WO2019026791A1 - Vibration-sensitive module - Google Patents

Vibration-sensitive module Download PDF

Info

Publication number
WO2019026791A1
WO2019026791A1 PCT/JP2018/028253 JP2018028253W WO2019026791A1 WO 2019026791 A1 WO2019026791 A1 WO 2019026791A1 JP 2018028253 W JP2018028253 W JP 2018028253W WO 2019026791 A1 WO2019026791 A1 WO 2019026791A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
module
control unit
acceleration
acceleration sensor
Prior art date
Application number
PCT/JP2018/028253
Other languages
French (fr)
Japanese (ja)
Inventor
照元 幸次
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2019026791A1 publication Critical patent/WO2019026791A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting

Definitions

  • the present disclosure relates to a seismic sensing module.
  • the vibration sensing module is a module that detects vibrations such as earthquakes.
  • the vibration sensing module uses a so-called pendulum type vibration sensing sensor.
  • a pendulum-type seismic sensor has a portion that is mechanically oscillated by earthquake vibration. For this reason, at the time of non-vibration occurrence in which no earthquake occurs, power is hardly consumed.
  • the present disclosure makes it a subject to provide a preferred seismic module.
  • a seismic sensing module includes an acceleration sensor, a vibration power generation unit, and a module control unit.
  • the acceleration sensor detects an acceleration about at least one detection axis.
  • the vibration power generation unit converts vibration energy into electric power.
  • the module control unit controls the acceleration sensor, and when power is output from the vibration power generation unit, starts the vibration measurement mode in which the acceleration sensor detects the acceleration.
  • FIGS. 1 to 4 show a vibration sensing module according to a first embodiment of the present disclosure and an electronic device provided with the vibration sensing module.
  • FIG. 1 is a perspective view of the vibration sensing module A1 as viewed from above.
  • FIG. 2 is a perspective view of the below-described module substrate 110 of the vibration sensing module A1 as viewed from below.
  • FIG. 3 is a block diagram showing the vibration sensing module A1.
  • the vibration sensing module A1 according to the present embodiment includes a module substrate 110, an acceleration sensor 120, a module control unit 130, a module storage unit 140, and a vibration power generation unit 150.
  • the vibration sensing module A1 is attached to, for example, the electronic device B1, and is used to detect a vibration received by the electronic device B1.
  • the module substrate 110 is a base of the vibration sensing module A1, and includes, for example, a base made of glass epoxy resin and a wiring portion formed on the base.
  • the shape and size of the module substrate 110 are not particularly limited.
  • the module substrate 110 has a rectangular shape in plan view of about 6 mm to 9 mm and a thickness of about 0.8 mm to 1.5 mm.
  • the wiring portion has a plurality of mounting electrodes 111.
  • the mounting electrode 111 is formed on one side of the module substrate 110, and is used to mount the module substrate 110 on the vibration power generation unit 150.
  • the mounting electrode 111 is formed of a plating layer of, for example, Cu, Ni, Au or the like.
  • the acceleration sensor 120 detects acceleration on a plurality of detection axes, and outputs a signal corresponding to the detected acceleration.
  • the specific configuration of the acceleration sensor 120 is not particularly limited as long as the acceleration can be detected for a plurality of detection axes.
  • the acceleration sensor 120 is constituted by a so-called MEMS sensor, which is perpendicular to each other.
  • the detection principle of the MEMS sensor constituting the acceleration sensor 120 capable of detecting the acceleration with respect to the x axis, the y axis and the z axis is not particularly limited.
  • the stationary side portion and the movable side portion mutually having a comb structure
  • the module control unit 130 uses the acceleration detected by the acceleration sensor 120 to perform seismic processing and the like to be described later.
  • the specific configuration of the module control unit 130 is not particularly limited, and a general microprocessor (CPU) is employed.
  • the module storage unit 140 stores state information of the acceleration sensor.
  • the module storage unit 140 is configured by a general semiconductor memory, and in the present embodiment, a semiconductor chip in which the module control unit 130 and the module storage unit 140 are integrated is adopted.
  • the module control unit 130 may be a component separate from the module storage unit 140.
  • the state information stored in the module storage unit 140 is information specifying the attitude of the acceleration sensor 120 with respect to the direction of gravity.
  • the vibration power generation unit 150 converts vibration energy into electric power.
  • the specific configuration and power generation principle of the vibration power generation unit 150 are not particularly limited, and various configurations such as a configuration including a piezoelectric element (not shown) or a configuration using electromagnetic induction may be appropriately adopted.
  • the vibration power generation unit 150 has a rectangular outer shape larger than the module substrate 110 in the z-axis direction view, and the module substrate 110 is mounted on the upper surface of the vibration power generation unit 150 in the z-axis direction. There is.
  • a plurality of terminals 151 and a plurality of wirings 152 are formed.
  • the plurality of terminals 151 are used, for example, to mount the vibration sensing module A1 on a circuit board or the like (not shown) of the electronic device B1.
  • the plurality of terminals 151 are used for transmission and reception of control signals and power supply with the electronic device B1.
  • the plurality of terminals 151 include an external power supply terminal 1511.
  • the external power supply terminal 1511 is used to supply power from the external power supply (a battery 54 described later) of the vibration sensing module A1 to the vibration sensing module A1.
  • the plurality of wirings 152 are respectively connected to the plurality of terminals 151.
  • the plurality of mounting electrodes 111 of the module substrate 110 are connected to the end portions of the plurality of wires 152 by solder 129.
  • the power wiring is indicated by a solid line, and the control wiring is indicated by a dotted line.
  • the power output line from the vibration power generation unit 150 is connected to the acceleration sensor 120 and the module control unit 130.
  • the terminal 151 used to transmit and receive control signals is connected to the module control unit 130 by control wiring.
  • the external power supply terminal 1511 is connected to the acceleration sensor 120 and the module control unit 130 via the switch 160.
  • FIG. 4 is a block diagram showing the electronic device B1 to which the vibration sensing module A1 is attached.
  • the electronic device B1 includes a vibration sensing module A1, a device control unit 51, a display unit 52, an interface unit 53, and a battery 54.
  • the application and function of the electronic device B1 are not particularly limited. For example, when an earthquake occurs, the electronic device B1 is a device that can vibrate to such an extent that the vibration detection module A1 can detect the vibration.
  • the device control unit 51 controls the entire electronic device B1.
  • the device control unit 51 is constituted of, for example, a microprocessor, and appropriately includes a memory.
  • the display unit 52 is for displaying the operation status of the electronic device B1 and the like, and is formed of, for example, a liquid crystal display panel.
  • the interface unit 53 is a unit for performing communication transmission / reception with the outside of the electronic device B1 and power supply.
  • the communication mode of the interface unit 53 may be either wired communication or wireless communication.
  • the battery 54 is a rechargeable battery or a dry battery, and corresponds to an example of an external power supply of the vibration sensing module A1.
  • FIG. 5 shows an operation example of the vibration sensing module A1.
  • step S0 the power supply of the vibration sensing module A1 is turned on.
  • the acceleration sensor 120 performs the following processing according to a program stored in advance in the module control unit 130 or the like.
  • step S1 an initial state storage mode M1 is started.
  • the initial state memory mode M1 is performed in a steady state in which no vibration such as an earthquake occurs.
  • the initial state storage mode M1 is executed by the power supplied from the battery 54 of the electronic device B1 to the vibration sensing module A1 via the external power supply terminal 1511. That is, the module control unit 130 causes the battery 54 to supply power to the acceleration sensor 120 and the module control unit 130 via the external power supply terminal 1511 by opening the switch 160.
  • step S2 acceleration data is acquired for the x axis, y axis, and z axis of the acceleration sensor 120.
  • step S3 the gravity direction Ng is specified.
  • the accelerations in the x-axis, y-axis and z-axis are vector synthesized to specify the gravity direction Ng.
  • the module control unit 130 stores the gravity direction Ng in the module storage unit 140 as the initial gravity direction Ngi.
  • step S4 two axes perpendicular to the initial gravity direction Ngi are selected.
  • step S5 Module control unit with the detected acceleration of x-axis, y-axis and z-axis in steady state with no gravitational vibration and load only gravity acceleration as the zero point of acceleration of each axis 130 is stored in the module storage unit 140.
  • step S6 is performed after step S5.
  • Step S6 is a step in which the vibration power generation unit 150 generates electric power due to the generation of vibration, and the vibration power generation unit 150 outputs electric power. That is, in a period in which the vibration generating unit 150 does not generate vibration to such an extent as to generate power, the vibration sensing module A1 is maintained in the standby state until step S6 is performed.
  • Step S6 is executed when the vibration generating unit 150 generates vibration to a degree that causes power generation. That is, the power from the vibration power generation unit 150 is supplied to the acceleration sensor 120 and the module control unit 130. Then, the module control unit 130 starts step S7 (vibration measurement mode M2) using this power.
  • a part of the process after starting vibration measurement mode M2 may be performed only by the electric power from the vibration electric power generation part 150.
  • processing after the start of vibration measurement mode M2 may be performed by power combining the power from vibration power generation unit 150 and the power from battery 54 (external power) via external power supply terminal 1511. , And may be performed only by the power from the battery 54 (external power).
  • the module control unit 130 opens the switch 160.
  • step S7 vibration detection processing is performed.
  • the vibration detection process is performed to detect whether significant vibration is generated, and is performed, for example, by the following procedure.
  • step S71 the x-axis, y-axis and z-axis accelerations of the acceleration sensor 120 or the gravity direction Ng and horizontal two-axis acceleration are obtained, and the difference from the initial acceleration stored as initial state information in step S5 is obtained. Calculate for each axis. And the difference value of the acceleration about all the axes is totaled, and a total is calculated.
  • step S72 the sum of the accelerations obtained in step S71 is compared with the acceleration threshold value stored in advance in the module storage unit 140.
  • step S72 If a single acceleration of any axis, an acceleration of only two horizontal axes, or a total value of accelerations of a plurality of arbitrarily selected axes is compared with the corresponding acceleration threshold, Good. For example, if the sum of the accelerations is larger than the acceleration threshold, it is determined that the vibration is detected (step S72: Yes), and step S9 is executed. On the other hand, if the sum of the accelerations is equal to or less than the acceleration threshold (No at step S72), it is determined that no significant vibration is applied, and the module control unit 130 determines the necessity of self-diagnosis at step S8.
  • the self-diagnosis of the acceleration sensor 120 is performed by a change in the state of the acceleration sensor 120 with respect to a predetermined condition change.
  • a diagnosis is performed based on whether or not the comb-teeth-like movable part is operating normally.
  • the module control unit 130 performs seismic wave measurement in step S9.
  • the sampling rate of acceleration of acceleration sensor 120 is preferably a relatively low frequency, for example, set to about 100 Hz Be done. If it is determined that significant vibration is applied (Yes at step S72), the module control unit 130 may output a detection signal notifying that significant vibration has been detected. This detection signal may be maintained until the power of the vibration sensing module A1 is turned off, or may be maintained for a preset time. In addition, after the vibration sensing module A1 is turned on in step S0, the number of times the process proceeds to step S9 may be stored in the module storage unit 140.
  • step S7 determination processing different from the above-described steps S71 and S72 may be performed.
  • the magnitude (acceleration, amplitude, etc.) of a single vibration of each axis may be calculated in step S71, and compared with a threshold for the magnitude of the single vibration of each axis set in advance in step S72.
  • step S71 a combined value of the magnitudes of vibrations of the three axes may be calculated, and in step S72, it may be compared with a threshold value for the combined value of the magnitudes of vibrations of the three axes set in advance.
  • a composite value of the magnitudes of vibrations of the two horizontal axes may be calculated, and in step S72, it may be compared with a threshold value for a composite value of magnitudes of vibrations of only the horizontal axis set in advance.
  • FIG. 6 shows an operation example of the vibration measurement mode M2.
  • the module control unit 130 executes a first digitizing process S10.
  • the first digitizing process S10 is a process of acquiring digitized acceleration data by sampling the acceleration output from the acceleration sensor 120 at a first sampling rate R1.
  • the frequency of the first sampling rate R1 is not particularly limited, and is preferably a frequency that can represent the vibration given to the module control unit 130 with a sufficient resolution.
  • the first sampling rate R1 is, for example, about 1600 Hz.
  • a total value of gravity direction Ng and acceleration data of two horizontal axes, single acceleration of any axis, acceleration of only two horizontal axes, or acceleration of a plurality of arbitrarily selected axes Acceleration data such as a total value can be selected as a processing target as appropriate.
  • the first digitizing process S10 includes a first selection process S101.
  • the first selection processing S101 vibrations having a frequency equal to or less than a first frequency F1 are selectively left for vibration data configured by acceleration data sampled at a first sampling rate R1, and vibrations exceeding the first frequency F1 are excluded. It is a process.
  • the first frequency F1 is a frequency significantly lower than the first sampling rate R1, and is set to about 20 Hz in the present embodiment. This is due to the fact that the frequency of general earthquakes is approximately 0.4 Hz to 10 Hz or so, and the range sufficiently including the frequency of general earthquakes is selected.
  • step S11 the module control unit 130 calculates the maximum acceleration of the vibration from the acceleration data (vibration data) obtained by the first digitizing process S10.
  • the maximum acceleration contributes to roughly grasping the magnitude of the vibration, and is stored, for example, in the module storage unit 140.
  • the module control unit 130 executes a second digitizing process S12.
  • the second digitizing process S12 is a process of sampling the acceleration data (vibration data) obtained by the first digitizing process S10 at a second sampling rate R2.
  • the frequency of the second sampling rate R2 is not particularly limited as long as it is lower than the first sampling rate R1, and a frequency suitable for the subsequent processing is preferable.
  • the second sampling rate R2 is, for example, about 100 Hz, which is about 6.3% of the first sampling rate R1.
  • the setting value of the second sampling rate R2 is intended to be adapted to the calculation condition of the SI value described later.
  • the second digitizing process S12 includes a second selection process S121.
  • the second selection processing S121 selectively allows the vibration having the second frequency F2 or less to remain for the vibration data configured by the acceleration data sampled at the second sampling rate R2, and excludes the vibration exceeding the second frequency F2. It is a process.
  • the second frequency F2 is a frequency significantly lower than the second sampling rate R2, and is set to about 10 Hz in the present embodiment. This is because the frequency of a general earthquake is about 0.4 Hz to about 10 Hz.
  • step S13 the module control unit 130 calculates the SI value V using the acceleration data (vibration data) obtained by the second digitizing process S12.
  • the SI value V quantifies how much damage a general building will be caused by an earthquake. More specifically, the SI value V is an average of the maximum velocity response value of each pendulum when the natural movement is from 0.1 to 2.5 seconds and the pendulum group with a damping constant of 20% is excited by the earthquake motion.
  • step S13 as in the vibration measurement mode M2, the total value of the gravity direction Ng and acceleration data of two horizontal axes, single acceleration of any axis, acceleration of only two horizontal axes, or any selected
  • the SI value V can be calculated based on acceleration data appropriately selected from acceleration data such as a total value of accelerations of a plurality of axes.
  • step S14 earthquake level determination is performed.
  • the magnitude (level) of the earthquake motion is determined based on the SI value V obtained in step S13. Further, in this determination, the maximum acceleration obtained in step S11 may be additionally used.
  • step S14 when it is determined that a seismic movement to be alerted has occurred, the module control unit 130 outputs the numerical value information of the SI value V or the determination result signal to the device control unit 51 of the electronic device B1.
  • the device control unit 51 displays on the display unit 52 a message or an icon notifying that an earthquake has occurred.
  • the device control unit 51 stops the operation of the electronic device B1 that should not be performed at the time of an earthquake.
  • the device control unit 51 executes the operation of the electronic device B1 to be executed at the time of an earthquake.
  • the device control unit 51 may output, from the interface unit 53, a notification signal notifying that an earthquake has occurred to the outside.
  • steps S9 to S14 may be performed using the acceleration of a single body of any axis, the acceleration of only two horizontal axes, or the total value of the accelerations of a plurality of arbitrarily selected axes. Good.
  • the earthquake detection module A1 of the present embodiment may execute the earthquake detection signal output determination mode M3 illustrated in FIG. 7 as an additional process.
  • the module control unit 130 executes a first determination process S21.
  • the SI value V is compared with the SI value threshold value Vt set in advance. For example, when the SI value V does not exceed the SI value threshold value Vt, it is determined that the vibration is not earthquake motion (first determination process S21: No, step S25).
  • first determination process S21: Yes when the SI value V exceeds the SI value threshold value Vt, it is determined that there is a possibility that the vibration is an earthquake motion (first determination process S21: Yes), and the process proceeds to the second determination process S22.
  • the magnitude of the SI value threshold Vt is arbitrarily set, and is about 18 cm / sec in this embodiment, for example.
  • Kine is used with the same meaning as cm / sec.
  • the second determination process S22 the number N of times the SI value V exceeds the SI value threshold Vt within a predetermined time is counted. Then, the number N is compared with a preset number threshold Nt. For example, when the number of times N does not exceed the number of times threshold Nt, it is determined that the vibration is not earthquake motion (second determination process S22: No, step S25). On the other hand, when the number of times N exceeds the number of times threshold Nt, the process proceeds to the third determination processing S23 as there is a possibility that the vibration is an earthquake motion (second determination processing S22: Yes).
  • the magnitude of the number threshold Nt is arbitrarily set, and is 4 in the present embodiment, for example.
  • an integrated SI value VI which is an integrated value of the SI value V is calculated within a predetermined time. Then, the integrated SI value VI is compared with a preset integrated SI value threshold value VIt. For example, when the integrated SI value VI does not exceed the integrated SI value threshold value VIt, it is determined that the vibration is not earthquake motion (third determination process S23: No, step S25). On the other hand, when the integrated SI value VI exceeds the integrated SI value threshold value VIt, the module control unit 130 outputs an earthquake detection signal in step S24 on the assumption that the vibration is earthquake motion (third determination process S23: Yes). Specifically, the earthquake detection signal is set to the Hi state.
  • the integrated SI value VI is calculated by integrating the SI values V of five consecutive points. Further, the integrated SI value threshold value VIt in this case is, for example, about 108 cm.
  • the device control unit 210 When the earthquake detection signal is in the Hi state in step S24, the device control unit 210 performs the blocking process by the blocking unit 260 described above. On the other hand, if the determination is No in any of the first determination process S21, the second determination process S22, and the third determination process S23, the module control unit 130 maintains the earthquake detection signal in the Lo state in step S25. In this case, the blocking process by the blocking unit 260 described above is not performed.
  • the output of the earthquake detection signal in step S24 and step S25 is not limited to switching the Hi state and the Lo state of a single signal, and information on whether or not an earthquake is detected is output from the module control unit 130 It may be any signal output mode to be output. Further, after step S25, control may be performed to return to step S7 of FIG. 5 after a predetermined time has elapsed.
  • FIGS. 8A to 11C show determination examples in the earthquake detection signal output determination mode M3.
  • FIGS. 8A to 11C are applied with collision vibrations that are not earthquake motions. 8A-C show one collision, FIG. 9A-C shows two collisions, FIG. 10A-C shows three collisions, and FIGS. 11A-C show four collisions. is there.
  • FIG. 8A and FIG. 8B are acceleration graphs of horizontal two axes when the number of collisions is one. As shown, an acceleration peak corresponding to one collision appears.
  • FIG. 9A and FIG. 9B are acceleration graphs of horizontal two axes when the number of collisions is two. As shown, acceleration peaks corresponding to two collisions appear.
  • FIG. 10A and FIG. 10B are acceleration graphs of horizontal two axes when the number of collisions is three. As shown, acceleration peaks corresponding to three collisions appear.
  • FIG. 10C shows the SI value V and the integrated SI value VI when the number of collisions is three.
  • the first determination processing S21 is a Yes determination.
  • the second determination process S22 is a No determination, and it is determined in step S25 that it is an erroneous detection that is not an earthquake motion.
  • the integrated SI value VI exceeds the integrated SI value threshold value VIt and the third determination process S23 is performed, the process is determined as Yes.
  • FIG. 11A and FIG. 11B are acceleration graphs of horizontal two axes when the number of collisions is four. As shown, acceleration peaks corresponding to four collisions appear.
  • FIG. 12 shows an operation example of the state information comparison mode M4 of the electronic device B1.
  • the state information comparison mode M4 is executed, it is assumed that the electronic device B1 is installed in a building or the like and is normally used without being moved and left still.
  • the seismic module A1 provided in the electronic device B1 in step S31 has already performed the initial state storage mode M1 and has already performed the initial gravity direction Ngi. It is determined whether it has been identified.
  • the device control unit 51 causes the vibration sensing module A1 to execute the initial state storage mode M1.
  • step S31 When the initial gravity direction Ngi of the vibration sensing module A1 has been identified (step S31: Yes), the device control unit 51 executes step S32.
  • step S32 the device control unit 51 causes the seismic sensor module A1 to acquire acceleration data for the x-axis, y-axis, and z-axis of the acceleration sensor 120 at that time. Then, the gravity direction Ng at that time is specified.
  • step S33 the direction of the initial gravity direction Ngi stored in advance is compared with the direction of gravity Ng specified in step S32.
  • the electronic device B1 indicated by an imaginary line (two-dot chain line) in FIG. 13 indicates an initial state when the initial gravity direction Ngi is specified.
  • a solid line indicates a state in which the attitude of the electronic device B1 with respect to the gravity direction Ng changes due to secular change and the like.
  • the initial gravity direction Ngi specified by the vibration sensing module A1 of the electronic device B1 is a vector pointing in a direction different from the gravity direction Ng at that time.
  • the difference between the gravity direction Ng and the initial gravity direction Ngi is calculated, for example, as an angle amount, and stored in the memory in the device control unit 51. Then, the device control unit 51 executes step S34.
  • step S34 how much the electronic device B1 is inclined with respect to the gravity direction Ng is specified from an angle amount corresponding to the difference between the gravity direction Ng calculated for the electronic device B1 and the initial gravity direction Ngi.
  • the vibration measurement mode M2 is started using the power from the vibration generating unit 150.
  • the vibration sensing module A1 does not perform processing such as vibration detection until the vibration generating unit 150 generates vibration to such an extent that power generation occurs. For this reason, at the time of non-vibration generation
  • the vibration sensing module A1 includes an external power supply terminal 1511, and can receive power supply from external power such as the battery 54 or the like. Thereby, for example, after the vibration measurement mode M2 is started by the power from the vibration power generation unit 150, each process for performing vibration detection or seismic wave measurement can be performed using external power.
  • This is an advantage that when the module control unit 130 or the module storage unit 140 adopts a specification capable of executing high-performance processing, the function of the module control unit 130 can be sufficiently exhibited. is there.
  • the acceleration sensor 120 and the module control unit 130 continue processing necessary for vibration detection and seismic wave measurement for a predetermined time thereafter. It can be performed at once or intermittently.
  • the module substrate 110 on which the acceleration sensor 120, the module control unit 130 and the module storage unit 140 are mounted is mounted on the vibration power generation unit 150. Thereby, the miniaturization of the vibration sensing module A1 can be achieved.
  • the vibration sensing module A1 has a module control unit 130 and a module storage unit 140.
  • the module control unit 130 can perform processing based on acceleration data from the acceleration sensor 120, and the processing result can be stored in the module storage unit 140. Therefore, the function of the vibration sensing module A1 can be enhanced.
  • the vibration control module A1 stores the state information of the acceleration sensor 120 in the initial state such as the initial stage of installation in the module storage unit 140 as the initial state information by executing the initial state storage mode M1 shown in FIG. be able to.
  • the initial gravity direction Ngi as the initial state information
  • the vibration detection process of step S7 to step S72 it is possible to quantitatively and quickly detect the state of high possibility of the change of the acceleration due to the earthquake motion.
  • the self-diagnosis process of step S8 it is possible to recognize that the acceleration sensor 120 is in an unintended non-operating state by long-term use.
  • the module control unit 130 can be configured to output a sensor error signal to the outside.
  • a two-step process of a first digitizing process S10 and a second digitizing process S12 is performed.
  • the first digitizing process S10 using the relatively high frequency first frequency F1
  • sampling with sufficient resolution for example, in the first selection process S101, it is possible to reliably eliminate the vibration component different from the earthquake motion.
  • Performing the second digitizing process S12 after completing the first digitizing process S10 is, for example, noise different from earthquake motion when the second digitizing process S12 is executed without executing the first digitizing process S10.
  • the comparison between the SI value V and the SI value threshold value Vt in the first determination processing S21 is to determine whether or not there is earthquake motion from the instantaneous vibration scale, which is rational. Further, the comparison between the number N and the number threshold Nt in the second determination processing S22 is to determine whether or not the earthquake motion is based on the temporal continuity of the vibration, which is preferable for improving the accuracy of the determination.
  • the comparison between the integrated SI value VI and the integrated SI value threshold value VIt in the third determination processing S23 is based on the determination condition that the energy of vibration continues temporally. Such a determination is based on the fact that the earthquake motion has a continuous energy distribution, whereas the collision vibration has a discrete energy distribution, and this determination is suitable for high accuracy determination. Then, by executing all of the first determination processing S21, the second determination processing S22, and the third determination processing S23, false detection can be significantly reduced.
  • a PGA (peak ground acceleration) value may be used. That is, similar to the threshold value and the number of times serving as the determination reference for the SI value set in steps S13 and S14 and steps S20 to S25, the threshold and the number of times serving as the determination reference are set for the PGA value The same judgment processing as in the case of the case may be performed.
  • a PGA value it may replace with a SI value and may use a PGA value, and may use together a SI value and a PGA value.
  • FIG. 14 shows another embodiment of the present disclosure.
  • elements that are the same as or similar to the above embodiment are given the same reference numerals as the above embodiment.
  • FIG. 14 shows a seismic sensing module according to a second embodiment of the present disclosure.
  • the seismic sensing module A2 of the present embodiment does not include the module substrate 110 in the seismic sensing module A1, and the module control unit 130 and the module storage unit 140 are incorporated in the acceleration sensor 120.
  • the module control unit 130 and the module storage unit 140 incorporated in the acceleration sensor 120 preferably have a smaller and thinner configuration than the module control unit 130 and the module storage unit 140 mounted on the module substrate 110 in the vibration sensing module A1.
  • an application specific integrated circuit ASIC that can perform the functions of the module control unit 130 and the module storage unit 140 described above is used.
  • the ASIC is an integrated circuit element whose function is narrowed down specifically for a specific application such as an earthquake detection application in the present embodiment. Therefore, the ASIC is suitable for downsizing and thinning, and can be incorporated in the acceleration sensor 120 as a component that performs the functions of the module control unit 130 and the module storage unit 140.
  • the ASIC is disposed adjacent to the x-axis detection unit 120x, the y-axis detection unit 120y, and the z-axis detection unit 120z.
  • Ru The x-axis detection unit 120x, the y-axis detection unit 120y, and the z-axis detection unit 120z correspond to MEMS sensors that can detect the acceleration of each axis.
  • the measurement principle and specific structure of the x-axis detection unit 120x, the y-axis detection unit 120y, and the z-axis detection unit 120z are not particularly limited.
  • the acceleration sensor 120 including the module control unit 130 and the module storage unit 140 is mounted on the vibration power generation unit 150.
  • a mounting terminal (not shown) of the acceleration sensor 120 is connected to the plurality of wires 152 of the vibration power generation unit 150.
  • the processing described with reference to FIGS. 5 to 7 may be adopted as appropriate for the detection processing by the vibration sensing module A2.
  • the storage capacity of the ASIC is limited, for example, the storage capacity may be reduced by reducing the number of history storages of the earthquake detection process.
  • the vibration sensing module A2 is suitable for further downsizing as compared to the vibration sensing module A1.
  • the vibration sensing module according to the present disclosure is not limited to the embodiment described above.
  • the specific configuration of each part of the vibration sensing module according to the present disclosure can be varied in design in many ways.
  • the present disclosure includes embodiments according to the following appendices.
  • An acceleration sensor for detecting an acceleration about at least one detection axis;
  • a vibration power generation unit that converts vibration energy into electric power;
  • a module control unit for controlling the acceleration sensor, wherein the module control unit starts a vibration measurement mode for detecting an acceleration by the acceleration sensor when power is output from the vibration power generation unit; module.
  • the seismic sensing module according to appendix 1 further comprising a module substrate on which the acceleration sensor and the module control unit are mounted.
  • the seismic sensor module according to Appendix 2 The seismic sensor module according to Appendix 2, wherein the module substrate is mounted on the vibration power generation unit.
  • the at least one detection axis includes a plurality of detection axes,
  • the acceleration sensor detects an acceleration on a plurality of the detection axes,
  • the earthquake sensing module according to appendix 8 wherein the state information is an acceleration about the plurality of detection axes when no vibration occurs.
  • the module control unit calculates the direction of gravity based on the accelerations of the plurality of detection axes when no vibration occurs.
  • the seismic isolation module according to Appendix 11 wherein the initial state storage mode by the module control unit is performed using the power supplied from the external power supply terminal.
  • the module control unit sums the differences between the accelerations of the plurality of detection axes and the acceleration stored as initial state information in the vibration measurement mode, and compares the sum of the totals with a predetermined acceleration threshold value.
  • the vibration measurement mode includes a second digitizing process in which the module control unit samples acceleration data obtained by the first digitizing process at a second sampling rate lower than the first sampling rate.
  • the earthquake detection module according to appendix 15 wherein the module control unit calculates an SI value based on acceleration data obtained by the second digitizing process.
  • the module control unit according to any one of appendages 14 to 16, which has an earthquake detection signal output determination mode that determines whether or not to output an earthquake detection signal based on the SI value calculated in the vibration measurement mode. Vibration-sensing module.

Abstract

The present disclosure provides a vibration-sensitive module. The vibration-sensitive module includes an acceleration sensor, a vibration power generation unit, and a module control unit. The acceleration sensor detects acceleration with respect to at least one detection axis. The vibration power generation unit converts vibration energy into electric power. The module control unit controls the acceleration sensor, and when the electric power is outputted from the vibration power generation unit, the module control unit starts vibration measuring mode for detecting acceleration using the acceleration sensor.

Description

感震モジュールVibration sensing module
 本開示は、感震モジュールに関する。 The present disclosure relates to a seismic sensing module.
 感震モジュールは、地震等の振動を検出するモジュールである。感震モジュールは、いわゆる振り子式の感震センサを用いたものである。振り子式の感震センサは、地震の振動によって機械的に揺動する部位を有している。このため、地震が発生していない非振動発生時には、電力をほとんど消費しない。 The vibration sensing module is a module that detects vibrations such as earthquakes. The vibration sensing module uses a so-called pendulum type vibration sensing sensor. A pendulum-type seismic sensor has a portion that is mechanically oscillated by earthquake vibration. For this reason, at the time of non-vibration occurrence in which no earthquake occurs, power is hardly consumed.
 いわゆるMEMS構造を有する感震センサが、種々に提案されている。このような感震センサは、小型化や高精度化を図る点で有利である。しかしながら、振動の検出に電力を要する。このため、非振動発生時であっても、地震に相当する有意な振動が生じているか否かを判断するために、定期的に振動の検出を行う必要がある。したがって、長期間にわたって地震監視をするような場合、継続的な電力の供給が問題となる。 Various seismic sensors having a so-called MEMS structure have been proposed. Such a seismic sensor is advantageous in achieving miniaturization and high precision. However, detection of vibration requires power. For this reason, even at the time of non-vibration occurrence, in order to determine whether or not significant vibration corresponding to an earthquake is generated, it is necessary to periodically detect the vibration. Therefore, in the case of earthquake monitoring over a long period of time, continuous power supply becomes a problem.
 本開示は、好ましい感震モジュールを提供することをその課題とする。 The present disclosure makes it a subject to provide a preferred seismic module.
 本開示によると、感震モジュールが提供される。前記感震モジュールは、加速度センサと、振動発電部と、モジュール制御部と、を含む。前記加速度センサは、少なくとも1つの検出軸についての加速度を検出する。前記振動発電部は、振動エネルギーを電力に変換する。前記モジュール制御部は、前記加速度センサを制御し、前記振動発電部から電力が出力されると、前記加速度センサによる加速度の検出を行う振動計測モードを開始する。 According to the present disclosure, a seismic sensing module is provided. The seismic isolation module includes an acceleration sensor, a vibration power generation unit, and a module control unit. The acceleration sensor detects an acceleration about at least one detection axis. The vibration power generation unit converts vibration energy into electric power. The module control unit controls the acceleration sensor, and when power is output from the vibration power generation unit, starts the vibration measurement mode in which the acceleration sensor detects the acceleration.
 本開示のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。 Other features and advantages of the present disclosure will become more apparent from the detailed description given below with reference to the accompanying drawings.
本開示の第1実施形態に基づく感震モジュールを示す斜視図である。It is a perspective view showing a vibration sensing module based on a 1st embodiment of this indication. 本開示の第1実施形態に基づく感震モジュールを示す要部斜視図である。It is a principal part perspective view showing a vibration sensing module based on a 1st embodiment of this indication. 本開示の第1実施形態に基づく感震モジュールを示すブロック構成図である。It is a block block diagram showing a vibration sensing module based on a 1st embodiment of this indication. 本開示の第1実施形態に基づく感震モジュールを備えた電子機器を示すブロック構成図である。It is a block block diagram showing electronic equipment provided with a vibration sensing module based on a 1st embodiment of this indication. 本開示の第1実施形態に基づく感震モジュールの動作例を示すフローチャートである。It is a flow chart which shows an operation example of a vibration sensing module based on a 1st embodiment of this indication. 本開示の第1実施形態に基づく感震モジュールの動作例を示すフローチャートである。It is a flow chart which shows an operation example of a vibration sensing module based on a 1st embodiment of this indication. 本開示の第1実施形態に基づく感震モジュールの動作例を示すフローチャートである。It is a flow chart which shows an operation example of a vibration sensing module based on a 1st embodiment of this indication. 本開示の第1実施形態に基づく感震モジュールの動作例を示すグラフである。It is a graph which shows the operation example of the vibration sensing module based on 1st Embodiment of this indication. 本開示の第1実施形態に基づく感震モジュールの動作例を示すグラフである。It is a graph which shows the operation example of the vibration sensing module based on 1st Embodiment of this indication. 本開示の第1実施形態に基づく感震モジュールの動作例を示すグラフである。It is a graph which shows the operation example of the vibration sensing module based on 1st Embodiment of this indication. 本開示の第1実施形態に基づく感震モジュールの動作例を示すグラフである。It is a graph which shows the operation example of the vibration sensing module based on 1st Embodiment of this indication. 本開示の第1実施形態に基づく感震システムの動作例を示すフローチャートである。It is a flow chart which shows an operation example of a seismic system based on a 1st embodiment of this indication. 本開示の第1実施形態に基づく感震システムの動作例を示す斜視図である。It is a perspective view which shows the operation example of the seismic system based on 1st Embodiment of this indication. 本開示の第2実施形態に基づく感震モジュールを示す斜視図である。It is a perspective view showing a vibration sensing module based on a 2nd embodiment of this indication.
 以下、本開示の好ましい実施の形態につき、図面を参照して具体的に説明する。 Hereinafter, preferred embodiments of the present disclosure will be specifically described with reference to the drawings.
 図1~図4は、本開示の第1実施形態に基づく感震モジュールおよび当該感震モジュールを備えた電子機器を示している。 FIGS. 1 to 4 show a vibration sensing module according to a first embodiment of the present disclosure and an electronic device provided with the vibration sensing module.
 図1は、感震モジュールA1を上側から見た斜視図である。図2は、感震モジュールA1の後述のモジュール基板110を下側から見た斜視図である。図3は、感震モジュールA1を示すブロック構成図である。本実施形態の感震モジュールA1は、モジュール基板110、加速度センサ120、モジュール制御部130、モジュール記憶部140および振動発電部150を備えている。感震モジュールA1は、たとえば電子機器B1に取付けられて、電子機器B1が受けた振動を検出するために用いられる。 FIG. 1 is a perspective view of the vibration sensing module A1 as viewed from above. FIG. 2 is a perspective view of the below-described module substrate 110 of the vibration sensing module A1 as viewed from below. FIG. 3 is a block diagram showing the vibration sensing module A1. The vibration sensing module A1 according to the present embodiment includes a module substrate 110, an acceleration sensor 120, a module control unit 130, a module storage unit 140, and a vibration power generation unit 150. The vibration sensing module A1 is attached to, for example, the electronic device B1, and is used to detect a vibration received by the electronic device B1.
 モジュール基板110は、感震モジュールA1の土台であり、たとえばガラスエポキシ樹脂からなる基材と当該基材に形成された配線部とからなる。モジュール基板110の形状や大きさは特に限定されず、本実施形態においては、6mm~9mm角程度の平面視矩形状であり、厚さが0.8mm~1.5mm程度である。前記配線部は、複数の実装電極111を有する。実装電極111は、モジュール基板110の片面に形成されており、モジュール基板110を振動発電部150に搭載するために用いられる。実装電極111は、たとえばCu、Ni、Au等のめっき層からなる。 The module substrate 110 is a base of the vibration sensing module A1, and includes, for example, a base made of glass epoxy resin and a wiring portion formed on the base. The shape and size of the module substrate 110 are not particularly limited. In the present embodiment, the module substrate 110 has a rectangular shape in plan view of about 6 mm to 9 mm and a thickness of about 0.8 mm to 1.5 mm. The wiring portion has a plurality of mounting electrodes 111. The mounting electrode 111 is formed on one side of the module substrate 110, and is used to mount the module substrate 110 on the vibration power generation unit 150. The mounting electrode 111 is formed of a plating layer of, for example, Cu, Ni, Au or the like.
 加速度センサ120は、複数の検出軸について加速度を検出し、検出した加速度に応じた信号を出力するものである。加速度センサ120の具体的構成は、複数の検出軸について加速度を検出可能なものであれば特に限定されない。本実施形態においては、加速度センサ120は、いわゆるMEMSセンサによって構成されており、互いに直角である。x軸、y軸およびz軸について加速度を検出可能とされている加速度センサ120を構成するMEMSセンサの検出原理は特に限定されず、たとえば互いに櫛歯構造とされた固定側部分および可動側部分の相対位置に応じて変化する静電容量を用いて加速度を検出する検出原理が挙げられる。 The acceleration sensor 120 detects acceleration on a plurality of detection axes, and outputs a signal corresponding to the detected acceleration. The specific configuration of the acceleration sensor 120 is not particularly limited as long as the acceleration can be detected for a plurality of detection axes. In the present embodiment, the acceleration sensor 120 is constituted by a so-called MEMS sensor, which is perpendicular to each other. The detection principle of the MEMS sensor constituting the acceleration sensor 120 capable of detecting the acceleration with respect to the x axis, the y axis and the z axis is not particularly limited. For example, the stationary side portion and the movable side portion mutually having a comb structure There is a detection principle that detects an acceleration using a capacitance that changes according to the relative position.
 モジュール制御部130は、加速度センサ120によって検出された加速度を用いて以降に説明する感震処理等を行うものである。モジュール制御部130の具体的構成は特に限定されず、一般的なマイクロプロセッサ(CPU)が採用される。 The module control unit 130 uses the acceleration detected by the acceleration sensor 120 to perform seismic processing and the like to be described later. The specific configuration of the module control unit 130 is not particularly limited, and a general microprocessor (CPU) is employed.
 モジュール記憶部140は、加速度センサの状態情報を記憶するものである。モジュール記憶部140は、一般的な半導体メモリによって構成されており、本実施形態においては、モジュール制御部130とモジュール記憶部140とが統合された半導体チップが採用されている。なお、モジュール制御部130は、モジュール記憶部140と別体の部品であってもよい。本実施形態においては、モジュール記憶部140に記憶される状態情報は、重力方向に対する加速度センサ120の姿勢を特定する情報である。 The module storage unit 140 stores state information of the acceleration sensor. The module storage unit 140 is configured by a general semiconductor memory, and in the present embodiment, a semiconductor chip in which the module control unit 130 and the module storage unit 140 are integrated is adopted. The module control unit 130 may be a component separate from the module storage unit 140. In the present embodiment, the state information stored in the module storage unit 140 is information specifying the attitude of the acceleration sensor 120 with respect to the direction of gravity.
 振動発電部150は、振動エネルギーを電力に変換するものである。振動発電部150の具体的な構成や発電原理は特に限定されず、たとえば圧電素子(図示略)を具備した構成や、電磁誘導を利用した構成など、様々な構成を適宜採用しうる。 The vibration power generation unit 150 converts vibration energy into electric power. The specific configuration and power generation principle of the vibration power generation unit 150 are not particularly limited, and various configurations such as a configuration including a piezoelectric element (not shown) or a configuration using electromagnetic induction may be appropriately adopted.
 本実施形態においては、振動発電部150は、z軸方向視においてモジュール基板110よりも大きい矩形状の外形を有しており、モジュール基板110が振動発電部150のz軸方向上面に搭載されている。振動発電部150には、複数の端子151および複数の配線152が形成されている。複数の端子151は、感震モジュールA1をたとえば電子機器B1の回路基板等(図示略)に実装するために用いられる。複数の端子151は、電子機器B1との間で、制御信号の送受や電力供給に用いられる。本実施形態においては、複数の端子151は、外部電源端子1511を含んでいる。外部電源端子1511は、感震モジュールA1の外部電源(後述のバッテリ54)から感震モジュールA1への電力供給に用いられる。複数の配線152は、複数の端子151に各別に繋がっている。複数の配線152の端部には、モジュール基板110の複数の実装電極111が、はんだ129によって接続されている。 In the present embodiment, the vibration power generation unit 150 has a rectangular outer shape larger than the module substrate 110 in the z-axis direction view, and the module substrate 110 is mounted on the upper surface of the vibration power generation unit 150 in the z-axis direction. There is. In the vibration power generation unit 150, a plurality of terminals 151 and a plurality of wirings 152 are formed. The plurality of terminals 151 are used, for example, to mount the vibration sensing module A1 on a circuit board or the like (not shown) of the electronic device B1. The plurality of terminals 151 are used for transmission and reception of control signals and power supply with the electronic device B1. In the present embodiment, the plurality of terminals 151 include an external power supply terminal 1511. The external power supply terminal 1511 is used to supply power from the external power supply (a battery 54 described later) of the vibration sensing module A1 to the vibration sensing module A1. The plurality of wirings 152 are respectively connected to the plurality of terminals 151. The plurality of mounting electrodes 111 of the module substrate 110 are connected to the end portions of the plurality of wires 152 by solder 129.
 図3においては、電力配線を実線で示しており、制御配線を点線で示している。振動発電部150からの電力出力線は、加速度センサ120およびモジュール制御部130に接続されている。制御信号の送受に用いられる端子151は、制御配線によってモジュール制御部130に接続されている。外部電源端子1511は、スイッチ160を介して加速度センサ120およびモジュール制御部130に接続されている。 In FIG. 3, the power wiring is indicated by a solid line, and the control wiring is indicated by a dotted line. The power output line from the vibration power generation unit 150 is connected to the acceleration sensor 120 and the module control unit 130. The terminal 151 used to transmit and receive control signals is connected to the module control unit 130 by control wiring. The external power supply terminal 1511 is connected to the acceleration sensor 120 and the module control unit 130 via the switch 160.
 図4は、感震モジュールA1が取付けられた電子機器B1を示すブロック構成図である。電子機器B1は、感震モジュールA1、機器制御部51、表示部52、インターフェース部53およびバッテリ54を備えている。電子機器B1の用途および機能は特に限定されず、たとえば地震が生じた場合に、その振動を感震モジュールA1が検出可能な程度に振動しうる機器である。 FIG. 4 is a block diagram showing the electronic device B1 to which the vibration sensing module A1 is attached. The electronic device B1 includes a vibration sensing module A1, a device control unit 51, a display unit 52, an interface unit 53, and a battery 54. The application and function of the electronic device B1 are not particularly limited. For example, when an earthquake occurs, the electronic device B1 is a device that can vibrate to such an extent that the vibration detection module A1 can detect the vibration.
 機器制御部51は、電子機器B1の全体を制御するものである。機器制御部51は、たとえばマイクロプロセッサによって構成されており、適宜メモリを具備している。表示部52は、電子機器B1の動作状況等を表示するためのものであり、たとえば液晶表示パネルからなる。インターフェース部53は、電子機器B1の外部との通信送受や電力供給を行うための部位である。インターフェース部53の通信形態としては有線通信および無線通信のいずれであってもよい。バッテリ54は、充電池または乾電池であり、感震モジュールA1の外部電源の一例に相当する。 The device control unit 51 controls the entire electronic device B1. The device control unit 51 is constituted of, for example, a microprocessor, and appropriately includes a memory. The display unit 52 is for displaying the operation status of the electronic device B1 and the like, and is formed of, for example, a liquid crystal display panel. The interface unit 53 is a unit for performing communication transmission / reception with the outside of the electronic device B1 and power supply. The communication mode of the interface unit 53 may be either wired communication or wireless communication. The battery 54 is a rechargeable battery or a dry battery, and corresponds to an example of an external power supply of the vibration sensing module A1.
 次に、感震モジュールA1および電子機器B1の動作について以下に説明する。 Next, the operation of the vibration sensing module A1 and the electronic device B1 will be described below.
 図5は、感震モジュールA1の動作例を示している。ステップS0において感震モジュールA1の電源がONにされる。加速度センサ120は、あらかじめモジュール制御部130等に記憶されたプログラムにしたがって、以降の処理を行う。 FIG. 5 shows an operation example of the vibration sensing module A1. In step S0, the power supply of the vibration sensing module A1 is turned on. The acceleration sensor 120 performs the following processing according to a program stored in advance in the module control unit 130 or the like.
 ステップS1においては、初期状態記憶モードM1を開始する。この初期状態記憶モードM1は、地震等の振動が発生していない定常時に行われる。本実施形態においては、初期状態記憶モードM1は、電子機器B1のバッテリ54から外部電源端子1511を介して感震モジュールA1に供給される電力によって実行される。すなわち、モジュール制御部130は、スイッチ160を開状態とすることにより、バッテリ54から外部電源端子1511を介して加速度センサ120およびモジュール制御部130への電力供給を行わせる。 In step S1, an initial state storage mode M1 is started. The initial state memory mode M1 is performed in a steady state in which no vibration such as an earthquake occurs. In the present embodiment, the initial state storage mode M1 is executed by the power supplied from the battery 54 of the electronic device B1 to the vibration sensing module A1 via the external power supply terminal 1511. That is, the module control unit 130 causes the battery 54 to supply power to the acceleration sensor 120 and the module control unit 130 via the external power supply terminal 1511 by opening the switch 160.
 たとえば、ステップS2において、加速度センサ120のx軸、y軸およびz軸について加速度データを取得する。そして、ステップS3において、重力方向Ngを特定する。地震等の振動が発生していない定常時においては、加速度センサ120に負荷される加速度は、重力加速度のみと考えられる。x軸、y軸およびz軸の加速度をベクトル合成し、重力方向Ngを特定する。モジュール制御部130は、この重力方向Ngを初期重力方向Ngiとしてモジュール記憶部140に格納する。次いでステップS4において、初期重力方向Ngiと直角である2軸を選定する。これらの軸は、互いに直角であり、水平軸として定義される。モジュール制御部130は、これらの水平軸を、モジュール記憶部140に格納する。次いで、ステップS5において、ゼロ点補正を行う。地震等の振動が発生していない状態であって、重力加速度のみが負荷されている定常時におけるx軸、y軸およびz軸の検出加速度をそれぞれの軸の加速度のゼロ点として、モジュール制御部130はモジュール記憶部140に格納する。 For example, in step S2, acceleration data is acquired for the x axis, y axis, and z axis of the acceleration sensor 120. Then, in step S3, the gravity direction Ng is specified. In a steady state in which no vibration such as an earthquake occurs, the acceleration applied to the acceleration sensor 120 is considered to be only the gravitational acceleration. The accelerations in the x-axis, y-axis and z-axis are vector synthesized to specify the gravity direction Ng. The module control unit 130 stores the gravity direction Ng in the module storage unit 140 as the initial gravity direction Ngi. Next, in step S4, two axes perpendicular to the initial gravity direction Ngi are selected. These axes are perpendicular to one another and are defined as horizontal axes. The module control unit 130 stores these horizontal axes in the module storage unit 140. Next, in step S5, zero point correction is performed. Module control unit with the detected acceleration of x-axis, y-axis and z-axis in steady state with no gravitational vibration and load only gravity acceleration as the zero point of acceleration of each axis 130 is stored in the module storage unit 140.
 初期状態記憶モードM1が終了すると、モジュール制御部130は、待機状態となる。当該待機状態においては、モジュール制御部130は、加速度センサ120を用いた振動検知等を行わない。本実施形態においては、ステップS5の後にステップS6を実行する。ステップS6は、振動の発生により振動発電部150において発電がなされ、振動発電部150から電力が出力されるステップである。すなわち、振動発電部150に発電を生じさせる程度の振動が生じない期間においては、感震モジュールA1は、ステップS6が実行されるまで待機した状態が維持される。 When the initial state storage mode M1 ends, the module control unit 130 enters a standby state. In the standby state, the module control unit 130 does not perform vibration detection or the like using the acceleration sensor 120. In the present embodiment, step S6 is performed after step S5. Step S6 is a step in which the vibration power generation unit 150 generates electric power due to the generation of vibration, and the vibration power generation unit 150 outputs electric power. That is, in a period in which the vibration generating unit 150 does not generate vibration to such an extent as to generate power, the vibration sensing module A1 is maintained in the standby state until step S6 is performed.
 振動発電部150に発電を生じさせる程度の振動が生じると、ステップS6が実行される。すなわち、振動発電部150からの電力が、加速度センサ120およびモジュール制御部130に供給される。すると、モジュール制御部130は、この電力を利用してステップS7(振動計測モードM2)を開始する。なお、振動計測モードM2を開始した以降の処理の一部は、振動発電部150からの電力のみによって行われてもよい。また、振動計測モードM2を開始した以降の処理は、振動発電部150からの電力と外部電源端子1511を介したバッテリ54(外部電力)からの電力とを併せた電力によって行われてもよいし、バッテリ54(外部電力)からの電力のみによって行われてもよい。バッテリ54からの電力を用いて処理を行う場合、モジュール制御部130は、スイッチ160を開状態とする。 Step S6 is executed when the vibration generating unit 150 generates vibration to a degree that causes power generation. That is, the power from the vibration power generation unit 150 is supplied to the acceleration sensor 120 and the module control unit 130. Then, the module control unit 130 starts step S7 (vibration measurement mode M2) using this power. In addition, a part of the process after starting vibration measurement mode M2 may be performed only by the electric power from the vibration electric power generation part 150. FIG. In addition, processing after the start of vibration measurement mode M2 may be performed by power combining the power from vibration power generation unit 150 and the power from battery 54 (external power) via external power supply terminal 1511. , And may be performed only by the power from the battery 54 (external power). When processing is performed using the power from the battery 54, the module control unit 130 opens the switch 160.
 次いで、ステップS7においては、振動検知処理を行う。この振動検知処理は、有意な振動が発生しているかを検知するものであり、たとえば以下の手順により実行される。まず、ステップS71において、加速度センサ120のx軸、y軸およびz軸の加速度、または重力方向Ngおよび水平2軸の加速度を取得し、ステップS5において初期状態情報として記憶した初期加速度との差分を各軸について算出する。そして、すべての軸についての加速度の差分値を合計し、総和を算出する。次いで、ステップS72においてステップS71で得られた加速度の総和と、予めモジュール記憶部140に記憶されていた加速度閾値とを比較する。また、いずれかの軸の単体の加速度や、水平2軸のみの加速度、あるいは任意に選択した複数の軸の加速度の合計値、のいずれかを、対応する加速度閾値と比較する構成であってもよい。たとえば、加速度の総和が加速度閾値よりも大である場合、振動を検知したとして(ステップS72:Yes)、ステップS9を実行する。一方、加速度の総和が加速度閾値以下である場合(ステップS72:No)、有意な振動が付与されていないと判定し、モジュール制御部130は、ステップS8において自己診断の要否を判定する。たとえば、電子機器B1の機器制御部51からの指示等により自己診断が必要である場合、所定の条件変更に対する加速度センサ120の状態変化によって加速度センサ120の自己診断を行う。本実施形態においては、たとえば加速度センサ120に所定の電圧を印加することにより、櫛歯状の可動部が正常に稼動しているか否かに基いて診断する。自己診断した後には、ステップS1に回帰する。一方、有意な振動が付与されていると判定した場合、(ステップS72:Yes)、モジュール制御部130は、ステップS9において地震波計測を実行する。なお、消費電力の削減等の観点から、ステップS9の地震波計測を実行するまでの処理においては、加速度センサ120の加速度のサンプリングレートは、比較的低周波数であることが好ましく、たとえば100Hz程度に設定される。また、有意な振動が付与されていると判定した場合、(ステップS72:Yes)、モジュール制御部130は、有意な振動を検出したことを報知する検出信号を出力してもよい。この検出信号は、感震モジュールA1の電源がOFFになるまで維持されてもよいし、予め設定された時間だけ維持されてもよい。また、感震モジュールA1が、ステップS0において電源ONされた以降、ステップS9に移行した回数を、モジュール記憶部140に記憶させてもよい。 Next, in step S7, vibration detection processing is performed. The vibration detection process is performed to detect whether significant vibration is generated, and is performed, for example, by the following procedure. First, in step S71, the x-axis, y-axis and z-axis accelerations of the acceleration sensor 120 or the gravity direction Ng and horizontal two-axis acceleration are obtained, and the difference from the initial acceleration stored as initial state information in step S5 is obtained. Calculate for each axis. And the difference value of the acceleration about all the axes is totaled, and a total is calculated. Next, in step S72, the sum of the accelerations obtained in step S71 is compared with the acceleration threshold value stored in advance in the module storage unit 140. In addition, even if a single acceleration of any axis, an acceleration of only two horizontal axes, or a total value of accelerations of a plurality of arbitrarily selected axes is compared with the corresponding acceleration threshold, Good. For example, if the sum of the accelerations is larger than the acceleration threshold, it is determined that the vibration is detected (step S72: Yes), and step S9 is executed. On the other hand, if the sum of the accelerations is equal to or less than the acceleration threshold (No at step S72), it is determined that no significant vibration is applied, and the module control unit 130 determines the necessity of self-diagnosis at step S8. For example, when a self-diagnosis is necessary according to an instruction from the device control unit 51 of the electronic device B1, the self-diagnosis of the acceleration sensor 120 is performed by a change in the state of the acceleration sensor 120 with respect to a predetermined condition change. In the present embodiment, for example, by applying a predetermined voltage to the acceleration sensor 120, a diagnosis is performed based on whether or not the comb-teeth-like movable part is operating normally. After self-diagnosis, it returns to step S1. On the other hand, when it is determined that the significant vibration is applied (step S72: Yes), the module control unit 130 performs seismic wave measurement in step S9. From the viewpoint of reduction of power consumption etc., in the processing up to execution of seismic wave measurement in step S9, the sampling rate of acceleration of acceleration sensor 120 is preferably a relatively low frequency, for example, set to about 100 Hz Be done. If it is determined that significant vibration is applied (Yes at step S72), the module control unit 130 may output a detection signal notifying that significant vibration has been detected. This detection signal may be maintained until the power of the vibration sensing module A1 is turned off, or may be maintained for a preset time. In addition, after the vibration sensing module A1 is turned on in step S0, the number of times the process proceeds to step S9 may be stored in the module storage unit 140.
 ステップS7の変形例として、上述したステップS71およびステップS72と異なる判定処理を行ってもよい。たとえば、ステップS71において各軸の単独の振動の大きさ(加速度、振幅等)を算出し、ステップS72において、予め設定した各軸の単独の振動の大きさに対する閾値と比較してもよい。あるいは、ステップS71において、3軸の振動の大きさの合成値を算出し、ステップS72において、予め設定した3軸の振動の大きさの合成値に対する閾値と比較してもよい。または、ステップS71において、水平2軸の振動の大きさの合成値を算出し、ステップS72において、予め設定した水平軸のみの振動の大きさの合成値に対する閾値と比較してもよい。 As a modification of step S7, determination processing different from the above-described steps S71 and S72 may be performed. For example, the magnitude (acceleration, amplitude, etc.) of a single vibration of each axis may be calculated in step S71, and compared with a threshold for the magnitude of the single vibration of each axis set in advance in step S72. Alternatively, in step S71, a combined value of the magnitudes of vibrations of the three axes may be calculated, and in step S72, it may be compared with a threshold value for the combined value of the magnitudes of vibrations of the three axes set in advance. Alternatively, in step S71, a composite value of the magnitudes of vibrations of the two horizontal axes may be calculated, and in step S72, it may be compared with a threshold value for a composite value of magnitudes of vibrations of only the horizontal axis set in advance.
 図6は、振動計測モードM2の動作例を示している。ステップS9において振動計測モードM2を開始すると、モジュール制御部130は、第1デジタル化処理S10を実行する。第1デジタル化処理S10は、加速度センサ120からの加速度出力を、第1サンプリングレートR1でサンプリングすることにより、デジタル化された加速度データを取得する処理である。第1サンプリングレートR1の周波数は特に限定されず、モジュール制御部130に付与された振動を十分な解像度で表現しうる周波数が好ましい。本実施形態においては、第1サンプリングレートR1は、たとえば1600Hz程度である。なお、振動計測モードM2においては、重力方向Ngおよび水平2軸の加速度データの合計値、いずれかの軸の単体の加速度、水平2軸のみの加速度、または任意に選択した複数の軸の加速度の合計値、等の加速度データを適宜処理対象として選択可能である。 FIG. 6 shows an operation example of the vibration measurement mode M2. When the vibration measurement mode M2 is started in step S9, the module control unit 130 executes a first digitizing process S10. The first digitizing process S10 is a process of acquiring digitized acceleration data by sampling the acceleration output from the acceleration sensor 120 at a first sampling rate R1. The frequency of the first sampling rate R1 is not particularly limited, and is preferably a frequency that can represent the vibration given to the module control unit 130 with a sufficient resolution. In the present embodiment, the first sampling rate R1 is, for example, about 1600 Hz. In the vibration measurement mode M2, a total value of gravity direction Ng and acceleration data of two horizontal axes, single acceleration of any axis, acceleration of only two horizontal axes, or acceleration of a plurality of arbitrarily selected axes Acceleration data such as a total value can be selected as a processing target as appropriate.
 また、本実施形態においては、第1デジタル化処理S10は、第1選択処理S101を含む。第1選択処理S101は、第1サンプリングレートR1でサンプリングされた加速度データによって構成される振動データについて、第1周波数F1以下の振動を選択的に残存させ、第1周波数F1を超える振動を除外する処理である。第1周波数F1は、第1サンプリングレートR1よりも顕著に低い周波数であり、本実施形態においては、20Hz程度に設定される。これは、一般的な地震の周波数が、概ね0.4Hz~10Hz程度であることに起因しており、一般的な地震の周波数を十分に包含する範囲が選択されている。 Further, in the present embodiment, the first digitizing process S10 includes a first selection process S101. In the first selection processing S101, vibrations having a frequency equal to or less than a first frequency F1 are selectively left for vibration data configured by acceleration data sampled at a first sampling rate R1, and vibrations exceeding the first frequency F1 are excluded. It is a process. The first frequency F1 is a frequency significantly lower than the first sampling rate R1, and is set to about 20 Hz in the present embodiment. This is due to the fact that the frequency of general earthquakes is approximately 0.4 Hz to 10 Hz or so, and the range sufficiently including the frequency of general earthquakes is selected.
 次いで、モジュール制御部130は、ステップS11を実行する。ステップS11においては、モジュール制御部130は、第1デジタル化処理S10によって得られた加速度データ(振動データ)から、当該振動の最大加速度を算出する。この最大加速度は、当該振動の規模を大まかに捉えることに寄与し、たとえばモジュール記憶部140に格納される。 Next, the module control unit 130 executes step S11. In step S11, the module control unit 130 calculates the maximum acceleration of the vibration from the acceleration data (vibration data) obtained by the first digitizing process S10. The maximum acceleration contributes to roughly grasping the magnitude of the vibration, and is stored, for example, in the module storage unit 140.
 次いで、モジュール制御部130は、第2デジタル化処理S12を実行する。第2デジタル化処理S12は、第1デジタル化処理S10によって得られた加速度データ(振動データ)を第2サンプリングレートR2でサンプリングする処理である。第2サンプリングレートR2の周波数は第1サンプリングレートR1よりも低ければ特に限定されず、以降の処理に適した周波数が好ましい。本実施形態においては、第2サンプリングレートR2は、たとえば100Hz程度であり、第1サンプリングレートR1の6.3%程度である。なお、この第2サンプリングレートR2の設定値は、以降に説明するSI値の算出条件に適合させることを目的としている。 Next, the module control unit 130 executes a second digitizing process S12. The second digitizing process S12 is a process of sampling the acceleration data (vibration data) obtained by the first digitizing process S10 at a second sampling rate R2. The frequency of the second sampling rate R2 is not particularly limited as long as it is lower than the first sampling rate R1, and a frequency suitable for the subsequent processing is preferable. In the present embodiment, the second sampling rate R2 is, for example, about 100 Hz, which is about 6.3% of the first sampling rate R1. The setting value of the second sampling rate R2 is intended to be adapted to the calculation condition of the SI value described later.
 また、本実施形態においては、第2デジタル化処理S12は、第2選択処理S121を含む。第2選択処理S121は、第2サンプリングレートR2でサンプリングされた加速度データによって構成される振動データについて、第2周波数F2以下の振動を選択的に残存させ、第2周波数F2を超える振動を除外する処理である。第2周波数F2は、第2サンプリングレートR2よりも顕著に低い周波数であり、本実施形態においては、10Hz程度に設定される。これは、一般的な地震の周波数が、概ね0.4Hz~10Hz程度であることに起因している。 Further, in the present embodiment, the second digitizing process S12 includes a second selection process S121. The second selection processing S121 selectively allows the vibration having the second frequency F2 or less to remain for the vibration data configured by the acceleration data sampled at the second sampling rate R2, and excludes the vibration exceeding the second frequency F2. It is a process. The second frequency F2 is a frequency significantly lower than the second sampling rate R2, and is set to about 10 Hz in the present embodiment. This is because the frequency of a general earthquake is about 0.4 Hz to about 10 Hz.
 次いで、モジュール制御部130は、ステップS13を実行する。ステップS13においては、モジュール制御部130は、第2デジタル化処理S12によって得られた加速度データ(振動データ)を用いてSI値Vを算出する。SI値Vは、地震によって一般的な建物にどの程度の被害が生じるかを数値化したものである。より具体的には、SI値Vは、固有周期が0.1秒から2.5秒で減衰定数が20%の振り子群を当該地震動で加振したときの各振り子の最大速度応答値を平均したものである。なお、ステップS13においては、振動計測モードM2と同様に、重力方向Ngおよび水平2軸の加速度データの合計値、いずれかの軸の単体の加速度、水平2軸のみの加速度、または任意に選択した複数の軸の加速度の合計値、等の加速度データから適宜選択した加速度データに基いて、SI値Vを算出可能である。 Next, the module control unit 130 executes step S13. In step S13, the module control unit 130 calculates the SI value V using the acceleration data (vibration data) obtained by the second digitizing process S12. The SI value V quantifies how much damage a general building will be caused by an earthquake. More specifically, the SI value V is an average of the maximum velocity response value of each pendulum when the natural movement is from 0.1 to 2.5 seconds and the pendulum group with a damping constant of 20% is excited by the earthquake motion. It is In step S13, as in the vibration measurement mode M2, the total value of the gravity direction Ng and acceleration data of two horizontal axes, single acceleration of any axis, acceleration of only two horizontal axes, or any selected The SI value V can be calculated based on acceleration data appropriately selected from acceleration data such as a total value of accelerations of a plurality of axes.
 次いで、ステップS14において、地震レベル判定を行う。このステップS14においては、ステップS13で得られたSI値Vに基づき、当該地震動の大きさ(レベル)を判定する。また、この判定において、ステップS11で得られた最大加速度を追加的に用いてもよい。 Next, in step S14, earthquake level determination is performed. In this step S14, the magnitude (level) of the earthquake motion is determined based on the SI value V obtained in step S13. Further, in this determination, the maximum acceleration obtained in step S11 may be additionally used.
 ステップS14の結果、警戒すべき地震動が発生したと判定された場合、モジュール制御部130は、SI値Vの数値情報、もしくは判定結果信号を電子機器B1の機器制御部51へと出力する。たとえば図4に示す電子機器B1においては、機器制御部51が、地震が発生したこと報知するメッセージやアイコンを表示部52に表示する。また、機器制御部51は、地震時に実行すべきではない電子機器B1の動作を停止させる。あるいは、機器制御部51は、地震時に実行すべき電子機器B1の動作を実行させる。また、機器制御部51は、インターフェース部53から外部に地震が発生したことを報知する報知信号を出力してもよい。なお、ステップS9~ステップS14における計測および判定処理は、いずれかの軸の単体の加速度や、水平2軸のみの加速度、または任意に選択した複数の軸の加速度の合計値を対象として行ってもよい。 As a result of step S14, when it is determined that a seismic movement to be alerted has occurred, the module control unit 130 outputs the numerical value information of the SI value V or the determination result signal to the device control unit 51 of the electronic device B1. For example, in the electronic device B1 shown in FIG. 4, the device control unit 51 displays on the display unit 52 a message or an icon notifying that an earthquake has occurred. In addition, the device control unit 51 stops the operation of the electronic device B1 that should not be performed at the time of an earthquake. Alternatively, the device control unit 51 executes the operation of the electronic device B1 to be executed at the time of an earthquake. Further, the device control unit 51 may output, from the interface unit 53, a notification signal notifying that an earthquake has occurred to the outside. Note that the measurement and determination processing in steps S9 to S14 may be performed using the acceleration of a single body of any axis, the acceleration of only two horizontal axes, or the total value of the accelerations of a plurality of arbitrarily selected axes. Good.
 また、本実施形態の感震モジュールA1は、追加的な処理として、図7に示す地震検知信号出力判定モードM3を実行してもよい。ステップS20において地震検知信号出力判定モードM3が開始されると、モジュール制御部130は、第1判定処理S21を実行する。第1判定処理S21においては、SI値Vと予め設定されたSI値閾値Vtとを比較する。たとえば、SI値VがSI値閾値Vtを超えない場合、当該振動は、地震動ではないと判定される(第1判定処理S21:No、ステップS25)。一方、SI値VがSI値閾値Vtを超える場合、当該振動が地震動である可能性が存在するとして(第1判定処理S21:Yes)、第2判定処理S22に進む。SI値閾値Vtの大きさは任意に設定され、本実施形態においては、たとえば18cm/sec程度である。なお、SI値の単位として、Kineがcm/secと同義で用いられる。 In addition, the earthquake detection module A1 of the present embodiment may execute the earthquake detection signal output determination mode M3 illustrated in FIG. 7 as an additional process. When the earthquake detection signal output determination mode M3 is started in step S20, the module control unit 130 executes a first determination process S21. In the first determination process S21, the SI value V is compared with the SI value threshold value Vt set in advance. For example, when the SI value V does not exceed the SI value threshold value Vt, it is determined that the vibration is not earthquake motion (first determination process S21: No, step S25). On the other hand, when the SI value V exceeds the SI value threshold value Vt, it is determined that there is a possibility that the vibration is an earthquake motion (first determination process S21: Yes), and the process proceeds to the second determination process S22. The magnitude of the SI value threshold Vt is arbitrarily set, and is about 18 cm / sec in this embodiment, for example. As a unit of SI value, Kine is used with the same meaning as cm / sec.
 第2判定処理S22においては、所定時間内においてSI値VがSI値閾値Vtを超えた回数Nを計数する。そして、回数Nと予め設定された回数閾値Ntとを比較する。たとえば、回数Nが回数閾値Ntを超えない場合、当該振動は、地震動ではないと判定される(第2判定処理S22:No、ステップS25)。一方、回数Nが回数閾値Ntを超える場合、当該振動が地震動である可能性が存在するとして(第2判定処理S22:Yes)、第3判定処理S23に進む。回数閾値Ntの大きさは任意に設定され、本実施形態においては、たとえば4である。 In the second determination process S22, the number N of times the SI value V exceeds the SI value threshold Vt within a predetermined time is counted. Then, the number N is compared with a preset number threshold Nt. For example, when the number of times N does not exceed the number of times threshold Nt, it is determined that the vibration is not earthquake motion (second determination process S22: No, step S25). On the other hand, when the number of times N exceeds the number of times threshold Nt, the process proceeds to the third determination processing S23 as there is a possibility that the vibration is an earthquake motion (second determination processing S22: Yes). The magnitude of the number threshold Nt is arbitrarily set, and is 4 in the present embodiment, for example.
 第3判定処理S23においては、所定時間内においてSI値Vの積算値である積算SI値VIを算出する。そして、積算SI値VIと予め設定された積算SI値閾値VItとを比較する。たとえば、積算SI値VIが積算SI値閾値VItを超えない場合、当該振動は、地震動ではないと判定される(第3判定処理S23:No、ステップS25)。一方、積算SI値VIが積算SI値閾値VItを超える場合、当該振動が地震動であるとして(第3判定処理S23:Yes)、ステップS24においてモジュール制御部130は、地震検知信号を出力する。具体的には、地震検知信号をHi状態とする。なお、積算SI値VIの積算が、上述した第2サンプリングレートR2によってサンプリングされた加速度データに基づく場合、連続する5点のSI値Vを積算することにより、積算SI値VIを算出する。また、この場合の積算SI値閾値VItは、たとえば108cm程度である。 In the third determination processing S23, an integrated SI value VI which is an integrated value of the SI value V is calculated within a predetermined time. Then, the integrated SI value VI is compared with a preset integrated SI value threshold value VIt. For example, when the integrated SI value VI does not exceed the integrated SI value threshold value VIt, it is determined that the vibration is not earthquake motion (third determination process S23: No, step S25). On the other hand, when the integrated SI value VI exceeds the integrated SI value threshold value VIt, the module control unit 130 outputs an earthquake detection signal in step S24 on the assumption that the vibration is earthquake motion (third determination process S23: Yes). Specifically, the earthquake detection signal is set to the Hi state. When the integration of the integrated SI value VI is based on the acceleration data sampled at the above-described second sampling rate R2, the integrated SI value VI is calculated by integrating the SI values V of five consecutive points. Further, the integrated SI value threshold value VIt in this case is, for example, about 108 cm.
 ステップS24において地震検知信号がHi状態となった場合、装置制御部210は上述した遮断部260による遮断処理を実行する。一方、第1判定処理S21、第2判定処理S22および第3判定処理S23のいずれかにおいてNo判定であった場合、モジュール制御部130は、ステップS25において地震検知信号をLo状態に維持する。この場合、上述した遮断部260による遮断処理は実行されない。なお、ステップS24およびステップS25における地震検知信号の出力は、単一信号のHi状態とLo状態とを切り替えることに限定されず、地震を検知したか否かの情報がモジュール制御部130から外部に出力される信号出力態様であればよい。また、ステップS25の後、所定の時間が経過した後に、図5のステップS7に復帰する制御としてもよい。 When the earthquake detection signal is in the Hi state in step S24, the device control unit 210 performs the blocking process by the blocking unit 260 described above. On the other hand, if the determination is No in any of the first determination process S21, the second determination process S22, and the third determination process S23, the module control unit 130 maintains the earthquake detection signal in the Lo state in step S25. In this case, the blocking process by the blocking unit 260 described above is not performed. In addition, the output of the earthquake detection signal in step S24 and step S25 is not limited to switching the Hi state and the Lo state of a single signal, and information on whether or not an earthquake is detected is output from the module control unit 130 It may be any signal output mode to be output. Further, after step S25, control may be performed to return to step S7 of FIG. 5 after a predetermined time has elapsed.
 図8A~図11Cは、地震検知信号出力判定モードM3による判定例を示している。図8A~図11Cは、地震動ではない衝突振動が付与されたものである。図8A-Cは、衝突回数が1回、図9A-Cは、衝突回数が2回、図10A-Cは、衝突回数が3回、図11A-Cは、衝突回数が4回の例である。 FIGS. 8A to 11C show determination examples in the earthquake detection signal output determination mode M3. FIGS. 8A to 11C are applied with collision vibrations that are not earthquake motions. 8A-C show one collision, FIG. 9A-C shows two collisions, FIG. 10A-C shows three collisions, and FIGS. 11A-C show four collisions. is there.
 図8A、図8Bは、衝突回数が1回の場合の水平2軸の加速度グラフである。図示されたように、1回の衝突に対応する加速度ピークが表れている。図8Cは、衝突回数が1回の場合のSI値Vおよび積算SI値VIを示している。図8Cに示すように、本例においては、SI値閾値Vtを超えるSI値Vが存在し、第1判定処理S21はYes判定である。しかし、回数Nは、2であり、回数閾値Nt(=4)を超えない。このため、第2判定処理S22はNo判定であり、ステップS25において地震動ではない誤検知であると判定される。 FIG. 8A and FIG. 8B are acceleration graphs of horizontal two axes when the number of collisions is one. As shown, an acceleration peak corresponding to one collision appears. FIG. 8C shows the SI value V and the integrated SI value VI when the number of collisions is one. As shown in FIG. 8C, in the present example, there is an SI value V that exceeds the SI value threshold Vt, and the first determination processing S21 is a Yes determination. However, the number N is 2 and does not exceed the number threshold Nt (= 4). For this reason, the second determination process S22 is a No determination, and it is determined in step S25 that it is an erroneous detection that is not an earthquake motion.
 図9A、図9Bは、衝突回数が2回の場合の水平2軸の加速度グラフである。図示されたように、2回の衝突に対応する加速度ピークが表れている。図9Cは、衝突回数が2回の場合のSI値Vおよび積算SI値VIを示している。図9Cに示すように、本例においては、SI値閾値Vtを超えるSI値Vが存在し、第1判定処理S21はYes判定である。しかし、回数Nは、3であり、回数閾値Nt(=4)を超えない。このため、第2判定処理S22はNo判定であり、ステップS25において地震動ではない誤検知であると判定される。 FIG. 9A and FIG. 9B are acceleration graphs of horizontal two axes when the number of collisions is two. As shown, acceleration peaks corresponding to two collisions appear. FIG. 9C shows the SI value V and the integrated SI value VI when the number of collisions is two. As shown in FIG. 9C, in the present example, there is an SI value V that exceeds the SI value threshold Vt, and the first determination processing S21 is a Yes determination. However, the number N is 3 and does not exceed the number threshold Nt (= 4). For this reason, the second determination process S22 is a No determination, and it is determined in step S25 that it is an erroneous detection that is not an earthquake motion.
 図10A、図10Bは、衝突回数が3回の場合の水平2軸の加速度グラフである。図示されたように、3回の衝突に対応する加速度ピークが表れている。図10Cは、衝突回数が3回の場合のSI値Vおよび積算SI値VIを示している。図10Cに示すように、本例においては、SI値閾値Vtを超えるSI値Vが存在し、第1判定処理S21はYes判定である。しかし、回数Nは、3であり、回数閾値Nt(=4)を超えない。このため、第2判定処理S22はNo判定であり、ステップS25において地震動ではない誤検知であると判定される。なお、本例においては、積算SI値VIが積算SI値閾値VItを超えており、仮に第3判定処理S23を実行した場合は、当該処理についてはYes判定となる。 FIG. 10A and FIG. 10B are acceleration graphs of horizontal two axes when the number of collisions is three. As shown, acceleration peaks corresponding to three collisions appear. FIG. 10C shows the SI value V and the integrated SI value VI when the number of collisions is three. As shown in FIG. 10C, in the present example, there is an SI value V that exceeds the SI value threshold Vt, and the first determination processing S21 is a Yes determination. However, the number N is 3 and does not exceed the number threshold Nt (= 4). For this reason, the second determination process S22 is a No determination, and it is determined in step S25 that it is an erroneous detection that is not an earthquake motion. In the present example, when the integrated SI value VI exceeds the integrated SI value threshold value VIt and the third determination process S23 is performed, the process is determined as Yes.
 図11A、図11Bは、衝突回数が4回の場合の水平2軸の加速度グラフである。図示されたように、4回の衝突に対応する加速度ピークが表れている。図11Cは、衝突回数が4回の場合のSI値Vおよび積算SI値VIを示している。図11Cに示すように、本例においては、SI値閾値Vtを超えるSI値Vが存在し、第1判定処理S21はYes判定である。また、回数Nは、5であり、回数閾値Nt(=4)を超えている。このため、第2判定処理S22はYes判定である。しかし、積算SI値VIが積算SI値閾値VItを超えていないため、第3判定処理S23は、No判定であり、ステップS25において地震動ではない誤検知であると判定される。 FIG. 11A and FIG. 11B are acceleration graphs of horizontal two axes when the number of collisions is four. As shown, acceleration peaks corresponding to four collisions appear. FIG. 11C shows the SI value V and the integrated SI value VI when the number of collisions is four. As shown in FIG. 11C, in the present example, there is an SI value V that exceeds the SI value threshold Vt, and the first determination processing S21 is a Yes determination. Further, the number N is 5 and exceeds the number threshold Nt (= 4). Therefore, the second determination process S22 is a Yes determination. However, since the integrated SI value VI does not exceed the integrated SI value threshold value VIt, the third determination processing S23 is a No determination, and it is determined in step S25 that the erroneous detection is not earthquake motion.
 図12は、電子機器B1の状態情報比較モードM4の動作例を示している。この状態情報比較モードM4が実行される状況としては、電子機器B1が建物等に設置され、通常は移動せずに静置される用途である場合が想定される。たとえば、機器制御部51がステップS30において状態情報比較モードM4を開始すると、ステップS31において電子機器B1に設けられた感震モジュールA1が上述した初期状態記憶モードM1の実行により初期重力方向Ngiをすでに特定済みであるか否かを判定する。初期重力方向Ngiが未特定である場合(ステップS31:No)、機器制御部51は、感震モジュールA1に初期状態記憶モードM1を実行させる。 FIG. 12 shows an operation example of the state information comparison mode M4 of the electronic device B1. As a situation in which the state information comparison mode M4 is executed, it is assumed that the electronic device B1 is installed in a building or the like and is normally used without being moved and left still. For example, when the device control unit 51 starts the state information comparison mode M4 in step S30, the seismic module A1 provided in the electronic device B1 in step S31 has already performed the initial state storage mode M1 and has already performed the initial gravity direction Ngi. It is determined whether it has been identified. When the initial gravity direction Ngi is not specified (step S31: No), the device control unit 51 causes the vibration sensing module A1 to execute the initial state storage mode M1.
 感震モジュールA1の初期重力方向Ngiが特定済みである場合(ステップS31:Yes)、機器制御部51は、ステップS32を実行する。ステップS32においては、機器制御部51は、その時点での加速度センサ120のx軸、y軸およびz軸について加速度データを感震モジュールA1に取得させる。そして、その時点の重力方向Ngを特定する。 When the initial gravity direction Ngi of the vibration sensing module A1 has been identified (step S31: Yes), the device control unit 51 executes step S32. In step S32, the device control unit 51 causes the seismic sensor module A1 to acquire acceleration data for the x-axis, y-axis, and z-axis of the acceleration sensor 120 at that time. Then, the gravity direction Ng at that time is specified.
 次いで、ステップS33において、予め記憶された初期重力方向NgiとステップS32において特定された重力方向Ngとの方向を比較する。たとえば、図13において想像線(二点鎖線)で示された電子機器B1は、初期重力方向Ngiを特定した際の初期状態を示している。この後に、経年変化等によって電子機器B1の重力方向Ngに対する姿勢が変化した状態が実線で示されている。電子機器B1が重力方向Ngに対して傾いた場合、電子機器B1の感震モジュールA1によって特定された初期重力方向Ngiがその時点での重力方向Ngと異なる方向を指すベクトルとなる。ステップS33においては、重力方向Ngと初期重力方向Ngiとの差異を、たとえば角度量として算出し、機器制御部51内のメモリに格納する。そして、機器制御部51は、ステップS34を実行する。 Next, in step S33, the direction of the initial gravity direction Ngi stored in advance is compared with the direction of gravity Ng specified in step S32. For example, the electronic device B1 indicated by an imaginary line (two-dot chain line) in FIG. 13 indicates an initial state when the initial gravity direction Ngi is specified. Thereafter, a solid line indicates a state in which the attitude of the electronic device B1 with respect to the gravity direction Ng changes due to secular change and the like. When the electronic device B1 is inclined with respect to the gravity direction Ng, the initial gravity direction Ngi specified by the vibration sensing module A1 of the electronic device B1 is a vector pointing in a direction different from the gravity direction Ng at that time. In step S33, the difference between the gravity direction Ng and the initial gravity direction Ngi is calculated, for example, as an angle amount, and stored in the memory in the device control unit 51. Then, the device control unit 51 executes step S34.
 ステップS34においては、電子機器B1について算出した重力方向Ngと初期重力方向Ngiとの差異に相当する角度量から、電子機器B1が重力方向Ngを基準としてどの程度傾いたかを特定する。これにより、電子機器B1が設置された箇所の経年変化に伴う変形等を認識することができる。 In step S34, how much the electronic device B1 is inclined with respect to the gravity direction Ng is specified from an angle amount corresponding to the difference between the gravity direction Ng calculated for the electronic device B1 and the initial gravity direction Ngi. As a result, it is possible to recognize deformation or the like associated with the secular change of the portion where the electronic device B1 is installed.
 本実施形態によれば、振動発電部150において発電が生じる程度の振動が発生すると、振動発電部150からの電力を用いて、振動計測モードM2を開始する。これにより、地震等の振動が生じた場合に、その振動を対象とした検出処理を遅滞なく確実に開始することが可能である。一方、振動発電部150において発電が生じる程度の振動が発生するまでは、感震モジュールA1は、振動検知等の処理を行わない。このため、非振動発生時においては、感震モジュールA1が電力を消費しない状態とすることができる。したがって、感震モジュールA1によれば、非振動発生時の電力供給を不要とすることが可能である。 According to the present embodiment, when the vibration generating unit 150 generates vibrations to such an extent that power generation occurs, the vibration measurement mode M2 is started using the power from the vibration generating unit 150. Thereby, when a vibration such as an earthquake occurs, it is possible to reliably start the detection processing for the vibration without delay. On the other hand, the vibration sensing module A1 does not perform processing such as vibration detection until the vibration generating unit 150 generates vibration to such an extent that power generation occurs. For this reason, at the time of non-vibration generation | occurrence | production, it can be set as the state which does not consume electric power in vibration-sensing module A1. Therefore, according to the vibration sensing module A1, it is possible to dispense with the power supply at the time of non-vibration occurrence.
 感震モジュールA1は、外部電源端子1511を備えており、バッテリ54等の外部電力からの電力供給を受けることが可能である。これにより、たとえば、振動発電部150からの電力によって振動計測モードM2を開始した後は、振動検出や地震波測定を行うための各処理を、外部電力を用いて行うことが可能である。これは、モジュール制御部130やモジュール記憶部140として、高機能な処理を実行可能な仕様のものを採用した場合に、モジュール制御部130の機能を十分に発揮させることが可能であるという利点がある。あるいは、振動発電部150において発電が生じる程度の振動が発生した場合に、それ以降の所定時間の間、加速度センサ120およびモジュール制御部130に振動検知や地震波測定のために必要な処理を連続してあるいは断続的に実行させることができる。 The vibration sensing module A1 includes an external power supply terminal 1511, and can receive power supply from external power such as the battery 54 or the like. Thereby, for example, after the vibration measurement mode M2 is started by the power from the vibration power generation unit 150, each process for performing vibration detection or seismic wave measurement can be performed using external power. This is an advantage that when the module control unit 130 or the module storage unit 140 adopts a specification capable of executing high-performance processing, the function of the module control unit 130 can be sufficiently exhibited. is there. Alternatively, when vibration occurs to such an extent that power generation occurs in the vibration power generation unit 150, the acceleration sensor 120 and the module control unit 130 continue processing necessary for vibration detection and seismic wave measurement for a predetermined time thereafter. It can be performed at once or intermittently.
 本実施形態においては、加速度センサ120、モジュール制御部130およびモジュール記憶部140が実装されたモジュール基板110が、振動発電部150に実装されている。これにより、感震モジュールA1の小型化を図ることができる。 In the present embodiment, the module substrate 110 on which the acceleration sensor 120, the module control unit 130 and the module storage unit 140 are mounted is mounted on the vibration power generation unit 150. Thereby, the miniaturization of the vibration sensing module A1 can be achieved.
 感震モジュールA1は、モジュール制御部130およびモジュール記憶部140を有する。モジュール制御部130によって加速度センサ120からの加速度データに基づいた処理を行い、その処理結果をモジュール記憶部140に格納しておくことが可能である。したがって、感震モジュールA1の高機能化を図ることができる。 The vibration sensing module A1 has a module control unit 130 and a module storage unit 140. The module control unit 130 can perform processing based on acceleration data from the acceleration sensor 120, and the processing result can be stored in the module storage unit 140. Therefore, the function of the vibration sensing module A1 can be enhanced.
 感震モジュールA1は、図5に示した初期状態記憶モードM1を実行することにより、機器設置当初等の初期状態における加速度センサ120の状態情報を初期状態情報としてモジュール記憶部140に格納しておくことができる。初期状態情報として初期重力方向Ngiを記憶させておくことにより、図12および図13を参照して説明した電子機器B1の高機能化を実現することができる。ステップS7~ステップS72の振動検知処理を行うことにより、地震動による加速度の変化である可能性が高い状態を、定量的に且つ迅速に検知することができる。また、ステップS8の自己診断処理を行うことにより、長期間の使用によって加速度センサ120が意図しない不動作状態にあることを認識することができる。たとえば、ステップS8を実行した結果、加速度センサ120が正常に動作していないと診断された場合、モジュール制御部130は、外部にセンサエラー信号を出力する構成とすることができる。 The vibration control module A1 stores the state information of the acceleration sensor 120 in the initial state such as the initial stage of installation in the module storage unit 140 as the initial state information by executing the initial state storage mode M1 shown in FIG. be able to. By storing the initial gravity direction Ngi as the initial state information, it is possible to realize the high functionality of the electronic device B1 described with reference to FIGS. 12 and 13. By performing the vibration detection process of step S7 to step S72, it is possible to quantitatively and quickly detect the state of high possibility of the change of the acceleration due to the earthquake motion. In addition, by performing the self-diagnosis process of step S8, it is possible to recognize that the acceleration sensor 120 is in an unintended non-operating state by long-term use. For example, as a result of performing step S8, when it is diagnosed that the acceleration sensor 120 is not operating normally, the module control unit 130 can be configured to output a sensor error signal to the outside.
 図6に示したように、振動計測モードM2においては、第1デジタル化処理S10と第2デジタル化処理S12との2段階の処理を行う。比較的高周波数の第1周波数F1を用いた第1デジタル化処理S10を行うことにより、実際に生じた振動を十分な解像度でサンプリングすることができる。十分な解像度でサンプリングすることにより、たとえば第1選択処理S101において、地震動とは異なる振動成分を確実に排除することができる。第1デジタル化処理S10を終えた後に第2デジタル化処理S12を行うことは、たとえば第1デジタル化処理S10を実行すること無く第2デジタル化処理S12を実行した場合に、地震動とは異なるノイズとしての高周波数振動が、第2デジタル化処理S12の第2周波数F2とたまたま合致してしまい、地震動に近い周波数の振動として認識されることを防止することができる。また、第2デジタル化処理S12においてより低周波数の第2周波数F2によってサンプリングすることにより、ステップS13におけるSI値V算出に用いるデータ量を適切に削減することができる。 As shown in FIG. 6, in the vibration measurement mode M2, a two-step process of a first digitizing process S10 and a second digitizing process S12 is performed. By performing the first digitizing process S10 using the relatively high frequency first frequency F1, it is possible to sample an actually generated vibration with a sufficient resolution. By sampling with sufficient resolution, for example, in the first selection process S101, it is possible to reliably eliminate the vibration component different from the earthquake motion. Performing the second digitizing process S12 after completing the first digitizing process S10 is, for example, noise different from earthquake motion when the second digitizing process S12 is executed without executing the first digitizing process S10. It can prevent that the high frequency vibration as is accidentally matched with the 2nd frequency F2 of the 2nd digitization processing S12, and being recognized as a vibration of a frequency near earthquake movement. Further, by sampling at the second frequency F2 of lower frequency in the second digitizing process S12, it is possible to appropriately reduce the amount of data used for calculating the SI value V in step S13.
 図7に示した地震検知信号出力判定モードM3を実行することにより、第1デジタル化処理S10および第2デジタル化処理S12の実行の結果、衝突振動が地震動であると判定される場合であっても、このような誤検知を排除することができる。この誤検知の判定において、第1判定処理S21におけるSI値VとSI値閾値Vtとの比較は、瞬間的な振動規模から地震動であるか否かを判定するものであり、合理的である。また、第2判定処理S22における回数Nと回数閾値Ntとの比較は、振動の時間的な継続性に基いて地震動であるか否かを判定するものであり、判定の高精度化に好ましい。また、第3判定処理S23における積算SI値VIと積算SI値閾値VItとの比較は、振動のエネルギーが時間的に継続していることを判定条件とするものである。このような判定は、複数回の衝突振動が離散的なエネルギー分布となるのに対し、地震動が継続的なエネルギー分布になることに基づくものであり、判定の高精度化に好適である。そして、第1判定処理S21、第2判定処理S22および第3判定処理S23のすべてを実行することにより、誤検知を顕著に削減することができる。 By executing the earthquake detection signal output determination mode M3 shown in FIG. 7, as a result of the execution of the first digitizing process S10 and the second digitizing process S12, it is determined that the collision vibration is earthquake movement. Even such false detection can be eliminated. In the determination of this false detection, the comparison between the SI value V and the SI value threshold value Vt in the first determination processing S21 is to determine whether or not there is earthquake motion from the instantaneous vibration scale, which is rational. Further, the comparison between the number N and the number threshold Nt in the second determination processing S22 is to determine whether or not the earthquake motion is based on the temporal continuity of the vibration, which is preferable for improving the accuracy of the determination. Further, the comparison between the integrated SI value VI and the integrated SI value threshold value VIt in the third determination processing S23 is based on the determination condition that the energy of vibration continues temporally. Such a determination is based on the fact that the earthquake motion has a continuous energy distribution, whereas the collision vibration has a discrete energy distribution, and this determination is suitable for high accuracy determination. Then, by executing all of the first determination processing S21, the second determination processing S22, and the third determination processing S23, false detection can be significantly reduced.
 なお、図6、7に示すステップS13,S14およびステップS20~S25において、PGA(peak ground acceleration:表面最大加速度)値を用いてもよい。すなわち、ステップS13,S14およびステップS20~S25において設定された、SI値について閾値や判断基準となる回数等と同様に、PGA値について閾値や判断基準となる回数等を設定し、SI値を用いた場合と同様の判断処理を行ってもよい。なお、PGA値の採用については、SI値に代えてPGA値を用いてもよいし、SI値とPGA値とを併用してもよい。 In steps S13 and S14 and steps S20 to S25 shown in FIGS. 6 and 7, a PGA (peak ground acceleration) value may be used. That is, similar to the threshold value and the number of times serving as the determination reference for the SI value set in steps S13 and S14 and steps S20 to S25, the threshold and the number of times serving as the determination reference are set for the PGA value The same judgment processing as in the case of the case may be performed. In addition, about adoption of a PGA value, it may replace with a SI value and may use a PGA value, and may use together a SI value and a PGA value.
 図14は、本開示の他の実施形態を示している。なお、これらの図において、上記実施形態と同一または類似の要素には、上記実施形態と同一の符号を付している。 FIG. 14 shows another embodiment of the present disclosure. In these figures, elements that are the same as or similar to the above embodiment are given the same reference numerals as the above embodiment.
 図14は、本開示の第2実施形態に基づく感震モジュールを示している。本実施形態の感震モジュールA2は、感震モジュールA1におけるモジュール基板110を備えておらず、モジュール制御部130およびモジュール記憶部140が加速度センサ120に内蔵されている。 FIG. 14 shows a seismic sensing module according to a second embodiment of the present disclosure. The seismic sensing module A2 of the present embodiment does not include the module substrate 110 in the seismic sensing module A1, and the module control unit 130 and the module storage unit 140 are incorporated in the acceleration sensor 120.
 加速度センサ120に内蔵されるモジュール制御部130およびモジュール記憶部140としては、感震モジュールA1においてモジュール基板110に実装されるモジュール制御部130およびモジュール記憶部140よりも小型および薄型の構成が好ましい。本実施形態においては、上述したモジュール制御部130およびモジュール記憶部140の機能を果たしうるASIC(application specific integrated circuit)が用いられている。ASICは、本実施形態における地震検出用途等の特定用途に特化して機能が絞り込まれた集積回路素子である。このため、ASICは、小型化および薄型化に適しており、モジュール制御部130およびモジュール記憶部140の機能を果たす構成部分として、加速度センサ120に内蔵可能である。 The module control unit 130 and the module storage unit 140 incorporated in the acceleration sensor 120 preferably have a smaller and thinner configuration than the module control unit 130 and the module storage unit 140 mounted on the module substrate 110 in the vibration sensing module A1. In the present embodiment, an application specific integrated circuit (ASIC) that can perform the functions of the module control unit 130 and the module storage unit 140 described above is used. The ASIC is an integrated circuit element whose function is narrowed down specifically for a specific application such as an earthquake detection application in the present embodiment. Therefore, the ASIC is suitable for downsizing and thinning, and can be incorporated in the acceleration sensor 120 as a component that performs the functions of the module control unit 130 and the module storage unit 140.
 なお、モジュール制御部130およびモジュール記憶部140としてのASICが内蔵される場合、たとえば図示されたように、x軸検出部120x、y軸検出部120yおよびz軸検出部120zに隣接して配置される。x軸検出部120x、y軸検出部120yおよびz軸検出部120zは、各々が各軸の加速度を検出しうるMEMSセンサに相当する。x軸検出部120x、y軸検出部120yおよびz軸検出部120zの測定原理や具体的構造は特に限定されない。 When an ASIC as the module control unit 130 and the module storage unit 140 is incorporated, for example, as illustrated, the ASIC is disposed adjacent to the x-axis detection unit 120x, the y-axis detection unit 120y, and the z-axis detection unit 120z. Ru. The x-axis detection unit 120x, the y-axis detection unit 120y, and the z-axis detection unit 120z correspond to MEMS sensors that can detect the acceleration of each axis. The measurement principle and specific structure of the x-axis detection unit 120x, the y-axis detection unit 120y, and the z-axis detection unit 120z are not particularly limited.
 また、本実施形態においては、モジュール制御部130およびモジュール記憶部140を内蔵する加速度センサ120が振動発電部150に搭載されている。加速度センサ120の実装端子(図示略)は、振動発電部150の複数の配線152に接続されている。 Further, in the present embodiment, the acceleration sensor 120 including the module control unit 130 and the module storage unit 140 is mounted on the vibration power generation unit 150. A mounting terminal (not shown) of the acceleration sensor 120 is connected to the plurality of wires 152 of the vibration power generation unit 150.
 感震モジュールA2による検出処理は、図5~図7を参照して説明した処理を適宜採用すればよい。なお、ASICの記憶容量が限定される場合、たとえば地震検出処理の履歴記憶回数を削減する等の、記憶量削減の方策をとればよい。 The processing described with reference to FIGS. 5 to 7 may be adopted as appropriate for the detection processing by the vibration sensing module A2. When the storage capacity of the ASIC is limited, for example, the storage capacity may be reduced by reducing the number of history storages of the earthquake detection process.
 本実施形態によっても、非振動発生時の電力供給を不要とすることが可能である。また、加速度センサ120がモジュール制御部130およびモジュール記憶部140を内蔵した構成であることにより、感震モジュールA2は、感震モジュールA1と比べてさらなる小型化を図るのに適している。 Also according to the present embodiment, it is possible to eliminate the need for power supply at the time of non-vibration occurrence. Further, since the acceleration sensor 120 includes the module control unit 130 and the module storage unit 140, the vibration sensing module A2 is suitable for further downsizing as compared to the vibration sensing module A1.
 本開示に係る感震モジュールは、上述した実施形態に限定されるものではない。本開示に係る感震モジュールの各部の具体的な構成は、種々に設計変更自在である。 The vibration sensing module according to the present disclosure is not limited to the embodiment described above. The specific configuration of each part of the vibration sensing module according to the present disclosure can be varied in design in many ways.
 本開示は、以下の付記にかかる実施形態を含む。
[付記1]
 少なくとも1つの検出軸についての加速度を検出する加速度センサと、
 振動エネルギーを電力に変換する振動発電部と、
 前記加速度センサを制御するモジュール制御部であって、前記振動発電部から電力が出力されると、前記加速度センサによる加速度の検出を行う振動計測モードを開始するモジュール制御部と、を備える、感震モジュール。
[付記2]
 前記加速度センサおよび前記モジュール制御部が搭載されたモジュール基板をさらに備える、付記1に記載の感震モジュール。
[付記3]
 前記モジュール基板は、前記振動発電部に搭載されている、付記2に記載の感震モジュール。
[付記4]
 前記モジュール制御部は、前記加速度センサに内蔵されている、付記1に記載の感震モジュール。
[付記5]
 前記加速度センサは、前記振動発電部に搭載されている、付記4に記載の感震モジュール。
[付記6]
 電力供給を受けるための外部電源端子を更に備える、付記1ないし5のいずれかに記載の感震モジュール。
[付記7]
 前記モジュール制御部による前記振動計測モードは、前記外部電源端子から供給された電力を用いて行われる、付記6に記載の感震モジュール。
[付記8]
 前記少なくとも1つの検出軸は、複数の検出軸を含み、
 前記加速度センサは、複数の前記検出軸について加速度を検出し、
 前記加速度センサの状態情報を記憶するモジュール記憶部を更に備える、付記7に記載の感震モジュール。
[付記9]
 前記状態情報は、非振動発生時の前記複数の検出軸についての加速度である、付記8に記載の感震モジュール。
[付記10]
 前記モジュール制御部は、非振動発生時の前記複数の検出軸の加速度に基づいて重力方向を算出し、
 前記状態情報は、非振動発生時の前記重力方向を含む、付記9に記載の感震モジュール。
[付記11]
 前記モジュール制御部は、前記加速度センサの前記状態情報を初期状態情報として前記モジュール記憶部に記憶させる初期状態記憶モードを有する、付記10に記載の感震モジュール。
[付記12]
 前記モジュール制御部による前記初期状態記憶モードは、前記外部電源端子から供給された電力を用いて行われる、付記11に記載の感震モジュール。
[付記13]
 前記モジュール制御部は、前記振動計測モードにおいて、前記複数の検出軸についての加速度と初期状態情報として記憶された加速度との差分を合計し、当該合計による総和と予め定めた加速度閾値とを比較することにより、振動の有無を判定する信号検知処理を行う、付記12に記載の感震モジュール。
[付記14]
 前記モジュール制御部は、前記複数の検出軸についての加速度に基いてSI値を算出する、付記13に記載の感震モジュール。
[付記15]
 前記振動計測モードは、前記モジュール制御部が、第1サンプリングレートで前記加速度センサの加速度をサンプリングする第1デジタル化処理を含む、付記14に記載の感震モジュール。
[付記16]
 前記振動計測モードは、前記モジュール制御部が、前記第1サンプリングレートよりも低周波数である第2サンプリングレートで前記第1デジタル化処理によって得られた加速度データをサンプリングする第2デジタル化処理を含み、
 前記モジュール制御部は、前記第2デジタル化処理によって得られた加速度データに基いてSI値を算出する、付記15に記載の感震モジュール。
[付記17]
 前記モジュール制御部は、前記振動計測モードによって算出されたSI値に基いて、地震検知信号を出力するか否かを判定する地震検知信号出力判定モードを有する、付記14ないし16のいずれかに記載の感震モジュール。
The present disclosure includes embodiments according to the following appendices.
[Supplementary Note 1]
An acceleration sensor for detecting an acceleration about at least one detection axis;
A vibration power generation unit that converts vibration energy into electric power;
A module control unit for controlling the acceleration sensor, wherein the module control unit starts a vibration measurement mode for detecting an acceleration by the acceleration sensor when power is output from the vibration power generation unit; module.
[Supplementary Note 2]
The seismic sensing module according to appendix 1, further comprising a module substrate on which the acceleration sensor and the module control unit are mounted.
[Supplementary Note 3]
The seismic sensor module according to Appendix 2, wherein the module substrate is mounted on the vibration power generation unit.
[Supplementary Note 4]
The vibration control module according to appendix 1, wherein the module control unit is built in the acceleration sensor.
[Supplementary Note 5]
The seismic sensor module according to appendix 4, wherein the acceleration sensor is mounted on the vibration power generation unit.
[Supplementary Note 6]
The seismic sensor module according to any one of appendices 1 to 5, further comprising an external power supply terminal for receiving a power supply.
[Supplementary Note 7]
The vibration module according to claim 6, wherein the vibration measurement mode by the module control unit is performed using power supplied from the external power supply terminal.
[Supplementary Note 8]
The at least one detection axis includes a plurality of detection axes,
The acceleration sensor detects an acceleration on a plurality of the detection axes,
The seismic sensor module according to Appendix 7, further comprising a module storage unit that stores state information of the acceleration sensor.
[Supplementary Note 9]
The earthquake sensing module according to appendix 8, wherein the state information is an acceleration about the plurality of detection axes when no vibration occurs.
[Supplementary Note 10]
The module control unit calculates the direction of gravity based on the accelerations of the plurality of detection axes when no vibration occurs.
The earthquake sensing module according to appendix 9, wherein the state information includes the gravity direction at the time of non-vibration occurrence.
[Supplementary Note 11]
The vibration module according to claim 10, wherein the module control unit has an initial state storage mode for storing the state information of the acceleration sensor in the module storage unit as initial state information.
[Supplementary Note 12]
The seismic isolation module according to Appendix 11, wherein the initial state storage mode by the module control unit is performed using the power supplied from the external power supply terminal.
[Supplementary Note 13]
The module control unit sums the differences between the accelerations of the plurality of detection axes and the acceleration stored as initial state information in the vibration measurement mode, and compares the sum of the totals with a predetermined acceleration threshold value. An earthquake detection module according to appendix 12, wherein signal detection processing is performed to determine presence or absence of vibration.
[Supplementary Note 14]
The seismic sensor module according to appendix 13, wherein the module control unit calculates an SI value based on accelerations of the plurality of detection axes.
[Supplementary Note 15]
The vibration module according to claim 14, wherein the vibration measurement mode includes a first digitizing process in which the module control unit samples an acceleration of the acceleration sensor at a first sampling rate.
[Supplementary Note 16]
The vibration measurement mode includes a second digitizing process in which the module control unit samples acceleration data obtained by the first digitizing process at a second sampling rate lower than the first sampling rate. ,
15. The earthquake detection module according to appendix 15, wherein the module control unit calculates an SI value based on acceleration data obtained by the second digitizing process.
[Supplementary Note 17]
The module control unit according to any one of appendages 14 to 16, which has an earthquake detection signal output determination mode that determines whether or not to output an earthquake detection signal based on the SI value calculated in the vibration measurement mode. Vibration-sensing module.

Claims (17)

  1.  少なくとも1つの検出軸についての加速度を検出する加速度センサと、
     振動エネルギーを電力に変換する振動発電部と、
     前記加速度センサを制御するモジュール制御部であって、前記振動発電部から電力が出力されると、前記加速度センサによる加速度の検出を行う振動計測モードを開始するモジュール制御部と、を備える、感震モジュール。
    An acceleration sensor for detecting an acceleration about at least one detection axis;
    A vibration power generation unit that converts vibration energy into electric power;
    A module control unit for controlling the acceleration sensor, wherein the module control unit starts a vibration measurement mode for detecting an acceleration by the acceleration sensor when power is output from the vibration power generation unit; module.
  2.  前記加速度センサおよび前記モジュール制御部が搭載されたモジュール基板をさらに備える、請求項1に記載の感震モジュール。 The seismic isolation module according to claim 1, further comprising a module substrate on which the acceleration sensor and the module control unit are mounted.
  3.  前記モジュール基板は、前記振動発電部に搭載されている、請求項2に記載の感震モジュール。 The vibration module according to claim 2, wherein the module substrate is mounted on the vibration power generation unit.
  4.  前記モジュール制御部は、前記加速度センサに内蔵されている、請求項1に記載の感震モジュール。 The vibration control module according to claim 1, wherein the module control unit is built in the acceleration sensor.
  5.  前記加速度センサは、前記振動発電部に搭載されている、請求項4に記載の感震モジュール。 The seismic sensor module according to claim 4, wherein the acceleration sensor is mounted on the vibration power generation unit.
  6.  電力供給を受けるための外部電源端子を更に備える、請求項1ないし5のいずれかに記載の感震モジュール。 The seismic isolation module according to any one of claims 1 to 5, further comprising an external power supply terminal for receiving a power supply.
  7.  前記モジュール制御部による前記振動計測モードは、前記外部電源端子から供給された電力を用いて行われる、請求項6に記載の感震モジュール。 The vibration module according to claim 6, wherein the vibration measurement mode by the module control unit is performed using power supplied from the external power supply terminal.
  8.  前記少なくとも1つの検出軸は、複数の検出軸を含み、
     前記加速度センサは、複数の前記検出軸について加速度を検出し、
     前記加速度センサの状態情報を記憶するモジュール記憶部を更に備える、請求項7に記載の感震モジュール。
    The at least one detection axis includes a plurality of detection axes,
    The acceleration sensor detects an acceleration on a plurality of the detection axes,
    The seismic sensor module according to claim 7, further comprising a module storage unit that stores state information of the acceleration sensor.
  9.  前記状態情報は、非振動発生時の前記複数の検出軸についての加速度である、請求項8に記載の感震モジュール。 The seismic isolation module according to claim 8, wherein the state information is an acceleration on the plurality of detection axes at the time of non-vibration occurrence.
  10.  前記モジュール制御部は、非振動発生時の前記複数の検出軸の加速度に基づいて重力方向を算出し、
     前記状態情報は、非振動発生時の前記重力方向を含む、請求項9に記載の感震モジュール。
    The module control unit calculates the direction of gravity based on the accelerations of the plurality of detection axes when no vibration occurs.
    The seismic isolation module according to claim 9, wherein the state information includes the gravity direction at the time of non-vibration occurrence.
  11.  前記モジュール制御部は、前記加速度センサの前記状態情報を初期状態情報として前記モジュール記憶部に記憶させる初期状態記憶モードを有する、請求項10に記載の感震モジュール。 The vibration control module according to claim 10, wherein the module control unit has an initial state storage mode for storing the state information of the acceleration sensor in the module storage unit as initial state information.
  12.  前記モジュール制御部による前記初期状態記憶モードは、前記外部電源端子から供給された電力を用いて行われる、請求項11に記載の感震モジュール。 The seismic module according to claim 11, wherein the initial state storage mode by the module control unit is performed using power supplied from the external power supply terminal.
  13.  前記モジュール制御部は、前記振動計測モードにおいて、前記複数の検出軸についての加速度と初期状態情報として記憶された加速度との差分を合計し、当該合計による総和と予め定めた加速度閾値とを比較することにより、振動の有無を判定する信号検知処理を行う、請求項12に記載の感震モジュール。 The module control unit sums the differences between the accelerations of the plurality of detection axes and the acceleration stored as initial state information in the vibration measurement mode, and compares the sum of the totals with a predetermined acceleration threshold value. The vibration detection module according to claim 12, wherein the signal detection processing is performed to determine presence or absence of vibration.
  14.  前記モジュール制御部は、前記複数の検出軸についての加速度に基いてSI値を算出する、請求項13に記載の感震モジュール。 The vibration control module according to claim 13, wherein the module control unit calculates an SI value based on accelerations of the plurality of detection axes.
  15.  前記振動計測モードは、前記モジュール制御部が、第1サンプリングレートで前記加速度センサの加速度をサンプリングする第1デジタル化処理を含む、請求項14に記載の感震モジュール。 The vibration module according to claim 14, wherein the vibration measurement mode includes a first digitizing process in which the module control unit samples an acceleration of the acceleration sensor at a first sampling rate.
  16.  前記振動計測モードは、前記モジュール制御部が、前記第1サンプリングレートよりも低周波数である第2サンプリングレートで前記第1デジタル化処理によって得られた加速度データをサンプリングする第2デジタル化処理を含み、
     前記モジュール制御部は、前記第2デジタル化処理によって得られた加速度データに基いてSI値を算出する、請求項15に記載の感震モジュール。
    The vibration measurement mode includes a second digitizing process in which the module control unit samples acceleration data obtained by the first digitizing process at a second sampling rate lower than the first sampling rate. ,
    The vibration control module according to claim 15, wherein the module control unit calculates an SI value based on acceleration data obtained by the second digitizing process.
  17.  前記モジュール制御部は、前記振動計測モードによって算出されたSI値に基いて、地震検知信号を出力するか否かを判定する地震検知信号出力判定モードを有する、請求項14ないし16のいずれかに記載の感震モジュール。 The module control unit according to any one of claims 14 to 16, wherein the module control unit has an earthquake detection signal output determination mode that determines whether or not to output an earthquake detection signal based on the SI value calculated in the vibration measurement mode. Vibration sensor module described.
PCT/JP2018/028253 2017-08-01 2018-07-27 Vibration-sensitive module WO2019026791A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-148989 2017-08-01
JP2017148989 2017-08-01

Publications (1)

Publication Number Publication Date
WO2019026791A1 true WO2019026791A1 (en) 2019-02-07

Family

ID=65233811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028253 WO2019026791A1 (en) 2017-08-01 2018-07-27 Vibration-sensitive module

Country Status (1)

Country Link
WO (1) WO2019026791A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10690519B2 (en) 2018-02-23 2020-06-23 Landis+Gyr Innovations, Inc. Meter reading sensor using TMR and hall effect sensors
US10788542B2 (en) 2017-09-28 2020-09-29 Landis+Gyr Llc Detection of deteriorated electrical connections in a meter using temperature sensing and time variable thresholds
US10908198B2 (en) 2017-08-07 2021-02-02 Landis+Gyr Innovations, Inc. Determining meter phase using interval voltage measurements
JP2021032799A (en) * 2019-08-28 2021-03-01 東京瓦斯株式会社 Seismic sensor and vibration analysis system
US10955491B2 (en) 2015-10-30 2021-03-23 Landis+Gyr, Inc. Method for detecting a meter maintenance condition using winding resistance
US11183878B2 (en) 2017-08-07 2021-11-23 Landis+Gyr Innovations, Inc. Maintaining connectivity information for meters and transformers located in a power distribution network
US11226357B2 (en) 2019-09-27 2022-01-18 Landis+Gyr Innovations, Inc. Electrical arc detection for electric meter socket connections
US11245260B2 (en) 2020-02-25 2022-02-08 Landis+Gyr Innovations, Inc. Automatic discovery of electrical supply network topology and phase
US11359934B2 (en) 2020-03-24 2022-06-14 Landis+Gyr Innovations, Inc. Variable rate monitoring in flow-based metering systems
US11385074B2 (en) 2020-03-18 2022-07-12 Landis+Gyr Innovations, Inc. Programming electric meter global positioning system coordinates using smart device
US11429401B2 (en) 2020-03-04 2022-08-30 Landis+Gyr Innovations, Inc. Navigating a user interface of a utility meter with touch-based interactions
US11515725B2 (en) 2020-09-21 2022-11-29 Landis+Gyr Innovations, Inc. Autonomous topology validation for electrical supply network
US11536745B2 (en) 2020-03-18 2022-12-27 Landis+Gyr Innovations, Inc. Electric meter installation issue detection based on orientation change
US11536754B2 (en) 2019-08-15 2022-12-27 Landis+Gyr Innovations, Inc. Electricity meter with fault tolerant power supply
US11646602B2 (en) 2020-03-11 2023-05-09 Landis+Gyr Innovations, Inc. Topology and phase detection for electrical supply network

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249345A (en) * 2007-03-29 2008-10-16 Toshiba Corp Earthquake observation standby system, method, and program
JP2012018033A (en) * 2010-07-07 2012-01-26 Panasonic Corp Seismic sensing device for gas meter
JP2013108755A (en) * 2011-11-17 2013-06-06 Tokyo Gas Co Ltd System and method for controlling gas leakage detection and gas supply
JP5433473B2 (en) * 2010-03-24 2014-03-05 株式会社東芝 Seismometer and control method thereof
JP5530948B2 (en) * 2011-02-15 2014-06-25 大成建設株式会社 Vibration meter
JP2016133445A (en) * 2015-01-21 2016-07-25 国立研究開発法人防災科学技術研究所 Absolute speed response calculation device, absolute speed response calculation system using the same, and absolute speed response calculation method
WO2016137394A1 (en) * 2015-02-26 2016-09-01 Agency For Science, Technology And Research A self-powered acceleration sensing device
JP2016164500A (en) * 2015-03-06 2016-09-08 Ntn株式会社 Vibration measuring device and vibration measuring system
JP2017015604A (en) * 2015-07-02 2017-01-19 東京瓦斯株式会社 Seismic sensor and earthquake determination method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249345A (en) * 2007-03-29 2008-10-16 Toshiba Corp Earthquake observation standby system, method, and program
JP5433473B2 (en) * 2010-03-24 2014-03-05 株式会社東芝 Seismometer and control method thereof
JP2012018033A (en) * 2010-07-07 2012-01-26 Panasonic Corp Seismic sensing device for gas meter
JP5530948B2 (en) * 2011-02-15 2014-06-25 大成建設株式会社 Vibration meter
JP2013108755A (en) * 2011-11-17 2013-06-06 Tokyo Gas Co Ltd System and method for controlling gas leakage detection and gas supply
JP2016133445A (en) * 2015-01-21 2016-07-25 国立研究開発法人防災科学技術研究所 Absolute speed response calculation device, absolute speed response calculation system using the same, and absolute speed response calculation method
WO2016137394A1 (en) * 2015-02-26 2016-09-01 Agency For Science, Technology And Research A self-powered acceleration sensing device
JP2016164500A (en) * 2015-03-06 2016-09-08 Ntn株式会社 Vibration measuring device and vibration measuring system
JP2017015604A (en) * 2015-07-02 2017-01-19 東京瓦斯株式会社 Seismic sensor and earthquake determination method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10955491B2 (en) 2015-10-30 2021-03-23 Landis+Gyr, Inc. Method for detecting a meter maintenance condition using winding resistance
US11916380B2 (en) 2017-08-07 2024-02-27 Landis+Gyr Technology, Inc. Maintaining connectivity information for meters and transformers located in a power distribution network
US10908198B2 (en) 2017-08-07 2021-02-02 Landis+Gyr Innovations, Inc. Determining meter phase using interval voltage measurements
US11183878B2 (en) 2017-08-07 2021-11-23 Landis+Gyr Innovations, Inc. Maintaining connectivity information for meters and transformers located in a power distribution network
US10788542B2 (en) 2017-09-28 2020-09-29 Landis+Gyr Llc Detection of deteriorated electrical connections in a meter using temperature sensing and time variable thresholds
US10690519B2 (en) 2018-02-23 2020-06-23 Landis+Gyr Innovations, Inc. Meter reading sensor using TMR and hall effect sensors
US11536754B2 (en) 2019-08-15 2022-12-27 Landis+Gyr Innovations, Inc. Electricity meter with fault tolerant power supply
JP2021032799A (en) * 2019-08-28 2021-03-01 東京瓦斯株式会社 Seismic sensor and vibration analysis system
US11226357B2 (en) 2019-09-27 2022-01-18 Landis+Gyr Innovations, Inc. Electrical arc detection for electric meter socket connections
US11721977B2 (en) 2020-02-25 2023-08-08 Landis+Gyr Innovations, Inc. Automatic discovery of electrical supply network topology and phase
US11245260B2 (en) 2020-02-25 2022-02-08 Landis+Gyr Innovations, Inc. Automatic discovery of electrical supply network topology and phase
US11429401B2 (en) 2020-03-04 2022-08-30 Landis+Gyr Innovations, Inc. Navigating a user interface of a utility meter with touch-based interactions
US11646602B2 (en) 2020-03-11 2023-05-09 Landis+Gyr Innovations, Inc. Topology and phase detection for electrical supply network
US11536745B2 (en) 2020-03-18 2022-12-27 Landis+Gyr Innovations, Inc. Electric meter installation issue detection based on orientation change
US11385074B2 (en) 2020-03-18 2022-07-12 Landis+Gyr Innovations, Inc. Programming electric meter global positioning system coordinates using smart device
US11359934B2 (en) 2020-03-24 2022-06-14 Landis+Gyr Innovations, Inc. Variable rate monitoring in flow-based metering systems
US11515725B2 (en) 2020-09-21 2022-11-29 Landis+Gyr Innovations, Inc. Autonomous topology validation for electrical supply network
US11735954B2 (en) 2020-09-21 2023-08-22 Landis+Gyr Innovations, Inc. Autonomous topology validation for electrical supply network

Similar Documents

Publication Publication Date Title
WO2019026791A1 (en) Vibration-sensitive module
US8239160B2 (en) Activity detection in MEMS accelerometers
US8875573B2 (en) Inertial device with pedometer function and portable electric appliance incorporating said inertial device
JP5049810B2 (en) Body motion detection device
CN101779097A (en) Inertial velocity sensor signal processing circuit and inertial velocity sensor device provided with the same
US10031154B2 (en) Inertial force sensor
US9008995B2 (en) Activity detection in MEMS accelerometers
JP5741638B2 (en) Portable display device and operation detection method
US7415380B2 (en) Fall detection device
EP2720046B1 (en) Drop determining apparatus and drop determining method
JP6942719B2 (en) Seismic module and seismic system
EP1821071A1 (en) Step number measuring apparatus
WO2013184620A1 (en) Activity detection in mems accelerometers
US8606332B2 (en) Gravity axis determination apparatus and mobile terminal apparatus using the same
CN108347528A (en) Electronic equipment falls based reminding method and Related product
US20160245842A1 (en) Measurement apparatus, measurement method, and measurement system
US20120166133A1 (en) Electronic device, pedometer, and program
CN111721319B (en) Sensor failure prediction system, sensor failure prediction method, physical quantity sensor, electronic device, and moving object
JP6237692B2 (en) Portable display device and operation detection method
CN117437731A (en) Antitheft Internet of things terminal based on gyroscope and accelerometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18842314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18842314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP