 0.259 mmol) is dissolved in In addition, it was stirred overnight at room temperature. The solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (chloroform / methanol) to give compound RE5-3 (18 mg, yield 30%).
ESI-MS m / z: 1160 (M + H) +
参考例5工程3
 参考例5工程2で合成した化合物RE5-3 (18 mg, 0.016 mmol)をジクロロメタン (2 mL)に溶解し、氷冷下、トリフルオロ酢酸 (0.2 mL, 2.6 mmol)を加えて、室温にて終夜攪拌した。反応液を減圧下、溶媒を留去し、ジエチルエーテルにて晶析した後、化合物RE5-4 (7.5 mg, 収率64%)を白色固体として得た。
ESI-MS m/z: 759 (M + H)+
Reference Example 5 Step 3
Reference Example 5 The compound RE5-3 (18 mg, 0.016 mmol) synthesized in step 2 was dissolved in dichloromethane (2 mL), trifluoroacetic acid (0.2 mL, 2.6 mmol) was added under ice-cooling, and the mixture was stirred at room temperature. Stir overnight. The reaction mixture was evaporated under reduced pressure, the solvent was evaporated, and the residue was crystallized with diethyl ether to give compound RE5-4 (7.5 mg, yield 64%) as a white solid.
ESI-MS m / z: 759 (M + H) +
参考例6 Reference Example 6
Figure JPOXMLDOC01-appb-C000185
Figure JPOXMLDOC01-appb-C000185
参考例6工程1
 参考例3に記載の方法で合成した化合物RE6-1 (参考例3における化合物RE3-2, 0.9372 g, 2.8809 mmol)、β-アラニンメチルエステル塩酸塩 (東京化成工業株式会社製, 0.8082 g, 5.7902 mmol)を用い、参考例3の工程3と同様の方法で化合物RE6-2を定量的に得た。
ESI-MS m/z: 495 (M + H)+
Reference Example 6 Step 1
Compound RE6-1 synthesized by the method described in Reference Example 3 (compound RE3-2 in the reference example 3, 0.9372 g, 2.8809 mmol), β-alanine methyl ester hydrochloride (manufactured by Tokyo Chemical Industry Co., Ltd., 0.8082 g, 5.7902) Compound RE6-2 was quantitatively obtained in the same manner as in step 3 of Reference Example 3 using mmol).
ESI-MS m / z: 495 (M + H) +
参考例6工程2
参考例6工程1で合成した化合物RE6-2 (0.9622 g, 1.952 mmol)を用い、参考例3の工程4と同様の方法で化合物RE6-3を定量的に得た。
ESI-MS m/z: 396 (M + H)+
Reference Example 6 Step 2
Reference Example 6 Compound RE6-3 was quantitatively obtained in the same manner as in step 4 of reference example 3 using compound RE6-2 (0.9622 g, 1.952 mmol) synthesized in step 1.
ESI-MS m / z: 396 (M + H) +
参考例6工程3
 参考例6工程2で合成した化合物RE6-3 (0.1146 g, 0.290 mmol)およびN-スクシンイミジル15-アジド-4,7,10,13-テトラオキサペンタデカン酸(N3-PEG4-NHS, 東京化成工業株式会社製, 0.0750 g, 0.1931 mmol)を用い、参考例5の工程2と同様の方法で化合物RE6-4を定量的に得た。
ESI-MS m/z: 669 (M + H)+
Reference Example 6 Step 3
Reference Example 6 Compound RE6-3 (0.1146 g, 0.290 mmol) synthesized in step 2 and N-succinimidyl 15-azido-4,7,10,13-tetraoxapentadecanoic acid (N3-PEG4-NHS, Tokyo Chemical Industry Co., Ltd. Compound RE6-4 was quantitatively obtained in the same manner as in step 2 of Reference Example 5, using company-made, 0.0750 g, 0.1931 mmol).
ESI-MS m / z: 669 (M + H) +
参考例6工程4
 参考例6工程3で合成した化合物RE6-4 (0.1291 g, 0.193 mmol)を用い、参考例3の工程2と同様の方法で化合物RE6-5を定量的に得た。
ESI-MS m/z: 641 (M + H)+
Reference Example 6 Step 4
Reference Example 6 Compound RE6-5 (0.1291 g, 0.193 mmol) synthesized in step 3 was used to quantitatively obtain compound RE6-5 in the same manner as in step 2 of reference example 3.
ESI-MS m / z: 641 (M + H) +
参考例6工程5
 参考例6工程4で合成した化合物RE6-5 (0.1252 g, 0.193 mmol)およびL-グルタミン酸 ジ-tert-ブチルエステル(渡辺化学株式会社製, 0.1180 g, 0.399 mmol)を用い、参考例3の工程3と同様の方法で化合物RE6-6 (0.0521 g, 収率24%)を得た。
ESI-MS m/z: 1124 (M + H)+
Reference Example 6 Step 5
Reference Example 6 The process of Reference Example 3 using compound RE6-5 (0.1252 g, 0.193 mmol) synthesized in step 4 and L-glutamic acid di-tert-butyl ester (manufactured by Watanabe Kagaku Co., Ltd., 0.1180 g, 0.399 mmol). Compound RE6-6 (0.0521 g, yield 24%) was obtained in the same manner as 3.
ESI-MS m / z: 1124 (M + H) +
参考例6工程6
 参考例6工程5で合成した化合物RE6-6 (0.0521 g, 0.0464 mmol)を用い 、参考例3の工程4と同様の方法で化合物RE6-7 (36 mg, 収率86%)を得た。
ESI-MS m/z: 899 (M + H)+
Reference Example 6 Step 6
Reference Example 6 Compound RE6-7 (36 mg, yield 86%) was obtained in the same manner as in Step 4 of Reference Example 3, using Compound RE6-6 (0.0521 g, 0.0464 mmol) synthesized in Step 5.
ESI-MS m / z: 899 (M + H) +
参考例7 Reference Example 7
Figure JPOXMLDOC01-appb-C000186
Figure JPOXMLDOC01-appb-C000186
参考例7工程1
 参考例3に記載の方法で合成した化合物RE7-1 (参考例3におけるRE3-9, 0.2586 g, 0.3695 mmol)とジャーナル・オブ・アメリカン・ケミカル・ソサイエティー (Journal of American Chemical Society), 第136巻, 16958?16961頁, 2014年に記載された方法で合成した参考例1に記載の化合物RE-1 (0.8559 g, 1.7927mmol)を用い、参考例3の工程3と同様の方法で化合物RE7-2 (0.5272 g, 収率61%)を得た。
ESI-MS m/z: 2418 (M + H)+
Reference Example 7 Step 1
Compound RE7-1 (RE 3-9 in Example 3; 0.2586 g, 0.3695 mmol) synthesized by the method described in Reference Example 3 and Journal of American Chemical Society (Journal of American Chemical Society), Volume 136 Compound RE7- described in Reference Example 1 using the compound RE-1 (0.8559 g, 1.7927 mmol) described in Reference Example 1 synthesized by the method described in Chem. 2 (0.5272 g, yield 61%) were obtained.
ESI-MS m / z: 2418 (M + H) +
参考例7工程2
 参考例7工程1で合成した化合物RE7-2 (0.2653 g, 0.1097 mmol)を用い、参考例5の工程1と同様の方法で化合物RE7-3 (0.1524 g, 収率61%)を得た。
ESI-MS m/z: 2284 (M + H)+
Reference Example 7 Step 2
Reference Example 7 Compound RE7-2 (0.1524 g, yield 61%) was obtained in the same manner as in step 1 of reference example 5 using compound RE7-2 (0.2653 g, 0.1097 mmol) synthesized in step 1.
ESI-MS m / z: 2284 (M + H) +
参考例8:化合物A1およびB1の合成 Reference Example 8: Synthesis of Compounds A1 and B1
Figure JPOXMLDOC01-appb-C000187
Figure JPOXMLDOC01-appb-C000187
化合物A1の合成
 参考例7に記載の方法で合成した化合物RE8-1 (参考例7における化合物RE7-3, 0.0152 g, 0.006657 mmol)を用い、参考例5の工程2と同様の方法で化合物A1 (0.0077 g, 収率47%)を得た。
ESI-MS m/z: 1239(M + 2H)2+
1H-NMR (DMSO-D6) δ: 1.11-1.66 (34H, m), 1.77 (12H, d, J = 1.5 Hz), 1.89 (12H, s), 2.01-2.14 (10H, m), 2.01 (12H, s), 2.10 (12H, s), 2.92-2.99 (4H, m), 3.16-3.54 (14H, m), 3.65-3.74 (4H, m), 3.81-3.91 (4H, m), 3.98-4.08 (14H, m), 4.11-4.24 (4H, m), 4.48 (4H, dd, J = 8.4, 1.8 Hz), 4.93-5.00 (4H, m), 5.21 (4H, d, J = 3.5 Hz), 6.99 (2H, s), 7.52 (2H, s), 7.66-7.75 (2H, m), 7.78-7.87 (6H, m), 7.91 (1H, br s), 8.01-8.08 (3H, br m), 8.54-8.60 (2H, br m).
Synthesis of Compound A1 Using compound RE8-1 (compound RE7-3 in the reference example 7, 0.0152 g, 0.006657 mmol) synthesized by the method described in reference example 7, compound A1 was prepared in the same manner as in step 2 of reference example 5. (0.0077 g, 47% yield) was obtained.
ESI-MS m / z: 1239 (M + 2 H) 2+
1 H-NMR (DMSO-D 6 ) δ: 1.11-1.66 (34H, m), 1.77 (12H, d, J = 1.5 Hz), 1.89 (12H, s), 2.01-2.14 (10H, m), 2.01 (12H, s), 2.10 (12H, s), 2.92-2.99 (4H, m), 3.16-3.54 (14H, m), 3.65-3.74 (4H, m), 3.81-3.91 (4H, m), 3.98 -4.08 (14H, m), 4.11-4.24 (4H, m), 4.48 (4H, dd, J = 8.4, 1.8 Hz), 4.93-5.00 (4H, m), 5.21 (4 H, d, J = 3.5 Hz) ), 6.99 (2H, s), 7.52 (2H, s), 7.66-7.75 (2H, m), 7.78-7.87 (6H, m), 7.91 (1H, br s), 8.01-8.08 (3H, br m) ), 8.54-8.60 (2H, br m).
化合物B1の合成
 化合物RE8-1 (参考例7における化合物RE7-3, 0.0150 g, 0.00657mmol)を用い、参考例3の工程3と同様の方法で化合物B1 (0.0062 g, 収率37%)を得た。
ESI-MS m/z: 1279(M + 2H)2+
1H-NMR (DMSO-D6) δ: 1.11-1.66 (30H, m), 1.77 (12H, s), 1.89 (12H, s), 2.01-2.14 (8H, m), 2.01 (12H, s), 2.10 (12H, s), 2.33-2.38 (2H, m), 2.92-2.99 (4H, m), 3.16-3.54 (14H, m), 3.58-3.63 (16H, m), 3.65-3.74 (4H, m), 3.81-3.91 (4H, m), 3.98-4.08 (12H, m), 4.11-4.24 (4H, m), 4.48 (4H, dd, J = 8.4, 1.8 Hz), 4.93-5.00 (4H, m), 5.21 (4H, d, J = 3.5 Hz), 7.52 (2H, s), 7.66-7.75 (2H, m), 7.78-7.87 (6H, m), 7.91 (1H, br s), 8.01-8.08 (3H, br m), 8.54-8.60 (2H, br m).
Synthesis of Compound B1 Using compound RE8-1 (compound RE7-3 in Reference Example 7, 0.0150 g, 0.00657 mmol), Compound B1 (0.0062 g, yield 37%) was prepared in the same manner as in Step 3 of Reference Example 3. Obtained.
ESI-MS m / z: 1279 (M + 2 H) 2+
1 H-NMR (DMSO-D 6 ) δ: 1.11-1.66 (30H, m), 1.77 (12H, s), 1.89 (12H, s), 2.01-2.14 (8H, m), 2.01 (12H, s) , 2.10 (12H, s), 2.33-2.38 (2H, m), 2.92-2.99 (4H, m), 3.16-3.54 (14H, m), 3.58-3.63 (16H, m), 3.65-3.74 (4H, m) m), 3.81-3.91 (4H, m), 3.98-4.08 (12H, m), 4.11-4.24 (4H, m), 4.48 (4H, dd, J = 8.4, 1.8 Hz), 4.93-5.00 (4H, m) m), 5.21 (4H, d, J = 3.5 Hz), 7.52 (2H, s), 7.66-7.75 (2H, m), 7.78-7.87 (6H, m), 7.91 (1H, br s), 8.01- 8.08 (3H, br m), 8.54-8.60 (2H, br m).
参考例9:化合物B2およびB3の合成 Reference Example 9: Synthesis of Compounds B2 and B3
Figure JPOXMLDOC01-appb-C000188
Figure JPOXMLDOC01-appb-C000188
化合物B2の合成
 参考例6に記載の方法で合成した化合物RE9-1 (参考例6における化合物RE6-5, 0.00436 g, 0.00681 mmol)および参考例1の化合物RE1-4 (0.010 g, 0.020 mmol)を用い、参考例3の工程3と同様の方法で化合物B2の粗生成物を得た。
ESI-MS m/z: 1584(M + H)+
Synthesis of Compound B2 Compound RE9-1 synthesized by the method described in Reference Example 6 (compound RE6-5 in the reference example 6, 0.00436 g, 0.00681 mmol) and compound RE1-4 of the reference example 1 (0.010 g, 0.020 mmol) The crude product of Compound B2 was obtained in the same manner as in Step 3 of Reference Example 3 using
ESI-MS m / z: 1584 (M + H) +
化合物B3の合成
 参考例6に記載の方法で合成した化合物RE9-2 (参考例6における化合物RE6-7, 0.0100 g, 0.01112 mmol)を用い、参考例3の工程3と同様の方法で化合物B3 (0.0223 g, 収率72%)を得た。
ESI-MS m/z: 1393(M + 2H)2+
Synthesis of Compound B3 Using compound RE9-2 synthesized by the method described in Reference Example 6 (Compound RE 6-7 in Reference Example 6, 0.0100 g, 0.01112 mmol), Compound B3 was prepared in the same manner as in Step 3 of Reference Example 3. (0.0223 g, 72% yield) was obtained.
ESI-MS m / z: 1393 (M + 2 H) 2+
参考例10:化合物C1およびD1の合成 Reference Example 10: Synthesis of Compounds C1 and D1
Figure JPOXMLDOC01-appb-C000189
Figure JPOXMLDOC01-appb-C000189
参考例10工程1
 参考例4に記載の方法で合成した化合物RE10-1 (参考例4における化合物RE4-5, 0.1952 g, 0.225 mmol)とジャーナル・オブ・アメリカン・ケミカル・ソサイエティー (Journal of American Chemical Society), 第136巻, 16958-16961頁、2014年に記載された方法で合成した参考例1の化合物RE1-1 (0.4162 g, 0.93 mmol)を用い、参考例3の工程3と同様の方法で化合物RE10-2 (334.8 mg, 収率58%)を得た。
ESI-MS m/z: 1294 (M + 2H)2+
Reference Example 10 Step 1
Compound RE10-1 (compound RE4-5, 0.1952 g, 0.225 mmol in Reference Example 4) synthesized by the method described in Reference Example 4 and Journal of American Chemical Society, 136 In the same manner as in step 3 of Reference Example 3, Compound RE10-2 was prepared using Compound RE1-1 (0.4162 g, 0.93 mmol) of Reference Example 1 synthesized by the method described in Volume, pp. 16958-16961, 2014. (334.8 mg, yield 58%) was obtained.
ESI-MS m / z: 1294 (M + 2 H) 2+
参考例10工程2
 参考例10工程1で合成した化合物RE10-2 (0.1459 g, 0.056 mmol)を用い、参考例5の工程1と同様の方法で化合物D1 (112 mg, 収率80%)を得た。
ESI-MS m/z: 1249 (M + 2H)2+
1H-NMR (DMSO-D6) δ: 1.11-1.66 (44H, m), 1.77 (12H, d, J = 1.5 Hz), 1.89 (12H, s), 2.01-2.20 (12H, m), 2.01 (12H, s), 2.10 (12H, s), 2.92-2.99 (4H, m), 3.16-3.54 (10H, m), 3.58-3.64 (4H, m), 3.65-3.74 (4H, m), 3.81-3.91 (4H, m), 3.98-4.08 (12H, m), 4.11-4.24 (4H, m), 4.48 (4H, dd, J = 8.4, 1.8 Hz), 4.93-5.00 (4H, m), 5.21 (4H, d, J = 3.5 Hz), 6.99 (2H, s), 7.52 (2H, s), 7.66-7.75 (2H, m), 7.78-7.87 (6H, m), 7.91 (1H, br s), 8.01-8.08 (3H, br m), 8.54-8.60 (2H, br m).
Reference Example 10 Step 2
Reference Example 10 Compound RE (112 mg, yield 80%) was obtained in the same manner as in step 1 of reference example 5 using compound RE10-2 (0.1459 g, 0.056 mmol) synthesized in step 1.
ESI-MS m / z: 1249 (M + 2 H) 2+
1 H-NMR (DMSO-D 6 ) δ: 1.11-1.66 (44H, m), 1.77 (12H, d, J = 1.5 Hz), 1.89 (12H, s), 2.01-2.20 (12H, m), 2.01 (12H, s), 2.10 (12H, s), 2.92-2.99 (4H, m), 3.16-3.54 (10H, m), 3.58-3.64 (4H, m), 3.65-3.74 (4H, m), 3.81 -3.91 (4H, m), 3.98-4.08 (12H, m), 4.11-4.24 (4H, m), 4.48 (4H, dd, J = 8.4, 1.8 Hz), 4.93-5.00 (4H, m), 5.21 (4H, d, J = 3.5 Hz), 6.99 (2H, s), 7.52 (2H, s), 7.66-7.75 (2H, m), 7.78-7.87 (6H, m), 7.91 (1H, br s) , 8.01-8.08 (3H, br m), 8.54-8.60 (2H, br m).
参考例10工程3
 参考例10工程2で合成した化合物D1 (0.1091 g, 0.044 mmol)および参考例2の化合物RE2-3 (0.0748 g, 0.184 mmol)を用い、参考例3の工程3と同様の方法で化合物RE10-3を粗生成物として得た。
ESI-MS m/z: 1292 (M + 2H)2+, 脱DMTr体として検出
Reference Example 10 Step 3
Reference Example 10 Compound RE10- was prepared using Compound D1 (0.1091 g, 0.044 mmol) synthesized in Step 2 and Compound RE2-3 (0.0748 g, 0.184 mmol) of Reference Example 2 in the same manner as in Step 3 of Reference Example 3. 3 was obtained as a crude product.
ESI-MS m / z: 1292 (M + 2H) 2+ , detected as de-DMTr body
参考例10工程4
 参考例10工程3で合成した化合物RE10-3 (0.161 g, 0.05586 mmol)をジクロロメタン (5 mL)に溶解し、コハク酸無水物 (東京化成工業社製, 0.1182 g, 1.181 mmol)、N,N-ジメチルアミノピリジン (0.0224 g,0.183 mmol)、およびトリエチルアミン(0.55 mL, 3.95 mmol)を加えて、室温にて一晩攪拌した。反応液を氷冷し、水を加え、酢酸エチルで2回抽出した後、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下、溶媒を留去することにより、化合物RE10-4の粗生成物を得た。
ESI-MS m/z: 1342(M + 2H)2+, 脱DMTr体として検出
Reference Example 10 Step 4
Reference Example 10 Compound RE10-3 (0.161 g, 0.05586 mmol) synthesized in step 3 was dissolved in dichloromethane (5 mL), succinic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd., 0.1182 g, 1.181 mmol), N, N -Dimethylaminopyridine (0.0224 g, 0.183 mmol) and triethylamine (0.55 mL, 3.95 mmol) were added and stirred overnight at room temperature. The reaction mixture was ice-cooled, water was added, and the mixture was extracted twice with ethyl acetate, and then the organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain a crude product of compound RE10-4.
ESI-MS m / z: 1342 (M + 2H) 2+ , detected as de-DMTr body
参考例10工程5
 参考例10工程4で合成した化合物RE10-4 (0.0816 g, 0.02734 mmol)、O-(ベンゾトリアゾール-1-イル)-N,N,N',N'-テトラメチルウロニウム ヘキサフルオロリン酸塩 (0.0221 g, 0.05827 mmol)、およびジイソプロピルエチルアミン(0.02 mL, 0.1094 mmol)をN,N-ジメチルホルムアミド(4 mL)に溶解し、LCAA-CPG (Chem Gene社製, 0.4882 g)を加え、室温にて終夜攪拌した。混合物を濾別し、ジクロロメタン、10%メタノールジクロロメタン溶液、およびジエチルエーテルで順次洗浄した後、無水酢酸/ピリジン溶液と作用させることにより、化合物C1(49.5 μmol/g, 収率89%)を得た。なお、収率は1%トリフルオロ酢酸/ジクロロメタン溶液を固相担持体に添加し、DMTr基に由来する吸収から計算できる固相担体への導入率より算出した。
Reference Example 10 Step 5
Reference Example 10 Compound RE10-4 synthesized in step 4 (0.0816 g, 0.02734 mmol), O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium hexafluorophosphate (0.0221 g, 0.05827 mmol) and diisopropylethylamine (0.02 mL, 0.1094 mmol) are dissolved in N, N-dimethylformamide (4 mL), LCAA-CPG (Chem Gene, 0.4882 g) is added, and the mixture is allowed to reach room temperature. Stir overnight. The mixture was filtered off, washed successively with dichloromethane, 10% methanol solution in dichloromethane and diethyl ether, and then reacted with acetic anhydride / pyridine solution to obtain compound C1 (49.5 μmol / g, yield 89%) . The yield was calculated from the introduction ratio to the solid phase carrier which can be calculated from the absorption derived from the DMTr group by adding 1% trifluoroacetic acid / dichloromethane solution to the solid phase carrier.
参考例11 Reference Example 11
Figure JPOXMLDOC01-appb-C000190
Figure JPOXMLDOC01-appb-C000190
 化合物RE11-1(1.200 g, 3.640 mmol)から、ジャーナル・オブ・メディシナル・ケミストリー(Journal of Medicinal Chemistry), 第59巻, 2718-2733頁, 2016年に記載された方法で化合物RE11-2(1.050 g, 収率50%)を合成した。
ESI-MS m/z: 582 (M + H)+
Compound RE 11-2 (1.050) was prepared according to the method described in Compound RE 11-1 (1.200 g, 3.640 mmol), Journal of Medicinal Chemistry, Volume 59, 2718-2733 (2016). g, 50% yield) was synthesized.
ESI-MS m / z: 582 (M + H) +
参考例12 Reference Example 12
Figure JPOXMLDOC01-appb-C000191
Figure JPOXMLDOC01-appb-C000191
 化合物RE12-1(4.000g, 10.27 mmol)をジクロロメタン(60 mL)に溶解し、ベンジル-2-(2-ヒドロキシエトキシ)エチルカーバメイト(2.700 g, 11.30 mmol)、およびトリフルオロメタンスルホン酸(0.1360 mL, 1.541 mmol)を加えて、還流条件下で終夜攪拌した。反応液に10 wt% 炭酸カリウム水溶液を加え、ジクロロメタンと分液した後、有機相を水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下、溶媒を留去し、2-メチルテトラヒドロフランへと置換濃縮した。残渣をへプタンに滴下し、得られた結晶をろ過することにより、化合物RE12-2(5.130 g, 収率88%)を得た。
ESI-MS m/z: 570 (M + H)+
Compound RE12-1 (4.000 g, 10.27 mmol) is dissolved in dichloromethane (60 mL), benzyl-2- (2-hydroxyethoxy) ethyl carbamate (2.700 g, 11.30 mmol), and trifluoromethanesulfonic acid (0.1360 mL, 1.541 mmol) was added and stirred overnight under reflux conditions. To the reaction mixture was added 10 wt% aqueous potassium carbonate solution, and the mixture was partitioned with dichloromethane, and then the organic phase was washed with water and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and the solution was concentrated by displacement to 2-methyltetrahydrofuran. The residue was added dropwise to heptane, and the obtained crystals were filtered to give compound RE12-2 (5.130 g, yield 88%).
ESI-MS m / z: 570 (M + H) +
参考例13 Reference Example 13
Figure JPOXMLDOC01-appb-C000192
Figure JPOXMLDOC01-appb-C000192
 化合物RE13-1(参考例1における化合物RE1-1, 898.0 mg, 2.007 mmol)をジクロロメタン(15 mL)に溶解し、1-ヒドロキシベンゾトリアゾール一水和物(338.0 mg, 2.208 mmol)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(343 mg, 2.208 mmol)、およびN-1-Z-1, 3-ジアミノプロパン塩酸塩(0.4910 mL, 2.208 mmol)を加え、室温で3時間攪拌した。反応液に水を加え、ジクロロメタンで分液した後、有機層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=90/10)で精製することにより、化合物RE13-2(873.0 mg, 収率68%)を得た。
ESI-MS m/z: 639 (M + H)+
Compound RE 13-1 (Compound RE 1-1, 898.0 mg, 2.007 mmol in Reference Example 1) was dissolved in dichloromethane (15 mL), 1-hydroxybenzotriazole monohydrate (338.0 mg, 2.208 mmol), 1- (1 Add 3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (343 mg, 2.208 mmol), and N-1-Z-l, 3-diaminopropane hydrochloride (0.4910 mL, 2.208 mmol), and add 3 hours at room temperature. It stirred. Water was added to the reaction solution, and the mixture was partitioned with dichloromethane, and then the organic layer was washed with a saturated aqueous sodium hydrogen carbonate solution and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (chloroform / methanol = 90/10) to obtain Compound RE13-2 (873.0 mg, yield 68%).
ESI-MS m / z: 639 (M + H) +
参考例14 Reference Example 14
Figure JPOXMLDOC01-appb-C000193
Figure JPOXMLDOC01-appb-C000193
参考例14工程1
 化合物RE14-1 (参考例1における化合物RE1-1, 3.00 g, 6.70 mmol)をジクロロメタン (60 mL)に溶解し、室温にてL-リジンベンジルエステル二p-トルエンスルホン酸塩 (1.75 g, 3.02 mmol)、トリエチルアミン(0.935 mL, 6.70 mmol), 1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩 (1.29 g, 6.70 mmol)、1-ヒドロキシベンゾトリアゾール1水和物 (103 mg, 0.670 mmol)を加えて2.5時間撹拌した。反応液を水と飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー (クロロホルム/メタノール=90/10)で精製することにより、化合物RE14-2を定量的に得た。
ESI-MS m/z: 1096 (M + H)+
Reference Example 14 Step 1
Compound RE 14-1 (Compound RE 1-1 in Reference Example 1, 3.00 g, 6.70 mmol) was dissolved in dichloromethane (60 mL), and L-lysine benzyl ester di-p-toluenesulfonate (1.75 g, 3.02) at room temperature. mmol), triethylamine (0.935 mL, 6.70 mmol), 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (1.29 g, 6.70 mmol), 1-hydroxybenzotriazole monohydrate (103 mg, 0.670) mmol) was added and stirred for 2.5 hours. The reaction solution was washed with water and saturated aqueous sodium hydrogen carbonate solution, and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (chloroform / methanol = 90/10) to quantitatively obtain Compound RE14-2.
ESI-MS m / z: 1096 (M + H) +
参考例14工程2
 化合物RE14-2 (2.30 g, 2.10 mmol)をテトラヒドロフラン (46 mL)に溶解し、室温にて10%パラジウムカーボン粉末 (含水品, 54.29%; 424 mg)を加え、水素雰囲気下で終夜撹拌した。反応液をろ過し、減圧下、溶媒を留去することにより、化合物RE14-3を定量的に得た。
ESI-MS m/z: 1006 (M + H)+
Reference Example 14 Step 2
Compound RE14-2 (2.30 g, 2.10 mmol) was dissolved in tetrahydrofuran (46 mL), 10% palladium carbon powder (hydrous product, 54.29%; 424 mg) was added at room temperature, and the mixture was stirred overnight under a hydrogen atmosphere. The reaction solution was filtered, and the solvent was evaporated under reduced pressure to quantitatively obtain Compound RE14-3.
ESI-MS m / z: 1006 (M + H) +
参考例15 Reference Example 15
Figure JPOXMLDOC01-appb-C000194
Figure JPOXMLDOC01-appb-C000194
参考例15工程1
 イミノ二酢酸 (東京化成工業社製, 1.5 g, 6.43 mmol,)を塩化メチレン(30 mL)に溶解し、ペンタフルオロトリフルオロ酢酸(東京化成工業社製, 2.75 mL, 16.08 mmol)、トリエチルアミン(4.48 mL, 32.2 mmol)を加えて4時間撹拌した。反応液に10%クエン酸水溶液を加え、クロロホルムで抽出した後、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。そこに、参考例11に記載の方法で合成した化合物RE15-1 (参考例11における化合物RE11-2, 2 g, 3.45 mmol)を酢酸エチル(10 mL)とアセトニトリル(10 mL)との混合液に溶解し、パラジウム/炭素による接触水素還元を行った。得られた溶液部分を減圧下、溶媒を留去することにより、化合物RE15-2の粗製生物を得た。
ESI-MS m/z: 1091(M+H)+
Reference Example 15 Step 1
Dissolve iminodiacetic acid (manufactured by Tokyo Chemical Industry Co., Ltd., 1.5 g, 6.43 mmol,) in methylene chloride (30 mL), pentafluorotrifluoroacetic acid (manufactured by Tokyo Chemical Industry Co., Ltd., 2.75 mL, 16.08 mmol), triethylamine (4.48) mL, 32.2 mmol) was added and stirred for 4 hours. To the reaction solution was added 10% aqueous citric acid solution, and the mixture was extracted with chloroform, and then the organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. Therein, a mixture of compound RE15-1 (compound RE11-2 in Reference Example 11; 2 g, 3.45 mmol) synthesized by the method described in Reference Example 11 in ethyl acetate (10 mL) and acetonitrile (10 mL) And catalytic hydrogen reduction with palladium / carbon. The solvent of the obtained solution was distilled off under reduced pressure to obtain a crude product of compound RE15-2.
ESI-MS m / z: 1091 (M + H) +
参考例15工程2
 化合物RE15-2 (1.5 g,1.37 mmol)を用い、参考例1化合物RE1-4の合成の工程2と同様の方法で化合物RE15-3を定量的に得た。
ESI-MS m/z: 990(M+H)+
Reference Example 15 Step 2
Compound RE15-2 (1.5 g, 1.37 mmol) was used to quantitatively obtain Compound RE15-3 in the same manner as in Step 2 of the synthesis of Compound RE1-4.
ESI-MS m / z: 990 (M + H) +
参考例16 Reference Example 16
Figure JPOXMLDOC01-appb-C000195
Figure JPOXMLDOC01-appb-C000195
参考例16工程1
 N-(t-ブトキシカルボニル)-L-グルタミン酸 (東京化成工業社製)を用いて、参考例11に記載の方法で合成した化合物RE16-1 (1.855 g, 3.19 mmol)を用い、参考例15の工程1と同様の方法で化合物RE16-2の粗精製物を得た。
ESI-MS m/z: 1105(M+H)+
Reference Example 16 Step 1
Using Compound RE16-1 (1.855 g, 3.19 mmol) synthesized by the method described in Reference Example 11 using N- (t-butoxycarbonyl) -L-glutamic acid (manufactured by Tokyo Chemical Industry Co., Ltd.), Reference Example 15 A crude purified product of compound RE16-2 was obtained in the same manner as in the step 1).
ESI-MS m / z: 1105 (M + H) +
参考例16工程2
 化合物RE16-2(1.421 g, 1.2866 mmol)を用い、参考例1化合物RE1-4の合成の工程2と同様の方法で化合物RE16-3を定量的に得た。
ESI-MS m/z: 1004(M+H)+
Reference Example 16 Step 2
Reference Example 1 Compound RE16-3 was quantitatively obtained in the same manner as in step 2 of the synthesis of compound RE1-4, using compound RE16-2 (1.421 g, 1.2866 mmol).
ESI-MS m / z: 1004 (M + H) +
参考例17 Reference Example 17
Figure JPOXMLDOC01-appb-C000196
Figure JPOXMLDOC01-appb-C000196
 ジャーナル・オブ・オーガニック・ケミストリー(Journal of Organic Chemistry), 第74巻, 6837-6842頁, 2009年に記載された方法で合成した化合物RE17-1 (90 mg, 0.173 mmol) をテトラヒドロフラン (1 mL) に溶解し、トリフェニルホスフィン、ポリマー担持 (シグマアルドリッチ社製, 63 mg, 0.189 mmol) を加えて、加熱環流下3時間撹拌した。反応液をろ過し、減圧下、溶媒を留去することにより、化合物RE17-2 (70 mg, 収率82%)を得た。
ESI-MS m/z: 516 (M+Na)+
1H-NMR (400 MHz, CDCl3): δ0.89 (3H, s), 1.42-1.48 (2H, m), 1.52-1.61 (2H, m), 1.85 (1H, br s), 2.68 (2H, t, J= 7.2 Hz), 3.06-3.07 (2H, m), 3.39-3.44 (3H, m), 3.51-3.55 (3H, m), 3.78 (6H, s), 6.80-6.85 (4H, m), 7.17-7.23 (1H, m), 7.27-7.33 (6H, m), 7.41-7.43 (2H, m).
Compound RE17-1 (90 mg, 0.173 mmol) synthesized by the method described in Journal of Organic Chemistry, 74, 6837-6842, 2009, in tetrahydrofuran (1 mL) The mixture was dissolved in water, added with triphenylphosphine and polymer supported (Sigma Aldrich, 63 mg, 0.189 mmol), and stirred under heating reflux for 3 hours. The reaction mixture was filtered, and the solvent was evaporated under reduced pressure to give compound RE17-2 (70 mg, yield 82%).
ESI-MS m / z: 516 (M + Na) +
1 H-NMR (400 MHz, CDCl 3 ): δ 0.89 (3H, s), 1.42-1.48 (2H, m), 1.52-1.61 (2H, m), 1.85 (1H, br s), 2.68 (2H , t, J = 7.2 Hz), 3.06-3.07 (2H, m), 3.39-3.44 (3H, m), 3.51-3.55 (3H, m), 3.78 (6H, s), 6.80-6.85 (4H, m) ), 7.17-7.23 (1 H, m), 7. 27-7. 33 (6 H, m), 7.41-7. 43 (2 H, m).
参考例18 Reference Example 18
Figure JPOXMLDOC01-appb-C000197
Figure JPOXMLDOC01-appb-C000197
参考例18工程1
 化合物RE18-1 (東京化成工業社製, 0.500 g, 3.73 mmoL)を用いて参考例2の工程1と同様の方法で化合物RE18-2の粗生成物 (1.5 g) を得た。
ESI-MS m/z: 435 (M-H)-
Reference Example 18 Step 1
A crude product (1.5 g) of compound RE18-2 was obtained in the same manner as in step 1 of Reference Example 2 using compound RE18-1 (manufactured by Tokyo Chemical Industry Co., Ltd., 0.500 g, 3.73 mmoL).
ESI-MS m / z: 435 (MH) -
参考例18工程2
 化合物RE18-2の粗生成物 (1.5 g) と1,4-Diaminobutane (東京化成工業社製, 3.29 g, 37.3 mmol)を用いて参考例3の工程3と同様の方法で化合物RE18-3 (0.18 g, 2 段階収率10%)を得た。
ESI-MS m/z: 551 (M+HCOO)-
1H-NMR (400 MHz, MeOD):δ1.09 (3H, s), 1.45-1.52 (4H, m), 2.80 (2H, t, J = 7.2 Hz), 2.91 (2H, s), 3.05 (1H, d, J = 8.8 Hz), 3.12-3.16 (4H, m), 3.24 (1H, s), 3.43 (1H, d, J = 10.8 Hz), 3.62-3.66 (7H, m), 6.71-6.76 (4H, m), 7.05-7.11 (1H, m), 7.12-7.20 (6H, m), 7.28-7.32 (2H, m).
Reference Example 18 Step 2
A compound RE18-3 was prepared by using the crude product of compound RE18-2 (1.5 g) and 1,4-Diaminobutane (Tokyo Chemical Industry Co., Ltd., 3.29 g, 37.3 mmol) in the same manner as in step 3 of Reference Example 3. 0.18 g, 2 step yield 10%) was obtained.
ESI-MS m / z: 551 (M + HCOO) -
1 H-NMR (400 MHz, MeOD): δ 1.09 (3 H, s), 1.45-1. 52 (4 H, m), 2. 80 (2 H, t, J = 7.2 Hz), 2. 91 (2 H, s), 3.05 ( 1H, d, J = 8.8 Hz), 3.12-3.16 (4H, m), 3.24 (1H, s), 3.43 (1H, d, J = 10.8 Hz), 3.62-3.66 (7H, m), 6.71-6.76 (4H, m), 7.05-7.11 (1H, m), 7.12-7.20 (6H, m), 7.28-7. 32 (2H, m).
参考例19 Reference Example 19
Figure JPOXMLDOC01-appb-C000198
Figure JPOXMLDOC01-appb-C000198
 ジャーナル・オブ・オーガニック・ケミストリー(Journal of Organic Chemistry), 第74巻, 6837-6842頁, 2009年に記載された方法で合成した化合物RE19-1 (110 mg, 0.212 mmol) をテトラヒドロフラン (2 mL) に溶解し、N-(1R,8S,9s)-Bicyclo[6.1.0]non-4-yn-9-ylmethyloxycarbonyl-1,8-diamino-3,6-dioxaoctane (東京化成工業社製, 72 mg, 0.222 mmol) を加えて、室温にて1時間撹拌した。反応液に水を加え、クロロホルムで抽出した後、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下、溶媒を留去し、残渣をアミノシリカゲルカラムクロマトグラフィー (クロロホルム/メタノール=90/10)で精製することにより、化合物RE19-2 (160 mg, 収率90 %)を得た。ESI-MS m/z: 845 (M+H)+
1H-NMR (400 MHz, CDCl3):δ0.88 (3H, s), 0.91-1.09 (3H, m), 1.20-1.25 (1H, m), 1.52-1.59 (4H, m), 1.80-1.85 (2H, m), 2.19-2.25 (4H, m), 2.59-2.68 (1H, m), 2.84-2.90 (4H, m), 3.02-3.11 (3H, m), 3.35-3.44 (5H, m), 3.49-3.53 (5H, m), 3.54-3.58 (2H, m), 3.62 (5H, s), 3.78 (6H, s), 4.13 (2H, d, J = 6.4 Hz), 4.21 (2H, t, J = 7.2 Hz), 6.79-6.84 (4H, m), 7.18-7.21 (1H, m), 7.24-7.27 (2H, m), 7.28-7.32 (4H, m), 7.39-7.44 (2H, m).
Compound RE19-1 (110 mg, 0.212 mmol) synthesized by the method described in Journal of Organic Chemistry, Vol. 74, pp. 6837-6842, 2009, in tetrahydrofuran (2 mL) Dissolved in water, N- (1R, 8S, 9s) -Bicyclo [6.1.0] non-4-yn-9-ylmethyloxycarbonyl-1,8-diamino-3,6-dioxaoctane (manufactured by Tokyo Chemical Industry Co., Ltd., 72 mg) , 0.222 mmol) was added and stirred at room temperature for 1 hour. Water was added to the reaction mixture, and the mixture was extracted with chloroform. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure, and the residue was purified by amino silica gel column chromatography (chloroform / methanol = 90/10) to obtain Compound RE19-2 (160 mg, yield 90%). ESI-MS m / z: 845 (M + H) +
1 H-NMR (400 MHz, CDCl 3 ): δ 0.88 (3H, s), 0.91-1.09 (3H, m), 1.20-1.25 (1H, m), 1.52-1.59 (4H, m), 1.80- 1.85 (2H, m), 2.19-2.25 (4H, m), 2.59-2.68 (1H, m), 2.84-2.90 (4H, m), 3.02-3.11 (3H, m), 3.35-3.44 (5H, m) ), 3.49-3.53 (5H, m), 3.54-3.58 (2H, m), 3.62 (5H, s), 3.78 (6H, s), 4.13 (2H, d, J = 6.4 Hz), 4.21 (2H, s) t, J = 7.2 Hz), 6.79-6.84 (4H, m), 7.18-7.21 (1H, m), 7.24-7.27 (2H, m), 7.28-7.32 (4H, m), 7.39-7.44 (2H, m) m).
参考例20 Reference Example 20
Figure JPOXMLDOC01-appb-C000199
Figure JPOXMLDOC01-appb-C000199
参考例20工程1
 化合物RE20-1 (AstaTech社製, 100 mg, 1.148 mmol)およびFmoc-Ser(tBuMe2Si)-OH (渡辺化学工業社製, 532 mg, 1.205 mmol)を用いて参考例3の工程3と同様の方法で化合物RE20-2 (410 mg, 収率70%)を得た。
ESI-MS m/z: 511 (M+H)+
1H-NMR (400 MHz, CDCl3):δ 0.06 (6H, s), 0.90 (9H, s), 2.76-2.85 (1H, m), 3.65-3.86 (5H, m), 4.02-4.23 (3H, m), 4.32-4.40 (4H, m), 5.55 (1H, d, J = 8.0 Hz), 7.31 (2H, t, J = 7.6 Hz), 7.40 (2H, t, J= 7.6 Hz), 7.59 (2H, d, J = 7.6 Hz), 7.76 (2H, d, J = 7.6 Hz).
Reference Example 20 Step 1
The same method as in step 3 of Reference Example 3 using compound RE20-1 (AstaTech, 100 mg, 1.148 mmol) and Fmoc-Ser (tBuMe2Si) -OH (Watanabe Chemical Industry, 532 mg, 1.205 mmol) Thus, compound RE20-2 (410 mg, yield 70%) was obtained.
ESI-MS m / z: 511 (M + H) +
1 H-NMR (400 MHz, CDCl 3 ): δ 0.06 (6 H, s), 0.90 (9 H, s), 2. 76-2.85 (1 H, m), 3.65-3. 86 (5 H, m), 4.02-4. 23 (3 H , m), 4.32-4.40 (4H, m), 5.55 (1H, d, J = 8.0 Hz), 7.31 (2H, t, J = 7.6 Hz), 7.40 (2H, t, J = 7.6 Hz), 7.59 (2H, d, J = 7.6 Hz), 7.76 (2H, d, J = 7.6 Hz).
参考例20工程2
 化合物RE20-2 (410 mg, 0.803 mmol)を用いて参考例2の工程1と同様の方法で化合物RE20-3の粗生成物(680 mg)を得た。
ESI-MS m/z: 814 (M+H)+
Reference Example 20 Step 2
A crude product (680 mg) of a compound RE20-3 was obtained in the same manner as in step 1 of Reference Example 2 using the compound RE20-2 (410 mg, 0.803 mmol).
ESI-MS m / z: 814 (M + H) +
参考例20工程3
 化合物RE20-3の粗生成物 (680 mg)を用いて参考例2の工程5と同様の方法で化合物RE20-4 (330 mg, 2段階収率70%)を得た。
ESI-MS m/z: 519 (M+H)+
1H-NMR (400 MHz, CDCl3):δ0.02-0.09 (6H, m), 0.89 (9H, d, J = 28.8 Hz), 2.84-2.94 (1H, m), 3.24-3.30 (2H, m), 3.46 (1H, t, J = 7.2 Hz), 3.52-3.68 (2H, m), 3.75-3.80 (1H, m), 3.82 (6H, d, J= 2.4 Hz), 3.89-3.96 (1H, m), 4.05-4.17 (1H, m), 4.27-4.37 (1H, m), 6.82-6.89 (4H, m), 7.22-7.27 (1H, m), 7.29-7.34 (6H, m), 7.41-7.45 (2H, m)
Reference Example 20 Step 3
Using the crude product (680 mg) of compound RE20-3, compound RE20-4 (330 mg, 70% two-step yield) was obtained in the same manner as in step 5 of Reference Example 2.
ESI-MS m / z: 519 (M + H) +
1 H-NMR (400 MHz, CDCl 3 ): δ 0.02-0.09 (6 H, m), 0.89 (9 H, d, J = 28.8 Hz), 2.84-2.94 (1 H, m), 3.24-3. 30 (2 H, m), 3.46 (1H, t, J = 7.2 Hz), 3.52-3.68 (2H, m), 3.75-3.80 (1H, m), 3.82 (6H, d, J = 2.4 Hz), 3.89-3.96 (1H , m), 4.05-4.17 (1H, m), 4.27-4.37 (1H, m), 6.82-6.89 (4H, m), 7.22-7.27 (1H, m), 7.29-7.34 (6H, m), 7.41 -7.45 (2H, m)
参考例21 Reference Example 21
Figure JPOXMLDOC01-appb-C000200
Figure JPOXMLDOC01-appb-C000200
参考例21工程1
 N-(Tert-ブトキシカルボニル)-1,3-ジアミノプロパン(東京化成工業社製,1.788 g, 10.26 mmol)をジクロロメタン(22.8 mL)に溶解し、トリエチルアミン(1.907 mL, 13.68 mmol)を加え、室温で15分撹拌した。反応液に、オーガニックレター(Organic Letter), 第16巻, 6318-6321頁, 2014年に記載された方法で合成した化合物RE21-1(1.126 g, 6.84 mmol)のジクロロメタン溶液(5 mL)を滴下し、室温で2時間撹拌した。反応液に水を加え、クロロホルムで抽出した後、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(ヘプタン/酢酸エチル=35/65)で精製することにより、化合物RE21-2(1.65 g,収率80%)を得た。
ESI-MS m/z: 303 (M+H)+
Reference Example 21 Step 1
Dissolve N- (Tert-butoxycarbonyl) -1,3-diaminopropane (Tokyo Chemical Industry Co., Ltd., 1.788 g, 10.26 mmol) in dichloromethane (22.8 mL), add triethylamine (1.907 mL, 13.68 mmol), and room temperature The mixture was stirred for 15 minutes. To the reaction solution is added dropwise a dichloromethane solution (5 mL) of a compound RE 21-1 (1.126 g, 6.84 mmol) synthesized by the method described in Organic Letter, 16: 6318-6321, 2014. And stirred at room temperature for 2 hours. Water was added to the reaction mixture, and the mixture was extracted with chloroform. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (heptane / ethyl acetate = 35/65) to obtain compound RE21-2 (1.65 g, yield 80%).
ESI-MS m / z: 303 (M + H) +
参考例21工程2
 化合物RE21-2 (1.65 g, 5.46 mmol)を用いて参考例1化合物RE1-4の合成の工程2と同様の方法で化合物RE21-3 (1.10 g, 収率100%)を得た。
ESI-MS m/z: 203 (M+H)+
1H-NMR (400 MHz, CDCl3):δ1.74 (2H, dt, J = 12.0, 6.0 Hz), 2.95 (2H, t, J = 6.0 Hz), 3.18 (1H, s), 3.60 (2H, td, J= 6.0, 5.2 Hz), 7.54 (2H, dt, J = 8.4, 1.8 Hz), 7.76 (2H, dt, J = 8.4, 1.8 Hz), 7.97 (1H, br s).
Reference Example 21 Step 2
Reference Example 1 Compound RE21-2 (1.10 g, 100% yield) was obtained in the same manner as in step 2 of the synthesis of compound RE1-4, using compound RE21-2 (1.65 g, 5.46 mmol).
ESI-MS m / z: 203 (M + H) +
1 H-NMR (400 MHz, CDCl 3 ): δ 1.74 (2 H, dt, J = 12.0, 6.0 Hz), 2.95 (2 H, t, J = 6.0 Hz), 3.18 (1 H, s), 3.60 (2 H) , td, J = 6.0, 5.2 Hz), 7.54 (2H, dt, J = 8.4, 1.8 Hz), 7.76 (2H, dt, J = 8.4, 1.8 Hz), 7.97 (1 H, br s).
参考例22 Reference Example 22
Figure JPOXMLDOC01-appb-C000201
Figure JPOXMLDOC01-appb-C000201
参考例22工程1
 化合物RE22-1 (東京化成社製, 1.2 g, 4.24mmol)を用いて参考例2の工程1と同様の方法で化合物RE22-2の粗製生物を得た。
ESI-MS m/z: 608(M+Na)+
Reference Example 22 step 1
A crude product of compound RE22-2 was obtained in the same manner as in step 1 of Reference Example 2 using compound RE22-1 (manufactured by Tokyo Chemical Industry Co., Ltd., 1.2 g, 4.24 mmol).
ESI-MS m / z: 608 (M + Na) +
参考例22工程2
 化合物RE22-2の粗生成物を用いて参考例2の工程5もしくは実施例1の工程11に記載された方法で化合物R22-3 (1.34 g, 2段階収率52%) を得た。
ESI-MS m/z: 386(M+Na)+
1H-NMR (400 MHz, CDCl3):δ3.34 (2H, t, J = 6.4 Hz), 3.47 (2H, t, J = 6.4 Hz), 3.79 (6H, s), 6.78-6.84 (4H, m), 7.17-7.21 (1H, m), 7.27-7.35 (6H, m), 7.42-7.46 (2H, m).
Reference Example 22 Step 2
The crude product of compound RE22-2 was used to obtain compound R22-3 (1.34 g, 52% yield in two steps) by the method described in Step 5 of Reference Example 2 or Step 11 of Example 1.
ESI-MS m / z: 386 (M + Na) +
1 H-NMR (400 MHz, CDCl 3 ): δ 3.34 (2 H, t, J = 6.4 Hz), 3. 47 (2 H, t, J = 6.4 Hz), 3. 79 (6 H, s), 6. 78-6. 84 (4 H , m), 7.17-7.21 (1 H, m), 7.27-7.35 (6 H, m), 7.42-7.46 (2 H, m).
参考例22工程3
 化合物RE22-3 (1.15 g,3.16  mmol)およびFmoc-Ser(tBuMe2Si)-OH(渡辺化学工業社製, 1.677 g, 3.8  mmol)を用いて参考例3の工程3と同様の方法で化合物RE22-4 (560 mg, 収率31%)を得た。
1H-NMR (400 MHz, CDCl3) δ: 0.00-0.07 (6H, m), 0.83-0.89 (9H, m), 3.18-3.26 (2H, m), 3.39-3.46 (2H, m), 3.61-3.68 (1H, m), 3.76 (6H, s), 3.89 (1H, dd, J= 10.0, 4.0 Hz), 4.03 (1H, dd, J = 10.0, 4.0 Hz), 4.15-4.20 (1H, m), 4.22-4.28 (1H, m), 4.32-4.40 (2H, m), 5.65-5.88 (1H, m), 6.76-6.85 (4H, m), 7.16-7.23 (1H, m), 7.25-7.34 (8H, m), 7.36-7.44 (4H, m), 7.50-7.64 (2H, m), 7.72-7.79 (2H, m).
Reference Example 22 Process 3
Compound RE22- was prepared by the same method as in step 3 of Reference Example 3 using compound RE22-3 (1.15 g, 3.16 mmol) and Fmoc-Ser (tBuMe2Si) -OH (manufactured by Watanabe Chemical Industries, Ltd., 1.677 g, 3.8 mmol). 4 (560 mg, 31% yield) was obtained.
1 H-NMR (400 MHz, CDCl 3 ) δ: 0.00-0.07 (6 H, m), 0.83-0.89 (9 H, m), 3.18-3.26 (2 H, m), 3.39-3. 46 (2 H, m), 3.61- 3.68 (1 H, m), 3. 76 (6 H, s), 3. 89 (1 H, dd, J = 10.0, 4.0 Hz), 4.03 (1 H, dd, J = 10.0, 4.0 Hz), 4.15-4.20 (1 H, m) , 4.22-4.28 (1H, m), 4.32-4.40 (2H, m), 5.65-5.88 (1H, m), 6.76-6.85 (4H, m), 7.16-7.23 (1H, m), 7.25-7.34 ( 8H, m), 7.36-7.44 (4H, m), 7.50-7.64 (2H, m), 7.72-7.79 (2H, m) .
参考例23
 第Y-1表に記載された化合物RE23-1~RE23-5およびFmoc-Ser(tBuMe2Si)-OHを用いて、参考例22と同様の方法により、第Y-2表に記載された化合物RE23-6~RE23-10を得た。
 参考例22の化合物RE22-3とFmoc-Thr(tBuMe2Si)-OHを用いて、参考例22と同様の方法により第Y-2表に記載した化合物RE23-11を得た。
 第Y-1表に記載された化合物RE23-1とFmoc-Thr(tBuMe2Si)-OHを用いて、参考例22と同様の方法により第Y-2表に記載した化合物RE23-12を得た。
 本実施例により合成した化合物のNMR分析データを第Y-3表に示す。
Reference Example 23
The compounds RE23-1 to RE23-5 listed in Table Y-1 and Fmoc-Ser (tBuMe 2 Si) -OH were listed in Table Y-2 in the same manner as in Reference Example 22. Compounds RE23-6 to RE23-10 were obtained.
The compound RE23-11 described in Table Y-2 was obtained in the same manner as in Reference Example 22 using the compound RE22-3 in Reference Example 22 and Fmoc-Thr (tBuMe 2 Si) -OH.
The compound RE23-12 described in Table Y-2 is obtained in the same manner as in Reference Example 22 using the compound RE23-1 and Fmoc-Thr (tBuMe 2 Si) -OH described in Table Y-1. The
The NMR analysis data of the compound synthesized according to this example is shown in Table Y-3.
Figure JPOXMLDOC01-appb-T000202
Figure JPOXMLDOC01-appb-T000202
Figure JPOXMLDOC01-appb-T000203
Figure JPOXMLDOC01-appb-T000203
Figure JPOXMLDOC01-appb-T000204
 
Figure JPOXMLDOC01-appb-T000204
 
参考例24 Reference Example 24
Figure JPOXMLDOC01-appb-C000205
Figure JPOXMLDOC01-appb-C000205
 参考例22に記載の方法で合成した化合物RE24-1 (参考例22における化合物RE22-4, 2.487 g, 3.16  mmol)を用いて参考例2工程2と同様の方法で化合物RE24-2を得た(1.2 g, 収率67%)。
ESI-MS m/z: 587(M+Na)+
1H-NMR (400 MHz, CDCl3):δ-0.01-0.07 (6H, m), 0.86-0.90 (9H, m), 3.15-3.21 (2H, m), 3.41-3.48 (3H, m), 3.72 (1H, dd, J= 10.0, 6.4 Hz), 3.79 (6H, s), 3.84 (1H, dd, J = 10.0, 4.8 Hz), 6.79-6.84 (4H, m), 7.18-7.23 (1H, m), 7.27-7.33 (6H, m), 7.40-7.44 (2H, m), 7.72-7.75 (1H, br m).
Compound RE24-2 was obtained in the same manner as in Step 2 of Reference Example 2 using Compound RE24-1 (compound RE22-4 in Reference Example 22; 2.487 g, 3.16 mmol) synthesized by the method described in Reference Example 22. (1.2 g, 67% yield).
ESI-MS m / z: 587 (M + Na) +
1 H-NMR (400 MHz, CDCl 3 ): δ-0.01-0.07 (6H, m), 0.86-0.90 (9H, m), 3.15-3.21 (2H, m), 3.41-3.48 (3H, m), 3.72 (1H, dd, J = 10.0, 6.4 Hz), 3.79 (6H, s), 3.84 (1H, dd, J = 10.0, 4.8 Hz), 6.79-6.84 (4H, m), 7.18-7.23 (1H, 1) m), 7.27-7.33 (6H, m), 7.40-7.44 (2H, m), 7.72-7.75 (1H, br m).
参考例25
 第Y-2表に記載した化合物RE23-6~RE23-12を用いて参考例24と同様の方法により第Z-1表に記載した化合物RE25-1~RE25-7を得た。
 本実施例により合成した化合物の質量分析結果を第Z-2表に示す。
Reference Example 25
Compounds RE25-1 to RE25-7 described in Table Z-1 were obtained in the same manner as in Reference Example 24 using compounds RE23-6 to RE23-12 described in Table Y-2.
The mass spectrometry results of the compound synthesized according to this example are shown in Table Z-2.
Figure JPOXMLDOC01-appb-T000206
Figure JPOXMLDOC01-appb-T000206
Figure JPOXMLDOC01-appb-T000207
Figure JPOXMLDOC01-appb-T000207
参考例26 Reference Example 26
Figure JPOXMLDOC01-appb-C000208
Figure JPOXMLDOC01-appb-C000208
参考例26工程1
 化合物RE26-1 (2.00 g, 9.47 mmol)をN, N’-ジメチルホルムアミド (40 mL)に溶解し、室温にてイミノ二酢酸ジ-tert-ブチルエステル (5.11 g, 20.84 mmol)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩 (4.00 g, 20.84 mmol)、1-ヒドロキシベンゾトリアゾール1水和物 (145 mg, 0.947 mmol)を加えて2時間撹拌した。反応液に水を加え、酢酸エチルで抽出した後、有機層を飽和炭酸水素ナトリウム水溶液と飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー (ヘプタン/酢酸エチル=50/50)で精製した。さらにメタノールでスラリー精製することにより、化合物RE26-2 (4.07 g, 収率65 %)を得た。
ESI-MS m/z: 664 (M - H)-
Reference example 26 process 1
Compound RE26-1 (2.00 g, 9.47 mmol) was dissolved in N, N'-dimethylformamide (40 mL), iminodiacetic acid di-tert-butyl ester (5.11 g, 20.84 mmol) at room temperature, 1- ( 3-Dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (4.00 g, 20.84 mmol) and 1-hydroxybenzotriazole monohydrate (145 mg, 0.947 mmol) were added and stirred for 2 hours. Water was added to the reaction solution, and the mixture was extracted with ethyl acetate, and then the organic layer was washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine, and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (heptane / ethyl acetate = 50/50). Furthermore, slurry purification with methanol was performed to obtain compound RE26-2 (4.07 g, yield 65%).
ESI-MS m / z: 664 (M-H) -
参考例26工程2
 化合物RE26-2 (2.66 g, 4.00 mmol)をテトラヒドロフラン (53 mL)に溶解し、室温にて10%パラジウムカーボン粉末 (含水品, 54.29%; 490 mg)を加え、水素雰囲気下で3時間撹拌した。反応液をろ過し、減圧下、溶媒を留去することにより、化合物RE26-3 (2.86 g, 収率113%)を得た。
ESI-MS m/z: 634 (M - H)-
Reference Example 26 Step 2
Compound RE26-2 (2.66 g, 4.00 mmol) was dissolved in tetrahydrofuran (53 mL), 10% palladium carbon powder (hydrous product, 54.29%; 490 mg) was added at room temperature, and stirred for 3 hours under a hydrogen atmosphere . The reaction mixture was filtered, and the solvent was evaporated under reduced pressure to give compound RE26-3 (2.86 g, yield 113%).
ESI-MS m / z: 634 (M-H) -
参考例26工程3
 化合物RE26-3(871.0 mg, 1.370 mmol)をN, N’-ジメチルホルムアミド(17 mL)に溶解し、O-(7-アザベンゾトリアゾール-1-イン)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロリン酸塩(625.0 mg, 1.644 mmol)、ジイソプロピルエチルアミン(0.5730 mL, 3.290 mmol)、およびドデカン二酸モノベンジルエステル(527.0 mg, 1.644 mmol)を加え、室温で終夜攪拌した。反応液に水を加え、酢酸エチルで抽出した後、有機層を飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(へプタン/酢酸エチル=60/40)で精製することにより、化合物RE26-4(1.030 g, 収率80%)を得た。
ESI-MS m/z: 939 (M + H)+
Reference Example 26 Step 3
The compound RE26-3 (871.0 mg, 1.370 mmol) was dissolved in N, N'-dimethylformamide (17 mL), O- (7-azabenzotriazol-1-yne) -N, N, N ', N' -Tetramethyluronium hexafluorophosphate (625.0 mg, 1.644 mmol), diisopropylethylamine (0.5730 mL, 3.290 mmol), and dodecanedioic acid monobenzyl ester (527.0 mg, 1.644 mmol) were added and stirred overnight at room temperature . Water was added to the reaction solution, and the mixture was extracted with ethyl acetate, and then the organic layer was washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (heptane / ethyl acetate = 60/40) to give compound RE26-4 (1.030 g, yield 80%).
ESI-MS m / z: 939 (M + H) +
参考例26工程4
 化合物RE26-4(1.030 g, 1.098 mmol)をジクロロメタン(10 mL)に溶解し、トリフルオロ酢酸(10.00 mL, 130.0 mmol)を加え、室温で1時間攪拌した。減圧下、溶媒を留去し、化合物RE26-5の粗生成物を得た。
ESI-MS m/z: 713 (M - H)-
Reference Example 26 Step 4
Compound RE26-4 (1.030 g, 1.098 mmol) was dissolved in dichloromethane (10 mL), trifluoroacetic acid (10.00 mL, 130.0 mmol) was added, and the mixture was stirred at room temperature for 1 hour. The solvent was evaporated under reduced pressure to give a crude product of compound RE26-5.
ESI-MS m / z: 713 (M-H) -
参考例27 Reference Example 27
Figure JPOXMLDOC01-appb-C000209
Figure JPOXMLDOC01-appb-C000209
参考例27工程1
 化合物RE27-1(2.000 g, 12.98 mmol)をN, N’-ジメチルホルムアミド(30 mL)に溶解し、炭酸水素カリウム(1.559 g, 15.57 mmol)および塩化ベンジル(2.328 mL, 19.47 mmol)を加えて、室温にて4時間攪拌した。反応液に飽和塩化アンモニウムを加え、ジクロロメタンで抽出した後、有機層を水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(へプタン/酢酸エチル=50/50)で精製することにより、化合物RE27-2(2.850 g, 収率90%)を得た。
ESI-MS m/z: 243 (M - H)-
Reference Example 27 Step 1
Compound RE 27-1 (2.000 g, 12.98 mmol) is dissolved in N, N'-dimethylformamide (30 mL), potassium hydrogen carbonate (1.559 g, 15.57 mmol) and benzyl chloride (2.328 mL, 19.47 mmol) are added. The mixture was stirred at room temperature for 4 hours. Saturated ammonium chloride was added to the reaction solution, extraction was performed with dichloromethane, and then the organic layer was washed with water and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (heptane / ethyl acetate = 50/50) to give compound RE27-2 (2.850 g, yield 90%).
ESI-MS m / z: 243 (M-H) -
参考例27工程2
 化合物RE27-2(2.500 g, 10.24 mmol)をN, N’-ジメチルホルムアミド(30 mL)に溶解し、炭酸カリウム(5.660 g, 40.90 mmol)およびtert-ブチルブロモ酢酸(3.300 mL, 22.52 mmol)を加え、90℃で4時間攪拌した。反応液に飽和塩化アンモニウムを加え、ジクロロメタンで抽出した後、有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(へプタン/酢酸エチル=75/25)で精製することにより、化合物RE27-3(4.300 g, 収率89%)を得た。
ESI-MS m/z: 472 (M - H)-
Reference Example 27 Step 2
Compound RE27-2 (2.500 g, 10.24 mmol) is dissolved in N, N'-dimethylformamide (30 mL), potassium carbonate (5.660 g, 40.90 mmol) and tert-butyl bromoacetic acid (3.300 mL, 22.52 mmol) are added The mixture was stirred at 90 ° C. for 4 hours. Saturated ammonium chloride was added to the reaction solution, extraction was carried out with dichloromethane, and the organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (heptane / ethyl acetate = 75/25) to give compound RE27-3 (4.300 g, yield 89%).
ESI-MS m / z: 472 (M-H) -
参考例27工程3
 化合物RE27-3(1.000 g, 2.116 mmol)をジクロロメタン(10 mL)に溶解し、トリフルオロ酢酸(10.00 mL, 130.0 mmol)を加え、室温で6時間攪拌した。減圧下、溶媒を留去し、化合物RE27-4の粗生成物を得た。
ESI-MS m/z: 359 (M - H)-
Reference Example 27 Step 3
Compound RE27-3 (1.000 g, 2.116 mmol) was dissolved in dichloromethane (10 mL), trifluoroacetic acid (10.00 mL, 130.0 mmol) was added, and the mixture was stirred at room temperature for 6 hours. The solvent was evaporated under reduced pressure to give a crude product of compound RE27-4.
ESI-MS m / z: 359 (M-H) -
参考例27工程4
 化合物RE27-4(350.0 mg, 0.9710 mmol)をN, N’-ジメチルホルムアミド(7 mL)に溶解し、1-ヒドロキシベンゾトリアゾール一水和物(327.0 mg, 2.137 mmol)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(410.0 mg, 2.137 mmol)、およびイミノジ酢酸ジ-tert-ブチルエステル(524.0 mg, 2.137 mmol)を加え、室温で5時間攪拌した。反応液に水を加え、酢酸エチルで抽出した後、有機層を飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(へプタン/酢酸エチル=60/40)で精製することにより、化合物RE27-5(617.0 mg, 収率78%)を得た。
ESI-MS m/z: 814 (M - H)-
Reference Example 27 Step 4
The compound RE27-4 (350.0 mg, 0.9710 mmol) is dissolved in N, N'-dimethylformamide (7 mL), 1-hydroxybenzotriazole monohydrate (327.0 mg, 2.137 mmol), 1- (3-dimethyl-dimethyl) Aminopropyl) -3-ethylcarbodiimide hydrochloride (410.0 mg, 2.137 mmol) and iminodiacetic acid di-tert-butyl ester (524.0 mg, 2.137 mmol) were added and stirred at room temperature for 5 hours. Water was added to the reaction solution, and the mixture was extracted with ethyl acetate, and then the organic layer was washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (heptane / ethyl acetate = 60/40) to give compound RE27-5 (617.0 mg, yield 78%).
ESI-MS m / z: 814 (M-H) -
参考例27工程5
 化合物RE27-5(610.0 mg, 0.7490 mmol)をジクロロメタン(6 mL)に溶解し、トリフルオロ酢酸(6 mL, 78.00 mmol)を加え、室温で1時間攪拌した。減圧下、溶媒を留去し、化合物RE27-6の粗生成物を得た。
ESI-MS m/z: 590 (M + H)+
Reference Example 27 Step 5
Compound RE27-5 (610.0 mg, 0.7490 mmol) was dissolved in dichloromethane (6 mL), trifluoroacetic acid (6 mL, 78.00 mmol) was added, and the mixture was stirred at room temperature for 1 hour. The solvent was distilled off under reduced pressure to obtain a crude product of compound RE27-6.
ESI-MS m / z: 590 (M + H) +
参考例28 Reference Example 28
Figure JPOXMLDOC01-appb-C000210
Figure JPOXMLDOC01-appb-C000210
参考例28工程1
 参考例26に記載に方法で合成した化合物RE28-1 (参考例26における化合物RE26-3, 474 mg, 0.744 mmol)をN, N’-ジメチルホルムアミド (10 mL)に溶解し、室温にてジャーナル・オブ・メディシナル・ケミストリー (Journal of Medicinal Chemistry), 第54巻, 2433-2446頁, 2011年に記載された方法で合成したtrans-シクロヘキサン-1,4-ジカルボン酸モノベンジルエステル (0.234 mg, 0.893 mmol)、ジイソプロピルエチルアミン (0.312 mL, 1.79 mmol)、O-(7-アザベンゾトリアゾール-1-イル)-N,N,N',N'-テトラメチルウロニウムヘキサフルオロホスファート (339 mg, 0.893 mmol)を加えて6時間撹拌した。反応液に水を加え、酢酸エチルで抽出した後、有機層を飽和炭酸水素ナトリウム水溶液と飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー (ヘプタン/酢酸エチル=50/50)で精製することにより、化合物RE28-2 (448 mg, 収率68 %)を得た。
ESI-MS m/z: 879 (M - H)-
Reference Example 28 step 1
Compound RE28-1 (Compound RE 26-3, 474 mg, 0.744 mmol in Reference Example 26) synthesized by the method described in Reference Example 26 is dissolved in N, N'-dimethylformamide (10 mL), and a journal is prepared at room temperature. Trans-cyclohexane-1,4-dicarboxylic acid monobenzyl ester (0.234 mg, 0.893) synthesized by the method described in Journal of Medicinal Chemistry, Vol. 54, p. 2433-2446, 2011. mmol), diisopropylethylamine (0.312 mL, 1.79 mmol), O- (7-azabenzotriazol-1-yl) -N, N, N ', N'-tetramethyluronium hexafluorophosphate (339 mg, 0.893) The mmol) was added and stirred for 6 hours. Water was added to the reaction solution, and the mixture was extracted with ethyl acetate, and then the organic layer was washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine, and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (heptane / ethyl acetate = 50/50) to obtain Compound RE28-2 (448 mg, yield 68%).
ESI-MS m / z: 879 (M-H) -
参考例28工程2
 化合物RE28-2 (341 mg, 0.387 mmol)をジクロロメタン (3.4 mL)に溶解し、室温にてトリフルオロ酢酸 (3.4 mL)を加えて終夜撹拌した。反応液を減圧濃縮し、酢酸エチルで共沸し、ヘプタンでスラリー精製することにより、化合物RE28-3 (254 mg, 収率100%)を得た。
ESI-MS m/z: 656 (M + H)+
Reference Example 28 Step 2
Compound RE28-2 (341 mg, 0.387 mmol) was dissolved in dichloromethane (3.4 mL), trifluoroacetic acid (3.4 mL) was added at room temperature, and the mixture was stirred overnight. The reaction solution was concentrated under reduced pressure, azeotroped with ethyl acetate, and slurry-purified with heptane to give compound RE28-3 (254 mg, yield 100%).
ESI-MS m / z: 656 (M + H) +
参考例29 Reference Example 29
Figure JPOXMLDOC01-appb-C000211
Figure JPOXMLDOC01-appb-C000211
参考例29工程1
 化合物RE29-1 (500 mg, 2.75 mmol)をN, N’-ジメチルホルムアミド (10 mL)に溶解し、室温にてイミノジ酢酸ジ-tert-ブチルエステル (1.48 g, 6.04 mmol)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩 (1.16 g, 6.04 mmol)、1-ヒドロキシベンゾトリアゾール1水和物 (42.0 mg, 0.275 mmol)を加えて4時間撹拌した。反応液に水を加え、酢酸エチルで抽出した後、有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー (ヘプタン/酢酸エチル=50/50)で精製することにより、化合物RE29-2 (329 mg, 収率19 %)を得た。
ESI-MS m/z: 635 (M - H)-
Reference Example 29 Step 1
Compound RE 29-1 (500 mg, 2.75 mmol) is dissolved in N, N'-dimethylformamide (10 mL), and iminodiacetic acid di-tert-butyl ester (1.48 g, 6.04 mmol) at room temperature, 1- (3 -Dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (1.16 g, 6.04 mmol) and 1-hydroxybenzotriazole monohydrate (42.0 mg, 0.275 mmol) were added and stirred for 4 hours. Water was added to the reaction solution, and the mixture was extracted with ethyl acetate, and then the organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (heptane / ethyl acetate = 50/50) to obtain Compound RE29-2 (329 mg, yield 19%).
ESI-MS m / z: 635 (M-H) -
参考例29工程2
 化合物RE29-2 (323 mg, 0.507 mmol)をN, N’-ジメチルホルムアミド (6v5 mL)に溶解し、室温にて炭酸カリウム (84.0 mg, 0.609 mmol)、ブロモ酢酸ベンジル (139 mg, 0.609 mmol)を加えて3時間撹拌した。反応液に水を加え、酢酸エチルで抽出した後、有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー (ヘプタン/酢酸エチル=50/50)で精製することにより、化合物RE29-3 (313 mg, 収率79 %)を得た。
ESI-MS m/z: 783 (M - H)-
Reference Example 29 Step 2
Compound RE29-2 (323 mg, 0.507 mmol) was dissolved in N, N'-dimethylformamide (6 v 5 mL) and potassium carbonate (84.0 mg, 0.609 mmol) at room temperature, benzyl bromoacetate (139 mg, 0.609 mmol) Was added and stirred for 3 hours. Water was added to the reaction solution, and the mixture was extracted with ethyl acetate, and then the organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (heptane / ethyl acetate = 50/50) to obtain Compound RE29-3 (313 mg, yield 79%).
ESI-MS m / z: 783 (M-H) -
参考例29工程3
 化合物RE29-3 (312 mg, 0.398 mmol)をジクロロメタン (3.1 mL)に溶解し、室温にてトリフルオロ酢酸 (3.1 mL)を加えて終夜撹拌した。反応液を減圧濃縮し、酢酸エチルで共沸することにより、化合物RE29-4 (252 mg, 定量的)を得た。
ESI-MS m/z: 561 (M + H)+
Reference Example 29 Step 3
Compound RE29-3 (312 mg, 0.398 mmol) was dissolved in dichloromethane (3.1 mL), trifluoroacetic acid (3.1 mL) was added at room temperature, and the mixture was stirred overnight. The reaction mixture was concentrated under reduced pressure and azeotroped with ethyl acetate to give compound RE29-4 (252 mg, quantitative).
ESI-MS m / z: 561 (M + H) +
参考例30 Reference Example 30
Figure JPOXMLDOC01-appb-C000212
Figure JPOXMLDOC01-appb-C000212
参考例30工程1
 化合物RE30-1 (2.00 g, 9.47 mmol)をN, N’-ジメチルホルムアミド (40 mL)に溶解し、室温にて2-アミノ-1,3-プロパンジオール (1.90 g, 20.84 mmol)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩 (4.00 g, 20.84 mmol)、1-ヒドロキシベンゾトリアゾール1水和物 (145 mg, 0.947 mmol)を加えて2時間撹拌した。減圧下、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー (酢酸エチル/メタノール=70/30)で精製した。さらに酢酸エチルでスラリー精製することにより、化合物RE30-2 (2.68 g, 収率79 %)を得た。
ESI-MS m/z: 356 (M - H)-
Reference Example 30 Step 1
Compound RE30-1 (2.00 g, 9.47 mmol) is dissolved in N, N'-dimethylformamide (40 mL), and 2-amino-1,3-propanediol (1.90 g, 20.84 mmol) at room temperature, 1- (3-Dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (4.00 g, 20.84 mmol) and 1-hydroxybenzotriazole monohydrate (145 mg, 0.947 mmol) were added and stirred for 2 hours. The solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate / methanol = 70/30). Furthermore, slurry purification with ethyl acetate was performed to obtain compound RE30-2 (2.68 g, yield 79%).
ESI-MS m / z: 356 (M-H) -
参考例30工程2
 化合物RE30-2 (500 mg, 1.40 mmol)をアセトニトリル (10 mL)に懸濁し、室温にてアクリル酸tert-ブチルエステル (3.59 g, 28.0 mmol)、ベンジルトリメチルアンモニウムヒドロキシド (40%水溶液; 1.76 mL, 702 mmol)を加えて終夜撹拌した。減圧下、溶媒を留去し、水を加え、酢酸エチルで抽出した後、有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー (ヘプタン/酢酸エチル=50/50)で精製することにより、化合物RE30-3 (300 mg, 収率24 %)を得た。
ESI-MS m/z: 871 (M + H)+
Reference Example 30 Step 2
Compound RE30-2 (500 mg, 1.40 mmol) is suspended in acetonitrile (10 mL), and acrylic acid tert-butyl ester (3.59 g, 28.0 mmol) at room temperature, benzyltrimethylammonium hydroxide (40% aqueous solution; 1.76 mL) , 702 mmol) was added and stirred overnight. The solvent was evaporated under reduced pressure, water was added, extraction was performed with ethyl acetate, and then the organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (heptane / ethyl acetate = 50/50) to obtain compound RE30-3 (300 mg, yield 24%).
ESI-MS m / z: 871 (M + H) +
参考例30工程3
 化合物RE30-3 (340 mg, 0391 mmol)をテトラヒドロフラン (6.8 mL)に溶解し、室温にて10%パラジウムカーボン粉末 (含水品, 54.29%; 31.3 mg)を加え、水素雰囲気下で6時間撹拌した。反応液をろ過し、減圧下、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー (ヘプタン/酢酸エチル=30/70)で精製することにより、化合物RE30-4 (235 mg, 収率72 %)を得た。
ESI-MS m/z: 841 (M + H)+
Reference example 30 step 3
Compound RE30-3 (340 mg, 0391 mmol) was dissolved in tetrahydrofuran (6.8 mL), 10% palladium carbon powder (hydrous product, 54.29%; 31.3 mg) was added at room temperature, and stirred for 6 hours under a hydrogen atmosphere . The reaction mixture is filtered, the solvent is evaporated under reduced pressure, and the residue is purified by silica gel column chromatography (heptane / ethyl acetate = 30/70) to give compound RE30-4 (235 mg, yield 72%) I got
ESI-MS m / z: 841 (M + H) +
参考例30工程4
 化合物RE30-4 (232 mg, 0.276 mmol)をN, N’-ジメチルホルムアミド (4.6 mL)に溶解し、室温にてドデカン酸モノベンジルエステル (0.133 mg, 0.414 mmol)、ジイソプロピルエチルアミン (0.145 mL, 0.829 mmol)、O-(7-アザベンゾトリアゾール-1-イル)-N,N,N',N'-テトラメチルウロニウムヘキサフルオロホスファート (158 mg, 0.414 mmol)を加えて終夜撹拌した。反応液に水を加え、酢酸エチルで抽出した後、有機層を飽和炭酸水素ナトリウム水溶液と飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー (ヘプタン/酢酸エチル=30/70)で精製することにより、化合物RE30-5 (274 mg, 収率87 %)を得た。
ESI-MS m/z: 1141 (M - H)-
Reference Example 30 Step 4
Compound RE30-4 (232 mg, 0.276 mmol) was dissolved in N, N'-dimethylformamide (4.6 mL), and dodecanoic acid monobenzyl ester (0.133 mg, 0.414 mmol) at room temperature, diisopropylethylamine (0.145 mL, 0.829) The mixture was added with mmol), O- (7-azabenzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium hexafluorophosphate (158 mg, 0.414 mmol) and stirred overnight. Water was added to the reaction solution, and the mixture was extracted with ethyl acetate, and then the organic layer was washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine, and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (heptane / ethyl acetate = 30/70) to obtain compound RE30-5 (274 mg, yield 87%).
ESI-MS m / z: 1141 (M-H) -
参考例30工程5
 化合物RE30-5 (273 mg, 0.239 mmol)をジクロロメタン (2.7 mL)に溶解し、室温にてトリフルオロ酢酸 (2.7 mL)を加えて終夜撹拌した。反応液を減圧濃縮し、酢酸エチルで共沸することにより、化合物RE30-6 (231 mg, 定量的)を得た。
ESI-MS m/z: 919 (M + H)+
Reference Example 30 Step 5
Compound RE30-5 (273 mg, 0.239 mmol) was dissolved in dichloromethane (2.7 mL), trifluoroacetic acid (2.7 mL) was added at room temperature, and the mixture was stirred overnight. The reaction mixture was concentrated under reduced pressure and azeotroped with ethyl acetate to give compound RE30-6 (231 mg, quantitative).
ESI-MS m / z: 919 (M + H) +
参考例31 Reference Example 31
Figure JPOXMLDOC01-appb-C000213
Figure JPOXMLDOC01-appb-C000213
参考例31工程1
 4-ニトロイソフタル酸RE31-1 (500 mg, 2.37 mmol)およびN-Boc-エチレンジアミン (808 mg, 5.21 mmol)をN, N’-ジメチルホルムアミド (10 mL)に溶解し、室温にてトリエチルアミン (0.90 mL, 7.11 mmol)、1-ヒドロキシベンゾトリアゾール一水和物(703 mg, 5.21 mmol)および1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(1.36 g, 7.11 mmol)を加えて16時間撹拌した。反応液を後処理し、粗体をシリカゲルカラムクロマトグラフィーで精製することにより、化合物RE31-2 (650 mg, 収率55 %)を得た。
Reference Example 31 step 1
Dissolve 4-nitroisophthalic acid RE31-1 (500 mg, 2.37 mmol) and N-Boc-ethylenediamine (808 mg, 5.21 mmol) in N, N'-dimethylformamide (10 mL) and use triethylamine (0.90) at room temperature. Add 1 mL (7.11 mmol), 1-hydroxybenzotriazole monohydrate (703 mg, 5.21 mmol) and 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (1.36 g, 7.11 mmol) to Stir for hours. The reaction mixture was worked up, and the crude product was purified by silica gel column chromatography to obtain compound RE31-2 (650 mg, yield 55%).
参考例31工程2
 化合物RE31-2 (500 mg, 1.01 mmol)および亜鉛末 (330 mg, 5.05 mmol)をメタノール (3.5 mL)およびテトラヒドロフラン (3.5 mL)に懸濁し、0℃にて塩化アンモニウム (378 mg, 7.07 mmol)の水溶液を滴下し、室温にて24時間撹拌した。反応液を後処理し、粗体をシリカゲルカラムクロマトグラフィーで精製することにより、化合物RE31-3 (160 mg, 収率34 %)を得た。
Reference Example 31 Step 2
Compound RE 31-2 (500 mg, 1.01 mmol) and zinc powder (330 mg, 5.05 mmol) are suspended in methanol (3.5 mL) and tetrahydrofuran (3.5 mL), and ammonium chloride (378 mg, 7.07 mmol) at 0 ° C. The aqueous solution was added dropwise and stirred at room temperature for 24 hours. The reaction mixture was worked up, and the crude product was purified by silica gel column chromatography to obtain compound RE31-3 (160 mg, 34% yield).
参考例31工程3
 化合物RE31-3 (200 mg, 0.430 mmol)およびN-ベンジルオキシカルボニル-グリシン(ベンジルオキシカルボニルを、Cbzとも記載する。) (90.0 mg, 0.430 mmol)をN, N’-ジメチルホルムアミド (2.0 mL)に溶解し、室温にてジイソプロピルエチルアミン (0.220 mL, 1.29 mmol)、O-(7-アザベンゾトリアゾール-1-イル)-N,N,N',N'-テトラメチルウロニウムヘキサフルオロホスファート (245 mg, 0.645 mmol)を加えて16時間撹拌した。反応液を後処理し、粗体をシリカゲルカラムクロマトグラフィーで精製することにより、化合物RE31-4 (180 mg, 収率64 %)を得た。
ESI-MS m/z: 657 (M + H)+
Reference Example 31 Step 3
Compound RE31-3 (200 mg, 0.430 mmol) and N-benzyloxycarbonyl-glycine (benzyloxycarbonyl is also described as Cbz) (90.0 mg, 0.430 mmol) with N, N'-dimethylformamide (2.0 mL) Dissolved in water, and at room temperature diisopropylethylamine (0.220 mL, 1.29 mmol), O- (7-azabenzotriazol-1-yl) -N, N, N ', N'-tetramethyluronium hexafluorophosphate ( Add 245 mg, 0.645 mmol) and stir for 16 hours. The reaction mixture was worked up, and the crude product was purified by silica gel column chromatography to obtain compound RE31-4 (180 mg, yield 64%).
ESI-MS m / z: 657 (M + H) +
参考例32 Reference Example 32
Figure JPOXMLDOC01-appb-C000214
Figure JPOXMLDOC01-appb-C000214
参考例32工程1
 3,5-ジニトロ安息香酸RE32-1 (500 mg, 2.36 mmol)およびN-Cbz-エチレンジアミン (588 mg, 2.83 mmol)をN, N’-ジメチルホルムアミド (5.0 mL)に溶解し、室温にてトリエチルアミン (0.65 mL, 4.72 mmol)、1-ヒドロキシベンゾトリアゾール一水和物(380 mg, 2.83 mmol)および1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(675 mg, 3.54 mmol)を加えて16時間撹拌した。反応液を後処理し、粗体をシリカゲルカラムクロマトグラフィーで精製することにより、化合物RE32-2 (445 mg, 収率48 %)を得た。
Reference example 32 process 1
Dissolve 3,5-dinitrobenzoic acid RE 32-1 (500 mg, 2.36 mmol) and N-Cbz-ethylenediamine (588 mg, 2.83 mmol) in N, N'-dimethylformamide (5.0 mL) and use triethylamine at room temperature Add (0.65 mL, 4.72 mmol), 1-Hydroxybenzotriazole monohydrate (380 mg, 2.83 mmol) and 1- (3-Dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (675 mg, 3.54 mmol) Stir for 16 hours. The reaction mixture was worked up, and the crude product was purified by silica gel column chromatography to obtain compound RE32-2 (445 mg, yield 48%).
参考例32工程2
 化合物RE32-2 (200 mg, 0.515 mmol)をエタノール (5.0 mL)に溶解し、室温にて塩化スズ(II) (584 mg, 3.09 mmol)および濃塩酸 (0.2 mL)を加え、80℃で16時間撹拌した。反応液を後処理し、化合物RE32-3 (180 mg,定量的)を得た。
ESI-MS m/z: 329 (M + H)+
Reference example 32 process 2
Compound RE32-2 (200 mg, 0.515 mmol) is dissolved in ethanol (5.0 mL), tin (II) chloride (584 mg, 3.09 mmol) and concentrated hydrochloric acid (0.2 mL) are added at room temperature, and Stir for hours. The reaction mixture was worked up to give compound RE32-3 (180 mg, quantitative).
ESI-MS m / z: 329 (M + H) +
参考例33 Reference Example 33
Figure JPOXMLDOC01-appb-C000215
Figure JPOXMLDOC01-appb-C000215
参考例33工程1
 参考例3に記載の方法で合成した化合物RE33-1 (参考例3における化合物RE3-2, 8.17 g, 23.12 mmol)を用いて参考例3の工程4と同様の方法で化合物RE33-2 (3.7 g, 収率63%)を得た。
ESI-MS m/z: 254(M+H)+
Reference Example 33, Step 1
A compound RE33-2 (3.7% by a method similar to step 4 of Reference Example 3) was synthesized using Compound RE33-1 (the compound RE3-2 in Reference Example 3 8.17 g, 23.12 mmol) synthesized by the method described in Reference Example 3. g, yield 63%).
ESI-MS m / z: 254 (M + H) +
参考例33工程2
 化合物RE33-2 (3.7 g, 14.63 mmol)を用いて参考例3の工程5と同様の方法で化合物RE33-3 (3.82 g, 収率67%)を得た。
ESI-MS m/z: 432(M+HCOO)-
Reference Example 33 Step 2
The compound RE33-3 (3.82 g, yield 67%) was obtained in the same manner as in the step 5 of Reference Example 3 using the compound RE33-2 (3.7 g, 14.63 mmol).
ESI-MS m / z: 432 (M + HCOO) -
参考例33工程3
 化合物RE33-3 (3.82 g, 9.86 mmol)を用いて参考例1の工程2と同様の方法で化合物RE33-4(3.08 g, 収率87%)を得た。
ESI-MS m/z: 360(M+H)+
Reference Example 33 Step 3
The compound RE33-4 (3.08 g, yield 87%) was obtained in the same manner as in Step 2 of Reference Example 1 using the compound RE33-3 (3.82 g, 9.86 mmol).
ESI-MS m / z: 360 (M + H) +
参考例34
Figure JPOXMLDOC01-appb-C000216
Reference Example 34
Figure JPOXMLDOC01-appb-C000216
参考例34工程1
 化合物RE34-1 (2g, 9.53mmol)とtert-ブトキシカルボニルアミノ)-1-ペンタノール (東京化成社製, 2g,10mmol)を用い、参考例3の工程1と同様の方法で化合物RE34-2 (2.40 g, 収率63%)を得た。
ESI-MS m/z: 296(M+H)+, 脱Boc体として検出
Reference Example 34 Step 1
Compound RE34-1 was prepared by the same method as in step 1 of Reference Example 3 using compound RE34-1 (2 g, 9.53 mmol) and tert-butoxycarbonylamino) -1-pentanol (manufactured by Tokyo Chemical Industry Co., Ltd., 2 g, 10 mmol). (2.40 g, 63% yield) was obtained.
ESI-MS m / z: 296 (M + H) + , detected as de-Boc derivative
参考例34工程2
 化合物RE34-2を用いて、参考例3の工程2~4および参考例4の工程1~4と同様の方法で化合物RE34-3 (1.579g,収率21%)を得た。
ESI-MS m/z: 910 (M+H)+
Reference Example 34 Step 2
Compound RE34-2 (1.579 g, yield 21%) was obtained in the same manner as in Steps 2 to 4 of Reference Example 3 and Steps 1 to 4 of Reference Example 4 using Compound RE 34-2.
ESI-MS m / z: 910 (M + H) +
参考例35:化合物D2の合成 Reference Example 35: Synthesis of Compound D2
Figure JPOXMLDOC01-appb-C000217
Figure JPOXMLDOC01-appb-C000217
参考例35工程1
 参考例11に記載の方法で合成した化合物RE35-1 (参考例11における化合物RE11-2, 1.015 g, 1.748 mmol)をN, N’-ジメチルホルムアミド (12 mL)に溶解し、室温にて10%パラジウムカーボン粉末 (含水品, 54.29%; 187 mg)を加え、水素雰囲気下で6時間撹拌した。反応液をろ過した。ろ液に参考例26で合成した化合物RE26-5(250.0 mg, 0.350 mmol), 1-ヒドロキシベンゾトリアゾール一水和物(26.80 mg, 0.1750 mmol)、および1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(402.0 mg, 2.099 mmol)を加え、室温で終夜攪拌した。反応液に水を加え、酢酸エチルで抽出した後、有機層を飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=87/13)で精製することにより、化合物RE35-2(617.0 mg, 収率88%)を得た。
ESI-MS m/z: 1215 (M + 2H) 2+
Reference Example 35, Step 1
Compound RE 35-1 (Compound RE 11-2 in Reference Example 11, 1.015 g, 1.748 mmol) synthesized by the method described in Reference Example 11 was dissolved in N, N′-dimethylformamide (12 mL), % Palladium carbon powder (hydrated product, 54.29%; 187 mg) was added and stirred for 6 hours under hydrogen atmosphere. The reaction solution was filtered. Compound RE26-5 (250.0 mg, 0.350 mmol) synthesized in Reference Example 26, 1-hydroxybenzotriazole monohydrate (26.80 mg, 0.1750 mmol), and 1- (3-dimethylaminopropyl) -3 in the filtrate. -Ethyl carbodiimide hydrochloride (402.0 mg, 2.099 mmol) was added and stirred at room temperature overnight. Water was added to the reaction solution, and the mixture was extracted with ethyl acetate, and then the organic layer was washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (chloroform / methanol = 87/13) to obtain compound RE35-2 (617.0 mg, yield 88%).
ESI-MS m / z: 1215 (M + 2 H) 2+
参考例35工程2
 化合物RE35-2 (0.7380 g, 0.3040 mmol)をテトラヒドロフラン (7 mL)に溶解し、室温にて10%パラジウムカーボン粉末 (含水品, 54.29%; 135.90 mg)を加え、水素雰囲気下で終夜撹拌した。反応液をろ過し、減圧下、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=87/13)で精製することにより、化合物D2(581 mg, 収率82%)を得た。
ESI-MS m/z: 1170 (M + 2H) 2+
1H-NMR (400 MHz, DMSO-d6,δ): 1.12-2.36 (106H, m), 2.91-3.19 (8H, m), 3.23-3.55 (14H, m), 3.60-3.76 (4H, m), 3.78-3.94 (8H, m), 3.95-4.10 (16H, m), 4.47 (4H, d, J = 8.8 Hz), 4.92-5.01 (4H, m), 5.17-5.24 (4H, m), 6.98 (1H, s), 7.64 (2H, s), 7.81-7.95 (4H, m), 8.28-8.38 (2H, m), 8.44-8.56 (2H, m), 10.13 (1H, s)
Reference Example 35 Step 2
Compound RE35-2 (0.7380 g, 0.3040 mmol) was dissolved in tetrahydrofuran (7 mL), 10% palladium carbon powder (hydrous product, 54.29%; 135.90 mg) was added at room temperature, and the mixture was stirred overnight under a hydrogen atmosphere. The reaction mixture was filtered, the solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (chloroform / methanol = 87/13) to give compound D2 (581 mg, yield 82%) .
ESI-MS m / z: 1170 (M + 2 H) 2+
1 H-NMR (400 MHz, DMSO-d6, δ): 1.12-2.36 (106H, m), 2.91-3.19 (8H, m), 3.23-3.55 (14H, m), 3.60-3.76 (4H, m) , 3.78-3.94 (8H, m), 3.95-4.10 (16H, m), 4.47 (4H, d, J = 8.8 Hz), 4.92-5.01 (4H, m), 5.17-5.24 (4H, m), 6.98 (1H, s), 7.64 (2H, s), 7.81-7.95 (4H, m), 8.28-8.38 (2H, m), 8.44-8.56 (2H, m), 10.13 (1H, s)
参考例36:化合物D3の合成 Reference Example 36: Synthesis of Compound D3
Figure JPOXMLDOC01-appb-C000218
Figure JPOXMLDOC01-appb-C000218
参考例36工程1
 参考例12に記載の方法で合成した化合物RE36-1 (参考例12における化合物RE12-2, 500 mg, 0.879 mmol)をN, N’-ジメチルホルムアミド (6.5 mL)に溶解し、室温にて10%パラジウムカーボン粉末 (含水品, 54.29%; 94 mg)を加え、水素雰囲気下で4時間撹拌した。反応液をろ過した。ろ液に参考例26における化合物RE26-5(126.0 mg, 0.176 mmol), 1-ヒドロキシベンゾトリアゾール一水和物(13.47 mg, 0.088 mmol)、および1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(202.0 mg, 1.055 mmol)を加え、室温で終夜攪拌した。反応液を減圧下、溶媒を留去し、残渣を逆相カラムクロマトグラフィー(水/アセトニトリル)で精製することにより、化合物RE36-2(249.7 mg, 収率60%)を得た。
ESI-MS m/z: 1191 (M + 2H) 2+
Reference Example 36, Step 1
Compound RE36-1 (Compound RE 12-2 in Reference Example 12, 500 mg, 0.879 mmol) synthesized by the method described in Reference Example 12 was dissolved in N, N'-dimethylformamide (6.5 mL), % Palladium carbon powder (hydrous, 54.29%; 94 mg) was added and stirred for 4 hours under hydrogen atmosphere. The reaction solution was filtered. The compound RE26-5 (126.0 mg, 0.176 mmol) in Reference Example 26, 1-hydroxybenzotriazole monohydrate (13.47 mg, 0.088 mmol), and 1- (3-dimethylaminopropyl) -3-ethyl were added to the filtrate. Carbodiimide hydrochloride (202.0 mg, 1.055 mmol) was added and stirred overnight at room temperature. The reaction solution was evaporated under reduced pressure, the solvent was evaporated, and the residue was purified by reverse phase column chromatography (water / acetonitrile) to obtain compound RE36-2 (249.7 mg, yield 60%).
ESI-MS m / z: 1191 (M + 2 H) 2+
参考例36工程2
 化合物RE36-2 (0.242 g, 0.102 mmol)をテトラヒドロフラン (3.6 mL)および水(1.2 mL)に溶解し、室温にて10%パラジウムカーボン粉末 (含水品, 54.29%; 45 mg)を加え、水素雰囲気下で4時間攪拌した。反応液をろ過し、減圧下、溶媒を留去し、化合物D3(216 mg, 収率93%)を得た。
ESI-MS m/z: 1146 (M + 2H) 2+
1H-NMR (400 MHz, DMSO-d6,δ): 1.15-1.65 (20H, m), 1.68-2.15 (52H, m), 3.13-3.29 (6H, m), 3.40-3.67 (16H, m), 3.71-3.96 (11H, m), 3.98-4.14 (16H, m), 4.55 (4H, t, J = 8.8 Hz), 4.93-5.06 (4H, m), 5.12-5.28 (4H, m), 6.56 (1H, s), 6.98 (1H. s), 7.64 (2H, s), 7.77-7.93 (4H, m), 8.26-8.49 (3H, m), 10.10 (1H, s)
Reference Example 36 Step 2
Compound RE36-2 (0.242 g, 0.102 mmol) is dissolved in tetrahydrofuran (3.6 mL) and water (1.2 mL), 10% palladium on carbon powder (hydrated product, 54.29%; 45 mg) is added at room temperature, and a hydrogen atmosphere is added. It stirred under 4 hours. The reaction mixture was filtered, and the solvent was evaporated under reduced pressure to give compound D3 (216 mg, yield 93%).
ESI-MS m / z: 1146 (M + 2 H) 2+
1 H-NMR (400 MHz, DMSO-d6, δ): 1.15-1.65 (20 H, m), 1.68-2.15 (52 H, m), 3.13-3.29 (6 H, m), 3.40-3.67 (16 H, m), 3.71-3.96 (11H, m), 3.98-4.14 (16H, m), 4.55 (4H, t, J = 8.8 Hz), 4.93-5.06 (4H, m), 5.12-5.28 (4H, m), 6.56 (6) 1H, s), 6.98 (1H. S), 7.64 (2H, s), 7.77-7.93 (4H, m), 8.26-8.49 (3H, m), 10.10 (1H, s)
参考例37:化合物D4の合成 Reference Example 37: Synthesis of Compound D4
Figure JPOXMLDOC01-appb-C000219
Figure JPOXMLDOC01-appb-C000219
参考例37工程1
 参考例13に記載の方法で合成した化合物RE37-1 (参考例13における化合物RE13-2, 430 mg, 0.674 mmol)をN, N’-ジメチルホルムアミド (6 mL)に溶解し、室温にて10%パラジウムカーボン粉末 (含水品, 54.29%; 79 mg)を加え、水素雰囲気下で4時間撹拌した。反応液をろ過した。ろ液に参考例26における化合物RE26-5(105.0 mg, 0.148 mmol), 1-ヒドロキシベンゾトリアゾール一水和物(11.31 mg, 0.074 mmol)、および1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(170.0.0 mg, 0.887 mmol)を加え、室温で終夜攪拌した。反応液を減圧下、溶媒を留去し、残渣を逆相カラムクロマトグラフィー(水/アセトニトリル)で精製することにより、化合物RE37-2(218.1 mg, 収率56%)を得た。
ESI-MS m/z: 1329 (M + 2H) 2+
Reference Example 37 Step 1
Compound RE 37-1 (Compound RE 13-2 in Reference Example 13, 430 mg, 0.674 mmol) synthesized by the method described in Reference Example 13 was dissolved in N, N′-dimethylformamide (6 mL), % Palladium carbon powder (water content, 54.29%; 79 mg) was added and stirred for 4 hours under hydrogen atmosphere. The reaction solution was filtered. The compound RE26-5 (105.0 mg, 0.148 mmol) in Reference Example 26, 1-hydroxybenzotriazole monohydrate (11. 31 mg, 0.074 mmol), and 1- (3-dimethylaminopropyl) -3-ethyl were added to the filtrate. Carbodiimide hydrochloride (170.0.0 mg, 0.887 mmol) was added and stirred overnight at room temperature. The reaction mixture was concentrated under reduced pressure, the solvent was evaporated, and the residue was purified by reverse phase column chromatography (water / acetonitrile) to give compound RE37-2 (218.1 mg, yield 56%).
ESI-MS m / z: 1329 (M + 2 H) 2+
参考例37工程2
 化合物RE37-2 (0.210 g, 0.079 mmol)をテトラヒドロフラン (3.1 mL)および水(1.0 mL)に溶解し、室温にて10%パラジウムカーボン粉末 (含水品, 54.29%; 39 mg)を加え、水素雰囲気下で4時間攪拌した。反応液をろ過し、減圧下、溶媒を留去し、化合物D4 (192.7 mg, 収率95%)を得た。
ESI-MS m/z: 1284 (M + 2H) 2+
1H-NMR (400 MHz, DMSO-d6,δ): 1.17-1.65 (42H, m), 1.69-2.13 (61H, m), 2.95-3.17 (16H, m), 3.65-3.77 (3H, m), 3.79-3.94 (6H, m), 3.96-4.10 (16H, m), 4.48 (4H, d, J = 8.4 Hz), 4.96 (4H, dd, J = 2.4, 11.2 Hz), 5.21 (4H, d, J = 3.2 Hz), 7.01 (1H, s), 7.64-7.92 (11H, m), 8.26-8.48 (4H, m), 10.14 (1H, s)
Reference Example 37 Step 2
Compound RE37-2 (0.210 g, 0.079 mmol) is dissolved in tetrahydrofuran (3.1 mL) and water (1.0 mL), 10% palladium carbon powder (hydrous, 54.29%; 39 mg) is added at room temperature, and a hydrogen atmosphere is added. It stirred under 4 hours. The reaction mixture was filtered, and the solvent was evaporated under reduced pressure to give compound D4 (192.7 mg, yield 95%).
ESI-MS m / z: 1284 (M + 2 H) 2+
1 H-NMR (400 MHz, DMSO-d6, δ): 1.17-1.65 (42 H, m), 1.69-2.13 (61 H, m), 2.95-3.17 (16 H, m), 3.65-3. 77 (3 H, m), 3.79-3.94 (6H, m), 3.96-4.10 (16H, m), 4.48 (4H, d, J = 8.4 Hz), 4.96 (4H, dd, J = 2.4, 11.2 Hz), 5.21 (4H, d, J = 3.2 Hz), 7.01 (1 H, s), 7.64-7.92 (11 H, m), 8.26-8.48 (4 H, m), 10.14 (1 H, s)
参考例38:化合物D5の合成 Reference Example 38: Synthesis of Compound D5
Figure JPOXMLDOC01-appb-C000220
Figure JPOXMLDOC01-appb-C000220
参考例38工程1
 参考例12に記載の方法で合成した化合物RE38-1 (参考例12における化合物RE12-2, 450 mg, 0.791 mmol)をN, N’-ジメチルホルムアミド (6 mL)に溶解し、室温にて10%パラジウムカーボン粉末 (含水品, 54.29%; 85 mg)を加え、水素雰囲気下で5時間撹拌した。反応液をろ過した。ろ液に参考例27における化合物RE27-6(94 mg, 0.158 mmol), 1-ヒドロキシベンゾトリアゾール一水和物(133.0 mg, 0.871 mmol)、および1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(182.0 mg, 0.950 mmol)を加え、室温で終夜攪拌した。反応液を減圧下、溶媒を留去し、残渣を逆相カラムクロマトグラフィー(水/アセトニトリル)で精製することにより、化合物RE38-2(99 mg, 収率28%)を得た。
ESI-MS m/z: 1129 (M + 2H) 2+
Reference Example 38, Step 1
Compound RE38-1 (Compound RE 12-2 in Reference Example 12 450 mg, 0.791 mmol) synthesized by the method described in Reference Example 12 was dissolved in N, N′-dimethylformamide (6 mL), % Palladium carbon powder (water content, 54.29%; 85 mg) was added and stirred for 5 hours under hydrogen atmosphere. The reaction solution was filtered. The compound RE27-6 (94 mg, 0.158 mmol) in Reference Example 27, 1-hydroxybenzotriazole monohydrate (133.0 mg, 0.871 mmol), and 1- (3-dimethylaminopropyl) -3-ethyl were added to the filtrate. Carbodiimide hydrochloride (182.0 mg, 0.950 mmol) was added and stirred overnight at room temperature. The reaction solution was evaporated under reduced pressure, the solvent was evaporated, and the residue was purified by reverse phase column chromatography (water / acetonitrile) to obtain compound RE38-2 (99 mg, yield 28%).
ESI-MS m / z: 1129 (M + 2 H) 2+
参考例38工程2
 化合物RE38-2 (80 mg, 0.035 mmol)をテトラヒドロフラン (1.7 mL)および水(0.85 mL)に溶解し、室温にて10%パラジウムカーボン粉末 (含水品, 54.29%; 26 mg)を加え、水素雰囲気下で2時間撹拌した。反応液をろ過し、減圧下、溶媒を留去し、化合物D5(57.5 mg, 収率75%)を得た。
ESI-MS m/z: 1084 (M + 2H) 2+
1H-NMR (400 MHz, DMSO-d6,δ): 1.69-2.21 (46H, m), 3.14-3.65 (28H, m), 3.67-4.22 (27H, m), 4.43-4.66 (4H, m), 4.69-4.88 (4H, m), 4.89-5.08 (4H, m), 5.12-5.32 (4H, m), 6.54-6.68 (1H, br), 7.01 (2H, s), 7.78-8.09 (3H, m), 8.13-8.31 (2H, m), 8.58-8.75 (2H, m)
Reference Example 38 Step 2
Compound RE38-2 (80 mg, 0.035 mmol) is dissolved in tetrahydrofuran (1.7 mL) and water (0.85 mL), 10% palladium carbon powder (hydrous, 54.29%; 26 mg) is added at room temperature, and a hydrogen atmosphere is added. It stirred under 2 hours. The reaction mixture was filtered, and the solvent was evaporated under reduced pressure to give compound D5 (57.5 mg, yield 75%).
ESI-MS m / z: 1084 (M + 2 H) 2+
1 H-NMR (400 MHz, DMSO-d6, δ): 1.69-2.21 (46H, m), 3.14-3.65 (28H, m), 3.67-4.22 (27H, m), 4.44-4.66 (4H, m) , 4.69-4.88 (4H, m), 4.89-5.08 (4H, m), 5.12-5.32 (4H, m), 6.54-6.68 (1H, br), 7.01 (2H, s), 7.78-8.09 (3H, m), 8.13-8.31 (2H, m), 8.58-8.75 (2H, m)
参考例39:化合物D6の合成 Reference Example 39: Synthesis of Compound D6
Figure JPOXMLDOC01-appb-C000221
Figure JPOXMLDOC01-appb-C000221
参考例39工程1
 参考例13に記載の方法で合成した化合物RE39-1 (参考例13における化合物RE13-2, 418 mg, 0.655 mmol)をN, N’-ジメチルホルムアミド (6 mL)に溶解し、室温にて10%パラジウムカーボン粉末 (含水品, 54.29%; 77 mg)を加え、水素雰囲気下で5時間撹拌した。反応液をろ過した。ろ液に参考例27で合成した化合物RE27-6(85 mg, 0.144 mmol), 1-ヒドロキシベンゾトリアゾール一水和物(121.0 mg, 0.791 mmol)、および1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(165.0 mg, 0.863 mmol)を加え、室温で終夜攪拌した。反応液を減圧下、溶媒を留去し、残渣を逆相カラムクロマトグラフィー(水/アセトニトリル)で精製することにより、化合物RE39-2(99 mg, 収率28%)を得た。
ESI-MS m/z: 1268 (M + 2H) 2+
Reference Example 39 Step 1
Compound RE 39-1 (Compound RE 13-2, 418 mg, 0.655 mmol in Reference Example 13) synthesized by the method described in Reference Example 13 was dissolved in N, N′-dimethylformamide (6 mL), % Palladium carbon powder (hydrous, 54.29%; 77 mg) was added and stirred for 5 hours under hydrogen atmosphere. The reaction solution was filtered. The compound RE27-6 (85 mg, 0.144 mmol), 1-hydroxybenzotriazole monohydrate (121.0 mg, 0.791 mmol), and 1- (3-dimethylaminopropyl) -3 which were synthesized in Reference Example 27 were added to the filtrate. -Ethyl carbodiimide hydrochloride (165.0 mg, 0.863 mmol) was added and stirred at room temperature overnight. The reaction solution was evaporated under reduced pressure, the solvent was evaporated, and the residue was purified by reverse phase column chromatography (water / acetonitrile) to give compound RE39-2 (99 mg, yield 28%).
ESI-MS m / z: 1268 (M + 2 H) 2+
参考例39工程2
 化合物RE39-2 (186 mg, 0.073 mmol)をテトラヒドロフラン (2.8 mL)および水(0.93 mL)に溶解し、室温にて10%パラジウムカーボン粉末 (含水品, 54.29%; 40 mg)を加え、水素雰囲気下で2時間撹拌した。反応液をろ過し、減圧下、溶媒を留去し、化合物D6(156.7 mg, 収率87%)を得た。
ESI-MS m/z: 1222 (M + 2H) 2+
1H-NMR (400 MHz, DMSO-d6,δ): 1.36-1.62 (27H, m), 1.67-2.17 (64H, m), 2.92-3.21 (15H, m), 3.58-3.77 (2H, m), 3.80-3.95 (7H, m), 3.97-4.13 (15H, m), 4.47 (4H, d, J = 8.8 Hz), 4.88-5.02 (7H, m), 5.10-5.24 (3H, m), 6.95-7.00 (1H, m), 7.26-7.31 (2H, m), 7.72-7.88 (8H, m), 8.10-8.20 (2H, m), 8.51-8.60 (2H, m)
Reference Example 39 Step 2
Compound RE39-2 (186 mg, 0.073 mmol) is dissolved in tetrahydrofuran (2.8 mL) and water (0.93 mL), 10% palladium carbon powder (hydrous, 54.29%; 40 mg) is added at room temperature, and a hydrogen atmosphere is added. It stirred under 2 hours. The reaction mixture was filtered, and the solvent was evaporated under reduced pressure to give compound D6 (156.7 mg, yield 87%).
ESI-MS m / z: 1222 (M + 2H) 2+
1 H-NMR (400 MHz, DMSO-d6, δ): 1.36-1.62 (27 H, m), 1.67-2.17 (64 H, m), 2.92-3. 21 (15 H, m), 3.58-3. 77 (2 H, m) , 3.80-3.95 (7H, m), 3.97-4.13 (15H, m), 4.47 (4H, d, J = 8.8 Hz), 4.88-5.02 (7H, m), 5.10-5.24 (3H, m), 6.95 -7.00 (1H, m), 7.26-7.31 (2H, m), 7.72-7.88 (8H, m), 8.10-8.20 (2H, m), 8.51-8.60 (2H, m)
参考例40 Reference Example 40
Figure JPOXMLDOC01-appb-C000222
Figure JPOXMLDOC01-appb-C000222
参考例40工程1
 参考例38に記載の方法で合成した化合物D5 (171 mg, 0.079 mmol)をN, N’-ジメチルホルムアミド (3.4 mL)に溶解し、グリシンベンジル p-トルエンスルホン酸塩(32.0 mg, 0.095 mmol)、1-ヒドロキシベンゾトリアゾール一水和物(12.09 mg, 0.079 mmol)、および1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(18.16 mg, 0.095 mmol)を加え、室温で終夜攪拌した。反応液を減圧下、溶媒を留去し、残渣を逆相カラムクロマトグラフィー(水/アセトニトリル)で精製することにより、化合物RE40-2(55.7 mg, 収率31%)を得た。
ESI-MS m/z: 1158 (M + 2H) 2+
Reference Example 40, Step 1
Compound D5 (171 mg, 0.079 mmol) synthesized by the method described in Reference Example 38 is dissolved in N, N'-dimethylformamide (3.4 mL), and glycine benzyl p-toluenesulfonate (32.0 mg, 0.095 mmol) , 1-hydroxybenzotriazole monohydrate (12.09 mg, 0.079 mmol), and 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (18.16 mg, 0.095 mmol) were added and stirred overnight at room temperature . The reaction solution was evaporated under reduced pressure, the solvent was evaporated, and the residue was purified by reverse phase column chromatography (water / acetonitrile) to obtain compound RE40-2 (55.7 mg, yield 31%).
ESI-MS m / z: 1158 (M + 2 H) 2+
参考例40工程2
 化合物RE40-2 (54 mg, 0.023 mmol)をテトラヒドロフラン (0.83 mL)および水(0.28 mL)に溶解し、室温にて10%パラジウムカーボン粉末 (含水品, 54.29%; 18 mg)を加え、水素雰囲気下で2時間撹拌した。反応液をろ過し、減圧下、溶媒を留去し、化合物RE40-3(50.1 mg, 収率97%)を得た。
ESI-MS m/z: 1112 (M + 2H) 2+
1H-NMR (400 MHz, DMSO-d6,δ): 0.96-1.06 (3H, m), 1.71-2.20 (54H, m), 3.41-3.64 (15H, m), 3.68-4.20 (32H), 4.55 (4H, d, J = 8.4 Hz), 4.81 (4H, s), 4.94-5.02 (4H, m), 5.17-5.25 (4H, m), 6.63-6.76 (2H, m), 6.93-7.02 (2H, m), 7.84-8.00 (3H, m), 8.17-8.30 (2H, m), 8.58-8.70 (2H, m)
Reference Example 40 Step 2
Compound RE40-2 (54 mg, 0.023 mmol) is dissolved in tetrahydrofuran (0.83 mL) and water (0.28 mL), 10% palladium carbon powder (hydrous, 54.29%; 18 mg) is added at room temperature, and a hydrogen atmosphere is added. It stirred under 2 hours. The reaction mixture was filtered, and the solvent was evaporated under reduced pressure to give compound RE40-3 (50.1 mg, yield 97%).
ESI-MS m / z: 1112 (M + 2 H) 2+
1 H-NMR (400 MHz, DMSO-d6, δ): 0.96-1.06 (3H, m), 1.71-2.20 (54H, m), 3.41-3.64 (15H, m), 3.68-4.20 (32H), 4.55 ( 4H, d, J = 8.4 Hz), 4.81 (4H, s), 4.94-5.02 (4H, m), 5.17-5.25 (4H, m), 6.63-6.76 (2H, m), 6.93-7.02 (2H, 2) m), 7.84-8.00 (3H, m), 8.17-8.30 (2H, m), 8.58-8.70 (2H, m)
参考例41:化合物D7の合成 Reference Example 41: Synthesis of Compound D7
Figure JPOXMLDOC01-appb-C000223
Figure JPOXMLDOC01-appb-C000223
参考例41工程1
 化合物RE41-1 (500 mg, 0.861 mmol)をN, N’-ジメチルホルムアミド (10 mL)に溶解し、室温にて10%パラジウムカーボン粉末 (含水品, 54.29%; 92.1 mg)を加え、水素雰囲気下で2時間撹拌した。アルゴン雰囲気下、室温にて参考例27で合成した化合物RE27-3 (113 mg, 0.172 mmol)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩 (198 mg, 1.03 mmol)、1-ヒドロキシベンゾトリアゾール1水和物 (13.2 mg, 0.086 mmol)を加えて終夜撹拌した。反応液をセライトでろ過し、減圧下、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー (クロロホルム/メタノール=90/10)で精製し、さらに逆相分取HPLC (アセトニトリル/水)で精製することにより、化合物RE41-2 (195 mg, 収率48%)を得た。
ESI-MS m/z: 1186 (M + 2H) 2+
Reference Example 41 Step 1
Compound RE 41-1 (500 mg, 0.861 mmol) is dissolved in N, N'-dimethylformamide (10 mL), 10% palladium carbon powder (hydrous, 54.29%; 92.1 mg) is added at room temperature, and a hydrogen atmosphere is added. It stirred under 2 hours. Compound RE27-3 (113 mg, 0.172 mmol), 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (198 mg, 1.03 mmol), synthesized in Reference Example 27 at room temperature under an argon atmosphere, 1 -Hydroxybenzotriazole monohydrate (13.2 mg, 0.086 mmol) was added and stirred overnight. The reaction solution is filtered through celite, the solvent is evaporated under reduced pressure, and the residue is purified by silica gel column chromatography (chloroform / methanol = 90/10) and further purified by reverse phase preparative HPLC (acetonitrile / water) As a result, compound RE41-2 (195 mg, yield 48%) was obtained.
ESI-MS m / z: 1186 (M + 2 H) 2+
参考例41工程2
 化合物RE41-2 (194 mg, 0.082 mmol)をテトラヒドロフラン (2.9 mg)および水 (1.0 mL)に溶解し、室温にて10%パラジウムカーボン粉末 (含水品, 54.29%; 35.7 mg)を加え、水素雰囲気下で8時間撹拌した。反応液をろ過し、減圧下、溶媒を留去し、化合物D7(183 mg, 収率98%)を得た。
ESI-MS m/z: 1141 (M + 2H) 2+
1H-NMR (400 MHz, DMSO-d6,δ): 1.21-1.45 (m, 40H), 1.76-2.18 (m, 50H), 3.00-3.09 (m, 8H), 3.40-4.20 (m, 32H), 4.47 (d, J = 8.5 Hz, 4H), 4.96 (dd, J = 3.1, 11.2 Hz, 4H), 5.21 (d, J = 3.1 Hz, 4H), 6.98 (s, 1H), 7.65 (s, 2H), 7.84 (d, J = 9.0 Hz, 4H), 8.31 (brs, 1H), 8.44 (brs, 1H), 10.11 (s, 1H).
Reference Example 41 Step 2
Compound RE 41-2 (194 mg, 0.082 mmol) is dissolved in tetrahydrofuran (2.9 mg) and water (1.0 mL), 10% palladium carbon powder (hydrous, 54.29%; 35.7 mg) is added at room temperature, and a hydrogen atmosphere is added. Stirred for 8 hours below. The reaction mixture was filtered, and the solvent was evaporated under reduced pressure to give compound D7 (183 mg, yield 98%).
ESI-MS m / z: 1141 (M + 2 H) 2+
1 H-NMR (400 MHz, DMSO-d6, δ): 1.21-1.45 (m, 40H), 1.76-2.18 (m, 50H), 3.00-3.09 (m, 8H), 3.40-4.20 (m, 32H) , 4.47 (d, J = 8.5 Hz, 4 H), 4. 96 (dd, J = 3.1, 11.2 Hz, 4 H), 5.21 (d, J = 3.1 Hz, 4 H), 6. 98 (s, 1 H), 7. 65 (s, 2H), 7.84 (d, J = 9.0 Hz, 4H), 8.31 (brs, 1H), 8.44 (brs, 1H), 10.11 (s, 1H).
参考例42:化合物D8の合成 Reference Example 42: Synthesis of Compound D8
Figure JPOXMLDOC01-appb-C000224
Figure JPOXMLDOC01-appb-C000224
参考例42工程1
 参考例11に記載の方法で合成した化合物RE42-1 (参考例11における化合物RE11-2, 500 mg, 0.861 mmol)をN, N’-ジメチルホルムアミド (10 mL)に溶解し、室温にて10%パラジウムカーボン粉末 (含水品, 54.29%; 92.1 mg)を加え、水素雰囲気下で2時間撹拌した。アルゴン雰囲気下、室温にて参考例29で合成した化合物RE29-4 (97.0 mg, 0.172 mmol)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩 (198 mg, 1.03 mmol)、1-ヒドロキシベンゾトリアゾール1水和物 (13.2 mg, 0.086 mmol)を加えて終夜撹拌した。反応液をセライトでろ過し、減圧下、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー (クロロホルム/メタノール=85/15)で精製し、さらに逆相分取HPLC (アセトニトリル/水)で精製することにより、化合物RE42-2 (179 mg, 収率46%)を得た。
ESI-MS m/z: 1138 (M + 2H) 2+
Reference Example 42 Step 1
Compound RE 42-1 (Compound RE 11-2 in Reference Example 11, 500 mg, 0.861 mmol) synthesized by the method described in Reference Example 11 was dissolved in N, N′-dimethylformamide (10 mL), and 10 % Palladium carbon powder (hydrous, 54.29%; 92.1 mg) was added and stirred for 2 hours under hydrogen atmosphere. Compound RE29-4 (97.0 mg, 0.172 mmol) synthesized in Reference Example 29 at room temperature under an argon atmosphere, 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (198 mg, 1.03 mmol), 1 -Hydroxybenzotriazole monohydrate (13.2 mg, 0.086 mmol) was added and stirred overnight. The reaction solution is filtered through celite, the solvent is evaporated under reduced pressure, and the residue is purified by silica gel column chromatography (chloroform / methanol = 85/15) and further purified by reverse phase preparative HPLC (acetonitrile / water) Thus, compound RE42-2 (179 mg, yield 46%) was obtained.
ESI-MS m / z: 1138 (M + 2 H) 2+
参考例42工程2
 化合物RE42-2 (175 mg, 0.077 mmol)をテトラヒドロフラン (2.6 mg)および水 (0.9 mL)に溶解し、室温にて10%パラジウムカーボン粉末 (含水品, 54.29%; 32.4 mg)を加え、水素雰囲気下で1時間撹拌した。反応液をろ過し、減圧下、溶媒を留去し、化合物D8(160 mg, 収率95%)を得た。
ESI-MS m/z: 1093 (M + 2H) 2+
1H-NMR (400 MHz, DMSO-d6,δ): 1.23-1.45 (m, 32H), 1.77 (s, 12H), 1.89 (s, 12H), 1.99 (s, 12H), 2.10 (s, 12H), 3.01-3.11 (m, 8H), 3.69-4.02 (m, 34H), 4.47-4.50 (m, 4H), 4.94-4.98 (m, 4H), 5.21 (d, J = 3.1 Hz, 4H), 6.92 (s, 1H), 6.94 (s, 2H), 7.87 (d, J = 9.4 Hz, 2H), 7.92 (d, J = 8.5 Hz, 2H), 8.33 (brs, 2H), 8.50 (brs, 2H).
Reference Example 42 Step 2
Compound RE42-2 (175 mg, 0.077 mmol) is dissolved in tetrahydrofuran (2.6 mg) and water (0.9 mL), 10% palladium on carbon powder (hydrated product, 54.29%; 32.4 mg) is added at room temperature, and a hydrogen atmosphere is added. It stirred below for 1 hour. The reaction mixture was filtered, and the solvent was evaporated under reduced pressure to give compound D8 (160 mg, yield 95%).
ESI-MS m / z: 1093 (M + 2 H) 2+
1 H-NMR (400 MHz, DMSO-d6, δ): 1.23-1.45 (m, 32H), 1.77 (s, 12H), 1.89 (s, 12H), 1.99 (s, 12H), 2.10 (s, 12H) ), 3.01-3.11 (m, 8H), 3.69-4.02 (m, 34H), 4.47-4.50 (m, 4H), 4.94-4.98 (m, 4H), 5.21 (d, J = 3.1 Hz, 4H), 6.92 (s, 1 H), 6. 94 (s, 2 H), 7. 87 (d, J = 9.4 Hz, 2 H), 7. 92 (d, J = 8.5 Hz, 2 H), 8.33 (brs, 2 H), 8. 50 (brs, 2 H ).
参考例43:化合物D9の合成 Reference Example 43: Synthesis of Compound D9
Figure JPOXMLDOC01-appb-C000225
Figure JPOXMLDOC01-appb-C000225
参考例43工程1
 参考例13に記載の方法で合成した化合物RE43-1 (参考例13における化合物RE13-2, 500 mg, 0.784 mmol)をN, N’-ジメチルホルムアミド (10 mL)に溶解し、室温にて10%パラジウムカーボン粉末 (含水品, 54.29%; 92.1 mg)を加え、水素雰囲気下で2時間撹拌した。アルゴン雰囲気下、室温にて参考例30で合成した化合物RE30-6 (144 mg, 0.157 mmol)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩 (180 mg, 0.941 mmol)、1-ヒドロキシベンゾトリアゾール1水和物 (12.0 mg, 0.078 mmol)を加えて終夜撹拌した。反応液をセライトでろ過し、減圧下、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー (クロロホルム/メタノール=80/20)で精製し、さらに逆相分取HPLC (アセトニトリル/水)で精製することにより、化合物RE43-2 (191 mg, 収率43%)を得た。
ESI-MS m/z: 1431 (M + 2H) 2+
Reference Example 43 Step 1
Compound RE43-1 (compound RE13-2 in Reference Example 13, 500 mg, 0.784 mmol) synthesized by the method described in Reference Example 13 was dissolved in N, N'-dimethylformamide (10 mL), % Palladium carbon powder (hydrous, 54.29%; 92.1 mg) was added and stirred for 2 hours under hydrogen atmosphere. Compound RE30-6 (144 mg, 0.157 mmol) synthesized in Reference Example 30 at room temperature under an argon atmosphere, 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (180 mg, 0.941 mmol), 1 -Hydroxybenzotriazole monohydrate (12.0 mg, 0.078 mmol) was added and stirred overnight. The reaction solution is filtered through celite, the solvent is evaporated under reduced pressure, and the residue is purified by silica gel column chromatography (chloroform / methanol = 80/20) and further purified by reverse phase preparative HPLC (acetonitrile / water) As a result, compound RE43-2 (191 mg, yield 43%) was obtained.
ESI-MS m / z: 1431 (M + 2 H) 2+
参考例43工程2
 化合物RE43-2 (186 mg, 0.065 mmol)をテトラヒドロフラン (2.8 mg)および水 (0.9 mL)に溶解し、室温にて10%パラジウムカーボン粉末 (含水品, 54.29%; 34.3 mg)を加え、水素雰囲気下で1時間撹拌した。反応液をろ過し、減圧下、溶媒を留去し、化合物D9(174 mg, 収率97%)を得た。
ESI-MS m/z: 1386 (M + 2H) 2+
1H-NMR (400 MHz, DMSO-d6,δ):1.25-4.02 (m, 164H), 4.18-4.26 (m, 2H), 4.47 (d, J= 8.1 Hz, 4H), 4.96 (dd, J = 3.1, 11.2 Hz, 4H), 5.21 (d, J = 3.6 Hz, 4H), 7.74-7.91 (m, 13H), 8.18 (s, 2H), 8.36 (d, J = 7.2 Hz, 2H), 10.27 (brs, 1H).
Reference Example 43 Step 2
Compound RE43-2 (186 mg, 0.065 mmol) is dissolved in tetrahydrofuran (2.8 mg) and water (0.9 mL), 10% palladium carbon powder (hydrous, 54.29%; 34.3 mg) is added at room temperature, and a hydrogen atmosphere is added. It stirred below for 1 hour. The reaction mixture was filtered, and the solvent was evaporated under reduced pressure to give compound D9 (174 mg, yield 97%).
ESI-MS m / z: 1386 (M + 2 H) 2+
1 H-NMR (400 MHz, DMSO-d6, δ): 1.25-4.02 (m, 164 H), 4.18-4.26 (m, 2 H), 4.47 (d, J = 8.1 Hz, 4 H), 4.96 (dd, J = 3.1, 11.2 Hz, 4 H), 5.21 (d, J = 3.6 Hz, 4 H), 7.74-9.91 (m, 13 H), 8. 18 (s, 2 H), 8. 36 (d, J = 7.2 Hz, 2 H), 10.27 (brs, 1H).
参考例44:化合物A2の合成 Reference Example 44: Synthesis of Compound A2
Figure JPOXMLDOC01-appb-C000226
Figure JPOXMLDOC01-appb-C000226
参考例44工程1
 参考例31に記載の方法で合成した化合物RE44-1 (参考例31における化合物RE31-4, 150 mg, 0.228 mmol)をジクロロメタン (1.5 mL)に溶解し、室温にてトリフルオロ酢酸 (1.5 mL)を加えて4時間撹拌した。反応液を減圧濃縮し、酢酸エチルで共沸するした。残渣をN, N’-ジメチルホルムアミド (3 mL)に溶解し、室温にて参考例14の化合物RE14-3 (574 mg, 0.571 mmol)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩 (109 mg, 0.571 mmol)、トリエチルアミン (0.159 mL, 1.14 mmol)、1-ヒドロキシベンゾトリアゾール1水和物(3.50 mg, 0.023 mmol)を加えて終夜撹拌した。反応液を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー (クロロホルム/メタノール=90/10)で精製し、さらに逆相分取HPLC (アセトニトリル/水)で精製することにより、化合物RE44-2 (242 mg, 収率44%)を得た。
ESI-MS m/z: 1216 (M + 2H) 2+
Reference Example 44, Step 1
Compound RE44-1 (Compound RE 31-4, 150 mg, 0.228 mmol in Reference Example 31) synthesized by the method described in Reference Example 31 was dissolved in dichloromethane (1.5 mL), and trifluoroacetic acid (1.5 mL) was added at room temperature. Was added and stirred for 4 hours. The reaction solution was concentrated under reduced pressure and azeotroped with ethyl acetate. The residue was dissolved in N, N'-dimethylformamide (3 mL), and Compound RE14-3 of Reference Example 14 (574 mg, 0.571 mmol), 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide was added at room temperature. The hydrochloride (109 mg, 0.571 mmol), triethylamine (0.159 mL, 1.14 mmol) and 1-hydroxybenzotriazole monohydrate (3.50 mg, 0.023 mmol) were added and stirred overnight. The reaction solution is concentrated under reduced pressure, and the residue is purified by silica gel column chromatography (chloroform / methanol = 90/10) and further purified by reverse phase preparative HPLC (acetonitrile / water) to give compound RE44-2 (242 mg) , Yield 44%).
ESI-MS m / z: 1216 (M + 2 H) 2+
参考例44工程2
 化合物RE44-2 (242 mg, 0.100 mmol)を テトラヒドロフラン/水 (4/1; 12 mL)に溶解し、室温にて10%パラジウムカーボン粉末 (含水品, 54.29%; 44.6 mg)を加え、水素雰囲気下で2時間撹拌した。アルゴン雰囲気下、室温にて6-マレイミドヘキサン酸 (23.2 mg, 0.110 mmol)、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド (55.2 mg, 0.199 mmol)を加えて終夜撹拌した。反応液をセライトでろ過し、減圧下、溶媒を留去し、残渣をHP20レジン (アセトン/水)で精製することにより、化合物A2 (97.4 mg, 収率39%)を得た。
ESI-MS m/z: 1245 (M + 2H) 2+
1H-NMR (400 MHz, DMSO-d6,δ):1.14-2.16 (100H, m), 2.96-2.98 (4H, m), 3.24-3.41 (18H, m), 3.69-3.73 (4H, m), 3.83-3.91 (6H, m), 4.14-4.16 (2H, m), 4.47 (4H, d, J= 8.6 Hz), 4.96 (4H, dd, J = 3.6, 11.3 Hz), 5.21 (4H, d, J = 3.2 Hz), 7.01 (2H, s), 7.73-7.75 (2H, m), 7.83-7.94 (7H, m), 8.05-8.08 (2H, m), 8.14-8.20 (3H, m), 8.55-8.56 (2H, m), 10.24 (1H, brs).
Reference Example 44 Step 2
Compound RE44-2 (242 mg, 0.100 mmol) is dissolved in tetrahydrofuran / water (4/1; 12 mL), 10% palladium carbon powder (hydrous, 54.29%; 44.6 mg) is added at room temperature, and a hydrogen atmosphere is added. It stirred under 2 hours. 6-maleimidohexanoic acid (23.2 mg, 0.110 mmol), 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride at room temperature under an argon atmosphere 55.2 mg, 0.199 mmol) was added and stirred overnight. The reaction mixture was filtered through celite, the solvent was evaporated under reduced pressure, and the residue was purified by HP20 resin (acetone / water) to give compound A2 (97.4 mg, yield 39%).
ESI-MS m / z: 1245 (M + 2 H) 2+
1 H-NMR (400 MHz, DMSO-d6, δ): 1.14-2.16 (100H, m), 2.96-2.98 (4H, m), 3.24-3.41 (18H, m), 3.69-3.73 (4H, m) , 3.83-3.91 (6H, m), 4.14-4.16 (2H, m), 4.47 (4H, d, J = 8.6 Hz), 4.96 (4H, dd, J = 3.6, 11.3 Hz), 5.21 (4H, d) , J = 3.2 Hz), 7.01 (2H, s), 7.73-7.75 (2H, m), 7.83-7.94 (7H, m), 8.05-8.08 (2H, m), 8.14-8.20 (3H, m), 8.55-8.56 (2H, m), 10.24 (1H, brs).
参考例45:化合物A3の合成 Reference Example 45: Synthesis of Compound A3
Figure JPOXMLDOC01-appb-C000227
Figure JPOXMLDOC01-appb-C000227
参考例45工程1
 参考例32に記載の方法で合成した化合物RE45-1 (参考例32における化合物RE32-3, 75.0 mg, 0.228 mmol)をN, N’-ジメチルホルムアミド (3.0 mL)に溶解し、室温にて参考例14の化合物RE14-3 (574 mg, 0.571 mmol)、ジイソプロピルエチルアミン (0.199 mL, 1.14 mmol)、O-(7-アザベンゾトリアゾール-1-イル)-N,N,N',N'-テトラメチルウロニウムヘキサフルオロホスファート (217 mg, 0.571 mmol)を加えて終夜撹拌した。減圧下、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー (クロロホルム/メタノール=90/10)で精製し、さらに逆相分取HPLC (アセトニトリル/水)で精製することにより、化合物RE45-2 (202 mg, 収率38%)を得た。
ESI-MS m/z: 1152 (M + 2H) 2+
Reference Example 45 Step 1
Compound RE 45-1 (Compound RE 32-3, 75.0 mg, 0.228 mmol in Reference Example 32) synthesized by the method described in Reference Example 32 is dissolved in N, N'-dimethylformamide (3.0 mL), and the reaction is performed at room temperature Compound RE 14-3 of Example 14 (574 mg, 0.571 mmol), diisopropylethylamine (0.199 mL, 1.14 mmol), O- (7-azabenzotriazol-1-yl) -N, N, N ′, N′-tetra Methyluronium hexafluorophosphate (217 mg, 0.571 mmol) was added and stirred overnight. The solvent is distilled off under reduced pressure, and the residue is purified by silica gel column chromatography (chloroform / methanol = 90/10) and further purified by reverse phase preparative HPLC (acetonitrile / water) to give compound RE 45-2 202 mg (yield 38%) were obtained.
ESI-MS m / z: 1152 (M + 2 H) 2+
参考例45工程2
 化合物RE45-2 (196 mg, 0.085 mmol)を テトラヒドロフラン/水 (4/1; 10 mL)に溶解し、室温にて10%パラジウムカーボン粉末 (含水品, 54.29%; 36.1 mg)を加え、水素雰囲気下で2時間撹拌した。アルゴン雰囲気下、室温にて6-マレイミドヘキサン酸 (19.8 mg, 0.094 mmol)、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド (47.0 mg, 0.170 mmol)を加えて終夜撹拌した。反応液をセライトでろ過し、減圧下、溶媒を留去し、残渣をHP20レジン (アセトン/水)で精製することにより、化合物A3 (42.4 mg, 収率21%)を得た。
ESI-MS m/z: 1182 (M + 2H) 2+
Reference Example 45 Step 2
Compound RE 45-2 (196 mg, 0.085 mmol) is dissolved in tetrahydrofuran / water (4/1; 10 mL), 10% palladium carbon powder (hydrous, 54.29%; 36.1 mg) is added at room temperature, and a hydrogen atmosphere is added. It stirred under 2 hours. 6-maleimidohexanoic acid (19.8 mg, 0.094 mmol), 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride at room temperature under an argon atmosphere 47.0 mg, 0.170 mmol) was added and stirred overnight. The reaction mixture was filtered through celite, the solvent was evaporated under reduced pressure, and the residue was purified by HP20 resin (acetone / water) to give compound A3 (42.4 mg, yield 21%).
ESI-MS m / z: 1182 (M + 2 H) 2+
参考例46:化合物D10 Reference Example 46: Compound D10
Figure JPOXMLDOC01-appb-C000228
Figure JPOXMLDOC01-appb-C000228
 参考例34に記載の方法で合成した化合物RE46-1(参考例34における化合物RE34-3)を用い、参考例10の工程1および2と同様の方法で化合物D10 (2.2 g, 収率58%)を得た。
ESI-MS m/z: 2437(M+H)+
Using compound RE46-1 (compound RE34-3 in Reference Example 34) synthesized by the method described in Reference Example 34, compound D10 (2.2 g, yield 58%) in the same manner as in Steps 1 and 2 of Reference Example 10 Got).
ESI-MS m / z: 2437 (M + H) +
参考例47:化合物A4の合成 Reference Example 47: Synthesis of Compound A4
Figure JPOXMLDOC01-appb-C000229
Figure JPOXMLDOC01-appb-C000229
参考例47工程1
 参考例33に記載の方法で合成した化合物RE47-1 (参考例33における化合物RE33-4, 0.101 g, 0.282 mmol)を用いて、参考例15の化合物RE15-2 (0.607 g, 0.613 mmol)を用い、参考例3の工程3と同様の方法によって化合物RE47-2 (0.25 g, 収率39%)を得た。
ESI-MS m/z: 2304(M+H)+
Reference Example 47 Step 1
Using compound RE47-1 (compound RE33-4 in Reference Example 33, 0.101 g, 0.282 mmol) synthesized by the method described in Reference Example 33, Compound RE15-2 (0.607 g, 0.613 mmol) of Reference Example 15 was synthesized. The compound RE47-2 (0.25 g, yield 39%) was obtained by the same method as used in Step 3 of Reference Example 3.
ESI-MS m / z: 2304 (M + H) +
参考例47工程2
 化合物RE47-2 (0.255 g, 0.111 mmol)を用いて、参考例3の工程2と同様の方法によって化合物RE47-3 (0.15 g, 収率63%)を得た。
ESI-MS m/z: 2170(M+H)+
Reference Example 47 Step 2
Using compound RE47-2 (0.255 g, 0.111 mmol), compound RE47-3 (0.15 g, yield 63%) was obtained by the same method as in step 2 of Reference Example 3.
ESI-MS m / z: 2170 (M + H) +
参考例47工程3
 化合物RE47-3 (20.8 mg, 9.59 μmol)を用いて、参考例5の工程2と同様の方法によって化合物A4 (5.5 mg, 収率24%)を得た。
ESI-MS m/z: 1182(M+2H)2+
Reference Example 47 Step 3
Using compound RE47-3 (20.8 mg, 9.59 μmol), compound A4 (5.5 mg, 24% yield) was obtained by the same method as in step 2 of Reference Example 5.
ESI-MS m / z: 1182 (M + 2H) 2+
参考例48:化合物A5の合成 Reference Example 48: Synthesis of Compound A5
Figure JPOXMLDOC01-appb-C000230
Figure JPOXMLDOC01-appb-C000230
参考例48工程1
 参考例33に記載の方法で合成した化合物RE48-1 (参考例33における化合物RE33-4, 0.099g, 0.277 mmol)を用いて、参考例16の工程2で合成した化合物RE16-3 (0.618 g, 0.615 mmol)を用い、参考例3の工程3と同様の方法によって化合物RE48-2 (0.343 g, 収率53%)を得た。
ESI-MS m/z: 2333(M+H)+
Reference Example 48, Step 1
Compound RE16-3 (0.618 g synthesized in the step 2 of Reference Example 16) using Compound RE48-1 synthesized by the method described in Reference Example 33 (Compound RE 33-4 in the Reference Example 33, 0.099 g, 0.277 mmol) Compound RE48-2 (0.343 g, yield 53%) was obtained by the same method as in step 3 of Reference Example 3 using ,, 0.615 mmol).
ESI-MS m / z: 2333 (M + H) +
参考例48工程2
 化合物RE48-2を用いて、参考例10の工程1および2と同様の方法で化合物A5 (6.9 mg, 収率28%)を得た。
ESI-MS m/z: 2392(M+H)+
Reference Example 48 Step 2
Using compound RE48-2, compound A5 (6.9 mg, yield 28%) was obtained in the same manner as in Steps 1 and 2 of Reference Example 10.
ESI-MS m / z: 2392 (M + H) +
参考例49:化合物A6の合成 Reference Example 49: Synthesis of Compound A6
Figure JPOXMLDOC01-appb-C000231
Figure JPOXMLDOC01-appb-C000231
 化合物RE49-1 (0.048 g, 0.021 mmol)と3-マレイミドプロピオン酸 N-スクシンイミジル (東京化成社製, 0.017 g, 0.064 mmol)を用いて参考例8の化合物A1の合成と同様の方法で化合物A6 (0.040 g, 収率78%)を得た。
ESI-MS m/z: 2480(M+HCOO)-
A compound A6 was synthesized by the same method as the synthesis of the compound A1 of Reference Example 8 using the compound RE49-1 (0.048 g, 0.021 mmol) and N-succinimidyl 3-maleimidopropionate (manufactured by Tokyo Chemical Industry Co., Ltd., 0.017 g, 0.064 mmol). (0.040 g, 78% yield) was obtained.
ESI-MS m / z: 2480 (M + HCOO) -
参考例50:化合物A7の合成 Reference Example 50: Synthesis of Compound A7
Figure JPOXMLDOC01-appb-C000232
Figure JPOXMLDOC01-appb-C000232
工程131
 参考例10に記載の方法で合成した化合物D1 (23.6 mg, 9.46 μmol)とN-(2-アミノエチル)マレイミド トリフルオロ酢酸塩 (シグマアルドリッチ社製, 7.21 mg, 0.028 μmol)を用いて参考例3の工程3と同様の方法で化合物A7 (9.1 mg, 収率36%)を得た。
ESI-MS m/z: 1310(M+2H)2+
Step 131
Reference Example using Compound D1 (23.6 mg, 9.46 μmol) synthesized by the method described in Reference Example 10 and N- (2-aminoethyl) maleimido trifluoroacetate (7.21 mg, 0.028 μmol, manufactured by Sigma-Aldrich Co.) Compound A7 (9.1 mg, yield 36%) was obtained in the same manner as in Step 3 of 3.
ESI-MS m / z: 1310 (M + 2H) 2+
参考例51 Reference Example 51
Figure JPOXMLDOC01-appb-C000233
Figure JPOXMLDOC01-appb-C000233
参考例51工程1
 参考例7に記載の方法で合成した化合物RE51-1 (0.122 g, 0.054 mmol)と、バイオコンジュゲート・ケミストリー (Bioconjugate Chemistry), 第22巻, 690?699頁, 2011年に記載された方法と同様の方法を用いて合成したヘキサン酸モノベンジルエステルを用い、参考例4工程1と同様にして、化合物RE51-2 (0.076 g, 収率56%)を得た。
ESI-MS m/z: 2503(M+H)+
Reference Example 51 step 1
Compound RE51-1 (0.122 g, 0.054 mmol) synthesized by the method described in Reference Example 7 and the method described in Bioconjugate Chemistry, Vol. 22, pp. 690-699, 2011 and A compound RE51-2 (0.076 g, yield 56%) was obtained in the same manner as in Reference Example 4, step 1, using hexanoic acid monobenzyl ester synthesized using a similar method.
ESI-MS m / z: 2503 (M + H) +
参考例51工程2
 化合物RE51-2 (0.076 g, 0.03 mmol)を用いて参考例3の工程1と同様の方法にて化合物RE51-3 (0.030 g, 収率40%)を得た。
ESI-MS m/z: 2412(M+H)+
Reference Example 51 Step 2
A compound RE51-3 (0.030 g, yield 40%) was obtained in the same manner as in step 1 of Reference Example 3 using the compound RE51-2 (0.076 g, 0.03 mmol).
ESI-MS m / z: 2412 (M + H) +
参考例52 Reference Example 52
Figure JPOXMLDOC01-appb-C000234
Figure JPOXMLDOC01-appb-C000234
 参考例6に記載の方法で合成した化合物RE52-1 (参考例6における化合物RE6-5, 4.36 mg, 0.006 mmol)と参考例1の化合物RE1-4 (10 mg, 0.02 mmol) を用い、参考例3の工程7と同様の方法で化合物RE52-2 (7 mg, 収率65%)を得た。
ESI-MS m/z: 1581 (M - H)-
The compound RE52-1 (the compound RE6-5, 4.36 mg, 0.006 mmol in Reference Example 6) synthesized by the method described in Reference Example 6 and the compound RE1-4 (10 mg, 0.02 mmol) of Reference Example 1 were used as a reference. The compound RE52-2 (7 mg, yield 65%) was obtained in the same manner as in Step 7 of Example 3.
ESI-MS m / z: 1581 (M-H) -
参考例53:化合物C2の合成 Reference Example 53: Synthesis of Compound C2
Figure JPOXMLDOC01-appb-C000235
Figure JPOXMLDOC01-appb-C000235
参考例53工程1
 参考例46に記載の方法で合成した化合物D10 (0.2011 g, 0.079 mmol)を用いて、参考例10の工程3を用いて化合物RE53-1 (0.129 g, 収率55%)を得た。
ESI-MS m/z: 2972 (M+HCOO)-
Reference Example 53 Step 1
Using compound D10 (0.2011 g, 0.079 mmol) synthesized by the method described in Reference Example 46, compound RE53-1 (0.129 g, yield 55%) was obtained using step 3 of reference example 10.
ESI-MS m / z: 2972 (M + HCOO) -
参考例53工程2
 化合物RE53-1(0.129 g, 0.044 mmol)を用いて、参考例10の工程4を用いて化合物RE53-2の粗製生物を得た。
ESI-MS m/z: 1535 (M+HCOOH-2H)2-
Reference Example 53 Step 2
Using compound RE 53-1 (0.129 g, 0.044 mmol), step 4 of Reference Example 10 was used to obtain a crude product of compound RE 53-2.
ESI-MS m / z: 1535 (M + HCOOH-2H) 2-
参考例53工程3
 化合物RE53-2 (0.0467 g, 0.013 mmol)を用いて、参考例10の工程5を用いて、化合物C2(19.4 μmol/g, 収率35%)を得た。
Reference Example 53 Step 3
Compound C2 (19.4 μmol / g, yield 35%) was obtained using Compound RE53-2 (0.0467 g, 0.013 mmol) and using Step 5 of Reference Example 10.
参考例54:化合物C3の合成 Reference Example 54: Synthesis of Compound C3
Figure JPOXMLDOC01-appb-C000236
Figure JPOXMLDOC01-appb-C000236
参考例54工程1
 参考例10に記載の方法で合成した化合物D1 (100 mg, 0.040mmol) および参考例17の化合物RE17-2を用い、参考例10の工程3と同様の方法で化合物RE54-1 (90 mg, 収率76%) を得た。
ESI-MS m/z: 1335 (M-DMTr+2H)2+
Reference Example 54 Step 1
Compound RE54-1 (90 mg, 90 mg, using Compound D1 (100 mg, 0.040 mmol) synthesized by the method described in Reference Example 10 and Compound RE 17-2 of Reference Example 17 in the same manner as in step 3 of Reference Example 10 A yield of 76% was obtained.
ESI-MS m / z: 1335 (M-DMTr + 2H) 2+
参考例54工程2
 化合物RE54-1 (90 mg, 0.030 mmol) を用い、参考例10の工程4と同様の方法で化合物RE54-2の粗生成物を得た。
ESI-MS m/z: 1558 (M+HCOOH-2H)2-
Reference Example 54 Step 2
A crude product of compound RE54-2 was obtained in the same manner as in step 4 of Reference Example 10 using compound RE54-1 (90 mg, 0.030 mmol).
ESI-MS m / z: 1558 (M + HCOOH-2H) 2-
参考例54工程3
 化合物RE54-2の粗生成物を用い、参考例10の工程5と同様の方法で化合物C3 (21.5 μmol/g, 2段階収率32%) を得た。
Reference Example 54 Step 3
Compound C3 (21.5 μmol / g, two-step yield 32%) was obtained in the same manner as in Step 5 of Reference Example 10 using the crude product of compound RE54-2.
参考例55:化合物C4の合成 Reference Example 55: Synthesis of Compound C4
Figure JPOXMLDOC01-appb-C000237
Figure JPOXMLDOC01-appb-C000237
参考例55工程1
 参考例46に記載の方法で合成した化合物D10 (100 mg, 0.039 mmol) および参考例17で合成した化合物RE17-2を用い、参考例10の工程3と同様の方法で化合物RE55-1 (90 mg, 収率76%) を得た。
ESI-MS m/z: 1356 (M+2H)2+ 脱DMTr体として検出
Reference Example 55 Step 1
Using compound D10 (100 mg, 0.039 mmol) synthesized by the method described in Reference Example 46 and compound RE 17-2 synthesized by Reference Example 17, compound RE 55-1 (90 mg, yield 76%) was obtained.
ESI-MS m / z: detected as 1356 (M + 2H) 2+ de-DM Tr body
参考例55工程2
 化合物RE55-1 (90 mg, 0.030 mmol) を用い、参考例10の工程4と同様の方法で化合物RE55-2の粗生成物を得た。
ESI-MS m/z: 1579 (M+HCOOH-2H)2-
Reference Example 55 Step 2
A crude product of compound RE55-2 was obtained in the same manner as in step 4 of Reference Example 10, using compound RE55-1 (90 mg, 0.030 mmol).
ESI-MS m / z: 1579 (M + HCOOH-2H) 2-
参考例55工程3
 化合物RE55-2の粗生成物を用い、参考例10の工程5と同様の方法で化合物C4 (17.0 μmol/g, 2段階収率26%) を得た。
Reference Example 55 Step 3
The crude product of compound RE55-2 was used to obtain compound C4 (17.0 μmol / g, two-step yield 26%) in the same manner as in step 5 of Reference Example 10.
参考例56:化合物C5の合成 Reference Example 56: Synthesis of Compound C5
Figure JPOXMLDOC01-appb-C000238
Figure JPOXMLDOC01-appb-C000238
参考例56工程1
 参考例46に記載の方法で合成した化合物D10 (100 mg, 0.039 mmol) および参考例18の工程2で合成した化合物RE18-3を用い、参考例10の工程3と同様の方法で化合物RE56-1 (50 mg, 収率42%) を得た。
ESI-MS m/z: 1363 (M+2H)2+ 脱DMTr体として検出
Reference Example 56, Step 1
Using compound D10 (100 mg, 0.039 mmol) synthesized by the method described in Reference Example 46 and compound RE18-3 synthesized in Step 2 of Reference Example 18, Compound RE56- is prepared in the same manner as in Step 3 of Reference Example 10. 1 (50 mg, 42% yield) was obtained.
ESI-MS m / z: detected as 1363 (M + 2H) 2+ de-DM Tr body
参考例56工程2
 化合物RE56-1 (50 mg, 0.017 mmol) を用い、参考例10の工程4と同様の方法で化合物RE56-2の粗生成物を得た。
ESI-MS m/z: 1587 (M+HCOOH-2H)2-
Reference Example 56, Step 2
A crude product of compound RE56-2 was obtained in the same manner as in step 4 of Reference Example 10 using compound RE56-1 (50 mg, 0.017 mmol).
ESI-MS m / z: 1587 (M + HCOOH-2H) 2-
参考例56工程3
 化合物RE56-2の粗生成物を用い、参考例10の工程5と同様の方法で化合物C5 (0.5 μmol/g, 2段階収率1%) を得た。
Reference Example 56, Step 3
The crude product of compound RE56-2 was used to obtain compound C5 (0.5 μmol / g, two-step yield 1%) in the same manner as in step 5 of Reference Example 10.
参考例57:化合物C6の合成 Reference Example 57: Synthesis of Compound C6
Figure JPOXMLDOC01-appb-C000239
Figure JPOXMLDOC01-appb-C000239
参考例57工程1
 参考例46に記載の方法で合成した化合物D10 (100 mg, 0.039 mmol) および参考例19の化合物RE19-2を用い、参考例10の工程3と同様の方法で化合物RE57-1 (40 mg, 収率30%) を得た。
ESI-MS m/z: 1532 (M+2H)2+ 脱DMTr体として検出
Reference Example 57 Step 1
Compound RE57-1 (40 mg, using the compound D10 (100 mg, 0.039 mmol) synthesized by the method described in Reference Example 46 and the compound RE 19-2 of Reference Example 19 in the same manner as in step 3 of Reference example 10 30% yield) was obtained.
ESI-MS m / z: 1532 (M + 2 H) 2+ dedetected as DM Tr body
参考例57工程2
 化合物RE57-1(40 mg, 0.012 mmol)を用い、参考例10の工程4と同様の方法で化合物RE57-2の粗生成物を得た。
ESI-MS m/z: 1582 (M+2H)2+
 脱DMTr体として検出
Reference Example 57 Step 2
Using compound RE 57-1 (40 mg, 0.012 mmol), a crude product of compound RE 57-2 was obtained by the same method as in step 4 of Reference Example 10.
ESI-MS m / z: 1582 (M + 2H) 2+
Detected as a non-DMTr body
参考例57工程3
 化合物RE57-2の粗生成物を用い、参考例10の工程5と同様の方法で化合物C6 (0.2 μmol/g, 2段階収率1%) を得た。
Reference Example 57 Step 3
The crude product of compound RE57-2 was used to obtain compound C6 (0.2 μmol / g, two-step yield 1%) in the same manner as in step 5 of Reference Example 10.
参考例58:化合物C7の合成 Reference Example 58: Synthesis of Compound C7
Figure JPOXMLDOC01-appb-C000240
Figure JPOXMLDOC01-appb-C000240
参考例58工程1
 参考例10に記載の方法で合成したD1 (70 mg, 0.028 mmol) および参考例21の化合物RE21-3を用い、参考例10の工程3と同様の方法で化合物RE58-1 (58 mg, 収率77%) を得た。
ESI-MS m/z: 1341 (M+2H)2+
Reference Example 58, step 1
Using compound D1 (70 mg, 0.028 mmol) synthesized by the method described in Reference Example 10 and the compound RE 21-3 of Reference Example 21, compound RE 58-1 (58 mg, collection) by the same method as in step 3 of Reference Example 10. The rate is 77%).
ESI-MS m / z: 1341 (M + 2H) 2+
参考例58工程2
 化合物RE58-1 (58 mg, 0.022 mmol) をメタノール (0.15  mL) に溶解し、ジャーナルオブオーガニックケミストリー(Journal of Organic Chemistry), 第74巻, 6837-6842頁, 2009年に記載された方法で合成した参考例17の化合物RE17-1 (16.9 mg, 0.032 mmol)、1 mol /L SODIUM L-ASCORBATE水溶液 (0.022 mL, 0.022 mmol)、20 mmol/L 硫酸銅(II)水溶液 (0.011 mL, 0.22 μmol)、及び10 mmol/L Tris(2-benzimidazolylmethyl)amine / DMSO溶液 (0.022 mL, 0.22μmol)を加え、室温にて3時間撹拌した。反応液をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=80/20)にて精製し、化合物RE58-2 (7 mg, 収率10%) を得た。
ESI-MS m/z: 1450 (M+2H)2+ 脱DMTr体として検出
Reference Example 58 Step 2
Compound RE 58-1 (58 mg, 0.022 mmol) was dissolved in methanol (0.15 mL) and synthesized according to the method described in Journal of Organic Chemistry, Vol. 74, pages 6837-6842, 2009. Compound RE 17-1 of Reference Example 17 (16.9 mg, 0.032 mmol), 1 mol / L SODIUM L-AS CORBAtee aqueous solution (0.022 mL, 0.022 mmol), 20 mmol / L aqueous copper (II) sulfate solution (0.011 mL, 0.22 μmol) And 10 mmol / L Tris (2-benzimidazolylmethyl) amine / DMSO solution (0.022 mL, 0.22 μmol) were added, and the mixture was stirred at room temperature for 3 hours. The reaction solution was purified by silica gel column chromatography (chloroform / methanol = 80/20) to obtain compound RE58-2 (7 mg, yield 10%).
ESI-MS m / z: detected as 1450 (M + 2H) 2+ de-DM Tr body
参考例58工程3
 化合物RE58-2 (10 mg, 3.13 μmol) を用い、参考例10の工程4と同様の方法で化合物RE58-3の粗生成物を得た。
ESI-MS m/z: 1500 (M+2H)2+ 脱DMTr体として検出
Reference Example 58 Step 3
A crude product of compound RE58-3 was obtained in the same manner as in step 4 of Reference Example 10 using compound RE58-2 (10 mg, 3.13 μmol).
ESI-MS m / z: 1500 (M + 2 H) 2 + detected as de-DM Tr body
参考例58工程4
 化合物RE58-3の粗生成物を用い、参考例10の工程5と同様の方法で化合物C7 (8.4 μmol/g,収率27%) を得た。
Reference Example 58 Step 4
The crude product of compound RE58-3 was used to obtain compound C7 (8.4 μmol / g, yield 27%) in the same manner as in step 5 of Reference Example 10.
参考例59 Reference Example 59
Figure JPOXMLDOC01-appb-C000241
Figure JPOXMLDOC01-appb-C000241
参考例59工程1
 参考例46に記載の方法で合成した化合物D10 (74.1 mg, 0.029 mmol)と参考例22の化合物RE22-2 (15 mg, 0.027 mmol)を用いて、参考例3の工程3と同様の方法、またはバイオコンジュゲートケミストリー, 第26巻,1451-1455頁, 2015年に記載の方法にて化合物RE59-1の粗製生物を得た。
ESI-MS m/z: 1392(M +H)+, 脱DMTr体として検出
Reference Example 59 step 1
Method similar to step 3 of Reference Example 3 using compound D10 (74.1 mg, 0.029 mmol) synthesized by the method described in Reference Example 46 and compound RE22-2 (15 mg, 0.027 mmol) of Reference Example 22; Alternatively, a crude organism of compound RE59-1 was obtained by the method described in Bioconjugate Chemistry, Vol. 26, pp. 1451-1455 (2015).
ESI-MS m / z: 1392 (M + H) + , detected as de-DMTr body
参考例59工程2
 化合物RE59-1 (0.083 g, 0.027 mmol)を用いて、国際公開公報2015105083号に記載の方法により化合物RE59-2の粗製生物を得た。
ESI-MS m/z: 2669(M+H)+ , 脱DMTr体として検出
Reference Example 59 Step 2
Compound RE59-1 (0.083 g, 0.027 mmol) was used to obtain a crude organism of compound RE59-2 according to the method described in International Publication WO 201505083.
ESI-MS m / z: 2669 (M + H) + , detected as de-DMTr body
参考例59工程3
 化合物RE59-2 (0.08 g, 0.027 mmol)を用いて、参考例10の工程4と同様の方法で化合物RE59-3の粗製生物を得た。
ESI-MS m/z: 1556(M+HOOH-2H)2-
1H-NMR (400 MHz, MeOD):δ1.45-1.86 (48H, m), 1.93 (12H, s), 1.94 (12H, s), 2.02 (12H, s), 2.13 (12H, s), 2.16-2.28 (17H, m), 2.48 (4H, s), 3.10-3.16 (6H, m), 3.36-3.56 (19H, m), 3.77 (6H, s), 3.80-3.89 (6H, m), 3.98-4.35 (30H, m), 4.53-4.59 (4H, m), 4.66-4.72 (1H, m), 5.04-5.10 (4H, m), 5.31-5.36 (4H, m), 6.81-6.88 (4H, m), 7.17-7.23 (1H, m), 7.26-7.32 (6H, m), 7.38-7.44 (2H, m), 7.54 (2H, br s), 7.90 (1H, br s).
Reference Example 59 Step 3
The compound RE59-2 (0.08 g, 0.027 mmol) was used to obtain a crude product of a compound RE59-3 in the same manner as in step 4 of Reference Example 10.
ESI-MS m / z: 1556 (M + HOOH-2H) 2-
1 H-NMR (400 MHz, MeOD): δ 1.45-1.86 (48 H, m), 1. 93 (12 H, s), 1. 94 (12 H, s), 2.02 (12 H, s), 2. 13 (12 H, s), 2.16-2.28 (17H, m), 2.48 (4H, s), 3.10-3.16 (6H, m), 3.36-3.56 (19H, m), 3.77 (6H, s), 3.80-3.89 (6H, m), 3.98-4.35 (30H, m), 4.53-4.59 (4H, m), 4.66-4.72 (1H, m), 5.04-5.10 (4H, m), 5.31-5.36 (4H, m), 6.81-6.88 (4H , m), 7.17-7.23 (1H, m), 7.26-7.32 (6H, m), 7.38-7.44 (2H, m), 7.54 (2H, br s), 7.90 (1 H, br s).
参考例60
 化合物D1、および第Z-1表記載の構造または参考例20の化合物RE20-4を用い、参考例59工程1および工程2と同様の方法にて、第P-1表および第P-2表に記載した化合物を得た。
 本実施例により合成した化合物の質量分析結果を第P-3表に示す。
Reference Example 60
Tables P-1 and P-2 in the same manner as in Reference Example 59, Steps 1 and 2, using Compound D1 and Compound RE20-4 of the structure of Reference Example 20 described in Table Z-1 or Reference Example 20 The compound described in was obtained.
The mass spectrometry results of the compound synthesized according to this example are shown in Table P-3.
Figure JPOXMLDOC01-appb-T000242
Figure JPOXMLDOC01-appb-T000242
Figure JPOXMLDOC01-appb-T000243
Figure JPOXMLDOC01-appb-T000243
Figure JPOXMLDOC01-appb-T000244
Figure JPOXMLDOC01-appb-T000244
Figure JPOXMLDOC01-appb-T000245
Figure JPOXMLDOC01-appb-T000245
参考例61:化合物C8の合成 Reference Example 61: Synthesis of Compound C8
Figure JPOXMLDOC01-appb-C000246
Figure JPOXMLDOC01-appb-C000246
 参考例59に記載の化合物RE59-3を用いて、参考例10の工程5と同様の方法で化合物C8 (10.0 μmol/g) を得た。 Using compound RE59-3 described in Reference Example 59, compound C8 (10.0 μmol / g) was obtained in the same manner as in step 5 of reference example 10.
参考例62:C9~C17の合成
 第P-1表および第P-2表に記載した化合物を用いて、参考例61と同様の方法で第Q-1表および第Q-2表記載の化合物を得た。
 本実施例により合成した化合物の担持量を第Q-3表に示す。
Reference Example 62 Synthesis of C9 to C17 Using compounds shown in Tables P-1 and P-2, compounds shown in Tables Q-1 and Q-2 in the same manner as Reference Example 61 I got
The amount of the compound synthesized according to this example is shown in Table Q-3.
Figure JPOXMLDOC01-appb-T000247
Figure JPOXMLDOC01-appb-T000247
Figure JPOXMLDOC01-appb-T000248
Figure JPOXMLDOC01-appb-T000248
Figure JPOXMLDOC01-appb-T000249
Figure JPOXMLDOC01-appb-T000249
Figure JPOXMLDOC01-appb-T000250
Figure JPOXMLDOC01-appb-T000250
実施例1:化合物1-2の合成 Example 1: Synthesis of Compound 1-2
Figure JPOXMLDOC01-appb-C000251
Figure JPOXMLDOC01-appb-C000251
工程1
 参考例化合物A1と、モレキュールズ (Molecules), 第17巻, 13825-13843頁, 2012年に記載された方法で合成した末端チオール化されたオリゴヌクレオチドを加えて、室温にて4時間静置した。反応混合物に炭酸ナトリウムを加え、4℃で一晩静置した。陰イオン交換クロマトグラフィー (GE Healthcare, MonoQ 5/50GL, 10μm, 5.0 mm x 50 mm、A液: 10 mmol/L Tris緩衝液/30%アセトニトリル, B液: 10 mmol/L Tris緩衝液/30%アセトニトリル/1mol/L NaBrによるグラジエント)あるいは逆相液体クロマトグラフィー (ウォーターズ, X BridgeC18, 5μm, 4.6 mmx250 mm、0.1 mol/L酢酸トリエチルアンモニウム緩衝液, B液:アセトニトリルによるグラジエント)のいずれかの方法で精製することにより化合物1-1を得た。
Step 1
Reference Example Compound A1 and a terminal thiolated oligonucleotide synthesized by the method described in Molecules, Vol. 17, p. 13825-13843, 2012 were added and allowed to stand at room temperature for 4 hours. Sodium carbonate was added to the reaction mixture and allowed to stand overnight at 4 ° C. Anion exchange chromatography (GE Healthcare, MonoQ 5/50 GL, 10 μm, 5.0 mm x 50 mm, solution A: 10 mmol / L Tris buffer solution / 30% acetonitrile, solution B: 10 mmol / L Tris buffer solution / 30% Acetonitrile / 1 mol / L NaBr gradient) or reverse phase liquid chromatography (Waters, X Bridge C18, 5 μm, 4.6 mm × 250 mm, 0.1 mol / L triethylammonium acetate buffer, solution B: acetonitrile gradient) Purification gave compound 1-1.
工程2
 工程1で合成した化合物1-1(3’-b2GPI-ssRNA)を、混合緩衝液(100 mmol/L酢酸カリウム、30 mmol/L 2-[4-(2-ヒドロキシエチル)ピペラジン-1-イル]エタンスルホン酸、HEPES)-KOH(pH 7.4)、2 mmol/L酢酸マグネシウム)にて濃度調整(50 μmol/L)した。前述センス鎖とアンチセンス鎖(50 μmol/L)を各々等量混合し、80 ℃で10分間静置した。アンチセンス鎖配列は、第R-3表に記載されているとおりである。徐々に温度を下げ、37 ℃で1時間静置し、2本鎖の化合物1-2を得た。
Step 2
Compound 1-1 (3′-b2GPI-ssRNA) synthesized in step 1 was prepared in a mixed buffer (100 mmol / L potassium acetate, 30 mmol / L 2- [4- (2-hydroxyethyl) piperazin-1-yl The concentration was adjusted (50 μmol / L) with ethanesulfonic acid, HEPES) -KOH (pH 7.4), 2 mmol / L magnesium acetate). Equal amounts of the sense strand and the antisense strand (50 μmol / L) were mixed and allowed to stand at 80 ° C. for 10 minutes. Antisense strand sequences are as described in Table R-3. The temperature was gradually lowered and allowed to stand at 37 ° C. for 1 hour to obtain a double-stranded compound 1-2.
実施例2~7:化合物2-2~7-2の合成
 実施例1とは塩基配列の異なるオリゴヌクレオチドを用い、実施例1と同様にして、化合物2-2~7-2を合成した。
Examples 2 to 7 Synthesis of Compounds 2-2 to 7-2 Compounds 2-2 to 7-2 were synthesized in the same manner as in Example 1 except that oligonucleotides different in base sequence from Example 1 were used.
実施例8:化合物8-2の合成 Example 8 Synthesis of Compound 8-2
Figure JPOXMLDOC01-appb-C000252
Figure JPOXMLDOC01-appb-C000252
工程1
 参考例化合物D5を用いて、モレキュールズ(Molecules)、第17巻、13825-13843頁、2012年に記載された方法で合成した末端がアミノ基で修飾されたオリゴヌクレオチドを加えて、バイオコンジュゲートケミストリー, 第22巻,1723-1728頁, 2011年もしくはバイオコンジュゲートケミストリー, 第26巻,1451-1455頁, 2015年に記載の方法にて反応させた。実施例1に記載した方法で精製することにより、化合物8-1を得た。
Step 1
Reference Example Compound D5 is used to add an amino-terminal modified oligonucleotide synthesized by the method described in Molecules, Vol. 17, p. 13825-13843, 2012, to obtain bioconjugate chemistry. 22: 1723-1728 (2011) or Bioconjugate Chemistry, 26: 1451-1455 (2015). Purification by the method described in Example 1 gave compound 8-1.
工程2
 実施例1の工程2と同様の方法にて、化合物8-2を得た。
Step 2
Compound 8-2 was obtained in the same manner as in Step 2 of Example 1.
実施例9:化合物9-2の合成 Example 9 Synthesis of Compound 9-2
Figure JPOXMLDOC01-appb-C000253
Figure JPOXMLDOC01-appb-C000253
 実施例1と同様にして化合物9-2を得た。 In the same manner as in Example 1, Compound 9-2 was obtained.
実施例10:化合物10-2の合成 Example 10 Synthesis of Compound 10-2
Figure JPOXMLDOC01-appb-C000254
Figure JPOXMLDOC01-appb-C000254
 参考例化合物D1を用いて、実施例8と同様の方法にて、化合物10-2を合成した。 Compound 10-2 was synthesized in the same manner as in Example 8 using Reference Example Compound D1.
実施例11:化合物11-2の合成 Example 11 Synthesis of Compound 11-2
Figure JPOXMLDOC01-appb-C000255
Figure JPOXMLDOC01-appb-C000255
工程1
 核酸合成装置 (ウルトラ ファスト パラレル シンセサイザー(Ultra Fast Parallel Syntheizer)、シグマ社製、以下UFPS)を用いて、0.2μmolスケールで行った。固相担体には、化合物C16を用いた。ジメトキシトリチルdTホスホアミダイト (SAFC-PROLIGO社)はアセトニトリルにて0.06 mol/Lに調整した。ホスホロアミダイトのアクチベーターとして5-ベンジルチオ-1H-テトラゾール (SAFC-PROLIGO社)、および0.06 mol/L dTホスホアミダイトのアセトニトリル溶液を用いて、時間は各10分間とし縮合反応を行った。反応後、28%アンモニア溶液に浸し、55 ℃で4時間放置した。減圧下濃縮し、1-ブタノールを加えて反応を停止した。逆相液体クロマトグラフィー (資生堂, CAPSELL PAK C18, SG300, 6.0 mm x 75 mm, 5%アセトニトリル/0.1%酢酸トリエチルアンモニウム緩衝液, B液:50%アセトニトリル/水によるグラジエント)を用いて精製することにより、化合物11-1を得た。
Step 1
A 0.2 μmol scale was performed using a nucleic acid synthesizer (Ultra Fast Parallel Synthesizer, manufactured by Sigma, hereinafter UFPS). Compound C16 was used as a solid phase carrier. Dimethoxytrityl dT phosphoramidite (SAFC-PROLIGO) was adjusted to 0.06 mol / L with acetonitrile. The condensation reaction was carried out for 10 minutes each using acetonitrile solution of 5-benzylthio-1H-tetrazole (SAFC-PROLIGO) and 0.06 mol / L dT phosphoramidite as a phosphoroamidite activator. After the reaction, it was immersed in a 28% ammonia solution and left at 55 ° C. for 4 hours. After concentration under reduced pressure, 1-butanol was added to quench the reaction. By purification using reverse phase liquid chromatography (Shiseido, CAPSELL PAK C18, SG300, 6.0 mm x 75 mm, 5% acetonitrile / 0.1% triethylammonium buffer, solution B: gradient with 50% acetonitrile / water) , Compound 11-1 was obtained.
工程2
 実施例1工程2と同様の方法にて、化合物11-2を得た。
Step 2
Compound 11-2 was obtained in the same manner as in Example 1, step 2.
実施例12:化合物12-2の合成 Example 12 Synthesis of Compound 12-2
Figure JPOXMLDOC01-appb-C000256
Figure JPOXMLDOC01-appb-C000256
 実施例8と同様の方法にて、化合物12-2を得た。 The compound 12-2 was obtained in the same manner as in Example 8.
実施例13:化合物13-2の合成 Example 13 Synthesis of Compound 13-2
Figure JPOXMLDOC01-appb-C000257
Figure JPOXMLDOC01-appb-C000257
 実施例8と同様の方法にて、化合物13-2を得た。 Compound 13-2 was obtained in the same manner as in Example 8.
 実施例14:化合物14-2~19-2の合成
 実施例12に記載の化合物12-2の核酸の塩基配列を変更したこと以外は、実施例12と同様の方法で、それぞれ化合物14-1~19-1を経由し、化合物14-2~化合物19-2を合成した。
Example 14 Synthesis of Compounds 14-2 to 19-2 Compound 14-1 was prepared in the same manner as in Example 12, except that the nucleotide sequence of the nucleic acid of Compound 12-2 described in Example 12 was changed. Compound 14-2 to compound 19-2 were synthesized via .about.19-1.
Figure JPOXMLDOC01-appb-C000258
Figure JPOXMLDOC01-appb-C000258
 本実施例により合成した化合物のリガンド-リンカー構造を以下第R-1表に示す。 The ligand-linker structure of the compound synthesized according to this example is shown below in Table R-1.
Figure JPOXMLDOC01-appb-T000259
Figure JPOXMLDOC01-appb-T000259
Figure JPOXMLDOC01-appb-T000260
Figure JPOXMLDOC01-appb-T000260
 本実施例により合成した化合物1-1~19-1の配列(センス鎖)および質量分析結果を以下第R-2表に示す。なお、第R-2表中、N(M)は2’-O-メチル修飾RNA、N(F)は2’-フッ素修飾RNA、および^はホスホロチオエートを示す。 The sequences (sense strand) of Compounds 1-1 to 19-1 synthesized according to this example and the results of mass analysis are shown in Table R-2. In Table R-2, N (M) represents 2'-O-methyl-modified RNA, N (F) represents 2'-fluorine-modified RNA, and ^ represents phosphorothioate.
Figure JPOXMLDOC01-appb-T000261
Figure JPOXMLDOC01-appb-T000261
 本実施例により合成した化合物1-2~19-2の配列を以下第R-3表に示す。なお、第R-3表中、N(M)は2’-O-メチル修飾RNA、N(F)は2’-フッ素修飾RNA、pは5’末端におけるリン酸化、および^はホスホロチオエートを示す。 The sequences of compounds 1-2 to 19-2 synthesized according to this example are shown in Table R-3 below. In Table R-3, N (M) represents 2'-O-methyl modified RNA, N (F) represents 2'-fluorine modified RNA, p represents phosphorylation at the 5 'end, and ^ represents phosphorothioate. .
Figure JPOXMLDOC01-appb-T000262
Figure JPOXMLDOC01-appb-T000262
Figure JPOXMLDOC01-appb-T000263
Figure JPOXMLDOC01-appb-T000263
参考試験例1:β2GPI mRNAのノックダウン活性の測定
 96ウェルの培養プレートにヒト肝臓癌由来の細胞株であるHepG2細胞(ATCCより入手、ATCC番号:HB-8065)を、5,000細胞/80μL/ウェルとなるよう播種した。培地は、10%ウシ胎仔血清(FBS)を含むMEM培地(ライフテクノロジー社製、カタログ番号11095-098)を用いた。表1-1~表1-16に記載の二本鎖核酸とRNAiMaxトランスフェクション試薬(ライフテクノロジー社製、カタログ番号:1401251)をOpti-MEM 培地(ライフテクノロジー社製、カタログ番号11058-021)で希釈して、二本鎖核酸の終濃度が100pmol/Lとなるように20μLのsiRNA/RNAiMax混合液を各々96ウェルの培養プレートに添加し、37℃、5% CO2条件下で24時間培養した。その後、細胞をPBS(Phosphate buffered saline)で洗浄し、各々のプレートからCells-to-Ctキット(アプライドバイオシステムズ社製、カタログ番号:AM1728)を用いて製品に添付された説明書に記載された方法に従いcDNAを合成した。このcDNA 5μLをMicroAmpOptical 96ウェルプレート(アプライドバイオシステムズ社製、カタログ番号4326659)に加え、更に10μLのTaqMan Gene Expression Master Mix(アプライドバイオシステムズ社製、カタログ番号4369016)、3μLのUltraPure Distilled Water(ライフテクノロジーズ社製、カタログ番号:10977-015)、1μLのhuman β2GPIプローブ、1μLのhuman GAPDHプローブを添加した。ABI7900 HTリアルタイムPCRシステムを用いて、human β2GPI遺伝子およびhuman GAPDH(D-glyceraldehyde-3-phosphate dehydrogenase)のリアルタイムPCRをおこなった。GAPDHは構成的発現遺伝子であり内部対照として測定し、β2GPI発現量を補正した。siRNAを添加せずにトランスフェクション試薬だけでHepG2細胞を処理した時のβ2GPImRNA量を1.0として、各siRNAを導入した時のβ2GPI mRNA相対発現量を算出した。本実験を3回おこない、β2GPI mRNA相対発現量の平均値を表1-1~表1-16に示した。
Reference Test Example 1: Measurement of the knockdown activity of β2GPI mRNA HepG2 cells (obtained from ATCC, ATCC No .: HB-8065), a cell line derived from human liver cancer, in a 96-well culture plate, 5,000 cells / 80 μL / well It sowed so that it might become. As the medium, MEM medium (Life Technology, catalog number 11095-098) containing 10% fetal bovine serum (FBS) was used. The double-stranded nucleic acid and RNAiMax transfection reagent (Life Technology, catalog number: 1401251) described in Table 1-1 to Table 1-16 are treated with Opti-MEM medium (Life technology, catalog number 11058-021) Dilute and add 20 μl of the siRNA / RNAiMax mixed solution to each 96 well culture plate so that the final concentration of double stranded nucleic acid is 100 pmol / L, and culture for 24 hours at 37 ° C, 5% CO 2 did. Thereafter, the cells are washed with PBS (Phosphate buffered saline), and each plate is described in the instruction attached to the product using a Cells-to-Ct kit (Applied Biosystems, catalog number: AM1728). CDNA was synthesized according to the method. Add 5 μl of this cDNA to the MicroAmp Optical 96-well plate (Applied Biosystems, catalog number 4326659), and further add 10 μl of TaqMan Gene Expression Master Mix (Applied Biosystems, catalog number 4369016), 3 μl of UltraPure Distilled Water (Life Technologies) Corporation catalog number: 10977-015), 1 μL of human β2GPI probe, 1 μL of human GAPDH probe were added. Real-time PCR of human β2GPI gene and human GAPDH (D-glyceraldehyde-3-phosphate dehydrogenase) was performed using ABI 7900 HT real-time PCR system. GAPDH is a constitutively expressed gene and was measured as an internal control, and the β2GPI expression level was corrected. When HepG2 cells were treated with the transfection reagent alone without addition of siRNA, the amount of β2GPI mRNA was 1.0, and the relative expression amount of β2GPI mRNA was calculated when each siRNA was introduced. This experiment was performed three times, and the average value of the relative expression amount of β2GPI mRNA is shown in Tables 1-1 to 1-16.
Figure JPOXMLDOC01-appb-T000264
Figure JPOXMLDOC01-appb-T000264
Figure JPOXMLDOC01-appb-T000265
Figure JPOXMLDOC01-appb-T000265
Figure JPOXMLDOC01-appb-T000266
Figure JPOXMLDOC01-appb-T000266
Figure JPOXMLDOC01-appb-T000267
Figure JPOXMLDOC01-appb-T000267
Figure JPOXMLDOC01-appb-T000268
Figure JPOXMLDOC01-appb-T000268
Figure JPOXMLDOC01-appb-T000269
Figure JPOXMLDOC01-appb-T000269
Figure JPOXMLDOC01-appb-T000270
Figure JPOXMLDOC01-appb-T000270
Figure JPOXMLDOC01-appb-T000271
Figure JPOXMLDOC01-appb-T000271
Figure JPOXMLDOC01-appb-T000272
Figure JPOXMLDOC01-appb-T000272
Figure JPOXMLDOC01-appb-T000273
Figure JPOXMLDOC01-appb-T000273
Figure JPOXMLDOC01-appb-T000274
Figure JPOXMLDOC01-appb-T000274
Figure JPOXMLDOC01-appb-T000275
Figure JPOXMLDOC01-appb-T000275
Figure JPOXMLDOC01-appb-T000276
Figure JPOXMLDOC01-appb-T000276
Figure JPOXMLDOC01-appb-T000277
Figure JPOXMLDOC01-appb-T000277
Figure JPOXMLDOC01-appb-T000278
Figure JPOXMLDOC01-appb-T000278
Figure JPOXMLDOC01-appb-T000279
Figure JPOXMLDOC01-appb-T000279
試験例1 核酸複合体のヒト初代肝細胞に対するin vitroノックダウン試験
 実施例1~19で得られた各核酸複合体について、ヒト初代肝細胞におけるin vitroノックダウン活性を測定した。最終濃度が100、30、10、または3 nmol/Lとなるように、オプティメム (Opti-MEM)(サーモフィッシャーサイエンティフィック社製、カタログ番号31985)で希釈した各核酸複合体を、96ウェルの培養プレートに、20 μLずつ分注した後、プレーティングメディウム (バイオプレディックインターナショナル社製、カタログ番号 LV0304-2)に懸濁させたヒト初代肝細胞(バイオプレディックインターナショナル社製、カタログ番号HEP187)を、細胞数10000 cells/80μL/ウェルとなるように播種し、37℃、5%CO2条件下で6時間培養したのちに、培養上清を注意深く除去し、インキュベーションメディウム (バイオプレディックインターナショナル社製、カタログ番号LV0304-2)を添加して、各核酸複合体をヒト初代肝細胞に供した。また陰性対照の群として何も処理しない細胞を播種した。各核酸複合体を添加した細胞を37℃の5% CO2インキュベーター内で18時間培養し、氷冷したリン酸緩衝化生理食塩水(DPBS)(ナカライテスク社製)で洗浄し、スーパープレップセルリシスアンドアールティーキットフォーキューピーシーアール(東洋紡社製、カタログ番号 SCQ-201)を用いて、製品に添付された説明書に記載された方法に従い、全RNAの回収と、得られた全RNAを鋳型とする逆転写反応によるcDNAの作製を行った。得られたcDNAを鋳型とし、タックマン(登録商標)ジーンエクスプレッションアッセイズプローブ (サーモフィッシャーサイエンティフィック社製)をプローブとして、クオントスタジオ12ケーフレックスリアルタイムピーシーアールシステム (サーモフィッシャーサイエンティフィック社製)を用い、添付された使用説明書に記載された方法に従ってPCR反応させることにより、β2GPI遺伝子および構成的発現遺伝子であるグリセルアルデヒド3-リン酸脱水素酵素 (D-glyceraldehyde-3-phosphate dehydrogenase、以下gapdhと表す)遺伝子をPCR反応させてmRNA増幅量をそれぞれ測定し、gapdhのmRNA増幅量を内部対照として、β2GPIのmRNAの準定量値を算出した。同様に測定した陰性対照におけるβ2GPIのmRNAの準定量値 を1として、β2GPIのmRNAの準定量値から、β2GPIのmRNAの発現率を求めた。得られたβ2GPIのmRNAの発現率の結果を表S1および表S2に示す。
 表S1およびS2から明らかなように、各核酸複合体は、ヒト初代肝細胞に添加後のβ2GPI遺伝子のmRNAの発現を抑制した。
Test Example 1 In Vitro Knockdown Test of Nucleic Acid Complex on Human Primary Hepatocytes The in vitro knockdown activity of human primary hepatocytes was measured for each of the nucleic acid complexes obtained in Examples 1-19. Each nucleic acid complex diluted with Optimem (Opti-MEM) (Thermo Fisher Scientific, catalog number 31985) is brought to a final concentration of 100, 30, 10 or 3 nmol / L in 96 wells. Human primary hepatocytes (Bioprediction International, catalog number HEP 187) suspended in plating medium (Bioprediction International, catalog number LV 0304-2) after dispensing 20 μl each into a culture plate The cells were seeded at a cell number of 10000 cells / 80 μL / well and cultured at 37 ° C., 5% CO 2 for 6 hours, after which the culture supernatant was carefully removed, and the incubation medium (Biopredic International, Inc. , Catalog No. LV 0304-2), and each nucleic acid complex was subjected to human primary hepatocytes. In addition, as a negative control group, cells treated with nothing were seeded. The cells to which each nucleic acid complex has been added are cultured in a 5% CO 2 incubator at 37 ° C. for 18 hours, washed with ice-cold phosphate buffered saline (DPBS) (manufactured by Nacalai Tesque), and superprep cell Total RNA was recovered and the obtained total RNA was templated according to the method described in the instruction attached to the product, using Lysis and T kit ForQ PCR (Toyobo Co., Ltd., catalog number SCQ-201). The cDNA was prepared by reverse transcription reaction. Using the obtained cDNA as a template and Tachman® Gene Expression Assay Probe (manufactured by Thermo Fisher Scientific Co., Ltd.) as a probe, Quant Studio 12 Caflex Real-Time PC System (manufactured by Thermo Fisher Scientific Inc.) Glyceraldehyde 3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate dehydrogenase, β-GPI gene and constitutively-expressed gene) by PCR reaction according to the method described in the attached instruction manual using The following PCR reaction was performed on the gene (hereinafter referred to as gapdh) to measure the amount of mRNA amplification, and the amount of amplification of gapdh was used as an internal control to calculate a semi-quantitative value of β2GPI mRNA. The expression rate of β2GPI mRNA was determined from the semiquantitative value of β2GPI mRNA, where the semiquantitative value of β2GPI mRNA in the negative control similarly measured was 1 as well. The results of the expression rate of the obtained β2GPI mRNA are shown in Table S1 and Table S2.
As apparent from Tables S1 and S2, each nucleic acid complex suppressed the expression of mRNA of β2 GPI gene after addition to human primary hepatocytes.
Figure JPOXMLDOC01-appb-T000280
Figure JPOXMLDOC01-appb-T000280
Figure JPOXMLDOC01-appb-T000281
Figure JPOXMLDOC01-appb-T000281
試験例2 核酸複合体のマウス初代肝細胞に対するin vitroノックダウン試験
 実施例1~13で得られた各核酸複合体のうち、表S3およびS4の各核酸複合体について、マウス初代肝細胞におけるin vitroノックダウン活性を測定した。最終濃度が10、3、または1 nmol/Lとなるように、オプティメム (Opti-MEM)(サーモフィッシャーサイエンティフィック社製、カタログ番号 31985)で希釈した各核酸複合体を、96ウェルの培養プレートに、20μLずつ分注した後、プライマリヘパトサイトゾウイングアンドプレーティングサプリメント (Primary Hepatocyte Thawing and Plating Supplements ) (サーモフィッシャーサイエンティフィック社製、カタログ番号CM3000)を含むウィリアムズイーメディウム (William’s E Medium) (サーモフィッシャーサイエンティフィック社製、カタログ番号A12176-01)に懸濁させたシーディーワン(CD-1)由来マウス初代肝細胞(サーモフィッシャーサイエンティフィック社製、カタログ番号MSCP10)を、細胞数10000cells/80μL/ウェルとなるように播種し、37℃、5%CO2条件下で6時間培養したのちに、培養上清を注意深く除去し、プライマリヘパトサイトメンテナンスサプリメント (Primary Hepatocyte Maintenance Supplements)(サーモフィッシャーサイエンティフィック社製、カタログ番号 CM4000)を含むウィリアムズイーメディウムを添加して、各核酸複合体をマウス初代肝細胞に供した。また陰性対照の群として何も処理しない細胞を播種した。各核酸複合体を添加した細胞を37℃の5%CO2インキュベーター内で18時間培養し、氷冷したリン酸緩衝化生理食塩水(DPBS)(ナカライテスク社製)で洗浄し、スーパープレップセルリシスアンドアールティーキットフォーキューピーシーアール(東洋紡社製、カタログ番号 SCQ-201)を用いて、製品に添付された説明書に記載された方法に従い、全RNAの回収と、得られた全RNAを鋳型とする逆転写反応によるcDNAの作製を行った。得られたcDNAを鋳型とし、タックマン (登録商標)ジーンエクスプレッションアッセイズプローブ (サーモフィッシャーサイエンティフィック社製)をプローブとして 、クオントスタジオ12ケーフレックスリアルタイムピーシーアールシステム (サーモフィッシャーサイエンティフィック社製)を用い、添付された使用説明書に記載された方法に従ってPCR反応させることにより、β2GPI遺伝子および構成的発現遺伝子であるグリセルアルデヒド3-リン酸脱水素酵素 (D-glyceraldehyde-3-phosphate dehydrogenase、以下gapdhと表す)遺伝子をPCR反応させてmRNA増幅量をそれぞれ測定し、gapdhのmRNA増幅量を内部対照として、β2GPIのmRNAの準定量値を算出した。同様に測定した陰性対照におけるβ2GPIのmRNAの準定量値を1として、β2GPIのmRNAの準定量値から、β2GPIのmRNAの発現率を求めた。得られたβ2GPIのmRNAの発現率を表S3および表S4に示す。
Test Example 2 In Vitro Knockdown Test of Nucleic Acid Complexes on Mouse Primary Hepatocytes Among the nucleic acid complexes obtained in Examples 1 to 13, each of the nucleic acid complexes in Tables S3 and S4 was tested in mouse primary hepatocytes in The in vitro knockdown activity was measured. 96 well culture plate of each nucleic acid complex diluted with Optimem (Opti-MEM) (Thermo Fisher Scientific, catalog number 31985) to a final concentration of 10, 3 or 1 nmol / L After dispensing 20 μl each, Williams' E Medium containing Primary Hepatocyte Thawing and Plating Supplements (Thermo Fisher Scientific, Catalog No. CM 3000). (William's E Medium) CD1 (1-CD-1) -derived mouse primary hepatocytes (Thermo Fisher Scientific, catalog number MSCP 10) suspended in (Thermo Fisher Scientific, Catalog No. A12176-01), cell number 10000 cells / 80 [mu] L were seeded so that / well, 37 ° C., the After incubation for 6 hours under 5% CO 2, culture Each nucleic acid complex was added to mouse primary hepatocytes by carefully removing the supernatant and adding Williams Emedium containing Primary Hepatocyte Maintenance Supplements (Thermo Fisher Scientific, catalog number CM4000). Provided for. In addition, as a negative control group, cells treated with nothing were seeded. The cells to which each nucleic acid complex has been added are cultured in a 5% CO 2 incubator at 37 ° C. for 18 hours, washed with ice-cold phosphate buffered saline (DPBS) (manufactured by Nacalai Tesque) and superprep cell Total RNA was recovered and the obtained total RNA was templated according to the method described in the instruction attached to the product, using Lysis and T kit ForQ PCR (Toyobo Co., Ltd., catalog number SCQ-201). The cDNA was prepared by reverse transcription reaction. Using the obtained cDNA as a template and Tachman® Gene Expression Assays probe (manufactured by Thermo Fisher Scientific Co., Ltd.) as a probe, Quant Studio 12 Caflex Real-Time PC System (manufactured by Thermo Fisher Scientific Co.) Glyceraldehyde 3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate dehydrogenase, β-GPI gene and constitutively-expressed gene) by PCR reaction according to the method described in the attached instruction manual using The following PCR reaction was performed on the gene (hereinafter referred to as gapdh) to measure the amount of mRNA amplification, and the amount of amplification of gapdh was used as an internal control to calculate a semi-quantitative value of β2GPI mRNA. The expression rate of β2GPI mRNA was determined from the semiquantitative value of β2GPI mRNA, where the semiquantitative value of β2GPI mRNA in the negative control similarly measured was 1 as well. The expression rates of the obtained β2GPI mRNA are shown in Table S3 and Table S4.
Figure JPOXMLDOC01-appb-T000282
Figure JPOXMLDOC01-appb-T000282
Figure JPOXMLDOC01-appb-T000283
Figure JPOXMLDOC01-appb-T000283
 表S3および表S4から明らかなように、各核酸複合体は、マウス初代肝細胞に添加後のβ2GPI遺伝子のmRNAの発現を抑制した。 As apparent from Tables S3 and S4, each nucleic acid complex suppressed the expression of mRNA of β2 GPI gene after addition to mouse primary hepatocytes.
試験例3 核酸複合体のマウスにおけるin vivoノックダウン試験
 表S5の各核酸複合体について、それぞれ以下の方法によりマウスin vivoノックダウン試験を実施した。なお、各核酸複合体は、試験に合わせてリン酸緩衝化生理食塩水(DPBS)(ナカライテスク社製)で希釈して用いた。マウス(BALB/cA、日本クレアより入手)を馴化飼育後、各核酸複合体を3 mg/kg、または1 mg/kgずつマウスに皮下注投与した。また、コントロール群としてはDPBSのみをマウスに皮下注投与した。投与から3日後に安楽死させ、肝臓を採取し液体窒素で凍結保存した。肝臓凍結サンプルをトリゾール(登録商標)アールエヌエーアイソレーションリージェンツ (サーモフィッシャーサイエンティフィック社製、カタログ番号15596026)およびマグナピュア96 (MagNA Pure 96) (ロシュ・ライフサイエンス社製)を用い、製品に添付された説明書に記載された方法に従い、全RNAの回収を行った。さらにトランスクリプターファーストストランドシーディーエヌエーシンセシスキット (ロシュ・ライフサイエンス社製、カタログ番号 04897030001)を用いて、製品に添付された説明書に記載された方法に従い、得られた全RNAを鋳型とする逆転写反応によるcDNAの作製を行った。得られたcDNAを鋳型とし、タックマン(登録商標)ジーンエクスプレッションアッセイズプローブ (サーモフィッシャーサイエンティフィック社製)をプローブとして、クオントスタジオ12ケーフレックスリアルタイムピーシーアールシステム(サーモフィッシャーサイエンティフィック社製)を用い、添付された使用説明書に記載された方法に従ってPCR反応させることにより、β2GPI遺伝子およびgapdh遺伝子をPCR反応させてmRNA増幅量をそれぞれ測定し、gapdhのmRNA増幅量を内部対照として、β2GPIのmRNAの準定量値を算出した。同様に測定したPBS投与群におけるβ2GPIのmRNAの準定量値を1として、β2GPIのmRNAの発現率を求めた。得られたβ2GPIのmRNAの発現率を表S5に示す。
Test Example 3 In Vivo Knockdown Test of Nucleic Acid Complex in Mouse The in vivo knockdown test of each nucleic acid complex in Table S5 was carried out according to the following method. Each nucleic acid complex was diluted with phosphate buffered saline (DPBS) (manufactured by Nacalai Tesque) according to the test. After conditioned breeding of mice (BALB / cA, obtained from CLEA Japan, Inc.), each nucleic acid complex was injected subcutaneously to the mice at 3 mg / kg or 1 mg / kg, respectively. In addition, as a control group, only DPBS was subcutaneously injected to mice. Three days after administration, they were euthanized, and livers were collected and cryopreserved with liquid nitrogen. Frozen liver samples were prepared using Trizol® ARE Isolation Reagents (Thermo Fisher Scientific, Catalog No. 1559 026) and Magna Pure 96 (MagNA Pure 96) (Roche Life Sciences). Total RNA was recovered according to the method described in the attached manual. Furthermore, reverse transcription using the obtained total RNA as a template according to the method described in the instruction attached to the product, using Transcriptor First Strand CDNA Synthesis Kit (Roche Life Sciences, catalog number 04897030001). The cDNA was prepared by the reaction. Using the obtained cDNA as a template and Tachman® Gene Expression Assay Probe (manufactured by Thermo Fisher Scientific Co., Ltd.) as a probe, Quant Studio 12 Caflex Real-time PC System (manufactured by Thermo Fisher Scientific Co.) The PCR reaction of the β2GPI gene and the gapdh gene is performed by PCR according to the method described in the attached instruction manual, and the amount of amplified mRNA is measured respectively, and the amount of amplified mRNA of gapdh is used as an internal control, β2GPI The semiquantitative value of mRNA was calculated. Assuming that the quasi-quantitative value of β2GPI mRNA in the PBS administration group measured in the same manner was 1, the expression rate of β2GPI mRNA was determined. The expression rate of the obtained β2GPI mRNA is shown in Table S5.
Figure JPOXMLDOC01-appb-T000284
Figure JPOXMLDOC01-appb-T000284
 表S5から明らかなように、本発明の核酸複合体をマウスに投与して、肝臓中のβ2GPI遺伝子の発現を低下させることが明らかになった。 As apparent from Table S5, it was revealed that the nucleic acid complex of the present invention is administered to mice to reduce the expression of the β2GPI gene in the liver.
 本発明の核酸複合体は、哺乳動物に投与して、生体内において、β2GPI関連疾患を治療するために用いることができる。 The nucleic acid complex of the present invention can be administered to mammals and used in vivo to treat β2 GPI related diseases.

Claims (24)

  1.  下記式1で表される核酸複合体。
    式1:
    Figure JPOXMLDOC01-appb-C000001
    (式1中、
     Xは、センス鎖およびアンチセンス鎖からなり、少なくとも11個の塩基対の二重鎖領域を含む二本鎖核酸であり、
      該二本鎖核酸は、該アンチセンス鎖中の、17個~30個のヌクレオチドの鎖長のオリゴヌクレオチド鎖において、表1-1~表1-16に記載された標的β2GPI mRNA配列のいずれかと相補的であり、
      該センス鎖の3’末端または5’末端はS3に結合し、
     L1およびL2は、それぞれ独立して、糖リガンドであり、
     S1、S2およびS3は、それぞれ独立して、リンカーである。)
    A nucleic acid complex represented by the following formula 1.
    Formula 1:
    Figure JPOXMLDOC01-appb-C000001
    (In the formula 1,
    X is a double stranded nucleic acid consisting of a sense strand and an antisense strand, comprising a duplex region of at least 11 base pairs,
    The double-stranded nucleic acid is an oligonucleotide chain of 17 to 30 nucleotides in length in the antisense strand, and any one of the target β2GPI mRNA sequences described in Tables 1-1 to 1-16. Complementary and
    The 3 'or 5' end of the sense strand is linked to S3,
    L1 and L2 are each independently a sugar ligand,
    S1, S2 and S3 are each independently a linker. )
  2.  下記式2で表される構造を有する、請求項1に記載の核酸複合体。
    式2:
    Figure JPOXMLDOC01-appb-C000002
    (式2中、
     X、L1、L2およびS3は、それぞれ前記と同義であり、
     P1、P2、P3、P4、P5およびP6、ならびにT1およびT2は、それぞれ独立して、存在しないか、または、-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-もしくは-CO-NH-であり、
     Q1、Q2、Q3およびQ4は、それぞれ独立して、存在しないか、または、置換もしくは無置換の炭素数1~12のアルキレンまたは-(CHCHO)-CHCH-であり、nは0~99の整数であり、
     B1およびB2は、それぞれ独立して、結合手であるか、または、下記式2-1で表されるいずれかの構造であり、各構造における末端の黒丸点は、それぞれ、P2またはP3あるいはP5またはP6との結合点であり、m1、m2、m3およびm4は、それぞれ独立して、0~10の整数であり、
    式2-1:
    Figure JPOXMLDOC01-appb-C000003
     p1およびp2は、それぞれ独立して、1、2または3の整数であり、
     q1、q2、q3およびq4は、それぞれ独立して、0~10の整数であり、
     ただし、p1およびp2がそれぞれ2または3の整数であるとき、それぞれのP3およびP6、Q2およびQ4、T1およびT2ならびにL1およびL2は、同一または異なっていてもよく、q1~q4が2~10のとき、それぞれの-[P2-Q1]-,-[Q2-P3]-,-[P5-Q3]-,-[Q4-P6]-の組み合わせは同一または異なっていてもよい。)
    The nucleic acid complex according to claim 1, which has a structure represented by the following formula 2.
    Formula 2:
    Figure JPOXMLDOC01-appb-C000002
    (In the formula 2,
    X, L1, L2 and S3 are as defined above,
    P1, P2, P3, P4, P5 and P6, and T1 and T2 are each independently absent, or -CO-, -NH-, -O-, -S-, -O-CO- , -S-CO-, -NH-CO-, -CO-O-, -CO-S- or -CO-NH-,
    Q1, Q2, Q3 and Q4 are each independently absent, or substituted or unsubstituted alkylene having 1 to 12 carbon atoms or-(CH 2 CH 2 O) n -CH 2 CH 2- , N is an integer of 0 to 99,
    B1 and B2 are each independently a bond or a structure represented by the following formula 2-1, and the terminal black dot in each structure is P2 or P3 or P5, respectively. Or a point of attachment to P6, and m1, m2, m3 and m4 are each independently an integer of 0 to 10,
    Formula 2-1:
    Figure JPOXMLDOC01-appb-C000003
    p1 and p2 are each independently an integer of 1, 2 or 3;
    q1, q2, q3 and q4 are each independently an integer of 0 to 10,
    However, when p1 and p2 are integers of 2 or 3, respectively, P3 and P6, Q2 and Q4, T1 and T2 and L1 and L2 may be the same or different, and q1 to q4 are 2 to 10 And each of the combinations of-[P2-Q1]-,-[Q2-P3]-,-[P5-Q3]-and-[Q4-P6]-may be the same or different. )
  3.  P1およびP4が、それぞれ独立して、-CO-NH-、-NH-CO-または-O-である請求項2に記載の核酸複合体。 The nucleic acid complex according to claim 2, wherein P1 and P4 are each independently -CO-NH-, -NH-CO- or -O-.
  4.  -[P2-Q1]q1-および-[P5-Q3]q3-がそれぞれ独立して、存在しないか、または下記式3-1~式3-3で表されるいずれかの構造である、請求項2または3に記載の核酸複合体。
    式3-1:
    Figure JPOXMLDOC01-appb-C000004
    式3-2:
    Figure JPOXMLDOC01-appb-C000005
    式3-3:
    Figure JPOXMLDOC01-appb-C000006
    (式3-1~式3-3中、
     m5およびm6は、それぞれ独立して、0~10の整数であり、式3-1~式3-3の構造における末端の黒丸点は、それぞれ、B1またはB2あるいはP1またはP4との結合点である。)
    -[P2-Q1] q1 - and- [P5-Q3] q3 -are each independently absent, or have any of the structures represented by the following formulas 3-1 to 3-3 Item 4. The nucleic acid complex according to item 2 or 3.
    Formula 3-1:
    Figure JPOXMLDOC01-appb-C000004
    Formula 3-2:
    Figure JPOXMLDOC01-appb-C000005
    Formula 3-3:
    Figure JPOXMLDOC01-appb-C000006
    (In Formula 3-1 to Formula 3-3,
    m5 and m6 are each independently an integer of 0 to 10, and the terminal black dot in the structure of Formula 3-1 to Formula 3-3 is a bonding point to B1 or B2 or P1 or P4, respectively is there. )
  5.  下記式4-1~式4-9で表されるいずれかの構造を有する、請求項2~4のいずれか1項に記載の核酸複合体。
    式4-1:
    Figure JPOXMLDOC01-appb-C000007
    式4-2:
    Figure JPOXMLDOC01-appb-C000008
    式4-3:
    Figure JPOXMLDOC01-appb-C000009
    式4-4:
    Figure JPOXMLDOC01-appb-C000010
    式4-5:
    Figure JPOXMLDOC01-appb-C000011
    式4-6:
    Figure JPOXMLDOC01-appb-C000012
    式4-7:
    Figure JPOXMLDOC01-appb-C000013
    式4-8:
    Figure JPOXMLDOC01-appb-C000014
    式4-9:
    Figure JPOXMLDOC01-appb-C000015
    (式4-1~4-9中、
     X、L1、L2、S3、P3、P6、T1、T2、Q2、Q4、q2およびq4はそれぞれ前記と同義である。)
    The nucleic acid complex according to any one of claims 2 to 4, having any one of the structures represented by the following formulas 4-1 to 4-9.
    Formula 4-1:
    Figure JPOXMLDOC01-appb-C000007
    Equation 4-2:
    Figure JPOXMLDOC01-appb-C000008
    Equation 4-3:
    Figure JPOXMLDOC01-appb-C000009
    Formula 4-4:
    Figure JPOXMLDOC01-appb-C000010
    Formula 4-5:
    Figure JPOXMLDOC01-appb-C000011
    Formula 4-6:
    Figure JPOXMLDOC01-appb-C000012
    Equation 4-7:
    Figure JPOXMLDOC01-appb-C000013
    Formula 4-8:
    Figure JPOXMLDOC01-appb-C000014
    Formula 4-9:
    Figure JPOXMLDOC01-appb-C000015
    (In the formulas 4-1 to 4-9,
    X, L1, L2, S3, P3, P6, T1, T2, Q2, Q4, q2 and q4 are as defined above. )
  6.  下記式5で表される構造を有する、請求項1に記載の核酸複合体。
    式5:
    Figure JPOXMLDOC01-appb-C000016
    (式5中、
     X、S3、P1、P2、P3、Q1、Q2、B1、T1、L1、p1、q1およびq2はそれぞれ前記と同義である。)
    The nucleic acid complex according to claim 1, having a structure represented by the following formula 5.
    Formula 5:
    Figure JPOXMLDOC01-appb-C000016
    (In the equation 5,
    X, S3, P1, P2, P3, Q1, Q2, B1, T1, L1, p1, q1 and q2 are as defined above. )
  7.  P1が-CO-NH-、-NH-CO-または-O-である請求項6に記載の核酸複合体。 The nucleic acid complex according to claim 6, wherein P1 is -CO-NH-, -NH-CO- or -O-.
  8.  下記式6-1~式6-9で表されるいずれかの構造を有する、請求項6または7に記載の核酸複合体。
    式6-1:
    Figure JPOXMLDOC01-appb-C000017
    式6-2:
    Figure JPOXMLDOC01-appb-C000018
    式6-3:
    Figure JPOXMLDOC01-appb-C000019
    式6-4:
    Figure JPOXMLDOC01-appb-C000020
    式6-5:
    Figure JPOXMLDOC01-appb-C000021
    式6-6:
    Figure JPOXMLDOC01-appb-C000022
    式6-7:
    Figure JPOXMLDOC01-appb-C000023
    式6-8:
    Figure JPOXMLDOC01-appb-C000024
    式6-9:
    Figure JPOXMLDOC01-appb-C000025
    (式6-1~6-9中、
     X、S3、P3、Q2、T1、L1およびq2は、それぞれ前記と同義である。)
    The nucleic acid complex according to claim 6, which has any of the structures represented by the following formulas 6-1 to 6-9.
    Formula 6-1:
    Figure JPOXMLDOC01-appb-C000017
    Formula 6-2:
    Figure JPOXMLDOC01-appb-C000018
    Equation 6-3:
    Figure JPOXMLDOC01-appb-C000019
    Equation 6-4:
    Figure JPOXMLDOC01-appb-C000020
    Formula 6-5:
    Figure JPOXMLDOC01-appb-C000021
    Formula 6-6:
    Figure JPOXMLDOC01-appb-C000022
    Formula 6-7:
    Figure JPOXMLDOC01-appb-C000023
    Formula 6-8:
    Figure JPOXMLDOC01-appb-C000024
    Formula 6-9:
    Figure JPOXMLDOC01-appb-C000025
    (In the formulas 6-1 to 6-9,
    X, S3, P3, Q2, T1, L1 and q2 are as defined above. )
  9.  下記式7-1~式7-9で表されるいずれかの構造を有する、請求項2~5のいずれか1項に記載の核酸複合体。
    式7-1:
    Figure JPOXMLDOC01-appb-C000026
    式7-2:
    Figure JPOXMLDOC01-appb-C000027
    式7-3:
    Figure JPOXMLDOC01-appb-C000028
    式7-4:
    Figure JPOXMLDOC01-appb-C000029
    式7-5:
    Figure JPOXMLDOC01-appb-C000030
    式7-6:
    Figure JPOXMLDOC01-appb-C000031
    式7-7:
    Figure JPOXMLDOC01-appb-C000032
    式7-8:
    Figure JPOXMLDOC01-appb-C000033
    式7-9:
    Figure JPOXMLDOC01-appb-C000034
    (式7-1~7-9中、
     X、S3、L1およびL2は、それぞれ前記と同義である。)
    The nucleic acid complex according to any one of claims 2 to 5, having any one of the structures represented by the following formulas 7-1 to 7-9.
    Formula 7-1:
    Figure JPOXMLDOC01-appb-C000026
    Equation 7-2:
    Figure JPOXMLDOC01-appb-C000027
    Formula 7-3:
    Figure JPOXMLDOC01-appb-C000028
    Equation 7-4:
    Figure JPOXMLDOC01-appb-C000029
    Formula 7-5:
    Figure JPOXMLDOC01-appb-C000030
    Formula 7-6:
    Figure JPOXMLDOC01-appb-C000031
    Formula 7-7:
    Figure JPOXMLDOC01-appb-C000032
    Formula 7-8:
    Figure JPOXMLDOC01-appb-C000033
    Formula 7-9:
    Figure JPOXMLDOC01-appb-C000034
    (In the formulas 7-1 to 7-9,
    X, S3, L1 and L2 are as defined above. )
  10.  前記糖リガンドが、N-アセチルガラクトサミンである、請求項1~9のいずれか1項に記載の核酸複合体。 The nucleic acid complex according to any one of claims 1 to 9, wherein the sugar ligand is N-acetylgalactosamine.
  11.  前記二本鎖核酸が修飾ヌクレオチドを含む、請求項1~10のいずれか1項に記載の核酸複合体。 The nucleic acid complex according to any one of claims 1 to 10, wherein the double stranded nucleic acid comprises a modified nucleotide.
  12.  センス鎖の3’末端およびアンチセンス鎖の5’末端は、平滑末端を形成する、請求項1~11のいずれか1項に記載の核酸複合体。 The nucleic acid complex according to any one of claims 1 to 11, wherein the 3 'end of the sense strand and the 5' end of the antisense strand form a blunt end.
  13.  前記二本鎖核酸が、糖部修飾ヌクレオチドを含む、請求項11に記載の核酸複合体。 The nucleic acid complex according to claim 11, wherein the double stranded nucleic acid comprises a sugar moiety modified nucleotide.
  14.  Xが、表M1-1~表M1-18または表1-1~表1-16に記載のセンス鎖/アンチセンス鎖から成る群から選択される1対のセンス鎖/アンチセンス鎖である、請求項1~13のいずれか1項に記載の核酸複合体。 X is a pair of sense strand / antisense strand selected from the group consisting of sense strand / antisense strand described in Table M1-1 to Table M1-18 or Table 1-1 to Table 1-16, The nucleic acid complex according to any one of claims 1 to 13.
  15.  下記式7-8-1で表される構造を有する、請求項1~14のいずれか1項に記載の核酸複合体。
    式7-8-1:
    Figure JPOXMLDOC01-appb-C000035
    (式7-8-1中、Xは前記と同義である。)
    The nucleic acid complex according to any one of claims 1 to 14, which has a structure represented by the following formula 7-8-1.
    Formula 7-8-1:
    Figure JPOXMLDOC01-appb-C000035
    (In formula 7-8-1, X is as defined above.)
  16.  Xが、表M1-1~表M1-18における、CHOO96、CHOO99、CH0125、CH0126、CH0318、CH0943およびCH1139からなる群から選択される二本鎖核酸である、請求項15に記載の核酸複合体。 The nucleic acid complex according to claim 15, wherein X is a double-stranded nucleic acid selected from the group consisting of CHOO 96, CHOO 99, CH0125, CH0126, CH0318, CH0943 and CH1139 in Tables M1-1 to M1-18. .
  17.  請求項1~16のいずれか1項に記載の核酸複合体を含む、医薬組成物。 A pharmaceutical composition comprising the nucleic acid complex according to any one of claims 1 to 16.
  18.  細胞内に導入するための、請求項17に記載の医薬組成物。 The pharmaceutical composition according to claim 17 for introduction into cells.
  19.  静脈内投与または皮下投与される、請求項17または18に記載の医薬組成物。 19. The pharmaceutical composition according to claim 17 or 18, which is administered intravenously or subcutaneously.
  20.  請求項1~16のいずれか1項に記載の核酸複合体または請求項17~19のいずれか1項に記載の医薬組成物を、それを必要とする患者に投与することを含む、疾患の治療または予防方法。 A disease comprising administering a nucleic acid complex according to any one of claims 1 to 16 or a pharmaceutical composition according to any one of claims 17 to 19 to a patient in need thereof. Methods of treatment or prevention.
  21.  請求項1~16のいずれか1項に記載の核酸複合体または請求項17~19のいずれか1項に記載の医薬組成物を用いて二本鎖核酸を細胞内に導入することを含む、β2GPI遺伝子の発現を抑制する方法。 Introducing double stranded nucleic acid into cells using the nucleic acid complex according to any one of claims 1 to 16 or the pharmaceutical composition according to any one of claims 17 to 19 A method for suppressing the expression of β2 GPI gene.
  22.  請求項1~16のいずれか1項に記載の核酸複合体または請求項17~19のいずれか1項に記載の医薬組成物を哺乳動物に投与することを含む、β2GPI関連疾患の治療方法。 A method of treating a β2GPI related disease, comprising administering the nucleic acid complex according to any one of claims 1 to 16 or the pharmaceutical composition according to any one of claims 17 to 19 to a mammal.
  23.  請求項1~16のいずれか1項に記載の核酸複合体または請求項17~19のいずれか1項に記載の医薬組成物を含む、β2GPI関連疾患の治療に用いるための医薬。 A medicament for use in the treatment of a β2 GPI related disease, comprising the nucleic acid complex according to any one of claims 1 to 16 or the pharmaceutical composition according to any one of claims 17 to 19.
  24.  請求項1~16のいずれか1項に記載の核酸複合体または請求項17~19のいずれか1項に記載の医薬組成物を含む、β2GPI関連疾患の治療剤。
     
    A therapeutic agent for a β2GPI related disease, comprising the nucleic acid complex according to any one of claims 1 to 16 or the pharmaceutical composition according to any one of claims 17 to 19.
PCT/JP2018/029079 2017-08-02 2018-08-02 Nucleic acid complex WO2019027009A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-149752 2017-08-02
JP2017149752 2017-08-02

Publications (1)

Publication Number Publication Date
WO2019027009A1 true WO2019027009A1 (en) 2019-02-07

Family

ID=65233008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029079 WO2019027009A1 (en) 2017-08-02 2018-08-02 Nucleic acid complex

Country Status (2)

Country Link
TW (1) TW201920668A (en)
WO (1) WO2019027009A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020111280A1 (en) * 2018-11-30 2020-06-04 協和キリン株式会社 Nucleic acid complex
WO2021049504A1 (en) 2019-09-10 2021-03-18 第一三共株式会社 Galnac-oligonucleotide conjugate for liver-targeted delivery use, and method for producing same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009073809A2 (en) * 2007-12-04 2009-06-11 Alnylam Pharmaceuticals, Inc. Carbohydrate conjugates as delivery agents for oligonucleotides
WO2013075035A1 (en) * 2011-11-18 2013-05-23 Alnylam Pharmaceuticals Rnai agents, compositions and methods of use thereof for treating transthyretin (ttr) associated diseases
WO2014179629A2 (en) * 2013-05-01 2014-11-06 Isis Pharmaceuticals, Inc. Compositions and methods
WO2015006740A2 (en) * 2013-07-11 2015-01-15 Alnylam Pharmaceuticals, Inc. Oligonucleotide-ligand conjugates and process for their preparation
WO2015105083A1 (en) * 2014-01-07 2015-07-16 塩野義製薬株式会社 Double-stranded oligonucleotide containing antisense oligonucleotide and sugar derivative
WO2017010575A1 (en) * 2015-07-16 2017-01-19 協和発酵キリン株式会社 β2GPI GENE EXPRESSION INHIBITING NUCLEIC ACID COMPLEX
WO2017010573A1 (en) * 2015-07-15 2017-01-19 協和発酵キリン株式会社 β2GPI GENE-SILENCING RNAi MEDICINE COMPOSITION
WO2017131236A1 (en) * 2016-01-29 2017-08-03 協和発酵キリン株式会社 Nucleic acid complex
WO2018004004A1 (en) * 2016-06-30 2018-01-04 協和発酵キリン株式会社 Nucleic acid complex

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009073809A2 (en) * 2007-12-04 2009-06-11 Alnylam Pharmaceuticals, Inc. Carbohydrate conjugates as delivery agents for oligonucleotides
WO2013075035A1 (en) * 2011-11-18 2013-05-23 Alnylam Pharmaceuticals Rnai agents, compositions and methods of use thereof for treating transthyretin (ttr) associated diseases
WO2014179629A2 (en) * 2013-05-01 2014-11-06 Isis Pharmaceuticals, Inc. Compositions and methods
WO2014179627A2 (en) * 2013-05-01 2014-11-06 Isis Pharmaceuticals, Inc. Compositions and methods for modulating hbv and ttr expression
WO2014179620A1 (en) * 2013-05-01 2014-11-06 Isis Pharmaceuticals, Inc. Conjugated antisense compounds and their use
WO2015006740A2 (en) * 2013-07-11 2015-01-15 Alnylam Pharmaceuticals, Inc. Oligonucleotide-ligand conjugates and process for their preparation
WO2015105083A1 (en) * 2014-01-07 2015-07-16 塩野義製薬株式会社 Double-stranded oligonucleotide containing antisense oligonucleotide and sugar derivative
WO2017010573A1 (en) * 2015-07-15 2017-01-19 協和発酵キリン株式会社 β2GPI GENE-SILENCING RNAi MEDICINE COMPOSITION
WO2017010575A1 (en) * 2015-07-16 2017-01-19 協和発酵キリン株式会社 β2GPI GENE EXPRESSION INHIBITING NUCLEIC ACID COMPLEX
WO2017131236A1 (en) * 2016-01-29 2017-08-03 協和発酵キリン株式会社 Nucleic acid complex
WO2018004004A1 (en) * 2016-06-30 2018-01-04 協和発酵キリン株式会社 Nucleic acid complex

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020111280A1 (en) * 2018-11-30 2020-06-04 協和キリン株式会社 Nucleic acid complex
WO2021049504A1 (en) 2019-09-10 2021-03-18 第一三共株式会社 Galnac-oligonucleotide conjugate for liver-targeted delivery use, and method for producing same

Also Published As

Publication number Publication date
TW201920668A (en) 2019-06-01

Similar Documents

Publication Publication Date Title
JP6853193B2 (en) Nucleic acid complex
WO2019027015A1 (en) Nucleic acid complex
CA2917161C (en) Oligonucleotide-ligand conjugates and process for their preparation
JPWO2017010575A1 (en) β2GPI gene expression-suppressing nucleic acid complex
JP7022687B2 (en) Nucleic acid complex
WO2019027009A1 (en) Nucleic acid complex
WO2020111280A1 (en) Nucleic acid complex
JP2019024444A (en) Nucleic acid conjugates
KR20240070519A (en) 1'-alkyl modified ribose derivatives and methods of use
JP2024528270A (en) Ligand conjugates for the delivery of therapeutically active agents - Patents.com
WO2023045995A1 (en) Multivalent Ligand Clusters with Diamine Scaffold for Targeted Delivery of Therapeutic Agents
CN114929729A (en) Nucleic acid complex and pharmaceutical composition containing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18840960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18840960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP