WO2019026434A1 - Ultrasonic imaging device and image processing device - Google Patents

Ultrasonic imaging device and image processing device Download PDF

Info

Publication number
WO2019026434A1
WO2019026434A1 PCT/JP2018/022632 JP2018022632W WO2019026434A1 WO 2019026434 A1 WO2019026434 A1 WO 2019026434A1 JP 2018022632 W JP2018022632 W JP 2018022632W WO 2019026434 A1 WO2019026434 A1 WO 2019026434A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
unit
side lobe
ultrasonic
component
Prior art date
Application number
PCT/JP2018/022632
Other languages
French (fr)
Japanese (ja)
Inventor
崇 豊村
貞一郎 池田
美咲 広島
栗原 浩
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2019026434A1 publication Critical patent/WO2019026434A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography

Definitions

  • the present invention relates to an ultrasonic imaging technique for imaging an image in a subject using ultrasonic waves.
  • ultrasonic imaging technology is a technology for non-invasively imaging the inside of a subject including a human body using a high frequency sound wave of 20 kHz or higher.
  • a medical ultrasound diagnostic apparatus will be briefly described as one example.
  • the ultrasound probe transmits ultrasound into the patient's body and receives echo signals reflected from the patient's body.
  • the reception signal is subjected to signal processing in one or both of the ultrasonic probe and the ultrasonic diagnostic apparatus main body, and is then delivered to the image display unit to display an ultrasonic image.
  • a transmission signal delayed so as to focus on a predetermined transmission focus is generated, and after passing through a transmission / reception separation circuit (T / R) , And are sent to a plurality of elements of the ultrasound probe.
  • the plurality of elements of the ultrasound probe transmit the focused transmission beam focused on a predetermined transmission focus to the subject by converting the received transmission signal into an ultrasonic wave.
  • the ultrasound probe receives an echo signal from the subject and transmits the received signal to the main body.
  • the reception signal is passed to the reception beam former through the transmission / reception separation circuit, subjected to phasing processing in the reception beam former, and transmitted to the image processing unit.
  • various image processing such as various filters and scan conversion are executed to generate an ultrasonic image.
  • an ultrasound image is displayed on the image display unit.
  • the reception beam former is a delay time in which the amount of delay is distributed in a concave shape according to the relationship between the reception focal point position and the position of the element with respect to each reception signal (reception data) of a plurality of elements constituting the ultrasonic probe
  • the phasing and addition data generates the value of the pixel at the position of the reception focus in the imaging area.
  • This method is called phasing by the delay addition method.
  • received data received by a plurality of elements of the ultrasonic diagnostic apparatus may be multiplied by a fixed weight vector stored in the diagnostic apparatus, weighted and then added. Note that the delay addition processing is performed for each of a plurality of reception focal points on the reception scanning line set in the imaging region.
  • one or several reception scanning lines are set within the imaging region irradiated with the transmission beam, and after delay addition to a plurality of reception focal points on the reception scanning lines Data is acquired. Therefore, in order to obtain delayed post-addition data for the entire imaging region, it is necessary to transmit the transmission beam a plurality of times while shifting the position, and there is a problem that it takes time for imaging.
  • plane wave ultrasonic waves are transmitted from a plurality of elements of the ultrasonic probe, the ultrasonic waves are irradiated in one transmission over the entire imaging area, and a plurality of reception scanning lines are set over the entire imaging area.
  • side-lobes are easily generated because the ultrasonic waves to be transmitted are not focused, and echo signals generated by the side-lobes are reflectors (actual images) in an actual object.
  • Patent Document 1 describes a method for enhancing the contrast to an artifact.
  • Patent Document 1 Since the method of Patent Document 1 relatively enhances the contrast on the image of the real image against the artifact due to side lobes, it is necessary to add many ultrasound images in order to obtain sufficient contrast. Therefore, it is necessary to image a plurality of ultrasonic images while changing the transmission angle of the plane wave, and there is a problem that the reduction effect of the imaging time can not be sufficiently obtained.
  • An object of the present invention is to obtain an ultrasound image with a short imaging time and reduced artifacts due to side lobes.
  • the ultrasonic imaging apparatus of the present invention transmits an ultrasonic wave to an imaging area, and then receives a signal that has received an ultrasonic wave returned from the imaging area, and generates an image of the imaging area.
  • the pixel value distribution of the image is determined in a predetermined direction according to the incident angle of the ultrasonic wave to the image generation area and the imaging region, and the side lobe artifact is obtained by removing the noise component included in the high frequency component of the pixel value distribution.
  • an image processing unit to be removed to be removed.
  • FIG. 1 is a block diagram showing the configuration of an ultrasound imaging apparatus according to a first embodiment.
  • FIG. 7 is a block diagram showing the configuration of an ultrasound imaging apparatus according to a second embodiment.
  • FIG. 7 is a block diagram showing the configuration of a signal conversion unit according to a second embodiment.
  • A A block diagram showing the function of the multiple resolution analysis unit according to the second embodiment,
  • (b) A diagram showing a resolution (frequency component) analysis image in which low frequency component images and high frequency component images extracted by the multiple resolution analysis unit are arranged. .
  • FIG. 7 is a view showing a resolution (frequency component) analysis image in which low-frequency component images and high-frequency component images which are multiply extracted by the multi-resolution analysis unit of the second embodiment are arranged.
  • A A diagram showing a resolution analysis image, a resolution analysis image from which noise of an LH component image is removed, and a side lobe artifact removal image when the ultrasound incident angle is 0 degree according to the second embodiment
  • FIG. 7 is a block diagram showing the configuration of an ultrasound imaging apparatus according to a third embodiment.
  • FIG. 16 is a view showing incident angles of ultrasonic waves in a small area in the imaging area according to the third embodiment.
  • FIG. 7 is a block diagram showing the configuration of a signal conversion unit according to a fourth embodiment. Explanatory drawing which shows the noise removal process and addition process of the resolution analysis image concerning Embodiment 4.
  • FIG. FIG. 7 is a block diagram showing the configuration of a signal conversion unit according to a fifth embodiment.
  • FIG. 16 is a block diagram showing the configuration of a signal conversion unit according to a sixth embodiment.
  • FIG. 14 is a block diagram showing the configuration of a signal conversion unit according to a seventh embodiment.
  • FIG. 18 is an explanatory view showing a flow of processing of a side lobe estimation unit according to a seventh embodiment;
  • the side lobes of the ultrasonic waves 10 are artifact-induced by making use of the fact that the direction in which the artifacts 11 are generated in the ultrasonic image by the side lobes of the transmitted ultrasonic waves 10 depends on the direction of incidence of the ultrasonic waves 10 onto the imaging region. Remove. That is, as shown in FIGS. 1A to 1C, the side lobe artifact of the reflector 12 in the imaging region in the ultrasound image appears in the direction along the wavefront of the ultrasound 10 incident on the reflector 12.
  • the pixel value distribution of the image is determined in a predetermined direction according to the incident angle of the ultrasonic wave of the ultrasonic image, and the side lobe artifact is removed by removing the noise component from the pixel value distribution.
  • the pixel value distribution of the ultrasonic image is determined in at least two directions, and is separated into high frequency components and low frequency components, respectively, and side lobes included in high frequency components in a predetermined direction corresponding to the incident direction of ultrasonic waves. By removing the noise, a side lobe artifact removed image is generated.
  • the ultrasound imaging apparatus includes an image generation unit 3 and an image processing unit 21.
  • the image processing unit 21 includes a component extraction unit 4, a side lobe noise removal unit 5, and a side lobe removed image. And at least a generation unit 7.
  • the ultrasonic imaging apparatus may not necessarily include the ultrasonic probe 101 or the like, and another apparatus transmits an ultrasonic wave to the subject and the received signal such as an echo thereof is It may be configured to be received from the device.
  • FIG. 2 the case where the ultrasonic imaging apparatus is configured to include the ultrasonic probe 101, the transmitting unit 2, and the transmission / reception separation circuit 102 will be described.
  • the image generation unit 3 receives the reception signal of the acoustic conversion element, and generates an image of the imaging region 20. Any method may be used as a method of generating an image. For example, a plurality of reception scanning lines are set in the imaging area 20, and each reception signal is delayed so as to focus the reception signal on the reception focus on the reception scanning line and then added. It is possible to use a method of generating an ultrasound image by arranging in the image space pixels for which the delayed and added signal is a pixel value.
  • the component extraction unit 4 obtains pixel value distributions in at least two directions of the image generated by the image generation unit 3 and extracts high frequency components and low frequency components constituting pixel value distributions (signals) in the two directions.
  • the two directions may be any directions, but one example is two directions orthogonal to the horizontal direction and the vertical direction of the image. Since sidelobe artifacts occur in the direction along the wavefront of the ultrasonic wave around the reflector 13 in the imaging area 20, the pixel value distributions in the two directions according to the incident angle of the ultrasonic wave 10 on the imaging area 20 The noise generated by the side lobes of the ultrasonic wave 10 is included in one or both of the two. For example, as shown in FIG.
  • the side lobe noise removing unit 5 selects at least one of the two directions according to the incident angle of the ultrasonic wave 10 to the imaging region 20, and a noise component included in the high frequency component in the selected direction (hereinafter referred to as a side lobe) Remove noise). For example, a component whose absolute value included in the high frequency component is equal to or less than a predetermined value is removed as a noise component.
  • the side lobe removal image generation unit 7 generates a side lobe artifact removal image of the imaging region 20 using at least high frequency components from which noise components have been removed in the direction selected by the side lobe noise removal unit 5. Specifically, the side lobe removal image generation unit 7 does not select the high frequency component and the low frequency component from which noise components have been removed and the side lobe noise removal unit 5 in the direction selected by the side lobe noise removal unit 5.
  • the side lobe artifact removed image of the imaging region is generated using the high frequency component and the low frequency component of the different directions. For example, the image is generated again by performing the reverse process of the method when extracting the high frequency component and the low frequency component. As a result, only the noise component is removed from the pixel value distribution, and the other components are maintained, so that the side lobe artifact 11 can be removed while suppressing the pixel value reduction of the real image.
  • the side lobe artifact can be removed from the imaged ultrasonic image, so that an image with a short imaging time and reduced artifacts due to the side lobe can be obtained. Can.
  • FIG. 3 is a block diagram showing the configuration of the ultrasonic imaging apparatus of the second embodiment.
  • the same components as those of the apparatus of the first embodiment are denoted by the same reference numerals.
  • the ultrasonic diagnostic apparatus comprises an ultrasonic probe (hereinafter referred to as an ultrasonic element array) 101 in which a plurality of ultrasonic elements (ultrasound transducers) are arranged along a predetermined direction; It has a transmission / reception separation circuit 102 for separating a signal to be transmitted / received through the ultrasonic element array 101, and a transmission unit 2 for delivering a transmission signal to each ultrasonic element of the ultrasonic element array 101 via the transmission / reception separation circuit 102.
  • the transmission unit 2 generates a transmission signal delayed for each ultrasonic element so that the imaging region 20 is irradiated with a plane wave from a predetermined direction.
  • a phasing processing unit 103 is disposed which obtains a signal after phasing / addition by combining (addition).
  • the phasing processing unit 103 sets a plurality of reception scanning lines in the entire imaging region 20, obtains signals after phasing addition for each of a plurality of reception foci on each reception scanning line, and obtains the signals after phasing addition.
  • An ultrasound image is generated by using the pixel value of the pixel corresponding to the position of the reception focus. Thereby, one ultrasound image can be obtained by transmitting a plane wave once. Since this ultrasound image is an image obtained by transmitting a plane wave once, it includes artifacts due to side lobes, etc., and has low resolution.
  • the ultrasound imaging apparatus includes, as the component extraction unit 4, a multiresolution analysis unit 104 that extracts high frequency components and low frequency components by wavelet transformation, and further includes a side lobe noise removal unit 5 and side components. And a lobe removal image generation unit 7.
  • the side lobe noise remover 5 and the side lobe removed image generator 7 constitute a signal converter 105 as shown in FIG.
  • the side lobe removed image generation unit 7 is called an inverse transform unit 404 in order to generate an image from which the side lobes have been removed by inverse wavelet transform.
  • the control unit 108 and the image display unit 106 are connected to the signal conversion unit 105. Further, a console 109 is connected to the control unit 108 and the image display unit 106.
  • the console 109 is configured of a touch panel, a keyboard, a trackball, and the like, and receives user input.
  • the control unit 108 instructs the transmission unit 2, the phasing processing unit 103, and the signal processing unit 105 on the incident direction of the ultrasonic wave, which is a plane wave, to the imaging region 20 based on the user's input received by the console 109.
  • the image display unit 106 is configured by a display or the like, and displays an image or the like generated by the signal conversion unit 105 to the user.
  • the multiresolution analysis unit 104 obtains pixel value distributions (signals) in two directions of the ultrasonic image generated by the phasing processing unit 103, and extracts high frequency components and low frequency components, respectively.
  • a plurality of different frequency bands are extracted by wavelet transformation.
  • the two directions to be extracted are the horizontal direction and the vertical direction of the ultrasonic image.
  • the process of the multiresolution analysis unit 104 will be specifically described using FIG. 5 (a).
  • the multiresolution analysis unit 104 includes a horizontal direction analysis unit 41 and a vertical direction analysis unit 42.
  • the horizontal direction analysis unit 41 includes a low pass filter 201a, a high pass filter 201b, a downsampling unit 202a, and a downsampling unit 202b.
  • the vertical direction analysis unit 42 includes low pass filters 203a and 203c, high pass filters 203b and 203d, and downsampling units 204a to 204d.
  • the horizontal direction analysis unit 41 of the multiresolution analysis unit 104 first sequentially samples pixel values of the ultrasonic image 43 generated by the phasing processing unit 103 for pixels aligned in the horizontal direction to indicate a horizontal pixel value distribution.
  • the direction signal 43a is generated.
  • the horizontal direction signal 43a is generated for each position (pixel) in the vertical direction.
  • low frequency components below a predetermined band are extracted by passing the horizontal direction signal 43a through the low pass filter 201a, and then the 2: 1 down sampling unit 202 extracts two pixels adjacent in the horizontal direction. An average or the like of signal values is obtained to generate signal values for one pixel.
  • the horizontal direction is constituted by the low frequency components of the pixel value distribution in the horizontal direction of the ultrasonic image 43
  • the vertical direction includes all components of the pixel value distribution of the ultrasonic image 43 and the size in the horizontal direction Is a half of the ultrasound image 43, and a horizontal low frequency image 44 whose size in the vertical direction is the same as that of the ultrasound image 43 is generated.
  • the 2: 1 down sampling unit 202b outputs signals for two pixels adjacent in the horizontal direction. An average value or the like of values is obtained to generate a signal value for one pixel.
  • the horizontal direction is constituted by the high frequency component of the pixel value distribution in the horizontal direction of the ultrasonic image 43
  • the vertical direction includes all components of the pixel value distribution in the ultrasonic image 43
  • the size in the horizontal direction is A horizontal high frequency image 45 is generated which is half the size of the ultrasound image 43 and does not differ in size in the vertical direction from the ultrasound image 43.
  • the vertical direction analysis unit 42 sequentially samples the pixel values of the horizontal low frequency image 44 with respect to the pixels aligned in the vertical direction to generate a vertical direction signal 44a indicating a pixel value distribution in the vertical direction.
  • the vertical direction signal 44a is generated for each position (pixel) in the horizontal direction.
  • the vertical direction analysis unit 42 extracts low frequency components below a predetermined band by passing the vertical direction signal 44 a through the low pass filter 203 a and then using the 2: 1 down sampling unit 204 a in the vertical direction.
  • a signal value for one pixel is generated by obtaining an average or the like of signal values for two pixels adjacent to one another.
  • the horizontal direction is constituted by the low frequency component of the pixel value distribution in the horizontal direction of the ultrasonic image 43
  • the vertical direction is constituted by the low frequency component of the pixel value distribution in the vertical direction of the ultrasonic image 43
  • the vertical direction analysis unit 42 extracts a high frequency component larger than a predetermined band by passing the vertical direction signal 44a through the high pass filter 203b, and then the 2: 1 down sampling unit 204b performs the vertical direction.
  • a signal value for one pixel is generated by obtaining an average or the like of signal values for two pixels adjacent to one another.
  • the horizontal direction is constituted by the low frequency component of the pixel value distribution in the horizontal direction of the ultrasonic image 43
  • the vertical direction is constituted by the high frequency component of the pixel value distribution in the vertical direction of the ultrasonic image 43
  • LH component horizontal low frequency component / vertical high frequency component
  • the vertical direction analysis unit 42 sequentially samples the pixel values of the horizontal high-frequency image 45 for pixels aligned in the vertical direction to generate a vertical direction signal 45 a. Then, the vertical direction analysis unit 42 extracts low frequency components below a predetermined band by passing the vertical direction signal 45 a through the low pass filter 203 c, and then the 2: 1 down sampling unit 204 c performs the vertical direction. A signal value for one pixel is generated by obtaining an average or the like of signal values for two pixels adjacent to one another.
  • the horizontal direction is constituted by the high frequency component of the pixel value distribution in the horizontal direction of the ultrasonic image 43
  • the vertical direction is constituted by the low frequency component of the pixel value distribution in the vertical direction of the ultrasonic image 43
  • the vertical direction analysis unit 42 extracts a high frequency component larger than a predetermined band by passing the vertical direction signal 45a through the high pass filter 203d, and then the 2: 1 down sampling unit 204d performs the vertical direction.
  • a signal value for one pixel is generated by obtaining an average or the like of signal values for two pixels adjacent to one another.
  • the horizontal direction is constituted by the high frequency component of the pixel value distribution in the horizontal direction of the ultrasonic image 43
  • the vertical direction is constituted by the high frequency component of the pixel value distribution in the vertical direction of the ultrasonic image 43
  • a “horizontal high-frequency component / vertical high-frequency component (hereinafter referred to as HH component) image 47” in which both the size in the direction and the vertical direction is 1 ⁇ 2 of the ultrasound image 43 is generated.
  • LL component image 46, LH component image 47, HL component image 48, and HH component image 49 are arranged in the order of high frequency components to low frequency components, a resolution (frequency component) analysis image 205 as shown in FIG. Is obtained.
  • the LL component image 46 is further processed in the same manner as described above by the horizontal direction analysis unit and the vertical direction analysis unit 42 to obtain the LL component image 50, the LH component image 51, the HL component image 52, and the HH component image 53. It is also good.
  • the LL component image 50 may be processed to obtain the LL component image 54, the LH component image 55, the HL component image 56, and the HH component image 57.
  • the obtained images are arranged in the order of the high frequency component and the low frequency component, an arrangement as shown in FIG. 6 is obtained.
  • a multi-resolution analysis image 205 is obtained in which the pixel value distribution of ultrasonic waves is separated into low frequency components and high frequency components in multiple stages.
  • the side lobe noise removing unit 5 determines one or more images determined in advance according to the incident direction of the ultrasonic wave from the images 47 to 49 including high frequency components among the resolution analysis images 46 to 49 generated by the multiresolution analysis unit 104. Select and remove side lobe noise components. That is, since the side lobe artifact occurs along the direction (parallel to the wavefront of the ultrasonic wave) orthogonal to the direction of propagation of the ultrasonic wave, the side lobe noise removing unit 5 removes this. The side lobe noise removing unit 5 receives the incident direction of the ultrasonic wave from the control unit 108.
  • the side lobe noise removing unit 5 When the ultrasound incident angle is 0 degree (see FIG. 1B), it is estimated that the side lobe artifact is generated along the horizontal direction of the ultrasound image, so the side lobe noise removing unit 5 The LH component image 47 of the low frequency component and the high frequency component in the vertical direction is selected. Then, the side lobe noise removing unit 5 replaces the intensity of the pixel whose intensity is equal to or less than a threshold value with 0. As a result, the high frequency component having a small absolute value can be replaced with 0, so that the side lobe noise component can be removed.
  • the side lobe artifact is determined as the incident angle from the horizontal direction.
  • the side lobe noise removing unit 5 selects the HH component image 49, which is a high frequency component in both the horizontal direction and the vertical direction, since it is estimated to occur in the direction having the same inclination. Then, the side lobe noise removing unit 5 replaces the intensity of the pixel whose intensity is equal to or less than a threshold value with 0. As a result, the high frequency component having a small absolute value can be replaced with 0, so that the side lobe noise component can be removed.
  • the side lobe noise removing unit 5 when the LH component image 51, the HL component image 52, the HH component image 53, etc. are obtained at multiple resolutions, the side lobe noise removing unit 5 generates noise of corresponding component images of different resolutions. Remove the ingredients too. For example, when the ultrasonic incident angle is 0 degree (see FIG. 1B), the side lobe noise removing unit 5 not only determines the LH component image 47 but also the LH component image 51 of other resolutions and the like. Remove the lobe noise component. The same is true for the other ultrasonic incident angles.
  • the inverse transform unit 404 performs inverse wavelet transform on the high frequency component image selected by the side lobe noise removal unit 5 and from which the side lobe noise component is removed and the remaining component image not selected, and has the same resolution as the original image Generate an image of For example, as shown in FIG. 7A, when the incident angle of the ultrasonic wave is 0 degree, a resolution analysis image including the low frequency component image 46 and the high frequency component images 47 to 49 extracted by the multiresolution analysis unit 104 In 401, the side lobe noise removing unit 5 selects the LH component image 47 and removes the noise component to obtain the LH 'component image 47a, which is replaced with the LH component image 47 and resolution analysis after noise removal An image 501 is obtained (FIG.
  • the inverse transformation unit 404 performs a wavelet inverse transformation on the resolution analysis image 501 (the LH ′ component image 47 a and the other low frequency and high frequency component images 46, 48, 49) after the noise removal to obtain a side lobe artifact removed image 502 is generated (FIG. 7 (a-3)).
  • the side lobe noise removing unit 5 selects the HH component image 49 out of the resolution analysis image 402 composed of the images 47 to 49, and removes the noise component to obtain the HH 'component image 49a. And the resolution analysis image 503 after noise removal is obtained (FIG. 7 (b-2)).
  • the inverse transform unit 404 performs inverse wavelet transform on the resolution analysis image 503 (the HH ′ component image 49 a and the other low frequency and high frequency component images 46 to 48) after noise removal to obtain the side lobe artifact removed image 504. It generates (FIG. 7 (b-3)).
  • the generated image is displayed on the image display unit 106.
  • the multiresolution analysis unit 104, the signal conversion unit 105, and the control unit 108 are configured by a computer including a central processing unit (CPU) which is an arithmetic processing unit and a memory, and the CPU executes a program in the memory. These functions can be realized by software. Further, part or all of the multi-resolution analysis unit 104, the signal conversion unit 105, and the control unit 108 can be realized by hardware. For example, a part of the multiple resolution analysis unit 104, the signal conversion unit 105, and the control unit 108 using a custom IC such as an application specific integrated circuit (ASIC) or a programmable IC such as a field-programmable gate array (FPGA) Configure the whole and design the circuit to realize these functions.
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • the processing for removing the side lobe artifact from the image obtained by phasing and adding the received ultrasonic signal has been described.
  • the RF (high frequency) signal before phasing addition is performed by phasing processing unit 103
  • the side lobe noise removing process is performed for each specific one of the high-frequency component images 47 to 49 when the incident angle is 0 degree and any value larger than 0 degree and smaller than 90 degrees.
  • two or more of the high-frequency component images 47 to 49 may be subjected to noise removal processing in order to perform appropriate side lobe noise removal for an arbitrary incident angle.
  • the side lobe noise removing unit 5 determines the pixel value smaller than the predetermined threshold among the pixel values of the high frequency component images 47 to 49 as the side lobe noise component and replaces it with 0.
  • the threshold may be received from the user through the console 109.
  • a value set in advance may be used according to an imaging object such as a human heart or liver.
  • the method of removing the side lobe noise component is not limited to the method of replacing the pixel value of the signal intensity smaller than the threshold of the high frequency component images 47 to 49 with 0, but a method capable of reducing the noise component Any processing method may be used.
  • the threshold value of the filter in which the horizontal direction analysis unit 41 and the vertical direction analysis unit 42 in FIG. 5A extract high frequency components and low frequency components from the pixel value distribution is not a fixed threshold value, but a value received from the user, It is also possible to use preset values according to the imaging target.
  • the ultrasonic wave transmitted to the imaging area 20 is a plane wave
  • the ultrasonic wave may not necessarily be a plane wave, and a spherical wave focusing at a transmission focus located inside or outside the imaging area 20 It may be
  • the third embodiment further includes the incident angle calculation unit 107 that obtains the incident angle of the ultrasonic wave for each of a plurality of regions in the imaging region 20.
  • the side lobe noise removing unit 5 selects, for each of the plurality of regions, a high frequency component from which noise is removed, in accordance with the incident angle of the ultrasonic wave calculated by the incident angle calculating unit 107.
  • the incident angle calculation unit 107 calculates an ultrasonic incident angle for each predetermined small area in the imaging area 20 according to the transmission condition of the ultrasonic wave.
  • the small area is an area obtained by dividing the entire imaging area 20 into a predetermined sufficiently small size.
  • FIG. 9 is a view showing the incident angle 305 of ultrasonic waves in a certain small area 303. As shown in FIG. In FIG. 9, the horizontal direction is parallel to the direction 301 in which the ultrasonic elements of the ultrasonic element array 101 are arranged, and the vertical direction is the depth direction 302 of the imaging region 20.
  • an angle formed by the direction of travel 304 of the ultrasonic wave with respect to the depth direction 302 is defined as an incident angle 305.
  • the incident angle calculation unit 107 receives the transmission conditions (the position of the transmission focus, etc.) of the ultrasonic waves from the control unit 108, and calculates the value of the incident angle 305 for each small area according to the received transmission conditions.
  • the incident angle 305 calculated by the incident angle calculation unit 107 is stored in the form of a table or the like in the memory incorporated in the incident angle calculation unit 107 in association with the position of the small area.
  • the side lobe noise removing unit 5 selects any one of the high frequency component images 47 to 49 in order to remove noise of the resolution analysis image 401 generated by the multi-resolution analysis unit 104,
  • the ultrasonic incident angle 305 of the small area 303 is read from the table, one or more of the high frequency component images 47 to 49 corresponding to the incident angle 305 are selected, and an area corresponding to the small area of the selected high frequency component image To remove the noise component.
  • an LH component image 47 is selected, and pixels of the area corresponding to the small area are selected.
  • the inverse transformation unit 404 inversely transforms the resolution analysis image 501 from which the side lobe component has been removed, thereby generating an image of the same resolution as the original ultrasound image from which the side lobe artifact has been removed.
  • Embodiment 4 The ultrasonic imaging apparatus according to the fourth embodiment will be described with reference to FIG.
  • a plurality of transmissions with different incident angles of ultrasonic waves to the imaging region 20 are performed, high frequency components and low frequency components are generated for each transmission with different incident angles, and side lobe noise is removed.
  • an image addition unit hereinafter, referred to as a combination unit 607 for adding each component.
  • the high frequency component and the low frequency component after the addition are inversely transformed to synthesize a side lobe artifact removed image. Thereby, an image with high contrast can be obtained.
  • FIG. 10 is a block diagram of the signal conversion unit 105 in the present embodiment.
  • the signal conversion unit 105 of the present embodiment includes two side lobe noise removal units 605 and 606.
  • the two side lobe noise removing units 605 and 606 transmit ultrasonic waves of plane waves to the imaging area 20 so as to have different incident angles, and an image generated from a received signal such as an echo obtained from the imaging area 20 Remove the side lobe noise from the pixel value distribution.
  • the incident angle of the plane wave to the imaging region 20 is defined by the angle formed by the ultrasonic element array direction of the ultrasonic element array 101 and the wavefront (that is, the angle formed by the traveling direction of the ultrasonic wave with respect to the depth direction). Be done.
  • an ultrasonic wave of a plane wave is transmitted from the ultrasonic element array 101 to the imaging region 20 at an incident angle of 0 degrees (see FIG. 1B).
  • a received signal output from the ultrasonic element array 101 that has received an echo or the like is processed by the phasing processing unit 103 to generate an ultrasonic image, and the multiresolution analysis unit 104 generates an ultrasonic image as shown in FIG. 7 (a-1).
  • the high frequency component images 47 to 49 and the low frequency component image 46 are extracted.
  • the side lobe noise removing unit 605 selects the LH component image 47 by the same method as in the second embodiment and removes the side lobe noise component to obtain the LH ′ component image 47 a (FIG. 7 (a-2)). .
  • the side lobe noise removing unit 606 transmits, from the ultrasonic element array 101, a plane wave ultrasonic wave whose incident angle is greater than 0 degree and smaller than 90 degrees (see FIG. 1 (c)).
  • a received signal output from the ultrasonic element array 101 that has received an echo or the like is processed by the phasing processing unit 103 to generate an ultrasonic image, and the multiresolution analysis unit 104 generates an ultrasonic image as shown in FIG. 7 (b-1).
  • the high frequency component images 47 to 49 and the low frequency component image 46 are extracted.
  • the side lobe noise removing unit 606 selects the HH component image 49 by the same method as in the second embodiment and removes the side lobe noise component to obtain the HH 'component image 49 a. Thereby, the resolution analysis image 503 is obtained (FIG. 7 (b-2)).
  • FIG. 11 is a diagram showing the flow of addition / combination processing.
  • the combining unit 607 adds and combines the resolution analysis image 501 and the resolution analysis image 503 from which the side lobe noise components have been removed by the side lobe noise removing unit 605 and the side lobe noise removing unit 606. , And a resolution analysis image 703 after synthesis.
  • the inverse transform unit 404 inversely transforms the combined resolution analysis image 703 to generate an image from which the side lobe artifact has been removed at the same resolution as the original ultrasound image.
  • an inverse conversion is performed to improve the contrast of the real image 13 of the reflector 12 in the image while removing side lobe artifacts. can get.
  • Embodiment 5 An ultrasonic imaging apparatus according to the fifth embodiment will be described with reference to FIG.
  • a plurality of transmissions with different incident angles of ultrasonic waves with respect to the imaging region 20 are performed, a side lobe artifact removed image is generated for each transmission with different incident angles, and image addition is performed to add the plurality of obtained images.
  • a part (hereinafter referred to as a combining part) 803 is included.
  • An image with higher contrast can be obtained by combining a plurality of side lobe artifact removed images with different incident angles of ultrasonic waves.
  • FIG. 12 is a block diagram of the signal conversion unit 105 in the present embodiment.
  • the signal conversion unit 105 of the present embodiment includes two side lobe noise removal units 605 and 606 as in the fourth embodiment, but unlike the fourth embodiment, the side lobe noise removal units 605 and 606 and the combining unit 803 Inverse transformation units 801 and 802 are respectively disposed between them.
  • the inverse transformation unit 801 inversely transforms the resolution analysis image 501 from which the noise component has been removed by the side lobe noise removal unit 605 to generate a side lobe artifact removed image 511.
  • the inverse transformation unit 802 inversely transforms the resolution analysis image 503 from which the noise component has been removed by the side lobe noise removal unit 606 to generate a side lobe artifact removed image 513.
  • the combining unit 803 combines the image 511 and the image 513 generated by the inverse conversion units 801 and 802.
  • Embodiment 6 The ultrasonic imaging apparatus according to the sixth embodiment will be described with reference to FIG.
  • the signal processing unit 105 of this embodiment has the same configuration as the signal processing unit 105 of FIG. 10 of the fourth embodiment, but in this embodiment, a spherical wave is used as an ultrasonic wave to be transmitted.
  • the position of the transmission focus is made to differ between one transmission and the second transmission.
  • the side lobe noise removing units 605 and 606 receive the incident angle from the incident angle calculation unit 107 for each small area and receive them.
  • One or more of the high frequency component images 47 to 49 corresponding to the incident angle are selected, and the noise removal processing of the area corresponding to the small area is performed as in the third embodiment.
  • the synthesizing unit 607 adds the resolution analysis images 501 and 503 after noise removal to each corresponding component, and the inverse transformation unit 404 inverse-transforms the resolution analysis image after addition to remove side lobe artifacts. Generate an image.
  • the position of the transmission focal point is made different by using the spherical wave, side lobes are removed from the reception signal obtained by performing transmission multiple times, and the contrast of the real image of the reflector is enhanced. You can get an image.
  • the inverse conversion is performed, but the inverse conversion may be performed first and then the combination may be performed.
  • Embodiment 7 From the high frequency component images 47 to 49 of the resolution analysis images 401 and 402 generated by plane waves transmitted at a plurality of different incident angles in the fourth embodiment, the pixels of the side lobe noise component in the high frequency component images 47 to 49 are Estimate the range. Then, the noise component included in the range of the estimated side lobe noise component is removed. Thereby, the side lobe removal is performed more appropriately.
  • FIG. 14 is a block diagram of the signal conversion unit 105 in the present embodiment.
  • the signal conversion unit 105 of the present embodiment has a side lobe estimation unit 901 that estimates the range of the pixel of the side lobe noise component using the resolution analysis images 401 and 402.
  • the resolution analysis image 401 used for estimation is the high frequency component image 47 to 49 and the low frequency component image 46 generated by the multi-resolution analysis unit 104 from the received signal obtained by transmission at an incident angle of 0 degrees. It consists of Since the side lobe artifact occurs along the horizontal direction when the incident angle is 0 degree, the side lobe estimation unit 901 selects the LH component image 47 as the side lobe noise removal unit 605 does.
  • the resolution analysis image 402 includes high-frequency component images 47 to 49 and a low-frequency component image 46 obtained by transmission with an incident angle of more than 0 degree and less than 90 degrees. In this case, the side lobe estimation unit 901 selects the HH component image 49 as the side lobe noise removal unit 606 does.
  • the side lobe estimation unit 901 obtains the difference between the two selected component images 47 and 49.
  • Side lobe noise is generated in different regions (pixels) in the two component images 47 and 49, so the difference between the component images 47 and 49 cancels the real image 13 contained in the component images 47 and 49.
  • the pixel value of the side lobe noise does not cancel out, and is extracted as the difference image 1003. That is, a pixel having a value in the difference image 1003 indicates an area in which side lobe noise occurs.
  • the side lobe estimation unit 901 notifies the side lobe noise removal unit 605 and the side lobe noise removal unit 606 of the difference image 1003.
  • the side lobe noise removing units 605 and 606 respectively select predetermined high frequency component images 47 and 49 from the high frequency component images 47 to 49 as in the fourth embodiment, and the range of pixels having the pixel value of the difference image 1003, ie, The noise is removed by replacing the pixel values of the high frequency component images 47 and 49 corresponding to the area where the side lobe noise occurs with a pixel value equal to or less than the threshold value to zero.
  • the processes of the synthesizing unit 607 and the inverse transforming unit 404 perform the same processes as in the fourth embodiment to generate a side lobe artifact removed image.
  • the side lobe estimation unit 901 estimates the region (pixel) in which side lobe noise occurs in advance, and removes the noise in the region (pixel), thereby setting the pixel value equal to or less than the threshold value to 0. Only the side lobe noise can be removed more accurately than the configuration of the fourth embodiment to be replaced.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the embodiments described above have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to the embodiments provided with all the described configurations.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and addition, deletion, or replacement of the configuration of one embodiment can be performed using another configuration. .
  • each of the above configurations, functions, processing units, processing means, etc. may be realized by hardware by designing part or all of them with, for example, an integrated circuit. Further, each configuration, function, etc. described above may be realized by software by the processor interpreting and executing a program that realizes each function. Information such as a program, a table, and a file for realizing each function can be placed in a memory, a hard disk, a recording device such as a solid state drive (SSD), or a recording medium such as an IC card, an SD card, or a DVD.
  • SSD solid state drive

Abstract

Devices for obtaining, in a short imaging time, an ultrasonic image with reduced artifacts associated with side lobes. Ultrasonic waves are transmitted to a region to be imaged, a signal is then obtained by receiving the ultrasonic waves returning from the region to be imaged, and an image of the region to be imaged is generated. Side lobe artifacts are cancelled by determining the pixel value distribution of the image in a predetermined direction based on the angle of incidence of the ultrasonic waves on the region to be imaged, and cancelling a noise component included in a high frequency component of the pixel value distribution.

Description

超音波撮像装置、および、画像処理装置ULTRASONIC IMAGING DEVICE, AND IMAGE PROCESSING DEVICE
 本発明は、超音波を用いて被検体内の画像を撮像する超音波撮像技術に関する。 The present invention relates to an ultrasonic imaging technique for imaging an image in a subject using ultrasonic waves.
 超音波撮像技術とは、一般的には20kHz以上の高周波の音波を用いて人体をはじめとする被検体の内部を非侵襲的に画像化する技術である。一つの例として、医用超音波診断装置について簡単に説明する。超音波探触子は、超音波を患者の体内に向けて送信し、患者体内から反射されるエコー信号を受信する。受信信号は、超音波探触子および超音波診断装置本体の一方またはその双方において信号処理を施された後、画像表示部に受け渡され、超音波画像が表示される。具体的には、例えば超音波診断装置本体に配置された送信ビームフォーマにおいて、所定の送信焦点に焦点を結ぶように遅延させた送信信号が生成され、送受信分離回路(T/R)を経た後に、超音波探触子の複数の素子に送られる。超音波探触子の複数の素子は、受け取った送信信号を超音波に変換することにより、所定の送信焦点に焦点を結ぶ集束した送信ビームを被検体に送信する。超音波探触子は、被検体体内からのエコー信号を受信し、受信信号を本体に伝達する。本体中で、受信信号は送受信分離回路を経て、受信ビームフォーマに受け渡され、受信ビームフォーマにおいて整相処理が施された後、画像処理部に伝達される。画像処理部では、各種フィルタ、スキャンコンバートなど様々な画像処理が実行され、超音波画像が生成される。最終的に画像表示部に超音波画像が表示される。 In general, ultrasonic imaging technology is a technology for non-invasively imaging the inside of a subject including a human body using a high frequency sound wave of 20 kHz or higher. A medical ultrasound diagnostic apparatus will be briefly described as one example. The ultrasound probe transmits ultrasound into the patient's body and receives echo signals reflected from the patient's body. The reception signal is subjected to signal processing in one or both of the ultrasonic probe and the ultrasonic diagnostic apparatus main body, and is then delivered to the image display unit to display an ultrasonic image. Specifically, for example, in a transmission beam former disposed in the ultrasonic diagnostic apparatus main body, a transmission signal delayed so as to focus on a predetermined transmission focus is generated, and after passing through a transmission / reception separation circuit (T / R) , And are sent to a plurality of elements of the ultrasound probe. The plurality of elements of the ultrasound probe transmit the focused transmission beam focused on a predetermined transmission focus to the subject by converting the received transmission signal into an ultrasonic wave. The ultrasound probe receives an echo signal from the subject and transmits the received signal to the main body. In the main body, the reception signal is passed to the reception beam former through the transmission / reception separation circuit, subjected to phasing processing in the reception beam former, and transmitted to the image processing unit. In the image processing unit, various image processing such as various filters and scan conversion are executed to generate an ultrasonic image. Finally, an ultrasound image is displayed on the image display unit.
 受信ビームフォーマは、超音波探触子を構成する複数素子の各受信信号(受信データ)に対して、受信焦点位置と素子の位置との関係に応じて凹面型に遅延量が分布する遅延時間を与えることにより、仮想的に空間のある一点(受信焦点)に焦点をあわせた後、受信信号データを加算する。この整相加算後データにより、撮像領域の受信焦点の位置の画素の値が生成される。この方法は、遅延加算方式による整相と呼ばれている。この遅延加算方式では、超音波診断装置の複数素子で受信された受信データと診断装置に蓄えられた固定の重みベクトルとを乗算し、重み付けしてから加算する場合もある。なお、遅延加算処理は、撮像領域に設定された受信走査線上の複数の受信焦点についてそれぞれ行われる。 The reception beam former is a delay time in which the amount of delay is distributed in a concave shape according to the relationship between the reception focal point position and the position of the element with respect to each reception signal (reception data) of a plurality of elements constituting the ultrasonic probe By focusing on virtually one point in space (reception focus), the reception signal data is added. The phasing and addition data generates the value of the pixel at the position of the reception focus in the imaging area. This method is called phasing by the delay addition method. In this delay-and-add method, received data received by a plurality of elements of the ultrasonic diagnostic apparatus may be multiplied by a fixed weight vector stored in the diagnostic apparatus, weighted and then added. Note that the delay addition processing is performed for each of a plurality of reception focal points on the reception scanning line set in the imaging region.
 集束する送信ビームを送信する撮像方法は、送信ビームが照射された撮像領域の範囲内に1本または数本の受信走査線を設定し、受信走査線上の複数の受信焦点に対して遅延加算後データが取得される。そのため、撮像領域の全体について遅延加算後データを得るためには、位置をずらしながら複数回送信ビームを送信する必要があり、撮像に時間がかかるという問題がある。 In an imaging method for transmitting a focused transmission beam, one or several reception scanning lines are set within the imaging region irradiated with the transmission beam, and after delay addition to a plurality of reception focal points on the reception scanning lines Data is acquired. Therefore, in order to obtain delayed post-addition data for the entire imaging region, it is necessary to transmit the transmission beam a plurality of times while shifting the position, and there is a problem that it takes time for imaging.
 この問題に対し、超音波探触子の複数の素子から平面波の超音波を送信し、撮像領域全体に1回の送信で超音波を照射し、撮像領域全体に複数の受信走査線を設定して、それぞれの受信走査線上の受信焦点について遅延加算後データを得て画像を生成することにより、撮像時間を短縮する撮像方法がある。しかしながら、平面波の超音波を送信する撮像方法は、送信する超音波が焦点を結ばないためサイドローブが発生しやすく、サイドローブにより生じたエコー信号が、実際の被検体内の反射体(実像)の周辺にアーチファクトを生じさせる。この欠点を補うための技術として、平面波の送信角度を変えて複数回の送信を行い、それぞれの送信ごとに画像を生成し、生成した画像を加算することで、実像の信号強度を大きくし、アーチファクトに対するコントラストを高める手法が特許文献1に記載されている。 In response to this problem, plane wave ultrasonic waves are transmitted from a plurality of elements of the ultrasonic probe, the ultrasonic waves are irradiated in one transmission over the entire imaging area, and a plurality of reception scanning lines are set over the entire imaging area. There is an imaging method for shortening the imaging time by obtaining delayed post-addition data for the reception focus on each reception scan line and generating an image. However, in the imaging method for transmitting plane-wave ultrasonic waves, side-lobes are easily generated because the ultrasonic waves to be transmitted are not focused, and echo signals generated by the side-lobes are reflectors (actual images) in an actual object. Create artifacts around the As a technique to compensate for this defect, the transmission angle of the plane wave is changed, transmission is performed a plurality of times, an image is generated for each transmission, and the generated images are added to increase the signal strength of the real image, Patent Document 1 describes a method for enhancing the contrast to an artifact.
米国特許第6,551,246号明細書U.S. Patent No. 6,551,246
 特許文献1の手法は、サイドローブによるアーチファクトに対する実像の画像上のコントラストを相対的に高めるものであるため、十分なコントラストを得るためには多くの超音波画像を加算する必要がある。そのため、複数の超音波画像を平面波の送信角度を変更しながら撮像する必要があり、撮像時間の低減効果が十分に得られないという課題があった。 Since the method of Patent Document 1 relatively enhances the contrast on the image of the real image against the artifact due to side lobes, it is necessary to add many ultrasound images in order to obtain sufficient contrast. Therefore, it is necessary to image a plurality of ultrasonic images while changing the transmission angle of the plane wave, and there is a problem that the reduction effect of the imaging time can not be sufficiently obtained.
 本発明の目的は、撮像時間が短く、サイドローブによるアーチファクトを低減した超音波画像を得ることにある。 An object of the present invention is to obtain an ultrasound image with a short imaging time and reduced artifacts due to side lobes.
 上記課題を解決するために、本発明の超音波撮像装置は、撮像領域に対して超音波を送信した後、撮像領域から戻った超音波を受信した信号を受け取って、撮像領域の画像を生成する画像生成部と、撮像領域に対する超音波の入射角度に応じた所定の方向について、画像の画素値分布を求め、画素値分布の高周波成分に含まれるノイズ成分を除去することによりサイドローブアーチファクトを除去する画像処理部とを有する。 In order to solve the above problems, the ultrasonic imaging apparatus of the present invention transmits an ultrasonic wave to an imaging area, and then receives a signal that has received an ultrasonic wave returned from the imaging area, and generates an image of the imaging area. The pixel value distribution of the image is determined in a predetermined direction according to the incident angle of the ultrasonic wave to the image generation area and the imaging region, and the side lobe artifact is obtained by removing the noise component included in the high frequency component of the pixel value distribution. And an image processing unit to be removed.
 本発明によれば、撮像時間が短く、サイドローブによるアーチファクトを低減した超音波画像を得ることができる。 According to the present invention, it is possible to obtain an ultrasound image with a short imaging time and reduced artifacts due to side lobes.
(a)~(c)は、撮像領域への超音波の入射角度と、得られる超音波画像のサイドローブアーチファクトの方向とを示す説明図。(A)-(c) is an explanatory view showing the incidence angle of the ultrasonic wave to an imaging field, and the direction of the side lobe artifact of the acquired ultrasonic image. 実施形態1の超音波撮像装置の構成を示すブロック図。FIG. 1 is a block diagram showing the configuration of an ultrasound imaging apparatus according to a first embodiment. 実施形態2の超音波撮像装置の構成を示すブロック図。FIG. 7 is a block diagram showing the configuration of an ultrasound imaging apparatus according to a second embodiment. 実施形態2にかかる信号変換部の構成を示すブロック図。FIG. 7 is a block diagram showing the configuration of a signal conversion unit according to a second embodiment. (a)実施形態2にかかる多重解像度解析部の機能を示すブロック図、(b)多重解像度解析部が抽出した低周波成分画像および高周波成分画像を並べた解像度(周波数成分)解析画像を示す図。(A) A block diagram showing the function of the multiple resolution analysis unit according to the second embodiment, (b) A diagram showing a resolution (frequency component) analysis image in which low frequency component images and high frequency component images extracted by the multiple resolution analysis unit are arranged. . 実施形態2の多重解像度解析部が多重に抽出した低周波成分画像および高周波成分画像を並べた解像度(周波数成分)解析画像を示す図。FIG. 7 is a view showing a resolution (frequency component) analysis image in which low-frequency component images and high-frequency component images which are multiply extracted by the multi-resolution analysis unit of the second embodiment are arranged. (a)実施形態2にかかる、超音波入射角が0度の場合の、解像度解析画像と、LH成分画像のノイズを除去した解像度解析画像と、サイドローブアーチファクト除去画像を示す図、(b)超音波入射角が0度~90度の場合の、解像度解析画像と、HH成分画像のノイズを除去した解像度解析画像と、サイドローブアーチファクト除去画像を示す図。(A) A diagram showing a resolution analysis image, a resolution analysis image from which noise of an LH component image is removed, and a side lobe artifact removal image when the ultrasound incident angle is 0 degree according to the second embodiment, (b) The figure which shows the resolution analysis image in case an ultrasonic incident angle is 0 degree-90 degree, the resolution analysis image which removed the noise of the HH component image, and the side lobe artifact removal image. 実施形態3の超音波撮像装置の構成を示すブロック図。FIG. 7 is a block diagram showing the configuration of an ultrasound imaging apparatus according to a third embodiment. 実施形態3にかかる撮像領域内の小領域における超音波の入射角を示す図。FIG. 16 is a view showing incident angles of ultrasonic waves in a small area in the imaging area according to the third embodiment. 実施形態4にかかる信号変換部の構成を示すブロック図。FIG. 7 is a block diagram showing the configuration of a signal conversion unit according to a fourth embodiment. 実施形態4にかかる解像度解析画像のノイズ除去処理と加算処理を示す説明図。Explanatory drawing which shows the noise removal process and addition process of the resolution analysis image concerning Embodiment 4. FIG. 実施形態5にかかる信号変換部の構成を示すブロック図。FIG. 7 is a block diagram showing the configuration of a signal conversion unit according to a fifth embodiment. 実施形態6にかかる信号変換部の構成を示すブロック図。FIG. 16 is a block diagram showing the configuration of a signal conversion unit according to a sixth embodiment. 実施形態7にかかる信号変換部の構成を示すブロック図。FIG. 14 is a block diagram showing the configuration of a signal conversion unit according to a seventh embodiment. 実施形態7にかかるサイドローブ推定部の処理の流れを示す説明図。FIG. 18 is an explanatory view showing a flow of processing of a side lobe estimation unit according to a seventh embodiment;
 以下、本発明の実施形態について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 <<実施形態1>>
 本実施形態では、送信した超音波10のサイドローブにより超音波画像にアーチファクト11が発生する方向が、超音波10の撮像領域への入射方向に依存することを利用して、サイドローブによるアーチファクトを除去する。すなわち、図1(a)~(c)に示すように、超音波画像における撮像領域内の反射体12のサイドローブアーチファクトは、反射体12に入射する超音波10の波面に沿った方向に表れることに本実施形態では着目し、超音波画像の超音波の入射角度に応じた所定の方向について、画像の画素値分布を求め、画素値分布からノイズ成分を除去することによりサイドローブアーチファクトを除去する。より具体的には、超音波画像の画素値分布を少なくとも2方向について求め、高周波成分と低周波成分にそれぞれ分離し、超音波の入射方向に対応した所定方向の高周波成分に含まれるサイドローブによるノイズを除去することにより、サイドローブアーチファクト除去画像を生成する。
<< First Embodiment >>
In the present embodiment, the side lobes of the ultrasonic waves 10 are artifact-induced by making use of the fact that the direction in which the artifacts 11 are generated in the ultrasonic image by the side lobes of the transmitted ultrasonic waves 10 depends on the direction of incidence of the ultrasonic waves 10 onto the imaging region. Remove. That is, as shown in FIGS. 1A to 1C, the side lobe artifact of the reflector 12 in the imaging region in the ultrasound image appears in the direction along the wavefront of the ultrasound 10 incident on the reflector 12. Particularly in the present embodiment, the pixel value distribution of the image is determined in a predetermined direction according to the incident angle of the ultrasonic wave of the ultrasonic image, and the side lobe artifact is removed by removing the noise component from the pixel value distribution. Do. More specifically, the pixel value distribution of the ultrasonic image is determined in at least two directions, and is separated into high frequency components and low frequency components, respectively, and side lobes included in high frequency components in a predetermined direction corresponding to the incident direction of ultrasonic waves. By removing the noise, a side lobe artifact removed image is generated.
 図2を用いて本実施形態の超音波画像撮像装置について説明する。 An ultrasound imaging apparatus according to the present embodiment will be described with reference to FIG.
 本実施形態の超音波画像撮像装置は、画像生成部3と、画像処理部21とを有し、画像処理部21は、成分抽出部4と、サイドローブノイズ除去部5と、サイドローブ除去画像生成部7とを少なくとも備えている。このとき、超音波画像撮像装置は、超音波探触子101等を必ずしも備えていなくてもよく、別の装置が被検体に超音波を送信し、そのエコー等を受信した受信信号を、その装置から受け取る構成であってもよい。ここでは図2のように、超音波画像撮像装置は、超音波探触子101、送信部2、および、送受信分離回路102を備える構成である場合について説明する。 The ultrasound imaging apparatus according to the present embodiment includes an image generation unit 3 and an image processing unit 21. The image processing unit 21 includes a component extraction unit 4, a side lobe noise removal unit 5, and a side lobe removed image. And at least a generation unit 7. At this time, the ultrasonic imaging apparatus may not necessarily include the ultrasonic probe 101 or the like, and another apparatus transmits an ultrasonic wave to the subject and the received signal such as an echo thereof is It may be configured to be received from the device. Here, as shown in FIG. 2, the case where the ultrasonic imaging apparatus is configured to include the ultrasonic probe 101, the transmitting unit 2, and the transmission / reception separation circuit 102 will be described.
 撮像領域20に対して、超音波探触子101の複数の音響変換素子から超音波10を送信すると、撮像領域20からエコー等の超音波が超音波探触子101に戻って複数の音響変換素子によって受信される。画像生成部3は、音響変換素子の受信信号を受け取って、撮像領域20の画像を生成する。画像の生成方法としては、どのような方法を用いてもよい。例えば、撮像領域20に複数の受信走査線を設定し、受信走査線上の受信焦点に受信信号の焦点を合わせるように各受信信号をそれぞれ遅延させた後加算し、各受信走査線上の受信焦点の遅延加算後信号を画素値とする画素を、画像空間に配置することにより超音波画像を生成する方法を用いることができる。 When ultrasonic waves 10 are transmitted from the plurality of acoustic conversion elements of the ultrasonic probe 101 to the imaging area 20, ultrasonic waves such as echoes are returned to the ultrasonic probe 101 from the imaging area 20, and the plurality of acoustic conversions are performed. It is received by the element. The image generation unit 3 receives the reception signal of the acoustic conversion element, and generates an image of the imaging region 20. Any method may be used as a method of generating an image. For example, a plurality of reception scanning lines are set in the imaging area 20, and each reception signal is delayed so as to focus the reception signal on the reception focus on the reception scanning line and then added. It is possible to use a method of generating an ultrasound image by arranging in the image space pixels for which the delayed and added signal is a pixel value.
 成分抽出部4は、画像生成部3が生成した画像の少なくとも2方向について画素値分布を求め、2方向のそれぞれの画素値分布(信号)を構成する高周波成分と低周波成分を抽出する。2方向は、どのような方向であってもよいが、一例としては、画像の水平方向と垂直方向のように直交する2方向とする。撮像領域20の反射体13の周辺には、超音波の波面に沿う方向にサイドローブアーチファクトが生じているため、撮像領域20に対する超音波10の入射角度に応じて、上記2方向の画素値分布の一方、または両方には、超音波10のサイドローブによって生じたノイズが含まれている。例えば、図1(b)のように、撮像領域20の水平方向に平行な平面波の超音波10を送信した場合、画像の反射体12の実像13の水平方向に沿ってサイドローブアーチファクト11が生じる。よって、画像の垂直方向の画素値分布のノイズ(高周波成分の一部)を除去する必要がある。そこで、サイドローブノイズ除去部5は、撮像領域20に対する超音波10の入射角度に応じて、2方向の少なくとも一方を選択して、選択した方向の高周波成分に含まれるノイズ成分(以下、サイドローブノイズとも呼ぶ)を除去する。例えば、高周波成分に含まれる絶対値が所定値以下の成分をノイズ成分として除去する。 The component extraction unit 4 obtains pixel value distributions in at least two directions of the image generated by the image generation unit 3 and extracts high frequency components and low frequency components constituting pixel value distributions (signals) in the two directions. The two directions may be any directions, but one example is two directions orthogonal to the horizontal direction and the vertical direction of the image. Since sidelobe artifacts occur in the direction along the wavefront of the ultrasonic wave around the reflector 13 in the imaging area 20, the pixel value distributions in the two directions according to the incident angle of the ultrasonic wave 10 on the imaging area 20 The noise generated by the side lobes of the ultrasonic wave 10 is included in one or both of the two. For example, as shown in FIG. 1 (b), when ultrasonic waves 10 of plane waves parallel to the horizontal direction of the imaging region 20 are transmitted, side lobe artifacts 11 occur along the horizontal direction of the real image 13 of the reflector 12 of the image. . Therefore, it is necessary to remove noise (a part of high frequency components) of the pixel value distribution in the vertical direction of the image. Therefore, the side lobe noise removing unit 5 selects at least one of the two directions according to the incident angle of the ultrasonic wave 10 to the imaging region 20, and a noise component included in the high frequency component in the selected direction (hereinafter referred to as a side lobe) Remove noise). For example, a component whose absolute value included in the high frequency component is equal to or less than a predetermined value is removed as a noise component.
 サイドローブ除去画像生成部7は、サイドローブノイズ除去部5が選択した方向の、ノイズ成分を除去した高周波成分を少なくとも用いて、撮像領域20のサイドローブアーチファクト除去画像を生成する。具体的には、サイドローブ除去画像生成部7は、サイドローブノイズ除去部5が選択した方向の、ノイズ成分を除去した高周波成分と低周波成分、および、サイドローブノイズ除去部5が選択しなかった方向の高周波成分と低周波成分、を用いて撮像領域のサイドローブアーチファクト除去画像を生成する。例えば、高周波成分と低周波成分を抽出した際の方法の逆の処理を行うことにより画像を再び生成する。これにより、ノイズ成分のみが画素値分布から除去され、他の成分は維持されるため、実像の画素値低減を抑制しながらサイドローブアーチファクト11を除去することができる。 The side lobe removal image generation unit 7 generates a side lobe artifact removal image of the imaging region 20 using at least high frequency components from which noise components have been removed in the direction selected by the side lobe noise removal unit 5. Specifically, the side lobe removal image generation unit 7 does not select the high frequency component and the low frequency component from which noise components have been removed and the side lobe noise removal unit 5 in the direction selected by the side lobe noise removal unit 5. The side lobe artifact removed image of the imaging region is generated using the high frequency component and the low frequency component of the different directions. For example, the image is generated again by performing the reverse process of the method when extracting the high frequency component and the low frequency component. As a result, only the noise component is removed from the pixel value distribution, and the other components are maintained, so that the side lobe artifact 11 can be removed while suppressing the pixel value reduction of the real image.
 このように、本実施形態の撮像方法によれば、撮像した超音波画像からサイドローブアーチファクトを除去することができるため、撮像時間が短く、かつ、サイドローブによるアーチファクトが低減された画像を得ることができる。 As described above, according to the imaging method of the present embodiment, the side lobe artifact can be removed from the imaged ultrasonic image, so that an image with a short imaging time and reduced artifacts due to the side lobe can be obtained. Can.
 以下、実施形態2以降により、より具体的な実施形態について説明する。 Hereinafter, more specific embodiments will be described according to the second embodiment and later.
 <<実施形態2>>
 図3は、実施形態2の超音波撮像装置の構成を示すブロック図である。図3において、実施形態1の装置と同じ構成には同じ符号を付している。
<< Embodiment 2 >>
FIG. 3 is a block diagram showing the configuration of the ultrasonic imaging apparatus of the second embodiment. In FIG. 3, the same components as those of the apparatus of the first embodiment are denoted by the same reference numerals.
 図3のように、超音波診断装置は、所定の方向に沿って複数の超音波素子(超音波振動子)を配列した超音波探触子(以下、超音波素子アレイと呼ぶ)101と、超音波素子アレイ101を介して送受信する信号を分離する送受信分離回路102と、送受信分離回路102を介して送信信号を超音波素子アレイ101の各超音波素子に受け渡す送信部2とを有する。送信部2は、ここでは、平面波を所定の方向から撮像領域20に照射するよう、超音波素子ごとに遅延させた送信信号を生成する。 As shown in FIG. 3, the ultrasonic diagnostic apparatus comprises an ultrasonic probe (hereinafter referred to as an ultrasonic element array) 101 in which a plurality of ultrasonic elements (ultrasound transducers) are arranged along a predetermined direction; It has a transmission / reception separation circuit 102 for separating a signal to be transmitted / received through the ultrasonic element array 101, and a transmission unit 2 for delivering a transmission signal to each ultrasonic element of the ultrasonic element array 101 via the transmission / reception separation circuit 102. Here, the transmission unit 2 generates a transmission signal delayed for each ultrasonic element so that the imaging region 20 is irradiated with a plane wave from a predetermined direction.
 また、実施形態2の超音波撮像装置は、画像生成部3として、超音波素子アレイ101の各超音波素子が受信した信号の位相を、受信焦点の位置に応じて整相(遅延)させ、合成(加算)し、整相加算後信号を得る整相処理部103が配置されている。整相処理部103は、撮像領域20全体に複数の受信走査線を設定し、各受信走査線上の複数の受信焦点についてそれぞれ整相加算後信号を得て、整相加算後信号を、それぞれの受信焦点の位置に対応する画素の画素値とすることにより、超音波画像を生成する。これにより、一度の平面波の送信によって、1枚の超音波画像を得ることができる。この超音波画像は、一度の平面波の送信によって得た画像であるため、サイドローブによるアーチファクト等を含み、低解像度である。 In the ultrasonic imaging apparatus according to the second embodiment, as the image generation unit 3, the phases of the signals received by the respective ultrasonic elements of the ultrasonic element array 101 are phased (delayed) according to the position of the reception focus, A phasing processing unit 103 is disposed which obtains a signal after phasing / addition by combining (addition). The phasing processing unit 103 sets a plurality of reception scanning lines in the entire imaging region 20, obtains signals after phasing addition for each of a plurality of reception foci on each reception scanning line, and obtains the signals after phasing addition. An ultrasound image is generated by using the pixel value of the pixel corresponding to the position of the reception focus. Thereby, one ultrasound image can be obtained by transmitting a plane wave once. Since this ultrasound image is an image obtained by transmitting a plane wave once, it includes artifacts due to side lobes, etc., and has low resolution.
 また、実施形態2の超音波撮像装置は、成分抽出部4として、ウエーブレット変換により高周波成分および低周波成分を抽出する多重解像度解析部104を備え、さらに、サイドローブノイズ除去部5と、サイドローブ除去画像生成部7とを備えている。実施形態2では、サイドローブノイズ除去部5とサイドローブ除去画像生成部7は、図4のように、信号変換部105を構成している。また、サイドローブ除去画像生成部7は、ここではウエーブレット逆変換によりサイドローブを除去した画像を生成するため、逆変換部404と呼ぶ。 The ultrasound imaging apparatus according to the second embodiment includes, as the component extraction unit 4, a multiresolution analysis unit 104 that extracts high frequency components and low frequency components by wavelet transformation, and further includes a side lobe noise removal unit 5 and side components. And a lobe removal image generation unit 7. In the second embodiment, the side lobe noise remover 5 and the side lobe removed image generator 7 constitute a signal converter 105 as shown in FIG. Further, the side lobe removed image generation unit 7 is called an inverse transform unit 404 in order to generate an image from which the side lobes have been removed by inverse wavelet transform.
 信号変換部105には、制御部108と画像表示部106が接続されている。また、制御部108と画像表示部106には、コンソール109が接続されている。コンソール109は、タッチパネル、キーボード、トラックボールなどによって構成され、ユーザの入力を受け付ける。制御部108は、コンソール109が受け付けたユーザの入力に基づいて、送信部2、整相処理部103および信号処理部105に撮像領域20への平面波である超音波の入射方向等を指示する。画像表示部106は、ディスプレイなどによって構成され、信号変換部105によって生成された画像などをユーザに対して表示する。 The control unit 108 and the image display unit 106 are connected to the signal conversion unit 105. Further, a console 109 is connected to the control unit 108 and the image display unit 106. The console 109 is configured of a touch panel, a keyboard, a trackball, and the like, and receives user input. The control unit 108 instructs the transmission unit 2, the phasing processing unit 103, and the signal processing unit 105 on the incident direction of the ultrasonic wave, which is a plane wave, to the imaging region 20 based on the user's input received by the console 109. The image display unit 106 is configured by a display or the like, and displays an image or the like generated by the signal conversion unit 105 to the user.
 以下、多重解像度解析部104および信号変換部105の処理について説明する。 The processes of the multiresolution analysis unit 104 and the signal conversion unit 105 will be described below.
 多重解像度解析部104は、整相処理部103が生成した超音波画像の2方向について、画素値分布(信号)を求め、それぞれ高周波成分と低周波成分を抽出する。ここでは、ウエーブレット変換により、複数の異なる周波数帯域を抽出する。抽出する2方向は、ここでは超音波画像の水平方向と垂直方向とする。 The multiresolution analysis unit 104 obtains pixel value distributions (signals) in two directions of the ultrasonic image generated by the phasing processing unit 103, and extracts high frequency components and low frequency components, respectively. Here, a plurality of different frequency bands are extracted by wavelet transformation. Here, the two directions to be extracted are the horizontal direction and the vertical direction of the ultrasonic image.
 多重解像度解析部104の処理を、図5(a)を用いて具体的に説明する。多重解像度解析部104は、水平方向解析部41と垂直方向解析部42とを備えている。水平方向解析部41は、低域通過フィルタ201a、高域通過フィルタ201b、ダウンサンプリング部202aおよびダウンサンプリング部202bを含む。一方、垂直方向解析部42は、低域通過フィルタ203a、203cと、高域通過フィルタ203b、203dと、ダウンサンプリング部204a~204dとを備えている。 The process of the multiresolution analysis unit 104 will be specifically described using FIG. 5 (a). The multiresolution analysis unit 104 includes a horizontal direction analysis unit 41 and a vertical direction analysis unit 42. The horizontal direction analysis unit 41 includes a low pass filter 201a, a high pass filter 201b, a downsampling unit 202a, and a downsampling unit 202b. On the other hand, the vertical direction analysis unit 42 includes low pass filters 203a and 203c, high pass filters 203b and 203d, and downsampling units 204a to 204d.
 多重解像度解析部104の水平方向解析部41は、整相処理部103が生成した超音波画像43の画素値をまず水平方向に並んだ画素について順次サンプリングして水平方向の画素値分布を示す水平方向信号43aを生成する。水平方向信号43aは、垂直方向の各位置(画素)についてそれぞれ生成する。そして、水平方向信号43aを、低域通過フィルタ201aを通過させることにより、所定の帯域以下の低周波成分を抽出した後、2:1ダウンサンプリング部202により、水平方向に隣り合う2画素分の信号値の平均等を求めて1画素分の信号値を生成する。これにより、水平方向は、超音波画像43の水平方向の画素値分布の低周波成分により構成され、垂直方向は、超音波画像43の画素値分布の全成分を含み、かつ、水平方向のサイズが超音波画像43の1/2で、垂直方向のサイズが超音波画像43と変わらない水平方向低周波画像44が生成される。 The horizontal direction analysis unit 41 of the multiresolution analysis unit 104 first sequentially samples pixel values of the ultrasonic image 43 generated by the phasing processing unit 103 for pixels aligned in the horizontal direction to indicate a horizontal pixel value distribution. The direction signal 43a is generated. The horizontal direction signal 43a is generated for each position (pixel) in the vertical direction. Then, low frequency components below a predetermined band are extracted by passing the horizontal direction signal 43a through the low pass filter 201a, and then the 2: 1 down sampling unit 202 extracts two pixels adjacent in the horizontal direction. An average or the like of signal values is obtained to generate signal values for one pixel. Thus, the horizontal direction is constituted by the low frequency components of the pixel value distribution in the horizontal direction of the ultrasonic image 43, and the vertical direction includes all components of the pixel value distribution of the ultrasonic image 43 and the size in the horizontal direction Is a half of the ultrasound image 43, and a horizontal low frequency image 44 whose size in the vertical direction is the same as that of the ultrasound image 43 is generated.
 同様に、水平方向信号43aを高域通過フィルタ201bを通過させることにより、所定の帯域より高周波の成分を抽出した後、2:1ダウンサンプリング部202bにより、水平方向に隣り合う2画素分の信号値の平均値等を求めて1画素分の信号値を生成する。これにより、水平方向は、超音波画像43の水平方向の画素値分布の高周波成分により構成され、垂直方向は、超音波画像43の画素値分布の全成分を含み、かつ、水平方向のサイズが超音波画像43の1/2のサイズで、垂直方向のサイズは超音波画像43と変わらない水平方向高周波画像45が生成される。 Similarly, after passing the horizontal direction signal 43a through the high pass filter 201b to extract high frequency components from a predetermined band, the 2: 1 down sampling unit 202b outputs signals for two pixels adjacent in the horizontal direction. An average value or the like of values is obtained to generate a signal value for one pixel. Thus, the horizontal direction is constituted by the high frequency component of the pixel value distribution in the horizontal direction of the ultrasonic image 43, the vertical direction includes all components of the pixel value distribution in the ultrasonic image 43, and the size in the horizontal direction is A horizontal high frequency image 45 is generated which is half the size of the ultrasound image 43 and does not differ in size in the vertical direction from the ultrasound image 43.
 つぎに、垂直方向解析部42は、水平方向低周波画像44の画素値を垂直方向に並んだ画素について順次サンプリングして垂直方向の画素値分布を示す垂直方向信号44aを生成する。垂直方向信号44aは、水平方向の各位置(画素)についてそれぞれ生成する。そして、垂直方向解析部42は、垂直方向信号44aを、低域通過フィルタ203aを通過させることにより、所定の帯域以下の低周波成分を抽出した後、2:1ダウンサンプリング部204aにより、垂直方向に隣り合う2画素分の信号値の平均等を求めて1画素分の信号値を生成する。これにより、水平方向は、超音波画像43の水平方向の画素値分布の低周波成分により構成され、垂直方向は、超音波画像43の垂直方向の画素値分布の低周波成分により構成され、かつ、水平方向および垂直方向のサイズが超音波画像43のいずれも1/2である「水平方向低周波成分・垂直方向低周波成分(以下LL成分と呼ぶ)画像46」が生成される。 Next, the vertical direction analysis unit 42 sequentially samples the pixel values of the horizontal low frequency image 44 with respect to the pixels aligned in the vertical direction to generate a vertical direction signal 44a indicating a pixel value distribution in the vertical direction. The vertical direction signal 44a is generated for each position (pixel) in the horizontal direction. Then, the vertical direction analysis unit 42 extracts low frequency components below a predetermined band by passing the vertical direction signal 44 a through the low pass filter 203 a and then using the 2: 1 down sampling unit 204 a in the vertical direction. A signal value for one pixel is generated by obtaining an average or the like of signal values for two pixels adjacent to one another. Thereby, the horizontal direction is constituted by the low frequency component of the pixel value distribution in the horizontal direction of the ultrasonic image 43, the vertical direction is constituted by the low frequency component of the pixel value distribution in the vertical direction of the ultrasonic image 43, and A “horizontal low-frequency component / vertical low-frequency component (hereinafter referred to as LL component) image 46” in which the size in the horizontal direction and the vertical direction is one half of that of the ultrasonic image 43 is generated.
 同様に、垂直方向解析部42は、垂直方向信号44aを、高域通過フィルタ203bを通過させることにより、所定の帯域より大きい高周波成分を抽出した後、2:1ダウンサンプリング部204bにより、垂直方向に隣り合う2画素分の信号値の平均等を求めて1画素分の信号値を生成する。これにより、水平方向は、超音波画像43の水平方向の画素値分布の低周波成分により構成され、垂直方向は、超音波画像43の垂直方向の画素値分布の高周波成分により構成され、かつ、水平方向および垂直方向のサイズが超音波画像43のいずれも1/2である「水平方向低周波成分・垂直方向高周波成分(以下LH成分と呼ぶ)画像47が生成される。 Similarly, the vertical direction analysis unit 42 extracts a high frequency component larger than a predetermined band by passing the vertical direction signal 44a through the high pass filter 203b, and then the 2: 1 down sampling unit 204b performs the vertical direction. A signal value for one pixel is generated by obtaining an average or the like of signal values for two pixels adjacent to one another. Thus, the horizontal direction is constituted by the low frequency component of the pixel value distribution in the horizontal direction of the ultrasonic image 43, and the vertical direction is constituted by the high frequency component of the pixel value distribution in the vertical direction of the ultrasonic image 43, and A “horizontal low frequency component / vertical high frequency component (hereinafter referred to as LH component) image 47 in which the size in the horizontal direction and the vertical direction is one half of that of the ultrasonic image 43 is generated.
 さらに、垂直方向解析部42は、水平方向高周波画像45の画素値を垂直方向に並ぶ画素について順次サンプリングして垂直方向信号45aを生成する。そして、垂直方向解析部42は、垂直方向信号45aを、低域通過フィルタ203cを通過させることにより、所定の帯域以下の低周波成分を抽出した後、2:1ダウンサンプリング部204cにより、垂直方向に隣り合う2画素分の信号値の平均等を求めて1画素分の信号値を生成する。これにより、水平方向は、超音波画像43の水平方向の画素値分布の高周波成分により構成され、垂直方向は、超音波画像43の垂直方向の画素値分布の低周波成分により構成され、かつ、水平方向および垂直方向のサイズが超音波画像43のいずれも1/2である「水平方向高周波成分・垂直方向低周波成分(以下HL成分と呼ぶ)画像48」が生成される。 Furthermore, the vertical direction analysis unit 42 sequentially samples the pixel values of the horizontal high-frequency image 45 for pixels aligned in the vertical direction to generate a vertical direction signal 45 a. Then, the vertical direction analysis unit 42 extracts low frequency components below a predetermined band by passing the vertical direction signal 45 a through the low pass filter 203 c, and then the 2: 1 down sampling unit 204 c performs the vertical direction. A signal value for one pixel is generated by obtaining an average or the like of signal values for two pixels adjacent to one another. Thus, the horizontal direction is constituted by the high frequency component of the pixel value distribution in the horizontal direction of the ultrasonic image 43, the vertical direction is constituted by the low frequency component of the pixel value distribution in the vertical direction of the ultrasonic image 43, and A “horizontal high-frequency component / vertical low-frequency component (hereinafter referred to as HL component) image 48” in which the size in the horizontal direction and the vertical direction is one half of that of the ultrasonic image 43 is generated.
 同様に、垂直方向解析部42は、垂直方向信号45aを、高域通過フィルタ203dを通過させることにより、所定の帯域より大きい高周波成分を抽出した後、2:1ダウンサンプリング部204dにより、垂直方向に隣り合う2画素分の信号値の平均等を求めて1画素分の信号値を生成する。これにより、水平方向は、超音波画像43の水平方向の画素値分布の高周波成分により構成され、垂直方向は、超音波画像43の垂直方向の画素値分布の高周波成分により構成され、かつ、水平方向および垂直方向のサイズが超音波画像43のいずれも1/2である「水平方向高周波成分・垂直方向高周波成分(以下HH成分と呼ぶ)画像47」が生成される。 Similarly, the vertical direction analysis unit 42 extracts a high frequency component larger than a predetermined band by passing the vertical direction signal 45a through the high pass filter 203d, and then the 2: 1 down sampling unit 204d performs the vertical direction. A signal value for one pixel is generated by obtaining an average or the like of signal values for two pixels adjacent to one another. Thus, the horizontal direction is constituted by the high frequency component of the pixel value distribution in the horizontal direction of the ultrasonic image 43, and the vertical direction is constituted by the high frequency component of the pixel value distribution in the vertical direction of the ultrasonic image 43 A “horizontal high-frequency component / vertical high-frequency component (hereinafter referred to as HH component) image 47” in which both the size in the direction and the vertical direction is 1⁄2 of the ultrasound image 43 is generated.
 得られたLL成分画像46、LH成分画像47、HL成分画像48、HH成分画像49を、高周波成分から低周波成分の順に並べると図5(b)のような解像度(周波数成分)解析画像205が得られる。 When the obtained LL component image 46, LH component image 47, HL component image 48, and HH component image 49 are arranged in the order of high frequency components to low frequency components, a resolution (frequency component) analysis image 205 as shown in FIG. Is obtained.
 また、LL成分画像46について、さらに水平方向解析部、垂直方向解析部42によって上記と同様に処理して、LL成分画像50、LH成分画像51、HL成分画像52、HH成分画像53を得てもよい。さらにもう一度、LL成分画像50について処理して、LL成分画像54、LH成分画像55、HL成分画像56、HH成分画像57を得てもよい。得られた画像を、高周波成分と低周波成分の順に並べると、図6のような配置になる。これにより、超音波の画素値分布が、多段階に低周波成分と高周波成分とに分離された多重解像度解析画像205が得られる。 Further, the LL component image 46 is further processed in the same manner as described above by the horizontal direction analysis unit and the vertical direction analysis unit 42 to obtain the LL component image 50, the LH component image 51, the HL component image 52, and the HH component image 53. It is also good. Again, the LL component image 50 may be processed to obtain the LL component image 54, the LH component image 55, the HL component image 56, and the HH component image 57. When the obtained images are arranged in the order of the high frequency component and the low frequency component, an arrangement as shown in FIG. 6 is obtained. As a result, a multi-resolution analysis image 205 is obtained in which the pixel value distribution of ultrasonic waves is separated into low frequency components and high frequency components in multiple stages.
 サイドローブノイズ除去部5は、多重解像度解析部104が生成した解像度解析画像46~49のうち高周波成分を含む画像47~49から、超音波の入射方向に応じて予め定めた1以上の画像を選択し、サイドローブノイズ成分を除去する。すなわち、サイドローブアーチファクトは超音波進行方向に直交する方向(超音波の波面に平行な方向)に沿って発生するため、サイドローブノイズ除去部5は、これを除去する。サイドローブノイズ除去部5は、超音波の入射方向を制御部108から受け取る。 The side lobe noise removing unit 5 determines one or more images determined in advance according to the incident direction of the ultrasonic wave from the images 47 to 49 including high frequency components among the resolution analysis images 46 to 49 generated by the multiresolution analysis unit 104. Select and remove side lobe noise components. That is, since the side lobe artifact occurs along the direction (parallel to the wavefront of the ultrasonic wave) orthogonal to the direction of propagation of the ultrasonic wave, the side lobe noise removing unit 5 removes this. The side lobe noise removing unit 5 receives the incident direction of the ultrasonic wave from the control unit 108.
 例えば、超音波入射角が0度の場合(図1(b)参照)には、サイドローブアーチファクトが、超音波画像の水平方向に沿って発生すると推定されるため、サイドローブノイズ除去部5は、水平方向は低周波成分で垂直方向は高周波成分のLH成分画像47を選択する。そして、サイドローブノイズ除去部5は、強度がある閾値以下の画素についてその強度を0に置換する。これにより、絶対値が小さい高周波成分を0に置き換えることができるため、サイドローブノイズ成分を除去することができる。 For example, when the ultrasound incident angle is 0 degree (see FIG. 1B), it is estimated that the side lobe artifact is generated along the horizontal direction of the ultrasound image, so the side lobe noise removing unit 5 The LH component image 47 of the low frequency component and the high frequency component in the vertical direction is selected. Then, the side lobe noise removing unit 5 replaces the intensity of the pixel whose intensity is equal to or less than a threshold value with 0. As a result, the high frequency component having a small absolute value can be replaced with 0, so that the side lobe noise component can be removed.
 同様に、例えば、超音波入射角の絶対値が0度より大きく90度より小さい値の場合(図1(a)、(c)参照)には、サイドローブアーチファクトが、水平方向から入射角と同じだけ傾きをもった方向に発生すると推定されるため、サイドローブノイズ除去部5は、水平方向および垂直方向ともに高周波成分であるHH成分画像49を選択する。そして、サイドローブノイズ除去部5は、強度がある閾値以下の画素についてその強度を0に置換する。これにより、絶対値が小さい高周波成分を0に置き換えることができるため、サイドローブノイズ成分を除去することができる。 Similarly, for example, in the case where the absolute value of the ultrasonic incident angle is a value larger than 0 degree and smaller than 90 degrees (see FIGS. 1A and 1C), the side lobe artifact is determined as the incident angle from the horizontal direction. The side lobe noise removing unit 5 selects the HH component image 49, which is a high frequency component in both the horizontal direction and the vertical direction, since it is estimated to occur in the direction having the same inclination. Then, the side lobe noise removing unit 5 replaces the intensity of the pixel whose intensity is equal to or less than a threshold value with 0. As a result, the high frequency component having a small absolute value can be replaced with 0, so that the side lobe noise component can be removed.
 なお、図6のように、多重の解像度でLH成分画像51、HL成分画像52、HH成分画像53等を求めている場合、サイドローブノイズ除去部5は、異なる解像度の対応する成分画像のノイズ成分も除去する。例えば、超音波入射角が0度の場合(図1(b)参照)には、サイドローブノイズ除去部5は、LH成分画像47のみならず、他の解像度のLH成分画像51等についてもサイドローブノイズ成分を除去する。他の超音波入射角の場合についても同様である。 As shown in FIG. 6, when the LH component image 51, the HL component image 52, the HH component image 53, etc. are obtained at multiple resolutions, the side lobe noise removing unit 5 generates noise of corresponding component images of different resolutions. Remove the ingredients too. For example, when the ultrasonic incident angle is 0 degree (see FIG. 1B), the side lobe noise removing unit 5 not only determines the LH component image 47 but also the LH component image 51 of other resolutions and the like. Remove the lobe noise component. The same is true for the other ultrasonic incident angles.
 逆変換部404は、サイドローブノイズ除去部5が選択してサイドローブノイズ成分を除去した高周波成分画像と、選択しなかった残りの成分画像とをウエーブレット逆変換し、元の画像と同じ解像度の画像を生成する。例えば、図7(a-1)のように、超音波の入射角が0度の場合に、多重解像度解析部104が抽出した低周波成分画像46および高周波成分画像47~49からなる解像度解析画像401のうち、サイドローブノイズ除去部5が、LH成分画像47を選択して、ノイズ成分を除去することによりLH’成分画像47aを得て、LH成分画像47と置き換え、ノイズ除去後の解像度解析画像501を得る(図7(a-2))。逆変換部404は、ノイズ除去後の解像度解析画像501(LH’成分画像47aと、他の低周波および高周波成分画像46,48,49)をウエーブレット逆変換することにより、サイドローブアーチファクト除去画像502を生成する(図7(a-3))。 The inverse transform unit 404 performs inverse wavelet transform on the high frequency component image selected by the side lobe noise removal unit 5 and from which the side lobe noise component is removed and the remaining component image not selected, and has the same resolution as the original image Generate an image of For example, as shown in FIG. 7A, when the incident angle of the ultrasonic wave is 0 degree, a resolution analysis image including the low frequency component image 46 and the high frequency component images 47 to 49 extracted by the multiresolution analysis unit 104 In 401, the side lobe noise removing unit 5 selects the LH component image 47 and removes the noise component to obtain the LH 'component image 47a, which is replaced with the LH component image 47 and resolution analysis after noise removal An image 501 is obtained (FIG. 7 (a-2)). The inverse transformation unit 404 performs a wavelet inverse transformation on the resolution analysis image 501 (the LH ′ component image 47 a and the other low frequency and high frequency component images 46, 48, 49) after the noise removal to obtain a side lobe artifact removed image 502 is generated (FIG. 7 (a-3)).
 また、図7(b-1)のように、超音波の入射角の絶対値が0度より大きく90度より小さい値の場合、多重解像度解析部104が抽出した低周波成分画像46および高周波成分画像47~49からなる解像度解析画像402のうち、サイドローブノイズ除去部5が、HH成分画像49を選択して、ノイズ成分を除去することによりHH’成分画像49aを得て、HH成分画像49と置き換え、ノイズ除去後の解像度解析画像503を得る(図7(b-2))。逆変換部404は、ノイズ除去後の解像度解析画像503(HH’成分画像49aと、他の低周波および高周波成分画像46~48)をウエーブレット逆変換することにより、サイドローブアーチファクト除去画像504を生成する(図7(b-3))。 Further, as shown in FIG. 7 (b-1), when the absolute value of the incident angle of the ultrasonic wave is a value larger than 0 degree and smaller than 90 degrees, the low frequency component image 46 and the high frequency component extracted by the multiresolution analysis unit 104 The side lobe noise removing unit 5 selects the HH component image 49 out of the resolution analysis image 402 composed of the images 47 to 49, and removes the noise component to obtain the HH 'component image 49a. And the resolution analysis image 503 after noise removal is obtained (FIG. 7 (b-2)). The inverse transform unit 404 performs inverse wavelet transform on the resolution analysis image 503 (the HH ′ component image 49 a and the other low frequency and high frequency component images 46 to 48) after noise removal to obtain the side lobe artifact removed image 504. It generates (FIG. 7 (b-3)).
 生成した画像は、画像表示部106に表示される。 The generated image is displayed on the image display unit 106.
 以上のように、本実施形態によれば、撮像領域20への超音波の入射角に応じて、超音波画像のサイドローブアーチファクト成分を選択的に除去することが可能になる。 As described above, according to the present embodiment, it is possible to selectively remove the side lobe artifact component of the ultrasonic image according to the incident angle of the ultrasonic wave to the imaging region 20.
 なお、多重解像度解析部104、信号変換部105および制御部108は、演算処理部である中央処理部(CPU)とメモリとを備えるコンピュータにより構成し、メモリ内のプログラムをCPUが実行することにより、これらの機能をソフトウエアにより実現することが可能である。また、多重解像度解析部104、信号変換部105および制御部108は、その一部または全部をハードウエアによって実現することも可能である。例えば、ASIC(Application Specific Integrated Circuit)のようなカスタムICや、FPGA(Field-Programmable Gate Array)のようなプログラマブルICを用いて多重解像度解析部104、信号変換部105および制御部108の一部または全部を構成し、これらの機能を実現するように回路設計を行えばよい。 The multiresolution analysis unit 104, the signal conversion unit 105, and the control unit 108 are configured by a computer including a central processing unit (CPU) which is an arithmetic processing unit and a memory, and the CPU executes a program in the memory. These functions can be realized by software. Further, part or all of the multi-resolution analysis unit 104, the signal conversion unit 105, and the control unit 108 can be realized by hardware. For example, a part of the multiple resolution analysis unit 104, the signal conversion unit 105, and the control unit 108 using a custom IC such as an application specific integrated circuit (ASIC) or a programmable IC such as a field-programmable gate array (FPGA) Configure the whole and design the circuit to realize these functions.
 なお、本実施形態は受信した超音波信号を整相加算して得られた画像についてサイドローブアーチファクトを除去する処理について説明したが、整相処理部103が整相加算前のRF(高周波)信号(受信信号)に対して、多重解像度解析部104および信号変換部105の処理を適用することも可能である。 In the present embodiment, the processing for removing the side lobe artifact from the image obtained by phasing and adding the received ultrasonic signal has been described. However, the RF (high frequency) signal before phasing addition is performed by phasing processing unit 103 It is also possible to apply the processing of the multiresolution analysis unit 104 and the signal conversion unit 105 to (reception signal).
 また、本実施形態では入射角が0度の場合と、0度より大きく90度より小さな任意の値の場合に、高周波成分画像47~49のうちそれぞれ特定の一つについてサイドローブノイズ除去処理を施す例について説明したが、任意の入射角に対して適切なサイドローブノイズ除去を行うために、高周波成分画像47~49の2以上に対してノイズ除去処理を施してもよい。 Further, in the present embodiment, the side lobe noise removing process is performed for each specific one of the high-frequency component images 47 to 49 when the incident angle is 0 degree and any value larger than 0 degree and smaller than 90 degrees. Although the application example has been described, two or more of the high-frequency component images 47 to 49 may be subjected to noise removal processing in order to perform appropriate side lobe noise removal for an arbitrary incident angle.
 さらには、本実施形態では、サイドローブノイズ除去部5は、高周波成分画像47~49の画素値のうち所定の閾値よりも小さい画素値をサイドローブノイズ成分と判定して0に置き換える構成について説明したが、閾値は、コンソール109を通じてユーザから受け付けてもよい。また、閾値は、人体の心臓や肝臓など撮像対象に応じてあらかじめ設定された値を用いてもよい。さらに、サイドローブノイズ成分を除去する方法としては、高周波成分画像47~49等の閾値よりも小さい信号強度の画素値を0に置き換える方法に限られるものではなく、ノイズ成分を低減できる方法であればどのような処理方法を用いてもよい。 Furthermore, in the present embodiment, the side lobe noise removing unit 5 determines the pixel value smaller than the predetermined threshold among the pixel values of the high frequency component images 47 to 49 as the side lobe noise component and replaces it with 0. However, the threshold may be received from the user through the console 109. Further, as the threshold value, a value set in advance may be used according to an imaging object such as a human heart or liver. Furthermore, the method of removing the side lobe noise component is not limited to the method of replacing the pixel value of the signal intensity smaller than the threshold of the high frequency component images 47 to 49 with 0, but a method capable of reducing the noise component Any processing method may be used.
 図5(a)の水平方向解析部41および垂直方向解析部42が画素値分布から高周波成分と低周波成分を抽出するフィルタの閾値についても、固定の閾値ではなく、ユーザから受け付けた値や、撮像対象に応じて予め設定された値を用いることも可能である。 The threshold value of the filter in which the horizontal direction analysis unit 41 and the vertical direction analysis unit 42 in FIG. 5A extract high frequency components and low frequency components from the pixel value distribution is not a fixed threshold value, but a value received from the user, It is also possible to use preset values according to the imaging target.
 <<実施形態3>>
 実施形態3の超音波撮像装置について図8、図9を用いて説明する。
<< Third Embodiment >>
An ultrasonic imaging apparatus according to the third embodiment will be described with reference to FIGS. 8 and 9.
 実施形態1、2では、撮像領域20に送信する超音波が平面波の場合について説明したが、必ずしも平面波でなくてもよく、撮像領域20の内側または外側に位置する送信焦点で焦点を結ぶ球面波であってもよい。送信する超音波が球面波である場合、撮像領域20内の複数の領域ごとに、超音波の入射角が異なる。よって、実施形態3では、撮像領域20内の複数の領域ごとに超音波の入射角度を求める入射角算出部107をさらに有する。サイドローブノイズ除去部5は、入射角算出部107が算出した超音波の入射角に応じて、複数の領域ごとに、ノイズを除去する高周波成分を選択する。 In the first and second embodiments, the case where the ultrasonic wave transmitted to the imaging area 20 is a plane wave has been described. However, the ultrasonic wave may not necessarily be a plane wave, and a spherical wave focusing at a transmission focus located inside or outside the imaging area 20 It may be When the ultrasonic waves to be transmitted are spherical waves, the incident angles of the ultrasonic waves are different for each of a plurality of areas in the imaging area 20. Therefore, the third embodiment further includes the incident angle calculation unit 107 that obtains the incident angle of the ultrasonic wave for each of a plurality of regions in the imaging region 20. The side lobe noise removing unit 5 selects, for each of the plurality of regions, a high frequency component from which noise is removed, in accordance with the incident angle of the ultrasonic wave calculated by the incident angle calculating unit 107.
 以下、実施形態2と異なる構成について詳しく説明する。入射角算出部107は、超音波の送信条件に応じて撮像領域20内の所定の小領域ごとに超音波入射角を算出する。小領域は、撮像領域20全体を所定の十分小さい大きさに分割した領域である。図9は、ある小領域303における超音波の入射角305を示す図である。図9において、水平方向は、超音波素子アレイ101の超音波素子が並ぶ方向301に平行であり、垂直方向は、撮像領域20の深さ方向302である。十分に小さなある小領域303において、深さ方向302に対して、超音波の進行方向304がなす角を入射角305とする。入射角算出部107は、超音波の送信条件(送信焦点の位置等)を制御部108から受け取って、受け取った送信条件に応じて、小領域ごとに入射角305の値を算出する。入射角算出部107が算出した入射角305は、入射角算出部107が内蔵するメモリに、小領域の位置に対応させてテーブル等の形式で保存される。 The configuration different from that of the second embodiment will be described in detail below. The incident angle calculation unit 107 calculates an ultrasonic incident angle for each predetermined small area in the imaging area 20 according to the transmission condition of the ultrasonic wave. The small area is an area obtained by dividing the entire imaging area 20 into a predetermined sufficiently small size. FIG. 9 is a view showing the incident angle 305 of ultrasonic waves in a certain small area 303. As shown in FIG. In FIG. 9, the horizontal direction is parallel to the direction 301 in which the ultrasonic elements of the ultrasonic element array 101 are arranged, and the vertical direction is the depth direction 302 of the imaging region 20. In a small area 303 sufficiently small, an angle formed by the direction of travel 304 of the ultrasonic wave with respect to the depth direction 302 is defined as an incident angle 305. The incident angle calculation unit 107 receives the transmission conditions (the position of the transmission focus, etc.) of the ultrasonic waves from the control unit 108, and calculates the value of the incident angle 305 for each small area according to the received transmission conditions. The incident angle 305 calculated by the incident angle calculation unit 107 is stored in the form of a table or the like in the memory incorporated in the incident angle calculation unit 107 in association with the position of the small area.
 サイドローブノイズ除去部5は、多重解像度解析部104が生成した解像度解析画像401のノイズを除去するために、高周波成分画像47~49のいずれかを選択する際に、小領域303ごとに、その小領域303の超音波入射角305をテーブルから読み出して、入射角305に対応する高周波成分画像47~49のいずれかまたは2以上を選択し、選択した高周波成分画像のその小領域に対応する領域について、ノイズ成分を除去する。 When the side lobe noise removing unit 5 selects any one of the high frequency component images 47 to 49 in order to remove noise of the resolution analysis image 401 generated by the multi-resolution analysis unit 104, The ultrasonic incident angle 305 of the small area 303 is read from the table, one or more of the high frequency component images 47 to 49 corresponding to the incident angle 305 are selected, and an area corresponding to the small area of the selected high frequency component image To remove the noise component.
 例えば、入射角が0度の小領域については、サイドローブアーチファクトが水平方向に沿って発生すると推定されるため、LH成分画像47を選択し、その小領域に対応する領域の画素に対して、サイドローブノイズの除去処理を行う。ノイズの除去処理は、実施形態2と同様に、LH成分画像47の小領域303に対応する領域内の画素の画素値がある閾値以下の画素ついてその画素値を0に置換することでサイドローブ成分を除去する。同様に、例えば入射角が0度より大きく90度より小さな小領域については、サイドローブ成分が水平から入射角と同じだけ傾きをもった方向に発生すると推定されるため、HH成分画像49を選択し、その小領域に対応する領域内の画素に対して、サイドローブノイズの除去処理を行う。 For example, since it is estimated that sidelobe artifacts occur along the horizontal direction for a small area with an incident angle of 0 degrees, an LH component image 47 is selected, and pixels of the area corresponding to the small area are selected. Performs sidelobe noise removal processing. Similar to the second embodiment, the noise removal process is a side lobe by replacing the pixel value of a pixel in a region corresponding to the small region 303 of the LH component image 47 with a pixel value of 0 with a pixel value of 0. Remove the ingredients. Similarly, for a small area where the incident angle is greater than 0 degrees and smaller than 90 degrees, it is estimated that the side lobe component will occur in the direction from the horizontal with an inclination equal to the incident angle, so select the HH component image 49 Then, sidelobe noise removal processing is performed on the pixels in the area corresponding to the small area.
 逆変換部404は、サイドローブ成分を除去した解像度解析画像501を逆変換することにより、サイドローブアーチファクトが除去された、元の超音波画像と同じ解像度の画像を生成する。 The inverse transformation unit 404 inversely transforms the resolution analysis image 501 from which the side lobe component has been removed, thereby generating an image of the same resolution as the original ultrasound image from which the side lobe artifact has been removed.
 以上の構成により、撮像領域内の小領域に応じて発生するサイドローブアーチファクト成分を除去したサイドローブアーチファクト除去画像を生成することができる。 According to the above configuration, it is possible to generate a side lobe artifact removed image from which a side lobe artifact component that occurs according to a small area in the imaging region is removed.
 <<実施形態4>>
 図10を用いて、実施形態4の超音波撮像装置について説明する。
<< Embodiment 4 >>
The ultrasonic imaging apparatus according to the fourth embodiment will be described with reference to FIG.
 実施形態4では、撮像領域20に対する超音波の入射角度が異なる複数の送信を行い、入射角度が異なる送信ごとに、高周波成分と低周波成分を生成し、さらにサイドローブノイズを除去した後、対応する成分ごとに加算する画像加算部(以下、合成部と呼ぶ)607を有する。加算後の高周波成分と低周波成分を逆変換して、サイドローブアーチファクト除去画像を合成する。これにより、コントラストの高い画像を得ることができる。 In the fourth embodiment, a plurality of transmissions with different incident angles of ultrasonic waves to the imaging region 20 are performed, high frequency components and low frequency components are generated for each transmission with different incident angles, and side lobe noise is removed. And an image addition unit (hereinafter, referred to as a combination unit) 607 for adding each component. The high frequency component and the low frequency component after the addition are inversely transformed to synthesize a side lobe artifact removed image. Thereby, an image with high contrast can be obtained.
 図10を参照し、実施形態2から変更があるブロックのみ以下に説明し、実施形態2と同様の構成については説明を省略する。図10は、本実施形態における信号変換部105のブロック構成である。本実施形態の信号変換部105は、2つのサイドローブノイズ除去部605、606を備えている。2つのサイドローブノイズ除去部605,606は、異なる入射角度となるように撮像領域20に対して平面波の超音波を送信して、撮像領域20から得たエコー等の受信信号から生成される画像について、その画素値分布からサイドローブノイズを除去する。ここで、平面波の撮像領域20への入射角は、超音波素子アレイ101の超音波素子配列方向と波面がなす角(すなわち、深さ方向に対して超音波の進行方向がなす角)で定義される。 With reference to FIG. 10, only the blocks having a change from the second embodiment will be described below, and the description of the same configuration as the second embodiment will be omitted. FIG. 10 is a block diagram of the signal conversion unit 105 in the present embodiment. The signal conversion unit 105 of the present embodiment includes two side lobe noise removal units 605 and 606. The two side lobe noise removing units 605 and 606 transmit ultrasonic waves of plane waves to the imaging area 20 so as to have different incident angles, and an image generated from a received signal such as an echo obtained from the imaging area 20 Remove the side lobe noise from the pixel value distribution. Here, the incident angle of the plane wave to the imaging region 20 is defined by the angle formed by the ultrasonic element array direction of the ultrasonic element array 101 and the wavefront (that is, the angle formed by the traveling direction of the ultrasonic wave with respect to the depth direction). Be done.
 例えば、第1送信において、入射角0度で撮像領域20に対して平面波の超音波を超音波素子アレイ101から送信する(図1(b)参照)。エコー等を受信した超音波素子アレイ101の出力する受信信号は、整相処理部103により処理されて超音波画像が生成され、多重解像度解析部104において、図7(a-1)のように高周波成分画像47~49と低周波成分画像46が抽出される。サイドローブノイズ除去部605は、実施形態2と同様の手法によりLH成分画像47を選択して、サイドローブノイズ成分を除去することによりLH’成分画像47aを得る(図7(a-2))。 For example, in the first transmission, an ultrasonic wave of a plane wave is transmitted from the ultrasonic element array 101 to the imaging region 20 at an incident angle of 0 degrees (see FIG. 1B). A received signal output from the ultrasonic element array 101 that has received an echo or the like is processed by the phasing processing unit 103 to generate an ultrasonic image, and the multiresolution analysis unit 104 generates an ultrasonic image as shown in FIG. 7 (a-1). The high frequency component images 47 to 49 and the low frequency component image 46 are extracted. The side lobe noise removing unit 605 selects the LH component image 47 by the same method as in the second embodiment and removes the side lobe noise component to obtain the LH ′ component image 47 a (FIG. 7 (a-2)). .
 つぎに、第2送信において、サイドローブノイズ除去部606は、入射角度が0度より大きく90度より小さな値の平面波の超音波を超音波素子アレイ101から送信する(図1(c)参照)。エコー等を受信した超音波素子アレイ101の出力する受信信号は、整相処理部103により処理されて超音波画像が生成され、多重解像度解析部104において、図7(b-1)のように高周波成分画像47~49と低周波成分画像46が抽出される。サイドローブノイズ除去部606は、実施形態2と同様の手法によりHH成分画像49を選択して、サイドローブノイズ成分を除去することによりHH’成分画像49aを得る。これにより、解像度解析画像503が得られる(図7(b-2))。 Next, in the second transmission, the side lobe noise removing unit 606 transmits, from the ultrasonic element array 101, a plane wave ultrasonic wave whose incident angle is greater than 0 degree and smaller than 90 degrees (see FIG. 1 (c)). . A received signal output from the ultrasonic element array 101 that has received an echo or the like is processed by the phasing processing unit 103 to generate an ultrasonic image, and the multiresolution analysis unit 104 generates an ultrasonic image as shown in FIG. 7 (b-1). The high frequency component images 47 to 49 and the low frequency component image 46 are extracted. The side lobe noise removing unit 606 selects the HH component image 49 by the same method as in the second embodiment and removes the side lobe noise component to obtain the HH 'component image 49 a. Thereby, the resolution analysis image 503 is obtained (FIG. 7 (b-2)).
 図11は加算合成処理の流れを示した図である。図11のように、合成部607は、サイドローブノイズ除去部605およびサイドローブノイズ除去部606によりサイドローブノイズ成分が除去された解像度解析画像501および解像度解析画像503を、成分ごとに加算合成し、合成後の解像度解析画像703を得る。逆変換部404は、合成後の解像度解析画像703を逆変換し、元の超音波画像と同じ解像度で、サイドローブアーチファクトが除去された画像を生成する。 FIG. 11 is a diagram showing the flow of addition / combination processing. As illustrated in FIG. 11, the combining unit 607 adds and combines the resolution analysis image 501 and the resolution analysis image 503 from which the side lobe noise components have been removed by the side lobe noise removing unit 605 and the side lobe noise removing unit 606. , And a resolution analysis image 703 after synthesis. The inverse transform unit 404 inversely transforms the combined resolution analysis image 703 to generate an image from which the side lobe artifact has been removed at the same resolution as the original ultrasound image.
 このように、サイドローブノイズ成分を除去した複数の解像度解析画像を加算合成した後、逆変換することにより、サイドローブアーチファクトを除去しながら画像における反射体12の実像13のコントラストを向上させる効果が得られる。 As described above, after adding and synthesizing a plurality of resolution analysis images from which the side lobe noise component has been removed, an inverse conversion is performed to improve the contrast of the real image 13 of the reflector 12 in the image while removing side lobe artifacts. can get.
 なお、本実施形態では、2つの異なる入射角度の超音波を送信して得た受信信号から生成した二つのノイズ除去後解像度解析画像501,503を合成する例について説明したが、3種類以上の超音波の入射角度に対応する三つ以上のノイズ除去後の解像度解析画像を合成した後、逆変換してもよい。 In the present embodiment, an example is described in which two resolution-analyzed resolution analysis images 501 and 503 generated from received signals obtained by transmitting ultrasonic waves at two different incident angles are combined. After the resolution analysis image after noise removal corresponding to the incident angle of the ultrasonic wave is synthesized, inverse conversion may be performed.
 <<実施形態5>>
 図12を用いて、実施形態5の超音波撮像装置について説明する。
<< Embodiment 5 >>
An ultrasonic imaging apparatus according to the fifth embodiment will be described with reference to FIG.
 実施形態5では、撮像領域20に対する超音波の入射角度が異なる複数の送信を行い、入射角度が異なる送信ごとに、サイドローブアーチファクト除去画像を生成し、得られた複数の画像を加算する画像加算部(以下、合成部と呼ぶ)803を有する。超音波の入射角度が異なる複数のサイドローブアーチファクト除去画像を合成することでより、コントラストの高い画像を得るものである。 In the fifth embodiment, a plurality of transmissions with different incident angles of ultrasonic waves with respect to the imaging region 20 are performed, a side lobe artifact removed image is generated for each transmission with different incident angles, and image addition is performed to add the plurality of obtained images. A part (hereinafter referred to as a combining part) 803 is included. An image with higher contrast can be obtained by combining a plurality of side lobe artifact removed images with different incident angles of ultrasonic waves.
 図12を参照し、実施形態4と異なる構成のみ以下に示す。図12は、本実施形態における信号変換部105のブロック図である。本実施形態の信号変換部105は、実施形態4と同様に2つのサイドローブノイズ除去部605,606を備えるが、実施形態4とは異なり、サイドローブノイズ除去部605、606と合成部803との間に、逆変換部801,802をそれぞれ配置している。逆変換部801は、サイドローブノイズ除去部605がノイズ成分を除去した解像度解析画像501を逆変換して、サイドローブアーチファクト除去画像511を生成する。逆変換部802は、サイドローブノイズ除去部606がノイズ成分を除去した解像度解析画像503を逆変換して、サイドローブアーチファクト除去画像513を生成する。合成部803は、逆変換部801,802が生成した画像511と画像513を合成する。 Referring to FIG. 12, only the configuration different from that of the fourth embodiment will be described below. FIG. 12 is a block diagram of the signal conversion unit 105 in the present embodiment. The signal conversion unit 105 of the present embodiment includes two side lobe noise removal units 605 and 606 as in the fourth embodiment, but unlike the fourth embodiment, the side lobe noise removal units 605 and 606 and the combining unit 803 Inverse transformation units 801 and 802 are respectively disposed between them. The inverse transformation unit 801 inversely transforms the resolution analysis image 501 from which the noise component has been removed by the side lobe noise removal unit 605 to generate a side lobe artifact removed image 511. The inverse transformation unit 802 inversely transforms the resolution analysis image 503 from which the noise component has been removed by the side lobe noise removal unit 606 to generate a side lobe artifact removed image 513. The combining unit 803 combines the image 511 and the image 513 generated by the inverse conversion units 801 and 802.
 これにより、サイドローブアーチファクトを除去しながら画像における反射体12の実像13のコントラストを向上させた画像を得ることができる。 Thereby, it is possible to obtain an image in which the contrast of the real image 13 of the reflector 12 in the image is improved while removing the side lobe artifact.
 <<実施形態6>>
 図13を用いて、実施形態6の超音波撮像装置について説明する。
<< Embodiment 6 >>
The ultrasonic imaging apparatus according to the sixth embodiment will be described with reference to FIG.
 図13のように本実施形態の信号処理部105は、実施形態4の図10の信号処理部105と同様の構成であるが、本実施形態では、送信する超音波として球面波を用い、第1送信と第2送信とで、送信焦点の位置を異ならせる。 As shown in FIG. 13, the signal processing unit 105 of this embodiment has the same configuration as the signal processing unit 105 of FIG. 10 of the fourth embodiment, but in this embodiment, a spherical wave is used as an ultrasonic wave to be transmitted. The position of the transmission focus is made to differ between one transmission and the second transmission.
 球面波を用いる場合、送信焦点の位置によって撮像領域の小領域ごとの入射角が異なるため、サイドローブノイズ除去部605,606は、小領域ごとに入射角算出部107から入射角を受け取り、受け取った入射角に応じた高周波成分画像47~49の1以上を選択して、その小領域に対応する領域のノイズ除去処理を実施形態3と同様に行う。 In the case of using a spherical wave, since the incident angle for each small area of the imaging area differs depending on the position of the transmission focus, the side lobe noise removing units 605 and 606 receive the incident angle from the incident angle calculation unit 107 for each small area and receive them. One or more of the high frequency component images 47 to 49 corresponding to the incident angle are selected, and the noise removal processing of the area corresponding to the small area is performed as in the third embodiment.
 合成部607は、ノイズ除去後の解像度解析画像501、503を対応する成分ごとに加算し、逆変換部404は、加算後の解像度解析画像を逆変換することにより、サイドローブアーチファクトが除去された画像を生成する。 The synthesizing unit 607 adds the resolution analysis images 501 and 503 after noise removal to each corresponding component, and the inverse transformation unit 404 inverse-transforms the resolution analysis image after addition to remove side lobe artifacts. Generate an image.
 以上の処理により、球面波を用いて、送信焦点の位置を異ならせて、複数回の送信を行って得た受信信号から、サイドローブを除去し、かつ、反射体の実像のコントラストを高めた画像を得ることができる。 By the above processing, the position of the transmission focal point is made different by using the spherical wave, side lobes are removed from the reception signal obtained by performing transmission multiple times, and the contrast of the real image of the reflector is enhanced. You can get an image.
 なお、本実施形態では、サイドローブを除去した複数の解像度解析画像501,503を加算した後、逆変換する構成であったが、先に逆変換してから合成してもよい。 In the present embodiment, after the plurality of resolution analysis images 501 and 503 from which the side lobes have been removed are added, the inverse conversion is performed, but the inverse conversion may be performed first and then the combination may be performed.
 <<実施形態7>>
 実施形態7では、実施形態4において複数の異なる入射角度で送信した平面波により生成した解像度解析画像401、402の高周波成分画像47~49から、高周波成分画像47~49におけるサイドローブノイズ成分の画素の範囲を推定する。そして、推定したサイドローブノイズ成分の画素の範囲内に含まれるノイズ成分を除去する。これにより、より適切にサイドローブ除去を行うものである。
<< Embodiment 7 >>
In the seventh embodiment, from the high frequency component images 47 to 49 of the resolution analysis images 401 and 402 generated by plane waves transmitted at a plurality of different incident angles in the fourth embodiment, the pixels of the side lobe noise component in the high frequency component images 47 to 49 are Estimate the range. Then, the noise component included in the range of the estimated side lobe noise component is removed. Thereby, the side lobe removal is performed more appropriately.
 図14を参照し、本実施形態の信号変換部105について説明する。ただし、図14において、実施形態4の図10の信号変換部105と異なる構成のみ以下に説明する。図14は、本実施形態における信号変換部105のブロック構成である。本実施形態の信号変換部105は、解像度解析画像401および402を用いてサイドローブノイズ成分の画素の範囲を推定するサイドローブ推定部901を有する。 The signal conversion unit 105 of this embodiment will be described with reference to FIG. However, in FIG. 14, only the configuration different from that of the signal conversion unit 105 in FIG. 10 of the fourth embodiment will be described below. FIG. 14 is a block diagram of the signal conversion unit 105 in the present embodiment. The signal conversion unit 105 of the present embodiment has a side lobe estimation unit 901 that estimates the range of the pixel of the side lobe noise component using the resolution analysis images 401 and 402.
 サイドローブ推定部901の処理の流れを図15に示す。推定に用いる解像度解析画像401は、実施形態4で述べたように、入射角0度の送信で得た受信信号から多重解像度解析部104が生成した高周波成分画像47~49および低周波成分画像46からなる。入射角0度の場合、サイドローブアーチファクトは水平方向に沿って発生するため、サイドローブ推定部901はサイドローブノイズ除去部605と同様にLH成分画像47を選択する。一方、解像度解析画像402は、入射角0度より大きく90度より小さな送信で得た高周波成分画像47~49および低周波成分画像46からなる。この場合、サイドローブ推定部901は、サイドローブノイズ除去部606と同様にHH成分画像49を選択する。 A flow of processing of the side lobe estimation unit 901 is shown in FIG. As described in the fourth embodiment, the resolution analysis image 401 used for estimation is the high frequency component image 47 to 49 and the low frequency component image 46 generated by the multi-resolution analysis unit 104 from the received signal obtained by transmission at an incident angle of 0 degrees. It consists of Since the side lobe artifact occurs along the horizontal direction when the incident angle is 0 degree, the side lobe estimation unit 901 selects the LH component image 47 as the side lobe noise removal unit 605 does. On the other hand, the resolution analysis image 402 includes high-frequency component images 47 to 49 and a low-frequency component image 46 obtained by transmission with an incident angle of more than 0 degree and less than 90 degrees. In this case, the side lobe estimation unit 901 selects the HH component image 49 as the side lobe noise removal unit 606 does.
 サイドローブ推定部901は、選択した二つの成分画像47と成分画像49の差分を求める。サイドローブノイズは、二つの成分画像47、49においてそれぞれ異なる領域(画素)に発生するため、成分画像47,49の差分をとることで、成分画像47,49に含まれる実像13が打ち消されるのに対し、サイドローブノイズの画素値は打ち消しあわず、差分画像1003として抽出される。すなわち、差分画像1003で値を持つ画素は、サイドローブノイズが発生する領域を示している。 The side lobe estimation unit 901 obtains the difference between the two selected component images 47 and 49. Side lobe noise is generated in different regions (pixels) in the two component images 47 and 49, so the difference between the component images 47 and 49 cancels the real image 13 contained in the component images 47 and 49. On the other hand, the pixel value of the side lobe noise does not cancel out, and is extracted as the difference image 1003. That is, a pixel having a value in the difference image 1003 indicates an area in which side lobe noise occurs.
 サイドローブ推定部901は、差分画像1003をサイドローブノイズ除去部605およびサイドローブノイズ除去部606にそれぞれ通知する。サイドローブノイズ除去部605、606は、実施形態4と同様に高周波成分画像47~49から所定の高周波成分画像47,49をそれぞれ選択し、差分画像1003が画素値を持つ画素の範囲、すなわち、サイドローブノイズが発生する領域に対応する高周波成分画像47,49の画素であって、かつ、画素値が閾値以下の画素値を0に置き換えることにより、ノイズを除去する。 The side lobe estimation unit 901 notifies the side lobe noise removal unit 605 and the side lobe noise removal unit 606 of the difference image 1003. The side lobe noise removing units 605 and 606 respectively select predetermined high frequency component images 47 and 49 from the high frequency component images 47 to 49 as in the fourth embodiment, and the range of pixels having the pixel value of the difference image 1003, ie, The noise is removed by replacing the pixel values of the high frequency component images 47 and 49 corresponding to the area where the side lobe noise occurs with a pixel value equal to or less than the threshold value to zero.
 合成部607、逆変換部404の処理は、実施形態4と同様の処理を行うことで、サイドローブアーチファクト除去画像を生成する。 The processes of the synthesizing unit 607 and the inverse transforming unit 404 perform the same processes as in the fourth embodiment to generate a side lobe artifact removed image.
 このように、予めサイドローブノイズが発生する領域(画素)をサイドローブ推定部901が推定し、その領域(画素)内のノイズを除去することにより、画素値が閾値以下の画素値を0に置き換える実施形態4の構成よりも、サイドローブノイズだけを精度よく除去することができる。 As described above, the side lobe estimation unit 901 estimates the region (pixel) in which side lobe noise occurs in advance, and removes the noise in the region (pixel), thereby setting the pixel value equal to or less than the threshold value to 0. Only the side lobe noise can be removed more accurately than the configuration of the fourth embodiment to be replaced.
 なお、本発明は上述してきた各実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は、本発明をわかりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を備える実施形態に限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成と置き換えることが可能であり、また、ある実施形態の構成に他の構成を用いて追加、削除、置換することが可能である。 The present invention is not limited to the above-described embodiments, and includes various modifications. For example, the embodiments described above have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to the embodiments provided with all the described configurations. In addition, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and addition, deletion, or replacement of the configuration of one embodiment can be performed using another configuration. .
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部またはすべてを例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリやハードディスク、SSD(Solid State Drive)等の記録装置、またはICカード、SDカード、DVD等の記録媒体に置くことができる。 Further, each of the above configurations, functions, processing units, processing means, etc. may be realized by hardware by designing part or all of them with, for example, an integrated circuit. Further, each configuration, function, etc. described above may be realized by software by the processor interpreting and executing a program that realizes each function. Information such as a program, a table, and a file for realizing each function can be placed in a memory, a hard disk, a recording device such as a solid state drive (SSD), or a recording medium such as an IC card, an SD card, or a DVD.
101 超音波素子アレイ
102 送受信分離回路
103 整相処理部
104 多重解像度解析部
105 信号変換部
106 画像表示部
107 入射角算出部
108 制御部
109 コンソール
101 Ultrasonic Element Array 102 Transmission / reception separation circuit 103 Phasing processing unit 104 Multiresolution analysis unit 105 Signal conversion unit 106 Image display unit 107 Incident angle calculation unit 108 Control unit 109 Console

Claims (11)

  1.  撮像領域に対して超音波を送信した後、前記撮像領域から戻った超音波を受信した信号を受け取って、前記撮像領域の画像を生成する画像生成部と、
     前記撮像領域に対する前記超音波の入射角度に応じた所定の方向について、前記画像の画素値分布を求め、前記画素値分布の高周波成分に含まれるノイズ成分を除去することによりサイドローブアーチファクトを除去する画像処理部とを有することを特徴とする超音波撮像装置。
    An image generation unit configured to transmit an ultrasonic wave to an imaging area, receive a signal from the ultrasonic wave returned from the imaging area, and generate an image of the imaging area;
    A pixel value distribution of the image is obtained in a predetermined direction according to an incident angle of the ultrasonic wave to the imaging region, and a side lobe artifact is removed by removing a noise component included in a high frequency component of the pixel value distribution. An ultrasonic imaging apparatus having an image processing unit.
  2.  請求項1に記載の超音波撮像装置であって、
     前記画像処理部は、
     前記画像の少なくとも2方向について画素値分布を求め、前記方向毎に前記画素値分布の高周波成分と低周波成分を抽出する成分抽出部と、
     前記撮像領域に対する前記超音波の入射角度に応じて、前記2方向の少なくとも一方を選択して、選択した方向の前記高周波成分に含まれるノイズ成分を除去するサイドローブノイズ除去部と、
     前記サイドローブノイズ除去部が選択した方向の、前記ノイズ成分を除去した前記高周波成分を少なくとも用いて、前記撮像領域のサイドローブアーチファクト除去画像を生成するサイドローブ除去画像生成部と、
    を有することを特徴とする超音波撮像装置。
    The ultrasonic imaging apparatus according to claim 1, wherein
    The image processing unit
    A component extraction unit which obtains a pixel value distribution in at least two directions of the image and extracts a high frequency component and a low frequency component of the pixel value distribution for each direction;
    A side lobe noise removing unit that selects at least one of the two directions according to the incident angle of the ultrasonic wave with respect to the imaging region and removes noise components included in the high frequency components in the selected direction;
    A side lobe removed image generation unit that generates a side lobe artifact removed image of the imaging region using at least the high frequency component from which the noise component has been removed in the direction selected by the side lobe noise removing unit;
    An ultrasonic imaging apparatus characterized by having:
  3.  請求項2に記載の超音波撮像装置であって、前記サイドローブ除去画像生成部は、前記サイドローブノイズ除去部が選択した方向の、前記ノイズ成分を除去した前記高周波成分と前記低周波成分、および、前記サイドローブノイズ除去部が選択しなかった方向の前記高周波成分と前記低周波成分、を用いて、前記撮像領域のサイドローブアーチファクト除去画像を生成することを特徴とする超音波撮像装置。 The ultrasonic imaging apparatus according to claim 2, wherein the side lobe removal image generation unit removes the noise component in the direction selected by the side lobe noise removal unit, the high frequency component and the low frequency component, And an ultrasonic imaging apparatus that generates a side lobe artifact removed image of the imaging region using the high frequency component and the low frequency component in a direction not selected by the side lobe noise removing unit.
  4.  請求項1に記載の超音波撮像装置であって、前記画像処理部は、前記高周波成分に含まれる絶対値が所定値以下の成分をノイズ成分として除去することを特徴とする超音波撮像装置。 The ultrasonic imaging apparatus according to claim 1, wherein the image processing unit removes a component having an absolute value included in the high frequency component equal to or less than a predetermined value as a noise component.
  5.  請求項2に記載の超音波撮像装置であって、前記撮像領域に対する前記超音波の前記入射角度が異なる複数の送信についてそれぞれ、前記画像生成部、前記成分抽出部、前記サイドローブノイズ除去部および前記サイドローブ除去画像生成部の処理により得られた前記サイドローブアーチファクト除去画像を加算する画像加算部をさらに有することを特徴とする超音波撮像装置。 The ultrasonic imaging apparatus according to claim 2, wherein the image generation unit, the component extraction unit, the side lobe noise removal unit, and the plurality of transmissions with different incident angles of the ultrasonic wave with respect to the imaging region. An ultrasonic imaging apparatus, further comprising: an image addition unit that adds the side lobe artifact removed image obtained by the processing of the side lobe removed image generation unit.
  6.  請求項2に記載の超音波撮像装置であって、前記撮像領域に対する前記超音波の前記入射角度が異なる複数の送信についてそれぞれ、前記画像生成部、前記成分抽出部および前記サイドローブノイズ除去部の処理によって得られた、ノイズ成分除去後の前記高周波成分と低周波成分を、対応する成分ごとに加算する加算部をさらに有し、
     前記サイドローブ除去画像生成部は、前記加算部が加算した高周波成分と低周波成分を用いて前記サイドローブアーチファクト除去画像を生成することを特徴とする超音波撮像装置。
    The ultrasonic imaging apparatus according to claim 2, wherein a plurality of transmissions with different incident angles of the ultrasonic wave with respect to the imaging region are respectively generated by the image generation unit, the component extraction unit, and the side lobe noise removal unit. The signal processing apparatus further includes an addition unit that adds the high frequency component and the low frequency component after noise component removal obtained by the processing for each corresponding component,
    The ultrasonic imaging apparatus characterized in that the side lobe removed image generation unit generates the side lobe artifact removed image using the high frequency component and the low frequency component added by the addition unit.
  7.  請求項2に記載の超音波撮像装置であって、前記撮像領域内の複数の小領域ごとに前記超音波の入射角度を求める入射角算出部をさらに有し、前記サイドローブノイズ除去部は、前記入射角算出部が算出した前記超音波の入射角に応じて、前記複数の小領域ごとに前記2方向の少なくとも一方を選択することを特徴とする超音波撮像装置。 The ultrasonic imaging apparatus according to claim 2, further comprising: an incident angle calculation unit for obtaining an incident angle of the ultrasonic wave for each of a plurality of small areas in the imaging area, wherein the side lobe noise removing unit An ultrasonic imaging apparatus, wherein at least one of the two directions is selected for each of the plurality of small regions in accordance with the incident angle of the ultrasonic wave calculated by the incident angle calculation unit.
  8.  請求項1に記載の超音波撮像装置であって、前記撮像領域に対して平面波の超音波を所定の入射角で送信した後、前記撮像領域からの超音波の受信する送受信部をさらに有することを特徴とする超音波撮像装置。 The ultrasonic imaging apparatus according to claim 1, further comprising: a transmitting / receiving unit for receiving an ultrasonic wave from the imaging area after transmitting an ultrasonic wave of a plane wave to the imaging area at a predetermined incident angle. An ultrasonic imaging apparatus characterized by
  9.  請求項7に記載の超音波撮像装置であって、前記撮像領域に対して非平面波の超音波を送信した後、前記撮像領域からの超音波の受信する送受信部をさらに有することを特徴とする超音波撮像装置。 8. The ultrasonic imaging apparatus according to claim 7, further comprising: a transmitting / receiving unit for receiving an ultrasonic wave from the imaging area after transmitting an ultrasonic wave of a non-plane wave to the imaging area. Ultrasonic imaging device.
  10.  請求項9に記載の超音波撮像装置であって、前記送受信部は、前記撮像領域に対して送信焦点の位置が異なる複数回の送信を行い、
     前記複数の送信についてそれぞれ、前記画像生成部、前記成分抽出部、前記サイドローブノイズ除去部および前記サイドローブ除去画像生成部の処理により前記サイドローブアーチファクト除去画像を得た後、加算する画像加算部をさらに有することを特徴とする超音波撮像装置。
    10. The ultrasonic imaging apparatus according to claim 9, wherein the transmitting and receiving unit performs transmission a plurality of times with different positions of the transmission focus with respect to the imaging region,
    An image addition unit that obtains the side lobe artifact removed image by the processing of the image generation unit, the component extraction unit, the side lobe noise removal unit, and the side lobe removal image generation unit for each of the plurality of transmissions, and then adds them. An ultrasonic imaging apparatus further comprising:
  11.  撮像領域の超音波画像を受け取って、前記撮像領域に対する超音波を照射した際の入射角度に応じた所定の方向について、前記画像の画素値分布を求め、前記画素値分布の高周波成分に含まれるノイズ成分を除去することによりサイドローブアーチファクトを除去することを特徴とする画像処理装置。 An ultrasonic image of an imaging area is received, and a pixel value distribution of the image is determined for a predetermined direction according to an incident angle when the ultrasonic wave is irradiated to the imaging area, and is included in the high frequency component of the pixel value distribution. An image processing apparatus characterized by removing side lobe artifacts by removing noise components.
PCT/JP2018/022632 2017-08-03 2018-06-13 Ultrasonic imaging device and image processing device WO2019026434A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017150971A JP2019025247A (en) 2017-08-03 2017-08-03 Ultrasonic imaging apparatus and image processing apparatus
JP2017-150971 2017-08-03

Publications (1)

Publication Number Publication Date
WO2019026434A1 true WO2019026434A1 (en) 2019-02-07

Family

ID=65233702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022632 WO2019026434A1 (en) 2017-08-03 2018-06-13 Ultrasonic imaging device and image processing device

Country Status (2)

Country Link
JP (1) JP2019025247A (en)
WO (1) WO2019026434A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588752A (en) * 1978-12-27 1980-07-04 Tokyo Shibaura Electric Co Ultrasoniccwave diagnosis device
JPH08289891A (en) * 1995-04-24 1996-11-05 Olympus Optical Co Ltd Ultrasonic diagnostic device
US6658141B1 (en) * 2000-02-25 2003-12-02 Medison Co., Ltd. Filtering method and apparatus for improving resolution of ultrasound image

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588752A (en) * 1978-12-27 1980-07-04 Tokyo Shibaura Electric Co Ultrasoniccwave diagnosis device
JPH08289891A (en) * 1995-04-24 1996-11-05 Olympus Optical Co Ltd Ultrasonic diagnostic device
US6658141B1 (en) * 2000-02-25 2003-12-02 Medison Co., Ltd. Filtering method and apparatus for improving resolution of ultrasound image

Also Published As

Publication number Publication date
JP2019025247A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
US7549963B2 (en) Multi stage beamforming
JP5913557B2 (en) Ultrasonic imaging device
US11141137B2 (en) Ultrasonic imaging device and image processing device
JP6315893B2 (en) Subject information acquisition apparatus, subject information acquisition method, and program
JP2010200926A (en) Ultrasonic device
US20170238908A1 (en) Ultrasound diagnostic device
JP2004129773A (en) Ultrasonic imaging device and ultrasonic signal processing method
JP6189867B2 (en) Ultrasonic imaging device
KR101552427B1 (en) Speckle Reduction Apparatus In Ultrasound Imaging
JP2009006168A (en) Ultrasonic diagnosis device
JP2002034976A (en) Ultrasonic diagnostic equipment, and ultrasonic imaging method
WO2017221381A1 (en) Ultrasonic imaging device and ultrasonic imaging method using ultrasonic imaging device
JP2008220652A (en) Ultrasonic diagnostic apparatus and ultrasonic image generation program
WO2019026434A1 (en) Ultrasonic imaging device and image processing device
JP2006212054A (en) Ultrasonic observation apparatus, and image processing apparatus and program
WO2019202593A1 (en) Sparse convolutional beamforming for ultrasound imaging
KR101911470B1 (en) Apparatus and method for generating 3D ultrasonic image using plane wave
JP2020025714A (en) Ultrasonic signal processing method and ultrasonic signal processing device
CN111012379B (en) Method and system for performing ultrasound imaging
JP6932200B2 (en) Methods and systems for filtering ultrasound image clutter
JP7005206B2 (en) Ultrasound diagnostic equipment and ultrasound imaging program
US20170224310A1 (en) Ultrasonic diagnostic apparatus and ultrasonic signal processing method
JP6045866B2 (en) Ultrasonic image processing device
JP6863817B2 (en) Ultrasound imaging device
JP6498329B2 (en) Subject information acquisition apparatus, subject information acquisition method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18840595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18840595

Country of ref document: EP

Kind code of ref document: A1