WO2019026404A1 - Cellulose nanofiber carbon and method for manufacturing same - Google Patents

Cellulose nanofiber carbon and method for manufacturing same Download PDF

Info

Publication number
WO2019026404A1
WO2019026404A1 PCT/JP2018/020799 JP2018020799W WO2019026404A1 WO 2019026404 A1 WO2019026404 A1 WO 2019026404A1 JP 2018020799 W JP2018020799 W JP 2018020799W WO 2019026404 A1 WO2019026404 A1 WO 2019026404A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose nanofiber
carbon
cellulose
carbon material
produced
Prior art date
Application number
PCT/JP2018/020799
Other languages
French (fr)
Japanese (ja)
Inventor
正也 野原
周平 阪本
三佳誉 岩田
政彦 林
武志 小松
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2019533925A priority Critical patent/JP6936439B2/en
Priority to EP18842084.8A priority patent/EP3663259A4/en
Priority to US16/636,256 priority patent/US11319209B2/en
Priority to CN201880050745.5A priority patent/CN110997563B/en
Publication of WO2019026404A1 publication Critical patent/WO2019026404A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/16Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from products of vegetable origin or derivatives thereof, e.g. from cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above

Definitions

  • the present invention relates to cellulose nanofiber carbon and a method for producing the same.
  • the carbon nanofibers generally have an outer diameter of 5 to 100 nm and a fiber length of 10 times or more of the outer diameter. Due to its unique shape, it has features such as high conductivity and high specific surface area.
  • Non-Patent Documents 1 and 2 Conventionally, as a method for producing carbon nanofibers, for example, an electrode discharge method, a vapor phase growth method, a laser method and the like are known (Non-Patent Documents 1 and 2). Further, methods of producing cellulose nanofibers by heat-treating cellulose that is derived from natural products are disclosed, for example, in Patent Documents 1 and 2.
  • the carbon nanofibers produced by the conventional production method have a problem that they are not elastic and plastically deformed so that they can not return to their original shape upon compression or bending, and the mechanical strength is low.
  • the present invention has been made in view of this problem, and an object of the present invention is to provide cellulose nanofiber carbon having stretchability, high mechanical strength, and a large specific surface area, and a method for producing the same. .
  • the method for producing cellulose nanofiber carbon is a method for producing cellulose nanofiber carbon for carbonizing cellulose nanofibers, which comprises freezing a solution or gel containing the cellulose nanofibers to obtain a frozen body.
  • the gist of the present invention comprises a freezing step to obtain, a drying step of drying the frozen body in a vacuum to obtain a dried body, and a carbonizing step of heating and carbonizing the dried body in an atmosphere where the dried body is not burned.
  • the cellulose nanofiber carbon according to one aspect of the present invention has a gist that it has a three-dimensional network structure of a co-continuum in which cellulose nanofibers are connected.
  • the cellulose nanofiber carbon which concerns on 1 aspect of this invention has a three-dimensional network structure which is a continuum which the nanofiber of bacterial production cellulose was connected.
  • a cellulose nanofiber carbon having stretchability, high mechanical strength and capable of increasing the specific surface area, and a method for producing the same.
  • FIG. 1 is a flowchart showing a method of producing cellulose nanofiber carbon according to the first embodiment of the present invention.
  • cellulose nanofiber carbon may be referred to as a carbon material.
  • the method for producing cellulose nanofiber carbon of the present embodiment includes a dispersion step (step S1), a freezing step (step S2), a drying step (step S3), and a carbonization step (step S4).
  • a cellulose nanofiber solution is required.
  • the form of the cellulose nanofibers in the cellulose nanofiber solution is preferably a dispersed form. Therefore, although the dispersion process (step S1) is included in the manufacturing process shown in FIG. 1, the dispersion process (step S1) may be omitted. That is, when using the solution of the form which the cellulose nanofiber disperse
  • the dispersing step disperses the cellulose nanofibers contained in the cellulose nanofiber solution.
  • the dispersion medium is an aqueous system such as water (H 2 O) or a carboxylic acid, methanol (CH 3 OH), ethanol (C 2 H 5 OH), propanol (C 3 H 7 OH), n-butanol, isobutanol, n-butylamine, dodecane, unsaturated fatty acid, ethylene Organic systems such as glycol, heptane, hexadecane, isoamyl alcohol, octanol, isopropanol, acetone, and glycerin, and two or more of them may be mixed.
  • Dispersion of the cellulose nanofibers may be performed using, for example, a homogenizer, an ultrasonic cleaner, an ultrasonic homogenizer, a magnetic stirrer, a stirrer, a shaker, or the like.
  • the solid content concentration of the cellulose nanofibers in the cellulose nanofiber solution is preferably 0.001 to 80% by mass, and more preferably 0.01 to 30% by mass.
  • a freezing process freezes the solution containing a cellulose nanofiber, and obtains a frozen body (step S2).
  • the cellulose nanofiber solution contained in a test tube is contained in a suitable container such as a test tube and cooled around the test tube in a coolant such as liquid nitrogen. It does by freezing.
  • the method of freezing is not particularly limited as long as the dispersion medium of the solution can be cooled below the freezing point, and may be cooled by a freezer or the like.
  • the dispersion medium loses its fluidity, the dispersoid cellulose nanofibers are fixed, and a three-dimensional network structure is constructed.
  • the frozen body frozen in the freezing step is dried in vacuum to obtain a dried body (step S3).
  • This process sublimes the frozen dispersion medium from the solid state.
  • the obtained frozen body is stored in a suitable container such as a flask, and the inside of the container is evacuated.
  • the sublimation point of the dispersion medium is lowered, and it is possible to sublimate even a substance that does not sublime at normal pressure.
  • the degree of vacuum in the drying step varies depending on the dispersion medium to be used, but is not particularly limited as long as the dispersion medium is a degree of vacuum which is sublimed.
  • the degree of vacuum is preferably 1.0 ⁇ 10 ⁇ 6 Pa to 1.0 ⁇ 10 ⁇ 2 Pa.
  • heat may be applied using a heater or the like at the time of drying.
  • the dried product dried in the drying step is carbonized by heating in a non-burning atmosphere to obtain cellulose nanofiber carbon (step S4).
  • the carbonization of cellulose nanofibers may be carried out by firing at 200 ° C. to 2000 ° C., more preferably 600 ° C. to 1800 ° C. in an inert gas atmosphere for carbonization.
  • inert gas such as nitrogen gas and argon gas
  • the gas which does not burn cellulose may be a reducing gas such as hydrogen gas or carbon monoxide gas, or may be carbon dioxide gas. More preferable is carbon dioxide gas or carbon monoxide gas which has an activating effect on carbon materials and can be expected to be highly activated.
  • the cellulose nanofibers as the dispersoid are fixed by the freezing step to construct a three-dimensional network structure.
  • the drying process can take out the cellulose nanofibers while maintaining the three-dimensional network structure. Therefore, a sufficient specific surface area can be obtained, and the production of a high specific surface area carbon material is facilitated.
  • 2A and 2B are SEM (Scanning Electron Microscope) images of cellulose nanofiber carbon. The magnification is 10000 times.
  • FIG. 2A is a SEM image of cellulose nanofiber carbon produced by the production method of the present embodiment. The image shows that the cellulose nanofibers are fixed and a three-dimensional network structure is constructed.
  • FIG. 2B shows the appearance of cellulose nanofiber carbon when it is dried in the air and carbonized unlike the manufacturing method of the present embodiment. Since the frozen body changes from solid to liquid and liquid to gas, the three-dimensional network structure of cellulose nanofibers is destroyed. As shown in FIG. 2B, when the three-dimensional network structure is destroyed, it is difficult to make a high specific surface area carbon material.
  • the cellulose nanofiber carbon produced by the production method of the present embodiment is a stretchable carbon material having a three-dimensional network structure of co-continuum in which cellulose nanofibers are connected.
  • the cellulose nanofiber carbon of the present embodiment has high conductivity, corrosion resistance, and high specific surface area.
  • the cellulose nanofiber carbon produced by the production method of the present embodiment is a battery, a capacitor, a fuel cell, a biofuel cell, a microbial cell, a catalyst, a solar cell, a semiconductor production process, a medical device, a beauty tool, a filter, It is suitable as a heat resistant material, a flame resistant material, a heat insulating material, a conductive material, an electromagnetic wave shielding material, an electromagnetic wave noise absorbing material, a heating element, a microwave heating element, a cone paper, clothes, carpet, mirror fog prevention, a sensor, a touch panel and the like.
  • FIG. 3 is a flowchart showing a method of producing cellulose nanofiber carbon according to the second embodiment.
  • the manufacturing method shown in FIG. 3 includes a crushing step (step S5), a mixing step (step S6), and a drying step (step S7), as compared with the manufacturing method of the first embodiment.
  • the dried product (cellulose nanofiber carbon) carbonized in the above-mentioned carbonizing step (step S4) is pulverized (step S5).
  • the grinding process may be carried out using, for example, a mixer, homogenizer, ultrasonic homogenizer, high-speed rotational shear stirrer, colloid mill, roll mill, high-pressure jet disperser, rotary ball mill, vibration ball mill, planetary ball mill, attritor, etc.
  • the nanofiber carbon is powdered or slurried.
  • the cellulose nanofiber carbon preferably has a secondary particle diameter of 10 nm to 20 mm, and more preferably 50 nm to 1 mm. This is because when the secondary particle diameter is reduced to 10 nm or less, the co-continuous structure by the cellulose nanofibers is broken, it becomes difficult to obtain sufficient binding strength and conductive path, and the electrical resistance is increased. In order to In addition, when the secondary particle diameter is 20 mm or more, the cellulose nanofibers functioning as a binder are not sufficiently dispersed, and it becomes difficult to maintain in the form of a sheet.
  • cellulose nanofiber carbon has a high porosity and a low density
  • cellulose nanofiber carbon powder scatters during or after pulverization, making it difficult to handle. Therefore, it is preferable to impregnate cellulose nanofiber carbon with a solvent and then to grind it.
  • the solvent used here is not particularly limited, but, for example, an aqueous system such as water (H 2 O) or a carboxylic acid, methanol (CH 3 OH), ethanol (C 2 H 5 OH), propanol (C 3 H 7 OH), n-butanol, isobutanol, n- Organic systems such as butylamine, dodecane, unsaturated fatty acid, ethylene glycol, heptane, hexadecane, isoamyl alcohol, octanol, isopropanol, acetone, glycerin and the like, and two or more of these may be mixed.
  • an aqueous system such as water (H 2 O) or a carboxylic acid, methanol (CH 3 OH), ethanol (C 2 H 5 OH), propanol (C 3 H 7 OH), n-butanol, isobutanol, n- Organic systems such as butylamine, dode
  • the mixing step the material pulverized in the grinding step (step S5) and the cellulose nanofiber solution dispersed in the dispersing step (step S1) are mixed to obtain a mixed solution (step S6).
  • the mixed solution is in the form of slurry, and by drying the mixed slurry, it is possible to process cellulose nanofiber carbon into a sheet.
  • a drying process removes a liquid from a liquid mixture (Step S7).
  • a constant temperature bath a vacuum dryer, an infrared dryer, a hot air dryer, a suction dryer, or the like may be used. Furthermore, it can be rapidly dried by suction filtration using an aspirator or the like.
  • the mixed slurry obtained by the manufacturing method of the present embodiment described above is dried and made into a sheet, it may be processed into a desired shape.
  • the sheet-like carbon material can be processed into a desired shape by applying the mixed slurry to an arbitrary shape and then drying it. By applying it in an arbitrary shape, it is possible to reduce the cost of materials such as scraps generated in the cutting process, and it is possible to obtain a carbon material of any shape according to the preference of the user. Also, the strength of the carbon material can be enhanced.
  • the manufacturing method of the present embodiment may not include all the steps.
  • cellulose nanofiber carbon in a crushed state may be used up to the grinding step. To use is to distribute in that state.
  • the process may be carried out up to the mixing step and circulated in the state of the mixed slurry.
  • Example 1 Using a cellulose nanofiber (manufactured by Nippon Paper Industries Co., Ltd.), 1 g of cellulose nanofiber and 10 g of ultrapure water are stirred with a homogenizer (manufactured by SMT) for 12 hours to prepare a dispersion of cellulose nanofiber, and the test tube is prepared. I poured it.
  • the cellulose nanofiber solution was completely frozen by immersing the test tube in liquid nitrogen for 30 minutes. After completely freezing the cellulose nanofiber solution, the frozen cellulose nanofiber solution is taken out on a petri dish, and dried by a freeze dryer (manufactured by Tokyo Scientific Instruments Co., Ltd.) under a vacuum of 10 Pa or less. A dried cellulose nanofiber was obtained. After drying in vacuum, the cellulose nanofibers were carbonized by firing at 600 ° C. for 2 hours under a nitrogen atmosphere, whereby a carbon material of Experimental Example 1 was produced.
  • Example 2 After impregnating the carbon material produced in Experimental example 1 with water, stirring the carbon material and the cellulose nanofiber solution (carbon material: cellulose nanofiber solution weight ratio 1: 1) with a homogenizer (made by SMT) for 12 hours Then, it was crushed and mixed. This mixture was in the form of a slurry, and was subjected to suction filtration using an aspirator (manufactured by Shibata Scientific Co., Ltd.) to separate the carbon material from the filter paper. Thereafter, the carbon material was placed in a thermostatic bath, and was subjected to drying treatment at 60 ° C. for 12 hours to produce a carbon material of Experimental Example 2.
  • a homogenizer made by SMT
  • Example 3 The skin portion of the carbon material produced in Experimental Example 1 was stripped of only the skin portion using a cutter or the like to produce a carbon material of Experimental Example 3. That is, the surface of the carbon material produced in Experimental Example 1 was removed, and the carbon material of Experimental Example 3 was produced.
  • Comparative Example 1 is a carbon material produced by ordinary drying without performing the above-described freezing step and drying step.
  • Comparative Example 1 the cellulose nanofiber solution prepared in Experimental Example 1 was poured into a petri dish, placed in a thermostat, and subjected to drying treatment at 60 ° C. for 12 hours. Thereafter, the cellulose nanofibers were carbonized by baking for 2 hours at 600 ° C. in a nitrogen atmosphere, whereby a carbon material was produced.
  • Comparative example 2 After impregnating the carbon material produced in Comparative Example 1 (usually drying) with water, the carbon material and cellulose nanofiber solution (weight ratio of carbon material: cellulose nanofiber solution 1: 1) of 12 with a homogenizer (made by SMT) are used. Grinding and mixing were performed by stirring for a period of time. This mixture was in the form of a slurry, and was subjected to suction filtration using an aspirator (manufactured by Shibata Scientific Co., Ltd.) to separate the carbon material from the filter paper. Thereafter, the carbon material was put in a thermostatic bath, and the drying process was performed at 60 ° C. for 12 hours to prepare a carbon material of Comparative Example 2.
  • a homogenizer made by SMT
  • the obtained carbon material was evaluated by performing XRD measurement, SEM observation, porosity measurement, tensile test, and BET specific surface area measurement. This carbon material was confirmed to be carbon (C, PDF card No. 01-071-4630) single phase by XRD measurement.
  • the PDF card No. is a card number of PDF (Powder Diffraction File) which is a database collected by the International Center for Diffraction Data (ICDD).
  • FIGS. 4A to 4E are SEM images of the carbon materials obtained in Experimental Examples 1 and 2 and Comparative Examples 1 and 2.
  • FIG. 4A is a SEM image of the skin portion (surface) of the carbon material obtained in Experimental Example 1. As shown to FIG. 4A, the skin part of the carbon material of Experimental example 1 has some aggregation seen.
  • FIG. 4B is a SEM image of a cross section cut to remove the skin of the carbon material of FIG. 4A.
  • FIG. 4C is a SEM image of the surface of the carbon material obtained in Experimental Example 2.
  • FIG. 4D is a SEM image of the surface of the carbon material obtained in Comparative Example 1.
  • FIG. 4E is a SEM image of the surface of the carbon material obtained in Comparative Example 2. In each case, the magnification is 10,000 times.
  • nanofibers with a fiber diameter of several tens of nm are continuously connected. It can be confirmed that it is a co-continuous body.
  • the carbon material in which the cellulose nanofiber solution is usually dried is a carbon material which has no pores and is densely aggregated.
  • the carbon materials (Experimental Examples 1 and 2) of the first embodiment and the second embodiment have surface tensions of water accompanying evaporation of the dispersion medium than Comparative Examples 1 and 2 in which drying is normally performed. It is possible to suppress cohesion due to As a result, it has been confirmed that it is possible to provide a carbon material having high specific surface area and high porosity and excellent performance.
  • Experimental example 3 is a carbon material produced by peeling the skin part (FIG. 4A) of the carbon material manufactured by Experimental example 1.
  • FIG. 4A The SEM image of this experimental example 3 is the same as that of FIG. 4B. Therefore, the carbon material of Experimental Example 3 has excellent performance with a high specific surface area and a high porosity.
  • FIG. 4A it is considered that a part of the skin of the carbon material obtained by the manufacturing method of Experimental Example 1 is agglutinated and that the aggregates of the skin are removed.
  • the step of freezing the solution containing cellulose nanofibers to obtain a frozen body the step of drying the frozen body in a vacuum to obtain a dried body, and heating in an atmosphere of gas in which the dried body does not burn Since the production method of the present embodiment including the carbonization step of carbonization is carbonized by heat-treating cellulose nanofibers, excellent specific surface area, strength, and porosity can be obtained.
  • the carbon material manufactured by the manufacturing method of the first embodiment and the second embodiment can use cellulose derived from a natural product, and has very low environmental impact.
  • Such carbon materials can be easily disposed of in daily life, so small devices, sensor terminals, medical devices, batteries, beauty instruments, fuel cells, biofuel cells, microbial cells, capacitors, catalysts, Solar cell, semiconductor manufacturing process, filter, heat resistant material, flame resistant material, heat insulating material, conductive material, electromagnetic wave shielding material, electromagnetic wave noise absorbing material, heating element, microwave heating element, cone paper, clothes, carpet, mirror fog prevention, sensor It can be effectively used in various situations including the touch panel and the like.
  • a gel containing cellulose nanofibers is used instead of the solution containing the cellulose nanofibers of the first embodiment.
  • the gel of the third embodiment and the fourth embodiment is a bacteria-produced gel in which cellulose nanofibers are dispersed using bacteria. Therefore, the cellulose nanofiber carbon manufactured by the manufacturing method of 3rd Embodiment and 4th Embodiment is called bacterial production cellulose carbon in subsequent description.
  • FIG. 5 is a flowchart showing a method of producing bacterial cellulose carbon produced according to a third embodiment of the present invention.
  • bacterial cellulose carbon may be referred to as a carbon material.
  • the method for producing the bacteria-produced cellulose carbon includes a gel production step (step S11), a freezing step (step S12), a drying step (step S13), and a carbonization step (step S14).
  • gel means that the dispersion medium loses fluidity and becomes solid due to the three-dimensional network structure of the nanostructure which is a dispersoid. Specifically, it means a dispersion having a shear modulus of 102 to 106 Pa.
  • the dispersion medium of the gel may be an aqueous system such as water (H 2 O) or a carboxylic acid, methanol (CH 3 OH), ethanol (C 2 H 5 OH), propanol (C 3 H 7 OH), n-butanol, isobutanol, n-butylamine, dodecane, unsaturated fatty acid And organic systems such as ethylene glycol, heptane, hexadecane, isoamyl alcohol, octanol, isopropanol, acetone, and glycerin, and two or more of them may be mixed.
  • aqueous system such as water (H 2 O) or a carboxylic acid, methanol (CH 3 OH), ethanol (C 2 H 5 OH), propanol (C 3 H 7 OH), n-butanol, isobutanol, n-butylamine, dodecane, unsaturated fatty acid
  • the gel produced by the bacteria has a nano-sized nanofiber as a basic structure, and by using this gel to produce a carbon material, the resulting carbon material has a high specific surface area. Specifically, synthesis of a carbon material having a specific surface area of 300 m 2 / g or more is possible by using a gel produced by bacteria.
  • the bacteria-produced gel has a structure in which the nanofibers are entangled in a coil or network, and further has a branched structure based on bacterial growth, so that the carbon material produced has an elastic limit. Achieves excellent stretchability with 50% or more of distortion.
  • the bacteria examples include known ones, for example, Acetobacter xylinum subspecies schlofermenta, Acetobacter xylinum ATCC 23768, Acetobacter xylinum ATCC 23769, Acetobacter pastilian ATCC 10245, Acetobacter xylinum ATCC 14851, acetobacter It may be produced by culturing acetic acid bacteria such as Bacter xylinum ATCC 11142 and Acetobacter xylinum ATCC 10821. Also, the bacteria may be produced by culturing various mutant strains created by mutating these acetic acid bacteria by a known method using NTG (nitrosoguanidine) or the like.
  • the bacterial gel is frozen to obtain a frozen body (step S12).
  • the bacteria-producing gel is stored in a suitable container such as a test tube, and the periphery of the test tube is cooled in a coolant such as liquid nitrogen to freeze the bacteria-producing gel contained in the test tube. It is carried out by doing.
  • the method of freezing is not particularly limited as long as the dispersion medium of the gel can be cooled below the freezing point, and may be cooled by a freezer or the like.
  • the dispersion medium By freezing the bacteria-produced gel, the dispersion medium loses its fluidity, the dispersoid cellulose nanofibers are immobilized, and a three-dimensional network structure is constructed.
  • the frozen body is dried in vacuum to obtain a dried body (bacteria-produced xerogel) (step S13).
  • the frozen body obtained in the freezing step is dried in vacuum, and the frozen dispersion medium is sublimed from the solid state.
  • the obtained frozen body is stored in a suitable container such as a flask, and the inside of the container is evacuated. By disposing the frozen body under a vacuum atmosphere, the sublimation point of the dispersion medium is lowered, and it is possible to sublimate even a substance that does not sublime at normal pressure.
  • the degree of vacuum in the drying step varies depending on the dispersion medium to be used, but is not particularly limited as long as the dispersion medium is a degree of vacuum which is sublimed.
  • the degree of vacuum is preferably 1.0 ⁇ 10 ⁇ 6 to 1.0 ⁇ 10 ⁇ 2 Pa.
  • heat may be applied using a heater or the like during drying.
  • the dried product (bacteria-produced xerogel) is carbonized by heating in an atmosphere that does not burn it, and bacterial-produced cellulose carbon is obtained (Step S14).
  • the carbonization of the bacterially produced xerogel may be carried out by firing at 500 ° C. to 2000 ° C., more preferably 900 ° C. to 1800 ° C. in an inert gas atmosphere.
  • inert gas such as nitrogen gas and argon gas
  • the gas which does not burn cellulose may be a reducing gas such as hydrogen gas or carbon monoxide gas, or may be carbon dioxide gas.
  • the cellulose nanofibers as the dispersoid are fixed by the freezing step to construct a three-dimensional network structure.
  • the drying process can take out the cellulose nanofibers while maintaining the three-dimensional network structure. Therefore, a sufficient specific surface area can be obtained, and the production of a high specific surface area carbon material is facilitated.
  • 6A and 6B are SEM images of cellulose nanofiber carbon. The magnification is 10000 times.
  • FIG. 6A is a SEM image of bacterial cellulose carbon produced by the manufacturing method of the present embodiment. The image shows that the cellulose nanofibers are fixed and a three-dimensional network structure is constructed.
  • FIG. 6B shows the appearance of the carbon material when it is dried in the air and carbonized unlike the manufacturing method of the present embodiment. Since the frozen body changes from solid to liquid and liquid to gas, the three-dimensional network structure of cellulose nanofibers is destroyed. As shown in FIG. 6B, when the three-dimensional network structure is destroyed, it is difficult to produce a high specific surface area carbon material.
  • the bacteria-produced cellulose carbon produced by the production method of the present embodiment is a carbon material having a three-dimensional network structure and having stretchability.
  • the bacterial cellulose carbon of the present embodiment has high conductivity, corrosion resistance, and high specific surface area.
  • the bacteria-produced cellulose carbon produced by the production method of the present embodiment can enhance the adhesion to electrodes, voids, living tissues, device connection parts and the like.
  • the bacterially produced cellulose carbon of the present embodiment has high conductivity, corrosion resistance, and high specific surface area, and therefore, cells, capacitors, fuel cells, biofuel cells, microbial cells, catalysts, solar cells, semiconductor manufacturing processes , Medical equipment, beauty instruments, filters, heat resistant materials, flame resistant materials, heat insulating materials, conductive materials, electromagnetic wave shielding materials, electromagnetic wave noise absorbing materials, heating elements, microwave heating elements, cone paper, clothes, carpets, mirror fog prevention, Suitable for sensors, touch panels, etc.
  • FIG. 7 is a flowchart showing a method of producing bacterial cellulose carbon produced according to the fourth embodiment.
  • the manufacturing method shown in FIG. 7 is different from the manufacturing method of the third embodiment in the first crushing step (step S15), the second crushing step (step S16), the mixing step (step S17), and the applying step (step S18). And a drying step (step S19).
  • a 1st grinding process grinds the dried body (bacterial-producing cellulose carbon) carbonized by said carbonization process (step S14) (step S15).
  • the first crushing step uses, for example, a mixer, a homogenizer, an ultrasonic homogenizer, a high-speed rotational shear stirrer, a colloid mill, a roll mill, a high pressure jet disperser, a rotary ball mill, a vibrating ball mill, a planetary ball mill, an attritor, etc. , Make bacterially produced cellulose carbon powder or slurry.
  • the bacterial particle-produced cellulose carbon preferably has a secondary particle diameter of 100 nm to 5 mm, and more preferably 1 ⁇ m to 1 mm.
  • the secondary particle diameter is reduced to 100 nm or less, the co-continuous structure by cellulose nanofibers is broken, it becomes difficult to obtain sufficient binding strength and conductive path, and the electrical resistance is increased.
  • the secondary particle diameter is 5 mm or more, the bacteria-produced gel that functions as a binding agent is not sufficiently dispersed, and it becomes difficult to maintain the sheet shape.
  • bacterially produced cellulose carbon has a high porosity and a low density, and therefore, when the carbon material is crushed alone, powder of bacterially produced cellulose carbon is scattered during or after the pulverization and handling is difficult. Therefore, it is preferable to impregnate the bacteria-produced cellulose carbon with a solvent and then to grind it.
  • the solvent used here is not particularly limited, but, for example, an aqueous system such as water (H 2 O) or a carboxylic acid, methanol (CH 3 OH), ethanol (C 2 H 5 OH), propanol (C 3 H 7 OH), n-butanol, isobutanol, n- Organic systems such as butylamine, dodecane, unsaturated fatty acid, ethylene glycol, heptane, hexadecane, isoamyl alcohol, octanol, isopropanol, acetone, glycerin and the like, and two or more of these may be mixed.
  • an aqueous system such as water (H 2 O) or a carboxylic acid, methanol (CH 3 OH), ethanol (C 2 H 5 OH), propanol (C 3 H 7 OH), n-butanol, isobutanol, n- Organic systems such as butylamine, dode
  • the bacterial gel produced in the gel formation step is crushed (step S16).
  • the materials ground in each of the first grinding step and the second grinding step are mixed (step S17).
  • the mixture is in the form of a slurry.
  • the slurry-like mixture is formed into an arbitrary shape (step S18).
  • the liquid is removed from the mixture formed (coated) in an arbitrary shape in the coating step (step S19).
  • a constant temperature bath a vacuum dryer, an infrared dryer, a hot air dryer, a suction dryer, or the like may be used. Furthermore, it can be rapidly dried by suction filtration using an aspirator or the like.
  • the mixed slurry obtained by the manufacturing method of the present embodiment described above may be dried without performing the application step to form a sheet, and then processed into a desired shape. After the mixed slurry is formed into an arbitrary shape, the sheet-like carbon material can be processed into a desired shape by drying. In addition, by applying in the application step, the material cost such as scraps produced in the cutting process can be reduced, and it is possible to obtain a carbon material having an arbitrary shape according to the preference of the user. Also, the strength of the carbon material can be enhanced.
  • the manufacturing method of the present embodiment may not include all the steps.
  • bacteria-produced cellulose carbon in a crushed state may be used up to the first crushing step. To use is to distribute in that state.
  • the process may be carried out up to the mixing step and circulated in the state of the mixed slurry.
  • Example 1 Use natadecoco (Fujicco) as a bacterial cellulose gel produced by the acetobacterium Acetobacter xylinum and completely freeze the bacteria-produced gel by soaking in liquid nitrogen for 30 minutes in a foam polystyrene box. The After completely freezing the bacteria-produced gel, the frozen bacteria-produced gel is taken out on a petri dish, and dried by a freeze dryer (manufactured by Tokyo Scientific Instruments Co., Ltd.) under a vacuum of 10 Pa or less to produce bacteria. I got a xerogel. After drying the bacteria-produced xerogel in vacuo, the bacteria-produced xerogel was carbonized by baking for 2 hours at 600 ° C. under a nitrogen atmosphere, whereby a carbon material of Experimental Example 1 was produced.
  • Example 2 After impregnating the carbon material prepared in Experimental Example 1 with water, the carbon material and bacterial gel (carbon material: bacterial gel weight ratio 1: 1) are stirred for 12 hours with a homogenizer (manufactured by SMT). It was crushed and mixed. This mixture was in the form of a slurry, and was subjected to suction filtration using an aspirator (manufactured by Shibata Scientific Co., Ltd.) to separate the carbon material from the filter paper. Thereafter, the carbon material was placed in a thermostatic bath, and was subjected to drying treatment at 60 ° C. for 12 hours to produce a carbon material of Experimental Example 2.
  • a homogenizer manufactured by SMT
  • Aspirator manufactured by Shibata Scientific Co., Ltd.
  • Comparative Example 1 is a carbon material produced by ordinary drying without performing the above-described freezing step and drying step.
  • Comparative Example 1 the bacteria-produced gel used in Experimental Example 1 was placed in a thermostat and subjected to drying treatment at 60 ° C. for 12 hours. Thereafter, the bacteria-produced cellulose was carbonized by baking for 2 hours at 600 ° C. in a nitrogen atmosphere, whereby a carbon material was produced.
  • Comparative example 2 The carbon material prepared in Comparative Example 1 (normally dried) was impregnated with water, and then stirred for 12 hours with homoenergy (manufactured by S.M.T.), and pulverized to prepare a slurry in which the carbon material was dispersed. Then, the slurry and the bacterial gel (carbon material: bacterial gel weight ratio 1: 1) were stirred for 12 hours to perform grinding and mixing.
  • the obtained carbon material was evaluated by performing XRD measurement, SEM observation, porosity measurement, tensile test, and BET specific surface area measurement. This carbon material was confirmed to be carbon (C, PDF card No. 01-071-4630) single phase by XRD measurement.
  • the PDF card No. is a card number of PDF (Powder Diffraction File) which is a database collected by the International Center for Diffraction Data (ICDD).
  • FIGS. 8A to 8E SEM images of the produced carbon material are shown in FIGS. 8A to 8E. Moreover, the evaluation value obtained by measuring is shown in Table 2.
  • FIGS. 8A to 8E are SEM images of the carbon materials obtained in Experimental Examples 1 and 2 and Comparative Examples 1 and 2.
  • FIG. 8A is a SEM image of the skin portion (surface) of the carbon material obtained in Experimental Example 1. As shown in FIG. 8A, in the skin portion of the carbon material of Experimental Example 1, partial aggregation is observed.
  • FIG. 8B is a SEM image of a cross section cut to remove the skin of the carbon material of FIG. 8A.
  • FIG. 8C is a SEM image of the surface of the carbon material obtained in Experimental Example 2.
  • FIG. 8D is a SEM image of the surface of the carbon material obtained in Comparative Example 1.
  • FIG. 8E is a SEM image of the surface of the carbon material obtained in Comparative Example 2. In each case, the magnification is 10,000 times.
  • nanofibers with a fiber diameter of several tens of nm are continuously connected. It can be confirmed that it is a co-continuous body.
  • the carbon material obtained by usually drying the bacteria-producing gel containing water is a carbon material which has no pores and is densely aggregated. Can be confirmed.
  • the carbon materials (Experimental Examples 1 and 2) of the third embodiment and the fourth embodiment are associated with the evaporation of the dispersion medium than the drying process of Comparative Examples 1 and 2 in which the drying is usually performed. It is possible to suppress aggregation due to surface tension of the As a result, it has been confirmed that it is possible to provide a carbon material having high specific surface area and high porosity and excellent performance.
  • Experimental example 3 is a carbon material produced by peeling the skin part (FIG. 4A) of the carbon material manufactured by Experimental example 1.
  • FIG. 4A The SEM image of this experimental example 3 is the same as that of FIG. 8B. Therefore, the carbon material of Experimental Example 3 has excellent performance with a high specific surface area and a high porosity. As shown in FIG. 8A, this is considered to be that the skin portion of the carbon material obtained by the manufacturing method of Experimental Example 1 is partially aggregated, and the aggregates of the skin portion are removed.
  • the manufacturing method of the third embodiment and the fourth embodiment comprises the steps of freezing the gel produced by bacteria to obtain a frozen body, and drying the frozen body in a vacuum to obtain a dried body. And a carbonization step of heating and carbonizing the dried body in an atmosphere of non-combustible gas. Since the bacterially produced cellulose is carbonized by heat treatment, the bacterially produced cellulose carbon produced in the third and fourth embodiments can achieve excellent specific surface area, strength, and porosity.
  • the carbon material manufactured by the manufacturing method of the third embodiment and the fourth embodiment can also use cellulose derived from a natural product, and has very low environmental impact.
  • Such carbon materials can be easily disposed of in daily life, so small devices, sensor terminals, medical devices, batteries, beauty instruments, fuel cells, biofuel cells, microbial cells, capacitors, catalysts, Solar cell, semiconductor manufacturing process, filter, heat resistant material, flame resistant material, heat insulating material, conductive material, electromagnetic wave shielding material, electromagnetic wave noise absorbing material, heating element, microwave heating element, cone paper, clothes, carpet, mirror fog prevention, sensor It can be effectively used in various situations including the touch panel and the like.
  • the surface of the carbon material produced in the carbonization step You may perform the removal process which peels only a skin part using a cutter etc. for the part.
  • the skin portion of the carbon material produced in the carbonization step is peeled away using a cutter or the like to peel only the skin portion.
  • a step may be performed and then the subsequent steps may be performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)

Abstract

Provided is a cellulose nanofiber carbon for which the specific surface area can be increased and a method for manufacturing the same. This method for manufacturing a cellulose nanofiber carbon thermally treats a cellulose nanofiber to carbonize the same and involves: a freezing step S2 of freezing a solution or gel that includes the cellulose nanofiber to obtain a frozen body; a drying step S3 of drying the frozen body in a vacuum to obtain a dried body; and a carbonizing step S4 of heating and carbonizing the dried body in an atmosphere that does not cause the dried body to combust in order to obtain the cellulose nanofiber carbon.

Description

セルロースナノファイバーカーボンとその製造方法Cellulose nanofiber carbon and method for producing the same
 本発明は、セルロースナノファイバーカーボンとその製造方法に関する。 The present invention relates to cellulose nanofiber carbon and a method for producing the same.
 カーボンナノファイバーは、一般的に5~100nmの外径で、ファイバー長は外径の10倍以上の繊維状である。その特異な形状により、高導電率、高比表面積といった特徴を有する。 The carbon nanofibers generally have an outer diameter of 5 to 100 nm and a fiber length of 10 times or more of the outer diameter. Due to its unique shape, it has features such as high conductivity and high specific surface area.
 従来、カーボンナノファイバーの製造方法は、例えば電極放電法、気相成長法、及びレーザー法などが知られている(非特許文献1,2)。また、天然物由来であるセルロースを熱処理することで、セルロースナノファイバーを製造する方法が、例えば特許文献1,2に開示されている。 Conventionally, as a method for producing carbon nanofibers, for example, an electrode discharge method, a vapor phase growth method, a laser method and the like are known (Non-Patent Documents 1 and 2). Further, methods of producing cellulose nanofibers by heat-treating cellulose that is derived from natural products are disclosed, for example, in Patent Documents 1 and 2.
特許第5510092号公報Patent 5510092 特許第5386866号公報Patent No. 5386866 gazette
 従来の製造方法によって製造されたカーボンナノファイバーは、弾性がなく、圧縮や折り曲げに対して元の形状に戻ることが出来ない塑性変形し、機械的強度が低いという課題がある。 The carbon nanofibers produced by the conventional production method have a problem that they are not elastic and plastically deformed so that they can not return to their original shape upon compression or bending, and the mechanical strength is low.
 また、セルロースナノファイバーを熱処理してカーボン材料を得ようとすると、セルロースナノファイバーを乾燥する際に凝集してしまい、熱処理時に焼結し、密度の高いカーボン材料となり、大きな比表面積を持たせることが困難であるという課題がある。 In addition, when heat treatment of cellulose nanofibers is attempted to obtain a carbon material, the cellulose nanofibers aggregate during drying, are sintered during heat treatment, become carbon materials with high density, and have a large specific surface area. There is a problem that is difficult.
 本発明は、この課題に鑑みてなされたものであり、伸縮性を持ち、機械的強度が高く、比表面積を大きくすることが出来るセルロースナノファイバーカーボンとその製造方法を提供することを目的とする。 The present invention has been made in view of this problem, and an object of the present invention is to provide cellulose nanofiber carbon having stretchability, high mechanical strength, and a large specific surface area, and a method for producing the same. .
 本発明の一態様に係るセルロースナノファイバーカーボンの製造方法は、セルロースナノファイバーをカーボン化するセルロースナノファイバーカーボンの製造方法であって、前記セルロースナノファイバーを含む溶液またはゲルを凍結させて凍結体を得る凍結工程と、前記凍結体を真空中で乾燥させて乾燥体を得る乾燥工程と、前記乾燥体を燃焼させない雰囲気中で加熱して炭化する炭化工程とを含むことを要旨とする。 The method for producing cellulose nanofiber carbon according to one aspect of the present invention is a method for producing cellulose nanofiber carbon for carbonizing cellulose nanofibers, which comprises freezing a solution or gel containing the cellulose nanofibers to obtain a frozen body. The gist of the present invention comprises a freezing step to obtain, a drying step of drying the frozen body in a vacuum to obtain a dried body, and a carbonizing step of heating and carbonizing the dried body in an atmosphere where the dried body is not burned.
 また、本発明の一態様に係るセルロースナノファイバーカーボンは、セルロースナノファイバーが連なった共連続体の三次元ネットワーク構造を有することを要旨とする。 In addition, the cellulose nanofiber carbon according to one aspect of the present invention has a gist that it has a three-dimensional network structure of a co-continuum in which cellulose nanofibers are connected.
 また、本発明の一態様に係るセルロースナノファイバーカーボンは、バクテリア産生セルロースのナノファイバーが連なった連続体である三次元ネットワーク構造を有する。 Moreover, the cellulose nanofiber carbon which concerns on 1 aspect of this invention has a three-dimensional network structure which is a continuum which the nanofiber of bacterial production cellulose was connected.
 本発明によれば、伸縮性を持ち、機械的強度が高く、比表面積を大きくすることが出来るセルロースナノファイバーカーボンとその製造方法を提供することができる。 According to the present invention, it is possible to provide a cellulose nanofiber carbon having stretchability, high mechanical strength and capable of increasing the specific surface area, and a method for producing the same.
本発明の第1実施形態に係るセルロースナノファイバーカーボンの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the cellulose nanofiber carbon which concerns on 1st Embodiment of this invention. 第1実施形態の製造方法によって作製されたセルロースナノファイバーカーボンのSEM画像である。It is a SEM image of the cellulose nanofiber carbon produced by the manufacturing method of a 1st embodiment. 第1実施形態とは異なる製造方法によって作製されたカーボン材料のSEM画像である。It is a SEM image of the carbon material produced by the manufacturing method different from a 1st embodiment. 本発明の第2実施形態に係るセルロースナノファイバーカーボンの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the cellulose nanofiber carbon which concerns on 2nd Embodiment of this invention. 実験例1で得られたカーボン材料の表皮部のSEM画像である。It is a SEM image of the skin part of the carbon material obtained by example 1 of an experiment. 実験例1で得られたカーボン材料の断面のSEM画像である。It is a SEM image of the section of the carbon material obtained by example 1 of an experiment. 実験例2で得られたカーボン材料のSEM画像である。It is a SEM image of the carbon material obtained by example 2 of an experiment. 比較例1で得られたカーボン材料のSEM画像である。It is a SEM image of the carbon material obtained by comparative example 1. 比較例2で得られたカーボン材料のSEM画像である。It is a SEM image of the carbon material obtained by comparative example 2. 本発明の第3実施形態に係るバクテリア産生セルロースカーボンの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the bacteria-produced cellulose carbon which concerns on 3rd Embodiment of this invention. 第3実施形態の製造方法によって作製されたバクテリア産生セルロースカーボンのSEM画像である。It is a SEM image of bacterial production cellulose carbon produced by the manufacturing method of a 3rd embodiment. 第3実施形態とは異なる製造方法によって作製されたカーボン材料のSEM画像である。It is a SEM image of the carbon material produced by the manufacturing method different from a 3rd embodiment. 本発明の第4実施形態に係るバクテリア産生セルロースカーボンの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the bacteria-produced cellulose carbon which concerns on 4th Embodiment of this invention. 実験例1で得られたカーボン材料の表皮部のSEM画像である。It is a SEM image of the skin part of the carbon material obtained by example 1 of an experiment. 実験例1で得られたカーボン材料の断面のSEM画像である。It is a SEM image of the section of the carbon material obtained by example 1 of an experiment. 実験例2で得られたカーボン材料のSEM画像である。It is a SEM image of the carbon material obtained by example 2 of an experiment. 比較例1で得られたカーボン材料のSEM画像である。It is a SEM image of the carbon material obtained by comparative example 1. 比較例2で得られたカーボン材料のSEM画像である。It is a SEM image of the carbon material obtained by comparative example 2.
 以下、本発明の実施の形態について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described using the drawings.
 〔第1実施形態〕
 図1は、本発明の第1実施形態に係るセルロースナノファイバーカーボンの製造方法を示すフローチャートである。以降の説明において、セルロースナノファイバーカーボンをカーボン材料と称することもある。
First Embodiment
FIG. 1 is a flowchart showing a method of producing cellulose nanofiber carbon according to the first embodiment of the present invention. In the following description, cellulose nanofiber carbon may be referred to as a carbon material.
 本実施形態のセルロースナノファイバーカーボンの製造方法は、分散工程(ステップS1)、凍結工程(ステップS2)、乾燥工程(ステップS3)、及び炭化工程(ステップS4)を含む。この製造方法では、セルロースナノファイバー溶液が必要である。 The method for producing cellulose nanofiber carbon of the present embodiment includes a dispersion step (step S1), a freezing step (step S2), a drying step (step S3), and a carbonization step (step S4). In this production method, a cellulose nanofiber solution is required.
 セルロースナノファイバー溶液中のセルロースナノファイバーの形態は、分散した形態が好ましい。よって、図1に示す製造工程では、分散工程(ステップS1)を含むが、分散工程(ステップS1)は無くても良い。つまり、セルロースナノファイバーが分散した形態の溶液を用いる場合は、当該工程は不要である。 The form of the cellulose nanofibers in the cellulose nanofiber solution is preferably a dispersed form. Therefore, although the dispersion process (step S1) is included in the manufacturing process shown in FIG. 1, the dispersion process (step S1) may be omitted. That is, when using the solution of the form which the cellulose nanofiber disperse | distributed, the said process is unnecessary.
 分散工程は、セルロースナノファイバー溶液に含まれるセルロースナノファイバーを分散する。分散媒は、水(H2O)などの水系、または、カルボン酸、メタノール(CH3OH)、エタノール(C2H5OH)、プロパノール(C3H7OH)、n-ブタノール、イソブタノール、n-ブチルアミン、ドデカン、不飽和脂肪酸、エチレングリコール、ヘプタン、ヘキサデカン、イソアミルアルコール、オクタノール、イソプロパノール、アセトン、グリセリンなどの有機系であり、これらから2種類以上を混合してもよい。 The dispersing step disperses the cellulose nanofibers contained in the cellulose nanofiber solution. The dispersion medium is an aqueous system such as water (H 2 O) or a carboxylic acid, methanol (CH 3 OH), ethanol (C 2 H 5 OH), propanol (C 3 H 7 OH), n-butanol, isobutanol, n-butylamine, dodecane, unsaturated fatty acid, ethylene Organic systems such as glycol, heptane, hexadecane, isoamyl alcohol, octanol, isopropanol, acetone, and glycerin, and two or more of them may be mixed.
 セルロースナノファイバーの分散は、例えば、ホモジナイザー、超音波洗浄器、超音波ホモジナイザー、マグネチックスターラー、撹拌機、振とう器等を用いれば良い。 Dispersion of the cellulose nanofibers may be performed using, for example, a homogenizer, an ultrasonic cleaner, an ultrasonic homogenizer, a magnetic stirrer, a stirrer, a shaker, or the like.
 また、セルロースナノファイバー溶液のセルロースナノファイバーの固形分濃度は、0.001~80質量%が好ましく、0.01~30質量%がより好ましい。 The solid content concentration of the cellulose nanofibers in the cellulose nanofiber solution is preferably 0.001 to 80% by mass, and more preferably 0.01 to 30% by mass.
 凍結工程は、セルロースナノファイバーを含む溶液を凍結させて凍結体を得る(ステップS2)。この工程は、例えば、セルロースナノファイバー溶液を試験管のような適切な容器に収容し、液体窒素などの冷却材中で試験管の周囲を冷却することで、試験管に収容したセルロースナノファイバーを凍結することで行う。 A freezing process freezes the solution containing a cellulose nanofiber, and obtains a frozen body (step S2). In this step, for example, the cellulose nanofiber solution contained in a test tube is contained in a suitable container such as a test tube and cooled around the test tube in a coolant such as liquid nitrogen. It does by freezing.
 凍結させる手法は、溶液の分散媒を凝固点以下に冷却ができれば、特に限定されるものではなく、冷凍庫などで冷却してもよい。セルロースナノファイバー溶液を凍結することで、分散媒が流動性を失い、分散質であるセルロースナノファイバーが固定され、三次元ネットワーク構造が構築される。 The method of freezing is not particularly limited as long as the dispersion medium of the solution can be cooled below the freezing point, and may be cooled by a freezer or the like. By freezing the cellulose nanofiber solution, the dispersion medium loses its fluidity, the dispersoid cellulose nanofibers are fixed, and a three-dimensional network structure is constructed.
 乾燥工程は、凍結工程で凍結させた凍結体を真空中で乾燥させて乾燥体を得る(ステップS3)。この工程は、凍結した分散媒を固体状態から昇華させる。例えば、得られた凍結体をフラスコのような適切な容器に収容し、容器内を真空引きすることで実施される。凍結体を真空雰囲気下に配置することで、分散媒の昇華点が低下し、常圧では昇華しない物質においても昇華させることが可能である。 In the drying step, the frozen body frozen in the freezing step is dried in vacuum to obtain a dried body (step S3). This process sublimes the frozen dispersion medium from the solid state. For example, the obtained frozen body is stored in a suitable container such as a flask, and the inside of the container is evacuated. By disposing the frozen body under a vacuum atmosphere, the sublimation point of the dispersion medium is lowered, and it is possible to sublimate even a substance that does not sublime at normal pressure.
 乾燥工程における真空度は、使用する分散媒によって異なるが、分散媒が昇華する真空度であれば特に制限されない。例えば、分散媒に水を使用した場合、圧力を0.06MPa以下とした真空度にする必要があるが、昇華潜熱として熱が奪われるため、乾燥に時間を要する。このため、真空度は1.0×10-6Pa~1.0×10-2Paが好適である。更に乾燥時にヒーターなどを用いて熱を加えても良い。 The degree of vacuum in the drying step varies depending on the dispersion medium to be used, but is not particularly limited as long as the dispersion medium is a degree of vacuum which is sublimed. For example, when water is used as the dispersion medium, it is necessary to set the pressure to a degree of vacuum of 0.06 MPa or less, but since heat is taken away as the latent heat of sublimation, it takes time to dry. Therefore, the degree of vacuum is preferably 1.0 × 10 −6 Pa to 1.0 × 10 −2 Pa. Furthermore, heat may be applied using a heater or the like at the time of drying.
 炭化工程は、乾燥工程で乾燥させた乾燥体を、燃焼させない雰囲気中で加熱して炭化し、セルロースナノファイバーカーボンを得る(ステップS4)。セルロースナノファイバーの炭化は、不活性ガス雰囲気中で200℃~2000℃、より好ましくは、600℃~1800℃で焼成して炭化すればよい。セルロースが燃焼しないガスとしては、例えば、窒素ガス、アルゴンガスなどの不活性ガスであればよい。また、セルロースが燃焼しないガスは、水素ガス、一酸化炭素ガスなどの還元性ガスであってもよく、また、二酸化炭素ガスであってもよい。カーボン材料に対し賦活効果を有し、高活性化が期待できる二酸化炭素ガスまたは一酸化炭素ガスがより好ましい。 In the carbonization step, the dried product dried in the drying step is carbonized by heating in a non-burning atmosphere to obtain cellulose nanofiber carbon (step S4). The carbonization of cellulose nanofibers may be carried out by firing at 200 ° C. to 2000 ° C., more preferably 600 ° C. to 1800 ° C. in an inert gas atmosphere for carbonization. As a gas which does not burn cellulose, inert gas, such as nitrogen gas and argon gas, may be sufficient, for example. Further, the gas which does not burn cellulose may be a reducing gas such as hydrogen gas or carbon monoxide gas, or may be carbon dioxide gas. More preferable is carbon dioxide gas or carbon monoxide gas which has an activating effect on carbon materials and can be expected to be highly activated.
 以上述べたセルロースナノファイバーカーボンの製造方法によれば、凍結工程により分散質であるセルロースナノファイバーが固定され三次元ネットワーク構造が構築される。また、乾燥工程により三次元ネットワーク構造を維持したままのセルロースナノファイバーが取り出せる。したがって、十分な比表面積を得ることができ、高比表面積のカーボン材料の作製が容易になる。 According to the method for producing cellulose nanofiber carbon described above, the cellulose nanofibers as the dispersoid are fixed by the freezing step to construct a three-dimensional network structure. In addition, the drying process can take out the cellulose nanofibers while maintaining the three-dimensional network structure. Therefore, a sufficient specific surface area can be obtained, and the production of a high specific surface area carbon material is facilitated.
 図2Aおよび図2Bは、セルロースナノファイバーカーボンのSEM(Scanning Electron Microscope)画像である。倍率は10000倍である。 2A and 2B are SEM (Scanning Electron Microscope) images of cellulose nanofiber carbon. The magnification is 10000 times.
 図2Aは、本実施形態の製造方法によって作製されたセルロースナノファイバーカーボンのSEM画像である。当該画像から、セルロースナノファイバーが固定され三次元ネットワーク構造が構築されている様子が分かる。 FIG. 2A is a SEM image of cellulose nanofiber carbon produced by the production method of the present embodiment. The image shows that the cellulose nanofibers are fixed and a three-dimensional network structure is constructed.
 図2Bは、本実施形態の製造方法とは異なり、大気中で乾燥させて炭化させた場合のセルロースナノファイバーカーボンの様子を示す。凍結体が固体から液体、液体から気体になるため、セルロースナノファイバーの三次元ネットワーク構造が破壊されてしまう。図2Bに示すように、三次元ネットワーク構造が破壊されてしまうと、高比表面積のカーボン材料の作製は困難である。 FIG. 2B shows the appearance of cellulose nanofiber carbon when it is dried in the air and carbonized unlike the manufacturing method of the present embodiment. Since the frozen body changes from solid to liquid and liquid to gas, the three-dimensional network structure of cellulose nanofibers is destroyed. As shown in FIG. 2B, when the three-dimensional network structure is destroyed, it is difficult to make a high specific surface area carbon material.
 以上述べたように、本実施形態の製造方法によって作製されたセルロースナノファイバーカーボンは、セルロースナノファイバーが連なった共連続体の三次元ネットワーク構造を有し、伸縮性を有するカーボン材料である。また、本実施形態のセルロースナノファイバーカーボンは、高導電性、耐腐食性、及び高比表面積を有する。 As described above, the cellulose nanofiber carbon produced by the production method of the present embodiment is a stretchable carbon material having a three-dimensional network structure of co-continuum in which cellulose nanofibers are connected. In addition, the cellulose nanofiber carbon of the present embodiment has high conductivity, corrosion resistance, and high specific surface area.
 したがって、本実施形態の製造方法によって作製されたセルロースナノファイバーカーボンは、電池、キャパシター、燃料電池、バイオ燃料電池、微生物電池、触媒、太陽電池、半導体製造プロセス、医療用機器、美容器具、フィルター、耐熱材、耐炎材、断熱材、導電材、電磁波シールド材、電磁波ノイズ吸収材、発熱体、マイクロ波発熱体、コーンペーパー、衣服、カーペット、ミラー曇り防止、センサ、タッチパネル等として好適である。 Therefore, the cellulose nanofiber carbon produced by the production method of the present embodiment is a battery, a capacitor, a fuel cell, a biofuel cell, a microbial cell, a catalyst, a solar cell, a semiconductor production process, a medical device, a beauty tool, a filter, It is suitable as a heat resistant material, a flame resistant material, a heat insulating material, a conductive material, an electromagnetic wave shielding material, an electromagnetic wave noise absorbing material, a heating element, a microwave heating element, a cone paper, clothes, carpet, mirror fog prevention, a sensor, a touch panel and the like.
 〔第2実施形態〕
 図3は、第2実施形態に係るセルロースナノファイバーカーボンの製造方法を示すフローチャートである。図3に示す製造方法は、第1実施形態の製造方法に対して、粉砕工程(ステップS5)、混合工程(ステップS6)、及び乾燥工程(ステップS7)を含む。
Second Embodiment
FIG. 3 is a flowchart showing a method of producing cellulose nanofiber carbon according to the second embodiment. The manufacturing method shown in FIG. 3 includes a crushing step (step S5), a mixing step (step S6), and a drying step (step S7), as compared with the manufacturing method of the first embodiment.
 粉砕工程は、上記の炭化工程(ステップS4)で炭化させた乾燥体(セルロースナノファイバーカーボン)を粉砕する(ステップS5)。粉砕工程は、例えば、ミキサー、ホモジナイザー、超音波ホモジナイザー、高速回転せん断型撹拌機、コロイドミル、ロールミル、高圧噴射式分散機、回転ボールミル、振動ボールミル、遊星ボールミル、アトライターなどを使用して、セルロースナノファイバーカーボンを粉末またはスラリー状にする。 In the pulverizing step, the dried product (cellulose nanofiber carbon) carbonized in the above-mentioned carbonizing step (step S4) is pulverized (step S5). The grinding process may be carried out using, for example, a mixer, homogenizer, ultrasonic homogenizer, high-speed rotational shear stirrer, colloid mill, roll mill, high-pressure jet disperser, rotary ball mill, vibration ball mill, planetary ball mill, attritor, etc. The nanofiber carbon is powdered or slurried.
 この場合、セルロースナノファイバーカーボンは、二次粒子径が10nm~20mmが好ましく、50nm~1mmがより好ましい。これは、二次粒子径が10nm以下になるまで粉砕した場合、セルロースナノファイバーによる共連続な構造が壊れ、十二分な結着力及び導電パスを得ることが困難となり、電気的な抵抗が増大するためである。また、二次粒子径が20mm以上の場合、結着剤として機能するセルロースナノファイバーが十二分に分散せず、シート状に維持することが困難となる。 In this case, the cellulose nanofiber carbon preferably has a secondary particle diameter of 10 nm to 20 mm, and more preferably 50 nm to 1 mm. This is because when the secondary particle diameter is reduced to 10 nm or less, the co-continuous structure by the cellulose nanofibers is broken, it becomes difficult to obtain sufficient binding strength and conductive path, and the electrical resistance is increased. In order to In addition, when the secondary particle diameter is 20 mm or more, the cellulose nanofibers functioning as a binder are not sufficiently dispersed, and it becomes difficult to maintain in the form of a sheet.
 また、セルロースナノファイバーカーボンは、気孔率が高く、密度が低いため、セルロースナノファイバーカーボンを単独で粉砕した場合、粉砕時または粉砕後にセルロースナノファイバーカーボンの粉末が舞い、取扱いが困難である。そのため、セルロースナノファイバーカーボンに溶媒を含浸させてから粉砕することが好ましい。ここで用いる溶媒は、特に限定されないが、例えば、水(H2O)などの水系、または、カルボン酸、メタノール(CH3OH)、エタノール(C2H5OH)、プロパノール(C3H7OH)、n-ブタノール、イソブタノール、n-ブチルアミン、ドデカン、不飽和脂肪酸、エチレングリコール、ヘプタン、ヘキサデカン、イソアミルアルコール、オクタノール、イソプロパノール、アセトン、グリセリンなどの有機系であり、これらから2種類以上を混合してもよい。 In addition, since cellulose nanofiber carbon has a high porosity and a low density, when cellulose nanofiber carbon is pulverized alone, cellulose nanofiber carbon powder scatters during or after pulverization, making it difficult to handle. Therefore, it is preferable to impregnate cellulose nanofiber carbon with a solvent and then to grind it. The solvent used here is not particularly limited, but, for example, an aqueous system such as water (H 2 O) or a carboxylic acid, methanol (CH 3 OH), ethanol (C 2 H 5 OH), propanol (C 3 H 7 OH), n-butanol, isobutanol, n- Organic systems such as butylamine, dodecane, unsaturated fatty acid, ethylene glycol, heptane, hexadecane, isoamyl alcohol, octanol, isopropanol, acetone, glycerin and the like, and two or more of these may be mixed.
 混合工程は、粉砕工程(ステップS5)で粉砕した材料と、分散工程(ステップS1)で分散したセルロースナノファイバー溶液とを混合させて混合液を得る(ステップS6)。混合液は、スラリー状であり、この混合スラリーを乾燥させることで、セルロースナノファイバーカーボンをシート状に加工することが可能である。 In the mixing step, the material pulverized in the grinding step (step S5) and the cellulose nanofiber solution dispersed in the dispersing step (step S1) are mixed to obtain a mixed solution (step S6). The mixed solution is in the form of slurry, and by drying the mixed slurry, it is possible to process cellulose nanofiber carbon into a sheet.
 乾燥工程は、混合液から液体を除去する(ステップS7)。スラリー状の混合液(混合スラリー)を乾燥する際に、恒温槽、真空乾燥機、赤外線乾燥機、熱風乾燥機、吸引乾燥機等を用いても良い。更に、アスピレーター等を用いて吸引濾過を行うことで、迅速に乾燥することができる。 A drying process removes a liquid from a liquid mixture (Step S7). When the slurry-like mixed liquid (mixed slurry) is dried, a constant temperature bath, a vacuum dryer, an infrared dryer, a hot air dryer, a suction dryer, or the like may be used. Furthermore, it can be rapidly dried by suction filtration using an aspirator or the like.
 以上述べた本実施形態の製造方法で得られた混合スラリーを乾燥させ、シート状にした後、所望の形状に加工しても良い。混合スラリーを任意の形状に塗布した後、乾燥させることで、シート状カーボン材料を所望の形状に加工することができる。任意の形状に塗布することで、切り抜き加工で生じる切れ端などの材料コストを軽減することができ、ユーザーの好みによる任意形状のカーボン材料を得ることができる。また、カーボン材料の強度を高めることもできる。 After the mixed slurry obtained by the manufacturing method of the present embodiment described above is dried and made into a sheet, it may be processed into a desired shape. The sheet-like carbon material can be processed into a desired shape by applying the mixed slurry to an arbitrary shape and then drying it. By applying it in an arbitrary shape, it is possible to reduce the cost of materials such as scraps generated in the cutting process, and it is possible to obtain a carbon material of any shape according to the preference of the user. Also, the strength of the carbon material can be enhanced.
 なお、本実施形態の製造方法は、全ての工程を含まなくても良い。例えば、粉砕工程まで行い粉砕した状態のセルロースナノファイバーカーボンを用いても良い。用いるとは、その状態で流通させることである。同様に混合工程まで行い混合スラリーの状態で流通させても良い。 Note that the manufacturing method of the present embodiment may not include all the steps. For example, cellulose nanofiber carbon in a crushed state may be used up to the grinding step. To use is to distribute in that state. Similarly, the process may be carried out up to the mixing step and circulated in the state of the mixed slurry.
 以上述べた第1実施形態および第2実施形態の製造方法の効果を確認する目的で、第1実施形態および第2実施形態の製造方法で作製したカーボン材料(実験例1-3)と、当該実施形態とは異なる製造方法で作製したカーボン材料(比較例1、2)とを比較する実験を行った。 In order to confirm the effects of the manufacturing method of the first embodiment and the second embodiment described above, a carbon material (Experimental Example 1-3) manufactured by the manufacturing method of the first embodiment and the second embodiment, and the carbon material An experiment was conducted to compare with carbon materials (Comparative Examples 1 and 2) manufactured by a manufacturing method different from that of the embodiment.
 (実験例1)
 セルロースナノファイバー(日本製紙株式会社製)を用い、セルロースナノファイバー1g、超純水10gをホモジナイザー(エスエムテー製)で12時間撹拌することで、セルロースナノファイバーの分散液を調整し、試験管の中に、流し込んだ。
(Experimental example 1)
Using a cellulose nanofiber (manufactured by Nippon Paper Industries Co., Ltd.), 1 g of cellulose nanofiber and 10 g of ultrapure water are stirred with a homogenizer (manufactured by SMT) for 12 hours to prepare a dispersion of cellulose nanofiber, and the test tube is prepared. I poured it.
 上記試験管を液体窒素中に30分間浸すことでセルロースナノファイバー溶液を完全に凍結させた。セルロースナノファイバー溶液を完全に凍結させた後、凍結させたセルロースナノファイバー溶液をシャーレ上に取り出し、これを凍結乾燥機(東京理科器械株式会社製)により10Pa以下の真空中で乾燥させることで、セルロースナノファイバーの乾燥体を得た。真空中で乾燥させた後は、窒素雰囲気下で600℃、2時間の焼成により、セルロースナノファイバーをカーボン化させ、これにより実験例1のカーボン材料を作製した。 The cellulose nanofiber solution was completely frozen by immersing the test tube in liquid nitrogen for 30 minutes. After completely freezing the cellulose nanofiber solution, the frozen cellulose nanofiber solution is taken out on a petri dish, and dried by a freeze dryer (manufactured by Tokyo Scientific Instruments Co., Ltd.) under a vacuum of 10 Pa or less. A dried cellulose nanofiber was obtained. After drying in vacuum, the cellulose nanofibers were carbonized by firing at 600 ° C. for 2 hours under a nitrogen atmosphere, whereby a carbon material of Experimental Example 1 was produced.
 (実験例2)
 実験例1で作製したカーボン材料に水を含浸させた後に、ホモジナイザー(エスエムテー製)でカーボン材料及びセルロースナノファイバー溶液(カーボン材料:セルロースナノファイバー溶液の重量比1:1)を12時間撹拌することで、粉砕・混合を行った。この混合物はスラリー状であり、アスピレーター(柴田科学株式会社製)を用いて、吸引濾過し、ろ紙から、カーボン材料を剥離した。その後、カーボン材料を恒温槽に入れ、60℃で12時間乾燥処理を行って、実験例2のカーボン材料を作製した。
(Experimental example 2)
After impregnating the carbon material produced in Experimental example 1 with water, stirring the carbon material and the cellulose nanofiber solution (carbon material: cellulose nanofiber solution weight ratio 1: 1) with a homogenizer (made by SMT) for 12 hours Then, it was crushed and mixed. This mixture was in the form of a slurry, and was subjected to suction filtration using an aspirator (manufactured by Shibata Scientific Co., Ltd.) to separate the carbon material from the filter paper. Thereafter, the carbon material was placed in a thermostatic bath, and was subjected to drying treatment at 60 ° C. for 12 hours to produce a carbon material of Experimental Example 2.
 (実験例3)
 実験例1で作製したカーボン材料の表皮部を、カッターなどを用いて表皮部のみを剥ぐことにより実験例3のカーボン材を作製した。すなわち、実験例1で作製したカーボン材料の表面を取り除き、実験例3のカーボン材を作製した。
(Experimental example 3)
The skin portion of the carbon material produced in Experimental Example 1 was stripped of only the skin portion using a cutter or the like to produce a carbon material of Experimental Example 3. That is, the surface of the carbon material produced in Experimental Example 1 was removed, and the carbon material of Experimental Example 3 was produced.
 (比較例1)
 比較例1は、上記の凍結工程と乾燥工程を行わず通常乾燥で作製したカーボン材料である。
(Comparative example 1)
Comparative Example 1 is a carbon material produced by ordinary drying without performing the above-described freezing step and drying step.
 比較例1では、実験例1で調整したセルロースナノファイバー溶液をシャーレに流し込み、恒温槽に入れ、60℃で12時間乾燥処理を行った。その後、窒素雰囲気下で600℃、2時間の焼成により、セルロースナノファイバーをカーボン化させ、これによりカーボン材料を作製した。 In Comparative Example 1, the cellulose nanofiber solution prepared in Experimental Example 1 was poured into a petri dish, placed in a thermostat, and subjected to drying treatment at 60 ° C. for 12 hours. Thereafter, the cellulose nanofibers were carbonized by baking for 2 hours at 600 ° C. in a nitrogen atmosphere, whereby a carbon material was produced.
 (比較例2)
 比較例1(通常乾燥)で作製したカーボン材料に水を含浸させた後に、ホモジナイザー(エスエムテー製)でカーボン材料及びセルロースナノファイバー溶液(カーボン材料:セルロースナノファイバー溶液の重量比1:1)を12時間撹拌することで、粉砕・混合を行った。この混合物はスラリー状であり、アスピレーター(柴田科学株式会社製)を用いて、吸引濾過し、ろ紙から、カーボン材料を剥離した。その後、カーボン材料を恒温槽に入れ、60℃で12時間乾燥処理を行って、比較例2のカーボン材料を作製した。
(Comparative example 2)
After impregnating the carbon material produced in Comparative Example 1 (usually drying) with water, the carbon material and cellulose nanofiber solution (weight ratio of carbon material: cellulose nanofiber solution 1: 1) of 12 with a homogenizer (made by SMT) are used. Grinding and mixing were performed by stirring for a period of time. This mixture was in the form of a slurry, and was subjected to suction filtration using an aspirator (manufactured by Shibata Scientific Co., Ltd.) to separate the carbon material from the filter paper. Thereafter, the carbon material was put in a thermostatic bath, and the drying process was performed at 60 ° C. for 12 hours to prepare a carbon material of Comparative Example 2.
 (評価方法)
 得られた、カーボン材料を、XRD測定、SEM観察、気孔率測定、引張試験、BET比表面積測定を行うことで、評価した。このカーボン材料は、XRD測定よりカーボン(C,PDFカードNo.01-071-4630)単相であることを確認した。なお、PDFカードNoは、国際回折データセンター(International Centre for Diffraction Data,ICDD)が収集したデータベースであるPDF(Powder Diffraction File)のカード番号である。
(Evaluation method)
The obtained carbon material was evaluated by performing XRD measurement, SEM observation, porosity measurement, tensile test, and BET specific surface area measurement. This carbon material was confirmed to be carbon (C, PDF card No. 01-071-4630) single phase by XRD measurement. The PDF card No. is a card number of PDF (Powder Diffraction File) which is a database collected by the International Center for Diffraction Data (ICDD).
 作製したカーボン材料のSEM画像を図4A~図4Eに示す。また、測定して得られた評価値を表1に示す。 SEM images of the produced carbon material are shown in FIGS. 4A to 4E. Moreover, the evaluation value obtained by measuring is shown in Table 1.
 図4A~図4Eは、実験例1、2及び比較例1、2で得られたカーボン材料のSEM画像である。図4Aは、実験例1で得られたカーボン材料の表皮部(表面)のSEM画像である。図4Aに示すように、実験例1のカーボン材料の表皮部は、一部凝集が見られる。図4Bは、図4Aのカーボン材料の表皮部を除去するために切断した断面のSEM画像である。図4Cは、実験例2で得られたカーボン材料の表面のSEM画像である。図4Dは、比較例1で得られたカーボン材料の表面のSEM画像である。図4Eは、比較例2で得られたカーボン材料の表面のSEM画像である。どれも倍率は1万倍である。 FIGS. 4A to 4E are SEM images of the carbon materials obtained in Experimental Examples 1 and 2 and Comparative Examples 1 and 2. FIG. 4A is a SEM image of the skin portion (surface) of the carbon material obtained in Experimental Example 1. As shown to FIG. 4A, the skin part of the carbon material of Experimental example 1 has some aggregation seen. FIG. 4B is a SEM image of a cross section cut to remove the skin of the carbon material of FIG. 4A. FIG. 4C is a SEM image of the surface of the carbon material obtained in Experimental Example 2. FIG. 4D is a SEM image of the surface of the carbon material obtained in Comparative Example 1. FIG. 4E is a SEM image of the surface of the carbon material obtained in Comparative Example 2. In each case, the magnification is 10,000 times.
 図4Bおよび図4C(実験例1、2)に示すように、第1実施形態および第2実施形態の製造方法で得られたカーボン材料は、繊維径数十nmのナノファイバーが連続して連なった共連続体であることが確認できる。 As shown in FIGS. 4B and 4C (Experimental Examples 1 and 2), in the carbon material obtained by the manufacturing method of the first embodiment and the second embodiment, nanofibers with a fiber diameter of several tens of nm are continuously connected. It can be confirmed that it is a co-continuous body.
 一方、図4Dおよび図4E(比較例1、2)に示すように、セルロースナノファイバー溶液を通常乾燥させたカーボン材料は、気孔がなく、密に凝集したカーボン材料であることが確認できる。 On the other hand, as shown in FIG. 4D and FIG. 4E (comparative examples 1 and 2), it can be confirmed that the carbon material in which the cellulose nanofiber solution is usually dried is a carbon material which has no pores and is densely aggregated.
 表1に示すように、第1実施形態および第2実施形態のカーボン材料(実験例1、2)は、通常乾燥を行う比較例1、2よりも、分散媒の蒸発に伴う水の表面張力による凝集を抑制することが可能である。その結果、高比表面積で且つ高い気孔率を有する優れた性能を持つカーボン材料を提供できることが確認できた。 As shown in Table 1, the carbon materials (Experimental Examples 1 and 2) of the first embodiment and the second embodiment have surface tensions of water accompanying evaporation of the dispersion medium than Comparative Examples 1 and 2 in which drying is normally performed. It is possible to suppress cohesion due to As a result, it has been confirmed that it is possible to provide a carbon material having high specific surface area and high porosity and excellent performance.
 また、実験例3は、実験例1で製造されたカーボン材料の表皮部(図4A)を剥ぐことで作製したカーボン材料である。この実験例3のSEM画像は、図4Bと同様である。したがって、実験例3のカーボン材料は、高比表面積で且つ高い気孔率を有する優れた性能を持つ。これは、図4Aに示すように、実験例1の製造方法で得られたカーボン材料の表皮部は一部凝集が見られ、その表皮部の凝集体を除去しためだと考えられる。 Moreover, Experimental example 3 is a carbon material produced by peeling the skin part (FIG. 4A) of the carbon material manufactured by Experimental example 1. FIG. The SEM image of this experimental example 3 is the same as that of FIG. 4B. Therefore, the carbon material of Experimental Example 3 has excellent performance with a high specific surface area and a high porosity. As shown in FIG. 4A, it is considered that a part of the skin of the carbon material obtained by the manufacturing method of Experimental Example 1 is agglutinated and that the aggregates of the skin are removed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように実験例1では、炭化後でも優れた伸縮性を持つことが確認できた。また、実験例2では、優れた引張強度を有することが確認できた。 As shown in Table 1, in Experimental Example 1, it could be confirmed that the film had excellent stretchability even after carbonization. Moreover, in Experimental example 2, it has confirmed that it had the outstanding tensile strength.
 このように、セルロースナノファイバーを含む溶液を凍結させて凍結体を得る凍結工程と、凍結体を真空中で乾燥させて乾燥体を得る乾燥工程と、乾燥体が燃焼しないガスの雰囲気中で加熱して炭化する炭化工程を含む本実施形態の製造方法は、セルロースナノファイバーを熱処理することでカーボン化しているため、優れた比表面積、強度、気孔率が得られる。 Thus, the step of freezing the solution containing cellulose nanofibers to obtain a frozen body, the step of drying the frozen body in a vacuum to obtain a dried body, and heating in an atmosphere of gas in which the dried body does not burn Since the production method of the present embodiment including the carbonization step of carbonization is carbonized by heat-treating cellulose nanofibers, excellent specific surface area, strength, and porosity can be obtained.
 第1実施形態および第2実施形態の製造方法により製造されたカーボン材料は、天然物由来のセルロースを用いることも可能で、極めて環境負荷が低い。このようなカーボン材料は、日常生活で容易に使い捨てることが可能であるため、小型デバイス、センサ端末、医療用機器、電池、美容器具、燃料電池、バイオ燃料電池、微生物電池、キャパシター、触媒、太陽電池、半導体製造プロセス、フィルター、耐熱材、耐炎材、断熱材、導電材、電磁波シールド材、電磁波ノイズ吸収材、発熱体、マイクロ波発熱体、コーンペーパー、衣服、カーペット、ミラー曇り防止、センサ、タッチパネル等を始めとし、種々のシチュエーションで有効利用することができる。 The carbon material manufactured by the manufacturing method of the first embodiment and the second embodiment can use cellulose derived from a natural product, and has very low environmental impact. Such carbon materials can be easily disposed of in daily life, so small devices, sensor terminals, medical devices, batteries, beauty instruments, fuel cells, biofuel cells, microbial cells, capacitors, catalysts, Solar cell, semiconductor manufacturing process, filter, heat resistant material, flame resistant material, heat insulating material, conductive material, electromagnetic wave shielding material, electromagnetic wave noise absorbing material, heating element, microwave heating element, cone paper, clothes, carpet, mirror fog prevention, sensor It can be effectively used in various situations including the touch panel and the like.
 〔第3実施形態〕
 第3実施形態および後述する第4実施形態では、第1実施形態のセルロースナノファイバーを含む溶液のかわりに、セルロースナノファイバーを含むゲルを用いる。また、第3実施形態および第4実施形態のゲルは、バクテリアを用いてセルロースナノファイバーを分散させたバクテリア産生ゲルである。そのため、第3実施形態および第4実施形態の製造方法により製造されたセルロースナノファイバーカーボンは、以降の説明において、バクテリア産生セルロースカーボンと称する。
Third Embodiment
In the third embodiment and the fourth embodiment described later, a gel containing cellulose nanofibers is used instead of the solution containing the cellulose nanofibers of the first embodiment. Moreover, the gel of the third embodiment and the fourth embodiment is a bacteria-produced gel in which cellulose nanofibers are dispersed using bacteria. Therefore, the cellulose nanofiber carbon manufactured by the manufacturing method of 3rd Embodiment and 4th Embodiment is called bacterial production cellulose carbon in subsequent description.
 図5は、本発明の第3実施形態に係るバクテリア産生セルロースカーボンの製造方法を示すフローチャートである。以降の説明において、バクテリア産生セルロースカーボンをカーボン材料と称することもある。 FIG. 5 is a flowchart showing a method of producing bacterial cellulose carbon produced according to a third embodiment of the present invention. In the following description, bacterial cellulose carbon may be referred to as a carbon material.
 本実施形態のバクテリア産生セルロースカーボンの製造方法は、ゲル生成工程(ステップS11)、凍結工程(ステップS12)、乾燥工程(ステップS13)、及び炭化工程(ステップS14)を含む。 The method for producing the bacteria-produced cellulose carbon according to the present embodiment includes a gel production step (step S11), a freezing step (step S12), a drying step (step S13), and a carbonization step (step S14).
 ゲル生成工程は、バクテリアを用いてセルロースナノファイバーを分散させたバクテリア産生ゲルを生成する(ステップS11)。ここで、ゲルとは、分散媒が分散質であるナノ構造体の三次元ネットワーク構造により流動性を失い固体状になったものを意味する。具体的には、ずり弾性率が102~106Paである分散系を意味する。ゲルの分散媒は、水(H2O)などの水系、または、カルボン酸、メタノール(CH3OH)、エタノール(C2H5OH)、プロパノール(C3H7OH)、n-ブタノール、イソブタノール、n-ブチルアミン、ドデカン、不飽和脂肪酸、エチレングリコール、ヘプタン、ヘキサデカン、イソアミルアルコール、オクタノール、イソプロパノール、アセトン、グリセリンなどの有機系であり、これらから2種類以上を混合してもよい。 In the gel forming step, bacteria are used to form a bacteria-produced gel in which cellulose nanofibers are dispersed (Step S11). Here, gel means that the dispersion medium loses fluidity and becomes solid due to the three-dimensional network structure of the nanostructure which is a dispersoid. Specifically, it means a dispersion having a shear modulus of 102 to 106 Pa. The dispersion medium of the gel may be an aqueous system such as water (H 2 O) or a carboxylic acid, methanol (CH 3 OH), ethanol (C 2 H 5 OH), propanol (C 3 H 7 OH), n-butanol, isobutanol, n-butylamine, dodecane, unsaturated fatty acid And organic systems such as ethylene glycol, heptane, hexadecane, isoamyl alcohol, octanol, isopropanol, acetone, and glycerin, and two or more of them may be mixed.
 バクテリアが産生するゲルは、nmオーダーのナノファイバーを基本構造としており、このゲルを用いてカーボン材料を作製することで、得られるカーボン材料は高比表面積を有するものとなる。具体的には、バクテリアが生産するゲルを用いることで比表面積が300m2/g以上を有するカーボン材料の合成が可能である。 The gel produced by the bacteria has a nano-sized nanofiber as a basic structure, and by using this gel to produce a carbon material, the resulting carbon material has a high specific surface area. Specifically, synthesis of a carbon material having a specific surface area of 300 m 2 / g or more is possible by using a gel produced by bacteria.
 バクテリア産生ゲルは、ナノファイバーがコイル状や網目状に絡まった構造を有し、更にバクテリアの増殖に基づいてナノファイバーが分岐した構造を有しているため、作製されるカーボン材料は、弾性限界での歪みが50%以上という優れた伸縮性を実現する。 The bacteria-produced gel has a structure in which the nanofibers are entangled in a coil or network, and further has a branched structure based on bacterial growth, so that the carbon material produced has an elastic limit. Achieves excellent stretchability with 50% or more of distortion.
 バクテリアは、公知のものが挙げられ、例えば、アセトバクター・キシリナム・サブスピーシーズ・シュクロファーメンタ、アセトバクター・キシリナムATCC23768、アセトバクター・キシリナムATCC23769、アセトバクター・パスツリアヌスATCC10245、アセトバクター・キシリナムATCC14851、アセトバクター・キシリナムATCC11142、アセトバクター・キシリナムATCC10821などの酢酸菌を培養することにより生産されたものであればよい。また、バクテリアは、これらの酢酸菌をNTG(ニトロソグアニジン)などを用いる公知の方法によって変異処理することにより創製される各種変異株を培養することにより生産されたものでもよい。 Examples of the bacteria include known ones, for example, Acetobacter xylinum subspecies schlofermenta, Acetobacter xylinum ATCC 23768, Acetobacter xylinum ATCC 23769, Acetobacter pastilian ATCC 10245, Acetobacter xylinum ATCC 14851, acetobacter It may be produced by culturing acetic acid bacteria such as Bacter xylinum ATCC 11142 and Acetobacter xylinum ATCC 10821. Also, the bacteria may be produced by culturing various mutant strains created by mutating these acetic acid bacteria by a known method using NTG (nitrosoguanidine) or the like.
 凍結工程は、バクテリア産生ゲルを凍結させて凍結体を得る(ステップS12)。凍結工程は、例えば、バクテリア産生ゲルを試験管のような適切な容器に収容し、液体窒素などの冷却材中で試験管の周囲を冷却することで、試験管に収容したバクテリア産生ゲルを凍結することで実施される。凍結させる手法は、ゲルの分散媒を凝固点以下に冷却ができれば、特に限定されるものではなく、冷凍庫などで冷却してもよい。 In the freezing step, the bacterial gel is frozen to obtain a frozen body (step S12). In the freezing step, for example, the bacteria-producing gel is stored in a suitable container such as a test tube, and the periphery of the test tube is cooled in a coolant such as liquid nitrogen to freeze the bacteria-producing gel contained in the test tube. It is carried out by doing. The method of freezing is not particularly limited as long as the dispersion medium of the gel can be cooled below the freezing point, and may be cooled by a freezer or the like.
 バクテリア産生ゲルを凍結することで、分散媒が流動性を失い、分散質であるセルロースナノファイバーが固定され、三次元ネットワーク構造が構築される。 By freezing the bacteria-produced gel, the dispersion medium loses its fluidity, the dispersoid cellulose nanofibers are immobilized, and a three-dimensional network structure is constructed.
 乾燥工程は、凍結体を真空中で乾燥させて乾燥体(バクテリア産生キセロゲル)を得る(ステップS13)。乾燥工程では、凍結工程で得られた凍結体を真空中で乾燥させ、凍結した分散媒を固体状態から昇華させる。例えば、得られた凍結体をフラスコのような適切な容器に収容し、容器内を真空引きすることで実施される。凍結体を真空雰囲気下に配置することで、分散媒の昇華点が低下し、常圧では昇華しない物質においても昇華させることが可能である。 In the drying step, the frozen body is dried in vacuum to obtain a dried body (bacteria-produced xerogel) (step S13). In the drying step, the frozen body obtained in the freezing step is dried in vacuum, and the frozen dispersion medium is sublimed from the solid state. For example, the obtained frozen body is stored in a suitable container such as a flask, and the inside of the container is evacuated. By disposing the frozen body under a vacuum atmosphere, the sublimation point of the dispersion medium is lowered, and it is possible to sublimate even a substance that does not sublime at normal pressure.
 乾燥工程における真空度は、使用する分散媒によって異なるが、分散媒が昇華する真空度であれば特に制限されない。例えば、分散媒に水を使用した場合、圧力を0.06MPa以下とした真空度にする必要があるが、昇華潜熱として熱が奪われるため、乾燥に時間を要する。このため、真空度は1.0×10-6~1.0×10-2Paが好適である。更に乾燥時にヒーターなどを用いて熱を加えてもよい。 The degree of vacuum in the drying step varies depending on the dispersion medium to be used, but is not particularly limited as long as the dispersion medium is a degree of vacuum which is sublimed. For example, when water is used as the dispersion medium, it is necessary to set the pressure to a degree of vacuum of 0.06 MPa or less, but since heat is taken away as the latent heat of sublimation, it takes time to dry. Therefore, the degree of vacuum is preferably 1.0 × 10 −6 to 1.0 × 10 −2 Pa. Furthermore, heat may be applied using a heater or the like during drying.
 炭化工程は、乾燥体(バクテリア産生キセロゲル)を燃焼させない雰囲気中で加熱して炭化し、バクテリア産生セルロースカーボンを得る(ステップS14)。バクテリア産生キセロゲルの炭化は、不活性ガス雰囲気中で500℃~2000℃、より好ましくは、900℃~1800℃で焼成して炭化すればよい。セルロースが燃焼しないガスとしては、例えば、窒素ガス、アルゴンガスなどの不活性ガスであればよい。また、セルロースが燃焼しないガスは、水素ガス、一酸化炭素ガスなどの還元性ガスであってもよく、また、二酸化炭素ガスであってもよい。本実施の形態では、カーボン材料に対し賦活効果を有し、高活性化が期待できる二酸化炭素ガスまたは一酸化炭素ガスがより好ましい。 In the carbonization step, the dried product (bacteria-produced xerogel) is carbonized by heating in an atmosphere that does not burn it, and bacterial-produced cellulose carbon is obtained (Step S14). The carbonization of the bacterially produced xerogel may be carried out by firing at 500 ° C. to 2000 ° C., more preferably 900 ° C. to 1800 ° C. in an inert gas atmosphere. As a gas which does not burn cellulose, inert gas, such as nitrogen gas and argon gas, may be sufficient, for example. Further, the gas which does not burn cellulose may be a reducing gas such as hydrogen gas or carbon monoxide gas, or may be carbon dioxide gas. In the present embodiment, it is more preferable to use carbon dioxide gas or carbon monoxide gas which has an activation effect on carbon materials and can be expected to be highly activated.
 以上述べたバクテリア産生セルロースカーボンの製造方法によれば、凍結工程により分散質であるセルロースナノファイバーが固定され三次元ネットワーク構造が構築される。また、乾燥工程により三次元ネットワーク構造を維持したままのセルロースナノファイバーが取り出せる。したがって、十分な比表面積を得ることができ、高比表面積のカーボン材料の作製が容易になる。 According to the method for producing bacterial cellulose carbon produced as described above, the cellulose nanofibers as the dispersoid are fixed by the freezing step to construct a three-dimensional network structure. In addition, the drying process can take out the cellulose nanofibers while maintaining the three-dimensional network structure. Therefore, a sufficient specific surface area can be obtained, and the production of a high specific surface area carbon material is facilitated.
 図6Aおよび図6Bは、セルロースナノファイバーカーボンのSEM画像である。倍率は10000倍である。 6A and 6B are SEM images of cellulose nanofiber carbon. The magnification is 10000 times.
 図6Aは、本実施形態の製造方法によって作製されたバクテリア産生セルロースカーボンのSEM画像である。当該画像から、セルロースナノファイバーが固定され三次元ネットワーク構造が構築されている様子が分かる。 FIG. 6A is a SEM image of bacterial cellulose carbon produced by the manufacturing method of the present embodiment. The image shows that the cellulose nanofibers are fixed and a three-dimensional network structure is constructed.
 図6Bは、本実施形態の製造方法とは異なり、大気中で乾燥させて炭化させた場合のカーボン材料の様子を示す。凍結体が固体から液体、液体から気体になるため、セルロースナノファイバーの三次元ネットワーク構造が破壊されてしまう。図6Bに示すように、三次元ネットワーク構造が破壊されてしまうと、高比表面積のカーボン材料の作製は困難である。 FIG. 6B shows the appearance of the carbon material when it is dried in the air and carbonized unlike the manufacturing method of the present embodiment. Since the frozen body changes from solid to liquid and liquid to gas, the three-dimensional network structure of cellulose nanofibers is destroyed. As shown in FIG. 6B, when the three-dimensional network structure is destroyed, it is difficult to produce a high specific surface area carbon material.
 以上述べたように、本実施形態の製造方法によって作製されたバクテリア産生セルロースカーボンは、三次元ネットワーク構造を有し、伸縮性を有するカーボン材料である。また、本実施形態のバクテリア産生セルロースカーボンは、高導電性、耐腐食性、及び高比表面積を有する。 As described above, the bacteria-produced cellulose carbon produced by the production method of the present embodiment is a carbon material having a three-dimensional network structure and having stretchability. The bacterial cellulose carbon of the present embodiment has high conductivity, corrosion resistance, and high specific surface area.
 したがって、本実施形態の製造方法によって作製されたバクテリア産生セルロースカーボンは、電極、空隙、生体組織、機器接続部、等との密着性を高めることが可能である。本実施形態のバクテリア産生セルロースカーボンは、高導電性、耐腐食性、高比表面積を有しているため、電池、キャパシター、燃料電池、バイオ燃料電池、微生物電池、触媒、太陽電池、半導体製造プロセス、医療用機器、美容器具、フィルター、耐熱材、耐炎材、断熱材、導電材、電磁波シールド材、電磁波ノイズ吸収材、発熱体、マイクロ波発熱体、コーンペーパー、衣服、カーペット、ミラー曇り防止、センサ、タッチパネル等に好適である。 Therefore, the bacteria-produced cellulose carbon produced by the production method of the present embodiment can enhance the adhesion to electrodes, voids, living tissues, device connection parts and the like. The bacterially produced cellulose carbon of the present embodiment has high conductivity, corrosion resistance, and high specific surface area, and therefore, cells, capacitors, fuel cells, biofuel cells, microbial cells, catalysts, solar cells, semiconductor manufacturing processes , Medical equipment, beauty instruments, filters, heat resistant materials, flame resistant materials, heat insulating materials, conductive materials, electromagnetic wave shielding materials, electromagnetic wave noise absorbing materials, heating elements, microwave heating elements, cone paper, clothes, carpets, mirror fog prevention, Suitable for sensors, touch panels, etc.
 〔第4実施形態〕
 図7は、第4実施形態に係るバクテリア産生セルロースカーボンの製造方法を示すフローチャートである。図7に示す製造方法は、第3実施形態の製造方法に対して、第1粉砕工程(ステップS15)、第2粉砕工程(ステップS16)、混合工程(ステップS17)、塗布工程(ステップS18)、及び乾燥工程(ステップS19)を含む。
Fourth Embodiment
FIG. 7 is a flowchart showing a method of producing bacterial cellulose carbon produced according to the fourth embodiment. The manufacturing method shown in FIG. 7 is different from the manufacturing method of the third embodiment in the first crushing step (step S15), the second crushing step (step S16), the mixing step (step S17), and the applying step (step S18). And a drying step (step S19).
 第1粉砕工程は、上記の炭化工程(ステップS14)で炭化させた乾燥体(バクテリア産生セルロースカーボン)を粉砕する(ステップS15)。第1粉砕工程は、例えば、ミキサー、ホモジナイザー、超音波ホモジナイザー、高速回転せん断型撹拌機、コロイドミル、ロールミル、高圧噴射式分散機、回転ボールミル、振動ボールミル、遊星ボールミル、アトライターなどを使用して、バクテリア産生セルロースカーボンを粉末またはスラリー状にする。この場合、バクテリア産生セルロースカーボンは、二次粒子径が100nm~5mmが好ましく、1μm~1mmがより好ましい。これは、二次粒子径が100nm以下になるまで粉砕した場合、セルロースナノファイバーによる共連続な構造が壊れ、十二分な結着力及び導電パスを得ることが困難となり、電気的な抵抗が増大するためである。また、二次粒子径が5mm以上の場合、結着剤として機能するバクテリア産生ゲルが十二分に分散せず、シート形状に維持することが困難となる。 A 1st grinding process grinds the dried body (bacterial-producing cellulose carbon) carbonized by said carbonization process (step S14) (step S15). The first crushing step uses, for example, a mixer, a homogenizer, an ultrasonic homogenizer, a high-speed rotational shear stirrer, a colloid mill, a roll mill, a high pressure jet disperser, a rotary ball mill, a vibrating ball mill, a planetary ball mill, an attritor, etc. , Make bacterially produced cellulose carbon powder or slurry. In this case, the bacterial particle-produced cellulose carbon preferably has a secondary particle diameter of 100 nm to 5 mm, and more preferably 1 μm to 1 mm. This is because when the secondary particle diameter is reduced to 100 nm or less, the co-continuous structure by cellulose nanofibers is broken, it becomes difficult to obtain sufficient binding strength and conductive path, and the electrical resistance is increased. In order to In addition, when the secondary particle diameter is 5 mm or more, the bacteria-produced gel that functions as a binding agent is not sufficiently dispersed, and it becomes difficult to maintain the sheet shape.
 また、バクテリア産生セルロースカーボンは、気孔率が高く、密度が低いため、カーボン材料を単独で粉砕した場合、粉砕時または粉砕後にバクテリア産生セルロースカーボンの粉末が舞い、取扱いが困難である。そのため、バクテリア産生セルロースカーボンに溶媒を含浸させてから粉砕することが好ましい。ここで用いる溶媒は、特に限定されないが、例えば、水(H2O)などの水系、または、カルボン酸、メタノール(CH3OH)、エタノール(C2H5OH)、プロパノール(C3H7OH)、n-ブタノール、イソブタノール、n-ブチルアミン、ドデカン、不飽和脂肪酸、エチレングリコール、ヘプタン、ヘキサデカン、イソアミルアルコール、オクタノール、イソプロパノール、アセトン、グリセリンなどの有機系であり、これらから2種類以上を混合してもよい。 Further, bacterially produced cellulose carbon has a high porosity and a low density, and therefore, when the carbon material is crushed alone, powder of bacterially produced cellulose carbon is scattered during or after the pulverization and handling is difficult. Therefore, it is preferable to impregnate the bacteria-produced cellulose carbon with a solvent and then to grind it. The solvent used here is not particularly limited, but, for example, an aqueous system such as water (H 2 O) or a carboxylic acid, methanol (CH 3 OH), ethanol (C 2 H 5 OH), propanol (C 3 H 7 OH), n-butanol, isobutanol, n- Organic systems such as butylamine, dodecane, unsaturated fatty acid, ethylene glycol, heptane, hexadecane, isoamyl alcohol, octanol, isopropanol, acetone, glycerin and the like, and two or more of these may be mixed.
 第2粉砕工程は、ゲル生成工程で生成したバクテリア産生ゲルを粉砕する(ステップS16)。なお、バクテリア産生ゲル及びバクテリア産生セルロースカーボンを同時に粉砕することも可能である。その場合、混合工程を省略することができる。 In the second crushing step, the bacterial gel produced in the gel formation step is crushed (step S16). In addition, it is also possible to grind | pulverize bacterial production gel and bacterial production cellulose carbon simultaneously. In that case, the mixing step can be omitted.
 混合工程は、第1粉砕工程と第2粉砕工程のそれぞれで粉砕した材料を混合する(ステップS17)。混合物は、スラリー状である。 In the mixing step, the materials ground in each of the first grinding step and the second grinding step are mixed (step S17). The mixture is in the form of a slurry.
 塗布工程は、スラリー状の混合物を任意の形状に形成する(ステップS18)。 In the coating process, the slurry-like mixture is formed into an arbitrary shape (step S18).
 乾燥工程は、塗布工程で任意の形状に形成(塗布)した混合物から液体を除去する(ステップS19)。スラリー状の混合物(混合スラリー)を乾燥する際に、恒温槽、真空乾燥機、赤外線乾燥機、熱風乾燥機、吸引乾燥機等を用いても良い。更に、アスピレーター等を用いて吸引濾過を行うことで、迅速に乾燥することができる。 In the drying step, the liquid is removed from the mixture formed (coated) in an arbitrary shape in the coating step (step S19). When the slurry mixture (mixed slurry) is dried, a constant temperature bath, a vacuum dryer, an infrared dryer, a hot air dryer, a suction dryer, or the like may be used. Furthermore, it can be rapidly dried by suction filtration using an aspirator or the like.
 以上述べた本実施形態の製造方法で得られた混合スラリーを、塗布工程を行うことなく乾燥させ、シート状にした後、所望の形状に加工しても良い。混合スラリーを任意の形状に形成した後、乾燥させることで、シート状カーボン材を所望の形状に加工することができる。また、塗布工程で塗布することで、切り抜き加工で生じる切れ端などの材料コストを軽減することができ、ユーザーの好みによる任意形状のカーボン材を得ることができる。また、カーボン材の強度を高めることもできる。 The mixed slurry obtained by the manufacturing method of the present embodiment described above may be dried without performing the application step to form a sheet, and then processed into a desired shape. After the mixed slurry is formed into an arbitrary shape, the sheet-like carbon material can be processed into a desired shape by drying. In addition, by applying in the application step, the material cost such as scraps produced in the cutting process can be reduced, and it is possible to obtain a carbon material having an arbitrary shape according to the preference of the user. Also, the strength of the carbon material can be enhanced.
 なお、本実施形態の製造方法は、全ての工程を含まなくても良い。例えば、第1粉砕工程まで行い粉砕した状態のバクテリア産生セルロースカーボンを用いても良い。用いるとは、その状態で流通させることである。同様に混合工程まで行い混合スラリーの状態で流通させても良い。 Note that the manufacturing method of the present embodiment may not include all the steps. For example, bacteria-produced cellulose carbon in a crushed state may be used up to the first crushing step. To use is to distribute in that state. Similarly, the process may be carried out up to the mixing step and circulated in the state of the mixed slurry.
 以上述べた第3実施形態および第4実施形態の製造方法の効果を確認する目的で、第3実施形態及び第4実施形態の製造方法で作製したカーボン材料(実験例1-3)と、当該実施形態とは異なる製造方法で作製したカーボン材料(比較例1,2)とを比較する実験を行った。 In order to confirm the effects of the manufacturing method of the third embodiment and the fourth embodiment described above, a carbon material (Experimental Example 1-3) manufactured by the manufacturing method of the third embodiment and the fourth embodiment, An experiment was conducted to compare with carbon materials (Comparative Examples 1 and 2) manufactured by a manufacturing method different from that of the embodiment.
 (実験例1)
 酢酸菌であるアセトバクター・キシリナム(Acetobacter xylinum)産生のバクテリアセルロースゲルとして、ナタデココ(フジッコ製)を用い、発泡スチロール製の箱中で液体窒素中に30分間浸すことでバクテリア産生ゲルを完全に凍結させた。バクテリア産生ゲルを完全に凍結させた後、凍結させたバクテリア産生ゲルをシャーレ上に取り出し、これを凍結乾燥機(東京理科器械株式会社製)により10Pa以下の真空中で乾燥させることで、バクテリア産生キセロゲルを得た。バクテリア産生キセロゲルを真空中で乾燥させた後は、窒素雰囲気下で600℃で、2時間の焼成により、バクテリア産生キセロゲルを炭化させ、これにより実験例1のカーボン材料を作製した。
(Experimental example 1)
Use natadecoco (Fujicco) as a bacterial cellulose gel produced by the acetobacterium Acetobacter xylinum and completely freeze the bacteria-produced gel by soaking in liquid nitrogen for 30 minutes in a foam polystyrene box. The After completely freezing the bacteria-produced gel, the frozen bacteria-produced gel is taken out on a petri dish, and dried by a freeze dryer (manufactured by Tokyo Scientific Instruments Co., Ltd.) under a vacuum of 10 Pa or less to produce bacteria. I got a xerogel. After drying the bacteria-produced xerogel in vacuo, the bacteria-produced xerogel was carbonized by baking for 2 hours at 600 ° C. under a nitrogen atmosphere, whereby a carbon material of Experimental Example 1 was produced.
 (実験例2)
 実験例1で作製したカーボン材料を水に含浸させた後に、ホモジナイザー(エスエムテー製)でカーボン材料及びバクテリア産生ゲル(カーボン材料:バクテリア産生ゲルの重量比1:1)を12時間撹拌することで、粉砕・混合を行った。この混合物はスラリー状であり、アスピレーター(柴田科学株式会社製)を用いて、吸引濾過し、ろ紙から、カーボン材料を剥離した。その後、カーボン材料を恒温槽に入れ、60℃で12時間乾燥処理を行って、実験例2のカーボン材料を作製した。
(Experimental example 2)
After impregnating the carbon material prepared in Experimental Example 1 with water, the carbon material and bacterial gel (carbon material: bacterial gel weight ratio 1: 1) are stirred for 12 hours with a homogenizer (manufactured by SMT). It was crushed and mixed. This mixture was in the form of a slurry, and was subjected to suction filtration using an aspirator (manufactured by Shibata Scientific Co., Ltd.) to separate the carbon material from the filter paper. Thereafter, the carbon material was placed in a thermostatic bath, and was subjected to drying treatment at 60 ° C. for 12 hours to produce a carbon material of Experimental Example 2.
 (実験例3)
 実験例1で作製したカーボン材料の表皮部を、カッターを用いて表皮部のみを剥ぐことにより実験例3のカーボン材を作製した。
(Experimental example 3)
The skin portion of the carbon material produced in Experimental Example 1 was stripped of only the skin portion using a cutter to produce a carbon material of Experimental Example 3.
 (比較例1)
 比較例1は、上記の凍結工程と乾燥工程を行わず通常乾燥で作製したカーボン材料である。
(Comparative example 1)
Comparative Example 1 is a carbon material produced by ordinary drying without performing the above-described freezing step and drying step.
 比較例1では、実験例1で使用したバクテリア産生ゲルを、恒温槽に入れ、60℃で12時間乾燥処理を行った。その後、窒素雰囲気下で600℃で、2時間の焼成により、バクテリア産生セルロースをカーボン化させ、これによりカーボン材料を作製した。 In Comparative Example 1, the bacteria-produced gel used in Experimental Example 1 was placed in a thermostat and subjected to drying treatment at 60 ° C. for 12 hours. Thereafter, the bacteria-produced cellulose was carbonized by baking for 2 hours at 600 ° C. in a nitrogen atmosphere, whereby a carbon material was produced.
 (比較例2)
 比較例1(通常乾燥)で作製したカーボン材料を水に含浸させた後に、ホモエナジー(エスエムテー製)で12時間攪拌することで粉砕し、カーボン材料が分散したスラリーを作製した。そして、そのスラリー及びバクテリア産生ゲル(カーボン材料:バクテリア産生ゲルの重量比1:1)を12時間攪拌することで、粉砕と混合を行った。
(Comparative example 2)
The carbon material prepared in Comparative Example 1 (normally dried) was impregnated with water, and then stirred for 12 hours with homoenergy (manufactured by S.M.T.), and pulverized to prepare a slurry in which the carbon material was dispersed. Then, the slurry and the bacterial gel (carbon material: bacterial gel weight ratio 1: 1) were stirred for 12 hours to perform grinding and mixing.
 その後、アスピレータ(柴田科学株式会社製)を用いて吸引濾過し、ろ紙からカーボン材料を剥離した。その後、カーボン材料を恒温槽に入れ、60℃で12時間乾燥処理を行って、比較例2のカーボン材を作製した。 Thereafter, suction filtration was performed using an aspirator (manufactured by Shibata Scientific Co., Ltd.) to peel the carbon material from the filter paper. Then, the carbon material was put into a thermostat, and the drying process was performed at 60 degreeC for 12 hours, and the carbon material of the comparative example 2 was produced.
 (評価方法)
 得られた、カーボン材料を、XRD測定、SEM観察、気孔率測定、引張試験、BET比表面積測定を行うことで、評価した。このカーボン材料は、XRD測定よりカーボン(C,PDFカードNo. 01-071-4630)単相であることを確認した。なお、PDFカードNoは、国際回折データセンター(International Centre for Diffraction Data,ICDD)が収集したデータベースであるPDF(Powder Diffraction File)のカード番号である。
(Evaluation method)
The obtained carbon material was evaluated by performing XRD measurement, SEM observation, porosity measurement, tensile test, and BET specific surface area measurement. This carbon material was confirmed to be carbon (C, PDF card No. 01-071-4630) single phase by XRD measurement. The PDF card No. is a card number of PDF (Powder Diffraction File) which is a database collected by the International Center for Diffraction Data (ICDD).
 作製したカーボン材料のSEM画像を図8A~図8Eに示す。また、測定して得られた評価値を表2に示す。 SEM images of the produced carbon material are shown in FIGS. 8A to 8E. Moreover, the evaluation value obtained by measuring is shown in Table 2.
 図8A~図8Eは、実験例1、2及び比較例1、2で得られたカーボン材料のSEM画像である。図8Aは、実験例1で得られたカーボン材料の表皮部(表面)のSEM画像である。図8Aに示すように、実験例1のカーボン材料の表皮部は、一部凝集が見られる。図8Bは、図8Aのカーボン材料の表皮部を除去するために切断した断面のSEM画像である。図8Cは、実験例2で得られたカーボン材料の表面のSEM画像である。図8Dは、比較例1で得られたカーボン材料の表面のSEM画像である。図8Eは、比較例2で得られたカーボン材料の表面のSEM画像である。どれも倍率は1万倍である。 FIGS. 8A to 8E are SEM images of the carbon materials obtained in Experimental Examples 1 and 2 and Comparative Examples 1 and 2. FIG. FIG. 8A is a SEM image of the skin portion (surface) of the carbon material obtained in Experimental Example 1. As shown in FIG. 8A, in the skin portion of the carbon material of Experimental Example 1, partial aggregation is observed. FIG. 8B is a SEM image of a cross section cut to remove the skin of the carbon material of FIG. 8A. FIG. 8C is a SEM image of the surface of the carbon material obtained in Experimental Example 2. FIG. 8D is a SEM image of the surface of the carbon material obtained in Comparative Example 1. FIG. 8E is a SEM image of the surface of the carbon material obtained in Comparative Example 2. In each case, the magnification is 10,000 times.
 図8Bおよび図8C(実験例1、2)に示すように、第3実施形態および第4実施形態の製造方法で得られたカーボン材料は、繊維径数十nmのナノファイバーが連続して連なった共連続体であることが確認できる。 As shown in FIGS. 8B and 8C (Experimental Examples 1 and 2), in the carbon materials obtained by the manufacturing methods of the third and fourth embodiments, nanofibers with a fiber diameter of several tens of nm are continuously connected. It can be confirmed that it is a co-continuous body.
 一方、図8Dおよび図8E(比較例1、2)に示すように、水分を含有するバクテリア産生ゲルを通常乾燥させて得たカーボン材料は、気孔がなく、密に凝集したカーボン材料であることが確認できる。 On the other hand, as shown in FIG. 8D and FIG. 8E (comparative examples 1 and 2), the carbon material obtained by usually drying the bacteria-producing gel containing water is a carbon material which has no pores and is densely aggregated. Can be confirmed.
 表2に示すように、第3実施形態および第4実施形態のカーボン材料(実験例1、2)は、通常乾燥を行う比較例1、2の乾燥工程よりも、分散媒の蒸発に伴う水の表面張力による凝集を抑制することが可能である。その結果、高比表面積で且つ高い気孔率を有する優れた性能を持つカーボン材料を提供できることが確認できた。 As shown in Table 2, the carbon materials (Experimental Examples 1 and 2) of the third embodiment and the fourth embodiment are associated with the evaporation of the dispersion medium than the drying process of Comparative Examples 1 and 2 in which the drying is usually performed. It is possible to suppress aggregation due to surface tension of the As a result, it has been confirmed that it is possible to provide a carbon material having high specific surface area and high porosity and excellent performance.
 また、実験例3は、実験例1で製造されたカーボン材料の表皮部(図4A)を剥ぐことで作製したカーボン材料である。この実験例3のSEM画像は、図8Bと同様である。したがって、実験例3のカーボン材料は、高比表面積で且つ高い気孔率を有する優れた性能を持つ。これは、図8Aに示すように、実験例1の製造方法で得られたカーボン材料の表皮部は一部凝集が見られ、その表皮部の凝集体を除去しためだと考えられる。 Moreover, Experimental example 3 is a carbon material produced by peeling the skin part (FIG. 4A) of the carbon material manufactured by Experimental example 1. FIG. The SEM image of this experimental example 3 is the same as that of FIG. 8B. Therefore, the carbon material of Experimental Example 3 has excellent performance with a high specific surface area and a high porosity. As shown in FIG. 8A, this is considered to be that the skin portion of the carbon material obtained by the manufacturing method of Experimental Example 1 is partially aggregated, and the aggregates of the skin portion are removed.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように実験例1では、炭化後でも優れた伸縮性を持つことが確認できた。また、実験例2では、優れた引張強度を有することが確認できた。 As shown in Table 2, in Experimental Example 1, it could be confirmed that the film had excellent stretchability even after carbonization. Moreover, in Experimental example 2, it has confirmed that it had the outstanding tensile strength.
 このように、第3実施形態および第4実施形態の製造方法は、バクテリア産生のゲルを凍結させて凍結体を得る凍結工程と、前記凍結体を真空中で乾燥させて乾燥体を得る乾燥工程と、前記乾燥体が燃焼しないガスの雰囲気中で加熱して炭化する炭化工程を含む。バクテリア産生セルロースを熱処理することでカーボン化しているため、第3実施形態および第4実施形態で製造されたバクテリア産生セルロースカーボンは、優れた比表面積、強度、気孔率が得られる。 Thus, the manufacturing method of the third embodiment and the fourth embodiment comprises the steps of freezing the gel produced by bacteria to obtain a frozen body, and drying the frozen body in a vacuum to obtain a dried body. And a carbonization step of heating and carbonizing the dried body in an atmosphere of non-combustible gas. Since the bacterially produced cellulose is carbonized by heat treatment, the bacterially produced cellulose carbon produced in the third and fourth embodiments can achieve excellent specific surface area, strength, and porosity.
 第3実施形態および第4実施形態の製造方法により製造されたカーボン材料は、天然物由来のセルロースを用いることも可能で、極めて環境負荷が低い。このようなカーボン材料は、日常生活で容易に使い捨てることが可能であるため、小型デバイス、センサ端末、医療用機器、電池、美容器具、燃料電池、バイオ燃料電池、微生物電池、キャパシター、触媒、太陽電池、半導体製造プロセス、フィルター、耐熱材、耐炎材、断熱材、導電材、電磁波シールド材、電磁波ノイズ吸収材、発熱体、マイクロ波発熱体、コーンペーパー、衣服、カーペット、ミラー曇り防止、センサ、タッチパネル等を始めとし、種々のシチュエーションで有効利用することができる。 The carbon material manufactured by the manufacturing method of the third embodiment and the fourth embodiment can also use cellulose derived from a natural product, and has very low environmental impact. Such carbon materials can be easily disposed of in daily life, so small devices, sensor terminals, medical devices, batteries, beauty instruments, fuel cells, biofuel cells, microbial cells, capacitors, catalysts, Solar cell, semiconductor manufacturing process, filter, heat resistant material, flame resistant material, heat insulating material, conductive material, electromagnetic wave shielding material, electromagnetic wave noise absorbing material, heating element, microwave heating element, cone paper, clothes, carpet, mirror fog prevention, sensor It can be effectively used in various situations including the touch panel and the like.
 なお、本発明は、上記の実施形態に限定されるものではなく、その要旨の範囲内で変形が可能である。 In addition, this invention is not limited to said embodiment, A deformation | transformation is possible within the range of the summary.
 例えば、表1および表3の実施例3で記載したように、第1実施形態および第3実施形態の炭化工程(図1、図5参照)の後に、当該炭化工程で作製したカーボン材料の表皮部を、カッターなどを用いて表皮部のみを剥ぐ除去工程を行なってもよい。 For example, as described in Example 3 of Table 1 and Table 3, after the carbonization step (see FIGS. 1 and 5) of the first and third embodiments, the surface of the carbon material produced in the carbonization step You may perform the removal process which peels only a skin part using a cutter etc. for the part.
 同様に、第2実施形態および第4実施形態の炭化工程(図3、図7参照)の後に、当該炭化工程で作製したカーボン材料の表皮部を、カッターなどを用いて表皮部のみを剥ぐ除去工程を行い、その後、以降の工程を行うこととしてもよい。 Similarly, after the carbonization step (refer to FIG. 3 and FIG. 7) of the second embodiment and the fourth embodiment, the skin portion of the carbon material produced in the carbonization step is peeled away using a cutter or the like to peel only the skin portion. A step may be performed and then the subsequent steps may be performed.
 S1:分散工程
 S2:凍結工程
 S3:乾燥工程
 S4:炭化工程
 S5:粉砕工程
 S6:乾燥工程
S1: dispersing step S2: freezing step S3: drying step S4: carbonization step S5: grinding step S6: drying step

Claims (10)

  1.  セルロースナノファイバーをカーボン化するセルロースナノファイバーカーボンの製造方法であって、
     前記セルロースナノファイバーを含む溶液又はゲルを凍結させて凍結体を得る凍結工程と、
     前記凍結体を真空中で乾燥させて乾燥体を得る乾燥工程と、
     前記乾燥体を燃焼させない雰囲気中で加熱して炭化させてセルロースナノファイバーカーボンを得る炭化工程と
     を含むことを特徴とするセルロースナノファイバーカーボンの製造方法。
    A method for producing cellulose nanofiber carbon, which carbonizes cellulose nanofiber, comprising:
    Freezing the solution or gel containing the cellulose nanofibers to obtain a frozen body;
    Drying the frozen body in vacuum to obtain a dried body;
    And D. a carbonizing step of heating and carbonizing the dried product in an atmosphere that does not burn the cellulose to obtain a cellulose nanofiber carbon.
  2.  請求項1に記載のセルロースナノファイバーカーボンの製造方法において、
     前記炭化工程で炭化させた前記乾燥体を粉砕する粉砕工程
     を含むことを特徴とするセルロースナノファイバーカーボンの製造方法。
    In the method for producing cellulose nanofiber carbon according to claim 1,
    A manufacturing method of cellulose nanofiber carbon characterized by including: a grinding process which grinds said dry object carbonized at said carbonization process.
  3.  請求項2に記載のセルロースナノファイバーカーボンの製造方法において、
     前記粉砕工程で粉砕した材料とセルロースナノファイバー溶液を混合させて混合液を得る混合工程
     を含むことを特徴とするセルロースナノファイバーカーボンの製造方法。
    In the method for producing cellulose nanofiber carbon according to claim 2,
    A method for producing cellulose nanofiber carbon, comprising: a mixing step of mixing a material pulverized in the pulverizing step with a cellulose nanofiber solution to obtain a mixed solution.
  4.  請求項3に記載のセルロースナノファイバーカーボンの製造方法において、
     前記混合液から液体を除去する乾燥工程
     を含むことを特徴とするセルロースナノファイバーカーボンの製造方法。
    In the method for producing cellulose nanofiber carbon according to claim 3,
    A method for producing cellulose nanofiber carbon, comprising: a drying step of removing a liquid from the mixed solution.
  5.  請求項1に記載のセルロースナノファイバーカーボンの製造方法において、
     バクテリアを用いて前記セルロースナノファイバーを分散させて前記ゲルを生成するゲル生成工程
     を含むことを特徴とするセルロースナノファイバーカーボンの製造方法。
    In the method for producing cellulose nanofiber carbon according to claim 1,
    A method for producing cellulose nanofiber carbon, comprising a gel forming step of dispersing the cellulose nanofibers using bacteria to form the gel.
  6.  請求項5に記載のセルロースナノファイバーカーボンの製造方法において、
     前記炭化工程で炭化させた前記乾燥体を粉砕する第1粉砕工程
     を含むことを特徴とするセルロースナノファイバーカーボンの製造方法。
    In the method for producing cellulose nanofiber carbon according to claim 5,
    A method of producing cellulose nanofiber carbon, comprising: a first pulverizing step of pulverizing the dried body carbonized in the carbonizing step.
  7.  請求項6に記載のセルロースナノファイバーカーボンの製造方法において、
     前記ゲル生成工程で生成したバクテリア産生セルロースを粉砕する第2粉砕工程と、
     前記第1粉砕工程と前記第2粉砕工程のそれぞれで粉砕した材料を混合する混合工程と
     を含むことを特徴とするセルロースナノファイバーカーボンの製造方法。
    In the method for producing cellulose nanofiber carbon according to claim 6,
    A second pulverizing step of pulverizing the bacteria-produced cellulose produced in the gel forming step;
    A method for producing cellulose nanofiber carbon, comprising: a mixing step of mixing the materials crushed in each of the first grinding step and the second grinding step.
  8.  請求項7に記載のセルロースナノファイバーカーボンの製造方法において、
     前記混合工程で混合した混合物を塗布して任意の形状を形成する塗布工程と、
     前記混合物から液体を除去する乾燥工程と
     を含むことを特徴とするセルロースナノファイバーカーボンの製造方法。
    In the method for producing cellulose nanofiber carbon according to claim 7,
    Applying the mixture mixed in the mixing step to form an arbitrary shape;
    And d) removing the liquid from the mixture.
  9.  セルロースナノファイバーが連なった共連続体の三次元ネットワーク構造を有することを特徴とするセルロースナノファイバーカーボン。 Cellulose nanofiber carbon characterized by having a three-dimensional network structure of co-continuum in which cellulose nanofibers are connected.
  10.  バクテリア産生ゲルのナノファイバーが連なった連続体である三次元ネットワーク構造を有することを特徴とするセルロースナノファイバーカーボン。 Cellulose nanofiber carbon characterized by having a three-dimensional network structure which is a continuum in which nanofibers of bacterial gel are connected.
PCT/JP2018/020799 2017-08-04 2018-05-30 Cellulose nanofiber carbon and method for manufacturing same WO2019026404A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019533925A JP6936439B2 (en) 2017-08-04 2018-05-30 Cellulose nanofiber carbon and its manufacturing method
EP18842084.8A EP3663259A4 (en) 2017-08-04 2018-05-30 Cellulose nanofiber carbon and method of producing the same
US16/636,256 US11319209B2 (en) 2017-08-04 2018-05-30 Method of producing cellulose-nanofiber carbon
CN201880050745.5A CN110997563B (en) 2017-08-04 2018-05-30 Cellulose nanofiber carbon and method for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017151350 2017-08-04
JP2017-151349 2017-08-04
JP2017151349 2017-08-04
JP2017-151350 2017-08-04

Publications (1)

Publication Number Publication Date
WO2019026404A1 true WO2019026404A1 (en) 2019-02-07

Family

ID=65233723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020799 WO2019026404A1 (en) 2017-08-04 2018-05-30 Cellulose nanofiber carbon and method for manufacturing same

Country Status (5)

Country Link
US (1) US11319209B2 (en)
EP (1) EP3663259A4 (en)
JP (1) JP6936439B2 (en)
CN (1) CN110997563B (en)
WO (1) WO2019026404A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020149150A1 (en) * 2019-01-16 2020-07-23 日本電信電話株式会社 Cellulose nanofiber carbon and method for producing same
JPWO2020240611A1 (en) * 2019-05-24 2020-12-03
JPWO2020240733A1 (en) * 2019-05-29 2020-12-03
JPWO2021106067A1 (en) * 2019-11-26 2021-06-03

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7048889B2 (en) * 2018-04-16 2022-04-06 日本電信電話株式会社 Method for producing bacterially produced cellulose carbon
CN113699611B (en) * 2021-08-27 2022-05-31 东华大学 Intelligent urine-proof fibrous sensor and preparation and application thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510092B2 (en) 1975-07-16 1980-03-13
JPH11340103A (en) * 1998-05-21 1999-12-10 Showa Denko Kk Manufacture of activated carbon material
CN103184602A (en) * 2011-12-31 2013-07-03 中原工学院 Preparation method of bacteria cellulose fiber-based carbon nanofiber thread
WO2013121781A1 (en) * 2012-02-15 2013-08-22 凸版印刷株式会社 Carbon fiber composite, process for producing same, catalyst-carrying body and polymer electrolyte fuel cell
JP5386866B2 (en) 2008-06-30 2014-01-15 国立大学法人京都大学 Nanofiber sheet
CN103806130A (en) * 2014-02-24 2014-05-21 钟春燕 Preparation method for bacterial cellulose-based nano active carbon fibers
CN103820883A (en) * 2014-02-24 2014-05-28 钟春燕 Preparation method of bacterial cellulose based carbon nanofibers
CN103966700A (en) * 2014-05-27 2014-08-06 哈尔滨工业大学 Method for preparing carbon nanofiber aerogel oil absorption material from bacterial cellulose
CN104609394A (en) * 2015-02-13 2015-05-13 东北林业大学 Preparation method of biomass nano cellulose carbon aerogel
WO2015143497A1 (en) * 2014-03-28 2015-10-01 The University Of Queensland Carbon fibres from bio-polymer feedstocks
CN105428616A (en) * 2015-11-09 2016-03-23 北京理工大学 Lithium-sulfur battery containing barrier layer
US20170098827A1 (en) * 2015-10-05 2017-04-06 Korea Institue of Energy Research Method of preparing minute carbonized cellulose and method of preparing catalyst support using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003082535A (en) * 2001-09-12 2003-03-19 Shigenori Kuga Minute fibrous carbon material derived from cellulose raw material and method for producing the same
JP5510092B2 (en) 2009-06-12 2014-06-04 国立大学法人京都大学 Method for producing modified cellulose fiber dispersion and method for producing cellulose composite material
CN102917577A (en) * 2012-10-16 2013-02-06 西南科技大学 Composite electromagnetic shielding material and method for manufacturing same
WO2015109272A1 (en) 2014-01-17 2015-07-23 The Trustees Of Dartmouth College Material and method of manufacture of electrodes and porous filters formed of ice-templated graphene-oxide and carbon nanotube composite, and applications thereof
JP6454189B2 (en) * 2015-03-17 2019-01-16 大阪瓦斯株式会社 Carbon material-containing composite, dispersion, method for producing the same, and resin composition containing the composite

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510092B2 (en) 1975-07-16 1980-03-13
JPH11340103A (en) * 1998-05-21 1999-12-10 Showa Denko Kk Manufacture of activated carbon material
JP5386866B2 (en) 2008-06-30 2014-01-15 国立大学法人京都大学 Nanofiber sheet
CN103184602A (en) * 2011-12-31 2013-07-03 中原工学院 Preparation method of bacteria cellulose fiber-based carbon nanofiber thread
WO2013121781A1 (en) * 2012-02-15 2013-08-22 凸版印刷株式会社 Carbon fiber composite, process for producing same, catalyst-carrying body and polymer electrolyte fuel cell
CN103806130A (en) * 2014-02-24 2014-05-21 钟春燕 Preparation method for bacterial cellulose-based nano active carbon fibers
CN103820883A (en) * 2014-02-24 2014-05-28 钟春燕 Preparation method of bacterial cellulose based carbon nanofibers
WO2015143497A1 (en) * 2014-03-28 2015-10-01 The University Of Queensland Carbon fibres from bio-polymer feedstocks
CN103966700A (en) * 2014-05-27 2014-08-06 哈尔滨工业大学 Method for preparing carbon nanofiber aerogel oil absorption material from bacterial cellulose
CN104609394A (en) * 2015-02-13 2015-05-13 东北林业大学 Preparation method of biomass nano cellulose carbon aerogel
US20170098827A1 (en) * 2015-10-05 2017-04-06 Korea Institue of Energy Research Method of preparing minute carbonized cellulose and method of preparing catalyst support using the same
CN105428616A (en) * 2015-11-09 2016-03-23 北京理工大学 Lithium-sulfur battery containing barrier layer

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
J. KONG ET AL.: "Chemical vapor deposition of methane for single-walled carbon nanotubes", CHEMICAL PHYSICS LETTERS, vol. 292, 1998, pages 567 - 574, XP002363176, DOI: 10.1016/S0009-2614(98)00745-3
NOHARA, MASAYA ET AL.: " Electrochemical characteristics of lithium air secondary battery using Ru-based catalyst/carbon derived from bacterial cellulose as air electrode", ABSTRACTS OF THE 57TH BATTERY SYMPOSIUN IN JAPAN, vol. 57, 28 November 2016 (2016-11-28), pages 545, XP009518950 *
S. IIJIMA ET AL.: "Single-shell carbon nanotubes", NATURE, vol. 363, 17 June 1993 (1993-06-17), XP002986781, DOI: 10.1038/363603a0
See also references of EP3663259A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020149150A1 (en) * 2019-01-16 2020-07-23 日本電信電話株式会社 Cellulose nanofiber carbon and method for producing same
JPWO2020240611A1 (en) * 2019-05-24 2020-12-03
WO2020240611A1 (en) * 2019-05-24 2020-12-03 日本電信電話株式会社 Alloy nanoparticles-supporting mesh structure and alloy nanoparticles-supporting porous body manufacturing method
JP7273337B2 (en) 2019-05-24 2023-05-15 日本電信電話株式会社 METHOD FOR MANUFACTURING NET-LIKE STRUCTURE HAVING ALLOY NANOPARTICLES
JPWO2020240733A1 (en) * 2019-05-29 2020-12-03
JPWO2021106067A1 (en) * 2019-11-26 2021-06-03
WO2021106067A1 (en) * 2019-11-26 2021-06-03 日本電信電話株式会社 Method for producing cellulose nanofiber carbon
JP7260823B2 (en) 2019-11-26 2023-04-19 日本電信電話株式会社 Method for producing cellulose nanofiber carbon

Also Published As

Publication number Publication date
CN110997563A (en) 2020-04-10
CN110997563B (en) 2023-01-13
EP3663259A1 (en) 2020-06-10
US11319209B2 (en) 2022-05-03
US20210163293A1 (en) 2021-06-03
EP3663259A4 (en) 2021-05-05
JP6936439B2 (en) 2021-09-15
JPWO2019026404A1 (en) 2020-07-27

Similar Documents

Publication Publication Date Title
JP6936439B2 (en) Cellulose nanofiber carbon and its manufacturing method
US10276876B2 (en) Method of preparing minute carbonized cellulose and method of preparing catalyst support using the same
CN107922193A (en) Two-dimentional carbon material
Li et al. Self-templating graphene network composites by flame carbonization for excellent electromagnetic interference shielding
KR20130018881A (en) Method for producing multilayer graphene coated substrate
JP7218770B2 (en) Conductive nonwoven fabric and manufacturing method thereof
Han et al. Synthesis of ultralight and porous magnetic g-C3N4/g-carbon foams with excellent electromagnetic wave (EMW) absorption performance and their application as a reinforcing agent for 3D printing EMW absorbers
CN108385450A (en) A kind of carbon nanotube paper and preparation method thereof
KR20170133351A (en) Carbon film and its manufacturing method
Kuga et al. Nanofibrillar carbon from native cellulose
Xu et al. Large-scale preparation of graphene oxide film and its application for electromagnetic interference shielding
WO2020240733A1 (en) Conductive paste, conductive film, and method for producing conductive film
JP7273286B2 (en) Cellulose nanofiber carbon and its production method
JP7048889B2 (en) Method for producing bacterially produced cellulose carbon
Soleimani et al. Banana-peel derived activated carbon for microwave absorption at X-band frequency
Mokhena et al. Nanomaterials: Types, synthesis and characterization
WO2021149111A1 (en) Method for producing spherical nanocarbon fiber assembly, method for producing carbon nanorods, and method for producing graphene nanoribbons
JP6648423B2 (en) Nonwoven fabric and method for producing the same
JP7464879B2 (en) Method for producing carbon-coated lithium oxide for batteries, and carbon-coated lithium oxide for batteries
JP7260823B2 (en) Method for producing cellulose nanofiber carbon
Nikolenko et al. Hydrolytic Lignin: It’s Activated and Fluorinated Forms
WO2020230227A1 (en) Method for producing cellulose nanofiber carbon
Li et al. Synthesis of Two‐Dimensional Carbon and Carbon–Metal Nanocomposites Using a Natural Cellular Material as the Carbon Precursor
JPWO2019116893A1 (en) Method for shortening the length of the fibrous carbon nanohorn assembly and the shortened fibrous carbon nanohorn assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18842084

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019533925

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018842084

Country of ref document: EP

Effective date: 20200304