WO2019026675A1 - Photoelectric conversion element and adhesive - Google Patents

Photoelectric conversion element and adhesive Download PDF

Info

Publication number
WO2019026675A1
WO2019026675A1 PCT/JP2018/027563 JP2018027563W WO2019026675A1 WO 2019026675 A1 WO2019026675 A1 WO 2019026675A1 JP 2018027563 W JP2018027563 W JP 2018027563W WO 2019026675 A1 WO2019026675 A1 WO 2019026675A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical filter
resin
photoelectric conversion
adhesive
Prior art date
Application number
PCT/JP2018/027563
Other languages
French (fr)
Japanese (ja)
Inventor
大吾 一戸
拓也 三浦
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2019534051A priority Critical patent/JP7060018B2/en
Priority to CN201880044902.1A priority patent/CN110832852A/en
Priority to KR1020207002773A priority patent/KR20200027962A/en
Publication of WO2019026675A1 publication Critical patent/WO2019026675A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/12Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with one sensor only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Definitions

  • the present invention relates to a photoelectric conversion element and an adhesive that absorb light in the near infrared region.
  • photoelectric conversion elements are used in various situations.
  • a solid-state imaging device represented by an image sensor is mounted in a mobile communication terminal such as a smartphone.
  • a solid-state imaging device represented by an image sensor is mounted.
  • an image sensor By using a solid-state imaging device, it is possible to easily acquire still images and moving images.
  • an illuminance sensor or an ambient light sensor is mounted on the portable information terminal. Similarly to the solid-state imaging device, the illuminance sensor or the ambient light sensor also acquires light, and acquires ambient brightness. Based on this information, the brightness of the image of the mobile communication terminal is controlled.
  • a solid-state image sensor, an illumination intensity sensor, and an ambient light sensor are photoelectric conversion elements which convert light into an electric signal, respectively.
  • the sensitivity of the obtained electrical signal may be reduced due to the influence of light other than the visible light region. For this reason, it is necessary to block light other than the visible light region.
  • light near the near infrared region eg, 700 to 1100 nm
  • the near infrared cut filter has a function of absorbing near infrared light and selectively transmitting visible light.
  • Patent Document 1 discloses a technique for absorbing near-infrared light.
  • an infrared cut filter is generally provided on the upper portion of the solid-state imaging device, but the infrared ray from the side does not have a sufficient blocking function. Therefore, the image may become reddish due to the infrared light incident from the side of the photoelectric conversion element, and the color reproducibility of the image may be deteriorated.
  • an object of the present invention is to provide a photoelectric conversion element which has a blocking function to light in a near infrared region not only above but also laterally.
  • a semiconductor device provided with a light receiving unit, an optical filter provided on the semiconductor device, and superimposed on the light receiving unit, provided on the semiconductor device and superimposed on the light receiving unit and the optical filter
  • the optical filter and the adhesive include a lens, a protective member provided on the periphery of the semiconductor element, and an adhesive that surrounds the light receiving unit and is provided between the protective member and the optical filter and the lens.
  • a photoelectric conversion element is provided, which contains at least one compound having an absorption maximum wavelength in a wavelength region of 1100 nm.
  • the optical filter and the adhesive have (A) an average value of transmittance in a wavelength range of 430 to 580 nm of 75% or more and (B) transmittance in a wavelength range of 700 to 800 nm.
  • the average value may be 20% or less, and the average value of the transmittances in the range of (C) wavelength 800 to 1100 nm may be 5% or less.
  • the optical filter may have a light-transmitting substrate, and the substrate may contain a compound.
  • the base material may be a translucent resin.
  • the optical filter has a first surface and a second surface opposite to the first surface, and a compound having a light-transmitting base material and at least one of the first surface and the second surface. And a resin layer containing
  • the optical filter may further have a dielectric layer.
  • At least one of the optical filter and the adhesive may have light diffusing particles.
  • the light diffusing particle may absorb light in the near infrared region.
  • the light diffusion particle may be cesium-containing tungsten oxide.
  • an adhesive containing the light diffusing particle is provided.
  • a photoelectric conversion element having a blocking function to light in the near infrared region not only above but also laterally.
  • FIG. 1 is a top view of an information communication terminal (in this example, a smartphone 300) having a solid-state imaging device 700 according to an embodiment of the present invention.
  • the smartphone 300 includes a housing 302, a display panel 304, a microphone unit 306, a speaker unit 308, an ambient light sensor 400, and a solid-state imaging device 700.
  • a touch panel is adopted as the display panel 304, and the display panel 304 has an input function in addition to the display function.
  • the ambient light sensor 400 and the solid-state imaging device 700 are one of photoelectric conversion devices.
  • the solid-state imaging device 700 will be described in detail with reference to FIG.
  • FIG. 2 is a cross-sectional view of the solid-state imaging device 700.
  • the solid-state imaging device 700 includes a chipped semiconductor device 710 including a transistor, a lens 730, an optical filter 100, an optical element such as a color filter 200, an adhesive 125, a protective member 740 and a package substrate 770.
  • a chipped semiconductor device 710 including a transistor, a lens 730, an optical filter 100, an optical element such as a color filter 200, an adhesive 125, a protective member 740 and a package substrate 770.
  • the semiconductor element 710 has a function as a central processing unit (CPU: Central Processing Unit), a function as a storage device, and a function to receive light.
  • the semiconductor element 710 is arranged as a chip including a transistor.
  • a light receiving unit 720 is provided in the semiconductor element 710.
  • the semiconductor element 710 and the package substrate 770 are connected using a bump electrode containing tin, silver or the like.
  • a relay substrate may be provided between the semiconductor element 710 and the package substrate 770.
  • the optical filter 100 and the color filter 200 are provided on the semiconductor element 710.
  • the optical filter 100 is superimposed on the light receiving unit 720.
  • the optical filter 100 has a function of blocking light in the near infrared region (for example, light in a wavelength band of 700 to 1100 nm).
  • the color filter 200 has a function of transmitting light in a specific wavelength band of the visible light range. Specifically, the color filter 200 can transmit light in wavelength bands of red (R), green (G), and blue (B).
  • the color filter 200 is provided on the optical filter, the optical filter 100 may be disposed on the color filter 200. Details of the optical filter 100 will be described later.
  • the lens 730 is provided on the semiconductor element 710 and the optical filter 100.
  • the lens 730 is disposed to overlap the light receiving unit 720 and the optical filter 100.
  • the lens 730 has a function of focusing light.
  • a large number of minute lenses are arranged in a lattice.
  • the lens 730 is referred to as a microlens array.
  • the protective member 740 is provided on the periphery of the semiconductor element 710.
  • the protective member 740 is disposed to surround the light receiving unit 720.
  • the protective member 740 has a function of protecting the semiconductor element 710.
  • an inorganic material such as a glass substrate, a silicon substrate, or ceramic, or an organic resin material such as acrylic or vinyl chloride is used.
  • the adhesive 125 is disposed around the light receiving unit 720.
  • the adhesive 125 is provided between the protection member 740 and the optical filter 100, the color filter 200, and the lens 730.
  • the adhesive 125 has a function of bonding the respective members.
  • the adhesive 125 may be supported by the protective member 740.
  • the protective member 740 may not necessarily be provided.
  • the protective member may be bonded to the package substrate using an adhesive 125.
  • FIG. 3 is a cross-sectional view of the optical filter 100. As shown in FIG. 3, in the optical filter 100, the absorption layer 110, the adhesive layer 120, and the protective layer 130 are laminated in this order.
  • the absorbing layer 110 dissolves or disperses a near infrared absorbing dye, a transparent resin or a raw material component of a transparent resin, and each component to be blended as needed, to prepare a coating liquid, It can be formed by coating on a substrate, drying, and curing as necessary.
  • a method of melt-molding pellets obtained by melt-kneading a transparent resin and an absorbent, melting pellets obtained by removing a solvent from a liquid resin composition containing a transparent resin, an absorbent, and a solvent It can manufacture by the method of shape
  • the above-mentioned molding method is preferable because it has good solubility in both the transparent resin and the solvent used for the coating liquid, so that the uniformity of the film can be secured. It can also be formed by mixing a near infrared absorbing dye with a transparent resin component and forming a film.
  • the near infrared absorbing dye for example, metal complex compounds, dyes, and pigments that act as dyes absorbing near infrared rays can be used, and phthalocyanine compounds, cyanine compounds, naphthalocyanine compounds, squarylium dyes, dithiol metals Examples thereof include at least one compound selected from the group consisting of complex compounds, croconium compounds, porphyrin compounds and metal dithiolate compounds, diimmonium compounds, and azo compounds.
  • Lumogen IR 765 Lumogen IR 788 (manufactured by BASF), ABS 643, ABS 654, ABS 667, ABS 670 T, IRA 693 N, IRA 735 (manufactured by Exciton), SDA 3598, SDA 6075, SDA 8030, SDA 8030, SDA 8470, SDA 3039, SDA 3040, SDA 3922, SDA 7257
  • Commercial products such as H. W. SANDS, TAP-15, and IR-706 (Yamada Chemical Co., Ltd.) can also be used.
  • polyester resin such as polyethylene terephthalate and polybutylene terephthalate, polyolefin resin such as polyethylene, polypropylene and ethylene vinyl acetate copolymer, cyclic olefin resin, acrylic resin such as norbornene resin, polyacrylate and polymethyl methacrylate, urethane Resin, vinyl chloride resin, fluorocarbon resin, polycarbonate resin, polyvinyl butyral resin, polyvinyl alcohol resin, polyimide resin, polyetherimide resin, polyamide resin, polyamideimide resin, cycloolefin resin, polyvinyl alcohol resin and the like can be used.
  • polyester resin such as polyethylene terephthalate and polybutylene terephthalate
  • polyolefin resin such as polyethylene, polypropylene and ethylene vinyl acetate copolymer
  • cyclic olefin resin acrylic resin such as norbornene resin, polyacrylate and polymethyl methacrylate
  • urethane Resin vinyl chlor
  • the solvent used for preparation of the coating liquid is not particularly limited as long as it is a dispersion medium or solvent capable of stably dispersing the dye, the transparent resin or the raw material component of the transparent resin, and each component blended as necessary.
  • the term "solvent" is used in the concept including both the dispersion medium and the solvent.
  • the solvent examples include alcohols such as isopropyl alcohol, n-butyl alcohol, ethyl cellosolve, methyl cellosolve, glycols such as ethylene glycol, diethylene glycol and propylene glycol, and ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and cyclohexanone , Amides such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, ethylene glycol monomethyl ether, ethylene glycol monoethylene ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol mono Ethyl ether, diethylene glycol butyl ether, ethylene glycol monomethyl ether acetate Ethers such as ethylene glycol monoethyl ether acetate and ethylene glycol monobutyl ether acetate, esters such as methyl acetate
  • the amount of the solvent is preferably 10 to 5,000 parts by mass, and more preferably 30 to 2,000 parts by mass with respect to 100 parts by mass of the transparent resin or the raw material component of the transparent resin.
  • the content of the non-volatile component (solid content) in the coating liquid is preferably 2 to 50 parts by mass, and more preferably 5 to 40 parts by mass in 100 parts by mass of the coating liquid.
  • the coating liquid can also contain a surfactant.
  • a surfactant By including the surfactant, it is possible to improve the appearance, in particular, a void due to a fine bubble, a dent due to adhesion of foreign matter and the like, and a repelling during a drying step.
  • the surfactant is not particularly limited, and known ones such as cationic, anionic and nonionic surfactants can be optionally used.
  • stirring devices such as a magnetic stirrer, a rotation / revolution mixer, a bead mill, a planetary mill, an ultrasonic homogenizer and the like can be used.
  • the stirring may be performed continuously or intermittently.
  • the coating liquid for example, dip coating method, cast coating method, spray coating method, spinner coating method, bead coating method, wire bar coating method, blade coating method, roller coating method, roller coating method, curtain coating method, slit die coating
  • a coating method such as a tere method, a gravure coater method, a slit reverse coater method, a microgravure method, an inkjet method, or a comma coater method can be used.
  • a bar coater method, a screen printing method, a flexographic printing method and the like can also be used.
  • a structure is formed by making it dry.
  • known methods such as heat drying and hot air drying can be used.
  • curing treatment is further performed.
  • the reaction is heat curing, drying and curing can be carried out simultaneously, but in the case of light curing, a curing step is provided separately from drying.
  • the structure formed on the peelable substrate is peeled off and used for the production of the present filter.
  • transparent resin it can manufacture in a film form by extrusion molding, and it may be made to laminate
  • the absorption layer 110 has a function of absorbing the light of a predetermined wavelength range among the incident light and transmitting the light of a necessary wavelength range. Specifically, in the absorption layer 110, the average value of the transmittance in the range of (A) wavelength 430 to 580 nm is 75% or more, and the average value of the transmittance in the range of (B) wavelength 700 to 800 nm is 20%.
  • the feature (C) is that the average value of the transmittance in the wavelength range of 800 to 1100 nm is 5% or less.
  • a light transmitting substrate 111 and a compound 113 are used.
  • the material to be formed is not particularly limited as long as it transmits visible light as the light-transmitting substrate 111, and an inorganic material such as glass or crystal, or an organic material such as a light-transmitting resin is usable. It can be mentioned.
  • polyester resins such as polyethylene terephthalate and polybutylene terephthalate
  • polyolefin resins such as polyethylene, polypropylene and ethylene vinyl acetate copolymer
  • cyclic olefin resin norbornene resin
  • polyacrylate and poly Acrylic resin such as methyl methacrylate, urethane resin, vinyl chloride resin, fluorine resin, polycarbonate resin, polyvinyl butyral resin, polyvinyl alcohol resin, polyimide resin, polyetherimide resin, polyamide resin, polyamideimide resin and the like can be mentioned.
  • the glass that can be used for the visible light transmissive substrate include soda lime glass, borosilicate glass, crown glass, alkali-free glass, quartz glass, and tempered glass obtained by ion exchange.
  • Tempered glass is used for the cover glass of a smart phone or a tablet terminal in order to protect a touch panel screen.
  • the cover glass may be subjected to decorative printing such as black or white on the outer peripheral portion thereof by screen printing or the like.
  • decorative printing such as black or white on the outer peripheral portion thereof by screen printing or the like.
  • an opening is provided in advance in addition to the portion to which the decorative printing is applied, and the coating liquid can be directly applied to the opening by the coating method.
  • high productivity can be obtained by directly coating the coating liquid.
  • crystal materials that can be used for the visible light transmitting base include birefringent crystals such as quartz, lithium niobate, and sapphire.
  • the transparent resin to be used is a resin that is easy to mix with the near infrared absorbing dye. More specifically, a cyclic (poly) olefin resin is used for the substrate 111.
  • the base material 111 contains the compound 113 (dye).
  • the thickness of the substrate 111 is not particularly limited, but is preferably 10 ⁇ m to 210 ⁇ m, more preferably 20 ⁇ m to 150 ⁇ m, still more preferably 20 ⁇ m to 110 ⁇ m, and particularly preferably 30 ⁇ m to 80 ⁇ m.
  • the compound 113 has one or more absorption maximum wavelengths in a wavelength band of 700 nm to 1100 nm.
  • a phthalocyanine compound is used as the compound 113.
  • the content of the compound 113 may be appropriately set so as to satisfy the above conditions.
  • Adhesive layer 120 In the present specification, “adhesion” is used in a concept including “adhesion”.
  • the adhesive layer 120 is provided on the first surface 111 ⁇ / b> A of the base 111 of the absorbent layer 110.
  • the adhesive layer is, for example, an adhesive layer between the ⁇ / 4 plate and the reflective polarizer, between the light reflective layer in the reflective polarizer, between the polarizing plate or the polarizer and the ⁇ / 4 plate, etc. It may be included.
  • the pressure-sensitive adhesive that can be used in the present invention include, but are not limited to, acrylic pressure-sensitive adhesives and polyvinyl alcohol-based adhesives.
  • a boron compound aqueous solution a curable adhesive of an epoxy compound which does not contain an aromatic ring in the molecule as disclosed in JP-A-2004-245925, 360 described in JP-A-2008-174667.
  • An active energy ray curable adhesive comprising a photopolymerization initiator having a molar absorption coefficient of 400 or more at a wavelength of 450 nm or more and an ultraviolet curable compound as essential components, (meth) acrylic as described in JP-A 2008-174667.
  • the method for adjusting the refractive index of the adhesive layer is not particularly limited, and for example, the method described in JP-A-11-223712 can be used. Among the methods described in JP-A-11-223712, the following embodiments are particularly preferable.
  • resin such as polyester resin, an epoxy resin, a polyurethane resin, silicone resin, acrylic resin
  • adhesive such as polyester resin, an epoxy resin, a polyurethane resin, silicone resin, acrylic resin
  • acrylic resins are preferable for their reliability such as water resistance, heat resistance, light resistance and the like, adhesion strength, transparency and the like.
  • Acrylic pressure-sensitive adhesives include acrylic acid and esters thereof, methacrylic acid and esters thereof, homopolymers of acrylic monomers such as acrylamide and acrylonitrile, and copolymers thereof, and at least one of the above-mentioned acrylic monomers, Copolymers with aromatic vinyl monomers such as vinyl acetate, maleic anhydride and styrene can be mentioned.
  • main monomers such as ethylene acrylate, butyl acrylate and 2-ethylhexyl acrylate which develop adhesiveness
  • monomers such as vinyl acetate, acrylonitrile, acrylamide, styrene, methacrylate and methyl acrylate which become cohesive components, and adhesion improvement
  • Functional groups containing functional groups such as methacrylic acid, acrylic acid, itaconic acid, hydroxyethyl methacrylate, hydroxypropyl methacrylate, dimethylaminoethyl methacrylate, dimethylaminoethyl methacrylate, acrylamide, methylol acrylamide, glycidyl methacrylate, maleic anhydride, etc.
  • Tg glass transition temperature
  • weight average molecular weight in the range of 200,000 to 1,000,000
  • the protective layer 130 has a function of protecting, in particular, the light receiving unit 720 among the semiconductor elements 710 provided under the optical filter 100.
  • the protective layer 130 is provided with a light-transmitting substrate.
  • a cover glass having a planar light transmitting surface is disposed on the protective layer.
  • the cover glass is sealed with a package of a ceramic material such as alumina, a metal material, or a plastic material with various adhesives to protect the semiconductor element housed inside the package and to transmit visible light and the like. It functions as a light window.
  • a colorless and transparent glass substrate is used for the protective layer 130.
  • the cover glass described in JP-A-2004-221541, JP-A-2006-149458, etc. can be used.
  • the protective layer 130 is not limited to the glass substrate, and a transparent organic resin may be used.
  • the transparent resin described in the said absorption layer can be used.
  • the thickness of the protective layer 130 is not particularly limited, but is preferably 10 ⁇ m to 210 ⁇ m, more preferably 20 ⁇ m to 150 ⁇ m, still more preferably 20 ⁇ m to 110 ⁇ m, and particularly preferably 30 ⁇ m to 80 ⁇ m.
  • FIG. 4 is a cross-sectional view of the adhesive 125.
  • the adhesive 125 includes the resin 121 and the compound 114.
  • the resin 121 is made of the same material as the adhesive layer 120.
  • resin 121 is not limited to transparent curable resin. That is, the resin 121 may be a colored or opaque material.
  • Acrylic resin is used in this example.
  • the resin 121 is not limited to an acrylic resin, and an epoxy resin may be used.
  • the same material as the compound 113 is used.
  • a phthalocyanine compound is used as the compound 114.
  • the content of the compound 114 may be appropriately set so as to satisfy the above conditions.
  • the content of the compound 114 may be larger than the content of the compound 113 in the optical filter 100. This can increase the absorptivity for near-infrared light from the side direction.
  • the light 690 includes light emitted from the LED, a fluorescent lamp, sunlight, or the like.
  • the light 690A incident from above the solid-state imaging device 700 first enters the lens 730. At this time, the light is converged by the lens 730. Next, the light 690 A enters the optical filter 100.
  • the light 690 A absorbs light in the near infrared region and transmits visible light due to the effect of the absorption layer 110 in the optical filter 100.
  • light 690A has an average value of transmittance of 75% or more in a wavelength range of 430 to 580 nm and an average value of transmittance in a wavelength range of 700 to 800 nm of 20% or less.
  • the average value of the transmittance in the wavelength range of 800 to 1100 nm is 5% or less.
  • the light 690A passes through the color filter 200 to transmit light of predetermined wavelengths (red (R), green (G), blue (B)).
  • predetermined wavelengths red (R), green (G), blue (B)
  • R red
  • G green
  • B blue
  • the adhesive agent 125 is provided on the side surface of the solid-state imaging device 700 to block light in the near infrared region of 700 nm or more and 1100 nm or less with respect to light 690B incident from the side. Absorbed That is, in the conventional photoelectric conversion element, it has the ability to block the infrared rays from the side which was insufficient. Therefore, the sensitivity of the light receiving unit 720 can be increased, and an image with high color reproducibility can be obtained.
  • the solid-state imaging device 700 includes a charge-coupled device (CCD) image sensor or a complementary metal oxide semiconductor (CMOS) image sensor.
  • CCD charge-coupled device
  • CMOS complementary metal oxide semiconductor
  • the absorption layer 110 is formed.
  • the absorbing layer 110 is formed by, for example, a cast molding method.
  • the resin composition containing the resin to be the substrate 111 and the compound 113 is cast (casted) on a suitable support, and the solvent is removed to obtain the absorbent layer 110. It is formed.
  • a suitable support for example, a support made of a glass plate, a steel belt, an inorganic material of a steel drum and a support made of an organic resin (for example, a polyester film, a cyclic olefin resin film) are used.
  • the absorbent layer 110 is obtained by peeling it from the support after casting.
  • the adhesive layer 120 is formed on the first surface 111 ⁇ / b> A of the base 111 of the absorbent layer 110.
  • the adhesive layer 120 is formed by a spin coating method, a spray method, an inkjet method, a printing method, a dipping method, or a vapor deposition method.
  • the adhesive layer 120 is formed by spin coating.
  • the protective layer 130 is formed on the adhesive layer 120.
  • a curing process may be performed.
  • the curing treatment may be heat treatment or light irradiation treatment. In this example, heat treatment is performed.
  • the optical filter 100 is manufactured by the above.
  • FIG. 6 is a cross-sectional view of the electronic device 1000.
  • the electronic device 1000 includes a solid-state imaging device 700, a solid-state imaging device 700-1, and a light emitting element 800.
  • the solid-state imaging device 700, the solid-state imaging device 700-1 and the light emitting device 800 are provided in a housing 1010 of the electronic device 1000.
  • the basic configuration of the solid-state imaging device 700 and the solid-state imaging device 700-1 is the same as that shown in the first embodiment.
  • the solid-state imaging device 700-1 may not have the optical filter 100.
  • the light emitting element 800 has a function of irradiating light to an object.
  • the light emitting element 800 includes a light emitting unit 810 and a lens 820.
  • the light emitting element 800 emits light (light 890) in a near infrared region (eg, a wavelength of 700 nm or more and 1100 nm or less).
  • the light emitting element 800 emits the light 890 to the object 900
  • the light 890 is reflected by the object 900.
  • the reflected light (light 891) is incident on the solid-state imaging device 700-1, and an image is acquired.
  • face authentication can also be performed by using light in the near infrared region.
  • the optical filter 100 and the adhesive 125 are used in the solid-state imaging device 700. Therefore, the solid-state imaging device 700 can block light incident not only from above but also from the side. For example, as shown in FIG. 6, light 892, which is part of the light 891 incident on the solid-state imaging device 700-1, is generated as leaked light. At this time, the light 892 travels from the side of the solid-state imaging device 700 to the solid-state imaging device 700.
  • the adhesive 125 provided on the solid-state imaging device 700 can block light in the near infrared region. Therefore, the solid-state imaging device 700 can acquire an image with high color reproducibility without being affected by the light 892.
  • the solid-state imaging device 700 and the solid-state imaging device 700-1 may be arranged on different planes.
  • the solid-state imaging device 700 is provided on different surfaces of the housing 1010. This is similar to the relationship between the main camera and the sub camera provided in the smartphone.
  • the sub camera corresponding to the solid-state imaging device 700-1
  • the main camera can acquire an image with high color reproducibility without being affected by leaked light.
  • the optical filter 100 has been described as blocking and absorbing light of wavelengths in the near infrared region, but is not limited thereto.
  • the optical filter 100 may absorb light in the near-ultraviolet region in addition to light in the near-infrared region.
  • the near ultraviolet light absorber include azomethine compounds, indole compounds, benzotriazole compounds and triazine compounds.
  • near-infrared light or near-ultraviolet regions may be combined and blocked.
  • FIG. 8 is a cross-sectional view of the optical filter 100-1.
  • the optical filter 100-1 can absorb more light in the near infrared region by including the adhesive 125.
  • FIG. 9 is a cross-sectional view of the optical filter 100-2.
  • the adhesive 125 may be provided on both sides of the absorbent layer 110 (the second surface 111B opposite to the first surface 111A of the base 111).
  • the protective layer 130 may be used as the protective member 740. Thereby, the light incident from the side is absorbed more efficiently.
  • FIG. 10 is a cross-sectional view of the optical filter 110-3.
  • the absorbing layer 110-3 has a light transmitting resin layer 115 on the second surface 111 B opposite to the first surface 111 A of the base 111.
  • a glass support or a transparent resin substrate is used for the substrate 111.
  • the resin layer 115 has translucency.
  • an acrylic resin is provided in the resin layer 115 in this example, the present invention is not limited to this, and the above-described resin material is used.
  • the resin layer 115 containing the compound 113 is formed on the second surface 111B of the base 111 by a cast molding method.
  • a resin solution corresponding to the resin layer 115 is applied using a method such as spin coating, slit coating, or inkjet. Thereafter, the solvent contained in the resin solution is dried and removed to produce the absorbent layer 110-1.
  • the base material 111 can be used as a support body at the time of resin layer 115 formation.
  • the resin layer 115 does not need to be peeled off from the base 111. That is, the manufacturing process is simplified.
  • FIG. 11 is a cross-sectional view of the optical filter 100-4.
  • the optical filter 100-4 may be provided with a dielectric layer 140.
  • the adhesive layer 120 is provided on the second surface 111 ⁇ / b> B side of the base 111 among the absorbing layer 110.
  • the dielectric layer 140 has a function of reflecting light of unnecessary wavelength bands and selectively transmitting light of necessary wavelength bands.
  • the dielectric layer 140 reflects near infrared light and transmits visible light.
  • the dielectric layer 140 may reflect light in the same wavelength band as the absorption layer 110 or may reflect light in a different wavelength band. By using the dielectric layer 140, light can be selectively transmitted through the optical filter 100.
  • the dielectric layer 140 a layer in which high refractive index material layers and low refractive index material layers are alternately stacked is used.
  • a material forming the high refractive index material layer a material having a refractive index of 1.7 or more can be used, and a material having a refractive index of usually 1.7 to 2.5 is selected.
  • Such materials include, for example, titanium oxide, zirconium oxide, tantalum pentoxide, niobium pentoxide, lanthanum oxide, yttrium oxide, zinc oxide, zinc sulfide or indium oxide, etc., and titanium oxide, tin oxide and / or Alternatively, those containing a small amount of cerium oxide or the like (for example, 0 to 10% by weight with respect to the main component) can be mentioned.
  • a material having a refractive index of 1.6 or less can be used, and a material having a refractive index of 1.2 to 1.6 is usually selected.
  • Such materials include, for example, silica, alumina, lanthanum fluoride, magnesium fluoride and sodium aluminum hexafluoride.
  • the physical film thickness of each of the high refractive index material layer and the low refractive index material layer depends on the refractive index of each layer, but it is usually preferably 5 to 500 nm, and the total film thickness of the dielectric layer 140 is 1 The thickness may be appropriately set in the range of 0 to 8.0 ⁇ m.
  • the dielectric layer 140 is formed by laminating a high refractive index material layer and a low refractive index material layer.
  • the dielectric layer 140 is a dielectric in which high refractive index material layers and low refractive index material layers are alternately laminated by performing a CVD method, a sputtering method, a vacuum evaporation method, an ion assisted deposition method, an ion plating method or the like. Layer 140 can be formed.
  • the optical filter 100 and the adhesive 125 are used for the solid-state imaging device 700, but may be used for an ambient light sensor or an illuminance sensor.
  • light diffusing particles may be included in at least one of the optical filter 100 and the adhesive 125.
  • FIG. 12 is a cross-sectional view of the optical filter 100-5.
  • FIG. 13 is a cross-sectional view of the adhesive 125-5.
  • the optical filter 100-5 and the adhesive 125-5 include light diffusing particles 123.
  • the light diffusion particles 123 are provided in the absorption layer 110.
  • the light diffusing particles 123 are provided in the resin 121.
  • the light diffusion particle 123 may absorb light in the near infrared region.
  • the refractive index of the light diffusion particle 123 may be appropriately set in the range of 1.2 or more and 3.0 or less.
  • titanium oxide (TiO 2 ) is used as the light diffusion particle 123 in this example.
  • the size of the light diffusion particle 123 is 10 nm or more and less than 500 nm, more preferably 20 nm or more and less than 200 nm.
  • the light diffusing particles 123 preferably have a spherical shape, but is not limited thereto.
  • the smaller the particle diameter of the fine particles the higher the transparency of the resin material.
  • the particle diameter is preferably 100 nm or less, more preferably 50 nm or less, still more preferably 20 nm or less.
  • These high refractive index inorganic fine particle materials can be used by being mixed with ordinary resins, and the refractive index of the curable resin can be further enhanced by mixing with the above high refractive index resins. It becomes possible.
  • an organic particle containing a structural unit derived from at least one of an aromatic vinyl monomer and a (meth) acrylic acid ester monomer can be used.
  • particles described in JP-A-2010-77243, JP-A-2017-50276, JP-A-2011-248104, etc. can be used.
  • the amount of the light diffusion particles dispersed in the adhesive layer-forming resin is about 1 to about 20 parts by weight, preferably about 1 to about 10 parts by weight. If the amount is less than 1 part by weight, the selective absorptivity is not sufficient, and if it exceeds 20 parts by weight, the light transmission is insufficient and the impact resistance of the material is lowered. For example, it can be dispersed by a known method described in JP-A-11-310717 and the like.
  • FIG. 14 is a cross-sectional view of the ambient light sensor 400.
  • the ambient light sensor 400 includes a semiconductor element 710 having a light receiving portion 720, a lens 730, an adhesive 125, a protection member 740, a package substrate 770, and a front panel 780.
  • the optical filter 100 or the adhesive 125 for the ambient light sensor 400 the illuminance and the color of the display panel 304 shown in FIG. 1 can be controlled.
  • the absorbing layer 110 is formed by casting a curable composition containing a photocurable resin and / or a thermosetting resin and, if necessary, the compound 113 on a suitable support. After removing the solvent, it may be formed by curing according to an appropriate method such as ultraviolet irradiation or heating if necessary.
  • the absorbent layer 110 may be formed by a melt molding method. Specifically, a method of melt-molding a pellet obtained by melt-kneading a resin and, if necessary, the compound 113, a method of melt-molding a resin composition containing a resin and, if necessary, the compound 113, or a resin And a method of melt-molding pellets obtained by removing the solvent from the resin composition containing the solvent and, if necessary, the compound 113.
  • Melt molding methods include injection molding, melt extrusion molding or blow molding.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optical Filters (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

A photoelectric conversion element comprising: a semiconductor element that is provided with a light receiving part; an optical filter that is provided on the semiconductor element so as to be superimposed on the light receiving part; a lens that is provided on the semiconductor element so as to be superimposed on the light receiving part and the optical filter; a protective member that is provided on the periphery of the semiconductor element; and an adhesive that is provided between the protective member and the optical filter and lens; wherein the optical filter and the adhesive contain at least one compound that has an absorption maximum wavelength falling in the wavelength region of 700 nm to 1100 nm.

Description

光電変換素子および接着剤Photoelectric conversion element and adhesive
 本発明は、近赤外領域の光を吸収する光電変換素子および接着剤に関する。 The present invention relates to a photoelectric conversion element and an adhesive that absorb light in the near infrared region.
 近年、光電変換素子が、様々な場面で用いられている。例えば、スマートフォンなどの携帯通信端末には、イメージセンサに代表される固体撮像素子が搭載される。固体撮像素子を用いることにより、静止画および動画を簡単に取得することが可能である。 In recent years, photoelectric conversion elements are used in various situations. For example, in a mobile communication terminal such as a smartphone, a solid-state imaging device represented by an image sensor is mounted. By using a solid-state imaging device, it is possible to easily acquire still images and moving images.
 また、携帯情報端末には照度センサまたは環境光センサが、搭載されている。照度センサまたは環境光センサも、固体撮像素子と同様に、光を取得するものであり、周囲の明るさを取得する。この情報をもとに、携帯通信端末の画像の明るさが制御される。なお、固体撮像素子、照度センサおよび環境光センサは、それぞれ光を電気信号に変換する光電変換素子である。 Further, an illuminance sensor or an ambient light sensor is mounted on the portable information terminal. Similarly to the solid-state imaging device, the illuminance sensor or the ambient light sensor also acquires light, and acquires ambient brightness. Based on this information, the brightness of the image of the mobile communication terminal is controlled. In addition, a solid-state image sensor, an illumination intensity sensor, and an ambient light sensor are photoelectric conversion elements which convert light into an electric signal, respectively.
 ここで、固体撮像素子、照度センサまたは環境光センサを用いる場合、可視光領域以外の光の影響を受けるために、得られた電気信号の感度が低下する場合がある。このため、可視光領域以外の光を遮断する必要がある。例えば、近赤外領域(例えば700~1100nm)付近の光は、照射される光の中で多くの割合を占める。そのため、近赤外領域の光を遮断する場合には、近赤外線カットフィルタが用いられる。近赤外線カットフィルタは、近赤外線を吸収し、可視光を選択的に透過させる機能を有する。特許文献1には、近赤外線を吸収する技術が開示されている。 Here, in the case of using a solid-state imaging device, an illuminance sensor, or an ambient light sensor, the sensitivity of the obtained electrical signal may be reduced due to the influence of light other than the visible light region. For this reason, it is necessary to block light other than the visible light region. For example, light near the near infrared region (eg, 700 to 1100 nm) occupies a large proportion of the light to be irradiated. Therefore, when blocking light in the near infrared region, a near infrared cut filter is used. The near infrared cut filter has a function of absorbing near infrared light and selectively transmitting visible light. Patent Document 1 discloses a technique for absorbing near-infrared light.
特開2016-200771号公報Unexamined-Japanese-Patent No. 2016-200771
 一方で、固体撮像撮像素子の場合、固体撮像素子の上部には赤外カットフィルタが設けられることが一般的だが、側面からの赤外線に対しては、十分な遮断機能を有していない。そのため、光電変換素子の側方から入射した赤外光により、画像が赤みがかり、画像の色再現性が低下する恐れがある。 On the other hand, in the case of a solid-state imaging device, an infrared cut filter is generally provided on the upper portion of the solid-state imaging device, but the infrared ray from the side does not have a sufficient blocking function. Therefore, the image may become reddish due to the infrared light incident from the side of the photoelectric conversion element, and the color reproducibility of the image may be deteriorated.
 このような課題に鑑み、本発明は、上方のみならず、側方にわたって近赤外領域の光に対する遮断機能を有する光電変換素子を提供することを目的の一つとする。 In view of such a subject, an object of the present invention is to provide a photoelectric conversion element which has a blocking function to light in a near infrared region not only above but also laterally.
 本発明の一実施形態によると、受光部が設けられた半導体素子と、半導体素子上に設けられ、受光部に重畳する光学フィルタと、半導体素子上に設けられ、受光部および光学フィルタに重畳するレンズと、半導体素子の周縁に設けられた保護部材と、受光部を囲み、保護部材と光学フィルタおよびレンズとの間に設けられた接着材と、を含み、光学フィルタおよび接着材は、700nm~1100nmの波長領域に吸収極大波長を有する化合物を少なくとも一以上含有する、光電変換素子が、提供される。 According to one embodiment of the present invention, a semiconductor device provided with a light receiving unit, an optical filter provided on the semiconductor device, and superimposed on the light receiving unit, provided on the semiconductor device and superimposed on the light receiving unit and the optical filter The optical filter and the adhesive include a lens, a protective member provided on the periphery of the semiconductor element, and an adhesive that surrounds the light receiving unit and is provided between the protective member and the optical filter and the lens. A photoelectric conversion element is provided, which contains at least one compound having an absorption maximum wavelength in a wavelength region of 1100 nm.
 上記光電変換素子において、光学フィルタおよび接着材は、(A)波長430~580nmの範囲における透過率の平均値が、75%以上であって、(B)波長700~800nmの範囲における透過率の平均値が、20%以下であって、(C)波長800~1100nmの範囲における透過率の平均値が、5%以下であってもよい。 In the above photoelectric conversion element, the optical filter and the adhesive have (A) an average value of transmittance in a wavelength range of 430 to 580 nm of 75% or more and (B) transmittance in a wavelength range of 700 to 800 nm. The average value may be 20% or less, and the average value of the transmittances in the range of (C) wavelength 800 to 1100 nm may be 5% or less.
 上記光電変換素子において、光学フィルタは、透光性を有する基材を有し、上記基材は、化合物を含んでもよい。 In the photoelectric conversion element, the optical filter may have a light-transmitting substrate, and the substrate may contain a compound.
 上記光電変換素子において、基材は、透光性を有する樹脂であってもよい。 In the above-mentioned photoelectric conversion element, the base material may be a translucent resin.
 上記光電変換素子において、光学フィルタは、第1面および第1面の反対側に第2面を有し、透光性を有する基材と、第1面および第2面の少なくとも一方に、化合物を含む樹脂層と、を含んでもよい。 In the above photoelectric conversion element, the optical filter has a first surface and a second surface opposite to the first surface, and a compound having a light-transmitting base material and at least one of the first surface and the second surface. And a resin layer containing
 上記光電変換素子において、光学フィルタは、さらに誘電体層を有してもよい。 In the photoelectric conversion element, the optical filter may further have a dielectric layer.
 上記光電変換素子において、光学フィルタおよび接着材の少なくともいずれかは、光拡散粒子を有してもよい。 In the photoelectric conversion element, at least one of the optical filter and the adhesive may have light diffusing particles.
 上記光電変換素子において、光拡散粒子は、近赤外領域の光を吸収してもよい。 In the photoelectric conversion element, the light diffusing particle may absorb light in the near infrared region.
 上記光電変換素子において、光拡散粒子は、セシウム含有酸化タングステンであってもよい。 In the above-mentioned photoelectric conversion element, the light diffusion particle may be cesium-containing tungsten oxide.
 本発明の一実施形態によれば、上記光拡散粒子を含有する接着材が提供される。 According to one embodiment of the present invention, an adhesive containing the light diffusing particle is provided.
 本発明の一実施形態によると、上方のみならず、側方にわたって近赤外領域の光に対する遮断機能を有する光電変換素子を提供することができる。 According to one embodiment of the present invention, it is possible to provide a photoelectric conversion element having a blocking function to light in the near infrared region not only above but also laterally.
本発明の一実施形態に係る固体撮像素子を含む電気機器を説明する斜視図である。It is a perspective view explaining an electric equipment containing a solid-state image sensing device concerning one embodiment of the present invention. 本発明の一実施形態に係る固体撮像素子を説明する断面図である。It is a sectional view explaining a solid-state image sensing device concerning one embodiment of the present invention. 本発明の一実施形態に係る光学フィルタを説明する断面図である。It is a sectional view explaining an optical filter concerning one embodiment of the present invention. 本発明の一実施形態に係る接着材を説明する断面図である。It is a sectional view explaining an adhesive concerning one embodiment of the present invention. 本発明の一実施形態に係る固体撮像素子の機能を説明する断面図である。It is sectional drawing explaining the function of the solid-state image sensor which concerns on one Embodiment of this invention. 本発明の一実施形態に係る固体撮像素子を含む電気機器を説明する断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing explaining the electric equipment containing the solid-state image sensor which concerns on one Embodiment of this invention. 本発明の一実施形態に係る固体撮像素子を含む電気機器を説明する断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing explaining the electric equipment containing the solid-state image sensor which concerns on one Embodiment of this invention. 本発明の一実施形態に係る光学フィルタを説明する断面図である。It is a sectional view explaining an optical filter concerning one embodiment of the present invention. 本発明の一実施形態に係る光学フィルタを説明する断面図である。It is a sectional view explaining an optical filter concerning one embodiment of the present invention. 本発明の一実施形態に係る光学フィルタを説明する断面図である。It is a sectional view explaining an optical filter concerning one embodiment of the present invention. 本発明の一実施形態に係る光学フィルタを説明する断面図である。It is a sectional view explaining an optical filter concerning one embodiment of the present invention. 本発明の一実施形態に係る光学フィルタを説明する断面図である。It is a sectional view explaining an optical filter concerning one embodiment of the present invention. 本発明の一実施形態に係る光学フィルタを説明する断面図である。It is a sectional view explaining an optical filter concerning one embodiment of the present invention. 本発明の一実施形態に係る環境光センサを含む電気機器を説明する断面図である。It is sectional drawing explaining the electric equipment containing the environmental light sensor which concerns on one Embodiment of this invention.
 以下、本発明の各実施形態に係る光電変換素子について、図面を参照しながら詳細に説明する。なお、以下に示す各実施形態は本発明の実施形態の一例であって、本発明はこれらの実施形態に限定して解釈されるものではない。なお、本実施形態で参照する図面において、同一部分または同様な機能を有する部分には同一の符号または類似の符号(数字の後に-1、-2等を付しただけの符号)を付し、その繰り返しの説明は省略する場合がある。また、図面の寸法比率は説明の都合上実際の比率とは異なったり、構成の一部が図面から省略されたりする場合がある。 Hereinafter, the photoelectric conversion element according to each embodiment of the present invention will be described in detail with reference to the drawings. Each embodiment shown below is an example of an embodiment of the present invention, and the present invention is not interpreted as being limited to these embodiments. In the drawings referred to in this embodiment, the same portions or portions having similar functions are denoted by the same reference numerals or similar reference numerals (numbers simply attached with -1, -2, etc.) The repeated description may be omitted. Further, the dimensional ratio of the drawings may be different from the actual ratio for convenience of explanation, or part of the configuration may be omitted from the drawings.
<第1実施形態>
(1-1.情報通信端末の構成)
 図1は、本発明の一実施形態に係る固体撮像素子700を有する情報通信端末(この例では、スマートフォン300)の上面図である。スマートフォン300は、筐体302、表示パネル304、マイクロホン部306、スピーカ部308、環境光センサ400、および固体撮像素子700を含む。表示パネル304にはタッチパネルが採用され、表示パネル304は表示機能に加え入力機能を兼ね備えている。環境光センサ400および固体撮像素子700は、光電変換素子の一つである。以下に、固体撮像素子700について図2を用いて詳述する。
First Embodiment
(1-1. Configuration of information communication terminal)
FIG. 1 is a top view of an information communication terminal (in this example, a smartphone 300) having a solid-state imaging device 700 according to an embodiment of the present invention. The smartphone 300 includes a housing 302, a display panel 304, a microphone unit 306, a speaker unit 308, an ambient light sensor 400, and a solid-state imaging device 700. A touch panel is adopted as the display panel 304, and the display panel 304 has an input function in addition to the display function. The ambient light sensor 400 and the solid-state imaging device 700 are one of photoelectric conversion devices. Hereinafter, the solid-state imaging device 700 will be described in detail with reference to FIG.
 図2は、固体撮像素子700の断面図である。図2に示すように、固体撮像素子700は、トランジスタを含むチップ化された半導体素子710、レンズ730、光学フィルタ100、カラーフィルタ200などの光学素子、接着材125、保護部材740およびパッケージ基板770を有する。 FIG. 2 is a cross-sectional view of the solid-state imaging device 700. As shown in FIG. 2, the solid-state imaging device 700 includes a chipped semiconductor device 710 including a transistor, a lens 730, an optical filter 100, an optical element such as a color filter 200, an adhesive 125, a protective member 740 and a package substrate 770. Have.
 半導体素子710は、中央演算処理装置(CPU:Central Processing Unit)としての機能、または記憶装置としての機能、さらに光を受光する機能を有する。半導体素子710は、トランジスタを含むチップとして配置される。半導体素子710には、受光部720が設けられる。半導体素子710と、パッケージ基板770とは、錫、銀などを含むバンプ電極などを用いて接続される。また、半導体素子710と、パッケージ基板770との間に中継基板が設けられてもよい。 The semiconductor element 710 has a function as a central processing unit (CPU: Central Processing Unit), a function as a storage device, and a function to receive light. The semiconductor element 710 is arranged as a chip including a transistor. A light receiving unit 720 is provided in the semiconductor element 710. The semiconductor element 710 and the package substrate 770 are connected using a bump electrode containing tin, silver or the like. In addition, a relay substrate may be provided between the semiconductor element 710 and the package substrate 770.
 光学フィルタ100およびカラーフィルタ200は、半導体素子710上に設けられる。光学フィルタ100は、受光部720に重畳する。光学フィルタ100は、近赤外領域の光(例えば700~1100nmの波長帯域の光)を遮断する機能を有する。カラーフィルタ200は、可視光領域の特定の波長帯域の光を透過させる機能を有する。カラーフィルタ200は、具体的には赤(R)、緑(G)、青(B)の波長帯域の光を透過させることができる。なお、光学フィルタ上にカラーフィルタ200が設けられる例を示したが、カラーフィルタ200上に光学フィルタ100が配置されてもよい。光学フィルタ100の詳細については後述する。 The optical filter 100 and the color filter 200 are provided on the semiconductor element 710. The optical filter 100 is superimposed on the light receiving unit 720. The optical filter 100 has a function of blocking light in the near infrared region (for example, light in a wavelength band of 700 to 1100 nm). The color filter 200 has a function of transmitting light in a specific wavelength band of the visible light range. Specifically, the color filter 200 can transmit light in wavelength bands of red (R), green (G), and blue (B). Although the color filter 200 is provided on the optical filter, the optical filter 100 may be disposed on the color filter 200. Details of the optical filter 100 will be described later.
 レンズ730は、半導体素子710および光学フィルタ100上に設けられる。レンズ730は、受光部720および光学フィルタ100に重畳して配置される。レンズ730は、光を集束させる機能を有する。レンズ730は、微小のレンズが格子状に多数配列されている。したがって、レンズ730は、マイクロレンズアレイと呼ばれる。 The lens 730 is provided on the semiconductor element 710 and the optical filter 100. The lens 730 is disposed to overlap the light receiving unit 720 and the optical filter 100. The lens 730 has a function of focusing light. In the lens 730, a large number of minute lenses are arranged in a lattice. Thus, the lens 730 is referred to as a microlens array.
 保護部材740は、半導体素子710の周縁に設けられる。保護部材740は、受光部720を囲むように配置される。保護部材740は、半導体素子710を保護する機能を有する。保護部材740には、ガラス基板、シリコン基板、セラミックなどの無機材料、アクリル、塩化ビニルなどの有機樹脂材料が用いられる。 The protective member 740 is provided on the periphery of the semiconductor element 710. The protective member 740 is disposed to surround the light receiving unit 720. The protective member 740 has a function of protecting the semiconductor element 710. For the protective member 740, an inorganic material such as a glass substrate, a silicon substrate, or ceramic, or an organic resin material such as acrylic or vinyl chloride is used.
 接着材125は、受光部720を囲んで配置される。接着材125は、保護部材740と、光学フィルタ100、カラーフィルタ200およびレンズ730との間に設けられる。接着材125は、各部材同士を接着する機能を有する。なお、接着材125は、保護部材740によって支持されてもよい。また、接着材125が独立して配置可能な場合には、必ずしも保護部材740を設けなくてもよい。また、保護部材は、接着材125を用いてパッケージ基板と接着されてもよい。 The adhesive 125 is disposed around the light receiving unit 720. The adhesive 125 is provided between the protection member 740 and the optical filter 100, the color filter 200, and the lens 730. The adhesive 125 has a function of bonding the respective members. The adhesive 125 may be supported by the protective member 740. In addition, when the adhesive 125 can be disposed independently, the protective member 740 may not necessarily be provided. Also, the protective member may be bonded to the package substrate using an adhesive 125.
(1-2.光学フィルタおよび接着層の構成)
 図3は、光学フィルタ100の断面図である。図3に示すように、光学フィルタ100では、吸収層110、接着層120および保護層130が、この順で積層されている。
(1-2. Configuration of optical filter and adhesive layer)
FIG. 3 is a cross-sectional view of the optical filter 100. As shown in FIG. 3, in the optical filter 100, the absorption layer 110, the adhesive layer 120, and the protective layer 130 are laminated in this order.
[吸収層110]
 吸収層110は、近赤外吸収色素と、透明樹脂または透明樹脂の原料成分と、必要に応じて配合される各成分とを、溶媒に溶解または分散させて塗工液を調製し、これを基材上に塗工し乾燥させ、さらに必要に応じて硬化させることにより形成できる。
Absorbent layer 110
The absorbing layer 110 dissolves or disperses a near infrared absorbing dye, a transparent resin or a raw material component of a transparent resin, and each component to be blended as needed, to prepare a coating liquid, It can be formed by coating on a substrate, drying, and curing as necessary.
 例えば、透明樹脂と吸収剤とを溶融混練りして得られたペレットを溶融成形する方法、透明樹脂、吸収剤、および溶媒を含む液状樹脂組成物から溶剤を除去して得られたペレットを溶融成形する方法、または、上述の液状樹脂組成物をキャスティング(キャスト成形)する方法により製造することができる。上述の成形方法は、透明樹脂及び塗工液に用いる溶媒の双方に溶解性が良好であるため、膜の均一性を確保でき、好ましい。また、近赤外吸収色素を透明樹脂成分と混合し、フィルム成形することによっても形成することができる。 For example, a method of melt-molding pellets obtained by melt-kneading a transparent resin and an absorbent, melting pellets obtained by removing a solvent from a liquid resin composition containing a transparent resin, an absorbent, and a solvent It can manufacture by the method of shape | molding, or the method of casting (cast molding) the above-mentioned liquid resin composition. The above-mentioned molding method is preferable because it has good solubility in both the transparent resin and the solvent used for the coating liquid, so that the uniformity of the film can be secured. It can also be formed by mixing a near infrared absorbing dye with a transparent resin component and forming a film.
 近赤外吸収色素として、例えば、近赤外線を吸収する色素として作用する金属錯体系化合物や染料、顔料を用いることができ、フタロシアニン系化合物、シアニン化合物、ナフタロシアニン系化合物、スクアリリウム系色素、ジチオール金属錯体系化合物、クロコニウム系化合物、ポルフィリン系化合物および金属ジチオラート系化合物、ジインモニウム化合物、アゾ化合物からなる群より選ばれる少なくとも1種の化合物などを挙げることができる。具体的には、たとえば、Lumogen IR765、Lumogen IR788(BASF製)、ABS643、ABS654、ABS667、ABS670T、IRA693N、IRA735(Exciton製)、SDA3598、SDA6075、SDA8030、SDA8303、SDA8470、SDA3039、SDA3040、SDA3922、SDA7257(H.W.SANDS製)、TAP-15、IR-706(山田化学工業製)などの市販品を用いることもできる。 As the near infrared absorbing dye, for example, metal complex compounds, dyes, and pigments that act as dyes absorbing near infrared rays can be used, and phthalocyanine compounds, cyanine compounds, naphthalocyanine compounds, squarylium dyes, dithiol metals Examples thereof include at least one compound selected from the group consisting of complex compounds, croconium compounds, porphyrin compounds and metal dithiolate compounds, diimmonium compounds, and azo compounds. Specifically, for example, Lumogen IR 765, Lumogen IR 788 (manufactured by BASF), ABS 643, ABS 654, ABS 667, ABS 670 T, IRA 693 N, IRA 735 (manufactured by Exciton), SDA 3598, SDA 6075, SDA 8030, SDA 8030, SDA 8470, SDA 3039, SDA 3040, SDA 3922, SDA 7257 Commercial products such as H. W. SANDS, TAP-15, and IR-706 (Yamada Chemical Co., Ltd.) can also be used.
 透明樹脂としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂、ポリエチレン、ポリプロピレン、エチレン酢酸ビニル共重合体等のポリオレフィン樹脂、環状オレフィン樹脂、ノルボルネン樹脂、ポリアクリレート、ポリメチルメタクリレート等のアクリル樹脂、ウレタン樹脂、塩化ビニル樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、シクロオレフィン樹脂、ポリビニルアルコール樹脂等が使用できる。 As transparent resin, polyester resin such as polyethylene terephthalate and polybutylene terephthalate, polyolefin resin such as polyethylene, polypropylene and ethylene vinyl acetate copolymer, cyclic olefin resin, acrylic resin such as norbornene resin, polyacrylate and polymethyl methacrylate, urethane Resin, vinyl chloride resin, fluorocarbon resin, polycarbonate resin, polyvinyl butyral resin, polyvinyl alcohol resin, polyimide resin, polyetherimide resin, polyamide resin, polyamideimide resin, cycloolefin resin, polyvinyl alcohol resin and the like can be used.
 塗工液の調製に使用する溶媒は、色素、透明樹脂または透明樹脂の原料成分、必要に応じて配合される各成分を、安定に分散できる分散媒または溶解できる溶媒であれば、特に限定されない。なお、本明細書において「溶媒」の用語は、分散媒及び溶媒の両方を含む概念で用いられる。溶媒としては、例えば、イソプロピルアルコール、n-ブチルアルコール、エチルセロソルブ、メチルセロソルブ等のアルコール類、エチレングリコール、ジエチレングリコール、プロピレングリコール等のグリコール類、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチレンエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールブチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート等のエーテル類、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類、ベンゼン、トルエン、キシレン等の芳香族、またはn-ヘキサン、n-ヘプタン等の脂肪族炭化水素類、テトラフルオロプロピルアルコール、ペンタフルオロプロピルアルコール等のフッ素系溶剤、水等が挙げられる。これらの溶媒は1種を単独で、または2種以上を混合して使用できる。 The solvent used for preparation of the coating liquid is not particularly limited as long as it is a dispersion medium or solvent capable of stably dispersing the dye, the transparent resin or the raw material component of the transparent resin, and each component blended as necessary. . In the present specification, the term "solvent" is used in the concept including both the dispersion medium and the solvent. Examples of the solvent include alcohols such as isopropyl alcohol, n-butyl alcohol, ethyl cellosolve, methyl cellosolve, glycols such as ethylene glycol, diethylene glycol and propylene glycol, and ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and cyclohexanone , Amides such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, ethylene glycol monomethyl ether, ethylene glycol monoethylene ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol mono Ethyl ether, diethylene glycol butyl ether, ethylene glycol monomethyl ether acetate Ethers such as ethylene glycol monoethyl ether acetate and ethylene glycol monobutyl ether acetate, esters such as methyl acetate, ethyl acetate and butyl acetate, aromatics such as benzene, toluene and xylene, or n-hexane and n-heptane Aliphatic hydrocarbons, fluorine-based solvents such as tetrafluoropropyl alcohol and pentafluoropropyl alcohol, water, and the like. These solvents may be used alone or in combination of two or more.
 溶媒の量は、透明樹脂または透明樹脂の原料成分100質量部に対して、10~5,000質量部が好ましく、30~2,000質量部がより好ましい。なお、塗工液中の不揮発成分(固形分)の含有量は、塗工液100質量部中に2~50質量部が好ましく、5~40質量部がより好ましい。 The amount of the solvent is preferably 10 to 5,000 parts by mass, and more preferably 30 to 2,000 parts by mass with respect to 100 parts by mass of the transparent resin or the raw material component of the transparent resin. The content of the non-volatile component (solid content) in the coating liquid is preferably 2 to 50 parts by mass, and more preferably 5 to 40 parts by mass in 100 parts by mass of the coating liquid.
 塗工液には、界面活性剤も含有できる。界面活性剤を含有させることにより、外観、特に、微小な泡によるボイド、異物等の付着による凹み、乾燥工程でのはじきを改善できる。界面活性剤は、特に限定されず、カチオン系、アニオン系、ノニオン系等の公知のものを任意に使用できる。 The coating liquid can also contain a surfactant. By including the surfactant, it is possible to improve the appearance, in particular, a void due to a fine bubble, a dent due to adhesion of foreign matter and the like, and a repelling during a drying step. The surfactant is not particularly limited, and known ones such as cationic, anionic and nonionic surfactants can be optionally used.
 塗工液の調製には、マグネチックスターラ、自転・公転式ミキサー、ビーズミル、遊星ミル、超音波ホモジナイザ等の攪拌装置を使用できる。撹拌は連続的に行ってもよく断続的に行ってもよい。 For the preparation of the coating solution, stirring devices such as a magnetic stirrer, a rotation / revolution mixer, a bead mill, a planetary mill, an ultrasonic homogenizer and the like can be used. The stirring may be performed continuously or intermittently.
 塗工液の塗工には、例えば、浸漬コーティング法、キャストコーティング法、スプレーコーティング法、スピナーコーティング法、ビードコーティング法、ワイヤーバーコーティング法、ブレードコーティング法、ローラーコーティング法、カーテンコーティング法、スリットダイコーター法、グラビアコーター法、スリットリバースコーター法、マイクログラビア法、インクジェット法、またはコンマコーター法等のコーティング法を使用できる。その他、バーコーター法、スクリーン印刷法、フレキソ印刷法等も使用できる。 For application of the coating liquid, for example, dip coating method, cast coating method, spray coating method, spinner coating method, bead coating method, wire bar coating method, blade coating method, roller coating method, roller coating method, curtain coating method, slit die coating A coating method such as a tere method, a gravure coater method, a slit reverse coater method, a microgravure method, an inkjet method, or a comma coater method can be used. Besides, a bar coater method, a screen printing method, a flexographic printing method and the like can also be used.
 上記塗工液を前述した基材上に塗工した後、乾燥させることにより構造体が形成される。乾燥には、熱乾燥、熱風乾燥等の公知の方法を使用できる。塗工液が透明樹脂の原料成分を含有する場合には、さらに硬化処理を行う。反応が熱硬化の場合は乾燥と硬化を同時に実施できるが、光硬化の場合は、乾燥と別に硬化工程を設ける。剥離性の基材上に形成された構造体は剥離して本フィルタの製造に用いる。 After applying the above-mentioned coating liquid on the substrate mentioned above, a structure is formed by making it dry. For drying, known methods such as heat drying and hot air drying can be used. When the coating liquid contains a raw material component of the transparent resin, curing treatment is further performed. When the reaction is heat curing, drying and curing can be carried out simultaneously, but in the case of light curing, a curing step is provided separately from drying. The structure formed on the peelable substrate is peeled off and used for the production of the present filter.
 なお、透明樹脂の種類によっては、押出成形によりフィルム状に製造でき、このように製造した複数のフィルムを積層し熱圧着等により一体化させてもよい。 In addition, depending on the kind of transparent resin, it can manufacture in a film form by extrusion molding, and it may be made to laminate | stack several films manufactured in this way, and may be integrated by thermocompression bonding etc.
 吸収層110は、入射した光のうち、所定の波長領域の光を吸収し、必要な波長領域の光を透過させる機能を有する。具体的には、吸収層110は、(A)波長430~580nmの範囲における透過率の平均値が、75%以上、(B)波長700~800nmの範囲における透過率の平均値が、20%以下、(C)波長800~1100nmの範囲における透過率の平均値が、5%以下であるという特徴を有する。 The absorption layer 110 has a function of absorbing the light of a predetermined wavelength range among the incident light and transmitting the light of a necessary wavelength range. Specifically, in the absorption layer 110, the average value of the transmittance in the range of (A) wavelength 430 to 580 nm is 75% or more, and the average value of the transmittance in the range of (B) wavelength 700 to 800 nm is 20%. Hereinafter, the feature (C) is that the average value of the transmittance in the wavelength range of 800 to 1100 nm is 5% or less.
 吸収層110には、透光性を有する基材111および化合物113が用いられる。透光性を有する基材111としては、可視光を透過するものであれば、構成する材料は特に制限されず、ガラスや結晶等の無機材料や、透光性を有する樹脂等の有機材料が挙げられる。 For the absorbing layer 110, a light transmitting substrate 111 and a compound 113 are used. The material to be formed is not particularly limited as long as it transmits visible light as the light-transmitting substrate 111, and an inorganic material such as glass or crystal, or an organic material such as a light-transmitting resin is usable. It can be mentioned.
 可視光透過性基材に使用できる樹脂としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂、ポリエチレン、ポリプロピレン、エチレン酢酸ビニル共重合体等のポリオレフィン樹脂、環状オレフィン樹脂、ノルボルネン樹脂、ポリアクリレート、ポリメチルメタクリレート等のアクリル樹脂、ウレタン樹脂、塩化ビニル樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂等が挙げられる。可視光透過性基材に使用できるガラスとしては、ソーダライムガラス、ホウケイ酸ガラス、クラウンガラス、無アルカリガラス、石英ガラス、イオン交換によって得られる強化ガラス等が挙げられる。 Examples of the resin that can be used for the visible light transmitting substrate include polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyolefin resins such as polyethylene, polypropylene and ethylene vinyl acetate copolymer, cyclic olefin resin, norbornene resin, polyacrylate and poly Acrylic resin such as methyl methacrylate, urethane resin, vinyl chloride resin, fluorine resin, polycarbonate resin, polyvinyl butyral resin, polyvinyl alcohol resin, polyimide resin, polyetherimide resin, polyamide resin, polyamideimide resin and the like can be mentioned. Examples of the glass that can be used for the visible light transmissive substrate include soda lime glass, borosilicate glass, crown glass, alkali-free glass, quartz glass, and tempered glass obtained by ion exchange.
 強化ガラスはタッチパネル画面を保護する目的で、スマートフォンやタブレット端末のカバーガラスに用いられている。カバーガラスは、その外周部にはスクリーン印刷等で黒色や白色等の加飾印刷がなされている場合がある。その場合、予め加飾印刷が施される部分以外に開口部を設けておき、該開口部に上記塗工方法により塗工液を直接塗工できる。このように、塗工液を直接塗工することで、高い生産性が得られる。可視光透過性基材に使用できる結晶材料としては、水晶、ニオブ酸リチウム、サファイヤ等の複屈折性結晶が挙げられる。 Tempered glass is used for the cover glass of a smart phone or a tablet terminal in order to protect a touch panel screen. The cover glass may be subjected to decorative printing such as black or white on the outer peripheral portion thereof by screen printing or the like. In that case, an opening is provided in advance in addition to the portion to which the decorative printing is applied, and the coating liquid can be directly applied to the opening by the coating method. Thus, high productivity can be obtained by directly coating the coating liquid. Examples of crystal materials that can be used for the visible light transmitting base include birefringent crystals such as quartz, lithium niobate, and sapphire.
 また、近赤外吸収色素を透明樹脂成分と混合し、フィルム成形することによっても形成することができる。この場合、用いられる透明樹脂は、近赤外吸収色素と混合しやすい樹脂が用いられる。より具体的には、基材111には、環状(ポリ)オレフィン系樹脂が用いられる。また、光学フィルタ100のうち基材111には、化合物113(色素)が含まれる。 It can also be formed by mixing a near infrared absorbing dye with a transparent resin component and forming a film. In this case, the transparent resin to be used is a resin that is easy to mix with the near infrared absorbing dye. More specifically, a cyclic (poly) olefin resin is used for the substrate 111. In the optical filter 100, the base material 111 contains the compound 113 (dye).
 基材111の厚みは、特に制限されないが、好ましくは10μm以上210μm以下、より好ましくは20μm以上150μm以下、さらに好ましくは20μm以上110μm以下、特に好ましくは30μm以上80μm以下である。 The thickness of the substrate 111 is not particularly limited, but is preferably 10 μm to 210 μm, more preferably 20 μm to 150 μm, still more preferably 20 μm to 110 μm, and particularly preferably 30 μm to 80 μm.
 化合物113は、700nm~1100nmの波長帯域に吸収極大波長を1以上有する。この例では、化合物113として、フタロシアニン化合物が用いられる。化合物113の含有量は、上記の条件を満たすように適宜設定されればよい。 The compound 113 has one or more absorption maximum wavelengths in a wavelength band of 700 nm to 1100 nm. In this example, a phthalocyanine compound is used as the compound 113. The content of the compound 113 may be appropriately set so as to satisfy the above conditions.
[接着層120]
 本明細書において、「接着」は「粘着」も含む概念で用いられる。接着層120は、吸収層110のうち基材111の第1面111A上に設けられる。
[Adhesive layer 120]
In the present specification, "adhesion" is used in a concept including "adhesion". The adhesive layer 120 is provided on the first surface 111 </ b> A of the base 111 of the absorbent layer 110.
 接着層は、例えば、λ/4板と反射偏光子との間、また、反射偏光子における光反射層の間、偏光板または偏光子とλ/4板との間等には、接着層が含まれていてもよい。 The adhesive layer is, for example, an adhesive layer between the λ / 4 plate and the reflective polarizer, between the light reflective layer in the reflective polarizer, between the polarizing plate or the polarizer and the λ / 4 plate, etc. It may be included.
 接着層に用いられる粘着剤としては、例えば、動的粘弾性測定装置で測定した貯蔵弾性率G’と損失弾性率G”との比(tanδ=G”/G’)が0.001~1.5である物質のことを表し、いわゆる、粘着剤やクリープしやすい物質等が含まれる。本発明に用いることのできる粘着剤としては、例えば、アクリル系粘着剤や、ポリビニルアルコール系接着剤が挙げられるが、これに限定されない。 As a pressure-sensitive adhesive used for the adhesive layer, for example, the ratio (tan δ = G ′ ′ / G ′) of storage elastic modulus G ′ to loss elastic modulus G ′ ′ measured by a dynamic viscoelasticity measuring device is 0.001 to 1 5 indicates a substance which is a so-called adhesive, a substance which is easy to creep, and the like. Examples of the pressure-sensitive adhesive that can be used in the present invention include, but are not limited to, acrylic pressure-sensitive adhesives and polyvinyl alcohol-based adhesives.
 また、接着剤としては、ホウ素化合物水溶液、特開2004-245925号公報に示されるような、分子内に芳香環を含まないエポキシ化合物の硬化性接着剤、特開2008-174667号公報記載の360~450nmの波長におけるモル吸光係数が400以上である光重合開始剤と紫外線硬化性化合物とを必須成分とする活性エネルギー線硬化型接着剤、特開2008-174667号公報記載の(メタ)アクリル系化合物の合計量100質量部中に(a)分子中に(メタ)アクリロイル基を2以上有する(メタ)アクリル系化合物と、(b)分子中に水酸基を有し、重合性二重結合をただ1個有する(メタ)アクリル系化合物と、(c)フェノールエチレンオキサイド変性アクリレートまたはノニルフェノールエチレンオキサイド変性アクリレートとを含有する活性エネルギー線硬化型接着剤などが挙げられる。 Further, as the adhesive, a boron compound aqueous solution, a curable adhesive of an epoxy compound which does not contain an aromatic ring in the molecule as disclosed in JP-A-2004-245925, 360 described in JP-A-2008-174667. An active energy ray curable adhesive comprising a photopolymerization initiator having a molar absorption coefficient of 400 or more at a wavelength of 450 nm or more and an ultraviolet curable compound as essential components, (meth) acrylic as described in JP-A 2008-174667. (A) a (meth) acrylic compound having two or more (meth) acryloyl groups in the molecule in a total amount of 100 parts by weight of the compound, and (b) a hydroxyl group in the molecule and having a polymerizable double bond (Meth) acrylic compound having one, (c) phenol ethylene oxide modified acrylate or nonyl phenol ethylene oxide The active energy ray-curable adhesive containing a modified acrylate, and the like.
 このような接着層の屈折率の調整方法としては特に制限はないが、例えば特開平11-223712号公報に記載の方法を用いることができる。特開平11-223712号公報に記載の方法の中でも、以下の態様が特に好ましい。 The method for adjusting the refractive index of the adhesive layer is not particularly limited, and for example, the method described in JP-A-11-223712 can be used. Among the methods described in JP-A-11-223712, the following embodiments are particularly preferable.
 上述の接着層に用いられる粘着剤の例としては、ポリエステル系樹脂、エポキシ系樹脂、ポリウレタン系樹脂、シリコーン系樹脂、アクリル系樹脂等の樹脂をあげることができる。これらは単独もしくは2種以上混合して使用してもよい。特に、アクリル系樹脂は、耐水性、耐熱性、耐光性等の信頼性に優れ、接着力、透明性がよい等の理由により好ましい。アクリル系粘着剤としては、アクリル酸およびそのエステル、メタクリル酸およびそのエステル、アクリルアミド、アクリルニトリル等のアクリルモノマーの単独重合体もしくはこれらの共重合体、更に、上述のアクリルモノマーの少なくとも1種と、酢酸ビニル、無水マレイン酸、スチレン等の芳香族ビニルモノマーとの共重合体をあげることができる。 As an example of the adhesive used for the above-mentioned adhesion layer, resin, such as polyester resin, an epoxy resin, a polyurethane resin, silicone resin, acrylic resin, can be mentioned. You may use these individually or in mixture of 2 or more types. In particular, acrylic resins are preferable for their reliability such as water resistance, heat resistance, light resistance and the like, adhesion strength, transparency and the like. Acrylic pressure-sensitive adhesives include acrylic acid and esters thereof, methacrylic acid and esters thereof, homopolymers of acrylic monomers such as acrylamide and acrylonitrile, and copolymers thereof, and at least one of the above-mentioned acrylic monomers, Copolymers with aromatic vinyl monomers such as vinyl acetate, maleic anhydride and styrene can be mentioned.
 特に、粘着性を発現するエチレンアクリレート、ブチルアクリレート、2-エチルヘキシルアクリレート等の主モノマー、凝集力成分となる酢酸ビニル、アクリルニトリル、アクリルアミド、スチレン、メタクリレート、メチルアクリレートなどのモノマー、さらに接着力向上や、架橋化起点を付与するメタクリル酸、アクリル酸、イタコン酸、ヒドロキシエチルメタクリレート、ヒドロキシプロピルメタクリレート、ジメチルアミノエチルメタクリレート、ジメチルアミノエチルメタクリレート、アクリルアミド、メチロールアクリルアミド、グリシジルメタクリレート、無水マレイン酸等の官能基含有モノマーからなる共重合体で、Tg(ガラス転移点)が-60℃~-15℃の範囲にあり、重量平均分子量が20万~100万の範囲にあるものが好ましい。 In particular, main monomers such as ethylene acrylate, butyl acrylate and 2-ethylhexyl acrylate which develop adhesiveness, monomers such as vinyl acetate, acrylonitrile, acrylamide, styrene, methacrylate and methyl acrylate which become cohesive components, and adhesion improvement , Functional groups containing functional groups such as methacrylic acid, acrylic acid, itaconic acid, hydroxyethyl methacrylate, hydroxypropyl methacrylate, dimethylaminoethyl methacrylate, dimethylaminoethyl methacrylate, acrylamide, methylol acrylamide, glycidyl methacrylate, maleic anhydride, etc. which give a crosslinking origin Copolymer consisting of monomers, Tg (glass transition temperature) in the range of -60 ° C to -15 ° C, weight average molecular weight in the range of 200,000 to 1,000,000 There are preferred.
[保護層130]
 保護層130は、光学フィルタ100下に設けられた半導体素子710のうちとくに受光部720を保護する機能を有する。保護層130には、透光性を有する基材が設けられる。この保護層には、平面状の透光面を有するカバーガラスが配設される。このカバーガラスは、アルミナ等のセラミックス材料や金属材料、あるいは、プラスチック材料で形成されたパッケージに各種接着剤で封着され、パッケージの内部に収納された半導体素子を保護すると共に可視光線等の透光窓として機能するものである。この例では、保護層130には、無色透明のガラス基板が用いられる。
[Protective layer 130]
The protective layer 130 has a function of protecting, in particular, the light receiving unit 720 among the semiconductor elements 710 provided under the optical filter 100. The protective layer 130 is provided with a light-transmitting substrate. A cover glass having a planar light transmitting surface is disposed on the protective layer. The cover glass is sealed with a package of a ceramic material such as alumina, a metal material, or a plastic material with various adhesives to protect the semiconductor element housed inside the package and to transmit visible light and the like. It functions as a light window. In this example, a colorless and transparent glass substrate is used for the protective layer 130.
 このような無色透明のガラス基板としては、例えば、特開2004-221541号公報、特開2006-149458号公報等に記載のカバーガラスを使用することができる。なお、保護層130は、ガラス基板に限定されず、透明な有機樹脂が用いられてもよい。有機樹脂としては、上記吸収層で記載した透明樹脂を使用することができる。 As such a colorless and transparent glass substrate, for example, the cover glass described in JP-A-2004-221541, JP-A-2006-149458, etc. can be used. The protective layer 130 is not limited to the glass substrate, and a transparent organic resin may be used. As an organic resin, the transparent resin described in the said absorption layer can be used.
 保護層130の厚みは、特に制限されないが、好ましくは10μm以上210μm以下、より好ましくは20μm以上150μm以下、さらに好ましくは20μm以上110μm以下、特に好ましくは30μm以上80μm以下である。 The thickness of the protective layer 130 is not particularly limited, but is preferably 10 μm to 210 μm, more preferably 20 μm to 150 μm, still more preferably 20 μm to 110 μm, and particularly preferably 30 μm to 80 μm.
 図4は、接着材125の断面図である。接着材125には、樹脂121および化合物114が含まれる。 FIG. 4 is a cross-sectional view of the adhesive 125. The adhesive 125 includes the resin 121 and the compound 114.
 樹脂121は、接着層120と同様の材料が用いられる。なお、樹脂121は、透明な硬化性樹脂に限定されない。つまり樹脂121は、有色であり、不透明な材料であってもよい。この例ではアクリル樹脂が用いられる。なお、樹脂121にはアクリル樹脂に限定されず、エポキシ樹脂などが用いられてもよい。 The resin 121 is made of the same material as the adhesive layer 120. In addition, resin 121 is not limited to transparent curable resin. That is, the resin 121 may be a colored or opaque material. Acrylic resin is used in this example. The resin 121 is not limited to an acrylic resin, and an epoxy resin may be used.
 化合物114は、化合物113と同様の材料が用いられる。この例では、化合物114として、フタロシアニン化合物が用いられる。化合物114の含有量は、上記の条件を満たすように適宜設定されればよい。なお、化合物114の含有量は、光学フィルタ100における化合物113の含有量よりも多くてもよい。これにより、側面方向からの近赤外線に対する吸収率を高めることができる。 As the compound 114, the same material as the compound 113 is used. In this example, a phthalocyanine compound is used as the compound 114. The content of the compound 114 may be appropriately set so as to satisfy the above conditions. The content of the compound 114 may be larger than the content of the compound 113 in the optical filter 100. This can increase the absorptivity for near-infrared light from the side direction.
(1-3.固体撮像素子700における光学フィルタ100および接着材125の機能)
 以下に固体撮像素子700における光学フィルタ100および接着材125の機能について図5を用いて説明する。
(1-3. Function of optical filter 100 and adhesive 125 in solid-state imaging device 700)
The functions of the optical filter 100 and the adhesive 125 in the solid-state imaging device 700 will be described below with reference to FIG.
 光690には、LEDから出射された光、蛍光灯または太陽光などが含まれる。光690うち、固体撮像素子700の上方から入射される光690Aは、まずレンズ730に入射する。このとき、光は、レンズ730により収束される。次に、光690Aは光学フィルタ100に入射する。 The light 690 includes light emitted from the LED, a fluorescent lamp, sunlight, or the like. Of the light 690, the light 690A incident from above the solid-state imaging device 700 first enters the lens 730. At this time, the light is converged by the lens 730. Next, the light 690 A enters the optical filter 100.
 光690Aは、光学フィルタ100のうち吸収層110の効果により、近赤外領域の光を吸収し、可視光を透過させる。具体的には、光690Aは、波長430~580nmの範囲における透過率の平均値が、75%以上であって、波長700~800nmの範囲における透過率の平均値が、20%以下であって、波長800~1100nmの範囲における透過率の平均値が、5%以下となる。 The light 690 A absorbs light in the near infrared region and transmits visible light due to the effect of the absorption layer 110 in the optical filter 100. Specifically, light 690A has an average value of transmittance of 75% or more in a wavelength range of 430 to 580 nm and an average value of transmittance in a wavelength range of 700 to 800 nm of 20% or less. The average value of the transmittance in the wavelength range of 800 to 1100 nm is 5% or less.
 さらに、光690Aは、カラーフィルタ200を通過することにより、所定の波長(赤(R)、緑(G)、青(B))の光が透過する。これにより、所定の波長の光が受光部720に入射することにより光電変換が起こり、電気信号が得られる。最終的に、電気信号から画像が取得される。 Further, the light 690A passes through the color filter 200 to transmit light of predetermined wavelengths (red (R), green (G), blue (B)). As a result, when light of a predetermined wavelength enters the light receiving unit 720, photoelectric conversion occurs and an electrical signal is obtained. Finally, an image is obtained from the electrical signal.
 一方、このとき固体撮像素子700の側面は、接着材125が設けられることにより、光690のうち側方から入射される光690Bに対して、700nm以上1100nm以下の近赤外線領域の光が遮断、吸収される。つまり、従来の光電変換素子において、不十分であった側方からの赤外線に対して、遮断する能力を有する。したがって、受光部720の感度を高めることができ、色再現性が高い画像を取得することができる。 On the other hand, at this time, the adhesive agent 125 is provided on the side surface of the solid-state imaging device 700 to block light in the near infrared region of 700 nm or more and 1100 nm or less with respect to light 690B incident from the side. Absorbed That is, in the conventional photoelectric conversion element, it has the ability to block the infrared rays from the side which was insufficient. Therefore, the sensitivity of the light receiving unit 720 can be increased, and an image with high color reproducibility can be obtained.
 なお、固体撮像素子700には、CCDイメージセンサ(Charge-Coupled Device)またはCMOS(Complementary Metal Oxide Semiconductor)イメージセンサがある。 The solid-state imaging device 700 includes a charge-coupled device (CCD) image sensor or a complementary metal oxide semiconductor (CMOS) image sensor.
(1-4.光学フィルタの製造方法)
 次に、図3に示した光学フィルタ100の製造方法を説明する。
(1-4. Manufacturing method of optical filter)
Next, a method of manufacturing the optical filter 100 shown in FIG. 3 will be described.
 まず、吸収層110を形成する。吸収層110は、例えば、キャスト成形法により形成される。 First, the absorption layer 110 is formed. The absorbing layer 110 is formed by, for example, a cast molding method.
 キャスト成形法を用いた場合、基材111となる樹脂および化合物113とを含む樹脂組成物を適当な支持体の上に流延し(キャスティングして)、溶剤を除去することにより吸収層110が形成される。このとき、上記支持体としては、例えば、ガラス板、スチールベルト、スチールドラムの無機材料で製造された支持体および有機樹脂(例えば、ポリエステルフィルム、環状オレフィン系樹脂フィルム)製支持体が用いられる。続いて、吸収層110は、キャスト成形後、支持体から剥離することにより得られる。 When a cast molding method is used, the resin composition containing the resin to be the substrate 111 and the compound 113 is cast (casted) on a suitable support, and the solvent is removed to obtain the absorbent layer 110. It is formed. At this time, as the support, for example, a support made of a glass plate, a steel belt, an inorganic material of a steel drum and a support made of an organic resin (for example, a polyester film, a cyclic olefin resin film) are used. Subsequently, the absorbent layer 110 is obtained by peeling it from the support after casting.
 次に、吸収層110のうち基材111の第1面111Aに接着層120を形成する。接着層120は、スピンコーティング法、スプレー法、インクジェット法、印刷法、ディッピング法または蒸着法により形成される。この例では、接着層120は、スピンコーティング法により形成される。 Next, the adhesive layer 120 is formed on the first surface 111 </ b> A of the base 111 of the absorbent layer 110. The adhesive layer 120 is formed by a spin coating method, a spray method, an inkjet method, a printing method, a dipping method, or a vapor deposition method. In this example, the adhesive layer 120 is formed by spin coating.
 次に、接着層120上に保護層130を形成する。なお、保護層130を形成した後、硬化処理が行われてもよい。硬化処理は、加熱処理でもよいし、光照射処理でもよい。この例では、加熱処理が行われる。以上により、光学フィルタ100が製造される。 Next, the protective layer 130 is formed on the adhesive layer 120. Note that after the protective layer 130 is formed, a curing process may be performed. The curing treatment may be heat treatment or light irradiation treatment. In this example, heat treatment is performed. The optical filter 100 is manufactured by the above.
<第2実施形態>
 本実施形態では、固体撮像素子700が複数設けられた電子機器の構成について説明する。
Second Embodiment
In the present embodiment, the configuration of an electronic device in which a plurality of solid-state imaging devices 700 are provided will be described.
 図6は、電子機器1000の断面図である。電子機器1000は、固体撮像素子700、固体撮像素子700-1および発光素子800を有する。固体撮像素子700、固体撮像素子700-1および発光素子800は、電子機器1000の筐体1010の中に設けられる。 FIG. 6 is a cross-sectional view of the electronic device 1000. The electronic device 1000 includes a solid-state imaging device 700, a solid-state imaging device 700-1, and a light emitting element 800. The solid-state imaging device 700, the solid-state imaging device 700-1 and the light emitting device 800 are provided in a housing 1010 of the electronic device 1000.
 固体撮像素子700および固体撮像素子700-1は、基本的な構成は、第1実施形態に示したものと同様である。固体撮像素子700-1は、光学フィルタ100を有しなくてもよい。 The basic configuration of the solid-state imaging device 700 and the solid-state imaging device 700-1 is the same as that shown in the first embodiment. The solid-state imaging device 700-1 may not have the optical filter 100.
 発光素子800は、光を対象物に照射する機能を有する。発光素子800は、発光部810およびレンズ820を有する。この例では、発光素子800は、近赤外領域(例えば波長700nm以上1100nm以下)の光(光890)を照射する。 The light emitting element 800 has a function of irradiating light to an object. The light emitting element 800 includes a light emitting unit 810 and a lens 820. In this example, the light emitting element 800 emits light (light 890) in a near infrared region (eg, a wavelength of 700 nm or more and 1100 nm or less).
 上記構造において、発光素子800が対象物900に対して光890を出射した場合、対象物900で光890が反射される。反射された光(光891)は、固体撮像素子700-1に入射され、画像が取得される。このとき、対象物900が人である場合、近赤外領域の光が用いられることにより、顔認証を行うこともできる。 In the above structure, when the light emitting element 800 emits the light 890 to the object 900, the light 890 is reflected by the object 900. The reflected light (light 891) is incident on the solid-state imaging device 700-1, and an image is acquired. At this time, when the object 900 is a person, face authentication can also be performed by using light in the near infrared region.
 なお、電子機器1000において、固体撮像素子700には、光学フィルタ100および接着材125が用いられている。したがって、固体撮像素子700は、上方のみならず側方から入射する光を遮断することができる。例えば、図6に示すように、固体撮像素子700-1に入射する光891の一部である光892が漏れ光として生じる。このとき、光892は固体撮像素子700の側方から固体撮像素子700に向かう。しかしながら、固体撮像素子700に設けられた接着材125は、近赤外領域の光を遮断することができる。したがって、固体撮像素子700は、光892の影響を受けずに色再現性の高い画像を取得することができる。 In the electronic device 1000, the optical filter 100 and the adhesive 125 are used in the solid-state imaging device 700. Therefore, the solid-state imaging device 700 can block light incident not only from above but also from the side. For example, as shown in FIG. 6, light 892, which is part of the light 891 incident on the solid-state imaging device 700-1, is generated as leaked light. At this time, the light 892 travels from the side of the solid-state imaging device 700 to the solid-state imaging device 700. However, the adhesive 125 provided on the solid-state imaging device 700 can block light in the near infrared region. Therefore, the solid-state imaging device 700 can acquire an image with high color reproducibility without being affected by the light 892.
 なお、固体撮像素子700と、固体撮像素子700-1とは、異なる平面に配置されてもよい。例えば、図7に示すように、固体撮像素子700は、筐体1010の異なる面に設けられる。これは、スマートフォンに設けられる、メインカメラとサブカメラとの関係と同様である。このとき、近赤外線が発光素子から出射され、人にあたって反射する。そして、反射光をサブカメラ(固体撮像素子700-1に相当)で受光し、顔認証を行うことができる。なお、このときに漏れ光が生じてもメインカメラ(固体撮像素子700に相当)の側面で漏れ光が遮断される。したがって、メインカメラは、漏れ光の影響を受けることなく、色再現性の高い画像を取得することができる。 The solid-state imaging device 700 and the solid-state imaging device 700-1 may be arranged on different planes. For example, as shown in FIG. 7, the solid-state imaging device 700 is provided on different surfaces of the housing 1010. This is similar to the relationship between the main camera and the sub camera provided in the smartphone. At this time, near infrared rays are emitted from the light emitting element and reflected on the person. Then, the reflected light can be received by the sub camera (corresponding to the solid-state imaging device 700-1) to perform face authentication. At this time, even if leakage light occurs, the leakage light is blocked at the side surface of the main camera (corresponding to the solid-state imaging device 700). Therefore, the main camera can acquire an image with high color reproducibility without being affected by leaked light.
(変形例1)
 本発明の第1実施形態および第2実施形態では、光学フィルタ100は、近赤外領域の波長の光を遮断、吸収することについて説明したが、これに限定されない。光学フィルタ100は、近赤外領域の波長の光に加えて近紫外領域の光を吸収してもよい。近紫外線吸収剤としては、例えばアゾメチン系化合物、インドール系化合物、ベンゾトリアゾール系化合物、トリアジン系化合物が挙げられる。また、近赤外領域の光または近紫外の領域を合わせて遮断してもよい。
(Modification 1)
In the first and second embodiments of the present invention, the optical filter 100 has been described as blocking and absorbing light of wavelengths in the near infrared region, but is not limited thereto. The optical filter 100 may absorb light in the near-ultraviolet region in addition to light in the near-infrared region. Examples of the near ultraviolet light absorber include azomethine compounds, indole compounds, benzotriazole compounds and triazine compounds. In addition, near-infrared light or near-ultraviolet regions may be combined and blocked.
(変形例2)
 また、本発明の第1実施形態において、光学フィルタ100、接着材125は、それぞれ別々に設けられたが、組み合わせて設けられてもよい。図8は、光学フィルタ100-1の断面図である。光学フィルタ100-1は、接着材125を有することにより、さらに多くの近赤外領域の光を吸収することができる。図9は、光学フィルタ100-2の断面図である。図9に示すように、接着材125は吸収層110の両側(基材111の第1面111Aと反対側の第2面111B)に設けられてもよい。このとき、保護層130は、保護部材740として用いられてもよい。これにより、側方から入射される光がより高効率に吸収される。
(Modification 2)
Moreover, in the first embodiment of the present invention, the optical filter 100 and the adhesive 125 are separately provided, but may be provided in combination. FIG. 8 is a cross-sectional view of the optical filter 100-1. The optical filter 100-1 can absorb more light in the near infrared region by including the adhesive 125. FIG. 9 is a cross-sectional view of the optical filter 100-2. As shown in FIG. 9, the adhesive 125 may be provided on both sides of the absorbent layer 110 (the second surface 111B opposite to the first surface 111A of the base 111). At this time, the protective layer 130 may be used as the protective member 740. Thereby, the light incident from the side is absorbed more efficiently.
(変形例3)
 また、本発明の第1実施形態では、吸収層110に基材111と化合物113が含まれる場合を説明したが、これに限定されない。吸収層110は、基材111と所定の波長帯域の光を吸収する化合物113を含む樹脂層を別々に組み合わせてもよい。図10は、光学フィルタ110-3の断面図である。図10に示すように、吸収層110-3は基材111の第1面111Aと反対側の第2面111Bに透光性を有する樹脂層115を有する。基材111には、ガラス支持体または透明樹脂製基板が用いられる。樹脂層115は、透光性を有する。樹脂層115には、この例ではアクリル樹脂が設けられるが、これに限定されず、上述した樹脂材料が用いられる。
(Modification 3)
Moreover, although the case where the base material 111 and the compound 113 were contained in the absorption layer 110 was demonstrated in 1st Embodiment of this invention, it is not limited to this. The absorption layer 110 may be separately combined with the base material 111 and the resin layer containing the compound 113 which absorbs light in a predetermined wavelength range. FIG. 10 is a cross-sectional view of the optical filter 110-3. As shown in FIG. 10, the absorbing layer 110-3 has a light transmitting resin layer 115 on the second surface 111 B opposite to the first surface 111 A of the base 111. For the substrate 111, a glass support or a transparent resin substrate is used. The resin layer 115 has translucency. Although an acrylic resin is provided in the resin layer 115 in this example, the present invention is not limited to this, and the above-described resin material is used.
 吸収層110-3においては、基材111の第2面111Bに化合物113を含む樹脂層115をキャスト成形法により形成する。この例では、スピンコーティング法、スリットコーティング法、インクジェット法などの方法を用いて樹脂層115に相当する樹脂溶液が塗工される。その後、樹脂溶液に含まれる溶媒を乾燥除去することにより吸収層110-1を製造することができる。なお、上記方法の場合には、基材111を樹脂層115形成時の支持体として使用することできる。また、樹脂層115を形成した後、樹脂層115を基材111と剥離する必要がない。つまり、製造プロセスが簡略化される。 In the absorption layer 110-3, the resin layer 115 containing the compound 113 is formed on the second surface 111B of the base 111 by a cast molding method. In this example, a resin solution corresponding to the resin layer 115 is applied using a method such as spin coating, slit coating, or inkjet. Thereafter, the solvent contained in the resin solution is dried and removed to produce the absorbent layer 110-1. In addition, in the case of the said method, the base material 111 can be used as a support body at the time of resin layer 115 formation. In addition, after the resin layer 115 is formed, the resin layer 115 does not need to be peeled off from the base 111. That is, the manufacturing process is simplified.
(変形例4)
 また、本発明の光学フィルタ100には、所望の用途、要求特性等に応じて、その他の機能膜が含まれていてもよい。図11は、光学フィルタ100-4の断面図である。図11に示すように、光学フィルタ100-4には誘電体層140が設けられてもよい。誘電体層140は、吸収層110のうち基材111の第2面111B側に接着層120が設けられる。誘電体層140は、不要な波長帯域の光を反射させ、必要な波長帯域の光を選択的に透過する機能を有する。この例では、誘電体層140は、近赤外線を反射させ、可視光を透過させる。なお、誘電体層140は、吸収層110と同じ波長帯域の光を反射させてもよいし、異なる波長帯域の光を反射させてもよい。誘電体層140が用いられることにより、光学フィルタ100において、さらに選択的に光を透過させることができる。
(Modification 4)
Further, the optical filter 100 of the present invention may include other functional films according to the desired application, required characteristics and the like. FIG. 11 is a cross-sectional view of the optical filter 100-4. As shown in FIG. 11, the optical filter 100-4 may be provided with a dielectric layer 140. In the dielectric layer 140, the adhesive layer 120 is provided on the second surface 111 </ b> B side of the base 111 among the absorbing layer 110. The dielectric layer 140 has a function of reflecting light of unnecessary wavelength bands and selectively transmitting light of necessary wavelength bands. In this example, the dielectric layer 140 reflects near infrared light and transmits visible light. The dielectric layer 140 may reflect light in the same wavelength band as the absorption layer 110 or may reflect light in a different wavelength band. By using the dielectric layer 140, light can be selectively transmitted through the optical filter 100.
 誘電体層140としては、高屈折率材料層と低屈折率材料層とを交互に積層したものが用いられる。高屈折率材料層を構成する材料としては、屈折率が1.7以上の材料を用いることができ、屈折率が通常は1.7~2.5の材料が選択される。このような材料としては、例えば、酸化チタン、酸化ジルコニウム、五酸化タンタル、五酸化ニオブ、酸化ランタン、酸化イットリウム、酸化亜鉛、硫化亜鉛または酸化インジウム等を主成分とし、酸化チタン、酸化錫および/または酸化セリウム等を少量(例えば、主成分に対して0~10重量%)含有させたものが挙げられる。 As the dielectric layer 140, a layer in which high refractive index material layers and low refractive index material layers are alternately stacked is used. As a material forming the high refractive index material layer, a material having a refractive index of 1.7 or more can be used, and a material having a refractive index of usually 1.7 to 2.5 is selected. Such materials include, for example, titanium oxide, zirconium oxide, tantalum pentoxide, niobium pentoxide, lanthanum oxide, yttrium oxide, zinc oxide, zinc sulfide or indium oxide, etc., and titanium oxide, tin oxide and / or Alternatively, those containing a small amount of cerium oxide or the like (for example, 0 to 10% by weight with respect to the main component) can be mentioned.
 低屈折率材料層を構成する材料としては、屈折率が1.6以下の材料を用いることができ、屈折率が通常は1.2~1.6の材料が選択される。このような材料としては、例えば、シリカ、アルミナ、フッ化ランタン、フッ化マグネシウムおよび六フッ化アルミニウムナトリウムが挙げられる。高屈折率材料層および低屈折率材料層の各層の物理膜厚は、それぞれ層の屈折率にもよるが、通常、5~500nmであることが好ましく、誘電体層140全体の膜厚は1.0~8.0μmの範囲で適宜設定すればよい。 As a material forming the low refractive index material layer, a material having a refractive index of 1.6 or less can be used, and a material having a refractive index of 1.2 to 1.6 is usually selected. Such materials include, for example, silica, alumina, lanthanum fluoride, magnesium fluoride and sodium aluminum hexafluoride. The physical film thickness of each of the high refractive index material layer and the low refractive index material layer depends on the refractive index of each layer, but it is usually preferably 5 to 500 nm, and the total film thickness of the dielectric layer 140 is 1 The thickness may be appropriately set in the range of 0 to 8.0 μm.
 誘電体層140の形成方法は、具体的には高屈折率材料層と低屈折率材料層とを積層して形成する。誘電体層140は、CVD法、スパッタリング法、真空蒸着法、イオンアシスト蒸着法またはイオンプレーティング法等を行うことで、高屈折率材料層と低屈折率材料層とを交互に積層した誘電体層140を形成することができる。 Specifically, the dielectric layer 140 is formed by laminating a high refractive index material layer and a low refractive index material layer. The dielectric layer 140 is a dielectric in which high refractive index material layers and low refractive index material layers are alternately laminated by performing a CVD method, a sputtering method, a vacuum evaporation method, an ion assisted deposition method, an ion plating method or the like. Layer 140 can be formed.
(変形例6)
 また、本発明の第1実施形態において、光学フィルタ100および接着材125が固体撮像素子700に用いられる例を示したが、環境光センサまたは照度センサに用いられてもよい。このとき、光学フィルタ100および接着材125の少なくともいずれかに光拡散粒子が含まれてもよい。図12は、光学フィルタ100-5の断面図である。図13は、接着材125-5の断面図である。光学フィルタ100-5および接着材125-5は、光拡散粒子123を含む。この例では、光学フィルタ100-5において、光拡散粒子123は、吸収層110の中に設けられる。また、接着材125-5においては、光拡散粒子123は、樹脂121内に設けられる。光拡散粒子123は、近赤外領域の光を吸収してもよい。
(Modification 6)
In the first embodiment of the present invention, the optical filter 100 and the adhesive 125 are used for the solid-state imaging device 700, but may be used for an ambient light sensor or an illuminance sensor. At this time, light diffusing particles may be included in at least one of the optical filter 100 and the adhesive 125. FIG. 12 is a cross-sectional view of the optical filter 100-5. FIG. 13 is a cross-sectional view of the adhesive 125-5. The optical filter 100-5 and the adhesive 125-5 include light diffusing particles 123. In this example, in the optical filter 100-5, the light diffusion particles 123 are provided in the absorption layer 110. In the adhesive 125-5, the light diffusing particles 123 are provided in the resin 121. The light diffusion particle 123 may absorb light in the near infrared region.
 また、光拡散粒子123の屈折率は、1.2以上3.0以下の範囲で適宜設定してもよい。また、光拡散粒子123として、この例では酸化チタン(TiO2)が用いられる。光拡散粒子123の大きさは10nm以上500nm未満であり、より好ましくは20nm以上200nm未満である。また、光拡散粒子123の形状は球状が望ましいが、これに限定されない。 In addition, the refractive index of the light diffusion particle 123 may be appropriately set in the range of 1.2 or more and 3.0 or less. In addition, titanium oxide (TiO 2 ) is used as the light diffusion particle 123 in this example. The size of the light diffusion particle 123 is 10 nm or more and less than 500 nm, more preferably 20 nm or more and less than 200 nm. The light diffusing particles 123 preferably have a spherical shape, but is not limited thereto.
 このような光拡散粒子123として、高屈折率な無機微粒子材料を含有させることにより樹脂材料の屈折率を高めることも可能である。このような高屈折率な無機材料としてはセシウム酸化タングステン、TiO2(屈折率2.2~2.7)、CeO2(屈折率2.2)、ZrO2(屈折率2.1)、In23(屈折率2.0)、La23(屈折率1.95)、SnO2(屈折率1.9)、Sb25(屈折率1.7)等が挙げられる。また、微粒子の粒子径は小さい方が樹脂材料の透明度は高くなるため、好ましい粒子径としては100nm以下、より好ましくは50nm以下、さらに好ましくは20nm以下である。これら高屈折率な無機微粒子材料は通常の樹脂に混合して使用することが可能であり、上記のような、高屈折率の樹脂に混合することにより、硬化性樹脂の屈折率をより一層高めることが可能となる。 It is also possible to increase the refractive index of the resin material by containing an inorganic fine particle material having a high refractive index as such light diffusion particles 123. Cesium oxide, TiO 2 (refractive index 2.2 to 2.7), CeO 2 (refractive index 2.2), ZrO 2 (refractive index 2.1), In as such a high refractive index inorganic material 2 O 3 (refractive index 2.0), La 2 O 3 (refractive index 1.95), SnO 2 (refractive index 1.9), Sb 2 O 5 (refractive index 1.7), and the like. The smaller the particle diameter of the fine particles, the higher the transparency of the resin material. Therefore, the particle diameter is preferably 100 nm or less, more preferably 50 nm or less, still more preferably 20 nm or less. These high refractive index inorganic fine particle materials can be used by being mixed with ordinary resins, and the refractive index of the curable resin can be further enhanced by mixing with the above high refractive index resins. It becomes possible.
 また、有機系の光拡散粒子としては芳香族ビニル系単量体、及び(メタ)アクリル酸エステル系単量体の少なくともいずれかに由来する構造単位を含む有機粒子を用いることができ、このような粒子の具体例としては、特開2010-77243号公報、特開2017-50276号公報、特開2011-248104号公報等に記載の粒子を用いることができる。 Further, as the organic light diffusing particle, an organic particle containing a structural unit derived from at least one of an aromatic vinyl monomer and a (meth) acrylic acid ester monomer can be used. As specific examples of the particles, particles described in JP-A-2010-77243, JP-A-2017-50276, JP-A-2011-248104, etc. can be used.
 光拡散粒子の粘着層形成用樹脂への分散量は約1~約20重量部、好ましくは約1~約10重量部である。1重量部より少ないと選択吸収性が十分でなく、20重量部を超えると光透過性が不足する他に材料の耐衝撃性が低下する。例えば、特開平11-310717号公報等に記載の公知の方法により分散できる。 The amount of the light diffusion particles dispersed in the adhesive layer-forming resin is about 1 to about 20 parts by weight, preferably about 1 to about 10 parts by weight. If the amount is less than 1 part by weight, the selective absorptivity is not sufficient, and if it exceeds 20 parts by weight, the light transmission is insufficient and the impact resistance of the material is lowered. For example, it can be dispersed by a known method described in JP-A-11-310717 and the like.
 例えば、光拡散粒子123として、セシウム含有酸化タングステンが用いられてもよいし、その他の無機材料が用いられてもよい。例えば、光拡散粒子123としてセシウム含有酸化タングステンが用いられた場合、拡散効果を得つつ、近赤外領域(例えば700~1100nm付近の波長)の光をより効率的に吸収し、することができる。図14は、環境光センサ400の断面図である。環境光センサ400は、受光部720を有する半導体素子710、レンズ730、接着材125、保護部材740、パッケージ基板770および表面パネル780を有する。環境光センサ400に光学フィルタ100または接着材125が用いられることにより、図1に示す表示パネル304の照度や色合いを制御することができる。 For example, cesium-containing tungsten oxide may be used as the light diffusion particle 123, or another inorganic material may be used. For example, when cesium-containing tungsten oxide is used as the light diffusion particle 123, light in the near infrared region (for example, a wavelength near 700 to 1100 nm) can be absorbed more efficiently while obtaining the diffusion effect. . FIG. 14 is a cross-sectional view of the ambient light sensor 400. The ambient light sensor 400 includes a semiconductor element 710 having a light receiving portion 720, a lens 730, an adhesive 125, a protection member 740, a package substrate 770, and a front panel 780. By using the optical filter 100 or the adhesive 125 for the ambient light sensor 400, the illuminance and the color of the display panel 304 shown in FIG. 1 can be controlled.
(変形例7)
 また、本発明の第1実施形態において、吸収層110は、光硬化性樹脂および/または熱硬化性樹脂と、必要により化合物113とを含む硬化性組成物を適当な支持体の上にキャスティングして溶媒を除去した後、必要に応じて紫外線照射や加熱などの適切な手法により硬化させることにより形成してもよい。
(Modification 7)
In addition, in the first embodiment of the present invention, the absorbing layer 110 is formed by casting a curable composition containing a photocurable resin and / or a thermosetting resin and, if necessary, the compound 113 on a suitable support. After removing the solvent, it may be formed by curing according to an appropriate method such as ultraviolet irradiation or heating if necessary.
(変形例8)
 また、本発明の第1実施形態では、吸収層110の形成方法としてキャスト成型法を用いる場合を説明したが、これに限定されない。吸収層110は、溶融成形法により形成してもよい。具体的には、樹脂と必要により化合物113とを溶融混練りして得られたペレットを溶融成形する方法、樹脂と必要により化合物113とを含有する樹脂組成物を溶融成形する方法、または、樹脂および溶剤と、必要により化合物113とを含む樹脂組成物から溶剤を除去して得られたペレットを溶融成形する方法などが挙げられる。溶融成形法としては、射出成形、溶融押出成形またはブロー成形などが挙げられる。
(Modification 8)
Further, in the first embodiment of the present invention, the case of using the cast molding method as the method of forming the absorbing layer 110 has been described, but the present invention is not limited thereto. The absorbent layer 110 may be formed by a melt molding method. Specifically, a method of melt-molding a pellet obtained by melt-kneading a resin and, if necessary, the compound 113, a method of melt-molding a resin composition containing a resin and, if necessary, the compound 113, or a resin And a method of melt-molding pellets obtained by removing the solvent from the resin composition containing the solvent and, if necessary, the compound 113. Melt molding methods include injection molding, melt extrusion molding or blow molding.
100・・・光学フィルタ、110・・・吸収層、111・・・基材、113・・・化合物、114・・・化合物、115・・・樹脂層、120・・・接着層、121・・・樹脂、123・・・光拡散粒子、125・・・接着材、130・・・保護層、140・・・誘電体層、200・・・カラーフィルタ、300・・・スマートフォン、302・・・筐体、304・・・表示パネル、306・・・マイクロホン部、308・・・スピーカ部、400・・・環境光センサ、690・・・光、700・・・固体撮像素子、710・・・半導体素子、720・・・受光部、730・・・レンズ、740・・・保護部材、770・・・パッケージ基板、800・・・発光素子、810・・・発光部、820・・・レンズ、890・・・光、891・・・光、892・・・光、900・・・対象物、1000・・・電子機器、1010・・・筐体 100 ... optical filter, 110 ... absorption layer, 111 ... base material, 113 ... compound, 114 ... compound, 115 ... resin layer, 120 ... adhesive layer, 121 ... · Resin, 123 · · · light diffusion particles, 125 · · · adhesive · 130 · protective layer · 140 · · · dielectric layer, 200 · · · color filter, 300 · · · · · · · · · · · · · · Housing 304, display panel 306, microphone unit 308, speaker unit 400, ambient light sensor 690, light 700, solid-state imaging device 710, and so on. Semiconductor element, 720: light receiving part, 730: lens, 740: protective member, 770: package substrate, 800: light emitting element, 810: light emitting part, 820: lens, 890 ... light, 891. - light, 892 ... light, 900 ... object, 1000 ... electronics, 1010 ... housing

Claims (10)

  1.  受光部が設けられた半導体素子と、
     前記半導体素子上に設けられ、前記受光部に重畳する光学フィルタと、
     前記半導体素子上に設けられ、前記受光部および前記光学フィルタに重畳するレンズと、
     前記半導体素子の周縁に設けられた保護部材と、
     前記受光部を囲み、前記保護部材と前記光学フィルタおよび前記レンズとの間に設けられた接着材と、を含み、
     前記光学フィルタおよび前記接着材は、700nm~1100nmの波長領域に吸収極大波長を有する化合物を少なくとも一以上含有する、
     光電変換素子。
    A semiconductor element provided with a light receiving unit;
    An optical filter provided on the semiconductor element and superimposed on the light receiving unit;
    A lens provided on the semiconductor element and superimposed on the light receiving unit and the optical filter;
    A protection member provided on the periphery of the semiconductor element;
    And an adhesive disposed between the protective member, the optical filter, and the lens.
    The optical filter and the adhesive contain at least one or more compounds having an absorption maximum wavelength in a wavelength range of 700 nm to 1100 nm.
    Photoelectric conversion element.
  2.  前記光学フィルタおよび前記接着材は、
    (A)波長430~580nmの範囲における透過率の平均値が、75%以上であって、(B)波長700~800nmの範囲における透過率の平均値が、20%以下であって、(C)波長800~1100nmの範囲における透過率の平均値が、5%以下である、
     請求項1に記載の光電変換素子。
    The optical filter and the adhesive are
    (A) the average value of transmittance in the wavelength range of 430 to 580 nm is 75% or more, and the average value of the transmittance in the range of (B) wavelength 700 to 800 nm is 20% or less (C ) The average value of the transmittance in the wavelength range of 800 to 1100 nm is 5% or less
    The photoelectric conversion element according to claim 1.
  3.  前記光学フィルタは、透光性を有する基材を有し、
     前記基材は、前記化合物を含む、
     請求項1に記載の光電変換素子。
    The optical filter has a translucent substrate.
    The substrate comprises the compound
    The photoelectric conversion element according to claim 1.
  4.  前記基材は、透光性を有する樹脂である、
     請求項3に記載の光電変換素子。
    The substrate is a translucent resin.
    The photoelectric conversion element according to claim 3.
  5.  前記光学フィルタは、
     第1面および前記第1面の反対側に第2面を有し、透光性を有する基材と、
     前記第1面および前記第2面の少なくとも一方に、前記化合物を含む樹脂層と、を含む、
     請求項1に記載の光電変換素子。
    The optical filter is
    A light transmitting substrate having a first surface and a second surface opposite to the first surface;
    A resin layer containing the compound on at least one of the first surface and the second surface;
    The photoelectric conversion element according to claim 1.
  6.  前記光学フィルタは、さらに誘電体層を有する、
     請求項1に記載の光電変換素子。
    The optical filter further comprises a dielectric layer,
    The photoelectric conversion element according to claim 1.
  7.  前記光学フィルタおよび前記接着材の少なくともいずれかは、光拡散粒子を有する、
     請求項1に記載の光電変換素子。
    At least one of the optical filter and the adhesive includes light diffusing particles.
    The photoelectric conversion element according to claim 1.
  8.  前記光拡散粒子は、近赤外領域の光を吸収する、
     請求項7に記載の光電変換素子。
    The light diffusing particles absorb light in the near infrared region,
    The photoelectric conversion element according to claim 7.
  9.  前記光拡散粒子は、セシウム含有酸化タングステンである、
     請求項8に記載の光電変換素子。
    The light diffusion particles are cesium-containing tungsten oxide,
    The photoelectric conversion element according to claim 8.
  10.  請求項8に記載の光拡散粒子を含有する、
     接着材。
    A light diffusing particle according to claim 8 containing
    Adhesive material.
PCT/JP2018/027563 2017-07-31 2018-07-23 Photoelectric conversion element and adhesive WO2019026675A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019534051A JP7060018B2 (en) 2017-07-31 2018-07-23 Photoelectric conversion element and adhesive
CN201880044902.1A CN110832852A (en) 2017-07-31 2018-07-23 Photoelectric conversion element and adhesive
KR1020207002773A KR20200027962A (en) 2017-07-31 2018-07-23 Photoelectric conversion elements and adhesives

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-148075 2017-07-31
JP2017148075 2017-07-31

Publications (1)

Publication Number Publication Date
WO2019026675A1 true WO2019026675A1 (en) 2019-02-07

Family

ID=65232801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027563 WO2019026675A1 (en) 2017-07-31 2018-07-23 Photoelectric conversion element and adhesive

Country Status (5)

Country Link
JP (1) JP7060018B2 (en)
KR (1) KR20200027962A (en)
CN (1) CN110832852A (en)
TW (1) TW201910476A (en)
WO (1) WO2019026675A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020040123A1 (en) * 2018-08-21 2020-02-27 Jsr株式会社 Optical filter and ambient light sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032886A (en) * 2004-06-15 2006-02-02 Fuji Photo Film Co Ltd Solid-state imaging device, its manufacturing method, and camera module
JP2016200771A (en) * 2015-04-14 2016-12-01 Jsr株式会社 Optical filter and device using optical filter
JP2016206558A (en) * 2015-04-27 2016-12-08 Jsr株式会社 Positive type radiation sensitive resin composition, infrared shielding film, forming method therefor, solid state imaging sensor, and illuminance sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1735973A (en) * 2003-01-20 2006-02-15 夏普株式会社 Transparent resin composition for optical sensor filter, optical sensor and production method therefor
TW201339657A (en) * 2012-03-29 2013-10-01 Hon Hai Prec Ind Co Ltd Optical element, lens module and method for manufacturing optical element
JP6329638B2 (en) 2014-10-28 2018-05-23 富士フイルム株式会社 Near-infrared absorbing composition, near-infrared cut filter, solid-state image sensor, camera module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032886A (en) * 2004-06-15 2006-02-02 Fuji Photo Film Co Ltd Solid-state imaging device, its manufacturing method, and camera module
JP2016200771A (en) * 2015-04-14 2016-12-01 Jsr株式会社 Optical filter and device using optical filter
JP2016206558A (en) * 2015-04-27 2016-12-08 Jsr株式会社 Positive type radiation sensitive resin composition, infrared shielding film, forming method therefor, solid state imaging sensor, and illuminance sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020040123A1 (en) * 2018-08-21 2020-02-27 Jsr株式会社 Optical filter and ambient light sensor
JPWO2020040123A1 (en) * 2018-08-21 2021-08-26 Jsr株式会社 Optical filter and ambient light sensor
JP7251551B2 (en) 2018-08-21 2023-04-04 Jsr株式会社 Optical filters and ambient light sensors

Also Published As

Publication number Publication date
KR20200027962A (en) 2020-03-13
JPWO2019026675A1 (en) 2020-08-20
CN110832852A (en) 2020-02-21
TW201910476A (en) 2019-03-16
JP7060018B2 (en) 2022-04-26

Similar Documents

Publication Publication Date Title
JP6662299B2 (en) Optical filter and device using the same
JP6332403B2 (en) Optical filter and solid-state imaging device
JP5741347B2 (en) Optical filter and imaging apparatus using the same
JP3213654U (en) Absorption near-infrared filter and image sensor
JP6281395B2 (en) Image sensor
JP6183255B2 (en) Near-infrared cut filter
WO2014088063A1 (en) Near-infrared blocking filter
TW201417257A (en) Image-capturing element and image-capturing device
JP3212936U (en) Thin optical filter and image sensor
TWI828632B (en) Resin compositions, films, optical filters, solid-state imaging devices, image display devices, and infrared sensors
JP2019200399A (en) Optical filter and imaging device
KR102386489B1 (en) Compositions, membranes, infrared transmission filters, solid-state imaging devices, image display devices and infrared sensors
TW201825603A (en) Composition, film, optical filter, pattern forming method, solid-state imaging element, image display device and infrared sensor
TWI788415B (en) Photocurable composition, laminated body, and solid imaging element
JP7060018B2 (en) Photoelectric conversion element and adhesive
JP6713088B2 (en) Filter, optical sensor, solid-state image sensor, and image display device
JPWO2019004319A1 (en) Solid-state imaging device
TWI828616B (en) Curable compositions, cured films, near-infrared cutoff filters, solid-state imaging devices, image display devices, and infrared sensors
TW201835131A (en) Curable composition, film, optical filter, solid-state imaging element, image display device, and infrared sensor
JP2019029525A (en) Environment optical sensor and composition for adhesive layer formation
TWI789460B (en) Covering member and electronic device with authentication function
JP2007072268A (en) Optical part and its manufacturing method
WO2019026848A1 (en) Photoelectric conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18840463

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019534051

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207002773

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18840463

Country of ref document: EP

Kind code of ref document: A1