WO2019027001A1 - Multilayer film manufacturing method - Google Patents

Multilayer film manufacturing method Download PDF

Info

Publication number
WO2019027001A1
WO2019027001A1 PCT/JP2018/029037 JP2018029037W WO2019027001A1 WO 2019027001 A1 WO2019027001 A1 WO 2019027001A1 JP 2018029037 W JP2018029037 W JP 2018029037W WO 2019027001 A1 WO2019027001 A1 WO 2019027001A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
roll
multilayer film
coating liquid
raw
Prior art date
Application number
PCT/JP2018/029037
Other languages
French (fr)
Japanese (ja)
Inventor
諭 中村
亮 石黒
共祐 片本
Original Assignee
株式会社日本製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本製鋼所 filed Critical 株式会社日本製鋼所
Priority to CN202310575296.9A priority Critical patent/CN117080676A/en
Priority to CN201880050293.0A priority patent/CN111033800A/en
Publication of WO2019027001A1 publication Critical patent/WO2019027001A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method of producing a multilayer film.
  • stretched films have been used for various products.
  • a stretched film made of a polyolefin-based material is used as a separator for a lithium ion battery (hereinafter referred to as "LIB").
  • LIB lithium ion battery
  • an organic material or an inorganic material may be disposed on the surface of the stretched film.
  • a coating liquid prepared by mixing ceramic fine particles such as alumina and silica, which are inorganic materials, and a solvent is applied to the surface of a stretched film, and then the solvent is dried, thereby comprising these fine particles on the surface of the stretched film.
  • the method of providing a film is used (refer patent document 1 and patent document 2).
  • membrane comprised from these resin materials on the surface of a stretched film is also used by apply
  • coating resin materials such as polyamide and a polyimide which are organic materials
  • Japan JP 2013-114751 Japan JP 2014-203680 gazette Japanese Patent Laid-Open Publication 2009-21265 Japanese Patent No. 4460028
  • micropores are formed due to the movement of lithium ions and the like.
  • the fine pores can be formed, for example, by mixing a solvent as a material of a stretched film, forming a film, and then extracting the solvent or the like (so-called wet method).
  • wet method extracting the solvent or the like
  • the solvent or the like is generally extracted to reopen the clogged micropores. After that, the stretched film is restretched. In this re-stretching, adjusting the size of the microporous is also performed.
  • fine particle layer a film (hereinafter, also referred to as “fine particle layer”) composed of various kinds of fine particles is disposed on a stretched film to improve the heat resistance described above, the viewpoint of downsizing of the manufacturing system, rationalization of manufacturing processes, etc. Therefore, it may be preferable to provide a fine particle layer on the stretched film at a time before the above-described re-stretching.
  • the fine particle layer is less likely to be deformed than the material constituting the stretched film, it is feared that cracking of the fine particle layer and peeling of the fine particle layer from the stretched film may occur in the re-stretching process.
  • the fine particle layer is provided on the stretched film before various stretching processes including re-stretching, there is a possibility that the fine particle layer can not be maintained in a properly fixed state on the stretched film.
  • One of the objects of the present invention is to provide a method for producing a multilayer film in which the fine particle layer can be properly fixed to the surface of the stretched film.
  • a method of producing a multilayer film is A method for producing a multilayer film, in which a fine particle layer composed of fine particles is provided on the surface of a porous film, Removing the porous forming material from a raw film comprising a resin material constituting the film and the porous forming material; A pair of first rolls abut on one surface of the raw film at two different positions in the carrying direction of the raw film after the removing step, and the pair of first rolls in the carrying direction A coating liquid containing the fine particles is applied to the raw film using the second roll while the second roll is in contact with the other surface of the raw film at a position sandwiched between , Coating process, A lateral stretching step of stretching the raw film in the width direction while maintaining the flowability of the coating liquid applied to the raw film; A fixing step of drying the coating liquid to fix the fine particle layer on the film to form the multilayer film; Equipped with In the applying step, the second roll presses the raw film along a predetermined pressing direction,
  • the coating liquid in the coating step, is applied to the raw film while the second roll presses the raw film.
  • the coating liquid is placed in a state in which the first roll and the second roll are disposed such that the above-described roll-to-roll angle is 0 ° or more and 150 ° or less. It has been revealed that the adhesion between the fine particles contained in the coating liquid and the raw film is remarkably improved by applying the raw film.
  • the transverse stretching step the raw film is stretched in the width direction in a state in which the coating liquid has fluidity (in other words, a state in which the coating liquid is not completely dried).
  • the coating liquid flows following the stretching of the raw film, so the final multilayer film is compared to the case in which the coating liquid is completely dried to form the fine particle layer and the transverse drawing is performed. Cracks, peeling, etc. of the fine particle layer provided on Therefore, according to the manufacturing method which concerns on a 1st side, microparticles
  • fine-particles can be fixed appropriately on the surface of a stretched film.
  • the transverse stretching step Including a preliminary step of preheating and a main step of stretching in the width direction under heating;
  • the preliminary drying amount which is the reduction amount of the coating liquid before and after the preliminary process in the preliminary process is 20 wt% or less,
  • the main drying amount which is the reduction amount of the coating liquid before and after the main step in the main step is 20 wt% or less.
  • the reduction amount of the coating liquid is set to 20 wt% or less. It has been clarified that the followability of the coating liquid to film stretching can be improved. Therefore, according to the manufacturing method which concerns on a 2nd side surface, microparticles
  • the preliminary step is Including a process of heating the raw film so that the amount of heat per unit area given to the raw film is 1.5 kW / h or less
  • the main process is The method includes heating the raw film so that the amount of heat per unit area given to the raw film is 1.2 kW / h or less.
  • the heat amount per unit area given to the raw film in the preliminary step is set to 1.5 kW / h or less, and the raw film is produced in this step It is clear that setting the amount of heat per unit area to be less than or equal to 1.2 kW / h given to can adjust the amount of decrease of the coating liquid as defined in the above-mentioned second aspect. Therefore, according to the manufacturing method which concerns on a 3rd side, microparticles
  • the application process is A process is included in which the ratio G / L of the rotational speed G of the second roll to the transport speed L of the raw film is greater than 0 and 10 or less.
  • the ratio G / L of the rotational speed G of the second roll to the transport speed L of the original film is set to a value larger than 0 and 10 or less.
  • the fixing step is A process of fixing the fine particle layer on the surface of the raw film is realized by gradually drying the coating liquid under heating while stretching the raw film in the transport direction.
  • the fine particle layer can be formed on the surface of the raw film. Accordingly, since the fine particle layer is not formed at the time of the lateral stretching step, cracking, peeling, and the like of the fine particle layer finally provided in the multilayer film are suppressed. Furthermore, the degree of micropore opening can be adjusted by stretching the raw film in the transport direction. Therefore, according to the manufacturing method which concerns on a 5th side, microparticles
  • fine-particles can be fixed appropriately on the surface of the stretched film which has a micropore of a desired opening degree.
  • the multilayer film is used as a lithium ion battery separator.
  • the method for producing a multilayer film according to any one of the first to fifth aspects described above can be applied to a method for producing a lithium ion battery separator having high industrial value.
  • the fine particles can be properly fixed to the surface of the stretched film.
  • FIG. 1 is a schematic block diagram showing a LIB separator manufacturing system according to the present invention.
  • Fig.2 (a) is a concrete block diagram of the in-line coater of FIG. 1
  • FIG.2 (b) and FIG.2 (c) are schematic which shows the roll angle specified by a gravure roll and a near roll.
  • FIG. 3 is a schematic configuration view showing an in-line adhesive coating method for BOPET in another form of FIG. 1.
  • FIG. 4 is a schematic configuration view showing an in-line ceramic coating method for a separator in another form of FIG. 1.
  • FIG. 5 is a block diagram of a demonstration device of a LIB separator manufacturing system according to the present invention.
  • FIG. 6 is a schematic block diagram showing the main part of the demonstration device of FIG. FIG.
  • FIG. 7 is an explanatory view showing a coating thickness adjusting condition in the in-line coater of FIG.
  • FIG. 8 is an explanatory view showing the transverse stretching / drying conditions for the in-line coater of FIG.
  • FIG. 9 is an explanatory view of a peel strength measurement test for the separator in the present invention.
  • FIG. 10 is a schematic block diagram showing a conventional off-line LIB separator manufacturing system.
  • FIG. 11 is a schematic block diagram showing a conventional off-line type off-line coater.
  • FIG. 10 The conventional system comprises the wet separator manufacturing system 1 of FIG. 10 and the off-line coater 8 of FIG.
  • the wet separator manufacturing system 1 includes an extruder 2, a cast roll 3, a longitudinal stretcher 4, a first horizontal stretcher 5, and an extractor 6 in order from the upstream side 9 to the downstream side 10.
  • An off-line coater 8 is provided on the downstream side 10 of the second horizontal stretching machine 7 or at another place.
  • the off-line coater 8 is not an in-line configuration that falls within the line of the wet separator manufacturing system 1 but is independent as an off-line configuration.
  • the specific configuration of the off-line coater 8 is shown in FIG.
  • the film 122 for a separator delivered from the unwinding part 121 is dried by the first, second and third dryers 123, 124 and 125 after the solution containing the ceramic fine particles is applied by the coater head 120. Thereafter, the separator 122A is wound by the winding unit 126.
  • the wet separator manufacturing system 1 has the extruder 2 on the upstream side 9.
  • the film 22 extruded from the die 2A of the extruder 2 toward the downstream side 10 is a raw film comprising a resin material constituting the film 22 and a porous forming material (for example, a solvent or the like).
  • the film 22 is stretched by the longitudinal stretcher 4 and the first transverse stretcher 5 and then supplied to the extractor 6.
  • the same reference numerals as shown in FIG. 10 are used for substantially the same parts as the above-described conventional system.
  • washing and solvent extraction (removal) processing is performed.
  • a slurry-like coating liquid in which ceramic fine particles are mixed with an aqueous solvent or an organic solvent is applied on the film 22 by the inline coater 8A on the downstream side, and a separator 22A is formed.
  • the sheet-like separator 22A sent from the in-line coater 8A to the downstream side 10 is stretched in the width direction by the second transverse stretcher 7 disposed immediately after the in-line coater 8A and wound by the winding mechanism 23 .
  • the average particle size of the ceramic fine particles used in this example is more than 10 ⁇ m and 400 ⁇ m or less.
  • the “average particle diameter” in the present embodiment was determined by a laser diffraction scattering method. Specifically, measurement is performed according to JIS Z8825 using MT3300 manufactured by Microtrack Bell Corporation. Then, the average particle diameter is specified by analyzing the particle size distribution measured and calculated by the device using an automatic arithmetic processing device.
  • the in-line coater 8A is configured as shown in FIG. 2 (a).
  • the film 22 extracted and processed by the extractor 6 is conveyed toward the gravure roll 26 (second roll) of the doctor chamber 25 through a plurality of guide rolls 24.
  • the film 22 is subjected to the above-described coating treatment in a state of being sandwiched in the thickness direction by the gravure roll 26, the pair of entrance side near rolls 27, and the exit side near rolls 28 (a pair of first rolls).
  • the inlet near roll 27 and the outlet near roll 28 are in contact with one surface of the film 22 at two different positions in the transport direction of the film 22.
  • the gravure roll 26 is in contact with the other surface of the film 22 at a position where the gravure roll 26 is sandwiched between the entry side near roll 27 and the exit side near roll 28 in the transport direction.
  • the gravure roll 26 has a mechanism (not shown) for rotating the gravure roll 26.
  • the positional relationship between the gravure roll 26 and the near rolls 27 and 28 can be adjusted by a variable mechanism (not shown). Specifically, as shown in FIGS. 2 (b) and 2 (c), the gravure roll 26 presses the film 22 along a predetermined pressing direction (see the arrow in the figure), and When viewed from the direction along the axis of rotation of the roller, the angle formed by the line connecting the axis of rotation 26a of at least one of the inlet side near roll 27 and outlet side near roll 28 and the axis of rotation 26a of the gravure roll 26 and the pressing direction. It arrange
  • the roll-to-roll angle ⁇ can be adjusted by moving the position of the gravure roll 26 back and forth (that is, to the left and right in the figure).
  • the inter-roll angle ⁇ is 0 °, at least one of the inlet side near roll 27 and the outlet side near roll 28 and the gravure roll 26 are in a positional relationship adjacent to each other in the left and right in the drawing.
  • the gravure roll 26 has, on its surface, a gravure pattern 26A in which a square screed 40 including a rhombus is engraved in a regular arrangement.
  • the crucible 40 defines a recess on the inner side, and when applying the coating liquid to the film 22 as described later, the coating liquid may be conveyed toward the film 22 while the coating liquid is stored inside. it can.
  • the height of the wall of the crucible 40 is 0 ⁇ m ⁇ H ⁇ 1 mm.
  • the gravure roll 26 has 0 pieces ⁇ N ⁇ 500 pieces of ridges 40 in 1 inch square.
  • the inline coater (gravure coater) 8A does not have the drying function (dryer) of only the drying which the conventional offline coater 8 has, and is also used as the drying function of the second horizontal stretching machine 7.
  • the drying furnace required for the off-line coater shown in FIG. 10 is also used as the drying function of the second transverse stretcher 7 in the separator manufacturing system. That is, the drying furnace conventionally used is omitted. Further, since the delivery and take-up mechanism 23 is also used in the system, only the in-line coater 8A may be disposed after the extractor 6 in the wet separator manufacturing system 1 and in front of the second transverse stretcher 7.
  • FIG. 3 an example of a coating method used for well-known BOPET (Bioxially-Oriented Polyethylene terephthalate) etc. is shown in FIG. 3 as a comparison object.
  • BOPET Bisoxially-Oriented Polyethylene terephthalate
  • an adhesive layer is finally formed on the surface of the film 22.
  • a coating solution is prepared in which about 10 wt% of polyurethane resin and the like that finally becomes an adhesive layer is dissolved in about 90 wt% of water.
  • the coating liquid is applied onto the film 22 with a thickness of about 4 ⁇ m before transverse stretching in a state containing water.
  • the film 22 is stretched by about 4 times in the width direction.
  • a layer of polyurethane resin or the like having a thickness of about 1 ⁇ m that is, an adhesive layer
  • the polyurethane resin or the like is still in a flowable state (for example, in a state like a paste) even after evaporation of water in the coating liquid, so the film 22 is stretched. Even if it is allowed to move, the deformation of the film 22 can be followed in a state of being stuck to the film 22.
  • the coating liquid containing ceramic fine particles is applied by the in-line coater system shown in FIG. 1 to form the fine particle layer on the film 22, the coating liquid in the second horizontal stretching machine 7 In the state of being applied on the film 22, it will be transversely stretched.
  • the micropores in the film 22 blocked in the extraction (removal) process are opened by this transverse drawing, and the porous film 22 (multilayer film) is formed.
  • the method for forming the adhesive layer shown in FIG. 3 is used as it is, there is a concern that peeling or cracking of the fine particle layer may occur during the stretching of the film 22. Therefore, the method for producing a multilayer film according to the present invention is used.
  • a coating liquid containing ceramic fine particles can be configured to contain about 30 to 40 wt% of ceramic fine particles and 60 to 70 wt% of a solvent or the like.
  • the coating liquid can be configured to contain about 40 wt% of alumina as ceramic particles and about 60 wt% of a water-based solvent.
  • the temperature and the air amount of the separator 22A are adjusted so that the heat amount per unit area given to the film in the preheating step (preliminary step) is 1.5 kW / h or less. Thereby, the drying amount (preliminary drying amount) which is the reduction amount of the coating liquid before and behind this process is suppressed to 20 wt% or less. Further, in the subsequent transverse stretching step (this step), the temperature and the air flow are adjusted so that the heat quantity per unit area given to the film is 1.2 kW / h or less. Thereby, the dry amount (main dry amount) which is a reduction amount before and after this treatment is suppressed to 20 wt% or less.
  • the unit area is, for example, 1 m 2 .
  • Example 1 The coating liquid was simply applied and stretched using the apparatus shown in FIGS. 5 and 6.
  • a commercially available polyethylene film (LL-XMTM) manufactured by Futamura Chemical Co., Ltd. was used as the film 22 .
  • Nippon Zeon BM-2000M was used as the ceramic fine particles contained in the coating liquid.
  • the ratio G / L of L was controlled to be 0 ⁇ G / L ⁇ 10.
  • the film 22 coated with the coating liquid under these conditions was treated so as to pass through the 10 zones of the transverse stretcher shown in FIG.
  • the conditions shown in Example 1 of Table 1 below were set with the first zone at the entrance shown in FIG. 8 as the preheating unit, the second zone as the extension unit, and the remaining eight zones as the heat setting unit. In the stretched portion, the film 22 was stretched 1.2 times.
  • Example 2 It experimented on the conditions shown in Example 2 of Table 1 by setting film conveyance speed to 12 m / min on the same conditions as Example 1.
  • Example 3 It experimented on the conditions shown in Example 3 of Table 1 by setting film conveyance speed to 16 m / min on the same conditions as Example 1.
  • Example 4 It experimented on the conditions shown in Example 4 of Table 1 by making film conveyance speed into 20 m / min on the same conditions as Example 1.
  • Example 5 It experimented on the conditions shown in Example 5 of Table 1 by setting film conveyance speed to 24 m / min on the same conditions as Example 1.
  • Example 1 (Comparative example 1) Among the 10 zones of the transverse stretching machine shown in FIG. 8, the second zone of the entrance was shown in Example 1 of Table 1 as the preheating zone, the third zone as the stretching zone, and the remaining 4 zones as the heat setting zone. The conditions were set, and the others were conducted under the same conditions as in Example 1.
  • Examples 1 to 3 When Examples 1 to 3 are compared, the state of cracking is improved and the peel strength tends to be improved as the amount of heat given to the preheating part and the drawing part is reduced. Furthermore, in Examples 4 and 5, no crack was observed in the fine particle layer, and the peel strength was further improved as compared with Examples 1 to 3.
  • Table 2 shows, as a reference example, observation results of the fine particle layer of the multilayer film manufactured under optimum conditions using the off-line type LIB separator manufacturing system shown in FIG.
  • the surface properties of the fine particle layer shown in the SEM images of Examples 4 and 5 manufactured using the system according to the present invention are substantially the same as those of this reference example, and the peel strengths show equal or higher values.
  • the system according to the present invention can produce a multilayer film having mechanical properties equal to or more than the off-line LIB separator manufacturing system.
  • the gravure roll 26 applies the coating liquid to the film 22 while pressing the film 22.
  • the coating liquid is applied to the film 22 in a state where the near rolls 27, 28 and the gravure roll 26 are disposed such that the inter-roll angle is 0 ° or more and 150 ° or less.
  • the film 22 is stretched in the width direction in a state in which the coating liquid has fluidity (in other words, a state in which the coating liquid is not completely dried). As a result, the coating liquid flows following the stretching of the film 22.
  • the multilayer film is finally formed into a multilayer film. Cracking and peeling of the provided particle layer are suppressed. Therefore, according to the manufacturing method which concerns on this embodiment, microparticles
  • fine-particles can be fixed appropriately on the surface of a stretched film.
  • the coating fluid to the film 22 is stretched. It became clear that the followability could be improved.
  • the amount of heat per unit area given to the film 22 in the preliminary step is set to 1.5 kW / h or less, and the amount of heat per unit area given to the film 22 in this step is 1.2 kW. It has become clear that by setting the ratio to / h or less, the amount of decrease in the coating liquid can be adjusted to be set in the above-mentioned range.
  • the coating liquid is obtained by setting the ratio G / L of the rotational speed G of the gravure roll 26 to the transport speed L of the film 22 to a value larger than 0 and 10 or less. It has been found that it can be applied to have the desired thickness.
  • the adhesiveness of the ceramic fine particles to the film 22 becomes good.
  • the configuration as the inline coater 8A can be miniaturized. Therefore, it is easy to arrange the in-line coater between the extractor 6 and the second transverse drawing machine 7.
  • the inline coater 8A (gravure coater) is not provided with a drying function, and the use of the dryer of the second horizontal stretching machine 7 as a dryer for drying can greatly contribute to the miniaturization of the inline coater 8A. Further, optimum coating can be performed by setting the angle, height, and number of the above-described ridges 40 provided on the surface of the gravure roll 26 according to the type of the material to be coated, and the like.
  • the present invention is not limited to the above embodiments, and various modifications can be adopted within the scope of the present invention.
  • the present invention is not limited to the embodiments described above, and appropriate modifications, improvements, etc. are possible.
  • the material, shape, size, number, arrangement location, and the like of each component in the embodiment described above are arbitrary and not limited as long as the present invention can be achieved.
  • Patent Application No. 201-7149893 filed on Aug. 2, 2017, the contents of which are incorporated herein by reference.
  • the method for producing a multilayer film according to the present invention can properly fix the fine particles on the surface of the stretched film.
  • the present invention having this effect can be utilized, for example, in the manufacture of a lithium ion battery separator.

Abstract

A multilayer film manufacturing method provided with: a step of removing from an original rolled film (22) a pore forming material; a step of applying a coating liquid including fine particles, using a second roll (26) while causing first rolls (27, 28) and the second roll to contact the original rolled film; a step of stretching the original rolled film in a width direction in a state in which the coating liquid has fluidity; and a step of drying the coating liquid to form a multilayer film to which a fine particle layer has been fixed. During coating, the angle formed by a line connecting the rotating axis position of at least one of the first rolls and the rotating axis position of the second roll and the direction in which the original rolled film is pressed by the second roll is not less than 0° and not more than 150°.

Description

多層フィルムの製造方法Method of manufacturing multilayer film
 本発明は、多層フィルムの製造方法に関する。 The present invention relates to a method of producing a multilayer film.
 従来から、延伸フィルムが各種の製品に用いられている。例えば、リチウムイオン電池(以下「LIB」という。)用セパレータとして、ポリオレフィン系材料から構成された延伸フィルムが用いられる。また、この種のセパレータの耐熱性を向上するべく、有機材料や無機材料を延伸フィルムの表面に配置する場合がある。 Conventionally, stretched films have been used for various products. For example, a stretched film made of a polyolefin-based material is used as a separator for a lithium ion battery (hereinafter referred to as "LIB"). In order to improve the heat resistance of this type of separator, an organic material or an inorganic material may be disposed on the surface of the stretched film.
 一例として、無機材料であるアルミナやシリカなどのセラミックス微粒子と溶剤とを混合した塗工液を延伸フィルムの表面に塗布した後に溶剤を乾燥させることにより、延伸フィルムの表面にそれら微粒子から構成された膜を設ける手法が用いられる(特許文献1及び特許文献2を参照)。また、有機材料であるポリアミドやポリイミドなどの樹脂材料を延伸フィルムの表面に塗布することにより、延伸フィルムの表面にそれら樹脂材料から構成された膜を設ける手法も用いられる。なお、これら有機材料と無機材料が混合されて用いられる場合もある(特許文献3及び特許文献4を参照)。 As an example, a coating liquid prepared by mixing ceramic fine particles such as alumina and silica, which are inorganic materials, and a solvent is applied to the surface of a stretched film, and then the solvent is dried, thereby comprising these fine particles on the surface of the stretched film. The method of providing a film is used (refer patent document 1 and patent document 2). Moreover, the method of providing the film | membrane comprised from these resin materials on the surface of a stretched film is also used by apply | coating resin materials, such as polyamide and a polyimide which are organic materials, on the surface of a stretched film. The organic material and the inorganic material may be mixed and used (see Patent Document 3 and Patent Document 4).
日本国特開2013-114751号公報Japan JP 2013-114751 日本国特開2014-203680号公報Japan JP 2014-203680 gazette 日本国特開2009-21265号公報Japanese Patent Laid-Open Publication 2009-21265 日本国特許第4460028号公報Japanese Patent No. 4460028
 LIB用セパレータとして用いられる延伸フィルムには、一般に、リチウムイオンの移動等のために微多孔が形成される。この微多孔は、例えば、延伸フィルムの材料となる樹脂に溶剤等を混合した上でフィルム状に成形した後にその溶剤等を抽出する手法(いわゆる、湿式の手法)により、形成し得る。但し、この手法を用いる場合、溶剤等を抽出する過程における延伸フィルムの収縮等に起因して微多孔が閉塞する場合があるため、一般に、閉塞した微多孔を再び開口させるべく、溶剤等を抽出した後に延伸フィルムが再延伸される。なお、この再延伸において、微多孔のサイズを調節することも行われる。 In a stretched film used as a LIB separator, generally, micropores are formed due to the movement of lithium ions and the like. The fine pores can be formed, for example, by mixing a solvent as a material of a stretched film, forming a film, and then extracting the solvent or the like (so-called wet method). However, when using this method, since the micropores may be clogged due to shrinkage or the like of the stretched film in the process of extracting the solvent or the like, the solvent or the like is generally extracted to reopen the clogged micropores. After that, the stretched film is restretched. In this re-stretching, adjusting the size of the microporous is also performed.
 ところで、上述した耐熱性向上のために延伸フィルム上に各種の微粒子から構成された膜(以下「微粒子層」ともいう。)を配置する場合、製造システムの小型化や製造工程の合理化等の観点から、上述した再延伸の前の時点で、延伸フィルム上に微粒子層を設けることが好ましい場合がある。しかし、通常、微粒子層は延伸フィルムを構成する材料よりも変形し難いため、再延伸の過程にて、微粒子層の亀裂や、延伸フィルムからの微粒子層の剥離などが生じることが懸念される。換言すると、再延伸を含む各種の延伸工程の前に延伸フィルム上に微粒子層を設けると、微粒子層が延伸フィルム上に適正に固定された状態を維持できない虞がある。 By the way, when a film (hereinafter, also referred to as “fine particle layer”) composed of various kinds of fine particles is disposed on a stretched film to improve the heat resistance described above, the viewpoint of downsizing of the manufacturing system, rationalization of manufacturing processes, etc. Therefore, it may be preferable to provide a fine particle layer on the stretched film at a time before the above-described re-stretching. However, since the fine particle layer is less likely to be deformed than the material constituting the stretched film, it is feared that cracking of the fine particle layer and peeling of the fine particle layer from the stretched film may occur in the re-stretching process. In other words, when the fine particle layer is provided on the stretched film before various stretching processes including re-stretching, there is a possibility that the fine particle layer can not be maintained in a properly fixed state on the stretched film.
 本発明の目的の一つは、延伸フィルムの表面に微粒子層を適正に固定することができる多層フィルムの製造方法の提供である。 One of the objects of the present invention is to provide a method for producing a multilayer film in which the fine particle layer can be properly fixed to the surface of the stretched film.
[1]本発明の第1の側面において、多層フィルムの製造方法は、
 多孔質のフィルムの表面に微粒子から構成された微粒子層が設けられた多層フィルムの製造方法であって、
 前記フィルムを構成する樹脂材料と多孔形成材料とを含む原反フィルムから、前記多孔形成材料を除去する、除去工程と、
 前記除去工程を経た前記原反フィルムの搬送方向における異なる2つの位置にて前記原反フィルムの一方の表面に一対の第1ロールが当接し、且つ、前記搬送方向において前記一対の前記第1ロールに挟まれる位置にて前記原反フィルムの他方の表面に第2ロールが当接した状態にて、前記微粒子が含まれる塗工液を、前記第2ロールを用いて前記原反フィルムに塗布する、塗布工程と、
 前記原反フィルムに塗布された前記塗工液が流動性を有する状態を維持しながら、前記原反フィルムを幅方向に延伸する、横延伸工程と、
 前記塗工液を乾燥させて前記微粒子層を前記フィルム上に固定して前記多層フィルムを形成する、固定工程と、
 を備え、
 前記塗布工程において、前記第2ロールは所定の押圧方向に沿って前記原反フィルムを押圧するとともに、前記第2ロールの回転軸に沿った方向から見たとき、少なくとも一方の前記第1ロールの回転軸位置と前記第2ロールの回転軸位置とを結ぶ線分と、前記押圧方向と、のなす角度であるロール間角度が、0°以上150°以下である、ようになっている。
[1] In the first aspect of the present invention, a method of producing a multilayer film is
A method for producing a multilayer film, in which a fine particle layer composed of fine particles is provided on the surface of a porous film,
Removing the porous forming material from a raw film comprising a resin material constituting the film and the porous forming material;
A pair of first rolls abut on one surface of the raw film at two different positions in the carrying direction of the raw film after the removing step, and the pair of first rolls in the carrying direction A coating liquid containing the fine particles is applied to the raw film using the second roll while the second roll is in contact with the other surface of the raw film at a position sandwiched between , Coating process,
A lateral stretching step of stretching the raw film in the width direction while maintaining the flowability of the coating liquid applied to the raw film;
A fixing step of drying the coating liquid to fix the fine particle layer on the film to form the multilayer film;
Equipped with
In the applying step, the second roll presses the raw film along a predetermined pressing direction, and when viewed from the direction along the rotation axis of the second roll, the second roll presses at least one of the first rolls. The inter-roll angle, which is the angle between a line segment connecting the rotational axis position and the rotational axis position of the second roll and the pressing direction, is 0 ° or more and 150 ° or less.
 上記第1の側面では、塗布工程において、第2ロールが原反フィルムを押圧しながら塗工液を原反フィルムに塗布することになる。特に、発明者が行った実験および考察等によれば、上述したロール間角度が0°以上150°以下となるように第1ロールと第2ロールとが配置された状態にて塗工液を原反フィルムに塗布することで、塗工液に含まれる微粒子と原反フィルムとの密着性が著しく向上することが明らかになっている。更に、横延伸工程において、塗工液が流動性を有する状態(換言すると、塗工液が完全には乾燥していない状態)にて、原反フィルムが幅方向に延伸される。これにより、原反フィルムの延伸に追従して塗工液が流動するため、塗工液が完全に乾燥して微粒子層が形成された状態で横延伸を行う場合に比べ、最終的に多層フィルムに設けられる微粒子層の亀裂や剥離等が抑制される。よって、第1の側面に係る製造方法によれば、延伸フィルムの表面に微粒子を適正に固定することができる。 In the first aspect, in the coating step, the coating liquid is applied to the raw film while the second roll presses the raw film. In particular, according to experiments and studies conducted by the inventor, the coating liquid is placed in a state in which the first roll and the second roll are disposed such that the above-described roll-to-roll angle is 0 ° or more and 150 ° or less. It has been revealed that the adhesion between the fine particles contained in the coating liquid and the raw film is remarkably improved by applying the raw film. Furthermore, in the transverse stretching step, the raw film is stretched in the width direction in a state in which the coating liquid has fluidity (in other words, a state in which the coating liquid is not completely dried). As a result, the coating liquid flows following the stretching of the raw film, so the final multilayer film is compared to the case in which the coating liquid is completely dried to form the fine particle layer and the transverse drawing is performed. Cracks, peeling, etc. of the fine particle layer provided on Therefore, according to the manufacturing method which concerns on a 1st side, microparticles | fine-particles can be fixed appropriately on the surface of a stretched film.
[2]本発明の第2の側面では、第1の側面において、
 前記横延伸工程は、
 予熱を行う予備工程と、加熱下で前記幅方向への延伸を行う本工程と、を含み、
 前記予備工程における、当該予備工程の前後における前記塗工液の減少量である予備乾燥量が20wt%以下であり、
 前記本工程における、当該本工程の前後における前記塗工液の減少量である本乾燥量が20wt%以下である、ようになっている。
[2] According to a second aspect of the present invention, in the first aspect,
In the transverse stretching step,
Including a preliminary step of preheating and a main step of stretching in the width direction under heating;
The preliminary drying amount which is the reduction amount of the coating liquid before and after the preliminary process in the preliminary process is 20 wt% or less,
The main drying amount which is the reduction amount of the coating liquid before and after the main step in the main step is 20 wt% or less.
 上記第2の側面について、発明者が行った実験および考察等によれば、横延伸工程に含まれる予熱工程および本工程において、塗工液の減少量を20wt%以下にすることにより、原反フィルムの延伸への塗工液の追従性を向上できることが明らかになっている。よって、第2の側面に係る製造方法によれば、延伸フィルムの表面に微粒子を更に適正に固定することができる。 According to experiments and studies conducted by the inventor of the second aspect, in the preheating step and the present step included in the transverse drawing step, the reduction amount of the coating liquid is set to 20 wt% or less. It has been clarified that the followability of the coating liquid to film stretching can be improved. Therefore, according to the manufacturing method which concerns on a 2nd side surface, microparticles | fine-particles can be further appropriately fixed on the surface of a stretched film.
[3]本発明の第3の側面では、第2の側面において、
 前記予備工程は、
 前記原反フィルムに与える単位面積当たりの熱量が1.5kW/h以下であるように、前記原反フィルムを加熱する処理を含み、
 前記本工程は、
 前記原反フィルムに与える単位面積当たりの熱量が1.2kW/h以下であるように、前記原反フィルムを加熱する処理を含む、ようになっている。
[3] In the third aspect of the present invention, in the second aspect,
The preliminary step is
Including a process of heating the raw film so that the amount of heat per unit area given to the raw film is 1.5 kW / h or less,
The main process is
The method includes heating the raw film so that the amount of heat per unit area given to the raw film is 1.2 kW / h or less.
 上記第3の側面について、発明者が行った実験および考察等によれば、予備工程において原反フィルムに与える単位面積当たりの熱量を1.5kW/h以下に設定し、本工程において原反フィルムに与える単位面積当たりの熱量1.2kW/h以下に設定することにより、塗工液の減少量を上述した第2の側面に定めるように調整し得ることが明らかになっている。よって、第3の側面に係る製造方法によれば、延伸フィルムの表面に微粒子を更に適正に固定することができる。 According to experiments and studies conducted by the inventor of the third aspect, the heat amount per unit area given to the raw film in the preliminary step is set to 1.5 kW / h or less, and the raw film is produced in this step It is clear that setting the amount of heat per unit area to be less than or equal to 1.2 kW / h given to can adjust the amount of decrease of the coating liquid as defined in the above-mentioned second aspect. Therefore, according to the manufacturing method which concerns on a 3rd side, microparticles | fine-particles can be further appropriately fixed to the surface of a stretched film.
[4]本発明の第4の側面では、第1~第3の側面の何れか一つにおいて、
 前記塗布工程は、
 前記原反フィルムの搬送速度Lに対する前記第2ロールの回転速度Gの比G/Lが、0よりも大きく10以下である処理を含む、ようになっている。
[4] In the fourth aspect of the present invention, in any one of the first to third aspects,
The application process is
A process is included in which the ratio G / L of the rotational speed G of the second roll to the transport speed L of the raw film is greater than 0 and 10 or less.
 上記第4の側面について、発明者が行った実験および考察等によれば、原反フィルムの搬送速度Lに対する第2ロールの回転速度Gの比G/Lを0よりも大きく10以下の値に設定することにより、塗工液が所望の厚さを有するように塗布できることが明らかになっている。よって、第4の側面に係る製造方法によれば、延伸フィルムの表面に微粒子を更に適正に固定することができる。 According to experiments and studies conducted by the inventor of the fourth aspect, the ratio G / L of the rotational speed G of the second roll to the transport speed L of the original film is set to a value larger than 0 and 10 or less. By setting, it is clear that the coating liquid can be applied so as to have a desired thickness. Therefore, according to the manufacturing method which concerns on a 4th side, microparticles | fine-particles can be further appropriately fixed on the surface of a stretched film.
[5]本発明の第5の側面では、第1~第4の側面の何れか一つにおいて、
 前記固定工程は、
 前記原反フィルムを前記搬送方向に延伸しながら前記塗工液を加熱下で徐々に乾燥させることにより、前記原反フィルムの表面に前記微粒子層を固定する処理を含む、ようになっている。
[5] In a fifth aspect of the present invention, in any one of the first to fourth aspects,
The fixing step is
A process of fixing the fine particle layer on the surface of the raw film is realized by gradually drying the coating liquid under heating while stretching the raw film in the transport direction.
 上記第5の側面によれば、横延伸工程(即ち、上述した再延伸)によって原反フィルムの微多孔を開口させた後、原反フィルムの表面に微粒子層を形成できる。よって、横延伸工程の時点では微粒子層が形成されてないため、最終的に多層フィルムに設けられる微粒子層の亀裂や剥離等が抑制される。更に、原反フィルムを搬送方向に延伸することにより、微多孔の開口度合いを調整し得る。よって、第5の側面に係る製造方法によれば、所望の開口度合いの微多孔を有する延伸フィルムの表面に微粒子を適正に固定することができる。 According to the fifth aspect, after the micropores of the raw film are opened by the transverse drawing step (that is, the above-described redrawing), the fine particle layer can be formed on the surface of the raw film. Accordingly, since the fine particle layer is not formed at the time of the lateral stretching step, cracking, peeling, and the like of the fine particle layer finally provided in the multilayer film are suppressed. Furthermore, the degree of micropore opening can be adjusted by stretching the raw film in the transport direction. Therefore, according to the manufacturing method which concerns on a 5th side, microparticles | fine-particles can be fixed appropriately on the surface of the stretched film which has a micropore of a desired opening degree.
[6]本発明の第6の側面では、第1~第5の側面の何れか一つにおいて、
 前記多層フィルムは、リチウムイオン電池用セパレータとして用いられる。
[6] In the sixth aspect of the present invention, in any one of the first to fifth aspects,
The multilayer film is used as a lithium ion battery separator.
 上記第6の側面によれば、上述した第1~第5の側面の何れか一つに係る多層フィルムの製造方法を、工業的に価値の高いリチウムイオン電池用セパレータの製造方法に適用できる。 According to the sixth aspect, the method for producing a multilayer film according to any one of the first to fifth aspects described above can be applied to a method for producing a lithium ion battery separator having high industrial value.
 本発明によれば、延伸フィルムの表面に微粒子を適正に固定することができる。 According to the present invention, the fine particles can be properly fixed to the surface of the stretched film.
図1は、本発明によるLIB用セパレータ製造システムを示す概略構成図である。FIG. 1 is a schematic block diagram showing a LIB separator manufacturing system according to the present invention. 図2(a)は図1のインラインコータの具体的構成図であり、図2(b)及び図2(c)はグラビアロールとニアロールとによって特定されるロール角度を示す概略図である。Fig.2 (a) is a concrete block diagram of the in-line coater of FIG. 1, FIG.2 (b) and FIG.2 (c) are schematic which shows the roll angle specified by a gravure roll and a near roll. 図3は、図1の他の形態で、BOPET用インライン用接着剤塗工方法を示す概略構成図である。FIG. 3 is a schematic configuration view showing an in-line adhesive coating method for BOPET in another form of FIG. 1. 図4は、図1の他の形態で、セパレータ用インラインセラミックス塗工方法を示す概略構成図である。FIG. 4 is a schematic configuration view showing an in-line ceramic coating method for a separator in another form of FIG. 1. 図5は、本発明によるLIB用セパレータ製造システムの実証装置の構成図である。FIG. 5 is a block diagram of a demonstration device of a LIB separator manufacturing system according to the present invention. 図6は、図5の実証装置の要部を示す概略構成図である。FIG. 6 is a schematic block diagram showing the main part of the demonstration device of FIG. 図7は、図1のインラインコータにおける塗工厚調整条件を示す説明図である。FIG. 7 is an explanatory view showing a coating thickness adjusting condition in the in-line coater of FIG. 図8は、図1のインラインコータ用横延伸・乾燥条件を示す説明図である。FIG. 8 is an explanatory view showing the transverse stretching / drying conditions for the in-line coater of FIG. 図9は、本発明におけるセパレータに対する剥離強度測定試験の説明図である。FIG. 9 is an explanatory view of a peel strength measurement test for the separator in the present invention. 図10は、従来のオフライン式のLIB用セパレータ製造システムを示す概略構成図である。FIG. 10 is a schematic block diagram showing a conventional off-line LIB separator manufacturing system. 図11は、従来のオフライン式のオフラインコータを示す概略構成図である。FIG. 11 is a schematic block diagram showing a conventional off-line type off-line coater.
 以下、本発明に係る多層フィルムの製造方法をLIB用セパレータ製造システム(以下、単に「システム」ともいう。)に適用した場合における、同システムの実施形態ついて説明する。本システムでは、システムの小型化や製造工程の合理化等の観点から、インラインコータを抽出機と横延伸機との間に設けている。 Hereinafter, an embodiment of the multilayer film manufacturing method according to the present invention will be described in the case where it is applied to a separator manufacturing system for LIB (hereinafter, also simply referred to as “system”). In the present system, an in-line coater is provided between the extractor and the lateral stretcher in terms of downsizing of the system, rationalization of the manufacturing process, and the like.
 まず、本発明に係るシステムについて説明する前に、図10及び図11を参照しながら、従来のシステムについて簡単に説明する。従来のシステムは、図10の湿式セパレータ製造システム1と、図11のオフラインコータ8と、を有する。図10において、湿式セパレータ製造システム1は、上流側9から下流側10に向けて順に、押出機2と、キャストロール3と、縦延伸機4と、第1横延伸機5と、抽出機6と、第2横延伸機7と、を有する。第2横延伸機7の下流側10又は他の場所には、オフラインコータ8が設けられている。オフラインコータ8は、湿式セパレータ製造システム1のライン内に入るインライン構成ではなく、オフライン構成として独立している。 First, prior to describing the system according to the present invention, a conventional system will be briefly described with reference to FIGS. 10 and 11. FIG. The conventional system comprises the wet separator manufacturing system 1 of FIG. 10 and the off-line coater 8 of FIG. In FIG. 10, the wet separator manufacturing system 1 includes an extruder 2, a cast roll 3, a longitudinal stretcher 4, a first horizontal stretcher 5, and an extractor 6 in order from the upstream side 9 to the downstream side 10. And a second transverse stretcher 7. An off-line coater 8 is provided on the downstream side 10 of the second horizontal stretching machine 7 or at another place. The off-line coater 8 is not an in-line configuration that falls within the line of the wet separator manufacturing system 1 but is independent as an off-line configuration.
 オフラインコータ8の具体的構成を図11に示す。巻出部121から送り出されたセパレータ用のフィルム122は、コータヘッド120でセラミックス微粒子を含む溶液が塗布された後、第1、第2、第3乾燥機123,124,125によって乾燥される。その後、巻取部126により、セパレータ122Aが巻取られる。 The specific configuration of the off-line coater 8 is shown in FIG. The film 122 for a separator delivered from the unwinding part 121 is dried by the first, second and third dryers 123, 124 and 125 after the solution containing the ceramic fine particles is applied by the coater head 120. Thereafter, the separator 122A is wound by the winding unit 126.
 これに対し、図1に示す本発明に係る多層フィルムの製造方法が適用されるシステムの実施形態では、湿式セパレータ製造システム1は上流側9に押出機2を有する。押出機2のダイス2Aから下流側10へ向けて押し出されたフィルム22は、フィルム22を構成する樹脂材料と多孔形成材料(例えば、溶剤等)を含む原反フィルムである。フィルム22は、縦延伸機4及び第1横延伸機5によって延伸された後、抽出機6に供給される。なお、上述した従来のシステムと実質的に同一な部分については、図10に示す符号と同じ符号を用いる。なお、押出機2から押し出された樹脂がキャストロール3を経てフィルム22となった時点から、各種の処理を経て最終的にLIB用セパレータ(多層フィルム)が得られる直前まで、のフィルム22を「原反フィルム」と称呼する。 On the other hand, in the embodiment of the system to which the method for manufacturing a multilayer film according to the present invention shown in FIG. 1 is applied, the wet separator manufacturing system 1 has the extruder 2 on the upstream side 9. The film 22 extruded from the die 2A of the extruder 2 toward the downstream side 10 is a raw film comprising a resin material constituting the film 22 and a porous forming material (for example, a solvent or the like). The film 22 is stretched by the longitudinal stretcher 4 and the first transverse stretcher 5 and then supplied to the extractor 6. The same reference numerals as shown in FIG. 10 are used for substantially the same parts as the above-described conventional system. It should be noted that from the time when the resin extruded from the extruder 2 passes through the cast roll 3 to form the film 22, the film 22 is subjected to various treatments and until just before the LIB separator (multilayer film) is finally obtained. We call it "raw film".
 抽出機6において、洗浄および溶剤の抽出(除去)処理が行われる。下流側のインラインコータ8Aにて、フィルム22上に、セラミックス微粒子を水系溶剤または有機系溶剤に混合したスラリー状の塗工液が塗布され、セパレータ22Aが形成される。インラインコータ8Aから下流側10へ送られたシート状のセパレータ22Aは、インラインコータ8Aの直後に配設された第2横延伸機7により、幅方向に延伸されて巻き取り機構23によって巻き取られる。なお、本例で用いるセラミックス微粒子の平均粒子径は、10μmよりも大きく400μm以下である。 In the extractor 6, washing and solvent extraction (removal) processing is performed. A slurry-like coating liquid in which ceramic fine particles are mixed with an aqueous solvent or an organic solvent is applied on the film 22 by the inline coater 8A on the downstream side, and a separator 22A is formed. The sheet-like separator 22A sent from the in-line coater 8A to the downstream side 10 is stretched in the width direction by the second transverse stretcher 7 disposed immediately after the in-line coater 8A and wound by the winding mechanism 23 . The average particle size of the ceramic fine particles used in this example is more than 10 μm and 400 μm or less.
 ここで、本実施形態における「平均粒子径」は、レーザー回折散乱法により求めた。具体的には、マイクロトラックベル株式会社製のMT3300を用いてJIS Z8825に準拠した方法で測定を行う。そして、装置により測定および算出された粒度分布を、自動演算処理装置により解析することにより、平均粒子径を特定する。 Here, the “average particle diameter” in the present embodiment was determined by a laser diffraction scattering method. Specifically, measurement is performed according to JIS Z8825 using MT3300 manufactured by Microtrack Bell Corporation. Then, the average particle diameter is specified by analyzing the particle size distribution measured and calculated by the device using an automatic arithmetic processing device.
 インラインコータ8Aは、図2(a)に示されるように構成されている。抽出機6で抽出処理されたフィルム22は、複数のガイドロール24を経て、ドクターチャンバ25のグラビアロール26(第2ロール)に向けて搬送される。フィルム22は、グラビアロール26、一対の入側ニアロール27及び出側ニアロール28(一対の第1ロール)によって厚さ方向に挟まれた状態にて前述の塗工処理を施された後、シート状のセパレータ22Aとして第2横延伸機7に送られる。入側ニアロール27及び出側ニアロール28は、フィルム22の搬送方向における異なる2つの位置にてフィルム22の一方の表面に当接している。グラビアロール26は、搬送方向において入側ニアロール27及び出側ニアロール28に挟まれる位置にて、フィルム22の他方の表面に当接している。なお、グラビアロール26は、グラビアロール26を回転させる機構(図示省略)を有している。 The in-line coater 8A is configured as shown in FIG. 2 (a). The film 22 extracted and processed by the extractor 6 is conveyed toward the gravure roll 26 (second roll) of the doctor chamber 25 through a plurality of guide rolls 24. The film 22 is subjected to the above-described coating treatment in a state of being sandwiched in the thickness direction by the gravure roll 26, the pair of entrance side near rolls 27, and the exit side near rolls 28 (a pair of first rolls). Is sent to the second transverse drawing machine 7 as a separator 22A of The inlet near roll 27 and the outlet near roll 28 are in contact with one surface of the film 22 at two different positions in the transport direction of the film 22. The gravure roll 26 is in contact with the other surface of the film 22 at a position where the gravure roll 26 is sandwiched between the entry side near roll 27 and the exit side near roll 28 in the transport direction. The gravure roll 26 has a mechanism (not shown) for rotating the gravure roll 26.
 グラビアロール26と各ニアロール27,28との位置関係は、図示しない可変機構により、調整可能となっている。具体的には、図2(b)及び図2(c)に示すように、グラビアロール26は所定の押圧方向(図中の矢印を参照)に沿ってフィルム22を押圧するとともに、グラビアロール26の回転軸に沿った方向から見たとき、入側ニアロール27及び出側ニアロール28の少なくとも一方の回転軸28aとグラビアロール26の回転軸26aとを結ぶ線分と、押圧方向と、のなす角度θ(以下「ロール間角度」ともいう。)が、0°以上150°以下となるように、配置される。このロール間角度θは、グラビアロール26の位置を前後に(即ち、図中の左右に)動かすことで、調整可能となっている。なお、ロール間角度θが0°である場合、入側ニアロール27及び出側ニアロール28の少なくとも一方と、グラビアロール26とが、図中の左右に隣り合った位置関係にあることになる。 The positional relationship between the gravure roll 26 and the near rolls 27 and 28 can be adjusted by a variable mechanism (not shown). Specifically, as shown in FIGS. 2 (b) and 2 (c), the gravure roll 26 presses the film 22 along a predetermined pressing direction (see the arrow in the figure), and When viewed from the direction along the axis of rotation of the roller, the angle formed by the line connecting the axis of rotation 26a of at least one of the inlet side near roll 27 and outlet side near roll 28 and the axis of rotation 26a of the gravure roll 26 and the pressing direction. It arrange | positions so that (theta) (henceforth "the angle between rolls") may be 0 degree or more and 150 degrees or less. The roll-to-roll angle θ can be adjusted by moving the position of the gravure roll 26 back and forth (that is, to the left and right in the figure). When the inter-roll angle θ is 0 °, at least one of the inlet side near roll 27 and the outlet side near roll 28 and the gravure roll 26 are in a positional relationship adjacent to each other in the left and right in the drawing.
 グラビアロール26は、図2(a)に示されているように、その表面に規則的な配列で、菱形を含む四角形の堰40が彫刻されたグラビアパターン26Aを有する。堰40は、その内側に凹部を画成しており、後述するようにフィルム22に塗工液を塗布する際、塗工液を内側に貯めながら塗工液をフィルム22に向けて運ぶことができる。グラビアパターン26Aは、グラビアロール26の回転方向Rに対する縦線26Bの角度θ(図2ではθ=45°)が0°≦θ≦90°となるように構成されている。また、四角形の堰40の短辺と長辺の比は、0<L≦1である。堰40の壁の高さは、0μm<H≦1mmである。このグラビアロール26は、1インチ四方に堰40を0個<N≦500個有している。なお、インラインコータ(グラビアコータ)8Aは、従来のオフラインコータ8が有する乾燥のみの乾燥機能(ドライヤ)を有さず、第2横延伸機7の乾燥機能を兼用している。 As shown in FIG. 2A, the gravure roll 26 has, on its surface, a gravure pattern 26A in which a square screed 40 including a rhombus is engraved in a regular arrangement. The crucible 40 defines a recess on the inner side, and when applying the coating liquid to the film 22 as described later, the coating liquid may be conveyed toward the film 22 while the coating liquid is stored inside. it can. The gravure pattern 26A is configured such that the angle θ (θ = 45 ° in FIG. 2) of the vertical line 26B with respect to the rotational direction R of the gravure roll 26 is 0 ° ≦ θ ≦ 90 °. Further, the ratio of the short side to the long side of the square ridge 40 is 0 <L ≦ 1. The height of the wall of the crucible 40 is 0 μm <H ≦ 1 mm. The gravure roll 26 has 0 pieces <N ≦ 500 pieces of ridges 40 in 1 inch square. The inline coater (gravure coater) 8A does not have the drying function (dryer) of only the drying which the conventional offline coater 8 has, and is also used as the drying function of the second horizontal stretching machine 7.
 図1に示すインラインコータシステムでは、図10で示されたオフラインコータに必要な乾燥炉が、セパレータ製造システム中の第2横延伸機7の乾燥機能で兼用される。即ち、従来は用いられていた乾燥炉が省略される。また、繰出し、巻取り機構23もシステム内で兼用されるため、インラインコータ8Aのみを湿式セパレータ製造システム1中の抽出機6の後で第2横延伸機7の前に配置すればよい。 In the in-line coater system shown in FIG. 1, the drying furnace required for the off-line coater shown in FIG. 10 is also used as the drying function of the second transverse stretcher 7 in the separator manufacturing system. That is, the drying furnace conventionally used is omitted. Further, since the delivery and take-up mechanism 23 is also used in the system, only the in-line coater 8A may be disposed after the extractor 6 in the wet separator manufacturing system 1 and in front of the second transverse stretcher 7.
 次いで、図1に示すシステムにおける塗工液の塗工方法について説明する。まず、比較対象として、周知のBOPET(Bioxially-Oriented Polyethylene terephthalate)などに用いられる塗工方法の一例を、図3に示す。この例では、最終的に、フィルム22の表面に接着剤層が形成される。まず、最終的に接着剤層となるポリウレタン樹脂など約10wt%を、約90wt%の水に溶解した塗工液を準備する。この塗工液が、水を含んだ状態で、横延伸前に約4μmの厚さでフィルム22上に塗工される。第2横延伸機7中の予熱工程で、この塗工液から水分を蒸発させた後、フィルム22を幅方向に約4倍程度延伸させる。これにより、最終的に、厚さ1μm程度のポリウレタン樹脂等の層(即ち、接着剤層)がフィルム22状に積層された状態になる。幅方向への延伸の際、ポリウレタン樹脂等は、塗工液中の水分の蒸発後であっても未だ流動性を有する状態(例えると、糊のような状態)にあるため、フィルム22を延伸させても、フィルム22に貼りついた状態でフィルム22の変形に追従できる。 Then, the coating method of the coating liquid in the system shown in FIG. 1 is demonstrated. First, an example of a coating method used for well-known BOPET (Bioxially-Oriented Polyethylene terephthalate) etc. is shown in FIG. 3 as a comparison object. In this example, an adhesive layer is finally formed on the surface of the film 22. First, a coating solution is prepared in which about 10 wt% of polyurethane resin and the like that finally becomes an adhesive layer is dissolved in about 90 wt% of water. The coating liquid is applied onto the film 22 with a thickness of about 4 μm before transverse stretching in a state containing water. In the preheating step in the second horizontal stretching machine 7, after the water is evaporated from the coating solution, the film 22 is stretched by about 4 times in the width direction. As a result, finally, a layer of polyurethane resin or the like having a thickness of about 1 μm (that is, an adhesive layer) is laminated in a film 22 shape. At the time of stretching in the width direction, the polyurethane resin or the like is still in a flowable state (for example, in a state like a paste) even after evaporation of water in the coating liquid, so the film 22 is stretched. Even if it is allowed to move, the deformation of the film 22 can be followed in a state of being stuck to the film 22.
 一方、図3の例と異なり、セラミックス微粒子を含む塗工液を図1に示すインラインコータシステムで塗布して微粒子層をフィルム22上に形成する場合、第2横延伸機7内で塗工液がフィルム22上に塗布された状態で、横延伸することになる。なお、LIB用セパレータの製造においては、抽出(除去)処理の際に閉塞したフィルム22内の微多孔がこの横延伸によって開口し、多孔質のフィルム22(多層フィルム)が形成されることになる。ここで、図3に示す接着剤層の形成方法をそのまま流用すると、フィルム22の延伸中に微粒子層の剥離や割れが発生することが懸念される。そこで、本発明に係る多層フィルムの製造方法を用いる。 On the other hand, unlike the example of FIG. 3, when the coating liquid containing ceramic fine particles is applied by the in-line coater system shown in FIG. 1 to form the fine particle layer on the film 22, the coating liquid in the second horizontal stretching machine 7 In the state of being applied on the film 22, it will be transversely stretched. In addition, in the production of the LIB separator, the micropores in the film 22 blocked in the extraction (removal) process are opened by this transverse drawing, and the porous film 22 (multilayer film) is formed. . Here, if the method of forming the adhesive layer shown in FIG. 3 is used as it is, there is a concern that peeling or cracking of the fine particle layer may occur during the stretching of the film 22. Therefore, the method for producing a multilayer film according to the present invention is used.
 具体的には、図4に示すように、図3に示すBOPET用とは異なり、まず予熱ゾーン30では塗工液の水分を余り乾燥させず、塗工液が流動性を有する状態を維持しながらフィルム22(図示省略)を延伸ゾーン31を通過させる。そして、延伸した後に塗工液の乾燥とフィルムの熱固定を行うことで、微粒子層の剥離や割れを抑制することが可能となる。なお、延伸・乾燥工程に係る各種のパラメータは、フィルム22の種類や塗工厚さなどの要求に応じて設定すればよい。 Specifically, as shown in FIG. 4, unlike in the case of BOPET shown in FIG. 3, first, in the preheating zone 30, the moisture of the coating liquid is not dried so much, and the coating liquid maintains the fluidity state While the film 22 (not shown) is passed through the drawing zone 31. Then, by performing drying of the coating liquid and heat setting of the film after stretching, it is possible to suppress peeling and cracking of the fine particle layer. In addition, what is necessary is just to set the various parameters which concern on a extending | stretching and a drying process according to requirements, such as a kind of film 22, and coating thickness.
 例えば、セラミックス微粒子を含んだ塗工液は、セラミックス微粒子約30~40wt%と、溶媒等60~70wt%と、を含むように構成し得る。特に、耐熱セパレータ用としては、セラミックス微粒子としてアルミナ約40wt%と、水系の溶剤約60wt%とを含むように塗工液を構成し得る。 For example, a coating liquid containing ceramic fine particles can be configured to contain about 30 to 40 wt% of ceramic fine particles and 60 to 70 wt% of a solvent or the like. In particular, for heat-resistant separators, the coating liquid can be configured to contain about 40 wt% of alumina as ceramic particles and about 60 wt% of a water-based solvent.
 セパレータ22Aの乾燥工程においては、セパレータ22Aは、予熱工程(予備工程)においてフィルムに与える単位面積当たりの熱量が1.5kW/h以下となるように温度及び風量を調整する。これにより、この処理前後の塗工液の減少量である乾燥量(予備乾燥量)を20wt%以下に抑制する。また、その後の横延伸工程(本工程)において、フィルムに与える単位面積当たりの熱量が1.2kW/h以下になるように温度及び風量を調整する。これにより、この処理前後の減少量である乾燥量(本乾燥量)を20wt%以下に抑制する。なお、単位面積は、例えば、1mである。 In the drying step of the separator 22A, the temperature and the air amount of the separator 22A are adjusted so that the heat amount per unit area given to the film in the preheating step (preliminary step) is 1.5 kW / h or less. Thereby, the drying amount (preliminary drying amount) which is the reduction amount of the coating liquid before and behind this process is suppressed to 20 wt% or less. Further, in the subsequent transverse stretching step (this step), the temperature and the air flow are adjusted so that the heat quantity per unit area given to the film is 1.2 kW / h or less. Thereby, the dry amount (main dry amount) which is a reduction amount before and after this treatment is suppressed to 20 wt% or less. The unit area is, for example, 1 m 2 .
 以下、本発明に係るシステムを用いて製造した多層フィルムの評価について説明する。以下の評価に記載する各物性値は、以下に示す方法で得られた値である。
 表面観察:作製したシートを真空蒸着装置(日立ハイテク社製E-1045)で0.3nmの厚みの白金蒸着を施した。このシートをFE-SEM(カールツァイス社製 SUPRA55VP)を使用して表面観察を行った。
 剥離強度:オートグラフ((株)島津製作所製AG・20kNG)を用いてJIS6854-1に準拠し、実施した。具体的には、セパレータ22Aの剥離強度を測定する試験概要を、図9に示す。台50上のセパレータ22A上の塗工フィルム51に低粘着性テープ52を貼り、ロードセル53が設けられた治具54に低粘着性テープ52を介して塗工フィルム51を接続させ、治具54の最大荷重を剥離強度として、測定している。
Hereinafter, evaluation of the multilayer film manufactured using the system which concerns on this invention is demonstrated. Each physical property value described in the following evaluation is a value obtained by the method shown below.
Surface observation: The prepared sheet was subjected to platinum deposition with a thickness of 0.3 nm using a vacuum deposition apparatus (E-1045 manufactured by Hitachi High-Technologies Corporation). This sheet was subjected to surface observation using an FE-SEM (SUPRA 55 VP manufactured by Carl Zeiss).
Peeling strength: Carried out according to JIS 6854-1 using an autograph (AG · 20 kNG manufactured by Shimadzu Corporation). Specifically, a test outline for measuring the peel strength of the separator 22A is shown in FIG. The low adhesive tape 52 is attached to the coating film 51 on the separator 22A on the table 50, and the coating film 51 is connected to the jig 54 provided with the load cell 53 via the low adhesive tape 52. The maximum load of is measured as the peel strength.
(実施例1)
 図5及び図6に示す装置を用いて、簡易的に塗工液の塗布および延伸を行った。フィルム22として、市販のフタムラ化学(株)製ポリエチレンフィルム(LL-XMTM)を用いた。塗工液に含有するセラミックス微粒子として、日本ゼオン製BM-2000Mを用いた。塗工液の塗工厚条件を一定にするため、図7に示すように、インラインコータ8Aのグラビアロール26の回転速度G(m/min)とフィルム搬送速度(=ライン速度。m/min)Lの比G/Lが、0<G/L≦10となるように制御した。具体的には、特に安定的にフィルム22上に塗工液を均一に塗工できる条件として、搬送速度を6m/minに設定し且つG/L=2とした。この条件で塗工液を塗布したフィルム22を、図8に示す横延伸機の10ゾーンを経るように処理した。図8に示す入り口の第1ゾーンを予熱部、第2ゾーンを延伸部、残りの8ゾーンを熱固定部として、以下の表1の実施例1で示した条件を設定した。なお、延伸部では、1.2倍にフィルム22を延伸した。
Example 1
The coating liquid was simply applied and stretched using the apparatus shown in FIGS. 5 and 6. As the film 22, a commercially available polyethylene film (LL-XMTM) manufactured by Futamura Chemical Co., Ltd. was used. Nippon Zeon BM-2000M was used as the ceramic fine particles contained in the coating liquid. In order to make coating thickness conditions of a coating liquid constant, as shown in FIG. 7, rotational speed G (m / min) and film conveyance speed (= line speed. M / min) of the gravure roll 26 of the in-line coater 8A. The ratio G / L of L was controlled to be 0 <G / L ≦ 10. Specifically, the transport speed was set to 6 m / min, and G / L = 2, as the conditions under which the coating liquid can be coated uniformly on the film 22 in a particularly stable manner. The film 22 coated with the coating liquid under these conditions was treated so as to pass through the 10 zones of the transverse stretcher shown in FIG. The conditions shown in Example 1 of Table 1 below were set with the first zone at the entrance shown in FIG. 8 as the preheating unit, the second zone as the extension unit, and the remaining eight zones as the heat setting unit. In the stretched portion, the film 22 was stretched 1.2 times.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例2)
 実施例1と同条件で、フィルム搬送速度を12m/minとして表1の実施例2で示した条件で実験した。
(Example 2)
It experimented on the conditions shown in Example 2 of Table 1 by setting film conveyance speed to 12 m / min on the same conditions as Example 1.
(実施例3)
 実施例1と同条件で、フィルム搬送速度を16m/minとして表1の実施例3で示した条件で実験した。
(Example 3)
It experimented on the conditions shown in Example 3 of Table 1 by setting film conveyance speed to 16 m / min on the same conditions as Example 1.
(実施例4)
 実施例1と同条件で、フィルム搬送速度を20m/minとして表1の実施例4で示した条件で実験した。
(Example 4)
It experimented on the conditions shown in Example 4 of Table 1 by making film conveyance speed into 20 m / min on the same conditions as Example 1.
(実施例5)
 実施例1と同条件で、フィルム搬送速度を24m/minとして表1の実施例5で示した条件で実験した。
(Example 5)
It experimented on the conditions shown in Example 5 of Table 1 by setting film conveyance speed to 24 m / min on the same conditions as Example 1.
(比較例1)
 図8で示した横延伸機の10ゾーンのうち、入り口の第2ゾーンを予熱部、第3ゾーンを延伸部、残りの4ゾーンを熱固定部として前述の表1の実施例1で示した条件を設定し、その他は実施例1と同条件で実験した。
(Comparative example 1)
Among the 10 zones of the transverse stretching machine shown in FIG. 8, the second zone of the entrance was shown in Example 1 of Table 1 as the preheating zone, the third zone as the stretching zone, and the remaining 4 zones as the heat setting zone. The conditions were set, and the others were conducted under the same conditions as in Example 1.
(比較例2)
 図8で示した横延伸機の10ゾーンのうち、入り口の第2ゾーンを予熱部、第3ゾーンを延伸部、残りの4ゾーンを熱固定部として前述の表1の実施例2と同条件で実験した。   
(Comparative example 2)
Of the 10 zones of the transverse stretching machine shown in FIG. 8, the second zone of the entrance is the preheating zone, the third zone is the stretching zone, and the remaining 4 zones are the heat setting zone, under the same conditions as in Example 2 of Table 1 above. Experimented with.
(評価)
 評価の結果を以下の表2に示す。実施例1~2及び3条件のSEM写真では、セラミックス微粒子による微粒子層がフィルム延伸により部分的にひび割れている様子が観察される。比較例1,2も同様である。これは、予熱部と延伸部に与える熱量が大きく、塗工液の水分が減少した状態で延伸することが原因と考えられる。
(Evaluation)
The results of the evaluation are shown in Table 2 below. In the SEM photographs of the conditions of Examples 1 to 2 and 3, it is observed that the fine particle layer of the ceramic fine particles is partially cracked by film stretching. The same applies to Comparative Examples 1 and 2. This is considered to be caused by stretching in a state in which the amount of heat given to the preheating portion and the stretching portion is large and the water content of the coating liquid is reduced.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~3を比較すると、予熱部と延伸部に与える熱量を下げるにしたがって、ひび割れの状態は改善され、且つ、剥離強度が向上する傾向となっている。更に、実施例4,5では、微粒子層にひび割れが見られず、且つ、剥離強度は実施例1~3と比較して更に向上している。 When Examples 1 to 3 are compared, the state of cracking is improved and the peel strength tends to be improved as the amount of heat given to the preheating part and the drawing part is reduced. Furthermore, in Examples 4 and 5, no crack was observed in the fine particle layer, and the peel strength was further improved as compared with Examples 1 to 3.
 表2には、参考例として、図10で示したオフライン式のLIB用セパレータ製造システムを用いて最適条件下で製造した多層フィルムの微粒子層の観察結果を示す。この参考例に対し、本発明に係るシステムを用いて製造した実施例4,5は、SEM画像に示される微粒子層の表面性状はほぼ同様であり、剥離強度は同等以上の値を示した。このように、予熱部および延伸部の熱量と延伸条件を最適化すれば、本発明に係るシステムにより、オフライン式のLIB用セパレータ製造システムと同等以上の機械的物性を有する多層フィルムを製造できる。 Table 2 shows, as a reference example, observation results of the fine particle layer of the multilayer film manufactured under optimum conditions using the off-line type LIB separator manufacturing system shown in FIG. The surface properties of the fine particle layer shown in the SEM images of Examples 4 and 5 manufactured using the system according to the present invention are substantially the same as those of this reference example, and the peel strengths show equal or higher values. As described above, by optimizing the heat quantity and the stretching conditions of the preheating unit and the stretching unit, the system according to the present invention can produce a multilayer film having mechanical properties equal to or more than the off-line LIB separator manufacturing system.
 以上に説明したように、フィルム22に塗工液を塗布する工程において、グラビアロール26がフィルム22を押圧しながら塗工液をフィルム22に塗布する。特に、上述した実験および考察等によれば、ロール間角度が0°以上150°以下となるようにニアロール27,28とグラビアロール26とが配置された状態にて塗工液をフィルム22に塗布することで、塗工液に含まれる微粒子とフィルム22との密着性が著しく向上することが明らかになった。更に、横延伸工程において、塗工液が流動性を有する状態(換言すると、塗工液が完全には乾燥していない状態)にて、フィルム22が幅方向に延伸される。これにより、フィルム22の延伸に追従して塗工液が流動するため、塗工液が完全に乾燥して微粒子層が形成された状態で横延伸を行う場合に比べ、最終的に多層フィルムに設けられる微粒子層の亀裂や剥離等が抑制される。よって、本実施形態に係る製造方法によれば、延伸フィルムの表面に微粒子を適正に固定することができる。 As described above, in the step of applying the coating liquid to the film 22, the gravure roll 26 applies the coating liquid to the film 22 while pressing the film 22. In particular, according to the above-described experiment and discussion, the coating liquid is applied to the film 22 in a state where the near rolls 27, 28 and the gravure roll 26 are disposed such that the inter-roll angle is 0 ° or more and 150 ° or less. By doing this, it was revealed that the adhesion between the fine particles contained in the coating liquid and the film 22 is significantly improved. Furthermore, in the transverse stretching step, the film 22 is stretched in the width direction in a state in which the coating liquid has fluidity (in other words, a state in which the coating liquid is not completely dried). As a result, the coating liquid flows following the stretching of the film 22. Therefore, compared with the case where the coating liquid is completely dried and the fine particle layer is formed, the multilayer film is finally formed into a multilayer film. Cracking and peeling of the provided particle layer are suppressed. Therefore, according to the manufacturing method which concerns on this embodiment, microparticles | fine-particles can be fixed appropriately on the surface of a stretched film.
 更に、上述した実験および考察等によれば、横延伸工程に含まれる予熱工程および本工程において、塗工液の減少量を20wt%以下にすることにより、フィルム22の延伸への塗工液の追従性を向上できることが明らかになった。 Furthermore, according to the above-described experiments and considerations, in the preheating step and the present step included in the lateral stretching step, by setting the reduction amount of the coating fluid to 20 wt% or less, the coating fluid to the film 22 is stretched. It became clear that the followability could be improved.
 更に、上述した実験および考察等によれば、予備工程においてフィルム22に与える単位面積当たりの熱量を1.5kW/h以下に設定し、本工程においてフィルム22に与える単位面積当たりの熱量1.2kW/h以下に設定することにより、塗工液の減少量を上述した範囲に定めるように調整し得ることが明らかになった。 Furthermore, according to the above-described experiments and considerations, the amount of heat per unit area given to the film 22 in the preliminary step is set to 1.5 kW / h or less, and the amount of heat per unit area given to the film 22 in this step is 1.2 kW. It has become clear that by setting the ratio to / h or less, the amount of decrease in the coating liquid can be adjusted to be set in the above-mentioned range.
 更に、上述した実験および考察等によれば、フィルム22の搬送速度Lに対するグラビアロール26の回転速度Gの比G/Lを0よりも大きく10以下の値に設定することにより、塗工液が所望の厚さを有するように塗布できることが明らかになった。 Furthermore, according to the above-described experiments and considerations, the coating liquid is obtained by setting the ratio G / L of the rotational speed G of the gravure roll 26 to the transport speed L of the film 22 to a value larger than 0 and 10 or less. It has been found that it can be applied to have the desired thickness.
 更に、抽出機と横延伸機との間にインラインコータを配設して上述した条件にて多層フィルムの製造を行うことにより、これまではオフライン式の製造システムでしか製造できなかった延伸フィルム上へのセラミックス微粒子の塗工による高耐熱性セパレータの製造を、インライン化できた。これにより、高耐熱性セパレータの製造コストを抑え、かつ、高耐熱性セパレータの生産性を飛躍的に向上させることができる。 Furthermore, by arranging an in-line coater between the extractor and the transverse drawing machine to manufacture a multilayer film under the conditions described above, it is possible to use a stretched film that has hitherto been able to be manufactured only with an off-line manufacturing system. Production of a high heat resistant separator by coating of ceramic fine particles on the surface was inlined. Thereby, the manufacturing cost of the high heat resistant separator can be suppressed, and the productivity of the high heat resistant separator can be dramatically improved.
 なお、本システムに用いられている多層フィルムの製造方法のその他の特徴として、セラミックス微粒子が上述した平均粒子径を有することにより、フィルム22へのセラミックス微粒子の接着性が良好となる。また、インラインコータ8Aを、グラビアロール26、ドクターチャンバ25、入側ニアロール27、出側ニアロール28および複数のガイドロール24から構成することにより、インラインコータ8Aとしての構成を小型化できる。よって、抽出機6と第2横延伸機7との間にインラインコータを配設することが容易である。また、インラインコータ8A(グラビアコータ)に乾燥機能は設けず、乾燥用のドライヤとして第2横延伸機7のドライヤを用いることで、インラインコータ8Aの小型化に大きく寄与できる。また、グラビアロール26の表面に設ける上述した堰40の角度、高さ及び個数を塗布する材料の種類等に応じて設定することにより、最適な塗工を行うことができる。 In addition, as another feature of the method for producing a multilayer film used in the present system, when the ceramic fine particles have the above-described average particle diameter, the adhesiveness of the ceramic fine particles to the film 22 becomes good. Further, by configuring the inline coater 8A from the gravure roll 26, the doctor chamber 25, the inlet near roll 27, the outlet near roll 28, and the plurality of guide rolls 24, the configuration as the inline coater 8A can be miniaturized. Therefore, it is easy to arrange the in-line coater between the extractor 6 and the second transverse drawing machine 7. In addition, the inline coater 8A (gravure coater) is not provided with a drying function, and the use of the dryer of the second horizontal stretching machine 7 as a dryer for drying can greatly contribute to the miniaturization of the inline coater 8A. Further, optimum coating can be performed by setting the angle, height, and number of the above-described ridges 40 provided on the surface of the gravure roll 26 according to the type of the material to be coated, and the like.
 本発明は上記各実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用できる。例えば、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数、配置箇所、等は本発明を達成できるものであれば任意であり、限定されない。 The present invention is not limited to the above embodiments, and various modifications can be adopted within the scope of the present invention. For example, the present invention is not limited to the embodiments described above, and appropriate modifications, improvements, etc. are possible. In addition, the material, shape, size, number, arrangement location, and the like of each component in the embodiment described above are arbitrary and not limited as long as the present invention can be achieved.
 本出願は、2017年8月2日出願の日本特許出願(特願2017-149893)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application (Patent Application No. 201-7149893) filed on Aug. 2, 2017, the contents of which are incorporated herein by reference.
 本発明による多層フィルムの製造方法は、延伸フィルムの表面に微粒子を適正に固定することができる。この効果を有する本発明は、例えば、リチウムイオン電池用セパレータの製造に利用され得る。 The method for producing a multilayer film according to the present invention can properly fix the fine particles on the surface of the stretched film. The present invention having this effect can be utilized, for example, in the manufacture of a lithium ion battery separator.
  1  湿式セパレータ製造システム
  2  押出機
 2A  ダイス
  3  キャストロール
  4  縦延伸機
  5  第1横延伸機
  6  抽出機
  7  第2横延伸機
 8A  インラインコータ(グラビアコータ)
  9  上流側
 10  下流側
 22  フィルム(原反フィルム)
 22A セパレータ
 23  巻き取り機構
 24  ガイドロール
 25  ドクターチャンバ
 26  グラビアロール(第2ロール)
 26A グラビアパターン
 27  入側ニアロール(第1ロール)
 28  出側ニアロール(第1ロール)
 30  予熱ゾーン
 31  延伸ゾーン
 40  堰
  R  回転方向
  H  高さ
1 Wet Separator Manufacturing System 2 Extruder 2A Die 3 Cast Roll 4 Longitudinal Stretcher 5 First Horizontal Stretcher 6 Extractor 7 Second Horizontal Stretcher 8A In-line Coater (Gravure Coater)
9 upstream 10 downstream 22 film (raw film)
22A Separator 23 Take-up Mechanism 24 Guide Roll 25 Doctor Chamber 26 Gravure Roll (Second Roll)
26A Gravure Pattern 27 Entry Side Near Roll (1st Roll)
28 Exit near roll (1st roll)
30 preheating zone 31 stretching zone 40 堰 R rotation direction H height

Claims (6)

  1.  多孔質のフィルムの表面に微粒子から構成された微粒子層が設けられた多層フィルムの製造方法であって、
     前記フィルムを構成する樹脂材料と多孔形成材料とを含む原反フィルムから、前記多孔形成材料を除去する、除去工程と、
     前記除去工程を経た前記原反フィルムの搬送方向における異なる2つの位置にて前記原反フィルムの一方の表面に一対の第1ロールが当接し、且つ、前記搬送方向において前記一対の前記第1ロールに挟まれる位置にて前記原反フィルムの他方の表面に第2ロールが当接した状態にて、前記微粒子が含まれる塗工液を、前記第2ロールを用いて前記原反フィルムに塗布する、塗布工程と、
     前記原反フィルムに塗布された前記塗工液が流動性を有する状態を維持しながら、前記原反フィルムを幅方向に延伸する、横延伸工程と、
     前記塗工液を乾燥させて前記微粒子層を前記フィルム上に固定して前記多層フィルムを形成する、固定工程と、
     を備え、
     前記塗布工程において、前記第2ロールは所定の押圧方向に沿って前記原反フィルムを押圧するとともに、前記第2ロールの回転軸に沿った方向から見たとき、少なくとも一方の前記第1ロールの回転軸位置と前記第2ロールの回転軸位置とを結ぶ線分と、前記押圧方向と、のなす角度であるロール間角度が、0°以上150°以下である、
     多層フィルムの製造方法。
    A method for producing a multilayer film, in which a fine particle layer composed of fine particles is provided on the surface of a porous film,
    Removing the porous forming material from a raw film comprising a resin material constituting the film and the porous forming material;
    A pair of first rolls abut on one surface of the raw film at two different positions in the carrying direction of the raw film after the removing step, and the pair of first rolls in the carrying direction A coating liquid containing the fine particles is applied to the raw film using the second roll while the second roll is in contact with the other surface of the raw film at a position sandwiched between , Coating process,
    A lateral stretching step of stretching the raw film in the width direction while maintaining the flowability of the coating liquid applied to the raw film;
    A fixing step of drying the coating liquid to fix the fine particle layer on the film to form the multilayer film;
    Equipped with
    In the applying step, the second roll presses the raw film along a predetermined pressing direction, and when viewed from the direction along the rotation axis of the second roll, the second roll presses at least one of the first rolls. The inter-roll angle, which is the angle between the line segment connecting the rotational axis position and the rotational axis position of the second roll and the pressing direction, is 0 ° or more and 150 ° or less.
    Method of manufacturing multilayer film.
  2.  請求項1に記載の多層フィルムの製造方法において、
     前記横延伸工程は、
     予熱を行う予備工程と、加熱下で前記幅方向への延伸を行う本工程と、を含み、
     前記予備工程における、当該予備工程の前後における前記塗工液の減少量である予備乾燥量が20wt%以下であり、
     前記本工程における、当該本工程の前後における前記塗工液の減少量である本乾燥量が20wt%以下である、
     多層フィルムの製造方法。
    In the method for producing a multilayer film according to claim 1,
    In the transverse stretching step,
    Including a preliminary step of preheating and a main step of stretching in the width direction under heating;
    The preliminary drying amount which is the reduction amount of the coating liquid before and after the preliminary process in the preliminary process is 20 wt% or less,
    The main drying amount which is a reduction amount of the coating liquid before and after the main step in the main step is 20 wt% or less.
    Method of manufacturing multilayer film.
  3.  請求項2に記載の多層フィルムの製造方法において、
     前記予備工程は、
     前記原反フィルムに与える単位面積当たりの熱量が1.5kW/h以下であるように、前記原反フィルムを加熱する処理を含み、
     前記本工程は、
     前記原反フィルムに与える単位面積当たりの熱量が1.2kW/h以下であるように、前記原反フィルムを加熱する処理を含む、
     多層フィルムの製造方法。
    In the method for producing a multilayer film according to claim 2,
    The preliminary step is
    Including a process of heating the raw film so that the amount of heat per unit area given to the raw film is 1.5 kW / h or less,
    The main process is
    The method includes heating the raw film so that the amount of heat per unit area given to the raw film is 1.2 kW / h or less.
    Method of manufacturing multilayer film.
  4.  請求項1~請求項3の何れか一項に記載の多層フィルムの製造方法において、
     前記塗布工程は、
     前記原反フィルムの搬送速度Lに対する前記第2ロールの回転速度Gの比G/Lが、0よりも大きく10以下である処理を含む、
     多層フィルムの製造方法。
    In the method for producing a multilayer film according to any one of claims 1 to 3,
    The application process is
    Including a process in which the ratio G / L of the rotational speed G of the second roll to the transport speed L of the raw film is greater than 0 and 10 or less.
    Method of manufacturing multilayer film.
  5.  請求項1~請求項4の何れか一項に記載の多層フィルムの製造方法において、
     前記固定工程は、
     前記原反フィルムを前記搬送方向に延伸しながら前記塗工液を加熱下で徐々に乾燥させることにより、前記原反フィルムの表面に前記微粒子層を固定する処理を含む、
     多層フィルムの製造方法。
    In the method for producing a multilayer film according to any one of claims 1 to 4,
    The fixing step is
    And fixing the fine particle layer on the surface of the raw film by gradually drying the coating liquid under heating while stretching the raw film in the transport direction.
    Method of manufacturing multilayer film.
  6.  請求項1~請求項5の何れか一項に記載の多層フィルムの製造方法において、
     前記多層フィルムは、リチウムイオン電池用セパレータである、
     多層フィルムの製造方法。
    In the method for producing a multilayer film according to any one of claims 1 to 5,
    The multilayer film is a lithium ion battery separator.
    Method of manufacturing multilayer film.
PCT/JP2018/029037 2017-08-02 2018-08-02 Multilayer film manufacturing method WO2019027001A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202310575296.9A CN117080676A (en) 2017-08-02 2018-08-02 Method for producing multilayer film
CN201880050293.0A CN111033800A (en) 2017-08-02 2018-08-02 Method for producing multilayer film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-149893 2017-08-02
JP2017149893A JP6876571B2 (en) 2017-08-02 2017-08-02 Separator manufacturing system for LIB

Publications (1)

Publication Number Publication Date
WO2019027001A1 true WO2019027001A1 (en) 2019-02-07

Family

ID=65233899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029037 WO2019027001A1 (en) 2017-08-02 2018-08-02 Multilayer film manufacturing method

Country Status (4)

Country Link
JP (1) JP6876571B2 (en)
CN (2) CN117080676A (en)
TW (1) TWI736787B (en)
WO (1) WO2019027001A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110286085B (en) * 2019-07-03 2022-04-05 业成科技(成都)有限公司 90-degree peel strength test fixture, and peel strength test equipment and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012020437A (en) * 2010-07-13 2012-02-02 Mitsubishi Plastics Inc Laminated porous film, separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2016080200A1 (en) * 2014-11-18 2016-05-26 東レバッテリーセパレータフィルム株式会社 Microporous polyolefin film, separator for battery, and production processes therefor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3948824B2 (en) * 1998-05-12 2007-07-25 帝人株式会社 Method for producing stretched film and apparatus therefor
JP2003112109A (en) * 2001-10-01 2003-04-15 Toray Ind Inc Method for producing film and coating apparatus
US20100129720A1 (en) * 2006-10-30 2010-05-27 Kentaro Sako Polyolefin microporous membrane
JP5801983B1 (en) * 2014-01-10 2015-10-28 東レバッテリーセパレータフィルム株式会社 Battery separator and method for producing the same
KR102299957B1 (en) * 2014-07-30 2021-09-08 에스케이이노베이션 주식회사 Manufacturing method with good productivity for preparing porous multilayered polyolefin
WO2016052331A1 (en) * 2014-10-01 2016-04-07 住友化学株式会社 Method for producing polarizing laminated film and method for producing polarizing plate
JP2017064704A (en) * 2015-10-02 2017-04-06 住友化学株式会社 Coating method, coating device, and functional film production method
JP6017010B1 (en) * 2015-12-22 2016-10-26 住友化学株式会社 Method for producing separator film for lithium ion secondary battery and apparatus for producing separator film for lithium ion secondary battery
JP6645516B2 (en) * 2015-12-24 2020-02-14 東レ株式会社 Polyolefin microporous membrane, battery separator, and method for producing them

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012020437A (en) * 2010-07-13 2012-02-02 Mitsubishi Plastics Inc Laminated porous film, separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2016080200A1 (en) * 2014-11-18 2016-05-26 東レバッテリーセパレータフィルム株式会社 Microporous polyolefin film, separator for battery, and production processes therefor

Also Published As

Publication number Publication date
TW201911625A (en) 2019-03-16
JP2019029282A (en) 2019-02-21
JP6876571B2 (en) 2021-05-26
CN111033800A (en) 2020-04-17
CN117080676A (en) 2023-11-17
TWI736787B (en) 2021-08-21

Similar Documents

Publication Publication Date Title
US20210301464A1 (en) Cellulose based film structure and method for producing the same
US20170165893A1 (en) Production method of microporous plastic film
WO2016132807A1 (en) Method for producing microporous plastic film
CA2574994A1 (en) Web-reinforced separator and continuous method for producing same
WO2016132808A1 (en) Method for producing microporous plastic film
EP2882540B1 (en) Roll coating process
KR20160096547A (en) Manufacturing method of separator for battery and wound body of separator for battery
US20080237390A1 (en) Web guide roller, web guide device, and method for guiding web
WO2021079580A1 (en) Coating film production method and coating film production device
JP2022119875A (en) Ultra-wide continuous coating apparatus ans method of manufacturing separator using the same
WO2019027001A1 (en) Multilayer film manufacturing method
WO2016132806A1 (en) Method for producing microporous plastic film
JP2018047694A (en) Film stretching apparatus and method for producing film
KR102326449B1 (en) Film-stretching apparatus and method of producing film
KR101450370B1 (en) Base film for hydraulic transfer printing and process for producing the same
KR20200123016A (en) Producing system and producing method of battery separator
JP2009160922A (en) Base film for hydraulic transfer printing
JP2005199725A (en) Film manufacturing process and device
JP2019029282A5 (en)
JP2017080736A5 (en)
JP5338397B2 (en) Processed film manufacturing method
WO2023176200A1 (en) Coating device and method for manufacturing web equipped with coating film
EP0253149B1 (en) Method for producing plastic sheets, in particular pvc sheets, by calendering
CN117798034A (en) Method for producing coating film
JP2021182533A (en) Separator manufacturing method, and separator manufacturing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18841961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18841961

Country of ref document: EP

Kind code of ref document: A1