WO2019026592A1 - Driving tool - Google Patents

Driving tool Download PDF

Info

Publication number
WO2019026592A1
WO2019026592A1 PCT/JP2018/026556 JP2018026556W WO2019026592A1 WO 2019026592 A1 WO2019026592 A1 WO 2019026592A1 JP 2018026556 W JP2018026556 W JP 2018026556W WO 2019026592 A1 WO2019026592 A1 WO 2019026592A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
motor
turned
driver
switch
Prior art date
Application number
PCT/JP2018/026556
Other languages
French (fr)
Japanese (ja)
Inventor
秋葉 美隆
Original Assignee
株式会社マキタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018027416A external-priority patent/JP2019025641A/en
Application filed by 株式会社マキタ filed Critical 株式会社マキタ
Publication of WO2019026592A1 publication Critical patent/WO2019026592A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25CHAND-HELD NAILING OR STAPLING TOOLS; MANUALLY OPERATED PORTABLE STAPLING TOOLS
    • B25C1/00Hand-held nailing tools; Nail feeding devices
    • B25C1/06Hand-held nailing tools; Nail feeding devices operated by electric power

Definitions

  • the present invention relates to a driving tool for driving a driving material into a workpiece by a driver.
  • the driving tool disclosed in US Pat. No. 7,137,541 includes a contact arm switch, a trigger switch, a driver, a motor assembly, and a controller.
  • the motor assembly includes a flywheel driven by the motor and an actuator for moving the driver into engagement with the flywheel.
  • the controller activates the motor when either the contact arm switch or the trigger switch is activated, and activates the actuator when both switches are activated.
  • a plurality of modes which can be selected via the selection switch are set. Further, as the activation condition of the actuator, the activation order of the contact arm switch and the trigger switch is determined corresponding to each mode.
  • the controller activates the contact arm switch and the trigger switch in this order, and activates the actuator when the kinetic energy of the elements in the motor assembly exceeds the threshold. And make the driver start the driving operation. In this case, after the motor is started in response to the start of the contact arm switch, it takes some time until sufficient kinetic energy is stored. Therefore, for the user who performs the pressing operation of the contact arm and the pulling operation of the trigger almost simultaneously, the time lag from the trigger switch activation to the start of the actual striking operation may be felt long.
  • the present invention is responsive to the start of the actual driving operation in response to an instruction to start the driving operation in the driving tool which starts the driving operation on condition that the contact arm switch and the trigger switch are activated in this order.
  • the purpose is to provide technology that contributes to improvement.
  • a driving tool configured to inject a driving material from an injection port and drive the driving material into a workpiece.
  • the driving tool includes a motor, a flywheel, a driver, an operating mechanism, a motor start switch, a contact arm, a contact arm switch, a trigger, a trigger switch, and a controller.
  • the flywheel is configured to be rotationally driven by a motor.
  • the driver is disposed to face the outer periphery of the flywheel. Further, the driver is configured to perform the driving operation by moving forward linearly from the initial position along the operation line by the rotational energy transmitted from the flywheel.
  • the operating line extends in the front-rear direction of the driving tool.
  • the driving operation is an operation for driving a driving material into a workpiece.
  • rotational energy of the flywheel may be transmitted from the flywheel directly to the driver, or may be transmitted to the driver via a transmission member disposed between the flywheel and the driver.
  • the actuation mechanism is configured to shift the driver from an initial state, which is located at an initial position, to a transmissible state in which rotational energy can be transmitted.
  • the contact arm is disposed movably in the front-rear direction near the injection port.
  • the contact arm is configured to move rearward in response to the pressing on the workpiece by the user.
  • the contact arm switch is configured to be turned on in response to the rearward movement of the contact arm.
  • the trigger is configured to allow a pull operation by the user.
  • the trigger switch is configured to be turned on in response to the pull operation of the trigger.
  • the controller is configured to control the operation of the motor and the actuation mechanism.
  • the controller is configured to start driving the motor when the start switch is turned on.
  • the controller is further configured to cause the driver to perform the striking operation by operating the actuating mechanism, provided that the trigger switch is turned on after the contact arm switch is turned on. .
  • the trigger switch is turned on after the contact arm switch is turned on, which is a condition for starting the driver's driving operation. That is, for the user, the operation for pressing the contact arm against the workpiece and pulling the trigger in order is an operation for inputting the start instruction of the driving operation (hereinafter simply referred to as the starting operation for starting the driving operation) It is.
  • the user can turn on the start switch in advance to start driving of the motor before the start instruction operation for starting the driving operation. Since the start instruction operation of the driving operation is performed after the user actually specifies the position where the driving material is to be driven, it usually takes some time until the pressing operation of the contact arm. Therefore, the driving tool according to this aspect can store sufficient rotational energy in the flywheel during this time.
  • the driver's driving operation can be started promptly after the completion of the start instruction of the driving operation. it can. That is, it is possible to improve the responsiveness of the actual launch operation start to the launch operation start instruction.
  • the trigger switch may be configured to double as a start switch of the motor. According to this aspect, the user can easily realize the operation for inputting the motor drive start instruction and the operation for inputting the drive operation start instruction by the pull operation of the trigger which is the same member. can do. In addition, an increase in the number of parts of the driving tool can be avoided.
  • the controller is configured to determine that the start switch of the motor is turned on and start driving the motor when the trigger switch is turned on when the motor is not driven. It may be The controller is further configured to operate the actuating mechanism if the motor is in operation and the trigger switch is turned on after the contact arm switch is turned on. Good. According to this aspect, the controller can properly use one trigger switch as the motor start switch and the switch for inputting the start instruction of the driving operation.
  • the controller may be configured to continue driving of the motor for at least a predetermined period, even when the start switch is turned off.
  • the state of storing rotational energy in the flywheel is maintained for at least a predetermined period. Therefore, after one driving operation, the user performs another start operation for starting the driving operation (that is, pull operation following the pressing operation of the contact arm against the workpiece) while driving of the motor continues. Then, it is possible to quickly start the next driving operation. That is, a plurality of driving operations can be performed continuously in a short time.
  • the “predetermined period” is typically determined from any event (for example, start of driving of motor, switching of start switch or contact arm switch after start of driving of motor). It may be a period until time (for example, 3.5 seconds, 5 seconds, 7 seconds) elapses.
  • a driving tool configured to inject a driving material from an injection port and drive the driving material into a workpiece.
  • the driving tool comprises a motor, a flywheel, a driver, an operating mechanism, a contact arm, a contact arm switch, a trigger, a trigger switch, and a controller.
  • the flywheel is configured to be rotationally driven by a motor.
  • the driver is disposed to face the outer periphery of the flywheel. Further, the driver is configured to perform the driving operation by moving forward linearly from the initial position along the operation line by the rotational energy transmitted from the flywheel.
  • the operating line extends in the front-rear direction of the driving tool.
  • the driving operation is an operation for driving a driving material into a workpiece.
  • rotational energy of the flywheel may be transmitted from the flywheel directly to the driver, or may be transmitted to the driver via a transmission member disposed between the flywheel and the driver.
  • the actuation mechanism is configured to shift the driver from an initial state, which is located at an initial position, to a transmissible state in which rotational energy can be transmitted.
  • the contact arm is disposed movably in the front-rear direction near the injection port.
  • the contact arm is configured to move rearward in response to the pressing on the workpiece by the user.
  • the contact arm switch is configured to be turned on in response to the rearward movement of the contact arm.
  • the trigger is configured to allow a pull operation by the user.
  • the trigger switch is configured to be turned on in response to the pull operation of the trigger.
  • the controller is configured to control the operation of the motor and the actuation mechanism.
  • the controller is configured to start driving the motor when the trigger switch is turned on and then turned off.
  • the controller is further configured to cause the driver to perform the striking operation by operating the actuating mechanism, provided that the trigger switch is turned on after the contact arm switch is turned on. .
  • the trigger switch is turned on after the contact arm switch is turned on, which is a condition for starting the driver's driving operation. That is, it is the start instruction operation of the driving operation for the user to sequentially perform the pressing operation of the contact arm against the workpiece and the pulling operation of the trigger.
  • the user can start driving the motor by pulling the trigger and releasing the pulling operation before the start instruction operation of the driving operation. Since the start instruction operation of the driving operation is performed after the user actually specifies the position where the driving material is to be driven, it usually takes some time until the pressing operation of the contact arm. Therefore, the driving tool according to this aspect can store sufficient rotational energy in the flywheel during this time.
  • the driver's driving operation can be started promptly after the completion of the start instruction of the driving operation. it can. That is, it is possible to improve the responsiveness of the actual launch operation start to the launch operation start instruction.
  • the driving tool regardless of the order of pressing operation of the contact arm against the workpiece and pulling operation of the trigger, when both operations are performed (that is, both the contact arm switch and the trigger switch are There is one that starts the driver's drive operation when it is turned on. Therefore, if the motor is driven while the trigger is pulled before the pressing operation of the contact arm, then the user may misunderstand that the driving operation is started only by pressing the contact arm. there's a possibility that.
  • the driving tool of this aspect the driving of the motor is not started unless the user once cancels the pulling operation of the trigger. Therefore, the user can easily understand that it is necessary to pull the trigger after pressing the contact arm against the workpiece while the motor is driven.
  • the driving tool according to this aspect can exhibit excellent operability.
  • the controller may be configured to continue driving the motor for at least a predetermined period even when the trigger switch is turned off during driving of the motor.
  • the trigger switch since driving of the motor is started when the trigger switch is turned on and then turned off, the trigger switch can be turned off while driving the motor. After the operation, that is, after the implantation operation is performed.
  • the state of storing rotational energy in the flywheel is maintained for at least a predetermined period. Therefore, after one driving operation, the user can start the next driving operation promptly by performing start operation for starting the driving operation again while the driving of the motor is continued. That is, a plurality of driving operations can be performed continuously in a short time.
  • the “predetermined period” is typically determined from any event (for example, start of driving of motor, switching of start switch or contact arm switch after start of driving of motor). It may be a period until time (for example, 3.5 seconds, 5 seconds, 7 seconds) elapses.
  • the controller is configured to start driving the motor also when the trigger switch is in the off state and the contact arm switch is turned on while the motor is not in operation. It may be The controller is further configured to cause the driver to perform a driving operation by operating the actuating mechanism on condition that the trigger switch is turned on after the contact arm switch is turned on. It is also good. That is, in this aspect, the motor start instruction can be input not only from the start switch or the trigger switch but also from the contact arm switch. According to this aspect, the convenience of the driving tool can be improved by diversification of the motor start instruction and the start instruction of the driving operation.
  • the controller is configured to continue driving the motor for at least a predetermined period even when the contact arm switch triggered to start driving the motor is turned off. Good. According to this aspect, even when the contact arm switch triggered to start the driving of the motor is turned off, the state of storing rotational energy in the flywheel is maintained for at least a predetermined period. Therefore, after one driving operation, the user performs another start operation for starting the driving operation (that is, pull operation following the pressing operation of the contact arm against the workpiece) while driving of the motor continues. Then, it is possible to quickly start the next driving operation. That is, a plurality of driving operations can be performed continuously in a short time.
  • the “predetermined period” is typically determined from any event (for example, start of driving of motor, switching of start switch or contact arm switch after start of driving of motor). It may be a period until time (for example, 3.5 seconds, 5 seconds, 7 seconds) elapses.
  • the controller may be configured to continue driving of the motor for a predetermined period after the start of driving of the motor. According to this aspect, it is possible to simply measure the period in which the driving of the motor is continued.
  • the controller may be configured to continue driving of the motor for a predetermined period after completion of the driving operation.
  • “completion of the driving operation” may be when the driver actually drives the driving material into the workpiece, or the driving operation is completed based on an event corresponding to the driving operation. It may be a time that can be regarded as corresponding (for example, when a certain time has passed since the trigger switch was turned on or off, a certain time has passed since the actuation of the actuating mechanism, etc.). According to this aspect, it is possible to reliably provide a period for continuing the driving of the motor after the completion of the driving operation.
  • the controller when the trigger switch is turned on after the contact arm switch is turned on, the controller temporarily stops the driving of the motor, and after completion of the driving operation, the controller It may be configured to resume driving. If the trigger switch is turned on after the contact arm switch is turned on, that is, if an instruction to start the striking operation is performed, the flywheel will rotate by inertia even if the motor is stopped. Can continue. According to this aspect, when the driving operation is performed, the rotational speed of the motor is rapidly reduced, so that the load on the motor can be suppressed, and protection of the motor can be achieved.
  • FIG. 6 is a cross-sectional view taken along the line VI-VI of FIG. It is a block diagram which shows the electric constitution of the nailing machine of 1st Embodiment.
  • FIG. 12 is a cross-sectional view taken along line XII-XII in FIG. It is explanatory drawing which shows the driver and driver drive mechanism which are arrange
  • the nailing machine 1 is an example of a driving tool.
  • the nailing machine 1 is a tool capable of driving a nail 101 into a workpiece (e.g., wood) 100 by straightly punching out a nail 101 as an example of a driving material.
  • the shell of the nailing machine 1 is mainly formed mainly of a tool body 10, a handle 14 and a magazine 17.
  • the tool body 10 includes a body housing 11 and a nose portion 12.
  • the motor 2, the driver 3, the driver drive mechanism 400, the return mechanism (not shown), and the like are accommodated.
  • the driver 3 is disposed movably along a predetermined operation line L.
  • the driver drive mechanism 400 is a mechanism for causing the nail 101 to be ejected from the nailing machine 1 by moving the driver 3 linearly along the operation line L.
  • the return mechanism is configured to return the driver 3 after striking the nail 101 to its original position.
  • the nose portion 12 is connected to one end of the main body housing 11 in the extending direction of the operation line L (hereinafter simply referred to as the operation line L direction).
  • the nose portion 12 has, at an end opposite to the main body housing 11, an ejection opening 123 through which the nail 101 is punched out. Further, in the nose portion 12, a contact arm 13 capable of advancing and retracting in the direction of the operation line L is disposed. In the body housing 11, a contact arm switch 131 (see FIG. 7) is disposed. The contact arm switch 131 is always maintained in the off state, and is configured to be turned on in response to the pressing of the contact arm 13.
  • the handle 14 protrudes from the central portion of the main body housing 11 in the direction of the operation line L in a direction intersecting the operation line L.
  • the handle 14 is a portion gripped by the user.
  • a trigger 140 configured to allow a pull operation by the operator is provided.
  • a trigger switch 141 is disposed in the handle 14. The trigger switch 141 is always maintained in the off state, and is configured to be turned on in response to the pulling operation of the trigger 140.
  • a battery mounting portion 15 provided with a terminal or the like is provided at the distal end portion (the end portion on the opposite side to the proximal end portion) of the handle 14.
  • a rechargeable battery 19 is removably mounted on the battery mounting portion 15.
  • a controller 18 or the like for controlling the operation of the nailing machine 1 is disposed inside the handle 14 tip.
  • the magazine 17 is configured to be capable of filling a plurality of nails 101 and is mounted to the nose portion 12.
  • the nails 101 filled in the magazine 17 are supplied one by one on the movement path of the driver by a nail feeding mechanism (not shown).
  • a nail feeding mechanism not shown
  • the nailing machine 1 turns on the contact arm switch 131 by the user pressing the contact arm 13 against the workpiece 100, and then turns on the trigger switch 141 by pulling the trigger 140.
  • the driver 3 starts an operation of driving the nail 101 into the workpiece 100 (hereinafter referred to as a driving operation). That is, the driving operation is not performed only by the pressing operation of the contact arm 13 against the workpiece 100 or only the pulling operation of the trigger 140. In addition, even if the pressing operation of the contact arm 13 is performed after the pulling operation of the trigger 140, the driving operation is not performed.
  • the pressing operation of the contact arm 13 against the workpiece 100 and the pulling operation of the trigger 140 in order are also referred to as a start instruction operation of the driving operation.
  • the operation line L direction (left and right direction in FIG. 1) is defined as the front and back direction of the nailing machine 1, and the side provided with the ejection port 123 (right side in FIG. 1) is nailed.
  • the front side of the machine 1 and the opposite side (left side in FIG. 1) are defined as the rear side.
  • a direction (vertical direction in FIG. 1) perpendicular to the direction of the operation line L and corresponding to the extending direction of the handle 14 is defined as the vertical direction of the nailing machine 1, and the proximal end side of the handle 14 (FIG. 1
  • the upper side is defined as the upper side
  • the tip end side (the lower side in FIG. 1) of the handle 14 is defined as the lower side.
  • a direction perpendicular to the front-rear direction and the vertical direction is defined as the left-right direction.
  • the contact arm 13 is disposed on the upper side of the nose portion 12. More specifically, the contact arm 13 is formed as an elongated member extending in the front-rear direction as a whole. The contact arm 13 is slidably disposed in the front-rear direction along the upper surface of the nose portion 12 so that the front end portion 132 is positioned near the injection port 123. Although not shown in detail, a switch operation rod extending rearward is connected to the rear end of the contact arm 13. The contact arm switch 131 (see FIG. 7) is disposed on the rear side of the switch operating rod.
  • the contact arm 13 is urged forward by an elastic member (for example, a compression coil spring) (not shown), and the front end 132 is an ejection opening 123 as shown in FIG. 1 when no external force is applied from the front. It is held in the initial position that projects more forward. At this time, the switch operating rod does not act on the contact arm switch 131, and the contact arm switch 131 is maintained in the OFF state. On the other hand, as shown in FIG. 2, when the front end 132 is pressed against the workpiece 100 by the user, the contact arm 13 moves rearward against the biasing force of the elastic member.
  • an elastic member for example, a compression coil spring
  • the contact arm switch 131 When the contact arm 13 moves to a predetermined position (hereinafter referred to as an on position) behind the initial position in response to the pressing, the contact arm switch 131 is pressed by the rear end of the switch operating rod and switched to the on state.
  • the contact arm switch 131 is connected to the controller 18 via a wire (not shown), and outputs a signal corresponding to the on state or the off state to the controller 18.
  • the rear side portion of the contact arm 13 (a portion protruding upward from the upper surface of the nose portion 12) is , Is covered by a contact arm cover 9.
  • the trigger 140 is disposed at the upper front end of the handle 14.
  • the trigger 140 is always urged forward by an elastic member (for example, a compression coil spring), and is held at the initial position shown in FIG. 1 when no external force is applied from the front. At this time, the trigger 140 does not act on the trigger switch 141, and the trigger switch 141 is maintained in the off state.
  • the trigger 140 when the trigger 140 is pulled by the user, the trigger 140 moves rearward against the biasing force of the elastic member.
  • the trigger switch 141 is pressed by the rear end of the trigger 140 and switched to the on state.
  • the trigger switch 141 is connected to the controller 18 via a wire (not shown), and outputs a signal corresponding to the on state or the off state to the controller 18.
  • the motor 2 will be described. As shown in FIG. 3, the motor 2 is accommodated in the rear lower portion of the main body housing 11. Further, the motor 2 is disposed such that the rotation axis of the output shaft (not shown) extends in the left-right direction orthogonal to the operation line L. In the present embodiment, a brushless DC motor is employed as the motor 2 because of its small size and high output. Connected to the output shaft of the motor 2 is a pulley 21 that rotates integrally with the output shaft. In the present embodiment, the drive of the motor 2 is controlled by the controller 18 (see FIG. 1). Details of control of the motor 2 will be described later.
  • the driver 3 will be described. As shown in FIG. 4, the driver 3 is an elongated member, and is formed in a symmetrical shape with respect to the major axis.
  • the driver 3 includes a main body portion 30, a striking portion 31, and a pair of arm portions 35 projecting leftward and rightward from the rear of the main body portion 30.
  • the main body portion 30 is a portion formed in a generally rectangular thin plate shape as a whole.
  • the striking portion 31 is formed to be narrower in width in the left-right direction than the main body portion 30 and extends forward from the front end of the main body portion 30.
  • the pair of arm portions 35 is a portion that protrudes from the rear of the main body portion 30 to the left and right.
  • the main body portion 30 is a portion which is pressed by a pressing roller 83 (see FIG. 3) described later and frictionally engaged with the ring member 5 (see FIG. 3).
  • the main body portion 30 has a pair of roller contact portions 301, a lever contact portion 305, and a pair of ring engagement portions 306. Hereinafter, these parts will be described in order.
  • the pair of roller contact portions 301 is integrally formed on the main body portion 30 so as to protrude upward from the upper surface of the main body portion 30 and extend in the front-rear direction along the left and right ends of the main body portion 30.
  • the surface portion formed at the projecting end (upper end) of the roller contact portion 301 is formed as an abutment surface that abuts on the outer peripheral surface of the pressing roller 83.
  • a front end portion of the roller contact portion 301 is formed as an inclined portion 302 whose height (thickness in the vertical direction) gradually increases toward the rear.
  • the rear side portion of the inclined portion 302 of the roller contact portion 301 has a constant height.
  • the lever contact portion 305 is provided to project upward from the upper surface of the main body 30, and extends in the left-right direction so as to connect the left and right roller contact portions 301 at the rear of the main body 30.
  • the lever contact portion 305 is a portion on which a push lever 711 described later comes in contact from behind.
  • the pair of ring engagement portions 306 are integrally formed on the main body portion 30 so as to protrude downward from the lower surface of the main body portion 30 and extend in the front-rear direction along the left and right end portions of the main body portion 30 .
  • the front end portion of the ring engagement portion 306 is formed as a sloped portion 307 whose height (thickness in the vertical direction) gradually increases toward the rear.
  • engaging grooves 308 engageable with outer peripheral engaging portions 51 of two ring members 5 described later are formed.
  • Each engagement groove 308 is formed to be recessed upward from the projecting end of the ring engagement portion 306, and extends in the front-rear direction along the entire length of the ring engagement portion 306.
  • the engagement groove 308 has a width in the left and right direction narrowed upward (in other words, the wall surface of the ring engagement portion 306 defining the engagement groove 308 approaches upward) ) (See FIG. 6). The engagement between the driver 3 and the ring member 5 will be described in detail later.
  • the rear end 32 of the main body 30 defines the rear end of the driver 3.
  • the rear end 32 abuts on the rear stopper portion 118 (see FIG. 1) fixed in the rear end portion of the main body housing 11 to restrict the driver 3 from moving further backward.
  • the front end 310 of the striking portion 31 defines the front end of the driver.
  • the front end 310 is a part that strikes the head of the nail 101 (see FIG. 1) and strikes the nail 101 forward and into the workpiece 100.
  • the pair of arm portions 35 project to the left and right of the main body portion 30.
  • the arm portion 35 is a portion that restricts the driver 3 from moving further forward by abutting on a pair of front stopper portions 117 (see FIG. 2) fixed inside the front end portion of the main body housing 11.
  • the arm part 35 is connected to the return mechanism by the connection member.
  • any known configuration may be employed as the return mechanism.
  • the driver 3 moved forward to the driving position is configured to be pulled back to the initial position along the operating line L by the elastic force of an elastic member (for example, a compression coil spring or a torsion coil spring) via the connection member.
  • a mechanism can be employed.
  • the driver 3 configured as described above is arranged such that the major axis thereof extends in the front-rear direction of the nailing machine 1 along the operation line L. Further, the driver 3 is held so as to be movable along the operation line L (which is rephrased in the back and forth direction of the nailing machine 1 or in the long axis direction of the driver 3).
  • the initial position is a position at which the driver 3 is held in a state where the driver driving mechanism 400 is not operating (hereinafter referred to as an initial state).
  • the initial position of the driver 3 is set such that the rear end 32 of the driver 3 abuts on the rear stopper portion 118.
  • the driving position is a position where the driver 3 moved forward by the driver drive mechanism 400 drives the nail 101 into the workpiece.
  • the driving position of the driver 3 is set to a position where the front end 310 of the driver 3 slightly protrudes from the injection port 123.
  • the driving position is also a position where the front ends of the pair of arm portions 35 abut against the pair of front stopper portions 117 from the rear. From the above arrangement, in the present embodiment, the initial position and the drive position can be reworded as being the rearmost position and the foremost position defining both ends of the movable range of the driver 3.
  • the driver drive mechanism 400 includes a flywheel 4, two ring members 5, a holding mechanism 6, an operating mechanism 7, and a pressing mechanism 8.
  • the details of these configurations will be sequentially described below.
  • FIG. 1 and FIG. 3 to be referred to below for convenience of explanation, a part of a ring member 5 described later is illustrated in a broken state.
  • the flywheel 4 will be described. As shown in FIG. 3, the cylindrically formed flywheel 4 is rotatably supported on the front side of the motor 2 in the main body housing 11.
  • the flywheel 4 is rotationally driven by a motor 2 around a rotation axis A1.
  • the rotation axis A ⁇ b> 1 extends in the left-right direction orthogonal to the operation line L of the driver 3 in parallel with the rotation axis of the motor 2.
  • Connected to the support shaft of the flywheel 4 is a pulley 41 that rotates integrally with the flywheel 4.
  • a belt 25 is stretched over the pulleys 21 and 41.
  • a pair of engagement grooves 47 extending over the entire circumference of the flywheel 4 is formed on the outer circumference 45 of the flywheel 4.
  • the ring member 5 can be engaged with the engagement groove 47.
  • the engagement groove 47 is formed such that the width in the left-right direction narrows inward in the radial direction of the flywheel 4.
  • each ring member 5 is formed in a ring shape having a diameter larger than that of the flywheel 4.
  • the inner diameter of the ring member 5 is set to be larger than the outer diameter of the flywheel 4 (strictly, the diameter from the rotation axis A1 of the flywheel 4 to the bottom of the engagement groove 47).
  • the two ring members 5 are disposed radially outward with respect to a pair of engagement grooves 47 provided on the outer periphery 45 of the flywheel 4.
  • the two ring members 5 are separated from the outer circumference 45 (more specifically, the engagement groove 47) of the flywheel 4 by the holding mechanism 6 described later, and the outer circumference 45 (engagement groove 47) Is held movably between a contact position at which one of the two contacts with the other.
  • Each ring member 5 is a transmission member for transmitting the rotational energy of the flywheel 4 to the driver 3, and is configured to be frictionally engageable with the driver 3 and the flywheel 4.
  • the engagement groove 308 of the driver 3 and the engagement groove 47 of the flywheel 4 can be engaged with the outer peripheral portion and the inner peripheral portion of the ring member 5, respectively.
  • An outer circumferential engagement portion 51 and an inner circumferential engagement portion 53 are provided.
  • the outer circumferential engagement portion 51 is formed as a convex portion that protrudes outward in the radial direction of the ring member 5, while the inner circumferential engagement portion 53 is a convex portion that protrudes inward in the radial direction of the ring member 5. It is formed.
  • the cross-sectional shape in the radial direction of the ring member 5 is formed in a substantially hexagonal shape, and the outer peripheral engagement portion 51 is formed so as to decrease in thickness toward the radial outer side of the ring member 5;
  • the inner circumferential engagement portion 53 is formed such that the thickness in the axial direction decreases toward the inner side in the radial direction of the ring member 5. That is, the outer peripheral engaging portion 51 and the inner peripheral engaging portion 53 are each formed in a tapered shape in cross section toward the tip.
  • the holding mechanism 6 holds the ring member 5 movably between a separated position separated from the outer periphery 45 (engagement groove 47) of the flywheel 4 and a contact position contacting the outer periphery 45 (engagement groove 47). It is configured to As shown in FIGS. 3 and 5, the holding mechanism 6 of the present embodiment is configured by a pair of ring urging portions 60 and a pair of stoppers 66.
  • the pair of ring urging portions 60 are disposed obliquely forward and obliquely downward with respect to the ring member 5 and rotatably support the ring member 5 in a state of being urged upward from the lower side by a plate spring. .
  • the pair of stoppers 66 are respectively disposed below the driver 3 and obliquely upward and obliquely upward with respect to the ring member 5 and allow the ring member 5 to rotate while moving the ring member 5 upward. Is configured to regulate.
  • the ring member 5 extends from the outer periphery 45 of the flywheel 4 (more specifically, the engagement groove 47) over the entire periphery of the flywheel 4 It is separated.
  • the ring member 5 when the ring member 5 is pressed downward by the driver 3 as the driver 3 is moved forward by the actuating mechanism 7, the urging force of the ring urging portion 60 is resisted. As a result, the ring member 5 moves downward. And the ring member 5 will be hold
  • the operating mechanism 7 will be described. As shown in FIG. 3, the actuating mechanism 7 is disposed above the driver 3 and rearward of the flywheel 4 in the body housing 11.
  • the operating mechanism 7 is a mechanism configured to move the driver 3 disposed at the initial position to a transmission position described later.
  • the actuating mechanism 7 mainly includes a solenoid 715 having a rod movable forward and backward, and a push lever 711 rotated by the rod of the solenoid 715.
  • the pushing lever 711 is rotatably supported at one end. In the initial state, the other end of the push lever 711 is held obliquely upward and rearward with respect to the lever contact portion 305 of the driver 3 by the tension coil spring 713.
  • the push lever 711 When the solenoid 715 is actuated, the push lever 711 is pivoted downward against the biasing force of the tension coil spring 713. Along with this, the tip of the push-out lever 711 pushes the lever contact portion 305 from the rear to the front, thereby moving the driver 3 forward (see FIG. 11).
  • the operation of the solenoid 715 is controlled by the controller 18 (see FIG. 1). Details of control of the solenoid 715 will be described later.
  • the pressing mechanism 8 will be described. As shown in FIG. 3, the pressing mechanism 8 is disposed in the main housing 11 so as to face the driver 3 on the opposite side of the flywheel 4 in the facing direction of the flywheel 4 and the driver 3. The pressing mechanism 8 presses the driver 3 toward the ring member 5 (that is, in a direction approaching the flywheel 4) in the process of moving the driver 3 forward from the initial position, so that the fly through the ring member 5 is performed. It is configured to enable transmission of rotational energy from the wheel 4 to the driver 3. As shown in FIGS. 3 and 6, in the present embodiment, the pressing mechanism 8 includes a roller support member 81, a pressing roller 83 rotatably supported by the roller support member 81, and a holder supported by the main body housing 11. And 85, and an elastic member 87 disposed between the roller support member 81 and the holder 85.
  • the details of these constituent members will be described in order.
  • the roller support member 81 includes a spring holding portion 811, a spring receiving portion 813, and a roller support portion 815.
  • the spring holding portion 811 is a portion forming an upper portion of the roller support member 81 formed in a cylindrical shape whose axial direction is the vertical direction.
  • the spring receiving portion 813 is a flange-like portion protruding radially outward from the lower end portion of the spring holding portion 811.
  • the roller support portion 815 is a portion that projects downward from the spring receiving portion 813 and that constitutes the lower portion of the roller support member 81.
  • the roller support portion 815 rotatably supports the left and right pressing rollers 83 via a roller shaft 84 extending in the left-right direction.
  • the holder 85 is supported by the main body housing 11 and holds the roller support member 81 so as to be relatively movable in the vertical direction.
  • the holder 85 includes an accommodating portion 851, a spring receiving portion 853, and a stopper portion 854.
  • the housing portion 851 is formed in a substantially cylindrical shape, and has a housing space 852 in which a part of the roller support member 81 and the elastic member 87 can be housed (see FIG. 6).
  • the spring receiving portion 853 is constituted by an upper wall portion covering the upper portion of the accommodation portion 851.
  • a through hole having substantially the same diameter as the cylindrical spring holding portion 811 of the roller support member 81 is formed at the central portion of the spring receiving portion 853.
  • the spring holding portion 811 is vertically movable in the through hole.
  • the stopper portion 854 protrudes radially inward from the lower end portion of the housing portion 851.
  • the elastic member 87 is disposed between the roller support member 81 and the holder 85 in an interposed manner.
  • the elastic member 87 is constituted by four disc springs arranged in series on the outer periphery of the spring holding portion 811 of the roller support member 81.
  • the roller support member 81 is disposed in the housing portion 851 (housing space 852) of the holder 85 in a state in which the elastic member 87 is externally fitted to the spring holding portion 811.
  • the elastic member 87 is disposed between the spring receiving portion 853 of the holder 85 and the spring receiving portion 813 of the roller support member 81 in a slightly compressed state.
  • the spring receiving portion 813 is biased downward by the elastic force of the elastic member 87, and the stopper portion 854 is pressed from above. It is held in the state of contact. That is, the downward movement of the roller supporting member 81 and the pressing roller 83 is restricted by the stopper portion 854, and the roller supporting member 81 and the pressing roller 83 are held at the lowermost position.
  • the nailing machine 1 includes a controller 18 that controls the operation of the nailing machine 1.
  • the controller 18 is configured as a microcomputer including a CPU, a ROM, a RAM, a timer, and the like.
  • a three-phase inverter 201 and a Hall sensor 203 are electrically connected to the controller 18.
  • the three-phase inverter 201 includes a three-phase bridge circuit using six semiconductor switching elements. The three-phase inverter 201 performs switching operation on each switching element of the three-phase bridge circuit according to the duty ratio indicated by the control signal from the controller 18 to make the motor 2 pulse current (drive pulse) according to the duty ratio. Supply.
  • the controller 18 and the three-phase inverter 201 are mounted on the substrate 180 and accommodated in the lower end of the handle 14 (see FIG. 1).
  • the Hall sensor 203 includes three Hall elements arranged corresponding to each phase of the motor 2 and is configured to output a signal indicating the rotation angle of the rotor of the motor 2.
  • a contact arm switch 131, a trigger switch 141, and a solenoid 715 of the operating mechanism 7 are electrically connected.
  • the contact arm switch 131 and the trigger switch 141 respectively output signals corresponding to the on state or the off state to the controller 18.
  • the controller 18 appropriately outputs a control signal to the three-phase inverter 201 and the solenoid 715 based on the signals from the contact arm switch 131 and the trigger switch 141 so that the motor 2 and the solenoid 715 are Control the operation.
  • the controller 18 recognizes this as an input of a start instruction of the motor 2 and starts driving the motor 2. Thereafter, when the trigger switch 141 is turned on after the contact arm switch 131 is turned on, the controller 18 recognizes this as an input for instructing the start of the implanting operation, and operates the solenoid 715. The driver 3 starts the driving operation. Further, even when the contact arm switch 131 is turned on when the motor is not driven, the controller 18 recognizes this as the input of the start instruction of the motor 2 and starts the driving of the motor 2. In this case, when the trigger switch 141 is subsequently turned on, the controller 18 recognizes this as an input of the start instruction of the driving operation, operates the solenoid 715, and starts the driving operation in the driver 3 Let
  • the details of the driving control process executed by the controller 18 (specifically, the CPU) and the specific operation of the nailing machine 1 during processing will be described below with reference to FIGS. 8 to 13.
  • the driving control process shown in FIGS. 8 to 10 is started when the power supply to the nailing machine 1 is started by mounting the battery 19 on the battery mounting unit 15, and when the power supply is stopped. It is finished.
  • each “step” in process is abbreviated as “S”.
  • switch is also abbreviated as “SW”.
  • the contact arm 13 and the trigger 140 are both in the initial position, and the contact arm switch 131 and the trigger switch 141 are both in the off state.
  • the motor 2 is in a non-driven state where it is not driven.
  • the driver 3 is returned to the initial position and held by the return mechanism.
  • the ring member 5 is held by the holding mechanism 6 at a slightly separated position radially outward from the outer circumference 45 (more specifically, the engagement groove 47) of the flywheel 4.
  • the pressure roller 83 is held at the lowermost position and is in sliding contact with the front end portion of the main body portion 30 of the driver 3 from above, but it is not in the state of pressing the driver 3 downward.
  • the ring member 5 is held at a position apart from the driver 3 as well. More specifically, the ring member 5 is held at a position where the outer peripheral engagement portion 51 is slightly separated from the engagement groove 308 of the driver 3.
  • the controller 18 first determines whether the trigger switch 141 is turned on (S1). When the user pulls the trigger 140 to the on position and the trigger switch 141 is turned on (S1: YES), the controller 18 recognizes this as the input of the motor 2 start instruction (drive start instruction). , And shifts to a first control process described later (S3 and FIG. 9). On the other hand, when the trigger switch 141 is not in the on state (S1: NO), the controller 18 determines whether the contact arm switch 131 is in the on state (S2). When the contact arm switch 131 is also in the OFF state (S2: NO), the controller 18 returns to the process of S1.
  • the controller 18 shifts to the second control process described later (S4 and FIG. 10).
  • the on / off states of the trigger switch 141 and the contact arm switch 131 recognized by the controller 18 are stored, for example, by setting or clearing flags corresponding to the respective switches.
  • the controller 18 when shifting to the first control process, the controller 18 first starts driving the motor 2 in response to the input of the start instruction of the motor 2 (S31). Specifically, the controller 18 starts energization of the motor 2 via the three-phase inverter 201. The motor 2 rotationally drives the flywheel 4 to start storing rotational energy. At this stage, since the ring member 5 is disposed at the separated position, the rotational energy of the flywheel 4 can not be transmitted to the driver 3. Therefore, even if the flywheel 4 rotates, the ring member 5 and the driver 3 do not operate.
  • the controller 18 stands by while the trigger switch 141 is not turned off (S32: NO, S32). Note that even if the contact arm switch 131 is turned on during this time, the controller 18 invalidates it and the process does not proceed. That is, the controller 18 does not proceed with the process unless the pull operation of the trigger 140 is released once.
  • the controller 18 determines whether a predetermined time has elapsed since the trigger switch 141 was turned off (S33). This determination is performed, for example, by measuring an elapsed time after the trigger switch 141 is turned off by a timer and comparing a predetermined time stored in advance in the ROM with the elapsed time.
  • predetermined time is not specifically limited, 5 seconds are employ
  • the controller 18 stands by while the predetermined time does not elapse and the contact arm switch 131 is not turned on (S33: NO, S34: NO). Driving of the motor 2 is continued also during this period.
  • the controller 18 stops the driving of the motor 2 by stopping the energization of the motor 2 (S34: NO). S37). Along with this, the rotation of the flywheel 4 is stopped.
  • the controller 18 ends the first control process and returns to the drive control process (see FIG. 8), and waits until the trigger switch 141 or the contact arm switch 131 is turned on (S1 to S2).
  • the controller 18 determines whether the trigger switch 141 is turned on (S35) . If the trigger switch 141 is not turned on (S35: NO), the controller 18 continues monitoring until a predetermined time elapses (S33: NO, S34: YES, S35). Driving of the motor 2 is continued also during this period. When the predetermined time has passed with the trigger switch 134 turned off (S35: NO, S33: YES), the controller 18 stops the driving of the motor 2 (S37), and ends the first control process.
  • a start instruction of the driving operation is given. It means that it was input.
  • the controller 18 operates the solenoid 715 (S36).
  • the controller 18 specifies the rotational speed of the motor 2 (and consequently the flywheel 4) based on the signal output from the Hall sensor 203. If the controller 18 determines that sufficient rotational energy is stored in the flywheel 4 based on the rotational speed, it immediately operates the solenoid 715, otherwise after sufficient rotational energy is stored. , Operate the solenoid 715.
  • the controller 18 can operate the solenoid 715 substantially immediately in response to the start instruction operation of the driving operation.
  • the push-out lever 711 By the operation of the solenoid 715, the push-out lever 711 is pivoted, and the rear end portion of the push-out lever 711 presses the lever contact portion 305 of the driver 3 from the rear to the front.
  • the driver 3 starts moving forward along the operation line L from the initial position toward the driving position.
  • the driver 3 also moves relative to the ring member 5 held at the separated position.
  • the pressure roller 83 abuts from the front on the contact surface of the inclined portion 302 whose thickness gradually increases toward the rear.
  • a part of the outer peripheral engaging portion 51 of the ring member 5 enters the engaging groove 308 (see FIG. 6) of the driver 3, It abuts on the open end of the engagement groove 308.
  • the outer peripheral engaging portion 51 is formed by the inclined portion 307 being formed at the front end portion of the ring engaging portion 306 and the width in the left and right direction of the engaging groove 308 being wider at the open end side. , And can smoothly enter the engagement groove 308.
  • the inclined portion 302 Acts as a cam and also exerts a wedge effect. For this reason, the ring member 5 held at the separated position is pushed downward against the biasing force of the plate spring of the ring biasing unit 60. At the same time, the pressure roller 83 held at the lowermost position is pushed upward against the elastic force of the elastic member 87.
  • the ring member 5 is pressed against the flywheel 4 via the driver 3 by the elastic force of the elastic member 87 compressed by the pressing roller 83 being pushed up by the inclined portion 302. For this reason, at the open end of the engagement groove 308 of the driver 3, the driver 3 and a part of the outer peripheral engagement portion 51 of the ring member 5 are put in frictional engagement. Further, at the open end of the engagement groove 47 of the flywheel 4, a part of the flywheel 4 and the inner peripheral engagement portion 53 of the ring member 5 is placed in a frictional engagement state.
  • the “frictional engagement state” refers to a state in which two members are engaged with each other by a frictional force (including a sliding state).
  • the ring member 5 is rotated around the rotation axis A2 by the flywheel 4 in a state where only a portion of the inner peripheral engagement portion 53 of the ring member 5 pressed against the flywheel 4 by the driver 3 is frictionally engaged with the flywheel 4 Will be rotated.
  • FIG. 1 As shown in FIG.
  • the ring member 5 is formed larger in diameter than the flywheel 4, and the inner diameter of the ring member 5 is the outer diameter of the flywheel 4 (strictly, the flywheel The diameter from the rotation axis A1 of 4 to the bottom of the engagement groove 47). For this reason, the rotation axis A2 of the ring member 5 is different from the rotation axis A1 of the flywheel 4 and is located below the rotation axis A1 (in the direction away from the driver 3). The rotation axis A2 extends parallel to the rotation axis A1. The ring member 5 pushes the driver 3 in a state of frictional engagement with the ring member 5 forward from the transmission position shown in FIG.
  • the controller 18 operates the solenoid 715 in S36 of the first control process (see FIG. 9), and then supplies a current to the solenoid 715 when a predetermined time required for the driver 3 to reach the striking position has elapsed. To return the push lever 711 to its initial position.
  • the driver 3 reaches the striking position, strikes the nail 101, and further moves to the striking position shown in FIG. 2 to drive the nail 101 into the workpiece 100.
  • a return mechanism (not shown) operates to return the driver 3 to the initial position.
  • the controller 18 After activating the solenoid 715 in S36, the controller 18 returns to the process of determining whether the trigger switch 141 is turned off (S32). During this time, the driving of the motor 2 is continued.
  • the trigger switch 141 is turned off (S32: YES), as described above, the controller 18 returns to the process of determining whether the contact arm switch 131 and the trigger switch 141 are turned on (S33 to S35). ).
  • the controller 18 operates the solenoid 715 to drive the driver 3.
  • the operation is performed (S33: NO, S34: YES, S35: YES, S36).
  • the rotational energy temporarily stored in the flywheel 4 is decreased by the previous driving operation, as described above, the driving of the motor 2 is continued until the next driving operation start instruction operation, and the flywheel 4 is The rotational energy is stored.
  • the controller 18 can operate the solenoid 715 substantially immediately even after the start of the motor 2 for the start instruction operation of the second and subsequent driving operations.
  • the controller 18 stops the drive of the motor 2 by stopping the energization of the motor 2 (S37). Along with this, the rotation of the flywheel 4 is stopped. The controller 18 ends the first control process and returns to the drive control process (see FIG. 8), and waits until the trigger switch 141 or the contact arm switch 131 is turned on (S1 to S2).
  • the operation of the controller 18 (specifically the CPU) Mainly.
  • the controller 18 when shifting to the second control processing, the controller 18 first starts driving the motor 2 in response to the input of the start instruction of the motor 2 (S41). While the trigger switch 141 is in the off state and the contact arm switch 131 is in the on state, the controller 18 stands by until any switch is switched (S42: NO, S43: NO).
  • the controller 18 Since the contact arm switch 131 is already in the on state, when the trigger switch 141 is in the on state (S42: YES), the controller 18 recognizes that the start instruction of the driving operation is input, and operates the solenoid 715. (S44). In the second control process, sufficient rotational energy is accumulated in the flywheel 4 when the pressing operation of the contact arm 13 against the workpiece and the pulling operation of the trigger 140 are performed almost simultaneously. It may not be. In this case, the controller 18 activates the solenoid 715 after sufficient rotational energy has been stored. As in the second control process, the controller 18 stops the current supply to the solenoid 715 when a predetermined time required for the driver 3 to reach the striking position has elapsed.
  • the controller 18 After operating the solenoid 715, the controller 18 stands by until the contact arm switch 131 is turned off (S45: NO). That is, the controller 18 does not proceed with the process unless the pressing operation of the contact arm 13 is released once.
  • the controller 18 determines whether a predetermined time has elapsed since the contact arm switch 131 was turned off (S46). Even when the contact arm switch 131 is turned off with the trigger switch 141 turned off after the start of driving of the motor 2 (S42: NO, S43: YES), the controller 18 shifts to the process of S46.
  • the controller 18 stands by while the predetermined time has not passed and the contact arm switch 131 is not turned on (S46: NO, S47: NO).
  • the predetermined time used in S46 may be the same as or different from the first control process. In the present embodiment, the same five seconds as the first control process are employed as an example of the predetermined time.
  • the controller 18 If the contact arm switch 131 is turned on again before the predetermined time elapses (S46: NO, S47: YES), the controller 18 returns to the determination of whether the trigger switch 141 is turned on (S46). S42). When the trigger switch 141 is turned on, the controller 18 recognizes that the start instruction of the driving operation has been input, operates the solenoid 715 again, and causes the driver 3 to perform the driving operation (S42: YES, S44). ). As described above, since the driving of the motor 2 is continued from the previous driving operation and sufficient rotational energy is stored, the solenoid 715 is substantially turned on when the trigger switch 141 is turned on. It is activated immediately.
  • the controller 18 stops the driving of the motor 2 (S48).
  • the controller 18 ends the second control process and returns to the drive control process (see FIG. 8), and stands by until the trigger switch 141 or the contact arm switch 131 is turned on (S1 to S2).
  • the first control process in the present embodiment is started when the trigger switch 141 is turned on (that is, when the user pulls the trigger 140) when the motor 2 is not driven. Then, after driving of the motor 2 is started, when the contact arm switch 131 and the trigger switch 141 are sequentially turned on (that is, the user sequentially performs the pressing operation of the contact arm 13 and the pulling operation of the trigger 140). And the solenoid 715 is actuated, and the driver 3 performs a driving operation.
  • the driving of the motor 2 is continued until a predetermined time elapses after the trigger switch 141 is turned off even after the driving operation is performed. That is, during this time, the state of storing rotational energy in the flywheel 4 is maintained. Therefore, the user can start the second and subsequent driving operations promptly by newly performing the starting operation of starting the driving operation during this period. That is, the user can carry out a plurality of driving operations continuously in a short time.
  • the second control process in the present embodiment is started when the contact arm switch 131 is turned on while the motor 2 is not driven (that is, when the user presses the contact arm 13). Then, after the driving of the motor 2 is started, when the trigger switch 141 is turned on (in other words, when the user pulls the trigger 140), the solenoid 715 is activated and the driver 3 performs the driving operation. To be done. In addition, once the motor 2 is driven, the driving of the motor 2 is continued until a predetermined time elapses after the contact arm switch 131 is turned off even after the driving operation is performed.
  • the start of the first driving operation is slightly delayed compared to the first control processing depending on the accumulation state of the rotational energy of the flywheel 4, the start of the second and subsequent driving operations
  • the responsiveness of the start of the driving operation of the driver 3 to the start instruction operation of the driving operation can be improved as in the first control processing.
  • the start instruction of the motor 2 can be input from the trigger switch 141 and the contact arm switch 131, and the motor 2 and the solenoid are controlled in the first control process and the second control process respectively. Control of 715 is performed.
  • the convenience of the nailing machine 1 is enhanced by diversification of the start instruction of the motor 2 and the start instruction of the driving operation.
  • the user may pull the trigger 140 in advance to start driving the motor 2, and then may perform the pressing operation of the contact arm 13 and the pulling operation of the trigger 140.
  • the driving of the trigger 140 may be started, and then the trigger 140 may be pulled.
  • one trigger switch 141 is also used as a switch for inputting a start instruction of the motor 2 and a switch for inputting a start instruction of a driving operation. Therefore, the user can easily realize the start instruction operation of the motor 2 and the start instruction operation of the driving operation by the pull operation of the trigger 140 which is the same member. Moreover, the increase in the number of parts of the nailing machine 1 can be avoided. Further, in the present embodiment, when the trigger switch 141 is turned on when the motor 2 is not driven, the controller 18 determines that the drive start instruction of the motor 2 is input, and contacts the drive 2 when the motor 2 is driven. When the trigger switch 141 is turned on after the arm switch 131, it is determined that the start instruction of the driving operation is input, thereby realizing appropriate control corresponding to each case.
  • the nailing machine 1A according to the second embodiment will be described below with reference to FIGS. 14 to 18.
  • the configuration of the nailing machine 1A of the present embodiment is different from the nailing machine 1 of the first embodiment in that the lighting unit 113 is further provided.
  • the contents of the driving control process executed by the controller 18 of the nailing machine 1A are partially different from the contents of the driving control process in the first embodiment.
  • the same configuration and processing as those in the first embodiment will be omitted or simplified in illustration and description, and mainly different configurations and processing will be described with reference to the drawings.
  • the nailing machine 1 ⁇ / b> A includes a lighting unit 113 provided at the front end of the main body housing 11.
  • the lighting unit 113 of this embodiment is a case made of a light emitting diode (LED) 114 (see FIG. 15) as a light source and a translucent material (transparent resin, glass, etc.) for housing the LED.
  • LED light emitting diode
  • the illumination unit 113 has a light irradiation direction set such that the light emitted from the LED 114 illuminates the area near the exit 123 (in other words, the area including the place where the nail 101 is driven).
  • the LEDs 114 of the lighting unit 113 are electrically connected to the controller 18. Although the detailed description of the process is omitted, in the present embodiment, the controller 18 lights the LED 114 simultaneously with the start of the driving of the motor 2 in response to the input of the start instruction of the motor 2 and is used for the starting instruction of the motor 2 After the trigger switch 141 or the contact arm switch 131 is turned off, the LED 114 is turned off when a predetermined time elapses.
  • the predetermined time until the LED 114 is turned off may be, for example, the same as the predetermined time until the drive stop of the motor 2 or may be longer than the predetermined time until the drive stop of the motor 2.
  • the controller 18 (specifically the CPU) The operation of will be mainly described.
  • the controller 18 stands by while both the trigger switch 141 and the contact arm switch 131 are in the off state as in the implantation control process of the first embodiment ( S101: NO, S102: NO).
  • the trigger switch 141 is turned on (S101: YES)
  • the controller 18 stands by until the trigger switch 141 is turned off without starting the driving of the motor 2, unlike the first embodiment. (S102: NO).
  • the controller 18 when shifting to the first control processing, the controller 18 first starts driving the motor 2 in response to the input of the start instruction of the motor 2 (S301). As a result, the flywheel 4 is also rotationally driven to start storing rotational energy. Further, as described above, both the trigger switch 141 and the contact arm switch 131 are in the off state. The controller 18 determines whether a predetermined time has elapsed since the trigger switch 141 was turned off (S303). In addition, although the predetermined time used here is not specifically limited, In this embodiment, 5 seconds are employ
  • the controller 18 stands by while the predetermined time does not elapse and the contact arm switch 131 is not turned on (S303: NO, S304: NO). Driving of the motor 2 is continued also during this period.
  • the controller 18 stops the driving of the motor 2 (S310), and ends the first control process. The process returns to the drive control process (see FIG. 16).
  • the start instruction of the driving operation is It means that it was input.
  • the controller 18 determines that sufficient rotational energy is stored in the flywheel 4
  • the controller 18 stops energization of the motor 2 after sufficient rotational energy has been stored.
  • the drive of the motor 2 is stopped (S306). Even if the driving of the motor 2 is stopped, the flywheel 4 and the rotor of the motor 2 continue to rotate by inertia.
  • the controller 18 energizes and operates the solenoid 715 (S307) to cause the driver 3 to perform the driving operation.
  • a return mechanism (not shown) is activated to return the driver 3 to the initial position.
  • the drive stop of the motor 2 (S306) and the operation of the solenoid 715 (S307) may be performed at substantially the same timing, or the operation of the solenoid 715 may be performed with a slight delay.
  • the controller 18 stops the current supply to the solenoid 715 when the predetermined time required for the driver 3 to reach the striking position has elapsed. Furthermore, the controller 18 resumes driving of the motor 2 (S308).
  • the solenoid 715 is operated, the driver 3 moves to the drive position and the nail 101 is driven. It may be set according to the time required to complete the The time required for the driver 3 to move to the driving position and complete the driving of the nail 101 is a very short time. In the present embodiment, as an example, the pause time is set to 30 milliseconds.
  • the controller 18 After restarting the driving of the motor 2 in S308, the controller 18 stands by until the trigger switch 141 is turned off (S309: NO). When the user cancels the pulling operation of the trigger 140 and the trigger switch 141 is turned off (S309: YES), the controller 18 returns to S303, and the predetermined time has elapsed since the trigger switch 141 is turned off. Determine if you If the user again issues an instruction to start the driving operation before the predetermined time has elapsed, the driving operation is performed by the driver 3 as described above (S303: NO, S304 to S308). After the trigger switch 141 is turned off, when a predetermined time elapses, the controller 18 stops the driving of the motor 2 (S303: YES, S310), and ends the first control process to execute the strike control process (FIG. 16). Return to
  • the controller 18 when shifting to the second control process, the controller 18 first starts driving the motor 2 in response to the input of the start instruction of the motor 2 (S401). While the trigger switch 141 is in the off state and the contact arm switch 131 is in the on state, the controller 18 stands by until any switch is switched (S402: NO, S403: NO). Since the contact arm switch 131 is already in the ON state, when the trigger switch 141 is in the ON state (S402: YES), it means that the start instruction of the driving operation is input. If the controller 18 determines that sufficient rotational energy is stored in the flywheel 4, the controller 18 stops driving of the motor 2 after sufficient rotational energy has been stored, otherwise (S404).
  • the controller 18 energizes and operates the solenoid 715 (S405) to cause the driver 3 to perform the driving operation. After stopping the current supply to the solenoid 715, the controller 18 resumes driving of the motor 2 (S406).
  • the processes of S404 to S406 are the same as the processes of S306 to S308 of the first control process. That is, in any of the first and second control processes, the nail 3 is driven into the workpiece by the driver 3 within the idle time of the motor 2 when the start instruction of the driving operation is input.
  • the controller 18 After restarting the driving of the motor 2 in S406, the controller 18 stands by until the contact arm switch 131 is turned off (S407: NO).
  • the controller 18 passes a predetermined time after the contact arm switch 131 is turned off. It is judged whether or not it has been done (S408). Even when the contact arm switch 131 is turned off with the trigger switch 141 turned off after the start of driving of the motor 2 (S402: NO, S403: YES), the controller 18 shifts to the processing of S408.
  • the controller 18 stands by while the predetermined time has not passed and the contact arm switch 131 is not turned on again (S408: NO, S409: NO).
  • the controller 18 If the contact arm switch 131 is turned on again before the predetermined time elapses (S408: NO, S409: YES), the controller 18 returns to the determination of whether the trigger switch 141 is turned on (S408: NO). S402). When the trigger switch 141 is turned on, the controller 18 recognizes that the start instruction of the implanting operation is input again, and the driver 3 performs the implanting operation as described above (S402: YES, S404 to S406). ). After the contact arm switch 131 is turned off, when a predetermined time elapses, the controller 18 stops driving the motor 2 (S407: YES, S408: YES, S410), and the second control process ends and the driving is performed. Return to control processing (see FIG. 16).
  • the user causes the driving of the motor 2 to be started by the start instruction operation of the motor 2 in advance.
  • sufficient rotational energy can be stored in the flywheel 4 until the start instruction operation of the driving operation is completed. Therefore, the nailing machine 1A can immediately start the driving operation of the driver 3 after the start instruction operation of the driving operation is completed.
  • the drive of the motor 2 is started only by turning on the trigger switch 141 when the motor 2 is not driven.
  • the motor 2 is started.
  • the driving of the motor 2 is started only when the trigger switch 141 is once turned on and then turned off when not driving.
  • only the pull operation of the trigger 140 by the user is the start instruction operation of the motor 2
  • the pull operation of the trigger 140 by the user and the release thereof are the motor 2. It is assumed that the start instruction operation of.
  • the driving operation by the driver 3 is performed on condition that the contact arm switch 131 and the trigger switch 141 are sequentially turned on after the driving of the motor 2 is started. That is, unless the pressing operation of the contact arm 13 by the user and the pulling operation of the trigger 140 are performed in this order as the start instruction operation of the driving operation, the driving operation by the driver 3 is not performed.
  • the driving of the motor 2 is not started unless the user cancels the pull operation of the trigger 140 once. Therefore, according to the nailing machine 1A of the present embodiment, the user needs to pull the trigger 140 after pressing the contact arm 13 against the workpiece at the time of pressing the contact arm 13 against the workpiece And can be easily understood. Thus, the nailing machine 1A can exhibit excellent operability.
  • the start instruction operation of the driving operation is performed, and after the contact arm switch 131 and the trigger switch 141 are sequentially turned on, the flywheel
  • the driving of the motor 2 is temporarily stopped, and the driving of the motor 2 is resumed after the elapse of a predetermined pause time.
  • the driving operation by the driver 3 is performed within the idle time of the motor 2.
  • the flywheel 4 continues rotation by inertia even if the drive of the motor 2 is stopped, the driver 3 drives the nail 101 by the rotational energy of the flywheel 4 transmitted through the ring member 5 Can.
  • the trigger switch 141 or the contact arm switch 131 triggered to start the drive of the motor 2 is turned off after the drive of the motor 2 is restarted, the drive of the motor 2 is performed until a predetermined time elapses. Will be continued. Therefore, as in the first embodiment, since the state of storing rotational energy in the flywheel 4 is maintained during this time, the user can immediately instruct the start operation of the starting operation for the second time. The subsequent implantation operation can be started. It goes without saying that the same effects as those of the first embodiment can be obtained by the same configuration and processing as the first embodiment.
  • the driving tool according to the present invention is not limited to the configuration of the illustrated nailing machine 1, 1A.
  • the changes exemplified below can be made.
  • any one or a plurality of these modifications may be adopted in combination with the nailing machine 1 or 1A shown in the embodiment or the invention described in each claim.
  • the driving tool may be a tool for driving a driving material other than the nail 101.
  • it may be embodied as a tacker that ejects scissors, pins, staples, etc., a staple gun.
  • the drive source of the flywheel 4 is not particularly limited to the motor 2.
  • an AC motor may be employed instead of the DC motor.
  • the trigger switch 141 and the contact arm switch 131 are both configured to function as a start switch of the motor 2, and when either one is turned on, the motor 2 is driven.
  • the trigger switch 141 may be configured as the start switch of the motor 2.
  • S2, S201 and S4, S400 (second control processing) are omitted in the implantation control processing (see FIGS. 8 and 16).
  • the controller 18 may stand by until the trigger switch 141 is turned on, and may execute only the first control process (see FIGS. 9 and 17).
  • the start switch of the motor 2 may be configured as an individual switch instead of the trigger 140.
  • the start switch is a switch other than the contact arm switch 131 which is started by the contact arm 13 operated first among a series of start instruction operations of the placement operation.
  • the activation switch may be provided on the main body housing 11 or the handle 14 so as to allow external operation by the user.
  • the timing at which the drive of the motor 2 is stopped is not limited to the timing exemplified in the above embodiment.
  • the trigger switch 141 and the contact arm switch 131 that is, the trigger for starting the driving of the motor 2.
  • the driving of the motor 2 is stopped when a predetermined time elapses from the time when the switch or the switch to which the instruction to start the driving of the motor 2 is input is turned off.
  • the drive of the motor 2 may be stopped when a predetermined time has elapsed since the solenoid 715 was actuated, or when the predetermined time has elapsed since the start of the drive of the motor 2, the motor 2 Drive may be stopped.
  • the controller 18 operates the solenoid 715 at S33 of FIG. 9, S303 of FIG. 17, S46 of FIG. 10, S408 of FIG. 18 (S36, S307, S44, S405) or of the motor 2. It may be determined whether the elapsed time measured from the time of starting the driving (S31, S301, S41, S401) exceeds a predetermined time.
  • the predetermined time in this case may be appropriately set to a time different from 5 seconds exemplified in the above embodiment.
  • the controller 18 sets the trigger switch 141 or the contact arm switch 131 to the off state. It is preferable to determine whether or not a first predetermined time has elapsed since the start and that a second predetermined time has elapsed since the actuation of the solenoid 715 or the start of driving of the motor 2.
  • the controller 18 is exemplified by a microcomputer including a CPU, a ROM, a RAM, etc.
  • the controller may be, for example, an application specific integrated circuit (ASIC) or an FPGA.
  • a programmable logic device such as a field programmable gate array (field programmable gate array) may be used.
  • the implantation control process of the above embodiment may be realized by the CPU executing a program stored in the ROM.
  • the program may be stored in advance in the ROM of the controller 18, or may be stored in the non-volatile memory if the controller 18 includes the non-volatile memory.
  • the program may be recorded on an external storage medium (eg, USB memory) from which data can be read.
  • the implantation control processing of the above-described embodiment and modification may be distributed and processed by a plurality of control circuits.
  • the shape of the driver 3 and the configuration of the driver drive mechanism 400 for driving the driver 3 can be changed as appropriate.
  • the inclined portion 302 may be entirely formed in a straight line in a side view, or at least a part may be formed in a gentle arc shape. That is, the entire upper surface (the contact surface with the pressing roller 83) of the inclined portion 302 may be a flat surface, or the entire may be a curved surface, or a part is a flat surface and a part is a curved surface. It may be Further, the degree of inclination of the inclined portion 302 may be changed halfway. The inclined portion 302 may be provided longer.
  • the roller contact portion 301 may include a plurality of inclined portions whose thickness gradually increases toward the rear. Further, instead of the driver drive mechanism 400, the driver 3 is frictionally engaged with the flywheel 4 so that rotational energy is directly transmitted from the flywheel 4 to the driver 3 without the ring member 5. A drive mechanism may be employed. The rotational energy of the flywheel 4 may be transmitted to the driver 3 via a transmission member (for example, an intermediate roller) other than the ring member 5.
  • a transmission member for example, an intermediate roller
  • the engagement aspect between the ring member 5 and the driver 3 and the flywheel 4 is not limited to the aspect exemplified in the above embodiment.
  • the number of ring members 5 and the number of engagement grooves 308 of driver 3 corresponding to ring members 5 and engagement grooves 47 of flywheel 4 may be one or three or more.
  • the shapes, positions, numbers, engagement positions, and the like of the outer circumferential engagement portion 51 and the inner circumferential engagement portion 53, and the corresponding engagement grooves 308 and engagement grooves 47 can be changed as appropriate.
  • the configurations of the ring urging portion 60 and the stopper 66 of the holding mechanism 6 can be changed as appropriate.
  • the operating mechanism 7 only needs to be configured to shift the driver 3 from the initial state disposed at the initial position to a state capable of transmitting the rotational energy of the flywheel 4, and the configuration may be appropriately changed. It is possible. For example, the operating mechanism 7 does not push the driver 3 forward to the transmission position, but biases the driver 3 disposed at the initial position toward the flywheel 4 so that the flywheel 4 and the driver 3 May be frictionally engaged directly or indirectly (for example, via the ring member 5).
  • Each of the nailing machines 1 and 1A is an example of the "driving tool” of the present invention.
  • the nail 101 is an example of the “burring material” of the present invention.
  • the injection port 123 is an example of the “injection port” in the present invention.
  • the motor 2 is an example of the “motor” of the present invention.
  • the flywheel 4 is an example of the “flywheel” of this invention.
  • the driver 3 is an example of the “driver” in the present invention.
  • the operating line L is an example of the "operating line” in the present invention.
  • the operating mechanism 7 is an example of the "operating mechanism” in the present invention.
  • the trigger switch 141 is an example of the "start switch” in the present invention.
  • the contact arm 13 and the contact arm switch 131 are examples of the “contact arm” and the “contact arm switch” in the present invention, respectively.
  • the trigger 140 and the trigger switch 141 are the “trigger” and the “trigger switch” in the present invention, respectively.
  • An example of The controller 18 (CPU) is an example of the “controller” in the present invention.
  • a driving tool configured to inject a driving material from an injection port and drive the driving material into a workpiece;
  • Motor A flywheel rotationally driven by the motor; It is disposed to face the outer periphery of the flywheel, and is moved forward linearly from an initial position along an operation line extending in the front-rear direction of the driving tool by rotational energy transmitted from the flywheel.
  • a driver configured to perform a driving operation for driving the driving material into the workpiece;
  • An operating mechanism configured to shift the driver from an initial state disposed at the initial position to a transmissible state capable of transmitting the rotational energy;
  • a contact arm disposed movably in the front-rear direction in the vicinity of the injection port and configured to move rearward in response to pressing by the user on the workpiece;
  • a contact arm switch configured to be turned on in response to backward movement of the contact arm;
  • a trigger configured to allow pulling operation by the user;
  • a trigger switch configured to be turned on in response to the pull operation of the trigger;
  • a controller configured to control the operation of the motor and the actuation mechanism; The controller starts driving the motor when the contact arm switch is turned on, and then operates the operating mechanism on condition that the trigger switch is turned on.
  • the driving tool Configured to cause a driver to perform the driving operation;
  • the driving tool wherein the controller is further configured to continue driving of the motor for at least a predetermined period even when the contact arm switch is turned off.
  • the trigger switch is always arranged at the initial position and maintained in the off state, and configured to be in the on state while arranged at the predetermined on position in response to the pull operation of the trigger. , The controller may continue driving of the motor for a predetermined period after the trigger switch is switched from the on state to the off state.
  • the contact arm switch is normally disposed at the initial position and maintained in the off state, and is in the on state while disposed in the predetermined on position in response to the backward movement of the contact arm.
  • the driving tool further includes a ring member configured to be capable of transmitting the rotational energy of the flywheel to the driver,
  • the operating mechanism is configured to shift the driver from the initial state to the transmittable state by moving the driver from the initial position to a transmission position forward of the initial position.
  • the ring member is disposed loosely with respect to the outer periphery when the driver is disposed at the initial position, The ring member frictionally engages with the driver and the flywheel when the driver is moved to the transmission position by the actuating mechanism, and the flywheel has a rotation axis different from the rotation axis of the flywheel.
  • the driving tool further includes a holding mechanism that holds the ring member movably between a separated position separated from the outer periphery of the flywheel and a contact position partially in contact with the outer periphery.
  • the holding mechanism is When the driver is disposed at the initial position, the ring member is held at the spaced position, and When the driver is moved to the transmission position by the driver moving mechanism, the ring member moved according to the movement of the driver may be held at the contact position.
  • the holding mechanism 6 is a configuration example corresponding to the "holding mechanism" in this aspect.
  • the driving tool is disposed to face the driver on the side opposite to the flywheel in the opposing direction of the flywheel and the driver, and approaches the flywheel in the process of the driver moving forward. It may further comprise a pressure roller configured to enable transmission of the rotational energy to the driver by pressing the driver in a direction.
  • the pressure roller 83 is an example of the “pressure roller” in this aspect.
  • the driver has an abutting surface that abuts against the pressing roller when the driver moves from the transmission position to a driving position where the driving material is driven into the workpiece. At least a part of the region of the driver corresponding to the contact surface in the front-rear direction may be formed such that the thickness in the opposite direction gradually increases toward the rear.
  • the upper surface of the roller contact part 301 is a structural example corresponding to the "contact surface" in this aspect.

Abstract

A nail gun 1 comprises a motor 2, a flywheel 4, a driver 3, an operation mechanism 7, a contact arm 13, a contact arm switch, a trigger 140, a trigger switch 141, and a controller 18. The driver 3 conducts driving work by means of rotational energy transferred from the flywheel 4. The operation mechanism 7 causes the driver 3 to transition from an initial state to a transfer-enabled state in which rotational energy can be transferred. The controller 18 starts operation of the motor 2 when the trigger switch 141, which serves as a start switch for the motor 2, is in an on-state, and, under the condition that the trigger switch 141 is put in the on-state after the contact arm switch has been put in an on-state, causes the operation mechanism 7 to operate, thereby causing the driver 3 to conduct driving work.

Description

打込み工具Driving tool
 本発明は、ドライバによって打込み材を被加工物に打ち込む打込み工具に関する。 The present invention relates to a driving tool for driving a driving material into a workpiece by a driver.
 使用者によるコンタクトアームの被加工物に対する押し付け操作およびトリガの引き操作に応じてコンタクトアームスイッチとトリガスイッチがオン状態とされた場合に、ドライバによる打込み動作の開始指示が入力されたものとして、打込み動作を開始する打込み工具が知られている。例えば、米国特許第7137541号明細書に開示されている打込み工具は、コンタクトアームスイッチと、トリガスイッチと、ドライバと、モータアセンブリと、コントローラを備えている。モータアセンブリは、モータによって駆動されるフライホイールと、ドライバをフライホイールに係合させて移動させるためのアクチュエータとを含む。コントローラは、コンタクトアームスイッチおよびトリガスイッチの何れか一方が起動されるとモータを起動し、両スイッチが起動されるとアクチュエータを起動する。 When the contact arm switch and the trigger switch are turned on in response to the pressing operation of the contact arm against the workpiece by the user and the pulling operation of the trigger, it is assumed that the start instruction of the driving operation by the driver has been input. A driving tool is known which starts the operation. For example, the driving tool disclosed in US Pat. No. 7,137,541 includes a contact arm switch, a trigger switch, a driver, a motor assembly, and a controller. The motor assembly includes a flywheel driven by the motor and an actuator for moving the driver into engagement with the flywheel. The controller activates the motor when either the contact arm switch or the trigger switch is activated, and activates the actuator when both switches are activated.
 上記の打込み工具には、選択スイッチを介して選択可能な複数のモードが設定されている。更に、アクチュエータの起動条件として、コンタクトアームスイッチおよびトリガスイッチの起動順が、各モードに対応して定められている。複数のモードのうち、シーケンシャルフィードモードが選択された場合には、コントローラは、コンタクトアームスイッチおよびトリガスイッチがこの順番で起動され、モータアセンブリ中の要素の運動エネルギが閾値を超えると、アクチュエータを作動させ、ドライバに打込み動作を開始させる。この場合、コンタクトアームスイッチの起動に応じてモータが起動された後、十分な運動エネルギが蓄積されるまでにはある程度の時間が必要となる。よって、コンタクトアームの押し付け操作とトリガの引き操作をほぼ同時に行う使用者にとっては、トリガスイッチ起動から実際の打込み動作の開始までのタイムラグが長く感じられる場合がある。 In the above-mentioned driving tool, a plurality of modes which can be selected via the selection switch are set. Further, as the activation condition of the actuator, the activation order of the contact arm switch and the trigger switch is determined corresponding to each mode. When the sequential feed mode is selected among the plurality of modes, the controller activates the contact arm switch and the trigger switch in this order, and activates the actuator when the kinetic energy of the elements in the motor assembly exceeds the threshold. And make the driver start the driving operation. In this case, after the motor is started in response to the start of the contact arm switch, it takes some time until sufficient kinetic energy is stored. Therefore, for the user who performs the pressing operation of the contact arm and the pulling operation of the trigger almost simultaneously, the time lag from the trigger switch activation to the start of the actual striking operation may be felt long.
 本発明は、かかる状況に鑑み、コンタクトアームスイッチとトリガスイッチがこの順番で起動されることを条件として打込み動作を開始する打込み工具において、打込み動作の開始指示に対する実際の打込み動作開始の応答性の向上に資する技術を提供することを目的とするものである。 In view of such circumstances, the present invention is responsive to the start of the actual driving operation in response to an instruction to start the driving operation in the driving tool which starts the driving operation on condition that the contact arm switch and the trigger switch are activated in this order. The purpose is to provide technology that contributes to improvement.
 本発明の一態様によれば、打込み材を射出口から射出し、打込み材を被加工物に打ち込むように構成された打込み工具が提供される。この打込み工具は、モータと、フライホイールと、ドライバと、作動機構と、モータの起動スイッチと、コンタクトアームと、コンタクトアームスイッチと、トリガと、トリガスイッチと、コントローラとを備えている。 According to one aspect of the present invention, there is provided a driving tool configured to inject a driving material from an injection port and drive the driving material into a workpiece. The driving tool includes a motor, a flywheel, a driver, an operating mechanism, a motor start switch, a contact arm, a contact arm switch, a trigger, a trigger switch, and a controller.
 フライホイールは、モータによって回転駆動されるように構成されている。ドライバは、フライホイールの外周に対向するように配置されている。また、ドライバは、フライホイールから伝達された回転エネルギによって、動作線に沿って初期位置から直線状に前方へ移動することで、打込み動作を行うように構成されている。動作線は、打込み工具の前後方向に延在する。打込み動作とは、打込み材を被加工物に打込む動作をいう。なお、本態様において、フライホイールの回転エネルギは、フライホイールから直接ドライバに伝達されてもよいし、フライホイールとドライバの間に配置された伝達部材を介してドライバに伝達されてもよい。 The flywheel is configured to be rotationally driven by a motor. The driver is disposed to face the outer periphery of the flywheel. Further, the driver is configured to perform the driving operation by moving forward linearly from the initial position along the operation line by the rotational energy transmitted from the flywheel. The operating line extends in the front-rear direction of the driving tool. The driving operation is an operation for driving a driving material into a workpiece. In the present embodiment, rotational energy of the flywheel may be transmitted from the flywheel directly to the driver, or may be transmitted to the driver via a transmission member disposed between the flywheel and the driver.
 作動機構は、ドライバを、初期位置に配置された初期状態から、回転エネルギの伝達が可能な伝達可能状態に移行させるように構成されている。コンタクトアームは、射出口の近傍に前後方向に移動可能に配置されている。また、コンタクトアームは、使用者による被加工物に対する押し付けに応じて後方へ移動するように構成されている。コンタクトアームスイッチは、コンタクトアームの後方への移動に応じてオン状態とされるように構成されている。トリガは、使用者による引き操作が可能に構成されている。トリガスイッチは、トリガの引き操作に応じてオン状態とされるように構成されている。 The actuation mechanism is configured to shift the driver from an initial state, which is located at an initial position, to a transmissible state in which rotational energy can be transmitted. The contact arm is disposed movably in the front-rear direction near the injection port. In addition, the contact arm is configured to move rearward in response to the pressing on the workpiece by the user. The contact arm switch is configured to be turned on in response to the rearward movement of the contact arm. The trigger is configured to allow a pull operation by the user. The trigger switch is configured to be turned on in response to the pull operation of the trigger.
 コントローラは、モータおよび作動機構の動作を制御するように構成されている。コントローラは、起動スイッチがオン状態とされた場合にモータの駆動を開始するように構成されている。コントローラは、更に、コンタクトアームスイッチがオン状態とされた後でトリガスイッチがオン状態とされたことを条件として、作動機構を作動させることで、ドライバに打込み動作を行わせるように構成されている。 The controller is configured to control the operation of the motor and the actuation mechanism. The controller is configured to start driving the motor when the start switch is turned on. The controller is further configured to cause the driver to perform the striking operation by operating the actuating mechanism, provided that the trigger switch is turned on after the contact arm switch is turned on. .
 本態様の打込み工具では、コンタクトアームスイッチがオン状態とされた後でトリガスイッチがオン状態とされたことが、ドライバの打込み動作開始の条件とされている。つまり、使用者にとって、コンタクトアームの被加工物に対する押し付け操作とトリガの引き操作を順に行うことが、打込み動作の開始指示の入力のための操作(以下、単に、打込み動作の開始指示操作という)である。使用者は、打込み動作の開始指示操作の前に、起動スイッチを予めオン状態としてモータの駆動を開始させることができる。打込み動作の開始指示操作は、使用者が実際に打込み材を打込む位置を特定した上で行うため、通常、コンタクトアームの押し付け操作までにはある程度の時間がかかる。よって、本態様に係る打込み工具は、この間にフライホイールに十分な回転エネルギを蓄積させておくことができる。その結果、コンタクトアームの被加工物に対する押し付け操作とトリガの引き操作とがほぼ同時に行われた場合であっても、打込み動作の開始指示の完了後、速やかにドライバの打込み動作を開始することができる。つまり、打込み動作の開始指示に対する実際の打込み動作開始の応答性を向上させることができる。 In the driving tool of this aspect, the trigger switch is turned on after the contact arm switch is turned on, which is a condition for starting the driver's driving operation. That is, for the user, the operation for pressing the contact arm against the workpiece and pulling the trigger in order is an operation for inputting the start instruction of the driving operation (hereinafter simply referred to as the starting operation for starting the driving operation) It is. The user can turn on the start switch in advance to start driving of the motor before the start instruction operation for starting the driving operation. Since the start instruction operation of the driving operation is performed after the user actually specifies the position where the driving material is to be driven, it usually takes some time until the pressing operation of the contact arm. Therefore, the driving tool according to this aspect can store sufficient rotational energy in the flywheel during this time. As a result, even if the pressing operation of the contact arm against the workpiece and the pulling operation of the trigger are performed almost simultaneously, the driver's driving operation can be started promptly after the completion of the start instruction of the driving operation. it can. That is, it is possible to improve the responsiveness of the actual launch operation start to the launch operation start instruction.
 本発明の一態様において、トリガスイッチは、モータの起動スイッチを兼用するように構成されていてもよい。本態様によれば、使用者は、モータの駆動開始の指示の入力のための操作と、打込み動作の開始指示の入力のための操作とを、同じ部材であるトリガの引き操作によって容易に実現することができる。また、打込み工具の部品点数の増加を回避することができる。 In one aspect of the present invention, the trigger switch may be configured to double as a start switch of the motor. According to this aspect, the user can easily realize the operation for inputting the motor drive start instruction and the operation for inputting the drive operation start instruction by the pull operation of the trigger which is the same member. can do. In addition, an increase in the number of parts of the driving tool can be avoided.
 本発明の一態様において、コントローラは、モータの非駆動時にトリガスイッチがオン状態とされた場合には、モータの起動スイッチがオン状態とされたと判断してモータの駆動を開始するように構成されていてもよい。コントローラは、更に、モータの駆動中であって、且つ、コンタクトアームスイッチがオン状態とされた後でトリガスイッチがオン状態とされた場合には、作動機構を作動させるように構成されていてもよい。本態様によれば、1つのトリガスイッチを、モータの起動スイッチと、打込み動作の開始指示の入力用のスイッチとしてコントローラが適切に使い分けることができる。 In one aspect of the present invention, the controller is configured to determine that the start switch of the motor is turned on and start driving the motor when the trigger switch is turned on when the motor is not driven. It may be The controller is further configured to operate the actuating mechanism if the motor is in operation and the trigger switch is turned on after the contact arm switch is turned on. Good. According to this aspect, the controller can properly use one trigger switch as the motor start switch and the switch for inputting the start instruction of the driving operation.
 本発明の一態様において、コントローラは、起動スイッチがオフ状態とされた場合でも、少なくとも所定期間に亘ってモータの駆動を継続するように構成されていてもよい。本態様によれば、起動スイッチがオフ状態とされた場合でも、少なくとも所定期間に亘って、フライホイールに回転エネルギを蓄積する状態が維持される。よって、1回の打込み動作の後、使用者は、モータの駆動の継続中に改めて打込み動作の開始指示操作(つまり、コンタクトアームの被加工物に対する押し付け操作に続くトリガの引き操作)を行うことで、速やかに次の打込み動作を開始させることができる。つまり、短期間で複数回の打込み動作を連続して行うことができる。なお、ここでいう「所定期間」は、典型的には、何からのイベント(例えば、モータの駆動開始、モータの駆動開始後の起動スイッチまたはコンタクトアームスイッチのオン・オフ状態の切替え)から所定時間(例えば、3.5秒、5秒、7秒)が経過するまでの期間とされればよい。 In one aspect of the present invention, the controller may be configured to continue driving of the motor for at least a predetermined period, even when the start switch is turned off. According to this aspect, even when the start switch is turned off, the state of storing rotational energy in the flywheel is maintained for at least a predetermined period. Therefore, after one driving operation, the user performs another start operation for starting the driving operation (that is, pull operation following the pressing operation of the contact arm against the workpiece) while driving of the motor continues. Then, it is possible to quickly start the next driving operation. That is, a plurality of driving operations can be performed continuously in a short time. Here, the “predetermined period” is typically determined from any event (for example, start of driving of motor, switching of start switch or contact arm switch after start of driving of motor). It may be a period until time (for example, 3.5 seconds, 5 seconds, 7 seconds) elapses.
 本発明の一態様によれば、打込み材を射出口から射出し、打込み材を被加工物に打ち込むように構成された打込み工具が提供される。この打込み工具は、モータと、フライホイールと、ドライバと、作動機構と、コンタクトアームと、コンタクトアームスイッチと、トリガと、トリガスイッチと、コントローラとを備えている。 According to one aspect of the present invention, there is provided a driving tool configured to inject a driving material from an injection port and drive the driving material into a workpiece. The driving tool comprises a motor, a flywheel, a driver, an operating mechanism, a contact arm, a contact arm switch, a trigger, a trigger switch, and a controller.
 フライホイールは、モータによって回転駆動されるように構成されている。ドライバは、フライホイールの外周に対向するように配置されている。また、ドライバは、フライホイールから伝達された回転エネルギによって、動作線に沿って初期位置から直線状に前方へ移動することで、打込み動作を行うように構成されている。動作線は、打込み工具の前後方向に延在する。打込み動作とは、打込み材を被加工物に打込む動作をいう。なお、本態様において、フライホイールの回転エネルギは、フライホイールから直接ドライバに伝達されてもよいし、フライホイールとドライバの間に配置された伝達部材を介してドライバに伝達されてもよい。 The flywheel is configured to be rotationally driven by a motor. The driver is disposed to face the outer periphery of the flywheel. Further, the driver is configured to perform the driving operation by moving forward linearly from the initial position along the operation line by the rotational energy transmitted from the flywheel. The operating line extends in the front-rear direction of the driving tool. The driving operation is an operation for driving a driving material into a workpiece. In the present embodiment, rotational energy of the flywheel may be transmitted from the flywheel directly to the driver, or may be transmitted to the driver via a transmission member disposed between the flywheel and the driver.
 作動機構は、ドライバを、初期位置に配置された初期状態から、回転エネルギの伝達が可能な伝達可能状態に移行させるように構成されている。コンタクトアームは、射出口の近傍に前後方向に移動可能に配置されている。また、コンタクトアームは、使用者による被加工物に対する押し付けに応じて後方へ移動するように構成されている。コンタクトアームスイッチは、コンタクトアームの後方への移動に応じてオン状態とされるように構成されている。トリガは、使用者による引き操作が可能に構成されている。トリガスイッチは、トリガの引き操作に応じてオン状態とされるように構成されている。 The actuation mechanism is configured to shift the driver from an initial state, which is located at an initial position, to a transmissible state in which rotational energy can be transmitted. The contact arm is disposed movably in the front-rear direction near the injection port. In addition, the contact arm is configured to move rearward in response to the pressing on the workpiece by the user. The contact arm switch is configured to be turned on in response to the rearward movement of the contact arm. The trigger is configured to allow a pull operation by the user. The trigger switch is configured to be turned on in response to the pull operation of the trigger.
 コントローラは、モータおよび作動機構の動作を制御するように構成されている。コントローラは、トリガスイッチがオン状態とされた後でオフ状態とされた場合にモータの駆動を開始するように構成されている。コントローラは、更に、コンタクトアームスイッチがオン状態とされた後でトリガスイッチがオン状態とされたことを条件として、作動機構を作動させることで、ドライバに打込み動作を行わせるように構成されている。 The controller is configured to control the operation of the motor and the actuation mechanism. The controller is configured to start driving the motor when the trigger switch is turned on and then turned off. The controller is further configured to cause the driver to perform the striking operation by operating the actuating mechanism, provided that the trigger switch is turned on after the contact arm switch is turned on. .
 本態様の打込み工具では、コンタクトアームスイッチがオン状態とされた後でトリガスイッチがオン状態とされたことが、ドライバの打込み動作開始の条件とされている。つまり、使用者にとって、コンタクトアームの被加工物に対する押し付け操作とトリガの引き操作を順に行うことが、打込み動作の開始指示操作である。使用者は、打込み動作の開始指示操作の前に、トリガを引き操作した後に引き操作を解除することで、モータの駆動を開始させることができる。打込み動作の開始指示操作は、使用者が実際に打込み材を打込む位置を特定した上で行うため、通常、コンタクトアームの押し付け操作までにはある程度の時間がかかる。よって、本態様に係る打込み工具は、この間にフライホイールに十分な回転エネルギを蓄積させておくことができる。その結果、コンタクトアームの被加工物に対する押し付け操作とトリガの引き操作とがほぼ同時に行われた場合であっても、打込み動作の開始指示の完了後、速やかにドライバの打込み動作を開始することができる。つまり、打込み動作の開始指示に対する実際の打込み動作開始の応答性を向上させることができる。 In the driving tool of this aspect, the trigger switch is turned on after the contact arm switch is turned on, which is a condition for starting the driver's driving operation. That is, it is the start instruction operation of the driving operation for the user to sequentially perform the pressing operation of the contact arm against the workpiece and the pulling operation of the trigger. The user can start driving the motor by pulling the trigger and releasing the pulling operation before the start instruction operation of the driving operation. Since the start instruction operation of the driving operation is performed after the user actually specifies the position where the driving material is to be driven, it usually takes some time until the pressing operation of the contact arm. Therefore, the driving tool according to this aspect can store sufficient rotational energy in the flywheel during this time. As a result, even if the pressing operation of the contact arm against the workpiece and the pulling operation of the trigger are performed almost simultaneously, the driver's driving operation can be started promptly after the completion of the start instruction of the driving operation. it can. That is, it is possible to improve the responsiveness of the actual launch operation start to the launch operation start instruction.
 また、従来の打込み工具には、コンタクトアームの被加工物に対する押し付け操作とトリガの引き操作の順番にかかわらず、両方の操作が行われた場合に(つまり、コンタクトアームスイッチとトリガスイッチの両方がオン状態とされた場合に)ドライバの打込み動作を開始するものが存在する。このため、コンタクトアームの押し付け操作前に、トリガが引き操作された状態でモータが駆動されていると、使用者は、その後、コンタクトアームの押し付け操作をするだけで打込み動作が開始されると誤認する可能性がある。これに対し、本態様の打込み工具によれば、使用者が一旦トリガの引き操作を解除しない限り、モータの駆動が開始されない。このため、使用者は、モータが駆動された状態でコンタクトアームを被加工物に押し付けた後でトリガを引き操作する必要があることを容易に理解することができる。このように、本態様の打込み工具は、優れた操作性を発揮することができる。 Also, in the conventional driving tool, regardless of the order of pressing operation of the contact arm against the workpiece and pulling operation of the trigger, when both operations are performed (that is, both the contact arm switch and the trigger switch are There is one that starts the driver's drive operation when it is turned on. Therefore, if the motor is driven while the trigger is pulled before the pressing operation of the contact arm, then the user may misunderstand that the driving operation is started only by pressing the contact arm. there's a possibility that. On the other hand, according to the driving tool of this aspect, the driving of the motor is not started unless the user once cancels the pulling operation of the trigger. Therefore, the user can easily understand that it is necessary to pull the trigger after pressing the contact arm against the workpiece while the motor is driven. Thus, the driving tool according to this aspect can exhibit excellent operability.
 本発明の一態様によれば、コントローラは、モータの駆動中にトリガスイッチがオフ状態とされた場合でも、少なくとも所定期間に亘ってモータの駆動を継続するように構成されていてもよい。本態様では、トリガスイッチがオン状態とされた後でオフ状態とされた場合にモータの駆動が開始されるため、モータの駆動中にトリガスイッチをオフ状態にできるのは、打込み動作の開始指示操作の後、つまり、打込み動作が行われた後ということになる。本態様によれば、打込み動作の後でトリガスイッチがオフ状態とされた場合でも、少なくとも所定期間に亘って、フライホイールに回転エネルギを蓄積する状態が維持される。よって、1回の打込み動作の後、使用者は、モータの駆動の継続中に改めて打込み動作の開始指示操作を行うことで、速やかに次の打込み動作を開始させることができる。つまり、短期間で複数回の打込み動作を連続して行うことができる。なお、ここでいう「所定期間」は、典型的には、何からのイベント(例えば、モータの駆動開始、モータの駆動開始後の起動スイッチまたはコンタクトアームスイッチのオン・オフ状態の切替え)から所定時間(例えば、3.5秒、5秒、7秒)が経過するまでの期間とされればよい。 According to one aspect of the present invention, the controller may be configured to continue driving the motor for at least a predetermined period even when the trigger switch is turned off during driving of the motor. In this aspect, since driving of the motor is started when the trigger switch is turned on and then turned off, the trigger switch can be turned off while driving the motor. After the operation, that is, after the implantation operation is performed. According to this aspect, even when the trigger switch is turned off after the driving operation, the state of storing rotational energy in the flywheel is maintained for at least a predetermined period. Therefore, after one driving operation, the user can start the next driving operation promptly by performing start operation for starting the driving operation again while the driving of the motor is continued. That is, a plurality of driving operations can be performed continuously in a short time. Here, the “predetermined period” is typically determined from any event (for example, start of driving of motor, switching of start switch or contact arm switch after start of driving of motor). It may be a period until time (for example, 3.5 seconds, 5 seconds, 7 seconds) elapses.
 本発明の一態様において、コントローラは、トリガスイッチがオフ状態にあって、且つ、モータの非駆動中にコンタクトアームスイッチがオン状態とされた場合にも、モータの駆動を開始するように構成されていてもよい。コントローラは、更に、コンタクトアームスイッチがオン状態とされた後でトリガスイッチがオン状態とされたことを条件として、作動機構を作動させることで、ドライバに打込み動作を行わせるように構成されていてもよい。つまり、本態様では、モータの起動指示が、起動スイッチまたはトリガスイッチのみならず、コンタクトアームスイッチからも入力可能である。本態様によれば、モータの起動指示および打込み動作の開始指示の多様化により、打込み工具の利便性を高めることができる。 In one aspect of the present invention, the controller is configured to start driving the motor also when the trigger switch is in the off state and the contact arm switch is turned on while the motor is not in operation. It may be The controller is further configured to cause the driver to perform a driving operation by operating the actuating mechanism on condition that the trigger switch is turned on after the contact arm switch is turned on. It is also good. That is, in this aspect, the motor start instruction can be input not only from the start switch or the trigger switch but also from the contact arm switch. According to this aspect, the convenience of the driving tool can be improved by diversification of the motor start instruction and the start instruction of the driving operation.
 本発明の一態様において、コントローラは、モータの駆動開始の契機とされたコンタクトアームスイッチがオフ状態とされた場合でも、少なくとも所定期間に亘ってモータの駆動を継続するように構成されていてもよい。本態様によれば、モータの駆動開始の契機とされたコンタクトアームスイッチがオフ状態とされた場合でも、少なくとも所定期間に亘って、フライホイールに回転エネルギを蓄積する状態が維持される。よって、1回の打込み動作の後、使用者は、モータの駆動の継続中に改めて打込み動作の開始指示操作(つまり、コンタクトアームの被加工物に対する押し付け操作に続くトリガの引き操作)を行うことで、速やかに次の打込み動作を開始させることができる。つまり、短期間で複数回の打込み動作を連続して行うことができる。なお、ここでいう「所定期間」は、典型的には、何からのイベント(例えば、モータの駆動開始、モータの駆動開始後の起動スイッチまたはコンタクトアームスイッチのオン・オフ状態の切替え)から所定時間(例えば、3.5秒、5秒、7秒)が経過するまでの期間とされればよい。 In one aspect of the present invention, the controller is configured to continue driving the motor for at least a predetermined period even when the contact arm switch triggered to start driving the motor is turned off. Good. According to this aspect, even when the contact arm switch triggered to start the driving of the motor is turned off, the state of storing rotational energy in the flywheel is maintained for at least a predetermined period. Therefore, after one driving operation, the user performs another start operation for starting the driving operation (that is, pull operation following the pressing operation of the contact arm against the workpiece) while driving of the motor continues. Then, it is possible to quickly start the next driving operation. That is, a plurality of driving operations can be performed continuously in a short time. Here, the “predetermined period” is typically determined from any event (for example, start of driving of motor, switching of start switch or contact arm switch after start of driving of motor). It may be a period until time (for example, 3.5 seconds, 5 seconds, 7 seconds) elapses.
 本発明の一態様において、コントローラは、モータの駆動開始から所定期間に亘って、モータの駆動を継続するように構成されていてもよい。本態様によれば、モータの駆動を継続する期間を簡便に計測することができる。 In one aspect of the present invention, the controller may be configured to continue driving of the motor for a predetermined period after the start of driving of the motor. According to this aspect, it is possible to simply measure the period in which the driving of the motor is continued.
 本発明の一態様において、コントローラは、打込み動作の完了から所定期間に亘って、モータの駆動を継続するように構成されていてもよい。なお、ここでいう「打込み動作の完了」とは、ドライバが実際に打込み材を被加工物に打込んだ時点であってもよいし、打込み動作に対応するイベントに基づいて打込み動作の完了に相当するとみなせる時点(例えば、トリガスイッチがオン状態またはオフ状態とされてから一定の時間が経過した時点、作動機構の作動から一定の時間が経過した時点等)であってもよい。本態様によれば、打込み動作の完了後にモータの駆動を継続する期間を確実に設けることができる。 In one aspect of the present invention, the controller may be configured to continue driving of the motor for a predetermined period after completion of the driving operation. Here, “completion of the driving operation” may be when the driver actually drives the driving material into the workpiece, or the driving operation is completed based on an event corresponding to the driving operation. It may be a time that can be regarded as corresponding (for example, when a certain time has passed since the trigger switch was turned on or off, a certain time has passed since the actuation of the actuating mechanism, etc.). According to this aspect, it is possible to reliably provide a period for continuing the driving of the motor after the completion of the driving operation.
 本発明の一態様によれば、コントローラは、コンタクトアームスイッチがオン状態とされた後でトリガスイッチがオン状態とされた場合、モータの駆動を一時的に停止し、打込み動作の完了後にモータの駆動を再開するように構成されていてもよい。コンタクトアームスイッチがオン状態とされた後でトリガスイッチがオン状態とされた場合、つまり、打込み動作の開始指示操作が行われた場合、モータの駆動が停止されても、フライホイールは慣性で回転を継続することができる。本態様によれば、打込み動作が行われるときにモータの回転速度が急激に低下することでモータに負荷がかかるのを抑制し、モータの保護を図ることができる。 According to one aspect of the present invention, when the trigger switch is turned on after the contact arm switch is turned on, the controller temporarily stops the driving of the motor, and after completion of the driving operation, the controller It may be configured to resume driving. If the trigger switch is turned on after the contact arm switch is turned on, that is, if an instruction to start the striking operation is performed, the flywheel will rotate by inertia even if the motor is stopped. Can continue. According to this aspect, when the driving operation is performed, the rotational speed of the motor is rapidly reduced, so that the load on the motor can be suppressed, and protection of the motor can be achieved.
ドライバが初期位置に配置されているときの第1実施形態の釘打ち機の全体構成を模式的に示す説明図である。It is explanatory drawing which shows typically the whole structure of the nailing machine of 1st Embodiment when a driver is arrange | positioned in the initial position. ドライバが打込み位置に配置されているときの釘打ち機の全体構成を模式的に示す説明図である。It is explanatory drawing which shows typically the whole structure of a nailing machine when the driver is arrange | positioned in a drive-in position. 図1の部分拡大図である。It is the elements on larger scale of FIG. ドライバの上方からの斜視図である。It is a perspective view from the upper direction of a driver. ドライバが初期位置に配置されているときのフライホイール、リング部材、保持機構、および押圧ローラの斜視図である。It is a perspective view of a flywheel, a ring member, a holding mechanism, and a press roller when a driver is arrange | positioned in the initial position. 図3のVI-VI線における断面図である。FIG. 6 is a cross-sectional view taken along the line VI-VI of FIG. 第1実施形態の釘打ち機の電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of the nailing machine of 1st Embodiment. コントローラによって実行される第1実施形態の打込み制御処理のフローチャートである。It is a flowchart of the implantation control process of 1st Embodiment performed by a controller. 打ち込み制御処理でサブルーチンとして実行される第1制御処理のフローチャートである。It is a flowchart of the 1st control processing performed as a subroutine by driving control processing. 打ち込み制御処理でサブルーチンとして実行される第2制御処理のフローチャートである。It is a flowchart of the 2nd control processing performed as a subroutine by driving control processing. 伝達位置に配置されているドライバとドライバ駆動機構を示す説明図である。It is an explanatory view showing a driver and a driver drive mechanism which are arranged at a transmission position. 図11のXII-XII線における断面図である。FIG. 12 is a cross-sectional view taken along line XII-XII in FIG. 打撃位置に配置されているドライバとドライバ駆動機構を示す説明図である。It is explanatory drawing which shows the driver and driver drive mechanism which are arrange | positioned in a striking position. ドライバが初期位置に配置されているときの第2実施形態の釘打ち機の全体構成を模式的に示す説明図である。It is explanatory drawing which shows typically the whole structure of the nailing machine of 2nd Embodiment when a driver is arrange | positioned in the initial position. 第2実施形態の釘打ち機の電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of the nailing machine of 2nd Embodiment. 第2実施形態における打込み制御処理のフローチャートである。It is a flowchart of the implantation control process in 2nd Embodiment. 第2実施形態における第1制御処理のフローチャートである。It is a flowchart of the 1st control processing in a 2nd embodiment. 第2実施形態における第2制御処理のフローチャートである。It is a flowchart of the 2nd control processing in a 2nd embodiment.
 以下、図面を参照して、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[第1実施形態]
 以下、図1~図13を参照して、第1実施形態に係る釘打ち機1について説明する。釘打ち機1は、打込み工具の一例である。釘打ち機1は、打込み材の一例としての釘101を直線状に打ち出すことで、被加工物(例えば、木材)100)に釘101を打込むことが可能な工具である。
First Embodiment
The nailing machine 1 according to the first embodiment will be described below with reference to FIGS. 1 to 13. The nailing machine 1 is an example of a driving tool. The nailing machine 1 is a tool capable of driving a nail 101 into a workpiece (e.g., wood) 100 by straightly punching out a nail 101 as an example of a driving material.
 まず、図1を参照して、釘打ち機1の概略構成について説明する。図1に示すように、釘打ち機1の外郭は、主に、工具本体10と、ハンドル14と、マガジン17とを主体として形成されている。 First, a schematic configuration of the nailing machine 1 will be described with reference to FIG. As shown in FIG. 1, the shell of the nailing machine 1 is mainly formed mainly of a tool body 10, a handle 14 and a magazine 17.
 工具本体10は、本体ハウジング11とノーズ部12とを含む。本体ハウジング11には、モータ2、ドライバ3、ドライバ駆動機構400、戻し機構(図示せず)等が収容されている。ドライバ3は、所定の動作線Lに沿って移動可能に配置されている。ドライバ駆動機構400は、動作線Lに沿ってドライバ3を直線状に移動させることで、釘101を釘打ち機1から打ち出させる機構である。戻し機構は、釘101を打ち出した後のドライバ3を元の位置に復帰させるように構成されている。ノーズ部12は、動作線Lの延在方向(以下、単に動作線L方向という)における本体ハウジング11の一端に連結されている。ノーズ部12は、本体ハウジング11とは反対側の端部に、釘101が打ち出される射出口123を有する。また、ノーズ部12には、動作線L方向に進退可能なコンタクトアーム13が配置されている。本体ハウジング11内には、コンタクトアームスイッチ131(図7参照)が配置されている。コンタクトアームスイッチ131は、常時にはオフ状態で維持され、コンタクトアーム13の押込みに応じてオン状態とされるように構成されている。 The tool body 10 includes a body housing 11 and a nose portion 12. In the main body housing 11, the motor 2, the driver 3, the driver drive mechanism 400, the return mechanism (not shown), and the like are accommodated. The driver 3 is disposed movably along a predetermined operation line L. The driver drive mechanism 400 is a mechanism for causing the nail 101 to be ejected from the nailing machine 1 by moving the driver 3 linearly along the operation line L. The return mechanism is configured to return the driver 3 after striking the nail 101 to its original position. The nose portion 12 is connected to one end of the main body housing 11 in the extending direction of the operation line L (hereinafter simply referred to as the operation line L direction). The nose portion 12 has, at an end opposite to the main body housing 11, an ejection opening 123 through which the nail 101 is punched out. Further, in the nose portion 12, a contact arm 13 capable of advancing and retracting in the direction of the operation line L is disposed. In the body housing 11, a contact arm switch 131 (see FIG. 7) is disposed. The contact arm switch 131 is always maintained in the off state, and is configured to be turned on in response to the pressing of the contact arm 13.
 ハンドル14は、動作線L方向において本体ハウジング11の中央部から、動作線Lと交差する方向に突出している。ハンドル14は、使用者によって把持される部位である。ハンドル14の基端部(本体ハウジング11に接続された端部)には、作業者による引き操作が可能に構成されたトリガ140が設けられている。ハンドル14内には、トリガスイッチ141が配置されている。トリガスイッチ141は、常時にはオフ状態で維持され、トリガ140の引き操作に応じてオン状態とされるように構成されている。また、ハンドル14の先端部(基端部とは反対側の端部)には、端子等を備えたバッテリ装着部15が設けられている。バッテリ装着部15には、充電式のバッテリ19が取り外し可能に装着されている。ハンドル14先端部の内部には、釘打ち機1の動作を制御するためのコントローラ18等が配置されている。 The handle 14 protrudes from the central portion of the main body housing 11 in the direction of the operation line L in a direction intersecting the operation line L. The handle 14 is a portion gripped by the user. At the proximal end of the handle 14 (the end connected to the main housing 11), a trigger 140 configured to allow a pull operation by the operator is provided. A trigger switch 141 is disposed in the handle 14. The trigger switch 141 is always maintained in the off state, and is configured to be turned on in response to the pulling operation of the trigger 140. Further, a battery mounting portion 15 provided with a terminal or the like is provided at the distal end portion (the end portion on the opposite side to the proximal end portion) of the handle 14. A rechargeable battery 19 is removably mounted on the battery mounting portion 15. A controller 18 or the like for controlling the operation of the nailing machine 1 is disposed inside the handle 14 tip.
 マガジン17は、複数の釘101を充填可能に構成されており、ノーズ部12に装着されている。マガジン17に充填された釘101は、釘送り機構(図示せず)によって、ドライバの移動経路上に一本ずつ供給される。なお、マガジン17の構成は周知であるため、その説明は省略する。 The magazine 17 is configured to be capable of filling a plurality of nails 101 and is mounted to the nose portion 12. The nails 101 filled in the magazine 17 are supplied one by one on the movement path of the driver by a nail feeding mechanism (not shown). In addition, since the configuration of the magazine 17 is well known, the description thereof is omitted.
 本実施形態では、釘打ち機1は、使用者がコンタクトアーム13を被加工物100に押し付けることでコンタクトアームスイッチ131をオン状態とし、その後、トリガ140を引き操作することでトリガスイッチ141をオン状態とした場合にのみ、ドライバ3によって釘101を被加工物100に打込む動作(以下、打込み動作という)を開始するように構成されている。つまり、コンタクトアーム13の被加工物100に対する押し付け操作のみ、または、トリガ140の引き操作のみでは、打込み動作は行われない。また、トリガ140の引き操作の後でコンタクトアーム13の押し付け操作が行われても、打込み動作は行われない。以下では、コンタクトアーム13の被加工物100に対する押し付け操作と、トリガ140の引き操作とを順に行うこと(2つの操作をほぼ同時に行う場合を含む)を、打込み動作の開始指示操作ともいう。 In the present embodiment, the nailing machine 1 turns on the contact arm switch 131 by the user pressing the contact arm 13 against the workpiece 100, and then turns on the trigger switch 141 by pulling the trigger 140. Only in the state, the driver 3 starts an operation of driving the nail 101 into the workpiece 100 (hereinafter referred to as a driving operation). That is, the driving operation is not performed only by the pressing operation of the contact arm 13 against the workpiece 100 or only the pulling operation of the trigger 140. In addition, even if the pressing operation of the contact arm 13 is performed after the pulling operation of the trigger 140, the driving operation is not performed. In the following, the pressing operation of the contact arm 13 against the workpiece 100 and the pulling operation of the trigger 140 in order (including the case where two operations are performed almost simultaneously) are also referred to as a start instruction operation of the driving operation.
 以下、釘打ち機1の詳細構成について説明する。なお、以下の説明では、便宜上、動作線L方向(図1の左右方向)を釘打ち機1の前後方向と規定し、射出口123が設けられている側(図1の右側)を釘打ち機1の前側、反対側(図1の左側)を後側と規定する。また、動作線L方向に直交し、ハンドル14の延在方向に対応する方向(図1の上下方向)を釘打ち機1の上下方向と規定し、ハンドル14の基端部側(図1の上側)を上側、ハンドル14の先端部側(図1の下側)を下側と規定する。また、前後方向および上下方向に直交する方向を左右方向と規定する。 Hereinafter, the detailed configuration of the nailing machine 1 will be described. In the following description, for convenience, the operation line L direction (left and right direction in FIG. 1) is defined as the front and back direction of the nailing machine 1, and the side provided with the ejection port 123 (right side in FIG. 1) is nailed. The front side of the machine 1 and the opposite side (left side in FIG. 1) are defined as the rear side. Further, a direction (vertical direction in FIG. 1) perpendicular to the direction of the operation line L and corresponding to the extending direction of the handle 14 is defined as the vertical direction of the nailing machine 1, and the proximal end side of the handle 14 (FIG. 1 The upper side is defined as the upper side, and the tip end side (the lower side in FIG. 1) of the handle 14 is defined as the lower side. Further, a direction perpendicular to the front-rear direction and the vertical direction is defined as the left-right direction.
 まず、図1および図2を参照して、打込み動作の開始指示操作に用いられるコンタクトアーム13とトリガ140について説明する。 First, with reference to FIG. 1 and FIG. 2, the contact arm 13 and the trigger 140 used for the start instruction operation of the implantation operation will be described.
 図1に示すように、コンタクトアーム13は、ノーズ部12の上側に配置されている。より詳細には、コンタクトアーム13は、全体としては前後方向に延在する長尺状部材として形成されている。コンタクトアーム13は、前端部132が射出口123の近傍に位置するように、ノーズ部12の上面に沿って前後方向に摺動可能に配置されている。また、詳細な図示は省略するが、コンタクトアーム13の後端部には、後方に延在するスイッチ作動ロッドが連結されている。コンタクトアームスイッチ131(図7参照)は、スイッチ作動ロッドの後側に配置されている。 As shown in FIG. 1, the contact arm 13 is disposed on the upper side of the nose portion 12. More specifically, the contact arm 13 is formed as an elongated member extending in the front-rear direction as a whole. The contact arm 13 is slidably disposed in the front-rear direction along the upper surface of the nose portion 12 so that the front end portion 132 is positioned near the injection port 123. Although not shown in detail, a switch operation rod extending rearward is connected to the rear end of the contact arm 13. The contact arm switch 131 (see FIG. 7) is disposed on the rear side of the switch operating rod.
 コンタクトアーム13は、図示しない弾性部材(例えば、圧縮コイルバネ)によって前方へ付勢されており、前方からの外力が付与されていない状態では、図1に示すように、前端部132が射出口123よりも前方に突出する初期位置に保持される。このときスイッチ作動ロッドはコンタクトアームスイッチ131に作用せず、コンタクトアームスイッチ131はオフ状態で維持される。一方、図2に示すように、使用者によって前端部132が被加工物100に押し付けられると、コンタクトアーム13は弾性部材の付勢力に抗して後方へ移動する。押し付けに応じてコンタクトアーム13が初期位置よりも後方の所定位置(以下、オン位置という)まで移動すると、コンタクトアームスイッチ131がスイッチ作動ロッドの後端部に押圧され、オン状態に切り替えられる。コンタクトアームスイッチ131は、配線(図示せず)を介してコントローラ18に接続されており、オン状態またはオフ状態に対応する信号をコントローラ18に出力する。 The contact arm 13 is urged forward by an elastic member (for example, a compression coil spring) (not shown), and the front end 132 is an ejection opening 123 as shown in FIG. 1 when no external force is applied from the front. It is held in the initial position that projects more forward. At this time, the switch operating rod does not act on the contact arm switch 131, and the contact arm switch 131 is maintained in the OFF state. On the other hand, as shown in FIG. 2, when the front end 132 is pressed against the workpiece 100 by the user, the contact arm 13 moves rearward against the biasing force of the elastic member. When the contact arm 13 moves to a predetermined position (hereinafter referred to as an on position) behind the initial position in response to the pressing, the contact arm switch 131 is pressed by the rear end of the switch operating rod and switched to the on state. The contact arm switch 131 is connected to the controller 18 via a wire (not shown), and outputs a signal corresponding to the on state or the off state to the controller 18.
 なお、本実施形態では、コンタクトアーム13が不測の外力によって後方へ押圧されることを防止するために、コンタクトアーム13の後側部分(ノーズ部12の上面よりも上方へ突出している部分)は、コンタクトアームカバー9によって覆われている。 In the present embodiment, in order to prevent the contact arm 13 from being pushed backward by an unexpected external force, the rear side portion of the contact arm 13 (a portion protruding upward from the upper surface of the nose portion 12) is , Is covered by a contact arm cover 9.
 図1に示すように、トリガ140は、ハンドル14の上前端部に配置されている。トリガ140は、常時には、弾性部材(例えば、圧縮コイルバネ)によって前方へ付勢されており、前方からの外力が付与されていない状態では、図1に示す初期位置に保持されている。このときトリガ140はトリガスイッチ141に作用せず、トリガスイッチ141はオフ状態で維持される。一方、図2に示すように、使用者によってトリガ140が引き操作されると、トリガ140は弾性部材の付勢力に抗して後方へ移動する。引き操作に応じてトリガ140が初期位置よりも後方の所定位置(以下、オン位置という)まで移動すると、トリガスイッチ141がトリガ140の後端部に押圧され、オン状態に切り替えられる。トリガスイッチ141は、配線(図示せず)を介してコントローラ18に接続されており、オン状態またはオフ状態に対応する信号をコントローラ18に出力する。 As shown in FIG. 1, the trigger 140 is disposed at the upper front end of the handle 14. The trigger 140 is always urged forward by an elastic member (for example, a compression coil spring), and is held at the initial position shown in FIG. 1 when no external force is applied from the front. At this time, the trigger 140 does not act on the trigger switch 141, and the trigger switch 141 is maintained in the off state. On the other hand, as shown in FIG. 2, when the trigger 140 is pulled by the user, the trigger 140 moves rearward against the biasing force of the elastic member. When the trigger 140 moves to a predetermined position (hereinafter referred to as an on position) behind the initial position according to the pulling operation, the trigger switch 141 is pressed by the rear end of the trigger 140 and switched to the on state. The trigger switch 141 is connected to the controller 18 via a wire (not shown), and outputs a signal corresponding to the on state or the off state to the controller 18.
 次に、本体ハウジング11の内部に収容されたモータ2、ドライバ3、およびドライバ駆動機構400について順に説明する。 Next, the motor 2, the driver 3, and the driver drive mechanism 400 housed inside the main body housing 11 will be described in order.
 まず、モータ2について説明する。図3に示すように、モータ2は、本体ハウジング11の後下部に収容されている。また、モータ2は、出力シャフト(図示せず)の回転軸が動作線Lに直交して左右方向に延在するように配置されている。本実施形態では、小型で高出力であることから、モータ2として、ブラシレスDCモータが採用されている。モータ2の出力シャフトには、出力シャフトと一体的に回転するプーリ21が連結されている。なお、本実施形態では、モータ2の駆動はコントローラ18(図1参照)によって制御される。モータ2の制御の詳細に関しては、後述する。 First, the motor 2 will be described. As shown in FIG. 3, the motor 2 is accommodated in the rear lower portion of the main body housing 11. Further, the motor 2 is disposed such that the rotation axis of the output shaft (not shown) extends in the left-right direction orthogonal to the operation line L. In the present embodiment, a brushless DC motor is employed as the motor 2 because of its small size and high output. Connected to the output shaft of the motor 2 is a pulley 21 that rotates integrally with the output shaft. In the present embodiment, the drive of the motor 2 is controlled by the controller 18 (see FIG. 1). Details of control of the motor 2 will be described later.
 ドライバ3について説明する。図4に示すように、ドライバ3は、長尺状の部材であって、長軸に関して左右対称形状に形成されている。ドライバ3は、本体部30と、打撃部31と、本体部30の後部から左右に突出する一対のアーム部35とを含む。本体部30は、全体として概ね矩形薄板状に形成された部分である。打撃部31は、本体部30よりも左右方向の幅が細く形成され、本体部30の前端から前方に延在する部分である。一対のアーム部35は、本体部30の後部から左右に突出する部分である。 The driver 3 will be described. As shown in FIG. 4, the driver 3 is an elongated member, and is formed in a symmetrical shape with respect to the major axis. The driver 3 includes a main body portion 30, a striking portion 31, and a pair of arm portions 35 projecting leftward and rightward from the rear of the main body portion 30. The main body portion 30 is a portion formed in a generally rectangular thin plate shape as a whole. The striking portion 31 is formed to be narrower in width in the left-right direction than the main body portion 30 and extends forward from the front end of the main body portion 30. The pair of arm portions 35 is a portion that protrudes from the rear of the main body portion 30 to the left and right.
 本体部30は、後述する押圧ローラ83(図3参照)によって押圧されてリング部材5(図3参照)に摩擦係合する部位である。本体部30は、一対のローラ当接部301と、レバー当接部305と、一対のリング係合部306とを有する。以下、これらの部分について順に説明する。 The main body portion 30 is a portion which is pressed by a pressing roller 83 (see FIG. 3) described later and frictionally engaged with the ring member 5 (see FIG. 3). The main body portion 30 has a pair of roller contact portions 301, a lever contact portion 305, and a pair of ring engagement portions 306. Hereinafter, these parts will be described in order.
 一対のローラ当接部301は、本体部30の上面から上方へ突出し、本体部30の左右の端に沿って前後方向に延在するように、本体部30に一体的に形成されている。ローラ当接部301の突出端(上端)に形成された面部は、押圧ローラ83の外周面に当接する当接面として形成されている。また、ローラ当接部301の前端部は、後方に向けて高さ(上下方向の厚み)が漸増する傾斜部302として形成されている。一方、ローラ当接部301のうち傾斜部302の後側部分は、一定の高さを有する。レバー当接部305は、本体部30の上面から上方へ突出するように設けられ、本体部30の後部において左右のローラ当接部301をつなぐように、左右方向に延在する。レバー当接部305は、後述する押出しレバー711が後方から当接する部位である。 The pair of roller contact portions 301 is integrally formed on the main body portion 30 so as to protrude upward from the upper surface of the main body portion 30 and extend in the front-rear direction along the left and right ends of the main body portion 30. The surface portion formed at the projecting end (upper end) of the roller contact portion 301 is formed as an abutment surface that abuts on the outer peripheral surface of the pressing roller 83. Further, a front end portion of the roller contact portion 301 is formed as an inclined portion 302 whose height (thickness in the vertical direction) gradually increases toward the rear. On the other hand, the rear side portion of the inclined portion 302 of the roller contact portion 301 has a constant height. The lever contact portion 305 is provided to project upward from the upper surface of the main body 30, and extends in the left-right direction so as to connect the left and right roller contact portions 301 at the rear of the main body 30. The lever contact portion 305 is a portion on which a push lever 711 described later comes in contact from behind.
 一対のリング係合部306は、本体部30の下面から下方へ突出し、本体部30の左右の端部に沿って前後方向に延在するように、本体部30に一体的に形成されている。リング係合部306の前端部は、後方に向けて高さ(上下方向の厚み)が漸増する傾斜部307として形成されている。一対のリング係合部306には、夫々、後述する2つのリング部材5の外周係合部51に係合可能な係合溝308が形成されている。各係合溝308は、リング係合部306の突出端から上方へ凹むように形成され、リング係合部306の全長に亘って前後方向に延在する。また、係合溝308は、左右方向の幅が上方に向けて狭くなるように(言い換えると、係合溝308を規定するリング係合部306の左右方向の壁面が上方へ向けて近づくように)形成されている(図6参照)。なお、ドライバ3とリング部材5との係合態様については後で詳述する。 The pair of ring engagement portions 306 are integrally formed on the main body portion 30 so as to protrude downward from the lower surface of the main body portion 30 and extend in the front-rear direction along the left and right end portions of the main body portion 30 . The front end portion of the ring engagement portion 306 is formed as a sloped portion 307 whose height (thickness in the vertical direction) gradually increases toward the rear. In the pair of ring engaging portions 306, engaging grooves 308 engageable with outer peripheral engaging portions 51 of two ring members 5 described later are formed. Each engagement groove 308 is formed to be recessed upward from the projecting end of the ring engagement portion 306, and extends in the front-rear direction along the entire length of the ring engagement portion 306. Also, the engagement groove 308 has a width in the left and right direction narrowed upward (in other words, the wall surface of the ring engagement portion 306 defining the engagement groove 308 approaches upward) ) (See FIG. 6). The engagement between the driver 3 and the ring member 5 will be described in detail later.
 本体部30の後端32は、ドライバ3の後端を規定する。後端32は、本体ハウジング11の後端部内に固定された後方ストッパ部118(図1参照)に当接することで、ドライバ3がそれ以上後方へ移動するのを規制する部位である。打撃部31の前端310は、ドライバの前端を規定する。前端310は、釘101(図1参照)の頭部を打撃し、釘101を前方へ打出して被加工物100に打ち込む部位である。 The rear end 32 of the main body 30 defines the rear end of the driver 3. The rear end 32 abuts on the rear stopper portion 118 (see FIG. 1) fixed in the rear end portion of the main body housing 11 to restrict the driver 3 from moving further backward. The front end 310 of the striking portion 31 defines the front end of the driver. The front end 310 is a part that strikes the head of the nail 101 (see FIG. 1) and strikes the nail 101 forward and into the workpiece 100.
 一対のアーム部35は、本体部30の左右に突出している。アーム部35は、本体ハウジング11前端部の内部に固定された一対の前方ストッパ部117(図2参照)に当接することで、ドライバ3がそれ以上前方へ移動するのを規制する部位である。なお、詳細説明および図示は省略するが、アーム部35は、接続部材によって、戻し機構に接続されている。本実施形態の釘打ち機1では、戻し機構として、いかなる公知の構成が採用されてもよい。例えば、打込み位置まで前方へ移動されたドライバ3を、接続部材を介して弾性部材(例えば、圧縮コイルバネや捩りコイルバネ)の弾性力で動作線Lに沿って初期位置へ引き戻すように構成された戻し機構を採用することができる。 The pair of arm portions 35 project to the left and right of the main body portion 30. The arm portion 35 is a portion that restricts the driver 3 from moving further forward by abutting on a pair of front stopper portions 117 (see FIG. 2) fixed inside the front end portion of the main body housing 11. In addition, although detailed description and illustration are abbreviate | omitted, the arm part 35 is connected to the return mechanism by the connection member. In the nailing machine 1 of the present embodiment, any known configuration may be employed as the return mechanism. For example, the driver 3 moved forward to the driving position is configured to be pulled back to the initial position along the operating line L by the elastic force of an elastic member (for example, a compression coil spring or a torsion coil spring) via the connection member. A mechanism can be employed.
 以上のように構成されたドライバ3は、その長軸が動作線Lに沿って釘打ち機1の前後方向に延在するように配置される。また、ドライバ3は、動作線Lに沿って(釘打ち機1の前後方向に、またはドライバ3の長軸方向にとも言い換えられる)移動可能に保持されている。 The driver 3 configured as described above is arranged such that the major axis thereof extends in the front-rear direction of the nailing machine 1 along the operation line L. Further, the driver 3 is held so as to be movable along the operation line L (which is rephrased in the back and forth direction of the nailing machine 1 or in the long axis direction of the driver 3).
 ここで、図1および図2を参照して、ドライバ3の初期位置および打込み位置について説明する。初期位置とは、ドライバ駆動機構400が作動していない状態(以下、初期状態という)でドライバ3が保持される位置である。本実施形態では、図1に示すように、ドライバ3の初期位置は、ドライバ3の後端32が、後方ストッパ部118に当接する位置に設定されている。打込み位置とは、ドライバ駆動機構400によって前方へ移動されたドライバ3が釘101を被加工物に打ち込む位置である。本実施形態では、図2に示すように、ドライバ3の打込み位置は、ドライバ3の前端310が射出口123から僅かに突出した位置に設定されている。打込み位置は、一対のアーム部35の前端が、一対の前方ストッパ部117に後方から当接する位置でもある。上記の配置から、本実施形態では、初期位置と打込み位置は、ドライバ3の移動可能範囲の両端を規定する最後方位置と最前方位置であると言い換えることもできる。 Here, with reference to FIG. 1 and FIG. 2, the initial position and driving position of the driver 3 are demonstrated. The initial position is a position at which the driver 3 is held in a state where the driver driving mechanism 400 is not operating (hereinafter referred to as an initial state). In the present embodiment, as shown in FIG. 1, the initial position of the driver 3 is set such that the rear end 32 of the driver 3 abuts on the rear stopper portion 118. The driving position is a position where the driver 3 moved forward by the driver drive mechanism 400 drives the nail 101 into the workpiece. In the present embodiment, as shown in FIG. 2, the driving position of the driver 3 is set to a position where the front end 310 of the driver 3 slightly protrudes from the injection port 123. The driving position is also a position where the front ends of the pair of arm portions 35 abut against the pair of front stopper portions 117 from the rear. From the above arrangement, in the present embodiment, the initial position and the drive position can be reworded as being the rearmost position and the foremost position defining both ends of the movable range of the driver 3.
 ドライバ駆動機構400の詳細な構成について説明する。図3に示すように、本実施形態では、ドライバ駆動機構400は、フライホイール4と、2つのリング部材5と、保持機構6と、作動機構7と、押圧機構8とを含む。以下、これらの構成の詳細について順に説明する。なお、以下で参照する図1および図3では、説明の便宜上、後述するリング部材5の一部が破断された状態で図示されている。 The detailed configuration of the driver drive mechanism 400 will be described. As shown in FIG. 3, in the present embodiment, the driver drive mechanism 400 includes a flywheel 4, two ring members 5, a holding mechanism 6, an operating mechanism 7, and a pressing mechanism 8. The details of these configurations will be sequentially described below. In FIG. 1 and FIG. 3 to be referred to below, for convenience of explanation, a part of a ring member 5 described later is illustrated in a broken state.
 まず、フライホイール4について説明する。図3に示すように、円筒状に形成されたフライホイール4は、本体ハウジング11内のモータ2の前側で、回転可能に支持されている。フライホイール4は、モータ2によって回転軸A1周りに回転駆動される。回転軸A1は、モータ2の回転軸と平行に、ドライバ3の動作線Lに直交する左右方向に延在する。フライホイール4の支持シャフトには、フライホイール4と一体的に回転するプーリ41が連結されている。プーリ21とプーリ41にはベルト25が架け渡されている。よって、モータ2が駆動されると、モータ2の回転がベルト25を介してフライホイール4に伝達され、フライホイール4は図3の時計回り方向に回転する。また、図5および図6に示すように、フライホイール4の外周45には、フライホイール4の全周に亘って延在する一対の係合溝47が形成されている。係合溝47には、リング部材5が係合可能である。係合溝47は、左右方向の幅が、フライホイール4の径方向内側に向けて狭くなるように形成されている。 First, the flywheel 4 will be described. As shown in FIG. 3, the cylindrically formed flywheel 4 is rotatably supported on the front side of the motor 2 in the main body housing 11. The flywheel 4 is rotationally driven by a motor 2 around a rotation axis A1. The rotation axis A <b> 1 extends in the left-right direction orthogonal to the operation line L of the driver 3 in parallel with the rotation axis of the motor 2. Connected to the support shaft of the flywheel 4 is a pulley 41 that rotates integrally with the flywheel 4. A belt 25 is stretched over the pulleys 21 and 41. Therefore, when the motor 2 is driven, the rotation of the motor 2 is transmitted to the flywheel 4 via the belt 25 and the flywheel 4 rotates in the clockwise direction of FIG. Further, as shown in FIG. 5 and FIG. 6, a pair of engagement grooves 47 extending over the entire circumference of the flywheel 4 is formed on the outer circumference 45 of the flywheel 4. The ring member 5 can be engaged with the engagement groove 47. The engagement groove 47 is formed such that the width in the left-right direction narrows inward in the radial direction of the flywheel 4.
 リング部材5について説明する。図3に示すように、各リング部材5は、フライホイール4よりも大径のリング状に形成されている。本実施形態では、リング部材5の内径は、フライホイール4の外径(厳密には、フライホイール4の回転軸A1から係合溝47の底部までの径)よりも大きく設定されている。図5に示すように、2つのリング部材5は、夫々、フライホイール4の外周45に設けられた一対の係合溝47に対して径方向外側に配置されている。本実施形態では、2つのリング部材5は、後述する保持機構6によって、フライホイール4の外周45(より詳細には係合溝47)から離間した離間位置と、外周45(係合溝47)に一部が接触する接触位置との間で移動可能に保持されている。 The ring member 5 will be described. As shown in FIG. 3, each ring member 5 is formed in a ring shape having a diameter larger than that of the flywheel 4. In the present embodiment, the inner diameter of the ring member 5 is set to be larger than the outer diameter of the flywheel 4 (strictly, the diameter from the rotation axis A1 of the flywheel 4 to the bottom of the engagement groove 47). As shown in FIG. 5, the two ring members 5 are disposed radially outward with respect to a pair of engagement grooves 47 provided on the outer periphery 45 of the flywheel 4. In the present embodiment, the two ring members 5 are separated from the outer circumference 45 (more specifically, the engagement groove 47) of the flywheel 4 by the holding mechanism 6 described later, and the outer circumference 45 (engagement groove 47) Is held movably between a contact position at which one of the two contacts with the other.
 各リング部材5は、フライホイール4の回転エネルギをドライバ3に伝達するための伝達部材であって、ドライバ3およびフライホイール4と摩擦係合可能に構成されている。具体的には、図6に示すように、リング部材5の外周側部分および内周側部分には、夫々、ドライバ3の係合溝308およびフライホイール4の係合溝47に係合可能な外周係合部51および内周係合部53が設けられている。外周係合部51は、リング部材5の径方向外側へ向けて突出する凸部として形成される一方、内周係合部53は、リング部材5の径方向内側へ向けて突出する凸部として形成されている。なお、リング部材5の径方向の断面形状は、概ね六角形状に形成されており、外周係合部51は、リング部材5の径方向外側へ向けて厚みが小さくなるように形成される一方、内周係合部53は、リング部材5の径方向内側へ向けて軸方向の厚みが小さくなるように形成されている。つまり、外周係合部51および内周係合部53は、いずれも先端に向けて断面が先細り形状に形成されている。なお、リング部材5と、ドライバ3およびフライホイール4との係合態様については後で詳述する。 Each ring member 5 is a transmission member for transmitting the rotational energy of the flywheel 4 to the driver 3, and is configured to be frictionally engageable with the driver 3 and the flywheel 4. Specifically, as shown in FIG. 6, the engagement groove 308 of the driver 3 and the engagement groove 47 of the flywheel 4 can be engaged with the outer peripheral portion and the inner peripheral portion of the ring member 5, respectively. An outer circumferential engagement portion 51 and an inner circumferential engagement portion 53 are provided. The outer circumferential engagement portion 51 is formed as a convex portion that protrudes outward in the radial direction of the ring member 5, while the inner circumferential engagement portion 53 is a convex portion that protrudes inward in the radial direction of the ring member 5. It is formed. The cross-sectional shape in the radial direction of the ring member 5 is formed in a substantially hexagonal shape, and the outer peripheral engagement portion 51 is formed so as to decrease in thickness toward the radial outer side of the ring member 5; The inner circumferential engagement portion 53 is formed such that the thickness in the axial direction decreases toward the inner side in the radial direction of the ring member 5. That is, the outer peripheral engaging portion 51 and the inner peripheral engaging portion 53 are each formed in a tapered shape in cross section toward the tip. The engagement between the ring member 5 and the driver 3 and the flywheel 4 will be described in detail later.
 保持機構6について説明する。保持機構6は、リング部材5を、フライホイール4の外周45(係合溝47)から離間した離間位置と、外周45(係合溝47)に接触する接触位置との間で移動可能に保持するように構成されている。図3および図5に示すように、本実施形態の保持機構6は、一対のリング付勢部60と、一対のストッパ66とで構成されている。一対のリング付勢部60は、リング部材5に対して斜め前下方と斜め後ろ下方に配置され、リング部材5を板バネによって下側から上方へ付勢した状態で回転可能に支持している。一対のストッパ66は、夫々、ドライバ3の下方、且つ、リング部材5に対して斜め前上方と斜め後ろ上方に配置され、リング部材5の回転を許容しつつ、リング部材5の上方への移動を規制するように構成されている。 The holding mechanism 6 will be described. The holding mechanism 6 holds the ring member 5 movably between a separated position separated from the outer periphery 45 (engagement groove 47) of the flywheel 4 and a contact position contacting the outer periphery 45 (engagement groove 47). It is configured to As shown in FIGS. 3 and 5, the holding mechanism 6 of the present embodiment is configured by a pair of ring urging portions 60 and a pair of stoppers 66. The pair of ring urging portions 60 are disposed obliquely forward and obliquely downward with respect to the ring member 5 and rotatably support the ring member 5 in a state of being urged upward from the lower side by a plate spring. . The pair of stoppers 66 are respectively disposed below the driver 3 and obliquely upward and obliquely upward with respect to the ring member 5 and allow the ring member 5 to rotate while moving the ring member 5 upward. Is configured to regulate.
 ここで、保持機構6によるリング部材5の保持態様について説明する。図5に示すように、初期状態においては、リング付勢部60は下方からリング部材5に当接し、リング部材5を上方へ付勢する一方、ストッパ66はリング部材5に対して上方から当接し、リング部材5がそれ以上上方へ移動することを規制する。これにより、図6に示すように、リング部材5は、フライホイール4の全周に亘って、外周45(係合溝47)から離間した離間位置で保持される。なお、フライホイール4の上端部のみが図示されているが、フライホイール4の全周に亘って、同様に、リング部材5はフライホイール4の外周45(より詳細には係合溝47)から離間している。一方、詳細は後述するが、作動機構7によってドライバ3が前方へ移動されるのに伴って、リング部材5がドライバ3によって下方へ押圧されると、リング付勢部60の付勢力に抗してリング部材5が下方へ移動する。そして、リング部材5は、フライホイール4の上部において、外周45(係合溝47)に接触する接触位置で保持されることになる(図12参照)。 Here, a manner of holding the ring member 5 by the holding mechanism 6 will be described. As shown in FIG. 5, in the initial state, the ring urging portion 60 abuts on the ring member 5 from below and urges the ring member 5 upward, while the stopper 66 abuts on the ring member 5 from above It contacts and controls the ring member 5 to move further upward. Thereby, as shown in FIG. 6, the ring member 5 is held at the separated position separated from the outer periphery 45 (engagement groove 47) over the entire circumference of the flywheel 4. Although only the upper end portion of the flywheel 4 is illustrated, the ring member 5 extends from the outer periphery 45 of the flywheel 4 (more specifically, the engagement groove 47) over the entire periphery of the flywheel 4 It is separated. On the other hand, although the details will be described later, when the ring member 5 is pressed downward by the driver 3 as the driver 3 is moved forward by the actuating mechanism 7, the urging force of the ring urging portion 60 is resisted. As a result, the ring member 5 moves downward. And the ring member 5 will be hold | maintained in the contact position which contacts the outer periphery 45 (engaging groove 47) in the upper part of the flywheel 4 (refer FIG. 12).
 作動機構7について説明する。図3に示すように、作動機構7は、本体ハウジング11内において、ドライバ3よりも上方、且つ、フライホイール4よりも後方に配置されている。作動機構7は、初期位置に配置されたドライバ3を、後述する伝達位置に移動させるように構成された機構である。本実施形態では、作動機構7は、前後方向に進退可能なロッドを有するソレノイド715と、ソレノイド715のロッドによって回動される押出しレバー711とを主体として構成されている。押出しレバー711は、一端部が回動可能に支持されている。初期状態では、押出しレバー711の他端部は、引張コイルバネ713によって、ドライバ3のレバー当接部305に対して斜め上後方に保持されている。ソレノイド715が作動されると、引張コイルバネ713の付勢力に抗して押出しレバー711が下方へ回動される。これに伴って、押出しレバー711の先端部がレバー当接部305を後方から前方へ押圧することで、ドライバ3を前方へ移動させる(図11参照)。なお、本実施形態では、ソレノイド715の作動はコントローラ18(図1参照)によって制御される。ソレノイド715の制御の詳細に関しては、後述する。 The operating mechanism 7 will be described. As shown in FIG. 3, the actuating mechanism 7 is disposed above the driver 3 and rearward of the flywheel 4 in the body housing 11. The operating mechanism 7 is a mechanism configured to move the driver 3 disposed at the initial position to a transmission position described later. In the present embodiment, the actuating mechanism 7 mainly includes a solenoid 715 having a rod movable forward and backward, and a push lever 711 rotated by the rod of the solenoid 715. The pushing lever 711 is rotatably supported at one end. In the initial state, the other end of the push lever 711 is held obliquely upward and rearward with respect to the lever contact portion 305 of the driver 3 by the tension coil spring 713. When the solenoid 715 is actuated, the push lever 711 is pivoted downward against the biasing force of the tension coil spring 713. Along with this, the tip of the push-out lever 711 pushes the lever contact portion 305 from the rear to the front, thereby moving the driver 3 forward (see FIG. 11). In the present embodiment, the operation of the solenoid 715 is controlled by the controller 18 (see FIG. 1). Details of control of the solenoid 715 will be described later.
 押圧機構8について説明する。図3に示すように、押圧機構8は、本体ハウジング11内で、フライホイール4とドライバ3との対向方向において、フライホイール4とは反対側でドライバ3と対向するように配置されている。押圧機構8は、ドライバ3が初期位置から前方へ移動する過程で、リング部材5に向けて(つまり、フライホイール4に近づく方向に)ドライバ3を押圧することで、リング部材5を介したフライホイール4からドライバ3への回転エネルギの伝達を可能とするように構成されている。図3および図6に示すように、本実施形態では、押圧機構8は、ローラ支持部材81と、ローラ支持部材81に回転可能に支持された押圧ローラ83と、本体ハウジング11に支持されたホルダ85と、ローラ支持部材81とホルダ85の間に介在状に配置された弾性部材87とを含む。以下、これらの構成部材の詳細について順に説明する。 The pressing mechanism 8 will be described. As shown in FIG. 3, the pressing mechanism 8 is disposed in the main housing 11 so as to face the driver 3 on the opposite side of the flywheel 4 in the facing direction of the flywheel 4 and the driver 3. The pressing mechanism 8 presses the driver 3 toward the ring member 5 (that is, in a direction approaching the flywheel 4) in the process of moving the driver 3 forward from the initial position, so that the fly through the ring member 5 is performed. It is configured to enable transmission of rotational energy from the wheel 4 to the driver 3. As shown in FIGS. 3 and 6, in the present embodiment, the pressing mechanism 8 includes a roller support member 81, a pressing roller 83 rotatably supported by the roller support member 81, and a holder supported by the main body housing 11. And 85, and an elastic member 87 disposed between the roller support member 81 and the holder 85. Hereinafter, the details of these constituent members will be described in order.
 ローラ支持部材81は、バネ保持部811と、バネ受け部813と、ローラ支持部815とを含む。バネ保持部811は、上下方向を軸方向とする円柱状に形成された、ローラ支持部材81の上部を構成する部分である。バネ受け部813は、バネ保持部811の下端部から径方向外側に突出するフランジ状の部分である。ローラ支持部815は、バネ受け部813から下方に突出する、ローラ支持部材81の下部を構成する部分である。ローラ支持部815は、左右方向に延在するローラシャフト84を介して、左右一対の押圧ローラ83を回転可能に支持している。 The roller support member 81 includes a spring holding portion 811, a spring receiving portion 813, and a roller support portion 815. The spring holding portion 811 is a portion forming an upper portion of the roller support member 81 formed in a cylindrical shape whose axial direction is the vertical direction. The spring receiving portion 813 is a flange-like portion protruding radially outward from the lower end portion of the spring holding portion 811. The roller support portion 815 is a portion that projects downward from the spring receiving portion 813 and that constitutes the lower portion of the roller support member 81. The roller support portion 815 rotatably supports the left and right pressing rollers 83 via a roller shaft 84 extending in the left-right direction.
 ホルダ85は、本体ハウジング11に支持され、ローラ支持部材81を上下方向に相対移動可能に保持している。本実施形態では、ホルダ85は、収容部851と、バネ受け部853と、ストッパ部854とを含む。収容部851は、概ね円筒状に形成されており、内部にローラ支持部材81の一部と弾性部材87を収容可能な収容空間852を有する(図6参照)。バネ受け部853は、収容部851の上部を覆う上壁部によって構成されている。バネ受け部853の中央部には、ローラ支持部材81の円柱状のバネ保持部811と概ね同径の貫通孔が形成されている。バネ保持部811は、この貫通孔内で上下方向に移動可能である。ストッパ部854は、収容部851の下端部から径方向内側に突出する部分である。 The holder 85 is supported by the main body housing 11 and holds the roller support member 81 so as to be relatively movable in the vertical direction. In the present embodiment, the holder 85 includes an accommodating portion 851, a spring receiving portion 853, and a stopper portion 854. The housing portion 851 is formed in a substantially cylindrical shape, and has a housing space 852 in which a part of the roller support member 81 and the elastic member 87 can be housed (see FIG. 6). The spring receiving portion 853 is constituted by an upper wall portion covering the upper portion of the accommodation portion 851. A through hole having substantially the same diameter as the cylindrical spring holding portion 811 of the roller support member 81 is formed at the central portion of the spring receiving portion 853. The spring holding portion 811 is vertically movable in the through hole. The stopper portion 854 protrudes radially inward from the lower end portion of the housing portion 851.
 弾性部材87は、ローラ支持部材81とホルダ85の間に介在状に配置されている。本実施形態では、弾性部材87は、ローラ支持部材81のバネ保持部811の外周に直列状に配置された4つの皿バネで構成されている。ローラ支持部材81は、バネ保持部811に弾性部材87が外装された状態で、ホルダ85の収容部851(収容空間852)内に配置されている。弾性部材87は、ホルダ85のバネ受け部853とローラ支持部材81のバネ受け部813との間に、僅かに圧縮された状態で配置されている。これにより、押圧ローラ83を介してローラ支持部材81を上方に押し上げる外力が付与されていない場合、バネ受け部813は、弾性部材87の弾性力によって下方へ付勢され、ストッパ部854に上方から当接した状態で保持される。つまり、ストッパ部854によって、ローラ支持部材81および押圧ローラ83は、下方への移動が規制され、最下方位置で保持される。 The elastic member 87 is disposed between the roller support member 81 and the holder 85 in an interposed manner. In the present embodiment, the elastic member 87 is constituted by four disc springs arranged in series on the outer periphery of the spring holding portion 811 of the roller support member 81. The roller support member 81 is disposed in the housing portion 851 (housing space 852) of the holder 85 in a state in which the elastic member 87 is externally fitted to the spring holding portion 811. The elastic member 87 is disposed between the spring receiving portion 853 of the holder 85 and the spring receiving portion 813 of the roller support member 81 in a slightly compressed state. Thus, when an external force is not applied to push the roller support member 81 upward via the pressing roller 83, the spring receiving portion 813 is biased downward by the elastic force of the elastic member 87, and the stopper portion 854 is pressed from above. It is held in the state of contact. That is, the downward movement of the roller supporting member 81 and the pressing roller 83 is restricted by the stopper portion 854, and the roller supporting member 81 and the pressing roller 83 are held at the lowermost position.
 以下、釘打ち機1の電気的構成について説明する。図7に示すように、釘打ち機1は、釘打ち機1の動作を制御するコントローラ18を備えている。本実施形態では、コントローラ18は、CPU、ROM、RAM、タイマ等を含むマイクロコンピュータとして構成されている。コントローラ18には、三相インバータ201と、ホールセンサ203が電気的に接続されている。本実施形態では、三相インバータ201は、6つの半導体スイッチング素子を用いた三相ブリッジ回路を備えている。三相インバータ201は、コントローラ18からの制御信号が示すデューティ比に従って三相ブリッジ回路の各スイッチング素子をスイッチング動作させることで、そのデューティ比に応じたパルス状の電流(駆動パルス)をモータ2に供給する。なお、コントローラ18と三相インバータ201は、基板180に搭載されて、ハンドル14の下端部に収容されている(図1参照)。ホールセンサ203は、モータ2の各相に対応して配置される3つのホール素子を備えており、モータ2のロータの回転角度を示す信号を出力するように構成されている。 Hereinafter, the electrical configuration of the nailing machine 1 will be described. As shown in FIG. 7, the nailing machine 1 includes a controller 18 that controls the operation of the nailing machine 1. In the present embodiment, the controller 18 is configured as a microcomputer including a CPU, a ROM, a RAM, a timer, and the like. A three-phase inverter 201 and a Hall sensor 203 are electrically connected to the controller 18. In the present embodiment, the three-phase inverter 201 includes a three-phase bridge circuit using six semiconductor switching elements. The three-phase inverter 201 performs switching operation on each switching element of the three-phase bridge circuit according to the duty ratio indicated by the control signal from the controller 18 to make the motor 2 pulse current (drive pulse) according to the duty ratio. Supply. The controller 18 and the three-phase inverter 201 are mounted on the substrate 180 and accommodated in the lower end of the handle 14 (see FIG. 1). The Hall sensor 203 includes three Hall elements arranged corresponding to each phase of the motor 2 and is configured to output a signal indicating the rotation angle of the rotor of the motor 2.
 更に、コントローラ18には、コンタクトアームスイッチ131と、トリガスイッチ141と、作動機構7のソレノイド715が電気的に接続されている。上述のように、コンタクトアームスイッチ131およびトリガスイッチ141は、夫々、オン状態またはオフ状態に対応する信号をコントローラ18に出力する。本実施形態では、コントローラ18は、コンタクトアームスイッチ131およびトリガスイッチ141からの信号に基づいて、適宜、三相インバータ201およびソレノイド715に対して制御信号を出力することで、モータ2およびソレノイド715の動作を制御する。 Further, to the controller 18, a contact arm switch 131, a trigger switch 141, and a solenoid 715 of the operating mechanism 7 are electrically connected. As described above, the contact arm switch 131 and the trigger switch 141 respectively output signals corresponding to the on state or the off state to the controller 18. In the present embodiment, the controller 18 appropriately outputs a control signal to the three-phase inverter 201 and the solenoid 715 based on the signals from the contact arm switch 131 and the trigger switch 141 so that the motor 2 and the solenoid 715 are Control the operation.
 ここで、本実施形態におけるモータ2およびソレノイド715の制御の概要について説明する。まず、本実施形態では、上述のように、使用者の打込み動作の開始指示操作が行われない限り、つまり、コンタクトアームスイッチ131がオン状態とされた後でトリガスイッチ141がオン状態とされない限り、打込み動作は開始されない。使用者がコンタクトアーム13の押し付け操作とトリガ140の引き操作とを、この順番でほぼ同時に行った場合、打込み動作の開始指示操作としては適切である。一方で、ドライバ3による釘101の打込みを可能とするに足る回転エネルギをフライホイール4に蓄積するためには、モータ2の駆動後にある程度の時間がかかる。このため、コンタクトアームスイッチ131がオン状態とされるのに応じてモータ2の駆動が開始されると、打込み動作の開始指示操作の後、直ちに打込み動作を開始できない場合がありうる。そこで、本実施形態では、トリガスイッチ141をモータ2の起動スイッチとして利用することで、打込み動作の開始指示操作の前に予めモータ2の駆動を開始させることが可能とされている。 Here, an outline of control of the motor 2 and the solenoid 715 in the present embodiment will be described. First, in the present embodiment, as described above, as long as the user does not issue a start instruction operation to start the striking operation, that is, as long as the trigger switch 141 is not turned on after the contact arm switch 131 is turned on. , The driving operation is not started. When the user performs the pressing operation of the contact arm 13 and the pulling operation of the trigger 140 at almost the same time in this order, it is appropriate as a start instruction operation of the driving operation. On the other hand, it takes some time after driving the motor 2 in order to store rotational energy sufficient to enable the driver 3 to drive the nail 101 into the flywheel 4. For this reason, when the driving of the motor 2 is started in response to the contact arm switch 131 being turned on, there is a possibility that the driving operation can not be started immediately after the start operation of starting the driving operation. Therefore, in the present embodiment, by using the trigger switch 141 as the start switch of the motor 2, it is possible to start the driving of the motor 2 in advance before the start instruction operation of the driving operation.
 具体的には、モータ2の非駆動時にトリガスイッチ141がオン状態とされた場合には、コントローラ18は、これをモータ2の起動指示の入力として認識し、モータ2の駆動を開始する。コントローラ18は、その後、コンタクトアームスイッチ131がオン状態とされた後でトリガスイッチ141がオン状態とされた場合には、これを打込み動作の開始指示の入力として認識し、ソレノイド715を作動させてドライバ3に打込み動作を開始させる。また、コントローラ18は、モータの非駆動時にコンタクトアームスイッチ131がオン状態とされた場合にも、これをモータ2の起動指示の入力として認識し、モータ2の駆動を開始する。この場合、その後に続けてトリガスイッチ141がオン状態とされた場合には、コントローラ18は、これを打込み動作の開始指示の入力として認識し、ソレノイド715を作動させてドライバ3に打込み動作を開始させる。 Specifically, when the trigger switch 141 is turned on when the motor 2 is not driven, the controller 18 recognizes this as an input of a start instruction of the motor 2 and starts driving the motor 2. Thereafter, when the trigger switch 141 is turned on after the contact arm switch 131 is turned on, the controller 18 recognizes this as an input for instructing the start of the implanting operation, and operates the solenoid 715. The driver 3 starts the driving operation. Further, even when the contact arm switch 131 is turned on when the motor is not driven, the controller 18 recognizes this as the input of the start instruction of the motor 2 and starts the driving of the motor 2. In this case, when the trigger switch 141 is subsequently turned on, the controller 18 recognizes this as an input of the start instruction of the driving operation, operates the solenoid 715, and starts the driving operation in the driver 3 Let
 以下、図8~図13を参照して、コントローラ18(詳細には、CPU)によって実行される打込み制御処理の詳細と、処理中の釘打ち機1の具体的な動作について説明する。なお、図8~図10に示す打込み制御処理は、バッテリ19がバッテリ装着部15に装着されることで釘打ち機1への電力供給が開始されると開始され、電力供給が停止されると終了される。なお、以下の説明および図では、処理中の各「ステップ」を「S」と簡略表記する。また、図では、「スイッチ」を「SW」とも簡略表記する。 The details of the driving control process executed by the controller 18 (specifically, the CPU) and the specific operation of the nailing machine 1 during processing will be described below with reference to FIGS. 8 to 13. The driving control process shown in FIGS. 8 to 10 is started when the power supply to the nailing machine 1 is started by mounting the battery 19 on the battery mounting unit 15, and when the power supply is stopped. It is finished. In the following description and drawings, each “step” in process is abbreviated as “S”. Further, in the figure, "switch" is also abbreviated as "SW".
 打込み制御処理の開始時点では、コンタクトアーム13およびトリガ140はいずれも初期位置にあって、コンタクトアームスイッチ131およびトリガスイッチ141はいずれもオフ状態である。モータ2は駆動されていない非駆動状態にある。図1に示すように、ドライバ3は、戻し機構によって初期位置に戻されて保持されている。図6に示すように、リング部材5は、保持機構6によって、フライホイール4の外周45(より詳細には係合溝47)から径方向外側に僅かに離間した離間位置に保持されている。このとき、押圧ローラ83は最下方位置で保持され、ドライバ3の本体部30の前端部に上方から滑り状態で接触しているが、ドライバ3を下方へ押圧している状態ではない。この状態では、リング部材5は、ドライバ3からも離間した位置に保持されている。より詳細には、リング部材5は、外周係合部51がドライバ3の係合溝308に対して僅かに下方へ離間した位置で保持されている。 At the start of the implantation control process, the contact arm 13 and the trigger 140 are both in the initial position, and the contact arm switch 131 and the trigger switch 141 are both in the off state. The motor 2 is in a non-driven state where it is not driven. As shown in FIG. 1, the driver 3 is returned to the initial position and held by the return mechanism. As shown in FIG. 6, the ring member 5 is held by the holding mechanism 6 at a slightly separated position radially outward from the outer circumference 45 (more specifically, the engagement groove 47) of the flywheel 4. At this time, the pressure roller 83 is held at the lowermost position and is in sliding contact with the front end portion of the main body portion 30 of the driver 3 from above, but it is not in the state of pressing the driver 3 downward. In this state, the ring member 5 is held at a position apart from the driver 3 as well. More specifically, the ring member 5 is held at a position where the outer peripheral engagement portion 51 is slightly separated from the engagement groove 308 of the driver 3.
 図8に示すように、コントローラ18はまず、トリガスイッチ141がオン状態とされたか否かを判断する(S1)。コントローラ18は、使用者によってトリガ140がオン位置まで引き操作され、トリガスイッチ141がオン状態とされた場合(S1:YES)、これをモータ2の起動指示(駆動開始指示)の入力として認識し、後述の第1制御処理に移行する(S3および図9)。一方、コントローラ18は、トリガスイッチ141がオン状態ではない場合(S1:NO)、コンタクトアームスイッチ131がオン状態とされたか否かを判断する(S2)。コンタクトアームスイッチ131もオフ状態の場合(S2:NO)、コントローラ18はS1の処理に戻る。コントローラ18は、使用者によってコンタクトアーム13が被加工物100に押し付けられてオン位置まで後退し、コンタクトアームスイッチ131がオン状態とされた場合(S2:YES)、後述の第2制御処理に移行する(S4および図10)。なお、コントローラ18によって認識されたトリガスイッチ141およびコンタクトアームスイッチ131のオン・オフ状態は、例えば、夫々に対応するフラグがRAMにセットまたはクリアされることで記憶される。 As shown in FIG. 8, the controller 18 first determines whether the trigger switch 141 is turned on (S1). When the user pulls the trigger 140 to the on position and the trigger switch 141 is turned on (S1: YES), the controller 18 recognizes this as the input of the motor 2 start instruction (drive start instruction). , And shifts to a first control process described later (S3 and FIG. 9). On the other hand, when the trigger switch 141 is not in the on state (S1: NO), the controller 18 determines whether the contact arm switch 131 is in the on state (S2). When the contact arm switch 131 is also in the OFF state (S2: NO), the controller 18 returns to the process of S1. When the contact arm 13 is pressed against the workpiece 100 by the user and retracted to the on position and the contact arm switch 131 is turned on (S2: YES), the controller 18 shifts to the second control process described later (S4 and FIG. 10). The on / off states of the trigger switch 141 and the contact arm switch 131 recognized by the controller 18 are stored, for example, by setting or clearing flags corresponding to the respective switches.
 以下、第1制御処理について説明する。図9に示すように、第1制御処理に移行すると、コントローラ18はまず、モータ2の起動指示の入力に応じて、モータ2の駆動を開始する(S31)。具体的には、コントローラ18は、三相インバータ201を介してモータ2への通電を開始する。モータ2によって、フライホイール4が回転駆動され、回転エネルギの蓄積を開始する。なお、この段階では、リング部材5は離間位置に配置されているため、フライホイール4の回転エネルギをドライバ3に伝達不能な状態にある。よって、フライホイール4が回転しても、リング部材5およびドライバ3は動作しない。 Hereinafter, the first control process will be described. As shown in FIG. 9, when shifting to the first control process, the controller 18 first starts driving the motor 2 in response to the input of the start instruction of the motor 2 (S31). Specifically, the controller 18 starts energization of the motor 2 via the three-phase inverter 201. The motor 2 rotationally drives the flywheel 4 to start storing rotational energy. At this stage, since the ring member 5 is disposed at the separated position, the rotational energy of the flywheel 4 can not be transmitted to the driver 3. Therefore, even if the flywheel 4 rotates, the ring member 5 and the driver 3 do not operate.
 コントローラ18は、トリガスイッチ141がオフ状態とされない間は待機する(S32:NO、S32)。なお、この間にコンタクトアームスイッチ131がオン状態とされても、コントローラ18はそれを無効とし、処理を進めない。つまり、コントローラ18は、トリガ140の引き操作が一旦解除されない限り、処理を進めない。トリガスイッチ141がオフ状態とされると(S32:YES)、コントローラ18は、トリガスイッチ141がオフ状態とされてから所定時間が経過したか否かを判断する(S33)。この判断は、例えば、タイマによってトリガスイッチ141がオフ状態とされてからの経過時間が計時され、予めROMに記憶されている所定時間と経過時間とが比較されることで行われる。なお、所定時間は特に限定されるものではないが、本実施形態では、所定時間の一例として、5秒が採用されている。 The controller 18 stands by while the trigger switch 141 is not turned off (S32: NO, S32). Note that even if the contact arm switch 131 is turned on during this time, the controller 18 invalidates it and the process does not proceed. That is, the controller 18 does not proceed with the process unless the pull operation of the trigger 140 is released once. When the trigger switch 141 is turned off (S32: YES), the controller 18 determines whether a predetermined time has elapsed since the trigger switch 141 was turned off (S33). This determination is performed, for example, by measuring an elapsed time after the trigger switch 141 is turned off by a timer and comparing a predetermined time stored in advance in the ROM with the elapsed time. In addition, although predetermined time is not specifically limited, 5 seconds are employ | adopted as an example of predetermined time in this embodiment.
 コントローラ18は、所定時間が経過せず、コンタクトアームスイッチ131がオン状態とされない間は待機する(S33:NO、S34:NO)。この間もモータ2の駆動は継続される。コンタクトアームスイッチ131がオフ状態のまま、所定時間が経過した場合には(S34:NO、S33:YES)、コントローラ18は、モータ2の通電を中止することで、モータ2の駆動を停止する(S37)。これに伴い、フライホイール4の回転が停止する。コントローラ18は、第1制御処理を終了して打込み制御処理(図8参照)に戻り、トリガスイッチ141またはコンタクトアームスイッチ131がオン状態とされるまで待機する(S1~S2)。 The controller 18 stands by while the predetermined time does not elapse and the contact arm switch 131 is not turned on (S33: NO, S34: NO). Driving of the motor 2 is continued also during this period. When the contact arm switch 131 is in the OFF state and the predetermined time has elapsed (S34: NO, S33: YES), the controller 18 stops the driving of the motor 2 by stopping the energization of the motor 2 (S34: NO). S37). Along with this, the rotation of the flywheel 4 is stopped. The controller 18 ends the first control process and returns to the drive control process (see FIG. 8), and waits until the trigger switch 141 or the contact arm switch 131 is turned on (S1 to S2).
 所定時間が経過する前にコンタクトアームスイッチ131がオン状態とされた場合には(S33:NO、S34:YES)、コントローラ18は、トリガスイッチ141がオン状態とされたか否か判断する(S35)。トリガスイッチ141がオン状態とされていなければ(S35:NO)、コントローラ18は、所定時間が経過するまで監視を継続する(S33:NO、S34:YES、S35)。この間もモータ2の駆動は継続される。トリガスイッチ134がオフ状態のまま、所定時間が経過した場合には(S35:NO、S33:YES)、コントローラ18はモータ2の駆動を停止し(S37)、第1制御処理を終了する。 If the contact arm switch 131 is turned on before the predetermined time elapses (S33: NO, S34: YES), the controller 18 determines whether the trigger switch 141 is turned on (S35) . If the trigger switch 141 is not turned on (S35: NO), the controller 18 continues monitoring until a predetermined time elapses (S33: NO, S34: YES, S35). Driving of the motor 2 is continued also during this period. When the predetermined time has passed with the trigger switch 134 turned off (S35: NO, S33: YES), the controller 18 stops the driving of the motor 2 (S37), and ends the first control process.
 所定時間が経過する前に、コンタクトアームスイッチ131がオン状態とされ、更に、トリガスイッチ141がオン状態とされた場合(S33:NO、S34:YES、S35:YES)、打込み動作の開始指示が入力されたことを意味する。そこで、コントローラ18は、ソレノイド715を作動させる(S36)。なお、コントローラ18は、ホールセンサ203から出力される信号に基づいてモータ2(ひいてはフライホイール4)の回転速度を特定する。コントローラ18は、回転速度に基づき、フライホイール4に十分な回転エネルギが蓄積されていると判断した場合には、直ちにソレノイド715を作動させ、そうでなければ、十分な回転エネルギが蓄積された後、ソレノイド715を作動させる。なお、本実施形態では、使用者のモータ2の起動指示操作に応じてS31でモータ2の駆動が開始されてから、使用者の打込み動作の開始指示操作(コンタクトアーム13の押し付け操作に続くトリガ140の引き操作)がなされるまでに、十分な回転エネルギを蓄積させることができる。このため、コントローラ18は、打込み動作の開始指示操作に応じて、実質的に直ちにソレノイド715を作動させることができる。 When the contact arm switch 131 is turned on and the trigger switch 141 is turned on before the predetermined time elapses (S33: NO, S34: YES, S35: YES), a start instruction of the driving operation is given. It means that it was input. Then, the controller 18 operates the solenoid 715 (S36). The controller 18 specifies the rotational speed of the motor 2 (and consequently the flywheel 4) based on the signal output from the Hall sensor 203. If the controller 18 determines that sufficient rotational energy is stored in the flywheel 4 based on the rotational speed, it immediately operates the solenoid 715, otherwise after sufficient rotational energy is stored. , Operate the solenoid 715. In the present embodiment, after the driving of the motor 2 is started in S31 in response to the user's start instruction operation of the motor 2, the start instruction operation of the driving operation of the user Sufficient rotational energy can be stored until the pull operation 140) is performed. Therefore, the controller 18 can operate the solenoid 715 substantially immediately in response to the start instruction operation of the driving operation.
 ソレノイド715の作動により、押出しレバー711が回動し、押出しレバー711の後端部がドライバ3のレバー当接部305を後方から前方へ押圧する。ドライバ3は、初期位置から打込み位置へ向かって、動作線Lに沿って前方へ移動を開始する。ドライバ3は、離間位置に保持されているリング部材5に対しても相対的に移動する。 By the operation of the solenoid 715, the push-out lever 711 is pivoted, and the rear end portion of the push-out lever 711 presses the lever contact portion 305 of the driver 3 from the rear to the front. The driver 3 starts moving forward along the operation line L from the initial position toward the driving position. The driver 3 also moves relative to the ring member 5 held at the separated position.
 押圧ローラ83は、後方へ向けて厚みが漸増する傾斜部302の当接面に前方から当接する。傾斜部302が押圧ローラ83に押圧されつつ前方へ移動するのに伴って、リング部材5の外周係合部51の一部がドライバ3の係合溝308(図6参照)に進入して、係合溝308の開口端に当接する。なお、リング係合部306の前端部に傾斜部307が形成されていること、また、係合溝308の左右方向の幅は、開口端側の方が広いことから、外周係合部51は、係合溝308にスムーズに進入することができる。押圧ローラ83が傾斜部302の当接面に当接し、外周係合部51の一部が係合溝308の開口端に当接した状態で、ドライバ3が更に前方へ移動すると、傾斜部302はカムとして機能し、また、くさび効果を発揮する。このため、離間位置に保持されていたリング部材5がリング付勢部60の板バネの付勢力に抗して下方へ押し下げられる。同時に、最下方位置に保持されていた押圧ローラ83が、弾性部材87の弾性力に抗して上方へ押し上げられる。 The pressure roller 83 abuts from the front on the contact surface of the inclined portion 302 whose thickness gradually increases toward the rear. As the inclined portion 302 is moved forward while being pressed by the pressing roller 83, a part of the outer peripheral engaging portion 51 of the ring member 5 enters the engaging groove 308 (see FIG. 6) of the driver 3, It abuts on the open end of the engagement groove 308. The outer peripheral engaging portion 51 is formed by the inclined portion 307 being formed at the front end portion of the ring engaging portion 306 and the width in the left and right direction of the engaging groove 308 being wider at the open end side. , And can smoothly enter the engagement groove 308. When the driver 3 further moves forward with the pressure roller 83 in contact with the contact surface of the inclined portion 302 and a part of the outer peripheral engagement portion 51 in contact with the opening end of the engagement groove 308, the inclined portion 302 Acts as a cam and also exerts a wedge effect. For this reason, the ring member 5 held at the separated position is pushed downward against the biasing force of the plate spring of the ring biasing unit 60. At the same time, the pressure roller 83 held at the lowermost position is pushed upward against the elastic force of the elastic member 87.
 ドライバ3が更に前方へ移動し、図11に示す伝達位置に達すると、図12に示すように、下方へ移動されたリング部材5の内周係合部53の一部がフライホイール4の係合溝47に進入して、係合溝47の開口端に当接し、リング部材5は、それ以上下方への移動が禁止された状態となる。このとき、リング部材5は、ストッパ66から離間した状態でリング付勢部60によって最下方位置で回転可能に支持されており、内周係合部53の一部のみがフライホイール4の上部に当接している。つまり、リング部材5は、保持機構6によって接触位置に保持されている。また、傾斜部302によって押圧ローラ83が押し上げられることで圧縮された弾性部材87の弾性力により、リング部材5は、ドライバ3を介してフライホイール4に対して押し付けられている。このため、ドライバ3の係合溝308の開口端において、ドライバ3とリング部材5の外周係合部51の一部が摩擦係合状態に置かれる。また、フライホイール4の係合溝47の開口端において、フライホイール4とリング部材5の内周係合部53の一部が摩擦係合状態に置かれる。 When the driver 3 further moves forward and reaches the transmission position shown in FIG. 11, a part of the inner peripheral engaging portion 53 of the ring member 5 moved downward is engaged with the flywheel 4 as shown in FIG. The ring member 5 enters the mating groove 47 and abuts on the open end of the engagement groove 47, and the ring member 5 is in a state in which the further downward movement is prohibited. At this time, the ring member 5 is rotatably supported at the lowermost position by the ring urging portion 60 in a state of being separated from the stopper 66, and only a part of the inner peripheral engaging portion 53 is It abuts. That is, the ring member 5 is held at the contact position by the holding mechanism 6. Further, the ring member 5 is pressed against the flywheel 4 via the driver 3 by the elastic force of the elastic member 87 compressed by the pressing roller 83 being pushed up by the inclined portion 302. For this reason, at the open end of the engagement groove 308 of the driver 3, the driver 3 and a part of the outer peripheral engagement portion 51 of the ring member 5 are put in frictional engagement. Further, at the open end of the engagement groove 47 of the flywheel 4, a part of the flywheel 4 and the inner peripheral engagement portion 53 of the ring member 5 is placed in a frictional engagement state.
 このように、リング部材5がドライバ3およびフライホイール4と摩擦係合状態に置かれることで、ドライバ3は、リング部材5を介してフライホイール4の回転エネルギを受けることが可能な伝達可能状態となる。なお、「摩擦係合状態」とは、2つの部材が互いに摩擦力によって係合した状態(滑り状態を含む)をいう。リング部材5は、リング部材5の内周係合部53のうち、ドライバ3によってフライホイール4に押し付けられた部分のみがフライホイール4と摩擦係合した状態で、フライホイール4によって回転軸A2周りに回転される。なお、本実施形態では、図11に示すように、リング部材5はフライホイール4よりも大径に形成されており、リング部材5の内径はフライホイール4の外径(厳密には、フライホイール4の回転軸A1から係合溝47の底部までの径)よりも大きい。このため、リング部材5の回転軸A2は、フライホイール4の回転軸A1とは異なっており、回転軸A1よりも下方(ドライバ3から離れる方向)に位置する。なお、回転軸A2は、回転軸A1に対して平行に延在する。リング部材5は、リング部材5と摩擦係合した状態のドライバ3を、図11に示す伝達位置から前方へ向けて押し出す。 Thus, by placing the ring member 5 in frictional engagement with the driver 3 and the flywheel 4, the driver 3 can transmit the rotational energy of the flywheel 4 via the ring member 5 It becomes. The “frictional engagement state” refers to a state in which two members are engaged with each other by a frictional force (including a sliding state). The ring member 5 is rotated around the rotation axis A2 by the flywheel 4 in a state where only a portion of the inner peripheral engagement portion 53 of the ring member 5 pressed against the flywheel 4 by the driver 3 is frictionally engaged with the flywheel 4 Will be rotated. In the present embodiment, as shown in FIG. 11, the ring member 5 is formed larger in diameter than the flywheel 4, and the inner diameter of the ring member 5 is the outer diameter of the flywheel 4 (strictly, the flywheel The diameter from the rotation axis A1 of 4 to the bottom of the engagement groove 47). For this reason, the rotation axis A2 of the ring member 5 is different from the rotation axis A1 of the flywheel 4 and is located below the rotation axis A1 (in the direction away from the driver 3). The rotation axis A2 extends parallel to the rotation axis A1. The ring member 5 pushes the driver 3 in a state of frictional engagement with the ring member 5 forward from the transmission position shown in FIG.
 ドライバ3が伝達位置から前方へ押し出されると、図13に示すように、押圧ローラ83は、ローラ当接部301のうち傾斜部302の後側部分の当接面に当接すると、押圧ローラ83は最上方位置まで押し上げられる。弾性部材87の弾性力により、リング部材5は、ドライバ3を介してフライホイール4に対して更に押し付けられる。よって、ドライバ3と外周係合部51の一部、および、フライホイール4と内周係合部53の一部は、より強固に摩擦係合した状態となる。これにより、リング部材5は、より効率的にフライホイール4の回転エネルギをドライバ3に伝達することができる。なお、図13は、ドライバ3が釘101(図1参照)を打撃する打撃位置に配置された状態を示している。なお、コントローラ18は、第1制御処理のS36(図9参照)においてソレノイド715を作動させた後、ドライバ3が打撃位置まで到達するのに必要な所定時間が経過すると、ソレノイド715への電流供給を停止することで、押出しレバー711を初期位置に戻す。 When the driver 3 is pushed forward from the transmission position, as shown in FIG. 13, when the pressure roller 83 abuts on the contact surface of the roller abutment portion 301 on the rear side of the inclined portion 302, the pressure roller 83 Is pushed up to the top position. The ring member 5 is further pressed against the flywheel 4 through the driver 3 by the elastic force of the elastic member 87. Therefore, the driver 3 and a part of the outer peripheral engaging part 51, and the flywheel 4 and a part of the inner peripheral engaging part 53 are in a state of being more strongly frictionally engaged. Thereby, the ring member 5 can transmit the rotational energy of the flywheel 4 to the driver 3 more efficiently. FIG. 13 shows a state where the driver 3 is disposed at the striking position where the driver 3 strikes the nail 101 (see FIG. 1). The controller 18 operates the solenoid 715 in S36 of the first control process (see FIG. 9), and then supplies a current to the solenoid 715 when a predetermined time required for the driver 3 to reach the striking position has elapsed. To return the push lever 711 to its initial position.
 ドライバ3は、打撃位置に達して釘101を打撃し、更に、図2に示す打込み位置まで移動して、釘101を被加工物100に打ち込む。ドライバ3のアーム部35の前端が前方ストッパ部117に後方から当接することで、ドライバ3の移動が停止される。これに伴い、戻し機構(図示せず)が作動して、ドライバ3を初期位置に復帰させる。 The driver 3 reaches the striking position, strikes the nail 101, and further moves to the striking position shown in FIG. 2 to drive the nail 101 into the workpiece 100. When the front end of the arm 35 of the driver 3 abuts on the front stopper 117 from the rear, the movement of the driver 3 is stopped. Along with this, a return mechanism (not shown) operates to return the driver 3 to the initial position.
 図9に示すように、コントローラ18は、S36でソレノイド715を作動させた後、トリガスイッチ141がオフ状態とされたか否かの判断処理に戻る(S32)。この間、モータ2の駆動は継続されている。トリガスイッチ141がオフ状態とされると(S32:YES)、コントローラ18は、上述のように、コンタクトアームスイッチ131およびトリガスイッチ141がオン状態とされたか否かの判断処理に戻る(S33~S35)。所定時間が経過する前に、使用者が改めて打込み動作の開始指示操作を行い、コンタクトアームスイッチ131およびトリガスイッチ141がオン状態とされると、コントローラ18はソレノイド715を作動させ、ドライバ3に打込み動作を行わせる(S33:NO、S34:YES、S35:YES、S36)。なお、前回の打込み動作によって、一旦、フライホイール4に蓄積された回転エネルギは減少するものの、上述のように、次の打込み動作の開始指示操作までモータ2の駆動が継続され、フライホイール4には回転エネルギが蓄積されている。このため、コントローラ18は、モータ2の起動後、2回目以降の打込み動作の開始指示操作についても、実質的に直ちにソレノイド715を作動させることができる。 As shown in FIG. 9, after activating the solenoid 715 in S36, the controller 18 returns to the process of determining whether the trigger switch 141 is turned off (S32). During this time, the driving of the motor 2 is continued. When the trigger switch 141 is turned off (S32: YES), as described above, the controller 18 returns to the process of determining whether the contact arm switch 131 and the trigger switch 141 are turned on (S33 to S35). ). Before the predetermined time elapses, when the user performs the start instruction operation of the driving operation again and the contact arm switch 131 and the trigger switch 141 are turned on, the controller 18 operates the solenoid 715 to drive the driver 3. The operation is performed (S33: NO, S34: YES, S35: YES, S36). Although the rotational energy temporarily stored in the flywheel 4 is decreased by the previous driving operation, as described above, the driving of the motor 2 is continued until the next driving operation start instruction operation, and the flywheel 4 is The rotational energy is stored. For this reason, the controller 18 can operate the solenoid 715 substantially immediately even after the start of the motor 2 for the start instruction operation of the second and subsequent driving operations.
 トリガスイッチ141がオフ状態とされた後、所定時間が経過すると(S33:YES)、コントローラ18は、モータ2の通電を中止することで、モータ2の駆動を停止する(S37)。これに伴い、フライホイール4の回転が停止する。コントローラ18は、第1制御処理を終了して打込み制御処理(図8参照)に戻り、トリガスイッチ141またはコンタクトアームスイッチ131がオン状態とされるまで待機する(S1~S2)。 After the trigger switch 141 is turned off, when a predetermined time elapses (S33: YES), the controller 18 stops the drive of the motor 2 by stopping the energization of the motor 2 (S37). Along with this, the rotation of the flywheel 4 is stopped. The controller 18 ends the first control process and returns to the drive control process (see FIG. 8), and waits until the trigger switch 141 or the contact arm switch 131 is turned on (S1 to S2).
 以下、第2制御処理について説明する。なお、モータ2の駆動およびソレノイド715の作動によるドライバ駆動機構400およびドライバ3の動作自体は、基本的に第1制御処理と同様であるため、以下では、コントローラ18(詳細にはCPU)の動作を主として説明する。図10に示すように、第2制御処理に移行すると、コントローラ18はまず、モータ2の起動指示の入力に応じて、モータ2の駆動を開始する(S41)。コントローラ18は、トリガスイッチ141がオフ状態、且つ、コンタクトアームスイッチ131がオン状態の間は、何れかのスイッチが切り替えられるまで待機する(S42:NO、S43:NO)。 Hereinafter, the second control process will be described. In addition, since the operation itself of the driver drive mechanism 400 and the driver 3 by the drive of the motor 2 and the operation of the solenoid 715 is basically the same as the first control process, the operation of the controller 18 (specifically the CPU) Mainly. As shown in FIG. 10, when shifting to the second control processing, the controller 18 first starts driving the motor 2 in response to the input of the start instruction of the motor 2 (S41). While the trigger switch 141 is in the off state and the contact arm switch 131 is in the on state, the controller 18 stands by until any switch is switched (S42: NO, S43: NO).
 コンタクトアームスイッチ131は既にオン状態とされているため、トリガスイッチ141がオン状態とされた場合(S42:YES)、コントローラ18は、打込み動作の開始指示が入力されたと認識し、ソレノイド715を作動させる(S44)。なお、第2制御処理では、コンタクトアーム13の被加工物への押し付け操作とトリガ140の引き操作とがほぼ同時に続けて行われた場合には、フライホイール4に十分な回転エネルギが蓄積されていない場合がありうる。この場合には、コントローラ18は、十分な回転エネルギが蓄積された後でソレノイド715を作動させる。第2制御処理と同様、コントローラ18は、ドライバ3が打撃位置まで到達するのに必要な所定時間が経過すると、ソレノイド715への電流供給を停止する。 Since the contact arm switch 131 is already in the on state, when the trigger switch 141 is in the on state (S42: YES), the controller 18 recognizes that the start instruction of the driving operation is input, and operates the solenoid 715. (S44). In the second control process, sufficient rotational energy is accumulated in the flywheel 4 when the pressing operation of the contact arm 13 against the workpiece and the pulling operation of the trigger 140 are performed almost simultaneously. It may not be. In this case, the controller 18 activates the solenoid 715 after sufficient rotational energy has been stored. As in the second control process, the controller 18 stops the current supply to the solenoid 715 when a predetermined time required for the driver 3 to reach the striking position has elapsed.
 コントローラ18は、ソレノイド715を作動させた後、コンタクトアームスイッチ131がオフ状態とされるまで待機する(S45:NO)。つまり、コントローラ18は、コンタクトアーム13の押し付け操作が一旦解除されない限り、処理を進めない。コンタクトアームスイッチ131がオフ状態とされると(S45:YES)、コントローラ18は、コンタクトアームスイッチ131がオフ状態とされてから所定時間を経過したか否か判断する(S46)。モータ2の駆動開始後に、トリガスイッチ141がオフ状態のままコンタクトアームスイッチ131がオフ状態とされた場合も(S42:NO、S43:YES)、コントローラ18は、S46の処理に移行する。コントローラ18は、所定時間が経過しておらず、コンタクトアームスイッチ131がオン状態とされない間は待機する(S46:NO、S47:NO)。なお、S46で使用される所定時間は、第1制御処理と同じであってもよいし、異なっていてもよい。本実施形態では、所定時間の一例として、第1制御処理と同じ5秒が採用されている。 After operating the solenoid 715, the controller 18 stands by until the contact arm switch 131 is turned off (S45: NO). That is, the controller 18 does not proceed with the process unless the pressing operation of the contact arm 13 is released once. When the contact arm switch 131 is turned off (S45: YES), the controller 18 determines whether a predetermined time has elapsed since the contact arm switch 131 was turned off (S46). Even when the contact arm switch 131 is turned off with the trigger switch 141 turned off after the start of driving of the motor 2 (S42: NO, S43: YES), the controller 18 shifts to the process of S46. The controller 18 stands by while the predetermined time has not passed and the contact arm switch 131 is not turned on (S46: NO, S47: NO). The predetermined time used in S46 may be the same as or different from the first control process. In the present embodiment, the same five seconds as the first control process are employed as an example of the predetermined time.
 所定時間が経過する前に、コンタクトアームスイッチ131が再びオン状態とされた場合(S46:NO、S47:YES)、コントローラ18は、トリガスイッチ141がオン状態とされたか否かの判断に戻る(S42)。トリガスイッチ141がオン状態とされた場合には、コントローラ18は、打込み動作の開始指示が入力されたと認識し、再びソレノイド715を作動させ、ドライバ3に打込み動作を行わせる(S42:YES、S44)。なお、上述のように、前回の打込み動作時からモータ2の駆動が継続されており、十分な回転エネルギが蓄積されているため、トリガスイッチ141がオン状態とされるとソレノイド715は実質的に直ちに作動される。 If the contact arm switch 131 is turned on again before the predetermined time elapses (S46: NO, S47: YES), the controller 18 returns to the determination of whether the trigger switch 141 is turned on (S46). S42). When the trigger switch 141 is turned on, the controller 18 recognizes that the start instruction of the driving operation has been input, operates the solenoid 715 again, and causes the driver 3 to perform the driving operation (S42: YES, S44). ). As described above, since the driving of the motor 2 is continued from the previous driving operation and sufficient rotational energy is stored, the solenoid 715 is substantially turned on when the trigger switch 141 is turned on. It is activated immediately.
 一方、コンタクトアームスイッチ131がオン状態とされないまま、所定時間が経過すると(S47:NO、S46:YES)、コントローラ18は、モータ2の駆動を停止する(S48)。コントローラ18は、第2制御処理を終了して打込み制御処理(図8参照)に戻り、トリガスイッチ141またはコンタクトアームスイッチ131がオン状態とされるまで待機する(S1~S2)。 On the other hand, when the predetermined time has passed without the contact arm switch 131 being turned on (S47: NO, S46: YES), the controller 18 stops the driving of the motor 2 (S48). The controller 18 ends the second control process and returns to the drive control process (see FIG. 8), and stands by until the trigger switch 141 or the contact arm switch 131 is turned on (S1 to S2).
 以上に説明したように、本実施形態における第1制御処理は、モータ2の非駆動時にトリガスイッチ141がオン状態とされると(つまり、使用者がトリガ140を引き操作すると)開始される。そして、モータ2の駆動が開始された後、コンタクトアームスイッチ131、トリガスイッチ141が順にオン状態とされると(つまり、使用者が、コンタクトアーム13の押し付け操作とトリガ140の引き操作を順に行うと)、ソレノイド715が作動され、ドライバ3による打込み動作が行われる。よって、使用者は、予めトリガ140を引き操作してモータ2の駆動を開始させておくことで、その後、釘101を打込む位置を特定し、コンタクトアーム13の押し付け操作とトリガ140の引き操作(打込み動作の開始指示操作)を完了するまでに、フライホイール4に十分な回転エネルギを蓄積させておくことができる。よって、釘打ち機1は、打込み動作の開始指示操作の完了後、速やかにドライバ3の打込み動作を開始することができる。特に、打込み動作の開始指示操作として、コンタクトアーム13の押し付け操作とトリガ140の引き操作とがほぼ同時に行われた場合であっても、速やかに打込み動作を開始することができる。つまり、打込み動作の開始指示操作に対するドライバ3の打込み動作開始の応答性を向上させることができる。 As described above, the first control process in the present embodiment is started when the trigger switch 141 is turned on (that is, when the user pulls the trigger 140) when the motor 2 is not driven. Then, after driving of the motor 2 is started, when the contact arm switch 131 and the trigger switch 141 are sequentially turned on (that is, the user sequentially performs the pressing operation of the contact arm 13 and the pulling operation of the trigger 140). And the solenoid 715 is actuated, and the driver 3 performs a driving operation. Therefore, the user pulls the trigger 140 in advance to start driving of the motor 2 and thereafter specifies the position where the nail 101 is driven in, and the pressing operation of the contact arm 13 and the pulling operation of the trigger 140 Sufficient rotational energy can be accumulated in the flywheel 4 until (the start instruction operation of the driving operation) is completed. Therefore, the nailing machine 1 can start the driving operation of the driver 3 promptly after the start instruction operation of the driving operation is completed. In particular, even when the pressing operation of the contact arm 13 and the pulling operation of the trigger 140 are performed almost simultaneously as the start instruction operation of the driving operation, the driving operation can be started promptly. That is, it is possible to improve the responsiveness of the start of the driving operation of the driver 3 to the start instruction operation of the driving operation.
 また、一旦モータ2が駆動されると、打込み動作が行われた後も、トリガスイッチ141がオフ状態とされてから所定時間が経過するまで、モータ2の駆動が継続される。つまり、この間はフライホイール4に回転エネルギを蓄積する状態が維持される。よって、使用者は、この間に新たに打込み動作の開始指示操作を行うことで、速やかに2回目以降の打込み動作を開始させることができる。つまり、使用者は、短期間で複数回の打込み動作を連続して行うことができる。 In addition, once the motor 2 is driven, the driving of the motor 2 is continued until a predetermined time elapses after the trigger switch 141 is turned off even after the driving operation is performed. That is, during this time, the state of storing rotational energy in the flywheel 4 is maintained. Therefore, the user can start the second and subsequent driving operations promptly by newly performing the starting operation of starting the driving operation during this period. That is, the user can carry out a plurality of driving operations continuously in a short time.
 一方、本実施形態における第2制御処理は、モータ2の非駆動時にコンタクトアームスイッチ131がオン状態とされると(つまり、使用者がコンタクトアーム13の押し付け操作をすると)開始される。そして、モータ2の駆動が開始された後、トリガスイッチ141がオン状態とされると(つまり、使用者がトリガ140の引き操作を行うと)、ソレノイド715が作動され、ドライバ3による打込み動作が行われる。また、一旦モータ2が駆動されると、打込み動作が行われた後も、コンタクトアームスイッチ131がオフ状態とされてから所定時間が経過するまで、モータ2の駆動が継続される。よって、第2制御処理によれば、フライホイール4の回転エネルギの蓄積状況によっては、1回目の打込み動作の開始は第1制御処理と比べて若干遅くなるものの、2回目以降の打込み動作の開始指示がモータ2の駆動継続中に行われる場合には、第1制御処理と同様、打込み動作の開始指示操作に対するドライバ3の打込み動作開始の応答性を向上させることができる。 On the other hand, the second control process in the present embodiment is started when the contact arm switch 131 is turned on while the motor 2 is not driven (that is, when the user presses the contact arm 13). Then, after the driving of the motor 2 is started, when the trigger switch 141 is turned on (in other words, when the user pulls the trigger 140), the solenoid 715 is activated and the driver 3 performs the driving operation. To be done. In addition, once the motor 2 is driven, the driving of the motor 2 is continued until a predetermined time elapses after the contact arm switch 131 is turned off even after the driving operation is performed. Therefore, according to the second control process, although the start of the first driving operation is slightly delayed compared to the first control processing depending on the accumulation state of the rotational energy of the flywheel 4, the start of the second and subsequent driving operations In the case where the instruction is performed while the driving of the motor 2 is continued, the responsiveness of the start of the driving operation of the driver 3 to the start instruction operation of the driving operation can be improved as in the first control processing.
 本実施形態では、上述のように、モータ2の起動指示が、トリガスイッチ141およびコンタクトアームスイッチ131から入力可能であって、夫々に対応する第1制御処理と第2制御処理においてモータ2やソレノイド715の制御が行われる。このように、モータ2の起動指示および打込み動作の開始指示の多様化により、釘打ち機1の利便性が高められている。使用者は、予めトリガ140を引き操作してモータ2の駆動を開始させた後、コンタクトアーム13の押し付け操作とトリガ140の引き操作を行ってもよいし、コンタクトアーム13の押し付け操作によってモータ2の駆動を開始させ、続けてトリガ140の引き操作を行ってもよい。 In the present embodiment, as described above, the start instruction of the motor 2 can be input from the trigger switch 141 and the contact arm switch 131, and the motor 2 and the solenoid are controlled in the first control process and the second control process respectively. Control of 715 is performed. As described above, the convenience of the nailing machine 1 is enhanced by diversification of the start instruction of the motor 2 and the start instruction of the driving operation. The user may pull the trigger 140 in advance to start driving the motor 2, and then may perform the pressing operation of the contact arm 13 and the pulling operation of the trigger 140. The driving of the trigger 140 may be started, and then the trigger 140 may be pulled.
 また、本実施形態では、1つのトリガスイッチ141が、モータ2の起動指示の入力のためのスイッチと、打込み動作の開始指示の入力のためのスイッチとして兼用されている。よって、使用者は、モータ2の起動指示操作と、打込み動作の開始指示操作とを、同じ部材であるトリガ140の引き操作によって容易に実現することができる。また、釘打ち機1の部品点数の増加を回避することができる。また、本実施形態では、コントローラ18が、モータ2の非駆動時にトリガスイッチ141がオン状態とされた場合には、モータ2の駆動開始指示が入力されたと判断し、モータ2の駆動時に、コンタクトアームスイッチ131の後でトリガスイッチ141がオン状態とされた場合には、打込み動作の開始指示が入力されたと判断することで、夫々の場合に応じた適切な制御を実現している。 Further, in the present embodiment, one trigger switch 141 is also used as a switch for inputting a start instruction of the motor 2 and a switch for inputting a start instruction of a driving operation. Therefore, the user can easily realize the start instruction operation of the motor 2 and the start instruction operation of the driving operation by the pull operation of the trigger 140 which is the same member. Moreover, the increase in the number of parts of the nailing machine 1 can be avoided. Further, in the present embodiment, when the trigger switch 141 is turned on when the motor 2 is not driven, the controller 18 determines that the drive start instruction of the motor 2 is input, and contacts the drive 2 when the motor 2 is driven. When the trigger switch 141 is turned on after the arm switch 131, it is determined that the start instruction of the driving operation is input, thereby realizing appropriate control corresponding to each case.
[第2実施形態]
 以下、図14~図18を参照して、第2実施形態に係る釘打ち機1Aについて説明する。なお、本実施形態の釘打ち機1Aの構成は、照明ユニット113を更に備える点において、第1実施形態の釘打ち機1とは異なっている。また、釘打ち機1Aのコントローラ18によって実行される打込み制御処理の内容は、第1実施形態における打込み制御処理の内容と一部が異なっている。以下では、第1実施形態と同一の構成および処理の内容については、図示および説明を省略または簡略化し、主に異なる構成および処理の内容について図を参照して説明する。
Second Embodiment
The nailing machine 1A according to the second embodiment will be described below with reference to FIGS. 14 to 18. The configuration of the nailing machine 1A of the present embodiment is different from the nailing machine 1 of the first embodiment in that the lighting unit 113 is further provided. The contents of the driving control process executed by the controller 18 of the nailing machine 1A are partially different from the contents of the driving control process in the first embodiment. In the following, the same configuration and processing as those in the first embodiment will be omitted or simplified in illustration and description, and mainly different configurations and processing will be described with reference to the drawings.
 まず、照明ユニット113について説明する。図14に示すように、釘打ち機1Aは、本体ハウジング11の前端部に設けられた照明ユニット113を備えている。詳細な図示は省略するが、本実施形態の照明ユニット113は、光源としての発光ダイオード(LED)114(図15参照)と、LEDを収容する透光材料製(透明樹脂、ガラス等)のケースを主体として構成されている。照明ユニット113は、LED114が発する光が射出口123の近傍領域(言い換えると、釘101が打込まれる場所を含む領域)を照らすように、光の照射方向が設定されている。 First, the lighting unit 113 will be described. As shown in FIG. 14, the nailing machine 1 </ b> A includes a lighting unit 113 provided at the front end of the main body housing 11. Although detailed illustration is omitted, the lighting unit 113 of this embodiment is a case made of a light emitting diode (LED) 114 (see FIG. 15) as a light source and a translucent material (transparent resin, glass, etc.) for housing the LED. Is mainly composed of The illumination unit 113 has a light irradiation direction set such that the light emitted from the LED 114 illuminates the area near the exit 123 (in other words, the area including the place where the nail 101 is driven).
 図15に示すように、照明ユニット113のLED114は、コントローラ18に電気的に接続されている。処理の詳細な説明は省略するが、本実施形態では、コントローラ18は、モータ2の起動指示の入力に応じて、モータ2の駆動開始と同時にLED114を点灯し、モータ2の起動指示に用いられたトリガスイッチ141またはコンタクトアームスイッチ131がオフ状態とされた後、所定時間が経過すると、LED114を消灯する。なお、LED114を消灯するまでの所定時間は、例えば、モータ2の駆動停止までの所定時間と同じであってもよいし、モータ2の駆動停止までの所定時間よりも長くてもよい。 As shown in FIG. 15, the LEDs 114 of the lighting unit 113 are electrically connected to the controller 18. Although the detailed description of the process is omitted, in the present embodiment, the controller 18 lights the LED 114 simultaneously with the start of the driving of the motor 2 in response to the input of the start instruction of the motor 2 and is used for the starting instruction of the motor 2 After the trigger switch 141 or the contact arm switch 131 is turned off, the LED 114 is turned off when a predetermined time elapses. The predetermined time until the LED 114 is turned off may be, for example, the same as the predetermined time until the drive stop of the motor 2 or may be longer than the predetermined time until the drive stop of the motor 2.
 以下、本実施形態における打込み制御処理について説明する。なお、モータ2の駆動およびソレノイド715の作動によるドライバ駆動機構400およびドライバ3の動作自体は、基本的に第1実施形態で説明した通りであるため、以下では、コントローラ18(詳細にはCPU)の動作を主として説明する。 Hereinafter, the implantation control process in this embodiment will be described. In addition, since the operation itself of the driver drive mechanism 400 and the driver 3 by the drive of the motor 2 and the operation of the solenoid 715 is basically as described in the first embodiment, in the following, the controller 18 (specifically the CPU) The operation of will be mainly described.
 図16に示すように、本実施形態の打込み制御処理では、第1実施形態の打込み制御処理と同様、コントローラ18は、トリガスイッチ141およびコンタクトアームスイッチ131の何れもオフ状態の間は待機する(S101:NO、S102:NO)。コントローラ18は、トリガスイッチ141がオン状態とされた場合(S101:YES)、第1実施形態とは異なり、モータ2の駆動を開始することなく、トリガスイッチ141がオフ状態とされるまで待機する(S102:NO)。コントローラ18は、トリガスイッチ141がオフ状態とされた場合(S102:YES)、つまり、モータ2が駆動されていない状態で、トリガスイッチ141がオン状態とされた後にオフ状態とされた場合(使用者によるトリガ140の引き操作の後、引き操作が解除された場合)、これをモータ2の起動指示(駆動開始指示)の入力として認識し、後述の第1制御処理に移行する(S300および図17)。一方、コントローラ18は、トリガスイッチ141がオフ状態で、コンタクトアームスイッチ131がオン状態とされた場合(S101:NO、S201:YES)、後述の第2制御処理に移行する(S400および図18)。 As shown in FIG. 16, in the implantation control process of the present embodiment, the controller 18 stands by while both the trigger switch 141 and the contact arm switch 131 are in the off state as in the implantation control process of the first embodiment ( S101: NO, S102: NO). When the trigger switch 141 is turned on (S101: YES), the controller 18 stands by until the trigger switch 141 is turned off without starting the driving of the motor 2, unlike the first embodiment. (S102: NO). When the trigger switch 141 is turned off (S102: YES), that is, the controller 18 is turned off after the trigger switch 141 is turned on with the motor 2 not driven (use When the pull operation is released after the operator pulls the trigger 140), this is recognized as an input of the start instruction (drive start instruction) of the motor 2, and the process proceeds to the first control process described later (S300 and FIG. 17). On the other hand, when the trigger switch 141 is turned off and the contact arm switch 131 is turned on (S101: NO, S201: YES), the controller 18 shifts to a second control process described later (S400 and FIG. 18). .
 以下、第1制御処理について説明する。図17に示すように、第1制御処理に移行すると、コントローラ18はまず、モータ2の起動指示の入力に応じて、モータ2の駆動を開始する(S301)。これにより、フライホイール4も回転駆動され、回転エネルギの蓄積を開始する。また、上述のように、トリガスイッチ141およびコンタクトアームスイッチ131は何れもオフ状態である。コントローラ18は、トリガスイッチ141がオフ状態とされてから所定時間が経過したか否かを判断する(S303)。なお、ここで用いられる所定時間は特に限定されるものではないが、本実施形態では、第1実施形態のS33と同様、5秒が採用されている。 Hereinafter, the first control process will be described. As shown in FIG. 17, when shifting to the first control processing, the controller 18 first starts driving the motor 2 in response to the input of the start instruction of the motor 2 (S301). As a result, the flywheel 4 is also rotationally driven to start storing rotational energy. Further, as described above, both the trigger switch 141 and the contact arm switch 131 are in the off state. The controller 18 determines whether a predetermined time has elapsed since the trigger switch 141 was turned off (S303). In addition, although the predetermined time used here is not specifically limited, In this embodiment, 5 seconds are employ | adopted like S33 of 1st Embodiment.
 コントローラ18は、所定時間が経過せず、コンタクトアームスイッチ131がオン状態とされない間は待機する(S303:NO、S304:NO)。この間もモータ2の駆動は継続される。コンタクトアームスイッチ131がオフ状態のまま、所定時間が経過した場合には(S304:NO、S303:YES)、コントローラ18はモータ2の駆動を停止し(S310)、第1制御処理を終了して打込み制御処理(図16参照)に戻る。 The controller 18 stands by while the predetermined time does not elapse and the contact arm switch 131 is not turned on (S303: NO, S304: NO). Driving of the motor 2 is continued also during this period. When the contact arm switch 131 remains off and the predetermined time has elapsed (S304: NO, S303: YES), the controller 18 stops the driving of the motor 2 (S310), and ends the first control process. The process returns to the drive control process (see FIG. 16).
 所定時間が経過する前にコンタクトアームスイッチ131がオン状態とされたものの、トリガスイッチ141がオフ状態の場合(S303:NO、S304:YES、S305:NO)、コントローラ18は、所定時間が経過するまで監視を継続する。この間もモータ2の駆動は継続される。トリガスイッチ141がオフ状態のまま、所定時間が経過した場合には(S305:NO、S303:YES)、コントローラ18はモータ2の駆動を停止し(S310)、第1制御処理を終了する。なお、ここまでで説明したS303~S305、S310の処理は、第1実施形態のS33~S35、S37の処理と実質的に同じである。 If the contact arm switch 131 is turned on before the predetermined time passes, but the trigger switch 141 is off (S303: NO, S304: YES, S305: NO), the controller 18 passes the predetermined time. Continue monitoring until Driving of the motor 2 is continued also during this period. When the predetermined time has passed with the trigger switch 141 turned off (S305: NO, S303: YES), the controller 18 stops the driving of the motor 2 (S310), and ends the first control process. The processes of S303 to S305 and S310 described above are substantially the same as the processes of S33 to S35 and S37 of the first embodiment.
 所定時間が経過する前に、コンタクトアームスイッチ131がオン状態とされ、更に、トリガスイッチ141がオン状態とされた場合(S303:NO、S304:YES、S305:YES)、打込み動作の開始指示が入力されたことを意味する。コントローラ18は、フライホイール4に十分な回転エネルギが蓄積されていると判断した場合には直ちに、そうでなければ十分な回転エネルギが蓄積された後、モータ2への通電を中止することで、モータ2の駆動を停止する(S306)。なお、モータ2の駆動が停止されても、フライホイール4およびモータ2のロータは慣性で回転を継続する。コントローラ18は、ソレノイド715に通電して作動させ(S307)、ドライバ3に打込み動作を行わせる。ドライバ3が打込み位置に到達すると、戻し機構(図示せず)が作動して、ドライバ3を初期位置に復帰させる。 When the contact arm switch 131 is turned on and the trigger switch 141 is turned on before the predetermined time elapses (S303: NO, S304: YES, S305: YES), the start instruction of the driving operation is It means that it was input. As soon as the controller 18 determines that sufficient rotational energy is stored in the flywheel 4, the controller 18 stops energization of the motor 2 after sufficient rotational energy has been stored. The drive of the motor 2 is stopped (S306). Even if the driving of the motor 2 is stopped, the flywheel 4 and the rotor of the motor 2 continue to rotate by inertia. The controller 18 energizes and operates the solenoid 715 (S307) to cause the driver 3 to perform the driving operation. When the driver 3 reaches the driving position, a return mechanism (not shown) is activated to return the driver 3 to the initial position.
 なお、モータ2の駆動停止(S306)とソレノイド715の作動(S307)は、実質的に同じタイミングで行われてもよいし、ソレノイド715の作動が若干遅れて行われてもよい。コントローラ18は、ドライバ3が打撃位置まで到達するのに必要な所定時間が経過すると、ソレノイド715への電流供給を停止する。更に、コントローラ18は、モータ2の駆動を再開する(S308)。なお、モータ2の駆動停止(S306)から駆動再開(S308)までの時間(以下、休止時間ともいう)は、例えば、ソレノイド715が作動され、ドライバ3が打込み位置まで移動して釘101の打込みを完了するのに要する時間に応じて設定されればよい。なお、ドライバ3が打込み位置まで移動して釘101の打込みを完了するのに要する時間は、非常に短い時間である。本実施形態では、一例として、休止時間は、30ミリ秒とされている。 The drive stop of the motor 2 (S306) and the operation of the solenoid 715 (S307) may be performed at substantially the same timing, or the operation of the solenoid 715 may be performed with a slight delay. The controller 18 stops the current supply to the solenoid 715 when the predetermined time required for the driver 3 to reach the striking position has elapsed. Furthermore, the controller 18 resumes driving of the motor 2 (S308). During the time from the drive stop of the motor 2 (S306) to the drive resumption (S308) (hereinafter also referred to as rest time), for example, the solenoid 715 is operated, the driver 3 moves to the drive position and the nail 101 is driven. It may be set according to the time required to complete the The time required for the driver 3 to move to the driving position and complete the driving of the nail 101 is a very short time. In the present embodiment, as an example, the pause time is set to 30 milliseconds.
 コントローラ18は、S308でモータ2の駆動を再開した後、トリガスイッチ141がオフ状態とされるまで待機する(S309:NO)。使用者によってトリガ140の引き操作が解除され、トリガスイッチ141がオフ状態とされると(S309:YES)、コントローラ18は、S303に戻り、トリガスイッチ141がオフ状態とされてから所定時間が経過したか否かを判断する。所定時間が経過する前に、使用者が改めて打込み動作の開始指示操作を行った場合には、上述のようにドライバ3による打込み動作が行われる(S303:NO、S304~S308)。トリガスイッチ141がオフ状態とされた後、所定時間が経過すると、コントローラ18は、モータ2の駆動を停止し(S303:YES、S310)、第1制御処理を終了して打込み制御処理(図16参照)に戻る。 After restarting the driving of the motor 2 in S308, the controller 18 stands by until the trigger switch 141 is turned off (S309: NO). When the user cancels the pulling operation of the trigger 140 and the trigger switch 141 is turned off (S309: YES), the controller 18 returns to S303, and the predetermined time has elapsed since the trigger switch 141 is turned off. Determine if you If the user again issues an instruction to start the driving operation before the predetermined time has elapsed, the driving operation is performed by the driver 3 as described above (S303: NO, S304 to S308). After the trigger switch 141 is turned off, when a predetermined time elapses, the controller 18 stops the driving of the motor 2 (S303: YES, S310), and ends the first control process to execute the strike control process (FIG. 16). Return to
 以下、第2制御処理について説明する。図18に示すように、第2制御処理に移行すると、コントローラ18はまず、モータ2の起動指示の入力に応じて、モータ2の駆動を開始する(S401)。コントローラ18は、トリガスイッチ141がオフ状態、且つ、コンタクトアームスイッチ131がオン状態の間は、何れかのスイッチが切り替えられるまで待機する(S402:NO、S403:NO)。コンタクトアームスイッチ131は既にオン状態とされているため、トリガスイッチ141がオン状態とされた場合(S402:YES)、打込み動作の開始指示が入力されたことを意味する。コントローラ18は、フライホイール4に十分な回転エネルギが蓄積されていると判断した場合には直ちに、そうでなければ十分な回転エネルギが蓄積された後、モータ2の駆動を停止する(S404)。コントローラ18は、ソレノイド715に通電して作動させ(S405)、ドライバ3に打込み動作を行わせる。コントローラ18は、ソレノイド715への電流供給を停止した後、モータ2の駆動を再開する(S406)。なお、S404~S406の処理は、第1制御処理のS306~S308の処理と同じである。つまり、第1、第2制御処理の何れにおいても、打込み動作の開始指示が入力されると、モータ2の休止時間内にドライバ3によって被加工材に釘101が打ち込まれる。 Hereinafter, the second control process will be described. As shown in FIG. 18, when shifting to the second control process, the controller 18 first starts driving the motor 2 in response to the input of the start instruction of the motor 2 (S401). While the trigger switch 141 is in the off state and the contact arm switch 131 is in the on state, the controller 18 stands by until any switch is switched (S402: NO, S403: NO). Since the contact arm switch 131 is already in the ON state, when the trigger switch 141 is in the ON state (S402: YES), it means that the start instruction of the driving operation is input. If the controller 18 determines that sufficient rotational energy is stored in the flywheel 4, the controller 18 stops driving of the motor 2 after sufficient rotational energy has been stored, otherwise (S404). The controller 18 energizes and operates the solenoid 715 (S405) to cause the driver 3 to perform the driving operation. After stopping the current supply to the solenoid 715, the controller 18 resumes driving of the motor 2 (S406). The processes of S404 to S406 are the same as the processes of S306 to S308 of the first control process. That is, in any of the first and second control processes, the nail 3 is driven into the workpiece by the driver 3 within the idle time of the motor 2 when the start instruction of the driving operation is input.
 コントローラ18は、S406でモータ2の駆動を再開させた後、コンタクトアームスイッチ131がオフ状態とされるまで待機する(S407:NO)。使用者によってコンタクトアーム13の押し付け操作が一旦解除され、コンタクトアームスイッチ131がオフ状態とされると(S407:YES)、コントローラ18は、コンタクトアームスイッチ131がオフ状態とされてから所定時間を経過したか否か判断する(S408)。モータ2の駆動開始後に、トリガスイッチ141がオフ状態のままコンタクトアームスイッチ131がオフ状態とされた場合も(S402:NO、S403:YES)、コントローラ18は、S408の処理に移行する。コントローラ18は、所定時間が経過しておらず、コンタクトアームスイッチ131が再びオン状態とされない間は待機する(S408:NO、S409:NO)。 After restarting the driving of the motor 2 in S406, the controller 18 stands by until the contact arm switch 131 is turned off (S407: NO). When the pressing operation of the contact arm 13 is temporarily released by the user and the contact arm switch 131 is turned off (S407: YES), the controller 18 passes a predetermined time after the contact arm switch 131 is turned off. It is judged whether or not it has been done (S408). Even when the contact arm switch 131 is turned off with the trigger switch 141 turned off after the start of driving of the motor 2 (S402: NO, S403: YES), the controller 18 shifts to the processing of S408. The controller 18 stands by while the predetermined time has not passed and the contact arm switch 131 is not turned on again (S408: NO, S409: NO).
 所定時間が経過する前に、コンタクトアームスイッチ131が再びオン状態とされた場合(S408:NO、S409:YES)、コントローラ18は、トリガスイッチ141がオン状態とされたか否かの判断に戻る(S402)。トリガスイッチ141がオン状態とされた場合には、コントローラ18は、改めて打込み動作の開始指示が入力されたと認識し、上述のようにドライバ3による打込み動作が行われる(S402:YES、S404~S406)。コンタクトアームスイッチ131がオフ状態とされた後、所定時間が経過すると、コントローラ18は、モータ2の駆動を停止し(S407:YES、S408:YES、S410)、第2制御処理を終了して打込み制御処理(図16参照)に戻る。 If the contact arm switch 131 is turned on again before the predetermined time elapses (S408: NO, S409: YES), the controller 18 returns to the determination of whether the trigger switch 141 is turned on (S408: NO). S402). When the trigger switch 141 is turned on, the controller 18 recognizes that the start instruction of the implanting operation is input again, and the driver 3 performs the implanting operation as described above (S402: YES, S404 to S406). ). After the contact arm switch 131 is turned off, when a predetermined time elapses, the controller 18 stops driving the motor 2 (S407: YES, S408: YES, S410), and the second control process ends and the driving is performed. Return to control processing (see FIG. 16).
 以上に説明したように、本実施形態における第1制御処理でも、第1実施形態における第1制御処理と同様、使用者は、予めモータ2の起動指示操作によってモータ2の駆動を開始させておくことで、打込み動作の開始指示操作を完了するまでにフライホイール4に十分な回転エネルギを蓄積させておくことができる。よって、釘打ち機1Aは、打込み動作の開始指示操作の完了後、速やかにドライバ3の打込み動作を開始することができる。 As described above, in the first control processing in the present embodiment as well as the first control processing in the first embodiment, the user causes the driving of the motor 2 to be started by the start instruction operation of the motor 2 in advance. Thus, sufficient rotational energy can be stored in the flywheel 4 until the start instruction operation of the driving operation is completed. Therefore, the nailing machine 1A can immediately start the driving operation of the driver 3 after the start instruction operation of the driving operation is completed.
 また、第1実施形態では、モータ2の非駆動時にトリガスイッチ141がオン状態とされるだけでモータ2の駆動が開始されたのに対し、本実施形態(第2実施形態)では、モータ2の非駆動時にトリガスイッチ141が一旦オン状態とされた後にオフ状態とされてはじめて、モータ2の駆動が開始される。言い換えると、第1実施形態では、使用者によるトリガ140の引き操作のみがモータ2の起動指示操作であるのに対し、本実施形態では、使用者によるトリガ140の引き操作およびその解除がモータ2の起動指示操作とされている。何れの実施形態においても、モータ2の駆動が開始された後、コンタクトアームスイッチ131とトリガスイッチ141が順にオン状態とされたことを条件として、ドライバ3による打込み動作が行われる。つまり、打込み動作の開始指示操作として、使用者によるコンタクトアーム13の押し付け操作とトリガ140の引き操作がこの順番で行われない限り、ドライバ3による打込み動作は行われない。 In the first embodiment, the drive of the motor 2 is started only by turning on the trigger switch 141 when the motor 2 is not driven. In the second embodiment, the motor 2 is started. The driving of the motor 2 is started only when the trigger switch 141 is once turned on and then turned off when not driving. In other words, in the first embodiment, only the pull operation of the trigger 140 by the user is the start instruction operation of the motor 2, while in the present embodiment, the pull operation of the trigger 140 by the user and the release thereof are the motor 2. It is assumed that the start instruction operation of. In any of the embodiments, the driving operation by the driver 3 is performed on condition that the contact arm switch 131 and the trigger switch 141 are sequentially turned on after the driving of the motor 2 is started. That is, unless the pressing operation of the contact arm 13 by the user and the pulling operation of the trigger 140 are performed in this order as the start instruction operation of the driving operation, the driving operation by the driver 3 is not performed.
 一方で、コンタクトアーム13の押し付け操作とトリガ140の引き操作が両方とも行われれば、その順番にかかわらず、打込み動作を行う打込み機も知られている。よって、例えば、使用者が、第1実施形態の釘打ち機1において要求されるコンタクトアーム13とトリガ140の操作順を認識していない場合には、トリガ140の引き操作のみに応じてモータ2の駆動が開始されると、使用者は、トリガ140を引いたままコンタクトアーム13を被加工物に対して押し付けることで打込み動作を開始できるものと誤認する可能性がなくもない。このような場合、使用者は、コンタクトアーム13を被加工物に押し付けても打込み動作が行われないことで混乱する可能性がある。これに対し、本実施形態では、使用者が一旦トリガ140の引き操作を解除しない限り、モータ2の駆動が開始されない。よって、本実施形態の釘打ち機1Aによれば、使用者は、コンタクトアーム13を被加工物に押し付ける時点で、コンタクトアーム13を被加工物に押し付けた後にトリガ140を引き操作する必要があると容易に理解することができる。このように、釘打ち機1Aは、優れた操作性を発揮することができる。 On the other hand, if both the pressing operation of the contact arm 13 and the pulling operation of the trigger 140 are performed, a driving machine that performs a driving operation is known regardless of the order. Therefore, for example, when the user does not recognize the operation order of the contact arm 13 and the trigger 140 required in the nailing machine 1 of the first embodiment, the motor 2 is operated only according to the pulling operation of the trigger 140. When driving is started, there is no possibility that the user misunderstands that the pressing operation can be started by pressing the contact arm 13 against the workpiece while pulling the trigger 140. In such a case, the user may be confused by the fact that the pressing operation is not performed even if the contact arm 13 is pressed against the workpiece. On the other hand, in the present embodiment, the driving of the motor 2 is not started unless the user cancels the pull operation of the trigger 140 once. Therefore, according to the nailing machine 1A of the present embodiment, the user needs to pull the trigger 140 after pressing the contact arm 13 against the workpiece at the time of pressing the contact arm 13 against the workpiece And can be easily understood. Thus, the nailing machine 1A can exhibit excellent operability.
 また、本実施形態では、第1制御処理および第2制御処理の何れにおいても、打込み動作の開始指示操作が行われ、コンタクトアームスイッチ131とトリガスイッチ141が順にオン状態とされた後、フライホイール4に十分な回転エネルギが蓄積された時点でモータ2の駆動が一旦停止され、予め定められた休止時間の経過後にモータ2の駆動が再開される。そして、モータ2の休止時間内にドライバ3による打込み動作が行われる。これにより、ドライバ3による打込み動作中に、特に、ドライバ3が釘101を打撃して被加工物100に打ち込むときに、モータ2の回転速度が急激に低下することでモータ2に負荷がかかるのを抑制し、モータ2の保護を図ることができる。なお、モータ2の駆動が休止されても、フライホイール4は慣性で回転を継続するため、ドライバ3は、リング部材5を介して伝達されたフライホイール4の回転エネルギによって釘101を打込むことができる。 Further, in the present embodiment, in any of the first control processing and the second control processing, the start instruction operation of the driving operation is performed, and after the contact arm switch 131 and the trigger switch 141 are sequentially turned on, the flywheel When sufficient rotational energy is stored in 4, the driving of the motor 2 is temporarily stopped, and the driving of the motor 2 is resumed after the elapse of a predetermined pause time. Then, the driving operation by the driver 3 is performed within the idle time of the motor 2. As a result, particularly when the driver 3 strikes the nail 101 and strikes into the workpiece 100 during the driving operation by the driver 3, the rotational speed of the motor 2 is rapidly reduced and thus the motor 2 is loaded. Can be suppressed to protect the motor 2. In addition, since the flywheel 4 continues rotation by inertia even if the drive of the motor 2 is stopped, the driver 3 drives the nail 101 by the rotational energy of the flywheel 4 transmitted through the ring member 5 Can.
 また、モータ2の駆動が再開された後、モータ2の駆動開始の契機とされたトリガスイッチ141またはコンタクトアームスイッチ131がオフ状態とされた場合でも、所定時間が経過するまではモータ2の駆動が継続される。よって、第1実施形態と同様、この間はフライホイール4に回転エネルギを蓄積する状態が維持されるため、使用者は、この間に新たに打込み動作の開始指示操作を行うことで、速やかに2回目以降の打込み動作を開始させることができる。このほか、第1実施形態と同様の構成および処理により、第1実施形態と同様の効果が得られる点は言うまでもない。 In addition, even if the trigger switch 141 or the contact arm switch 131 triggered to start the drive of the motor 2 is turned off after the drive of the motor 2 is restarted, the drive of the motor 2 is performed until a predetermined time elapses. Will be continued. Therefore, as in the first embodiment, since the state of storing rotational energy in the flywheel 4 is maintained during this time, the user can immediately instruct the start operation of the starting operation for the second time. The subsequent implantation operation can be started. It goes without saying that the same effects as those of the first embodiment can be obtained by the same configuration and processing as the first embodiment.
 上記実施形態は単なる例示であり、本発明に係る打込み工具は、例示された釘打ち機1、1Aの構成に限定されるものではない。例えば、下記に例示される変更を加えることができる。なお、これらの変更は、これらのうちいずれか1つのみ、あるいは複数が、実施形態に示す釘打ち機1、1A、あるいは各請求項に記載された発明と組み合わされて採用されうる。 The above embodiment is merely an example, and the driving tool according to the present invention is not limited to the configuration of the illustrated nailing machine 1, 1A. For example, the changes exemplified below can be made. In addition, any one or a plurality of these modifications may be adopted in combination with the nailing machine 1 or 1A shown in the embodiment or the invention described in each claim.
 打ち込み工具は、釘101以外の打込み材を打出す工具であってもよい。例えば、鋲、ピン、ステープル等を打出すタッカ、ステープルガンとして具現化されてもよい。また、フライホイール4の駆動源は、特にモータ2に限定されない。例えば、直流モータに代えて交流モータが採用されてもよい。 The driving tool may be a tool for driving a driving material other than the nail 101. For example, it may be embodied as a tacker that ejects scissors, pins, staples, etc., a staple gun. The drive source of the flywheel 4 is not particularly limited to the motor 2. For example, an AC motor may be employed instead of the DC motor.
 上記実施形態では、トリガスイッチ141およびコンタクトアームスイッチ131は何れもモータ2の起動スイッチとして機能するように構成されており、何れか一方がオン状態とされるとモータ2が駆動される。しかしながら、例えば、トリガスイッチ141のみがモータ2の起動スイッチとして構成されていてもよい。この場合、打込み制御処理(図8、図16参照)においてS2、S201およびS4、S400(第2制御処理)は省略される。コントローラ18は、トリガスイッチ141がオン状態とされるまで待機し、第1制御処理(図9、図17参照)のみを実行すればよい。 In the above embodiment, the trigger switch 141 and the contact arm switch 131 are both configured to function as a start switch of the motor 2, and when either one is turned on, the motor 2 is driven. However, for example, only the trigger switch 141 may be configured as the start switch of the motor 2. In this case, S2, S201 and S4, S400 (second control processing) are omitted in the implantation control processing (see FIGS. 8 and 16). The controller 18 may stand by until the trigger switch 141 is turned on, and may execute only the first control process (see FIGS. 9 and 17).
 モータ2の起動スイッチは、トリガ140ではなく、個別のスイッチとして構成されていてもよい。この場合、起動スイッチは、一連の打込み動作の開始指示操作のうち、先に操作されるコンタクトアーム13によって起動されるコンタクトアームスイッチ131以外のスイッチであることが好ましい。例えば、起動スイッチは、使用者による外部操作が可能に本体ハウジング11またはハンドル14に設けられていてもよい。 The start switch of the motor 2 may be configured as an individual switch instead of the trigger 140. In this case, it is preferable that the start switch is a switch other than the contact arm switch 131 which is started by the contact arm 13 operated first among a series of start instruction operations of the placement operation. For example, the activation switch may be provided on the main body housing 11 or the handle 14 so as to allow external operation by the user.
 モータ2の駆動が停止されるタイミングは、上記実施形態で例示されたタイミングに限られない。例えば、第1制御処理(図9、図17参照)および第2制御処理(図10、図18参照)では、夫々、トリガスイッチ141およびコンタクトアームスイッチ131(つまり、モータ2の駆動開始の契機とされたスイッチ、またはモータ2の駆動開始の指示が入力されたスイッチ)がオフ状態とされた時点から所定時間が経過した時点で、モータ2の駆動が停止されている。しかしながら、何れの場合も、ソレノイド715が作動されてから所定時間が経過した時点で、モータ2の駆動が停止されてもよいし、モータ2の駆動開始から所定時間が経過した時点で、モータ2の駆動が停止されてもよい。これらの場合、コントローラ18は、図9のS33、図17のS303、図10のS46、図18のS408において、ソレノイド715を作動させた時点(S36、S307、S44、S405)、またはモータ2の駆動を開始した時点(S31、S301、S41、S401)から計時された経過時間が、所定時間を超えたか否かを判断すればよい。なお、この場合の所定時間は、上記実施形態で例示された5秒とは異なる時間が適宜設定されてもよい。また、トリガスイッチ141またはコンタクトアームスイッチ131がオフ状態とされた後にモータ2の駆動が継続される時間を確実に確保するために、コントローラ18は、トリガスイッチ141またはコンタクトアームスイッチ131がオフ状態とされてから第1の所定時間が経過し、且つ、ソレノイド715の作動またはモータ2の駆動開始から第2の所定時間が経過したか否かを判断することが好ましい。 The timing at which the drive of the motor 2 is stopped is not limited to the timing exemplified in the above embodiment. For example, in the first control process (see FIGS. 9 and 17) and the second control process (see FIGS. 10 and 18), the trigger switch 141 and the contact arm switch 131 (that is, the trigger for starting the driving of the motor 2). The driving of the motor 2 is stopped when a predetermined time elapses from the time when the switch or the switch to which the instruction to start the driving of the motor 2 is input is turned off. However, in any case, the drive of the motor 2 may be stopped when a predetermined time has elapsed since the solenoid 715 was actuated, or when the predetermined time has elapsed since the start of the drive of the motor 2, the motor 2 Drive may be stopped. In these cases, the controller 18 operates the solenoid 715 at S33 of FIG. 9, S303 of FIG. 17, S46 of FIG. 10, S408 of FIG. 18 (S36, S307, S44, S405) or of the motor 2. It may be determined whether the elapsed time measured from the time of starting the driving (S31, S301, S41, S401) exceeds a predetermined time. In addition, the predetermined time in this case may be appropriately set to a time different from 5 seconds exemplified in the above embodiment. Also, in order to ensure time for which the drive of the motor 2 is continued after the trigger switch 141 or the contact arm switch 131 is turned off, the controller 18 sets the trigger switch 141 or the contact arm switch 131 to the off state. It is preferable to determine whether or not a first predetermined time has elapsed since the start and that a second predetermined time has elapsed since the actuation of the solenoid 715 or the start of driving of the motor 2.
 上記実施形態では、コントローラ18は、CPU、ROM、RAM等を含むマイクロコンピュータにて構成される例が挙げられているが、コントローラ(制御回路)は、例えば、ASIC(Application Specific Integrated Circuits)、FPGA(Field Programmable Gate Array)などのプログラマブル・ロジック・デバイスで構成されていてもよい。また、上記実施形態の打込み制御処理は、CPUが、ROMに記憶されたプログラムを実行することにより実現されればよい。この場合、プログラムは、コントローラ18のROMに予め記憶されていてもよいし、コントローラ18が不揮発性メモリを含む場合は不揮発性メモリに記憶されていてもよい。あるいは、プログラムは、データを読み取り可能な外部の記憶媒体(例えば、USBメモリ)に記録されていてもよい。上記実施形態および変形例の打込み制御処理は、複数の制御回路で分散処理されてもよい。 In the above embodiment, the controller 18 is exemplified by a microcomputer including a CPU, a ROM, a RAM, etc. However, the controller (control circuit) may be, for example, an application specific integrated circuit (ASIC) or an FPGA. A programmable logic device such as a field programmable gate array (field programmable gate array) may be used. Further, the implantation control process of the above embodiment may be realized by the CPU executing a program stored in the ROM. In this case, the program may be stored in advance in the ROM of the controller 18, or may be stored in the non-volatile memory if the controller 18 includes the non-volatile memory. Alternatively, the program may be recorded on an external storage medium (eg, USB memory) from which data can be read. The implantation control processing of the above-described embodiment and modification may be distributed and processed by a plurality of control circuits.
 ドライバ3の形状や、ドライバ3を駆動するドライバ駆動機構400の構成は、適宜、変更可能である。例えば、ドライバ3のローラ当接部301において、傾斜部302は、側面視で全体が直線状に形成されていてもよいし、少なくとも一部が緩やかな円弧状に形成されていてもよい。つまり、傾斜部302の上面(押圧ローラ83との当接面)は、全体が平面であってもよいし、全体が湾曲面であってもよいし、一部が平面で一部が湾曲面であってもよい。また、傾斜部302の傾斜度合いは途中で変化していてもよい。傾斜部302はより長く設けられてもよい。ローラ当接部301は、後方に向けて厚みが漸増する傾斜部を複数含んでいてもよい。また、ドライバ駆動機構400に代えて、ドライバ3をフライホイール4に摩擦係合させることで、リング部材5を介することなく、フライホイール4からドライバ3に直接回転エネルギを伝達するように構成された駆動機構が採用されてもよい。また、フライホイール4の回転エネルギは、リング部材5以外の伝達部材(例えば、中間ローラ)を介してドライバ3に伝達されてもよい。 The shape of the driver 3 and the configuration of the driver drive mechanism 400 for driving the driver 3 can be changed as appropriate. For example, in the roller contact portion 301 of the driver 3, the inclined portion 302 may be entirely formed in a straight line in a side view, or at least a part may be formed in a gentle arc shape. That is, the entire upper surface (the contact surface with the pressing roller 83) of the inclined portion 302 may be a flat surface, or the entire may be a curved surface, or a part is a flat surface and a part is a curved surface. It may be Further, the degree of inclination of the inclined portion 302 may be changed halfway. The inclined portion 302 may be provided longer. The roller contact portion 301 may include a plurality of inclined portions whose thickness gradually increases toward the rear. Further, instead of the driver drive mechanism 400, the driver 3 is frictionally engaged with the flywheel 4 so that rotational energy is directly transmitted from the flywheel 4 to the driver 3 without the ring member 5. A drive mechanism may be employed. The rotational energy of the flywheel 4 may be transmitted to the driver 3 via a transmission member (for example, an intermediate roller) other than the ring member 5.
 リング部材5と、ドライバ3およびフライホイール4との係合態様は、上記実施形態で例示された態様には限られない。例えば、リング部材5の数と、リング部材5に対応するドライバ3の係合溝308およびフライホイール4の係合溝47の数は、1であってもよいし、3以上であってもよい。また、例えば、外周係合部51および内周係合部53、並びに対応する係合溝308および係合溝47の形状、配置、数、係合位置等は、適宜変更が可能である。保持機構6のリング付勢部60およびストッパ66の構成は、何れも適宜変更可能である。 The engagement aspect between the ring member 5 and the driver 3 and the flywheel 4 is not limited to the aspect exemplified in the above embodiment. For example, the number of ring members 5 and the number of engagement grooves 308 of driver 3 corresponding to ring members 5 and engagement grooves 47 of flywheel 4 may be one or three or more. . Further, for example, the shapes, positions, numbers, engagement positions, and the like of the outer circumferential engagement portion 51 and the inner circumferential engagement portion 53, and the corresponding engagement grooves 308 and engagement grooves 47 can be changed as appropriate. The configurations of the ring urging portion 60 and the stopper 66 of the holding mechanism 6 can be changed as appropriate.
 作動機構7は、ドライバ3を、初期位置に配置された初期状態から、フライホイール4の回転エネルギの伝達が可能な状態に移行させることが可能に構成されていればよく、その構成は適宜変更可能である。例えば、作動機構7は、ドライバ3を伝達位置に向けて前方へ押し出すのではなく、初期位置に配置されたドライバ3をフライホイール4に向けて付勢することで、フライホイール4とドライバ3とを、直接的または間接的に(例えば、リング部材5を介して)摩擦係合させるように構成されていてもよい。 The operating mechanism 7 only needs to be configured to shift the driver 3 from the initial state disposed at the initial position to a state capable of transmitting the rotational energy of the flywheel 4, and the configuration may be appropriately changed. It is possible. For example, the operating mechanism 7 does not push the driver 3 forward to the transmission position, but biases the driver 3 disposed at the initial position toward the flywheel 4 so that the flywheel 4 and the driver 3 May be frictionally engaged directly or indirectly (for example, via the ring member 5).
 上記実施形態の各構成要素と本発明の各構成要素の対応関係を以下に示す。釘打ち機1、1Aの各々は、本発明の「打込み工具」の一例である。釘101は、本発明の「打込み材」の一例である。射出口123は、本発明の「射出口」の一例である。モータ2は、本発明の「モータ」の一例である。フライホイール4は、本発明の「フライホイール」の一例である。ドライバ3は、本発明の「ドライバ」の一例である。動作線Lは、本発明の「動作線」の一例である。作動機構7は、本発明の「作動機構」の一例である。トリガスイッチ141は、本発明の「起動スイッチ」の一例である。コンタクトアーム13、コンタクトアームスイッチ131は、夫々、本発明の「コンタクトアーム」、「コンタクトアームスイッチの一例である。トリガ140、トリガスイッチ141は、夫々、本発明の「トリガ」、「トリガスイッチ」の一例である。コントローラ18(CPU)は、本発明の「コントローラ」の一例である。 The correspondence of each component of the said embodiment and each component of this invention is shown below. Each of the nailing machines 1 and 1A is an example of the "driving tool" of the present invention. The nail 101 is an example of the “burring material” of the present invention. The injection port 123 is an example of the “injection port” in the present invention. The motor 2 is an example of the "motor" of the present invention. The flywheel 4 is an example of the "flywheel" of this invention. The driver 3 is an example of the “driver” in the present invention. The operating line L is an example of the "operating line" in the present invention. The operating mechanism 7 is an example of the "operating mechanism" in the present invention. The trigger switch 141 is an example of the "start switch" in the present invention. The contact arm 13 and the contact arm switch 131 are examples of the "contact arm" and the "contact arm switch" in the present invention, respectively. The trigger 140 and the trigger switch 141 are the "trigger" and the "trigger switch" in the present invention, respectively. An example of The controller 18 (CPU) is an example of the “controller” in the present invention.
 更に、本発明および上記実施形態の趣旨に鑑み、以下の構成(態様)が構築される。以下の構成のうちいずれか1つのみ、あるいは複数が、独立して、または実施形態およびその変形例に示す釘打ち機1、1Aあるいは各請求項に記載された発明と組み合わされて採用されうる。
[態様1]
 打込み材を射出口から射出し、前記打込み材を被加工物に打ち込むように構成された打込み工具であって、
 モータと、
 前記モータによって回転駆動されるフライホイールと、
 前記フライホイールの外周に対向するように配置され、前記フライホイールから伝達された回転エネルギによって、前記打込み工具の前後方向に延在する動作線に沿って、初期位置から直線状に前方へ移動することで、前記打込み材を前記被加工物に打込む打込み動作を行うように構成されたドライバと、
 前記ドライバを、前記初期位置に配置された初期状態から、前記回転エネルギの伝達が可能な伝達可能状態に移行させるように構成された作動機構と、
 前記射出口の近傍に前記前後方向に移動可能に配置され、使用者による前記被加工物に対する押し付けに応じて後方へ移動するように構成されたコンタクトアームと、
 前記コンタクトアームの後方への移動に応じてオン状態とされるように構成されたコンタクトアームスイッチと、
 前記使用者による引き操作が可能に構成されたトリガと、
 前記トリガの引き操作に応じてオン状態とされるように構成されたトリガスイッチと、
 前記モータおよび前記作動機構の動作を制御するように構成されたコントローラとを備え、
 前記コントローラは、前記コンタクトアームスイッチがオン状態とされた場合に前記モータの駆動を開始し、その後で前記トリガスイッチがオン状態とされたことを条件として、前記作動機構を作動させることで、前記ドライバに前記打込み動作を行わせるように構成され、
 前記コントローラは、更に、前記コンタクトアームスイッチがオフ状態とされた場合でも、少なくとも所定期間に亘って前記モータの駆動を継続するように構成されていることを特徴とする打込み工具。
[態様2]
 前記トリガスイッチは、常時には初期位置に配置されてオフ状態で維持される一方、前記トリガの引き操作に応じて所定のオン位置に配置されている間は前記オン状態とされるように構成され、
 前記コントローラは、前記トリガスイッチが前記オン状態から前記オフ状態とされてから所定期間に亘って、前記モータの駆動を継続してもよい。
[態様3]
 前記コンタクトアームスイッチは、常時には初期位置に配置されてオフ状態で維持される一方、前記コンタクトアームの後方への移動に応じて所定のオン位置に配置されている間は前記オン状態とされるように構成され、
 前記コントローラは、前記コンタクトアームスイッチが前記オン状態から前記オフ状態とされてから所定期間に亘って、前記モータの駆動を継続してもよい。
[態様4]
 前記打込み工具は、前記フライホイールの前記回転エネルギを前記ドライバに伝達可能に構成されたリング部材を更に備え、
 前記作動機構は、前記初期位置から、前記初期位置よりも前方の伝達位置へ前記ドライバを移動させることで、前記ドライバを前記初期状態から前記伝達可能状態に移行させるように構成されており、
 前記リング部材は、前記ドライバが前記初期位置に配置されている場合には、前記外周に対して遊嵌状に配置されており、
 前記リング部材は、前記作動機構によって前記ドライバが前記伝達位置に移動された場合に、前記ドライバおよび前記フライホイールと摩擦係合し、前記フライホイールによって、前記フライホイールの回転軸とは異なる回転軸周りに回転され、前記回転エネルギを前記ドライバに伝達することで、前記ドライバを前記伝達位置から前方へ押し出すように構成されていてもよい。
 なお、リング部材5は、本態様における「リング部材」の一例である。
[態様5]
 前記打込み工具は、前記リング部材を、前記フライホイールの前記外周から離間した離間位置と、前記外周に一部が接触する接触位置の間で移動可能に保持する保持機構を更に備え、
 前記保持機構は、
  前記ドライバが前記初期位置に配置されている場合には、前記リング部材を前記離間位置で保持し、且つ、
  前記ドライバ移動機構によって前記ドライバが前記伝達位置に移動された場合に、前記ドライバの移動に応じて移動された前記リング部材を前記接触位置で保持してもよい。
 なお、保持機構6は、本態様における「保持機構」に対応する構成例である。
[態様6]
 前記打込み工具は、前記フライホイールと前記ドライバとの対向方向において、前記フライホイールとは反対側で前記ドライバに対向するように配置され、前記ドライバが前方へ移動する過程で、前記フライホイールに近づく方向に前記ドライバを押圧することで、前記ドライバへの前記回転エネルギの伝達を可能とするように構成された押圧ローラを更に備えてもよい。
 なお、押圧ローラ83は、本態様における「押圧ローラ」の一例である。
[態様7]
 前記ドライバは、前記ドライバが前記伝達位置から前記打込み材を前記被加工物に打込む打込み位置へ移動する際、前記押圧ローラに当接する当接面を有し、
 前記ドライバのうち、前記前後方向において前記当接面に対応する領域の少なくとも一部は、前記対向方向における厚みが後方に向けて漸増するように形成されていてもよい。
 なお、ローラ当接部301の上面は、本態様における「当接面」に対応する構成例である。
Furthermore, in view of the present invention and the spirit of the above embodiment, the following configuration (aspect) is constructed. Any one or more of the following configurations may be adopted independently or in combination with the invention described in the nailing machine 1 or 1A shown in the embodiments and the modifications thereof or each claim. .
[Aspect 1]
A driving tool configured to inject a driving material from an injection port and drive the driving material into a workpiece;
Motor,
A flywheel rotationally driven by the motor;
It is disposed to face the outer periphery of the flywheel, and is moved forward linearly from an initial position along an operation line extending in the front-rear direction of the driving tool by rotational energy transmitted from the flywheel. A driver configured to perform a driving operation for driving the driving material into the workpiece;
An operating mechanism configured to shift the driver from an initial state disposed at the initial position to a transmissible state capable of transmitting the rotational energy;
A contact arm disposed movably in the front-rear direction in the vicinity of the injection port and configured to move rearward in response to pressing by the user on the workpiece;
A contact arm switch configured to be turned on in response to backward movement of the contact arm;
A trigger configured to allow pulling operation by the user;
A trigger switch configured to be turned on in response to the pull operation of the trigger;
A controller configured to control the operation of the motor and the actuation mechanism;
The controller starts driving the motor when the contact arm switch is turned on, and then operates the operating mechanism on condition that the trigger switch is turned on. Configured to cause a driver to perform the driving operation;
The driving tool, wherein the controller is further configured to continue driving of the motor for at least a predetermined period even when the contact arm switch is turned off.
[Aspect 2]
The trigger switch is always arranged at the initial position and maintained in the off state, and configured to be in the on state while arranged at the predetermined on position in response to the pull operation of the trigger. ,
The controller may continue driving of the motor for a predetermined period after the trigger switch is switched from the on state to the off state.
[Aspect 3]
The contact arm switch is normally disposed at the initial position and maintained in the off state, and is in the on state while disposed in the predetermined on position in response to the backward movement of the contact arm. Configured as
The controller may continue driving of the motor for a predetermined period after the contact arm switch is switched from the on state to the off state.
[Aspect 4]
The driving tool further includes a ring member configured to be capable of transmitting the rotational energy of the flywheel to the driver,
The operating mechanism is configured to shift the driver from the initial state to the transmittable state by moving the driver from the initial position to a transmission position forward of the initial position.
The ring member is disposed loosely with respect to the outer periphery when the driver is disposed at the initial position,
The ring member frictionally engages with the driver and the flywheel when the driver is moved to the transmission position by the actuating mechanism, and the flywheel has a rotation axis different from the rotation axis of the flywheel. It may be configured to push the driver forward from the transmission position by being rotated around and transmitting the rotational energy to the driver.
The ring member 5 is an example of the "ring member" in this aspect.
[Aspect 5]
The driving tool further includes a holding mechanism that holds the ring member movably between a separated position separated from the outer periphery of the flywheel and a contact position partially in contact with the outer periphery.
The holding mechanism is
When the driver is disposed at the initial position, the ring member is held at the spaced position, and
When the driver is moved to the transmission position by the driver moving mechanism, the ring member moved according to the movement of the driver may be held at the contact position.
The holding mechanism 6 is a configuration example corresponding to the "holding mechanism" in this aspect.
[Aspect 6]
The driving tool is disposed to face the driver on the side opposite to the flywheel in the opposing direction of the flywheel and the driver, and approaches the flywheel in the process of the driver moving forward. It may further comprise a pressure roller configured to enable transmission of the rotational energy to the driver by pressing the driver in a direction.
The pressure roller 83 is an example of the “pressure roller” in this aspect.
[Aspect 7]
The driver has an abutting surface that abuts against the pressing roller when the driver moves from the transmission position to a driving position where the driving material is driven into the workpiece.
At least a part of the region of the driver corresponding to the contact surface in the front-rear direction may be formed such that the thickness in the opposite direction gradually increases toward the rear.
In addition, the upper surface of the roller contact part 301 is a structural example corresponding to the "contact surface" in this aspect.
1、1A:釘打ち機、10:工具本体、11:本体ハウジング、113:照明ユニット、114:LED、117:前方ストッパ部、118:後方ストッパ部、12:ノーズ部、123:射出口、13:コンタクトアーム、131:コンタクトアームスイッチ、132:前端部、14:ハンドル、140:トリガ、141:トリガスイッチ、15:バッテリ装着部、17:マガジン、18:コントローラ、180:基板、19:バッテリ、2:モータ、21:プーリ、25:ベルト、201:三相インバータ、203:ホールセンサ、3:ドライバ、30:本体部、301:ローラ当接部、302:傾斜部、305:レバー当接306:リング係合部、307:傾斜部、308:係合溝、31:打撃部、310:前端、32:後端、35:アーム部、400:ドライバ駆動機構、4:フライホイール、41:プーリ、45:外周、47:係合溝、5:リング部材、51:外周係合部、53:内周係合部、6:保持機構、60:リング付勢部、66:ストッパ、7:作動機構、711:押出しレバー、713:引張コイルバネ、715:ソレノイド、8:押圧機構、81:ローラ支持部材、811:バネ保持部、813:バネ受け部、815:ローラ支持部、83:押圧ローラ、84:ローラシャフト、85:ホルダ、851:収容部、852:収容空間、853:バネ受け部、854:ストッパ部、87:弾性部材、9:コンタクトアームカバー、100:被加工物、101:釘、A1:回転軸、A2:回転軸、L:動作線 1, 1A: nailing machine, 10: tool body, 11: body housing, 113: lighting unit, 114: LED, 117: front stopper portion, 118: rear stopper portion, 12: nose portion, 123: injection port, 13 A: contact arm, 131: contact arm switch, 132: front end, 14: handle, 140: trigger, 141: trigger switch, 15: battery mounting portion, 17: magazine, 18: controller, 180: substrate, 19: battery, 2: Motor, 21: Pulley, 25: Belt, 201: Three-phase inverter, 203: Hall sensor, 3: Driver, 30: Body part, 301: Roller contact part, 302: Inclined part, 305: Lever contact 306 : Ring engaging part, 307: Inclined part, 308: Engaging groove, 31: Impact part, 310: Front end, 32: Rear end, 35: A Part, 400: driver drive mechanism, 4: flywheel, 41: pulley, 45: outer periphery, 47: engagement groove, 5: ring member, 51: outer periphery engagement portion, 53: inner periphery engagement portion, 6: 6: Holding mechanism, 60: ring urging portion, 66: stopper, 7: operating mechanism, 711: push lever, 713: tension coil spring, 715: solenoid, 8: pressing mechanism, 81: roller support member, 811: spring holding portion, 813: spring receiving portion, 815: roller supporting portion, 83: pressing roller, 84: roller shaft, 85: holder, 851: receiving portion, 852: receiving space, 853: spring receiving portion, 854: stopper portion, 87: elasticity Member, 9: contact arm cover, 100: workpiece, 101: nail, A1: rotation axis, A2: rotation axis, L: operation line

Claims (11)

  1.  打込み材を射出口から射出し、前記打込み材を被加工物に打ち込むように構成された打込み工具であって、
     モータと、
     前記モータによって回転駆動されるフライホイールと、
     前記フライホイールの外周に対向するように配置され、前記フライホイールから伝達された回転エネルギによって、前記打込み工具の前後方向に延在する動作線に沿って、初期位置から直線状に前方へ移動することで、前記打込み材を前記被加工物に打込む打込み動作を行うように構成されたドライバと、
     前記ドライバを、前記初期位置に配置された初期状態から、前記回転エネルギの伝達が可能な伝達可能状態に移行させるように構成された作動機構と、
     前記モータの起動スイッチと、
     前記射出口の近傍に前記前後方向に移動可能に配置され、使用者による前記被加工物に対する押し付けに応じて後方へ移動するように構成されたコンタクトアームと、
     前記コンタクトアームの後方への移動に応じてオン状態とされるように構成されたコンタクトアームスイッチと、
     前記使用者による引き操作が可能に構成されたトリガと、
     前記トリガの引き操作に応じてオン状態とされるように構成されたトリガスイッチと、
     前記モータおよび前記作動機構の動作を制御するように構成されたコントローラとを備え、
     前記コントローラは、
      前記起動スイッチがオン状態とされた場合に前記モータの駆動を開始するように構成され、且つ、
      前記コンタクトアームスイッチがオン状態とされた後で前記トリガスイッチがオン状態とされたことを条件として、前記作動機構を作動させることで、前記ドライバに前記打込み動作を行わせるように構成されていることを特徴とする打込み工具。
    A driving tool configured to inject a driving material from an injection port and drive the driving material into a workpiece;
    Motor,
    A flywheel rotationally driven by the motor;
    It is disposed to face the outer periphery of the flywheel, and is moved forward linearly from an initial position along an operation line extending in the front-rear direction of the driving tool by rotational energy transmitted from the flywheel. A driver configured to perform a driving operation for driving the driving material into the workpiece;
    An operating mechanism configured to shift the driver from an initial state disposed at the initial position to a transmissible state capable of transmitting the rotational energy;
    A start switch of the motor;
    A contact arm disposed movably in the front-rear direction in the vicinity of the injection port and configured to move rearward in response to pressing by the user on the workpiece;
    A contact arm switch configured to be turned on in response to backward movement of the contact arm;
    A trigger configured to allow pulling operation by the user;
    A trigger switch configured to be turned on in response to the pull operation of the trigger;
    A controller configured to control the operation of the motor and the actuation mechanism;
    The controller
    The motor is configured to start driving when the start switch is turned on, and
    The driver is configured to cause the driver to perform the driving operation by operating the operating mechanism on condition that the trigger switch is turned on after the contact arm switch is turned on. A driving tool characterized by
  2.  請求項1に記載の打込み工具であって、
     前記トリガスイッチが前記モータの前記起動スイッチを兼用するように構成されていることを特徴とする打込み工具。
    A driving tool according to claim 1, wherein
    A driving tool characterized in that the trigger switch is also used as the start switch of the motor.
  3.  請求項2に記載の打込み工具であって、
     前記コントローラは、
      前記モータの非駆動中に前記トリガスイッチがオン状態とされた場合には、前記起動スイッチがオン状態とされたと判断して前記モータの駆動を開始するように構成され、且つ、
      前記モータの駆動中であって、且つ、前記コンタクトアームスイッチがオン状態とされた後で前記トリガスイッチがオン状態とされた場合には、前記作動機構を作動させるように構成されていることを特徴とする打込み工具。
    A driving tool according to claim 2, wherein
    The controller
    When the trigger switch is turned on while the motor is not driven, it is determined that the start switch is turned on to start driving of the motor, and
    When the trigger switch is turned on after the motor is driven and the contact arm switch is turned on, the actuating mechanism is configured to be operated. Features a driving tool.
  4.  請求項1~3の何れか1つに記載の打込み工具であって、
     前記コントローラは、前記起動スイッチがオフ状態とされた場合でも、少なくとも所定期間に亘って前記モータの駆動を継続するように構成されていることを特徴とする打込み工具。
    The driving tool according to any one of claims 1 to 3, wherein
    The driving tool, wherein the controller is configured to continue driving of the motor for at least a predetermined period even when the start switch is turned off.
  5.  打込み材を射出口から射出し、前記打込み材を被加工物に打ち込むように構成された打込み工具であって、
     モータと、
     前記モータによって回転駆動されるフライホイールと、
     前記フライホイールの外周に対向するように配置され、前記フライホイールから伝達された回転エネルギによって、前記打込み工具の前後方向に延在する動作線に沿って、初期位置から直線状に前方へ移動することで、前記打込み材を前記被加工物に打込む打込み動作を行うように構成されたドライバと、
     前記ドライバを、前記初期位置に配置された初期状態から、前記回転エネルギの伝達が可能な伝達可能状態に移行させるように構成された作動機構と、
     前記射出口の近傍に前記前後方向に移動可能に配置され、使用者による前記被加工物に対する押し付けに応じて後方へ移動するように構成されたコンタクトアームと、
     前記コンタクトアームの後方への移動に応じてオン状態とされるように構成されたコンタクトアームスイッチと、
     前記使用者による引き操作が可能に構成されたトリガと、
     前記トリガの引き操作に応じてオン状態とされるように構成されたトリガスイッチと、
     前記モータおよび前記作動機構の動作を制御するように構成されたコントローラとを備え、
     前記コントローラは、
      前記トリガスイッチがオン状態とされた後でオフ状態とされた場合に前記モータの駆動を開始するように構成され、且つ、
      前記コンタクトアームスイッチがオン状態とされた後で前記トリガスイッチがオン状態とされたことを条件として、前記作動機構を作動させることで、前記ドライバに前記打込み動作を行わせるように構成されていることを特徴とする打込み工具。
    A driving tool configured to inject a driving material from an injection port and drive the driving material into a workpiece;
    Motor,
    A flywheel rotationally driven by the motor;
    It is disposed to face the outer periphery of the flywheel, and is moved forward linearly from an initial position along an operation line extending in the front-rear direction of the driving tool by rotational energy transmitted from the flywheel. A driver configured to perform a driving operation for driving the driving material into the workpiece;
    An operating mechanism configured to shift the driver from an initial state disposed at the initial position to a transmissible state capable of transmitting the rotational energy;
    A contact arm disposed movably in the front-rear direction in the vicinity of the injection port and configured to move rearward in response to pressing by the user on the workpiece;
    A contact arm switch configured to be turned on in response to backward movement of the contact arm;
    A trigger configured to allow pulling operation by the user;
    A trigger switch configured to be turned on in response to the pull operation of the trigger;
    A controller configured to control the operation of the motor and the actuation mechanism;
    The controller
    The motor is configured to start driving when the trigger switch is turned on and then turned off, and
    The driver is configured to cause the driver to perform the driving operation by operating the operating mechanism on condition that the trigger switch is turned on after the contact arm switch is turned on. A driving tool characterized by
  6.  請求項5に記載の打込み工具であって、
     前記コントローラは、前記モータの駆動中に前記トリガスイッチがオフ状態とされた場合でも、少なくとも所定期間に亘って前記モータの駆動を継続するように構成されていることを特徴とする打込み工具。
    The driving tool according to claim 5, wherein
    The driving tool is characterized in that the controller is configured to continue driving the motor for at least a predetermined period even when the trigger switch is turned off during driving of the motor.
  7.  請求項1~6の何れか1つに記載の打込み工具であって、
     前記コントローラは、
      前記トリガスイッチがオフ状態にあって、且つ、前記モータの非駆動中に前記コンタクトアームスイッチがオン状態とされた場合にも、前記モータの駆動を開始するように構成され、且つ、
      前記コンタクトアームスイッチがオン状態とされた後で前記トリガスイッチがオン状態とされたことを条件として、前記作動機構を作動させることで、前記ドライバに前記打込み動作を行わせるように構成されていることを特徴とする打込み工具。
    A driving tool according to any one of claims 1 to 6, wherein
    The controller
    The motor is configured to start driving also when the trigger switch is in the off state and the contact arm switch is turned on while the motor is not being driven, and
    The driver is configured to cause the driver to perform the driving operation by operating the operating mechanism on condition that the trigger switch is turned on after the contact arm switch is turned on. A driving tool characterized by
  8.  請求項7に記載の打込み工具であって、
     前記コントローラは、前記モータの駆動開始の契機とされた前記コンタクトアームスイッチがオフ状態とされた場合でも、少なくとも所定期間に亘って前記モータの駆動を継続するように構成されていることを特徴とする打込み工具。
    The driving tool according to claim 7, wherein
    The controller is characterized in that driving of the motor is continued for at least a predetermined period even when the contact arm switch triggered to start driving of the motor is turned off. Tool to drive.
  9.  請求項4、6、8の何れか1つに記載の打込み工具であって、
     前記コントローラは、前記モータの駆動開始から所定期間に亘って、前記モータの駆動を継続するように構成されていることを特徴とする打込み工具。
    A driving tool according to any one of claims 4, 6, 8.
    The driving tool, wherein the controller is configured to continue driving of the motor for a predetermined period after the start of driving of the motor.
  10.  請求項4、6、8の何れか1つに記載の打込み工具であって、
     前記コントローラは、前記打込み動作の完了から所定期間に亘って、前記モータの駆動を継続するように構成されていることを特徴とする打込み工具。
    A driving tool according to any one of claims 4, 6, 8.
    A driving tool characterized in that the controller is configured to continue driving of the motor for a predetermined period after completion of the driving operation.
  11.  請求項1~8の何れか1つに記載の打込み工具であって、
     前記コントローラは、前記コンタクトアームスイッチがオン状態とされた後で前記トリガスイッチがオン状態とされた場合、前記モータの駆動を一時的に停止し、前記打込み動作の完了後に前記モータの駆動を再開するように構成されていることを特徴とする打込み工具。
    A driving tool according to any one of claims 1 to 8, wherein
    When the trigger switch is turned on after the contact arm switch is turned on, the controller temporarily stops the driving of the motor and resumes the driving of the motor after the completion of the driving operation. A driving tool characterized in that it is configured to
PCT/JP2018/026556 2017-08-01 2018-07-13 Driving tool WO2019026592A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017149371 2017-08-01
JP2017-149371 2017-08-01
JP2018027416A JP2019025641A (en) 2017-08-01 2018-02-19 Driving tool
JP2018-027416 2018-02-19

Publications (1)

Publication Number Publication Date
WO2019026592A1 true WO2019026592A1 (en) 2019-02-07

Family

ID=65233747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026556 WO2019026592A1 (en) 2017-08-01 2018-07-13 Driving tool

Country Status (1)

Country Link
WO (1) WO2019026592A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08276375A (en) * 1995-04-05 1996-10-22 Max Co Ltd Trigger device for nailing machine
JP2008119778A (en) * 2006-11-10 2008-05-29 Hitachi Koki Co Ltd Electric driving machine
US20090032567A1 (en) * 2007-08-03 2009-02-05 Chia-Sheng Liang Clutch Mechanism for Electrical Nail Gun
JP2009050952A (en) * 2007-08-27 2009-03-12 Makita Corp Driving tool
JP2016203292A (en) * 2015-04-21 2016-12-08 株式会社マキタ Striking tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08276375A (en) * 1995-04-05 1996-10-22 Max Co Ltd Trigger device for nailing machine
JP2008119778A (en) * 2006-11-10 2008-05-29 Hitachi Koki Co Ltd Electric driving machine
US20090032567A1 (en) * 2007-08-03 2009-02-05 Chia-Sheng Liang Clutch Mechanism for Electrical Nail Gun
JP2009050952A (en) * 2007-08-27 2009-03-12 Makita Corp Driving tool
JP2016203292A (en) * 2015-04-21 2016-12-08 株式会社マキタ Striking tool

Similar Documents

Publication Publication Date Title
US11097408B2 (en) Driving tool
US7520414B2 (en) Hand-held drive-in tool
US8550320B2 (en) Driving machine
JP4939985B2 (en) Driving tool
JP5146736B2 (en) Fastener driving machine
WO2011010512A1 (en) Hammering tool
JP3344454B2 (en) Push-up mechanism of plunger in spring driven nail driver
JP5280674B2 (en) Hand-held driving device
CN112091895B (en) Driving tool
US11325233B2 (en) Driving tool
JP2020082302A (en) Driving tool
JP2019025641A (en) Driving tool
WO2005037493A1 (en) Nailing device and magazine
US20230364760A1 (en) Power tool
JP2008264970A (en) Nail driving machine
WO2019026592A1 (en) Driving tool
JP2010005714A (en) Electric driving machine
JP7137447B2 (en) driving tool
JP2007075957A (en) Single driving holding mechanism of nailing machine
CN111727106A (en) Driving machine
CN115635451A (en) Driving tool
JP2010082764A (en) Electric hammering machine
JP2022173706A (en) driving tool
JP2008264969A (en) Nail driving machine
JP2022173744A (en) Placing tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18841575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18841575

Country of ref document: EP

Kind code of ref document: A1