WO2019026387A1 - Biological-information measurement device - Google Patents

Biological-information measurement device Download PDF

Info

Publication number
WO2019026387A1
WO2019026387A1 PCT/JP2018/019355 JP2018019355W WO2019026387A1 WO 2019026387 A1 WO2019026387 A1 WO 2019026387A1 JP 2018019355 W JP2018019355 W JP 2018019355W WO 2019026387 A1 WO2019026387 A1 WO 2019026387A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
biological information
emitting unit
light emitting
housing
Prior art date
Application number
PCT/JP2018/019355
Other languages
French (fr)
Japanese (ja)
Inventor
吉村 隆
勝義 茶円
勝 桜井
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to JP2019533913A priority Critical patent/JPWO2019026387A1/en
Publication of WO2019026387A1 publication Critical patent/WO2019026387A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure

Definitions

  • the present disclosure relates to a biological information measurement device.
  • a temperature sensor for detecting the temperature of the finger is provided, and when a state in which the temperature of the finger is appropriate is detected, the light from the light emitting unit is emitted toward the finger, and the light passing through the finger is received by the light receiving unit.
  • a biological information measuring device which optically measures biological information such as pulse waves.
  • the light from the light emitting unit may directly hit the temperature sensor, and it is difficult to detect the finger temperature with high accuracy.
  • the present invention has an object to accurately detect the temperature of a finger in a biological information measuring device that optically measures biological information.
  • it is a biological information measuring device capable of optically measuring biological information, And A light emitting unit provided in the housing and emitting light toward the outside of the housing; A light receiving unit provided in the housing and arranged to be separated in the first direction with respect to the light emitting unit; A light shielding unit disposed in the housing and between the light emitting unit and the light receiving unit in the first direction, and forming a space in the housing in which the light from the light emitting unit does not reach directly; There is provided a biological information measuring device including a temperature sensor disposed in the space.
  • the present invention it is possible to accurately detect the temperature of a finger in a biological information measuring device that optically measures biological information.
  • FIG. 2 is a plan view of the biological information measuring device 1; 5 is a cross-sectional view taken along line B-B in FIG. 4; FIG. 6 is an explanatory view of a measurement operation of the biological information measurement device 1. It is an enlarged view of the A section of FIG.
  • FIG. 1 is a perspective view showing a biological information measuring device 1 according to one embodiment.
  • Three orthogonal axes X, Y, Z are defined in FIG.
  • the Z axis is in the vertical direction, and the positive side in the Z axis direction is referred to as “upper side”.
  • the biological information measurement device 1 has a sensing surface on the lower side, and in FIG. 1, the upper part is not shown.
  • the biological information measurement device 1 refers to the part of the biological information measurement device 1 shown in FIG.
  • FIG. 2 and 3 are exploded perspective views of the biological information measuring device 1, FIG. 2 is a perspective view seen from above, and FIG. 3 is a perspective view seen from below.
  • FIG. 4 is a plan view of the biological information measurement device 1
  • FIG. 5 is a cross-sectional view taken along the line BB in FIG.
  • the biological information measuring device 1 is a device capable of optically measuring biological information through a sensing surface (window).
  • the optically measurable biological information is optional, but is blood oxygen concentration of a living body (for example, a person).
  • the biological information measuring device 1 includes a housing 10, a light emitting unit 20, a light receiving unit 30, a light shielding unit 40, and a temperature sensor 50, as shown in FIGS.
  • the housing 10 accommodates various components of the biological information measurement device 1 therein.
  • the housing 10 may be formed of a plurality of parts. For example, in the example shown in FIGS. 1 to 3, only the lower case portion is shown, and the lower case portion is closed by being fitted with the upper case portion (not shown). Form an internal space.
  • the case 10 refers to the lower case portion.
  • the outside refers to the outside of the housing 10
  • the inside of the housing 10 refers to the internal space formed by the housing 10.
  • the housing 10 is a transparent portion that forms a sensing surface (window), and is formed of, for example, an acrylic resin.
  • Transparent means transparent in the wavelength region used for measurement. While being transparent, light from the light emitting unit 20 can be efficiently emitted to the outside through the housing 10, and light from the outside can be efficiently received by the light receiving unit 30 via the housing 10.
  • the housing 10 may be entirely transparent, or only the area forming the sensing surface may be transparent. For example, a bezel (not shown) may be attached to the outer periphery of the housing 10.
  • the housing 10 is, for example, a waterproof part. Being waterproof means that a hole or the like is not formed.
  • the upper case portion and the lower case portion may be fluid-tightly coupled via a seal member or the like.
  • the light emitting unit 20 is provided in the housing 10 and emits light toward the outside.
  • the light emitting unit 20 is formed of, for example, an LED (Light-Emitting Diode).
  • the light emitting unit 20 is mounted on the lower surface of the sensor head substrate 100, as shown in FIG.
  • the light emitting units 20 are provided at two places apart in the X-axis direction.
  • the sensor head substrate 100 has a rectangular outer shape that fits inside the housing 10, as shown in FIG.
  • the light receiving unit 30 is provided in the housing 10.
  • the light receiving unit 30 is disposed apart from the light emitting unit 20 in the X axis direction (an example of a first direction). Between the light receiving unit 30 and the light emitting unit 20 in the X-axis direction is a range facing the living body at the time of measurement (facing in the Z-axis direction). Among the light emitted from the light emitting unit 20 to the outside at the time of measurement, the light receiving unit 30 receives the light passing through the living body and entering the inside of the housing 10.
  • the light receiving unit 30 is formed of, for example, a photo diode.
  • the light receiving unit 30 is mounted on the lower surface of the sensor head substrate 100, as shown in FIG. At this time, the light receiving unit 30 is disposed between the two light emitting units 20 in the X-axis direction.
  • an area between the two light emitting units 20 in the X axis direction is an approximate sensing range in the X axis direction at the time of measurement.
  • only one light emitting unit 20 is provided. In this case, an effective sensing range in the X axis direction at the time of measurement is between the light emitting unit 20 and the light receiving unit 30 in the X axis direction.
  • the light shielding unit 40 is provided in the housing 10.
  • the light shielding unit 40 is disposed between the light emitting unit 20 and the light receiving unit 30 in the X-axis direction.
  • the light shielding unit 40 forms a space 70 in the housing 10 in which the light from the light emitting unit 20 does not reach directly.
  • the light shielding part 40 is arbitrary if it is a material which does not permeate
  • the light shielding portion 40 is formed by the reflection plate 120 and the double-sided adhesive tape 110 having a light shielding property. As shown in FIG.
  • the reflection plate 120 has a rectangular outer shape that fits inside the housing 10, has an outer shape similar to that of the sensor head substrate 100, and has a light shielding property via the double-sided adhesive tape 110. Bonded to the lower surface of the substrate 100.
  • an opening 121 forming the space 70, an opening 122 forming the space in which the light emitting unit 20 is disposed, and an opening 124 forming the space in which the light receiving unit 30 is disposed are formed.
  • Ru On the lower surface 120 a of the reflection plate 120, a peripheral wall 123 protruding downward around the opening 122 is formed, and a peripheral wall 125 protruding downward around the opening 124 is formed.
  • the space 70 is closed by the sensor head substrate 100 on the upper side, and flexible printed circuit (FPC) 140 on the lower side. It is closed by A substrate other than the FPC may be used. Further, the outer periphery of the sensor head substrate 100 and the FPC 140 in the vertical direction is surrounded by the light shielding portion 40. Accordingly, the light from the light emitting unit 20 does not reach the space 70 directly in the housing 10.
  • FPC flexible printed circuit
  • the temperature sensor 50 is disposed in the space 70 (the space 70 formed by the light shielding portion 40 as described above). As a result, the light from the light emitting unit 20 does not directly reach the temperature sensor 50 in the housing 10, so that the light sensor 20 is not substantially affected by the light from the light emitting unit 20 (i.e., is affected by heat). Accurate measurement can be realized. Also, a heat insulating portion (air layer) is provided between the light shielding portion 40 and the temperature sensor 50, and the space 70 is sealed by the light shielding portion 40, the sensor head substrate 100 and the FPC 140, and heat enters and leaves air as a medium. Even if the light shielding portion 40 is heated by the light emitting portion 20, the temperature sensor 50 is not affected by the heat from the light emitting portion 20.
  • the temperature sensor 50 Since the temperature sensor 50 is disposed in the space 70, it is located within the effective sensing range in the X-axis direction at the time of measurement. Thereby, the temperature sensor 50 can obtain the temperature related to the part of the living body to which the light receiving result of the light receiving unit 30 is given.
  • the temperature sensor 50 is mounted on the upper surface of the FPC 140 as shown in FIGS. 2 and 5.
  • the FPC 140 is bonded to the lower surface of the reflecting plate 120 via the heat insulating double-sided tape 130.
  • the double-sided adhesive tape 130 has a relatively large opening 132 in a manner to surround the openings 121, 122, 124.
  • the FPC 140 is joined to the housing 10 via the transparent double-sided tape 150.
  • the FPC 140 and the double-sided adhesive tape 150 are not given reference numerals, as shown in FIGS. 2 and 3, openings corresponding to the openings 122 and 124 are formed.
  • FIG. 6 is an explanatory view of the measurement operation of the biological information measurement device 1 and very schematically shows the biological information measurement device 1 placed on the surface of the living body to be measured in a cross sectional view.
  • the biological information measuring device 1 is very schematically shown, and illustration of one of the light emitting unit 20, the FPC 140, etc. is omitted.
  • the light shielding portion 40 and the like are (conceptually) illustrated in a mode different from FIG.
  • the living body comes in contact with the sensing surface (for example, a finger is pressed against the sensing surface).
  • the sensing surface for example, a finger is pressed against the sensing surface.
  • the light emitting unit 20 emits light to the outside, as schematically shown by an arrow R1 in FIG. 6, part of the light passes through the living body toward the light receiving unit 30 side. Then, part of the light passing through the living body enters the light receiving unit 30.
  • the light receiving unit 30 generates an electrical signal according to the light reception result. This electrical signal contains information inside the living body.
  • the electrical signal from the light receiving unit 30 is processed by a processing device (not shown).
  • the temperature sensor 50 generates an electric signal (hereinafter, referred to as a "temperature signal").
  • the temperature sensor 50 faces the living body in contact with the sensing surface as described above.
  • the temperature signal includes features responsive to the temperature of the living body contacting the sensing surface.
  • the temperature sensor 50 can include features according to the temperature related to the living body part related to the electrical signal obtained by the light receiving unit 30. .
  • the temperature sensor 50 can measure the living body temperature concerning the measurement part of living body information with high accuracy compared with the case where it is not arranged between the light emitting unit 20 and the light receiving unit 30 in the X axis direction.
  • the light shielding portion 40 since the light shielding portion 40 is provided, the possibility that the light from the light emitting portion 20 directly strikes the temperature sensor 50 is substantially eliminated. It is possible to accurately detect the temperature of the living body.
  • FIG. 7 is an enlarged view of a part A of FIG.
  • the FPC 140 preferably has metal conductive portions 141 and 142 having thermal conductivity.
  • the portions 141 and 142 are provided in a region overlapping the temperature sensor 50 in plan view (view in the Z-axis direction). Therefore, in the cross sectional view passing through the temperature sensor 50 shown in FIG. 6, the portions 141 and 142 are present.
  • the heat path transmitted from the living body to the temperature sensor 50 via the FPC 140 can be secured, so that the temperature sensor 50 accurately measures the temperature of the living body such as a finger. It becomes possible to detect.
  • the portion 141 is a metal layer that forms the top layer of the FPC 140, and is formed of, for example, a copper foil.
  • part 142 is a metal layer which forms the lowest layer of FPC140, for example, is formed with copper foil.
  • copper foil may be formed over the most area
  • the FPC 140 preferably has a through hole 144.
  • the through holes 144 are also provided in a region overlapping with the temperature sensor 50 in plan view (view viewed in the Z-axis direction), similarly to the portions 141 and 142.
  • the through hole 144 may also be provided at another place.
  • the through holes 144 are filled with a highly thermally conductive material (eg, copper). At the time of filling, some gaps or holes may remain. As a result, the thermal resistance associated with the path of heat transmitted from the living body to the temperature sensor 50 via the FPC 140 can be further reduced. From the same point of view, also for the double-sided tape 150, a thin tape (adhesive layer) may be selected so as not to impede the heat conduction.
  • a thin tape adheresive layer

Abstract

Disclosed is a biological-information measurement device with which it is possible to optically measure biological information, wherein the biological-information measurement device includes: a casing; a light-emitting unit provided within the casing, the light-emitting unit radiating light toward the outside of the casing; a light-receiving unit provided within the casing, the light-receiving unit being disposed so as to be separated from the light-emitting unit along a first direction; a light-shielding unit disposed within the casing and moreover disposed between the light-emitting unit and the light-receiving unit in the first direction, the light-shielding unit forming a space that cannot be directly reached by light from the light-emitting unit within the casing; and a temperature sensor disposed in the space.

Description

生体情報測定装置Biological information measuring device
 本開示は、生体情報測定装置に関する。 The present disclosure relates to a biological information measurement device.
 指の温度を検出する温度センサを備え、指の温度が適温である状態を検出すると、指に向けて発光部からの光を照射し、指を通った光を受光部で受光することで、脈波のような生体情報を光学的に測定する生体情報測定装置が知られている。 A temperature sensor for detecting the temperature of the finger is provided, and when a state in which the temperature of the finger is appropriate is detected, the light from the light emitting unit is emitted toward the finger, and the light passing through the finger is received by the light receiving unit. There is known a biological information measuring device which optically measures biological information such as pulse waves.
特開2015-188580号公報JP, 2015-188580, A
 しかしながら、上記のような従来技術では、発光部からの光が温度センサに直接当たる可能性があり、指の温度を精度良く検出することが難しい。 However, in the prior art as described above, the light from the light emitting unit may directly hit the temperature sensor, and it is difficult to detect the finger temperature with high accuracy.
 そこで、1つの側面では、本発明は、生体情報を光学的に測定する生体情報測定装置において、指の温度を精度良く検出することを目的とする。 Therefore, in one aspect, the present invention has an object to accurately detect the temperature of a finger in a biological information measuring device that optically measures biological information.
 1つの側面では、生体情報を光学的に測定可能な生体情報測定装置であって、
 筐体と、
 前記筐体内に設けられ、前記筐体の外部に向けて光を照射する発光部と、
 前記筐体内に設けられ、前記発光部に対して第1方向に離れて配置される受光部と、
 前記筐体内かつ前記第1方向で前記発光部と前記受光部の間に配置され、前記筐体内で前記発光部からの光が直接到達しない空間を形成する遮光部と、
 前記空間に配置される温度センサとを含む、生体情報測定装置が提供される。
In one aspect, it is a biological information measuring device capable of optically measuring biological information,
And
A light emitting unit provided in the housing and emitting light toward the outside of the housing;
A light receiving unit provided in the housing and arranged to be separated in the first direction with respect to the light emitting unit;
A light shielding unit disposed in the housing and between the light emitting unit and the light receiving unit in the first direction, and forming a space in the housing in which the light from the light emitting unit does not reach directly;
There is provided a biological information measuring device including a temperature sensor disposed in the space.
 1つの側面では、本発明によれば、生体情報を光学的に測定する生体情報測定装置において、指の温度を精度良く検出することが可能となる。 In one aspect, according to the present invention, it is possible to accurately detect the temperature of a finger in a biological information measuring device that optically measures biological information.
一実施例による生体情報測定装置1を示す斜視図である。It is a perspective view showing living body information measuring device 1 by one example. 上方から視た生体情報測定装置1の分解斜視図である。It is an exploded perspective view of living body information measuring device 1 seen from the upper part. 下方から視た生体情報測定装置1の分解斜視図である。It is an exploded perspective view of living body information measuring device 1 seen from the bottom. 生体情報測定装置1の平面図である。FIG. 2 is a plan view of the biological information measuring device 1; 図4のラインB-Bに沿った断面図である。5 is a cross-sectional view taken along line B-B in FIG. 4; 生体情報測定装置1の測定動作の説明図である。FIG. 6 is an explanatory view of a measurement operation of the biological information measurement device 1. 図5のA部の拡大図である。It is an enlarged view of the A section of FIG.
 以下、添付図面を参照しながら各実施例について詳細に説明する。 Hereinafter, each example will be described in detail with reference to the attached drawings.
 図1は、一実施例による生体情報測定装置1を示す斜視図である。図1には、直交する3軸X,Y,Zが定義されている。ここでは、説明上、Z軸が上下方向であり、Z軸方向正側を「上側」とする。図1では、生体情報測定装置1の一部の図示が省略されている。具体的には、生体情報測定装置1は、下側にセンシング面を有し、図1では、上側の部分の図示が省略されている。以下では、特に言及しない限り、生体情報測定装置1とは、図1に示す生体情報測定装置1の部分を指す。 FIG. 1 is a perspective view showing a biological information measuring device 1 according to one embodiment. Three orthogonal axes X, Y, Z are defined in FIG. Here, for the sake of explanation, the Z axis is in the vertical direction, and the positive side in the Z axis direction is referred to as “upper side”. In FIG. 1, a part of the biological information measuring device 1 is omitted. Specifically, the biological information measurement device 1 has a sensing surface on the lower side, and in FIG. 1, the upper part is not shown. Hereinafter, unless otherwise stated, the biological information measurement device 1 refers to the part of the biological information measurement device 1 shown in FIG.
 図2及び図3は、生体情報測定装置1の分解斜視図であり、図2は、上方から視た斜視図であり、図3は、下方から視た斜視図である。図4は、生体情報測定装置1の平面図であり、図5は、図4のラインB-Bに沿った断面図である。 2 and 3 are exploded perspective views of the biological information measuring device 1, FIG. 2 is a perspective view seen from above, and FIG. 3 is a perspective view seen from below. FIG. 4 is a plan view of the biological information measurement device 1, and FIG. 5 is a cross-sectional view taken along the line BB in FIG.
 生体情報測定装置1は、センシング面(窓)を介して生体情報を光学的に測定可能な装置である。光学的に測定可能な生体情報は、任意であるが、生体(例えば人)の血中酸素濃度等である。 The biological information measuring device 1 is a device capable of optically measuring biological information through a sensing surface (window). The optically measurable biological information is optional, but is blood oxygen concentration of a living body (for example, a person).
 生体情報測定装置1は、図1乃至図3に示すように、筐体10と、発光部20と、受光部30と、遮光部40と、温度センサ50とを含む。 The biological information measuring device 1 includes a housing 10, a light emitting unit 20, a light receiving unit 30, a light shielding unit 40, and a temperature sensor 50, as shown in FIGS.
 筐体10は、生体情報測定装置1の各種構成要素を内部に収容する。筐体10は、複数の部品により形成されてよい。例えば、図1乃至図3に示す例では、筐体10は、下側のケース部だけが示されており、下側のケース部は、図示しない上側のケース部と嵌合されることで閉じた内部空間を形成する。以下、特に言及しない限り、筐体10とは、下側のケース部を指す。また、以下の説明において、「外部」とは、筐体10の外部を指し、筐体10内とは、筐体10により形成される内部空間を指す。 The housing 10 accommodates various components of the biological information measurement device 1 therein. The housing 10 may be formed of a plurality of parts. For example, in the example shown in FIGS. 1 to 3, only the lower case portion is shown, and the lower case portion is closed by being fitted with the upper case portion (not shown). Form an internal space. Hereinafter, unless otherwise stated, the case 10 refers to the lower case portion. Further, in the following description, “the outside” refers to the outside of the housing 10, and the inside of the housing 10 refers to the internal space formed by the housing 10.
 筐体10は、センシング面(窓)を形成する透明な部位であり、例えばアクリル樹脂により形成される。"透明"とは、測定に使用する波長領域においての透明であることを意味する。透明であることで、筐体10を介して発光部20からの光を効率的に外部に放出できるとともに、筐体10を介して受光部30にて外部からの光を効率的に受光できる。尚、筐体10は、全体が透明であってもよいし、センシング面を形成する領域だけが透明であってもよい。例えば筐体10には、外周部にベゼル(図示せず)が取り付けられてもよい。 The housing 10 is a transparent portion that forms a sensing surface (window), and is formed of, for example, an acrylic resin. "Transparent" means transparent in the wavelength region used for measurement. While being transparent, light from the light emitting unit 20 can be efficiently emitted to the outside through the housing 10, and light from the outside can be efficiently received by the light receiving unit 30 via the housing 10. The housing 10 may be entirely transparent, or only the area forming the sensing surface may be transparent. For example, a bezel (not shown) may be attached to the outer periphery of the housing 10.
 筐体10は、例えば防水性のある部位である。防水性があるとは、穴などが形成されていないことを意味する。尚、筐体10は、上側のケース部と下側のケース部とがシール部材などを介して液密に結合されてよい。 The housing 10 is, for example, a waterproof part. Being waterproof means that a hole or the like is not formed. In the case 10, the upper case portion and the lower case portion may be fluid-tightly coupled via a seal member or the like.
 発光部20は、筐体10内に設けられ、外部に向けて光を照射する。発光部20は、例えばLED(Light-Emitting Diode)により形成される。本実施例では、一例として、発光部20は、図3に示すように、センサヘッド基板100の下側表面に実装される。また、発光部20は、X軸方向で離れて2か所に設けられる。センサヘッド基板100は、図3に示すように、筐体10の内部に収まる矩形の外形を有する。 The light emitting unit 20 is provided in the housing 10 and emits light toward the outside. The light emitting unit 20 is formed of, for example, an LED (Light-Emitting Diode). In the present embodiment, as an example, the light emitting unit 20 is mounted on the lower surface of the sensor head substrate 100, as shown in FIG. The light emitting units 20 are provided at two places apart in the X-axis direction. The sensor head substrate 100 has a rectangular outer shape that fits inside the housing 10, as shown in FIG.
 受光部30は、筐体10内に設けられる。受光部30は、発光部20に対してX軸方向(第1方向の一例)に離れて配置される。X軸方向で受光部30と発光部20との間は、測定時に生体に対向する(Z軸方向で対向する)範囲である。受光部30は、測定時に発光部20から外部に放出された光のうち、生体を通って筐体10内に入射する光を受光する。 The light receiving unit 30 is provided in the housing 10. The light receiving unit 30 is disposed apart from the light emitting unit 20 in the X axis direction (an example of a first direction). Between the light receiving unit 30 and the light emitting unit 20 in the X-axis direction is a range facing the living body at the time of measurement (facing in the Z-axis direction). Among the light emitted from the light emitting unit 20 to the outside at the time of measurement, the light receiving unit 30 receives the light passing through the living body and entering the inside of the housing 10.
 受光部30は、例えばフォットダイオードにより形成される。本実施例では、一例として、受光部30は、図3に示すように、センサヘッド基板100の下側表面に実装される。この際、受光部30は、X軸方向で2つの発光部20の間に配置される。この場合、X軸方向で2つの発光部20の間が、測定時におけるX軸方向でのおおよそのセンシング範囲である。尚、変形例では、発光部20は1つだけ設けられる。この場合、X軸方向で発光部20と受光部30の間が、測定時におけるX軸方向での実効的なセンシング範囲である。 The light receiving unit 30 is formed of, for example, a photo diode. In the present embodiment, as an example, the light receiving unit 30 is mounted on the lower surface of the sensor head substrate 100, as shown in FIG. At this time, the light receiving unit 30 is disposed between the two light emitting units 20 in the X-axis direction. In this case, an area between the two light emitting units 20 in the X axis direction is an approximate sensing range in the X axis direction at the time of measurement. In the modification, only one light emitting unit 20 is provided. In this case, an effective sensing range in the X axis direction at the time of measurement is between the light emitting unit 20 and the light receiving unit 30 in the X axis direction.
 遮光部40は、筐体10内に設けられる。遮光部40は、X軸方向で発光部20と受光部30の間に配置される。遮光部40は、筐体10内で発光部20からの光が直接到達しない空間70を形成する。遮光部40は、光を透過しない材質であれば任意であるが、例えば光を反射させる表面を有する。本実施例では、一例として、遮光部40は、反射板120、及び、遮光性のある両面テープ110により形成される。反射板120は、図3に示すように、筐体10の内部に収まる矩形の外形を有し、センサヘッド基板100と同様の外形を有し、遮光性のある両面テープ110を介してセンサヘッド基板100の下側表面に接合される。反射板120には、空間70を形成する開口部121と、発光部20が配置される空間を形成する開口部122と、受光部30が配置される空間を形成する開口部124とが形成される。反射板120における下側の表面120aには、開口部122まわりに下側に突出する周壁123が形成されるとともに、開口部124まわりに下側に突出する周壁125が形成される。尚、両面テープ110にも、符号を付さないが、図2及び図3に示すように、開口部121,122,124に対応する開口部が形成される。 The light shielding unit 40 is provided in the housing 10. The light shielding unit 40 is disposed between the light emitting unit 20 and the light receiving unit 30 in the X-axis direction. The light shielding unit 40 forms a space 70 in the housing 10 in which the light from the light emitting unit 20 does not reach directly. Although the light shielding part 40 is arbitrary if it is a material which does not permeate | transmit light, it has a surface which reflects light, for example. In the present embodiment, as an example, the light shielding portion 40 is formed by the reflection plate 120 and the double-sided adhesive tape 110 having a light shielding property. As shown in FIG. 3, the reflection plate 120 has a rectangular outer shape that fits inside the housing 10, has an outer shape similar to that of the sensor head substrate 100, and has a light shielding property via the double-sided adhesive tape 110. Bonded to the lower surface of the substrate 100. In the reflection plate 120, an opening 121 forming the space 70, an opening 122 forming the space in which the light emitting unit 20 is disposed, and an opening 124 forming the space in which the light receiving unit 30 is disposed are formed. Ru. On the lower surface 120 a of the reflection plate 120, a peripheral wall 123 protruding downward around the opening 122 is formed, and a peripheral wall 125 protruding downward around the opening 124 is formed. Although no reference numeral is given to the double-sided adhesive tape 110, as shown in FIGS. 2 and 3, openings corresponding to the openings 121, 122 and 124 are formed.
 本実施例では、一例として、空間70は、図3、図4、及び図5にも示すように、上側は、センサヘッド基板100により塞がれ、下側は、FPC(flexible printed circuit)140により塞がれる。尚、FPC以外の基板が使用されてもよい。また、上下方向でセンサヘッド基板100とFPC140との間のうちの、外周は、遮光部40により囲繞される。これにより、空間70には、筐体10内で発光部20からの光が直接到達しない。 In the present embodiment, as an example, as shown in FIGS. 3, 4 and 5, the space 70 is closed by the sensor head substrate 100 on the upper side, and flexible printed circuit (FPC) 140 on the lower side. It is closed by A substrate other than the FPC may be used. Further, the outer periphery of the sensor head substrate 100 and the FPC 140 in the vertical direction is surrounded by the light shielding portion 40. Accordingly, the light from the light emitting unit 20 does not reach the space 70 directly in the housing 10.
 温度センサ50は、空間70(上述のように遮光部40により形成される空間70)に配置される。これにより、温度センサ50には、筐体10内で発光部20からの光が直接到達しないので、発光部20からの光による影響(即ち熱の影響)を実質的に受けることがなく、高精度な測定を実現できる。また遮光部40と温度センサ50との間に断熱部(空気層)を有しており、また空間70は遮光部40とセンサヘッド基板100とFPC140により密閉構造となり空気を媒体とした熱の出入りが発生しにくいので、遮光部40が発光部20により加熱されたとしても、温度センサ50は発光部20からの熱の影響を受けない。 The temperature sensor 50 is disposed in the space 70 (the space 70 formed by the light shielding portion 40 as described above). As a result, the light from the light emitting unit 20 does not directly reach the temperature sensor 50 in the housing 10, so that the light sensor 20 is not substantially affected by the light from the light emitting unit 20 (i.e., is affected by heat). Accurate measurement can be realized. Also, a heat insulating portion (air layer) is provided between the light shielding portion 40 and the temperature sensor 50, and the space 70 is sealed by the light shielding portion 40, the sensor head substrate 100 and the FPC 140, and heat enters and leaves air as a medium. Even if the light shielding portion 40 is heated by the light emitting portion 20, the temperature sensor 50 is not affected by the heat from the light emitting portion 20.
 温度センサ50は、空間70に配置されるので、測定時におけるX軸方向での実効的なセンシング範囲内に位置する。これにより、温度センサ50は、受光部30の受光結果を与える生体の部位に関する温度を得ることができる。 Since the temperature sensor 50 is disposed in the space 70, it is located within the effective sensing range in the X-axis direction at the time of measurement. Thereby, the temperature sensor 50 can obtain the temperature related to the part of the living body to which the light receiving result of the light receiving unit 30 is given.
 本実施例では、一例として、温度センサ50は、図2及び図5に示すように、FPC140の上側表面に実装される。FPC140は、断熱性のある両面テープ130を介して反射板120の下側表面に接合される。尚、両面テープ130は、開口部121,122,124を囲繞する態様の比較的大型の開口部132を有する。また、FPC140は、透明な両面テープ150を介して筐体10に接合される。FPC140及び両面テープ150は、符号を付さないが、図2及び図3に示すように、開口部122,124に対応する開口部が形成される。 In the present embodiment, as an example, the temperature sensor 50 is mounted on the upper surface of the FPC 140 as shown in FIGS. 2 and 5. The FPC 140 is bonded to the lower surface of the reflecting plate 120 via the heat insulating double-sided tape 130. The double-sided adhesive tape 130 has a relatively large opening 132 in a manner to surround the openings 121, 122, 124. Further, the FPC 140 is joined to the housing 10 via the transparent double-sided tape 150. Although the FPC 140 and the double-sided adhesive tape 150 are not given reference numerals, as shown in FIGS. 2 and 3, openings corresponding to the openings 122 and 124 are formed.
 次に、図6を参照して、生体情報測定装置1の測定動作について説明する。 Next, the measurement operation of the biological information measurement device 1 will be described with reference to FIG.
 図6は、生体情報測定装置1の測定動作の説明図であり、測定対象の生体の表面に載置された状態の生体情報測定装置1を断面視で非常に概略的に示す図である。図6では、説明上、生体情報測定装置1は、非常に概略的に示されており、発光部20の一方や、FPC140などの図示が省略されている。また、遮光部40等についても、図5とは異なる態様で(概念的に)図示されている。 FIG. 6 is an explanatory view of the measurement operation of the biological information measurement device 1 and very schematically shows the biological information measurement device 1 placed on the surface of the living body to be measured in a cross sectional view. In FIG. 6, for the sake of explanation, the biological information measuring device 1 is very schematically shown, and illustration of one of the light emitting unit 20, the FPC 140, etc. is omitted. In addition, the light shielding portion 40 and the like are (conceptually) illustrated in a mode different from FIG.
 測定時、生体情報測定装置1は、センシング面に生体が接触する(例えばセンシング面に指が押し当てられる)。この接触状態で、発光部20が外部へと光を放出すると、図6にて矢印R1で模式的に示すように、光の一部は生体を通って受光部30側に向かう。そして、生体を通った光の一部は、受光部30に入射する。受光部30では、受光結果に応じた電気信号が生成される。この電気信号に生体内部の情報が含まれる。受光部30からの電気信号は、図示しない処理装置で処理される。 At the time of measurement, the living body comes in contact with the sensing surface (for example, a finger is pressed against the sensing surface). In this contact state, when the light emitting unit 20 emits light to the outside, as schematically shown by an arrow R1 in FIG. 6, part of the light passes through the living body toward the light receiving unit 30 side. Then, part of the light passing through the living body enters the light receiving unit 30. The light receiving unit 30 generates an electrical signal according to the light reception result. This electrical signal contains information inside the living body. The electrical signal from the light receiving unit 30 is processed by a processing device (not shown).
 また、測定時、温度センサ50は、電気信号(以下、「温度信号」と称する)を生成する。測定時、温度センサ50は、上述したように、センシング面に接触する生体に対向する。従って、温度信号は、センシング面に接触する生体の温度に応じた特徴を含む。特に、温度センサ50は、X軸方向で発光部20と受光部30との間に配置されるので、受光部30で得られる電気信号に係る生体部位に関する温度に応じた特徴を含むことができる。これにより、X軸方向で発光部20と受光部30との間に配置されない場合に比べて、温度センサ50は、生体情報の測定部位に係る生体温度を精度良く測定できる。 Further, at the time of measurement, the temperature sensor 50 generates an electric signal (hereinafter, referred to as a "temperature signal"). At the time of measurement, the temperature sensor 50 faces the living body in contact with the sensing surface as described above. Thus, the temperature signal includes features responsive to the temperature of the living body contacting the sensing surface. In particular, since the temperature sensor 50 is disposed between the light emitting unit 20 and the light receiving unit 30 in the X-axis direction, the temperature sensor 50 can include features according to the temperature related to the living body part related to the electrical signal obtained by the light receiving unit 30. . Thereby, the temperature sensor 50 can measure the living body temperature concerning the measurement part of living body information with high accuracy compared with the case where it is not arranged between the light emitting unit 20 and the light receiving unit 30 in the X axis direction.
 ところで、本実施例のように、生体情報を光学的に測定可能な生体情報測定装置1の筐体10内に温度センサを配置すると、発光部からの光が温度センサに直接当たる可能性があり、指などの生体の温度を精度良く検出することが難しくなる。 By the way, when a temperature sensor is disposed in the case 10 of the biological information measuring apparatus 1 capable of optically measuring biological information as in the present embodiment, there is a possibility that the light from the light emitting unit may directly hit the temperature sensor. It becomes difficult to accurately detect the temperature of a living body such as a finger.
 この点、本実施例によれば、上述のように、遮光部40が設けられるので、発光部20からの光が温度センサ50に直接当たる可能性が実質的に無くなり、温度センサ50により指などの生体の温度を精度良く検出することが可能となる。 In this respect, according to the present embodiment, as described above, since the light shielding portion 40 is provided, the possibility that the light from the light emitting portion 20 directly strikes the temperature sensor 50 is substantially eliminated. It is possible to accurately detect the temperature of the living body.
 次に、図7を参照して、FPC140の好ましい構成について説明する。 Next, with reference to FIG. 7, the preferable structure of FPC140 is demonstrated.
 図7は、図5のA部の拡大図である。 FIG. 7 is an enlarged view of a part A of FIG.
 FPC140は、好ましくは、図6に示すように、金属相当の熱伝導性のある部位141、142を有する。部位141、142は、平面視(Z軸方向に視たビュー)で、温度センサ50と重なる領域に設けられる。従って、図6に示す温度センサ50を通る断面視では、部位141、142が存在している。これにより、温度センサ50がFPC140を介して生体に対向する場合でも、生体からFPC140を介して温度センサ50に伝わる熱の経路を確保できるので、温度センサ50により指などの生体の温度を精度良く検出することが可能となる。 As shown in FIG. 6, the FPC 140 preferably has metal conductive portions 141 and 142 having thermal conductivity. The portions 141 and 142 are provided in a region overlapping the temperature sensor 50 in plan view (view in the Z-axis direction). Therefore, in the cross sectional view passing through the temperature sensor 50 shown in FIG. 6, the portions 141 and 142 are present. Thus, even when the temperature sensor 50 faces the living body via the FPC 140, the heat path transmitted from the living body to the temperature sensor 50 via the FPC 140 can be secured, so that the temperature sensor 50 accurately measures the temperature of the living body such as a finger. It becomes possible to detect.
 図7に示す例では、部位141は、FPC140の最上層を形成する金属層であり、例えば銅箔により形成される。また、図7に示す例では、部位142は、FPC140の最下層を形成する金属層であり、例えば銅箔により形成される。尚、銅箔は、いわゆるベタパターンとして、FPC140の大部分の領域にわたり形成されてもよい。これにより、生体からFPC140を介して温度センサ50に伝わる熱の経路に係る熱抵抗を低減できる。 In the example shown in FIG. 7, the portion 141 is a metal layer that forms the top layer of the FPC 140, and is formed of, for example, a copper foil. Moreover, in the example shown in FIG. 7, the site | part 142 is a metal layer which forms the lowest layer of FPC140, for example, is formed with copper foil. In addition, copper foil may be formed over the most area | region of FPC140 as what is called a solid pattern. Thereby, the heat resistance concerning the course of the heat transmitted to temperature sensor 50 from living body via FPC140 can be reduced.
 また、FPC140は、好ましくは、貫通穴144を有する。貫通穴144も、部位141、142と同様、平面視(Z軸方向に視たビュー)で、温度センサ50と重なる領域に設けられる。これにより、温度センサ50がFPC140を介して生体に対向する場合でも、生体からFPC140を介して温度センサ50に伝わる熱の経路を確保できるので、温度センサ50により指などの生体の温度を精度良く検出することが可能となる。但し、変形例では、貫通穴144も、別の場所に設けられてもよい。 Also, the FPC 140 preferably has a through hole 144. The through holes 144 are also provided in a region overlapping with the temperature sensor 50 in plan view (view viewed in the Z-axis direction), similarly to the portions 141 and 142. Thus, even when the temperature sensor 50 faces the living body via the FPC 140, the heat path transmitted from the living body to the temperature sensor 50 via the FPC 140 can be secured, so that the temperature sensor 50 accurately measures the temperature of the living body such as a finger. It becomes possible to detect. However, in a modification, the through hole 144 may also be provided at another place.
 図7に示す例では、貫通穴144は、熱伝導性の高い材料(例えば銅)が充填される。尚、充填時には、少々の隙間や穴が残ってもよい。これにより、生体からFPC140を介して温度センサ50に伝わる熱の経路に係る熱抵抗を更に低減できる。尚、同様の観点から、両面テープ150についても、熱伝導の妨げにならないぐらいに薄いテープ(接着層)が選択されてよい。 In the example shown in FIG. 7, the through holes 144 are filled with a highly thermally conductive material (eg, copper). At the time of filling, some gaps or holes may remain. As a result, the thermal resistance associated with the path of heat transmitted from the living body to the temperature sensor 50 via the FPC 140 can be further reduced. From the same point of view, also for the double-sided tape 150, a thin tape (adhesive layer) may be selected so as not to impede the heat conduction.
 以上、各実施例について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施例の構成要素を全部又は複数を組み合わせることも可能である。 As mentioned above, although each Example was explained in full detail, it is not limited to a specific example, A various deformation | transformation and change are possible within the range described in the claim. In addition, it is also possible to combine all or a plurality of the components of the above-described embodiment.
 本出願は2017年7月31日に出願した日本国特許出願第2017-148597号に基づくものであり、その全内容は参照することによりここに組み込まれる。 This application is based on Japanese Patent Application No. 201 1 748 597, filed on July 31, 2017, the entire contents of which are incorporated herein by reference.
1 生体情報測定装置
10 筐体
20 発光部
30 受光部
40 遮光部
50 温度センサ
70 空間
100 センサヘッド基板
110 両面テープ
120 反射板
120a 表面
121 開口部
122 開口部
123 周壁
124 開口部
125 周壁
130 両面テープ
141 部位
142 部位
144 貫通穴
150 両面テープ
DESCRIPTION OF SYMBOLS 1 biological information measuring apparatus 10 case 20 light emitting unit 30 light receiving unit 40 light shielding unit 50 temperature sensor 70 space 100 sensor head substrate 110 double-sided tape 120 reflecting plate 120 a surface 121 opening 122 opening 123 opening 123 peripheral wall 124 opening 125 peripheral wall 130 141 Part 142 Part 144 Through Hole 150 Double-sided Tape

Claims (6)

  1.  生体情報を光学的に測定可能な生体情報測定装置であって、
     筐体と、
     前記筐体内に設けられ、前記筐体の外部に向けて光を照射する発光部と、
     前記筐体内に設けられ、前記発光部に対して第1方向に離れて配置される受光部と、
     前記筐体内かつ前記第1方向で前記発光部と前記受光部の間に配置され、前記筐体内で前記発光部からの光が直接到達しない空間を形成する遮光部と、
     前記空間に配置される温度センサとを含む、生体情報測定装置。
    A biological information measuring device capable of optically measuring biological information, comprising:
    And
    A light emitting unit provided in the housing and emitting light toward the outside of the housing;
    A light receiving unit provided in the housing and arranged to be separated in the first direction with respect to the light emitting unit;
    A light shielding unit disposed in the housing and between the light emitting unit and the light receiving unit in the first direction, and forming a space in the housing in which the light from the light emitting unit does not reach directly;
    A biological information measurement device including a temperature sensor disposed in the space.
  2.  前記遮光部は、前記発光部を囲繞する、請求項1に記載の生体情報測定装置。 The biological information measuring device according to claim 1, wherein the light shielding unit surrounds the light emitting unit.
  3.  前記温度センサは、基板に設けられ、
     前記基板は、該基板に対して垂直方向に視て、前記温度センサと重なる領域に熱伝導性のある部位を有する、請求項1又は2に記載の生体情報測定装置。
    The temperature sensor is provided on a substrate,
    The biological information measuring device according to claim 1, wherein the substrate has a thermally conductive portion in a region overlapping with the temperature sensor in a direction perpendicular to the substrate.
  4.  前記熱伝導性のある部位は、金属により形成される、請求項3に記載の生体情報測定装置。 The biological information measuring device according to claim 3, wherein the thermally conductive portion is formed of metal.
  5.  前記基板は、該基板に対して垂直方向に視て、前記温度センサと重なる領域に貫通穴を有する、請求項3又は4に記載の生体情報測定装置。 The biological information measuring apparatus according to claim 3, wherein the substrate has a through hole in a region overlapping with the temperature sensor when viewed in a direction perpendicular to the substrate.
  6.  前記筐体は、前記発光部からの光を外部に通しかつ外部からの光を前記受光部へと通す部位を含む、請求項1~5のうちのいずれか1項に記載の生体情報測定装置。 The biological information measuring device according to any one of claims 1 to 5, wherein the housing includes a portion which transmits light from the light emitting unit to the outside and transmits light from the outside to the light receiving unit. .
PCT/JP2018/019355 2017-07-31 2018-05-18 Biological-information measurement device WO2019026387A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019533913A JPWO2019026387A1 (en) 2017-07-31 2018-05-18 Biological information measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-148597 2017-07-31
JP2017148597 2017-07-31

Publications (1)

Publication Number Publication Date
WO2019026387A1 true WO2019026387A1 (en) 2019-02-07

Family

ID=65233671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019355 WO2019026387A1 (en) 2017-07-31 2018-05-18 Biological-information measurement device

Country Status (2)

Country Link
JP (1) JPWO2019026387A1 (en)
WO (1) WO2019026387A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06233746A (en) * 1993-02-09 1994-08-23 Terumo Corp Clinical temperature probe with pulse wave detecting function
JP2009247679A (en) * 2008-04-08 2009-10-29 Seiko Instruments Inc Pulse wave detection method and pulse wave detector
JP2012019834A (en) * 2010-07-12 2012-02-02 Seiko Epson Corp Concentration determination apparatus, probe, concentration determination method, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06233746A (en) * 1993-02-09 1994-08-23 Terumo Corp Clinical temperature probe with pulse wave detecting function
JP2009247679A (en) * 2008-04-08 2009-10-29 Seiko Instruments Inc Pulse wave detection method and pulse wave detector
JP2012019834A (en) * 2010-07-12 2012-02-02 Seiko Epson Corp Concentration determination apparatus, probe, concentration determination method, and program

Also Published As

Publication number Publication date
JPWO2019026387A1 (en) 2020-04-09

Similar Documents

Publication Publication Date Title
JP5832007B2 (en) Infrared sensor and manufacturing method thereof
EP2489998B1 (en) Infrared sensor and circuit substrate equipped therewith
US9568596B2 (en) Optical distance measuring apparatus and electronic apparatus
KR101972196B1 (en) Infrared sensor
JP5736906B2 (en) Infrared sensor
JP5959111B2 (en) Heat flow sensor
JP4208775B2 (en) Photoelectric signal detector
WO2019026387A1 (en) Biological-information measurement device
CN112938891A (en) Emitter package for photoacoustic sensors
JP2008145168A (en) Optical sensor and physiological data measuring instrument
JP5206484B2 (en) Temperature sensor
WO2017018115A1 (en) Sensor module
KR20160005317A (en) Electronic device having contactless temperature sensor
KR101982576B1 (en) Integrated vital sensor
JP6128374B2 (en) Infrared sensor device
CN104115288A (en) Infrared light sensor chip with high measurement accuracy and method for producing the infrared light sensor chip
US11033193B2 (en) Light emitting device, biological information measuring apparatus, and method of manufacturing light emitting device
JP5218188B2 (en) Temperature sensor
KR102403491B1 (en) temperature and pressure sensitive optical sensor
JP6191507B2 (en) Temperature sensor
WO2020026612A1 (en) Biological information measurement device
JP2018169178A (en) Dew condensation sensor and dew condensation alarm device using the same
JP2016189893A (en) Pulse wave detection device
JP2006078376A (en) Optical displacement sensor
KR20150046564A (en) Temperature sensor package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18841141

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019533913

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18841141

Country of ref document: EP

Kind code of ref document: A1