WO2019026297A1 - Abnormality detection device, abnormality detection system, and abnormality detection method - Google Patents
Abnormality detection device, abnormality detection system, and abnormality detection method Download PDFInfo
- Publication number
- WO2019026297A1 WO2019026297A1 PCT/JP2017/028493 JP2017028493W WO2019026297A1 WO 2019026297 A1 WO2019026297 A1 WO 2019026297A1 JP 2017028493 W JP2017028493 W JP 2017028493W WO 2019026297 A1 WO2019026297 A1 WO 2019026297A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- abnormality
- track
- abnormality detection
- drive system
- detection device
- Prior art date
Links
- 230000005856 abnormality Effects 0.000 title claims abstract description 323
- 238000001514 detection method Methods 0.000 title claims abstract description 165
- 230000002159 abnormal effect Effects 0.000 claims description 24
- 238000012545 processing Methods 0.000 claims description 17
- 230000007613 environmental effect Effects 0.000 claims description 4
- 230000001419 dependent effect Effects 0.000 claims description 3
- 230000001965 increasing effect Effects 0.000 claims description 3
- 238000004458 analytical method Methods 0.000 claims description 2
- 238000007619 statistical method Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 description 37
- 238000010586 diagram Methods 0.000 description 13
- 238000012423 maintenance Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 238000013144 data compression Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 208000002693 Multiple Abnormalities Diseases 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000009194 climbing Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L23/00—Control, warning or like safety means along the route or between vehicles or trains
- B61L23/04—Control, warning or like safety means along the route or between vehicles or trains for monitoring the mechanical state of the route
- B61L23/042—Track changes detection
- B61L23/044—Broken rails
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61K—AUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
- B61K9/00—Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
- B61K9/08—Measuring installations for surveying permanent way
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L15/00—Indicators provided on the vehicle or train for signalling purposes
- B61L15/0018—Communication with or on the vehicle or train
- B61L15/0027—Radio-based, e.g. using GSM-R
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L15/00—Indicators provided on the vehicle or train for signalling purposes
- B61L15/0081—On-board diagnosis or maintenance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L23/00—Control, warning or like safety means along the route or between vehicles or trains
- B61L23/04—Control, warning or like safety means along the route or between vehicles or trains for monitoring the mechanical state of the route
- B61L23/042—Track changes detection
- B61L23/045—Rail wear
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L27/00—Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
- B61L27/50—Trackside diagnosis or maintenance, e.g. software upgrades
- B61L27/53—Trackside diagnosis or maintenance, e.g. software upgrades for trackside elements or systems, e.g. trackside supervision of trackside control system conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L27/00—Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
- B61L27/50—Trackside diagnosis or maintenance, e.g. software upgrades
- B61L27/57—Trackside diagnosis or maintenance, e.g. software upgrades for vehicles or trains, e.g. trackside supervision of train conditions
Definitions
- the present invention relates to an abnormality detection apparatus, an abnormality detection system, and an abnormality detection method, and is suitably applied to, for example, a track traveling vehicle traveling on a track.
- a track traveling vehicle travels on a track with little friction, it requires less energy for transportation and has become one of the social infrastructures.
- an abnormality occurs in the drive system or the track, it affects other track traveling vehicles traveling on the same track, so it is required to detect the abnormality without leaking it.
- the abnormality detection work using a dedicated device is costly, a technology capable of detecting an abnormality in parallel with the commercial operation of a track traveling vehicle has been developed.
- Patent Document 1 there is disclosed a technique of observing the currents of two motors driving the left and right wheels respectively and judging that there is an abnormality in the drive system when the difference between the current values exceeds a threshold.
- Patent Document 1 the difference between the current value due to the speed difference between the inner ring and the outer ring at the time of curve is allowed by changing the current threshold at the time of straight line and at the time of curve based on the track position. , To prevent abnormal false detection at the time of curve.
- the target of abnormality detection is only the drive system of the track traveling vehicle, and it is not possible to detect the track abnormality.
- the current waveform of the motor is different from that in the normal state, but the technology described in Patent Document 1 erroneously detects this as an abnormality in the drive system. For this reason, the inspection cost for the drive system that should be normal is wasted.
- an abnormality in the drive system is erroneously detected and an abnormality in the track is missed, there is a risk that the track traveling vehicle may derail.
- the present invention has been made in consideration of the above points, and an object of the present invention is to propose an abnormality detection apparatus, an abnormality detection system, and an abnormality detection method capable of detecting an abnormality in a track.
- the present invention is an abnormality detection device for detecting an abnormality relating to a track traveling vehicle traveling on a track, wherein the feature amount of the physical quantity of the drive system provided in the track traveling vehicle exceeds a threshold.
- An acquisition unit for acquiring a drive system position indicating the position of the drive system with respect to the track traveling vehicle at the threshold exceed time indicating the detected time, and the plurality of drive systems provided in the track traveling vehicle
- a determination unit that determines whether there is a correlation between a plurality of threshold excess times acquired by the acquisition unit and the drive system position at the threshold excess time; an output unit that outputs based on the determination result by the determination unit
- the output unit is configured to output a trajectory abnormality signal indicating that there is an abnormality in the trajectory when it is determined by the determination unit that there is a correlation.
- a track traveling vehicle traveling on a track and at a threshold overrun time indicating a time when a feature quantity of a physical quantity of a drive system provided on the track traveling vehicle exceeds a threshold, and the threshold overrun time
- An acquisition unit for acquiring a drive system position indicating a position of the drive system with respect to the track traveling vehicle, and a plurality of threshold exceeded times and the threshold values acquired by the acquisition unit for a plurality of drive systems provided in the track traveling vehicle A determination unit that determines whether or not there is a correlation in the drive system position at the excess time, and an output unit that performs an output based on the determination result by the determination unit, the output unit being correlated by the determination unit When it is determined that there is a sex, an orbit abnormal signal indicating that there is an abnormality in the orbit is output.
- the abnormality detection method is performed by an abnormality detection apparatus for detecting an abnormality related to a track traveling vehicle traveling on a track, wherein the feature amount of the drive system physical quantity provided in the track traveling vehicle is a threshold.
- a first step of acquiring a drive system position indicating a position of the drive system with respect to the track traveling vehicle at a threshold over time showing the exceeded time and the threshold run time; and a plurality of drives provided on the track traveling vehicle A second step of determining whether or not there is a correlation between the plurality of threshold exceeded times obtained in the first step and the drive system position at the threshold exceeded time for the system, and the determination in the second step And a third step of outputting a signal based on the result, wherein, in the third step, the trajectory is abnormal when it is determined that there is a correlation in the second step. And it outputs a track error signal indicating that.
- an abnormality detection device for detecting an abnormality relating to a track traveling vehicle traveling on a track, wherein a feature amount of a physical quantity of a drive system provided on the track traveling vehicle and the feature amount are measured.
- An acquiring unit that acquires a track position indicating a position on the track, and a plurality of physical quantities acquired by the acquiring unit and a track position at which the physical quantity is acquired for a plurality of drive systems provided in the track traveling vehicle It is determined whether or not the distance between the track positions where the physical quantity exceeds the threshold among the plurality of track positions is constant, and the physical quantity of the track position exceeding the threshold is over time.
- a determination unit that determines whether or not there is an increase, and an output unit that performs an output based on the determination result by the determination unit, the output unit being determined by the determination unit to be dependent, and Not equal is determined, if it is determined to be increased, and outputs a track error signal indicating that there is abnormality in the track.
- an abnormality detection device capable of detecting an abnormality in a track, an abnormality detection system, and an abnormality detection method.
- FIG. 5 is a schematic view of a track abnormality and a drive system abnormality in the first embodiment. It is a figure which shows the flowchart which concerns on the process which the abnormality detection apparatus in 2nd Embodiment performs.
- FIG. 1 It is a schematic diagram of the seam in a 2nd embodiment, and orbital abnormalities. It is a figure which shows the relationship of the correlation in the joint in 2nd Embodiment, and the relationship of the correlation in orbital abnormality. It is a figure which shows the flowchart which concerns on the process which the abnormality detection apparatus in 3rd Embodiment performs. It is a schematic diagram of the wheel abnormality in 3rd Embodiment, a gear abnormality, and a motor abnormality. In the third embodiment, the relationship between the threshold excess time and the drive system position in the wheel abnormality, the relationship between the threshold excess time and the drive system position in the gear abnormality, and the relationship between the threshold excess time and the drive system position in the motor abnormality are described. FIG.
- FIG. 1 is a diagram showing an example of a configuration of an abnormality detection system 100 according to a first embodiment.
- the abnormality detection system 100 is configured to include a plurality of track traveling vehicles such as the track traveling vehicle 1 and a host system 20 capable of communicating with the plurality of track traveling vehicles.
- a host system 20 capable of communicating with the plurality of track traveling vehicles.
- the track traveling vehicle 1 will be described as an example.
- an abnormality an abnormality of the track traveling vehicle 1, an abnormality of the track 2, etc.
- an abnormality an abnormality of the track traveling vehicle 1, an abnormality of the track 2, etc.
- the track traveling vehicle 1 is composed of the vehicles 1a to 1n, includes wheels 3a to 3k, and travels on the track 2 at a vehicle speed v, for example. In the present embodiment, it will be described distance to each wheel axis of the case relative to the distal end of the track traveling vehicle 1 (relative position) as the drive system position y a ⁇ y k.
- the host system 20 generates a command (a d-axis current command, a q-axis current command, a stop command, a degeneracy command, etc.) for controlling the traveling of the track traveling vehicle 1 and transmits it to the track traveling vehicle 1 Example) to receive and record data transmitted from the track traveling vehicle 1.
- a command (a d-axis current command, a q-axis current command, a stop command, a degeneracy command, etc.) for controlling the traveling of the track traveling vehicle 1 and transmits it to the track traveling vehicle 1 Example) to receive and record data transmitted from the track traveling vehicle 1.
- the functions of the host system 20 may be realized by the CPU reading and executing a program in the memory, or may be realized by hardware such as a dedicated circuit, It may be realized by other methods.
- An appropriate configuration can be adopted for the host system 20.
- a computer may be provided for each track traveling vehicle, and a computer that manages all these computers may be provided, or another configuration may be used.
- some components of the upper system 20 may be provided in the track traveling vehicle 1 or may be provided separately from the upper system 20 and the track traveling vehicle 1.
- FIG. 2A is a diagram showing an example of a configuration of one track traveling vehicle 1 (vehicle 1a).
- vehicle 1a vehicle 1a
- the configuration of the vehicles 1b to 1n other than the vehicle 1a of the track traveling vehicle 1 is the same, and thus the illustration and the description thereof will be omitted.
- the vehicle 1a includes wheels 3a to 3d, motors 4a to 4d, inverters 5a to 5d, gears 6a to 6d, and an abnormality detection device 8.
- the torque of the motor 4a which is a drive source is controlled by the inverter 5a, and is transmitted to the wheel 3a via the gear 6a.
- the inverter 5a is composed of a main circuit 5a1 and a control circuit 5a2.
- the case is illustrated where all the wheels 3a to 3d are provided with the motors 4a to 4d and the inverters 5a to 5d, but in the case where at least two front and rear wheels are provided with a motor and an inverter.
- the wheel 3a, the motor 4a and the gear 6a are defined as the drive system 7a
- the wheel 3b, the motor 4b and the gear 6b are defined as the drive system 7b
- an abnormality for the track 2 and the drive systems 7a and 7b The detection is mainly described. The same applies to abnormality detection of the drive systems 7c to 7k (not shown).
- the abnormality detection device 8 is an FPGA (Field-Programmable Gate Array), a personal computer or the like.
- the functions (acquisition unit, determination unit, output unit, adjustment unit, etc.) of the abnormality detection device 8 shown in FIG. 2B may be realized by, for example, an integrated circuit whose configuration can be set by a designer, or the CPU It may be realized by reading and executing a program of the memory, or may be realized by hardware such as a dedicated circuit, or may be realized by another method.
- the abnormality detection device 8 is communicably connected to the inverters 5a and 5b, and acquires physical quantities such as current flowing to the motors 4a and 4b or the inverters 5a and 5b via the inverters 5a and 5b (an example of an acquisition unit) Based on the acquired physical quantities, abnormalities in the track 2 and the drive systems 7a and 7b are detected (judged) (an example of a determination unit).
- the abnormality detection device 8 is communicably connected to the host system 20, and transmits and receives various information (for example, transmits a trajectory abnormality signal described later, a drive system abnormality signal, etc., d axis current command, q An axis current command, a stop command, a degeneracy command and the like are received (an example of an output unit).
- the main components related to the abnormality detection are as described above. Next, the problem of abnormality detection will be described.
- FIG. 3A shows a current waveform of U-phase current iu-4a of motor 4a when abnormality occurs in track 2 or drive system 7a
- FIG. 3B shows track 2 or drive
- FIG. 18 is a diagram showing a current waveform of U-phase current iu-4 b of motor 4 b when an abnormality occurs in system 7 b.
- the threshold value ⁇ i uX is the track 2 and the driving system 7a, 7b indicates the extent to which U-phase current i u-4a, is i u-4b fit when it is normal, for example, based on the rated current of the motor 4a it can.
- the abnormality of the track 2 includes wear, breakage and the like.
- the abnormality of the drive system 7a includes the deformation of the wheel 3a, the seizure of the bearing of the wheel 3a, the deformation of the rotation shaft of the motor 4a, and the loss of the teeth of the gear 6a.
- An abnormality in the track 2 or the drive system 7a eventually becomes a disturbance torque to the motor 4a, but appears as a current waveform since the torque of the motor 4a and the current of the motor 4a are in a proportional relationship.
- an abnormality of the track 2 or drive system 7a is generated at time t 1, U-phase current i u-4a may exceed the threshold i uX. The same applies to the U-phase current iu-4b of the motor 4b.
- the problem here is that when an abnormality is detected by observation of the U-phase current iu-4a , the cause can not be limited to either the orbit 2 or the drive system 7a. For this reason, the maintenance worker needs to inspect both the track 2 and the drive system 7a, which increases the working time. In order to reduce the working time, it is necessary to be able to detect an abnormality by observing the U-phase currents iu-4a and iu-4b , and to be able to identify the cause of the abnormality.
- FIG. 4 is a diagram showing a flowchart related to the processing performed by the abnormality detection device 8.
- a flow chart 8a shown in FIG. 4A is a flow chart for current observation
- a flow chart 8b shown in FIG. 4B is a flow chart for detecting an abnormality, and the processes are repeated independently of one another.
- the processing content shown in the flowcharts 8a and 8b is an aspect of an implementation example of the abnormality detection device 8 and immediately before the trajectory abnormality / drive system abnormality determination flow of FIG. 4, that is, the threshold described later in the flow (A0) stage. If there is data on excess time and drive system position, the flow before that is optional.
- the abnormality detection device 8 observes the U-phase current (step S10). Subsequently, the abnormality detection device 8 determines whether the feature amount of the U-phase current exceeds a threshold (step S12). If the abnormality detection device 8 determines that it exceeds, it records the time (hereinafter referred to as threshold exceeded time) and the drive system number exceeding the threshold (step S14), and determines that it does not exceed. finish.
- the drive system number is information which can uniquely identify the drive systems 7a to 7k, and the drive system position is linked to the drive system number.
- the feature value refers to the maximum value of the physical quantity (for example, U-phase current), the effective value of the physical quantity, the band pass filter value of the physical quantity, the specific frequency component by Fourier analysis of the physical quantity (for example, FFT (Fast Fourier Transform etc.)
- the physical quantity for example, U-phase current
- the effective value of the physical quantity for example, the band pass filter value of the physical quantity
- the specific frequency component by Fourier analysis of the physical quantity for example, FFT (Fast Fourier Transform etc.)
- the d-axis current command deviation described above is, for example, one of the control software variables of the control circuit 5a2, and the d-axis current command (a command value transmitted from the upper system 20) of the control software variable and the d of the motor 4a. It is a deviation from the axial current (measured value). The same applies to the q-axis current command deviation.
- the control software variables indicating the deviation between the control command and the control target amount such as d-axis current command deviation and q-axis current command deviation are zero in the normal state, and increase when transitioning to the abnormal state. It is suitable as an observation target for
- the abnormality detection device 8 determines whether the data of the threshold excess time and the drive system number are sufficient (whether or not there is a predetermined number) (step S20). If the abnormality detection device 8 determines that there is a predetermined number of data, the process proceeds to step S22. If it is determined that the predetermined number of data does not exist, the process ends.
- the predetermined number is a number necessary to determine whether or not there is a correlation between the plurality of threshold excess times and the drive system position.
- the vehicle speed v of the track traveling vehicle 1 when the vehicle speed v of the track traveling vehicle 1 is known, it can be determined based on whether the threshold overrun time and the driveline position match the vehicle speed v, so at least two points of data (threshold overtime If there are two sets of drive system positions, the correlation can be determined.
- step S22 the abnormality detection device 8 reads data of the threshold excess time and drive system number. Subsequently, the abnormality detection device 8 examines the correlation between the threshold excess time and the drive system position (step S24), and when it is determined that there is a correlation, a trajectory abnormality indicating that the trajectory 2 is abnormal (trajectory abnormality) When a signal is output (step S26) and it is determined that there is no correlation, a drive system abnormality signal indicating that there is an abnormality (drive system abnormality) in drive systems 7a to 7d is output (step S28), and the process is ended. Do.
- an output may be transmitting a signal to the host system 20, may transmit a signal to another orbital traveling vehicle different from the orbital traveling vehicle 1, or an orbital traveling vehicle
- the determination result may be shown on a display, a warning light, etc. (not shown) provided in 1 or any other output or combination thereof.
- FIG. 5 shows an example of the relationship between the threshold excess times t a to t k and the drive system positions y a to y k .
- FIG. 5A is a diagram showing an example of the relationship between threshold excess times t a to t k and drive system positions y a to y k in track abnormality
- FIG. 5B is a threshold on drive system abnormality. It is a diagram showing an example of the relationship between the excess time t a ⁇ t k and the drive system position y a ⁇ y k.
- a log related to the threshold excess will be referred to as a threshold excess log as appropriate.
- the abnormality detection device 8 outputs a track abnormality signal when there is a correlation between the plurality of threshold excess times and the drive system position, and outputs a drive system abnormality signal when there is no correlation.
- the difference between the track abnormality 9a and the drive system abnormalities 9b1 to 9b4 appears as the presence or absence of the correlation between the threshold crossing time and the drive system position, as shown in FIG. 6B only for some wheels (for example, the wheels 3a). The same is true when an abnormality occurs in the
- the track abnormality 9a and the drive system errors 9b1 to 9b4 are occurring at the same time, the data on the track abnormality 9a is first extracted according to the correlation, and the presence or absence of the drive system errors 9b1 to 9b4 is determined from the remaining data. Is also possible.
- the operation principle of the abnormality detection device 8 is as described above. According to this configuration, since the track abnormality and the drive system abnormality can be determined, the maintenance work time can be shortened. Hereinafter, means for enhancing the effectiveness of the abnormality detection device 8 will be described.
- a data center (data server or the like) is constructed in the host system 20, and the data center aggregates record data of a plurality of track traveling vehicles.
- data compression technology By applying data compression technology after data aggregation, for example, by finding and compressing data related to anomaly detection common to several track vehicles, it is possible to apply data compression technology for each track vehicle. The amount of data can be reduced as a whole.
- the output logs of the trajectory abnormality signal and the drive system abnormality signal may be aggregated.
- the data center may be built in a building or may be built on a specific track traveling vehicle.
- the abnormality detection device 8 operates at a specific time zone or place.
- the abnormality detection device 8 may be operated only by the first power generation vehicle or the last train, or the abnormality detection device 8 may be operated only at a place where the wear of the track 2 such as climbing or curve tends to progress.
- the abnormality detection device 8 may be mounted only on a specific track traveling vehicle.
- the abnormality detection device 8 may change the operation cycle of the flowchart 8a, and may shorten the operation cycle only in a predetermined period after the feature amount exceeds the threshold.
- the host system 20 may output a track abnormality signal using recording data of a plurality of track traveling vehicles.
- the host system 20 can estimate (specify) the occurrence point (abnormal point) of the track abnormality with high accuracy by collating the position of the track abnormality obtained from the recorded data of each track traveling vehicle with each other. (An example of a specific part).
- the abnormality detection device 8 may measure environmental data regarding environmental conditions such as air temperature and humidity, and adjust the threshold based on the measurement result (an example of the adjustment unit) .
- environmental conditions such as air temperature and humidity
- the threshold For example, at low temperatures, the track 2 shrinks and gaps such as joints of the track 2 and pointers increase, so when the track traveling vehicle 1 passes them, there is a possibility that the threshold will be exceeded. In that case, the abnormality detection device 8 erroneously detects the seam or the pointer that should be normal as the trajectory abnormality 9a. Therefore, false detection can be prevented by adjusting the threshold according to the temperature.
- the motors 4a to 4k are magnet motors, the torque constant changes with temperature, and the current value also changes during normal operation with the same torque. Therefore, also in this case, it is desirable that the abnormality detection device 8 adjust the threshold with respect to the temperature.
- the upper system 20 may transmit an abnormality detection signal.
- the railway operation management system may or may not be included in the upper system 20.
- the host system 20 stop or degenerate the corresponding drive system when the drive system abnormality 9b1 to 9b4 is detected. Even when the drive system is stopped, if a normal drive system remains in the track traveling vehicle, the host system 20 travels the track traveling command to move to a nearby station or maintenance site by the normal drive system. It may be transmitted to the vehicle.
- FIG. 7 is a diagram showing a flowchart according to processing performed by the abnormality detection device 8 in the second embodiment.
- the abnormality detection device 8 can distinguish between a track abnormality and a joint by replacing the processing after (A1) and (A2) shown in FIG. 4 with the processing of the flowchart shown in FIG. Become.
- the operation principle is described below.
- FIG. 8 (A) is a schematic view showing the seam 10
- FIG. 8 (B) is a schematic view showing the orbit abnormality 9a.
- the seam 10 is not an abnormality of the trajectory 2, it is preferable to adopt a configuration for discriminating between the seam 10 and the trajectory abnormality 9 a because the threshold 10 may be generated even by the seam 10.
- the difference between the seam 10 and the orbit anomaly 9a is the position interval between them.
- the position interval of the seam 10 is constant, but the position interval of the orbit anomaly 9a is random. Therefore, as shown in FIG. 9 (A), in the case where there is a seam 10, after the correlation alpha 1 over-threshold time t a1 ⁇ t k1 and the drive system position y a ⁇ y k was observed, correlation ⁇ 2 to ⁇ 4 are observed at a constant threshold excess period ⁇ T.
- FIG. 9 (B) when there is the orbit abnormality 9a, as shown in FIG. 9 (B), after the correlation ⁇ 1 is observed, the correlation ⁇ 2 and ⁇ 3 are random threshold excess periods ⁇ T 1 and ⁇ T 2 . It is observed.
- the abnormality detection device 8 determines the presence or absence of the periodicity of the correlation between the threshold excess time and the drive system position (step S30). For example, when the interval between the seams 10 is known, the abnormality detection device 8 determines the presence or absence of periodicity based on at least two or more correlations, and when the interval between the seams 10 is unknown, at least three or more.
- the abnormality detection device 8 determines that there is periodicity, it outputs a seam detection signal indicating the seam 10 of the trajectory 2 (step S32), and if it determines that there is no periodicity, it outputs a trajectory abnormality signal (step S32) S34), the process ends.
- the abnormality detection device 8 outputs a drive system abnormality signal as in the first embodiment.
- the operation principle of the abnormality detection device 8 in the present embodiment is as described above. According to this configuration, in addition to the effects of the first embodiment, it is possible to prevent erroneous detection of the track abnormality due to the seam and reduce the maintenance cost.
- FIG. 10 is a diagram showing a flowchart according to processing performed by the abnormality detection device 8 in the third embodiment.
- the abnormality detection device 8 identifies an abnormal part in the drive systems 7a to 7d by replacing the processing after (A1) and (A2) shown in FIG. 4 with the processing of the flowchart shown in FIG. become able to.
- the operation principle is described below.
- the abnormalities of the drive systems 7a to 7k are classified into the abnormalities of the wheels 3a to 3k, the gears 6a to 6k, and the motors 4a to 4k.
- a wheel abnormality 9b1 (the same meaning as the same symbol in FIG. 6) occurs in the drive system 7a
- a gear abnormality 9c occurs in the drive system 7b
- a motor abnormality 9d occurs in the drive system 7d
- FIG. 11 (A) shows a wheel abnormality 9b1
- FIG. 11 (B) shows a gear abnormality 9c
- FIG. 11 (C) shows a motor abnormality 9d.
- the gear abnormality 9c 'on the wheel side can be considered as the gear abnormality in FIG. 11B, but the result when this occurs is the same as the wheel abnormality 9b1 in FIG. 11A, so the description will be omitted. .
- FIG. 12 is a diagram showing a threshold excess log related to the wheel abnormality 9b1, the gear abnormality 9c, and the motor abnormality 9d. If the vehicle speed v is constant, the influence of the cause of the abnormality has on the motor 4a ⁇ 4d become periodically, the threshold in the period T 1 ⁇ T 3 different for each abnormal part (the abnormal cause) as shown in FIG. 12 Excess is observed.
- the threshold excess periods T 1 to T 3 are derived as follows.
- Threshold exceeded period T 3 shown in FIG. 12, since equal electrical rotation period of the motor 4d, when the number of pole pairs of the motor 4d and P m, is expressed as follows. T 3 2 ⁇ r / ⁇ P m v (Equation 3)
- the threshold excess periods T 1 to T 3 differ depending on the cause of abnormality. Therefore, as shown in the flowchart of FIG. 10 (drive system abnormality determination flow), a wheel abnormality signal indicating that the abnormality is identified according to the threshold excess period T 1 to T 3 and indicating that the wheels 3 a to 3 d are abnormal; A gear abnormality signal indicating that there is an abnormality in the gears 6a to 6d and a motor abnormality signal indicating that there is an abnormality in the motors 4a to 4d are output.
- step S28 when the abnormality detection device 8 outputs a drive system abnormality signal (step S28), the abnormality detection device 8 determines whether the threshold excess period becomes the wheel circumference / vehicle speed (step S40). In the case where it is determined that the process is not performed at step S42, the process proceeds to step S44. In step S42, the abnormality detection device 8 outputs a wheel / axle side gear abnormality signal (wheel abnormality signal), and the process proceeds to step S44.
- step S44 the abnormality detection device 8 determines whether or not the threshold excess period is equal to the wheel circumference / vehicle speed / gear ratio. If it is determined that it is, the process proceeds to step S46. The process moves to step S48. In step S46, the abnormality detection device 8 outputs a motor gear abnormality signal (gear abnormality signal), and the process proceeds to step S48.
- step S46 the abnormality detection device 8 outputs a motor gear abnormality signal (gear abnormality signal), and the process proceeds to step S48.
- step S48 the abnormality detection device 8 determines whether the threshold excess period is equal to wheel circumference / vehicle speed / gear ratio / pole logarithm. If it is determined that it is, it is determined that the process is not transferred to step S50. If it does, the process ends. In step S50, the abnormality detection device 8 outputs a motor abnormality signal, and the process ends.
- step S26 the abnormality detection device 8 outputs a track abnormality signal as in the first embodiment.
- the present invention is also applicable to the case where there is a plurality of abnormalities in a certain drive system.
- the number of deformed portions is specified by data processing technology such as machine learning. It is also possible.
- the operation principle of the abnormality detection device 8 in the present embodiment is as described above. According to this configuration, in addition to the effects of the first embodiment, since the abnormal part of the drive system can be identified, it is possible to reduce the stock of the maintenance parts by arranging only the necessary maintenance parts.
- FIG. 13 is a diagram showing a flowchart according to processing performed by the abnormality detection device 8 in the fourth embodiment.
- a flow chart 8c shown in FIG. 13A is a flow chart for current observation
- a flow chart 8d shown in FIG. 13B is a flow chart for detecting an abnormality, and the process is repeated independently of each other.
- the abnormality detection device 8 determines each of the trajectory abnormality, the drive system abnormality, the seam, and the pointer by executing the processes shown in the flowcharts 8c and 8d. The operation principle is described below.
- step S60 the abnormality detection device 8 observes the current as in the first embodiment. Subsequently, the abnormality detection device 8 records the feature amount of the current and the track position (step S62), and ends the process.
- the feature of the present embodiment is to record the feature amount and the orbit position of the current, which is hereinafter referred to as a feature amount log.
- the orbital position represents the position on the trajectory 2 (absolute position).
- the orbital position can be measured, for example, by GPS (Global Positioning System).
- the track position can also be estimated, for example, from the integral value of the vehicle speed v.
- the abnormality detection apparatus 8 can acquire a track position by another method.
- the origin of the track position is arbitrary, for example, the stop position target of the first train station can be set as the origin.
- step S70 the abnormality detection device 8 determines whether the number of data of the feature amount and the track position is sufficient for the determination of the track abnormality, the drive system abnormality, the seam, and the pointer. If the abnormality detection device 8 determines that the process is sufficient, the process proceeds to step S72, and if it is determined that the process is not sufficient, the process ends.
- step S72 the abnormality detection device 8 reads data of the feature amount and the trajectory position. Subsequently, the abnormality detection device 8 determines whether the feature amounts of all the read data are in the vicinity of "0" (step S74), and it is determined that the feature amounts of all the data are in the vicinity of "0" If YES in step S76, the processing ends, and if it is determined that any feature amount of all the data is not near “0”, the processing is shifted to step S76.
- step S76 the abnormality detection device 8 determines the dependence of the feature amount on the track position, and if it is determined that there is a dependence, the process proceeds to step S78. If it is determined that there is no dependence, the drive system abnormality A signal is output (step S88), and the process ends.
- the normalized feature amount s exceeds the threshold value “1” regardless of the trajectory position x.
- the feature quantity s is a phenomenon dependent on the orbit position x, and the feature value s is limited to the threshold value “1” only for specific orbit positions x j and x k. Over.
- the abnormality detection device 8 determines the trajectory abnormality 9a shown in FIG. 15 (A), the seam 10 shown in FIG. 15 (B), and the pointer 11 shown in FIG. 15 (C).
- the trajectory abnormality 9a shown in FIG. 15A and the seam 10 shown in FIG. 15B are the same as those shown in FIGS. 8A and 8B, and the positional distance between the seams 10 is constant. Because of this, it can be determined by the processing of the flowchart shown in FIG. 7 (see the second embodiment). That is, also in step S78, the abnormality detection device 8 similarly determines whether the interval between the track positions at which the feature amount exceeds the threshold (hereinafter, the threshold excess position) is constant, and determines that it is constant.
- the threshold excess position hereinafter, the threshold excess position
- the seam detection signal is output (step S80), and the process ends.
- the pointer 11 shown in FIG. 15 (C) is not constant, the position interval is not constant as in the case of the trajectory abnormality 9a. 11 and the orbit abnormality 9a can not be distinguished.
- FIG. 16 based on the temporal change of the feature amount s of the pointer 11 and the trajectory abnormality 9a, they are determined.
- the trajectory abnormality 9a proceeds in orbital position x j
- the feature value s in the orbital position x j increases with the lapse of time t (t0 ⁇ t1 ⁇ t2 ⁇ t3) .
- FIG. 16B when the pointer 11 is at the trajectory position x k , the pointer 11 is present from the time of installation of the trajectory 2, so the feature amount s at the trajectory position x k is , Does not depend on time t.
- step S82 the abnormality detection device 8 determines whether the feature amount increases with the passage of time, and when it is determined that the feature amount increases, outputs the track abnormality signal (step S84). If it is determined that the number does not increase, a pointer detection signal indicating the pointer 11 of the trajectory 2 is output (step S86), and the process is ended. By this processing, the abnormality detection device 8 determines the pointer 11 and the trajectory abnormality 9a. Note that the abnormality detection device 8 may read data recorded in the past in order to see the elapsed time, or may acquire past data from the host system 20.
- FIG. 17 shows a threshold value excess log in the case where the trajectory abnormality 9a, the seam 10 and the pointer 11 shown in FIG. 15 (D) are present.
- the operation of the abnormality detection device 8 at this time is as follows.
- a pointer detection signal is output because there is a pointer 11 at x k shown in FIG. 17 and the interval of the position exceeding the threshold is not constant and the feature amount does not increase with time.
- the abnormality detection device 8 By sequentially performing the above-described seam determination, trajectory abnormality determination, and pointer determination, the abnormality detection device 8 detects an abnormality signal or detection signal that matches the trajectory abnormality 9a, the seam 10, and the pointer 11, even when they are mixed. Can be output.
- the abnormality detection device 8 can also specify the occurrence position of the track abnormality 9a by comparing the track position with the recording (refer to the track position).
- the seam 10 and the pointer 11 also wear out due to the change with time and become an abnormal state.
- the abnormality of the seam 10 and the pointer 11 can also be detected by means of changing the threshold for each abnormal state, changing the definition of the observation amount and the feature amount for each abnormal state, or the like.
- the operation principle of the abnormality detection device 8 in the present embodiment is as described above. According to such a configuration, since each of the track abnormality, the drive system abnormality, the seam and the pointer can be determined, the maintenance work time can be shortened. Moreover, according to such a configuration, it is possible to reduce the stock of maintenance parts as in the third embodiment.
- abnormality detection device 8 detects abnormality
- the host system 20 may execute the process shown in the flowchart 8b of FIG. 4, the process shown in the flowchart of FIG. 7, the process shown in the flowchart of FIG. 10, and the process shown in the flowchart 8d of FIG.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Train Traffic Observation, Control, And Security (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
[Problem] To provide an abnormality detection device capable of detecting an abnormality on a track. [Solution] The present invention comprises: an acquisition section that acquires a threshold excess time indicating the time at which a characteristic value of a physical quantity of each drive system disposed in a rail vehicle exceeds a threshold and a drive system position indicating the position of the drive system with respect to the rail vehicle at the threshold excess time; a determination section that determines whether or not there is a correlation between the plurality of threshold excess times and the drive system positions at the threshold excess times acquired for the plurality of drive systems disposed in the rail vehicle by the acquisition section; and an output section that performs output on the basis of the determination result of the determination section. If it is determined by the determining section that there is a correlation, the output section outputs a track abnormality signal indicating that there is an abnormality on the track.
Description
本発明は異常検知装置、異常検知システム、および異常検知方法に関し、例えば軌道を走行する軌道走行車両に適用して好適なものである。
The present invention relates to an abnormality detection apparatus, an abnormality detection system, and an abnormality detection method, and is suitably applied to, for example, a track traveling vehicle traveling on a track.
軌道走行車両は、摩擦の少ない軌道を走行することから、輸送に必要なエネルギーが少なく、社会インフラの1つとなっている。一方、駆動系または軌道の異常が発生すると、同じ軌道上を走行する他の軌道走行車両にも影響が及ぶことから、異常を漏らさずに検知することが求められている。しかしながら、専用装置を用いた異常検知作業は、コストが掛かることから、軌道走行車両の営業運転と並行して異常を検知できる技術が開発されている。
Since a track traveling vehicle travels on a track with little friction, it requires less energy for transportation and has become one of the social infrastructures. On the other hand, if an abnormality occurs in the drive system or the track, it affects other track traveling vehicles traveling on the same track, so it is required to detect the abnormality without leaking it. However, since the abnormality detection work using a dedicated device is costly, a technology capable of detecting an abnormality in parallel with the commercial operation of a track traveling vehicle has been developed.
例えば、左右の車輪をそれぞれ駆動する2つのモータの電流を観測し、電流値の差が閾値を超えた場合、駆動系に異常があると判断する技術が開示されている(特許文献1参照)。さらに、特許文献1に記載の技術では、軌道位置に基づいて直線時とカーブ時との電流閾値を変更することによって、カーブ時での内輪と外輪との速度差による電流値の差を許容し、カーブ時での異常誤検知を防止している。
For example, there is disclosed a technique of observing the currents of two motors driving the left and right wheels respectively and judging that there is an abnormality in the drive system when the difference between the current values exceeds a threshold (see Patent Document 1). . Furthermore, in the technology described in Patent Document 1, the difference between the current value due to the speed difference between the inner ring and the outer ring at the time of curve is allowed by changing the current threshold at the time of straight line and at the time of curve based on the track position. , To prevent abnormal false detection at the time of curve.
しかしながら、特許文献1に記載の技術では、異常検知の対象が軌道走行車両の駆動系のみであり、軌道の異常を検知できない。また、軌道が摩耗あるいは破断した場合において、モータの電流波形は、正常時とは異なるが、特許文献1に記載の技術では、これを駆動系の異常として誤検知する。このため、正常であるはずの駆動系に掛かる検査費用が無駄となる。また、駆動系の異常として誤検知して軌道の異常を見逃した場合には、軌道走行車両が脱線するおそれがある。
However, in the technology described in Patent Document 1, the target of abnormality detection is only the drive system of the track traveling vehicle, and it is not possible to detect the track abnormality. When the track is worn or broken, the current waveform of the motor is different from that in the normal state, but the technology described in Patent Document 1 erroneously detects this as an abnormality in the drive system. For this reason, the inspection cost for the drive system that should be normal is wasted. In addition, when an abnormality in the drive system is erroneously detected and an abnormality in the track is missed, there is a risk that the track traveling vehicle may derail.
本発明は以上の点を考慮してなされたもので、軌道の異常を検知可能な異常検知装置、異常検知システム、および異常検知方法を提案しようとするものである。
The present invention has been made in consideration of the above points, and an object of the present invention is to propose an abnormality detection apparatus, an abnormality detection system, and an abnormality detection method capable of detecting an abnormality in a track.
かかる課題を解決するため本発明においては、軌道を走行する軌道走行車両に係る異常を検知する異常検知装置であって、前記軌道走行車両に設けられた駆動系の物理量の特徴量が閾値を超えた時刻を示す閾値超過時刻、および前記閾値超過時刻における前記駆動系の前記軌道走行車両に対する位置を示す駆動系位置を取得する取得部と、前記軌道走行車両に設けられた複数の駆動系について前記取得部により取得された複数の閾値超過時刻および前記閾値超過時刻における駆動系位置に相関性があるか否かを判定する判定部と、前記判定部による判定結果に基づいて出力を行う出力部と、を備え、前記出力部は、前記判定部により相関性があると判定された場合、前記軌道に異常があることを示す軌道異常信号を出力するようにした。
In order to solve such problems, the present invention is an abnormality detection device for detecting an abnormality relating to a track traveling vehicle traveling on a track, wherein the feature amount of the physical quantity of the drive system provided in the track traveling vehicle exceeds a threshold. An acquisition unit for acquiring a drive system position indicating the position of the drive system with respect to the track traveling vehicle at the threshold exceed time indicating the detected time, and the plurality of drive systems provided in the track traveling vehicle A determination unit that determines whether there is a correlation between a plurality of threshold excess times acquired by the acquisition unit and the drive system position at the threshold excess time; an output unit that outputs based on the determination result by the determination unit The output unit is configured to output a trajectory abnormality signal indicating that there is an abnormality in the trajectory when it is determined by the determination unit that there is a correlation.
また本発明においては、軌道を走行する軌道走行車両であって、前記軌道走行車両に設けられた駆動系の物理量の特徴量が閾値を超えた時刻を示す閾値超過時刻、および前記閾値超過時刻における前記駆動系の前記軌道走行車両に対する位置を示す駆動系位置を取得する取得部と、前記軌道走行車両に設けられた複数の駆動系について前記取得部により取得された複数の閾値超過時刻および前記閾値超過時刻における駆動系位置に相関性があるか否かを判定する判定部と、前記判定部による判定結果に基づいて出力を行う出力部と、を備え、前記出力部は、前記判定部により相関性があると判定された場合、前記軌道に異常があることを示す軌道異常信号を出力するようにした。
Further, in the present invention, a track traveling vehicle traveling on a track, and at a threshold overrun time indicating a time when a feature quantity of a physical quantity of a drive system provided on the track traveling vehicle exceeds a threshold, and the threshold overrun time An acquisition unit for acquiring a drive system position indicating a position of the drive system with respect to the track traveling vehicle, and a plurality of threshold exceeded times and the threshold values acquired by the acquisition unit for a plurality of drive systems provided in the track traveling vehicle A determination unit that determines whether or not there is a correlation in the drive system position at the excess time, and an output unit that performs an output based on the determination result by the determination unit, the output unit being correlated by the determination unit When it is determined that there is a sex, an orbit abnormal signal indicating that there is an abnormality in the orbit is output.
また本発明においては、軌道を走行する軌道走行車両に係る異常を検知する異常検知装置が実行する異常検知方法であって、前記軌道走行車両に設けられた駆動系の物理量の特徴量が閾値を超えた時刻を示す閾値超過時刻、および前記閾値超過時刻における前記駆動系の前記軌道走行車両に対する位置を示す駆動系位置を取得する第1のステップと、前記軌道走行車両に設けられた複数の駆動系について前記第1のステップで取得された複数の閾値超過時刻および前記閾値超過時刻における駆動系位置に相関性があるか否かを判定する第2のステップと、前記第2のステップでの判定結果に基づいて信号を出力する第3のステップと、を備え、前記第3のステップでは、前記第2のステップで相関性があると判定した場合、前記軌道に異常があることを示す軌道異常信号を出力するようにした。
Further, in the present invention, the abnormality detection method is performed by an abnormality detection apparatus for detecting an abnormality related to a track traveling vehicle traveling on a track, wherein the feature amount of the drive system physical quantity provided in the track traveling vehicle is a threshold. A first step of acquiring a drive system position indicating a position of the drive system with respect to the track traveling vehicle at a threshold over time showing the exceeded time and the threshold run time; and a plurality of drives provided on the track traveling vehicle A second step of determining whether or not there is a correlation between the plurality of threshold exceeded times obtained in the first step and the drive system position at the threshold exceeded time for the system, and the determination in the second step And a third step of outputting a signal based on the result, wherein, in the third step, the trajectory is abnormal when it is determined that there is a correlation in the second step. And it outputs a track error signal indicating that.
また本発明においては、軌道を走行する軌道走行車両に係る異常を検知する異常検知装置であって、前記軌道走行車両に設けられた駆動系の物理量の特徴量、および前記特徴量が測定された前記軌道における位置を示す軌道位置を取得する取得部と、前記軌道走行車両に設けられた複数の駆動系について前記取得部により取得された複数の物理量および前記物理量が取得された軌道位置に依存性があるか否かを判定し、前記複数の軌道位置のうち物理量が閾値を超える軌道位置の間隔が一定であるか否かを判定し、前記閾値を超える軌道位置の物理量が時間経過に伴って増加しているか否かをする判定部と、前記判定部による判定結果に基づいて出力を行う出力部と、を備え、前記出力部は、前記判定部により依存性があると判定され、一定でないと判定され、増加していると判定された場合、前記軌道に異常があることを示す軌道異常信号を出力するようにした。
Further, in the present invention, it is an abnormality detection device for detecting an abnormality relating to a track traveling vehicle traveling on a track, wherein a feature amount of a physical quantity of a drive system provided on the track traveling vehicle and the feature amount are measured. An acquiring unit that acquires a track position indicating a position on the track, and a plurality of physical quantities acquired by the acquiring unit and a track position at which the physical quantity is acquired for a plurality of drive systems provided in the track traveling vehicle It is determined whether or not the distance between the track positions where the physical quantity exceeds the threshold among the plurality of track positions is constant, and the physical quantity of the track position exceeding the threshold is over time. A determination unit that determines whether or not there is an increase, and an output unit that performs an output based on the determination result by the determination unit, the output unit being determined by the determination unit to be dependent, and Not equal is determined, if it is determined to be increased, and outputs a track error signal indicating that there is abnormality in the track.
本発明によれば、軌道の異常を検知可能な異常検知装置、異常検知システム、および異常検知方法を実現することができる。
According to the present invention, it is possible to realize an abnormality detection device capable of detecting an abnormality in a track, an abnormality detection system, and an abnormality detection method.
以下図面について、本発明の一実施の形態を詳述する。
An embodiment of the present invention will now be described in detail with reference to the drawings.
(1)第1の実施の形態
図1は、第1の実施の形態における異常検知システム100の構成の一例を示す図である。異常検知システム100は、軌道走行車両1などの複数の軌道走行車両、および複数の軌道走行車両と通信可能な上位システム20を含んで構成される。なお、複数の軌道走行車両の各々の構成は、基本的に同じであるので、本実施の形態では、軌道走行車両1を例に挙げて説明する。かかる異常検知システム100では、軌道2を走行する軌道走行車両1に係る異常(軌道走行車両1の異常、軌道2の異常など)が検知される。 (1) First Embodiment FIG. 1 is a diagram showing an example of a configuration of anabnormality detection system 100 according to a first embodiment. The abnormality detection system 100 is configured to include a plurality of track traveling vehicles such as the track traveling vehicle 1 and a host system 20 capable of communicating with the plurality of track traveling vehicles. In addition, since each structure of a plurality of track traveling vehicles is basically the same, in the present embodiment, the track traveling vehicle 1 will be described as an example. In the abnormality detection system 100, an abnormality (an abnormality of the track traveling vehicle 1, an abnormality of the track 2, etc.) related to the track traveling vehicle 1 traveling on the track 2 is detected.
図1は、第1の実施の形態における異常検知システム100の構成の一例を示す図である。異常検知システム100は、軌道走行車両1などの複数の軌道走行車両、および複数の軌道走行車両と通信可能な上位システム20を含んで構成される。なお、複数の軌道走行車両の各々の構成は、基本的に同じであるので、本実施の形態では、軌道走行車両1を例に挙げて説明する。かかる異常検知システム100では、軌道2を走行する軌道走行車両1に係る異常(軌道走行車両1の異常、軌道2の異常など)が検知される。 (1) First Embodiment FIG. 1 is a diagram showing an example of a configuration of an
軌道走行車両1は、車両1a~1nから構成され、車輪3a~3kを備え、例えば車両速度vで軌道2上を走行する。なお、本実施の形態では、軌道走行車両1の先端を基準とした場合の各車輪軸までの距離(相対的位置)を駆動系位置ya~ykとして説明する。
The track traveling vehicle 1 is composed of the vehicles 1a to 1n, includes wheels 3a to 3k, and travels on the track 2 at a vehicle speed v, for example. In the present embodiment, it will be described distance to each wheel axis of the case relative to the distal end of the track traveling vehicle 1 (relative position) as the drive system position y a ~ y k.
上位システム20は、軌道走行車両1の走行を制御するための指令(d軸電流指令、q軸電流指令、停止指令、縮退指令など)を生成して軌道走行車両1に送信したり(指令部の一例)、軌道走行車両1から送信されたデータを受信して記録したりする。上位システム20の機能(指令部、後述の特定部など)は、CPUがメモリのプログラムを読み出して実行することにより実現されてもよいし、専用回路などのハードウェアにより実現されてもよいし、その他の方法により実現されてもよい。
The host system 20 generates a command (a d-axis current command, a q-axis current command, a stop command, a degeneracy command, etc.) for controlling the traveling of the track traveling vehicle 1 and transmits it to the track traveling vehicle 1 Example) to receive and record data transmitted from the track traveling vehicle 1. The functions of the host system 20 (command unit, identification unit described later, etc.) may be realized by the CPU reading and executing a program in the memory, or may be realized by hardware such as a dedicated circuit, It may be realized by other methods.
なお、上位システム20については、適宜の構成を採用することができる。例えば、上位システム20の構成としては、軌道走行車両ごとにコンピュータが設けられ、更にこれら全てのコンピュータを管理するコンピュータが設けられてもよいし、その他の構成であってもよい。また、例えば、上位システム20の一部の構成要素は、軌道走行車両1に設けられてもよいし、上位システム20および軌道走行車両1とは別途に設けられていてもよい。
An appropriate configuration can be adopted for the host system 20. For example, as a configuration of the upper system 20, a computer may be provided for each track traveling vehicle, and a computer that manages all these computers may be provided, or another configuration may be used. Also, for example, some components of the upper system 20 may be provided in the track traveling vehicle 1 or may be provided separately from the upper system 20 and the track traveling vehicle 1.
図2(A)は、軌道走行車両1の1台分(車両1a)の構成の一例を示す図である。なお、軌道走行車両1の車両1a以外の他の車両1b~1nについては同様の構成であるので、図示およびその説明については省略する。
FIG. 2A is a diagram showing an example of a configuration of one track traveling vehicle 1 (vehicle 1a). The configuration of the vehicles 1b to 1n other than the vehicle 1a of the track traveling vehicle 1 is the same, and thus the illustration and the description thereof will be omitted.
車両1aは、車輪3a~3d、モータ4a~4d、インバータ5a~5d、ギア6a~6d、および異常検知装置8を含んで構成される。例えば、駆動源であるモータ4aのトルクは、インバータ5aによって制御され、ギア6aを経由して車輪3aへ伝えられる。なお、インバータ5aは、主回路5a1と制御回路5a2とから構成される。
The vehicle 1a includes wheels 3a to 3d, motors 4a to 4d, inverters 5a to 5d, gears 6a to 6d, and an abnormality detection device 8. For example, the torque of the motor 4a which is a drive source is controlled by the inverter 5a, and is transmitted to the wheel 3a via the gear 6a. The inverter 5a is composed of a main circuit 5a1 and a control circuit 5a2.
本実施の形態では、全ての車輪3a~3dにモータ4a~4dおよびインバータ5a~5dが備わっている場合を例示しているが、少なくとも前後の2つの車輪にモータおよびインバータが備わっている場合には、軌道2の異常検知を実現可能である。以下では、車輪3a、モータ4a、およびギア6aを駆動系7aとして定義し、車輪3b、モータ4b、およびギア6bを駆動系7bとして定義し、軌道2および駆動系7a,7bを対象とした異常検知について主に説明する。なお、駆動系7c~7k(図示省略)の異常検知についても同様に実施可能である。
In the present embodiment, the case is illustrated where all the wheels 3a to 3d are provided with the motors 4a to 4d and the inverters 5a to 5d, but in the case where at least two front and rear wheels are provided with a motor and an inverter. Can realize anomaly detection of the trajectory 2. In the following, the wheel 3a, the motor 4a and the gear 6a are defined as the drive system 7a, the wheel 3b, the motor 4b and the gear 6b are defined as the drive system 7b, and an abnormality for the track 2 and the drive systems 7a and 7b The detection is mainly described. The same applies to abnormality detection of the drive systems 7c to 7k (not shown).
異常検知装置8は、FPGA(Field-Programmable Gate Array)、パソコン等である。図2(B)に示す異常検知装置8の機能(取得部、判定部、出力部、調整部など)は、例えば、設計者が構成を設定できる集積回路により実現されてもよいし、CPUがメモリのプログラムを読み出して実行することにより実現されてもよいし、専用回路などのハードウェアにより実現されてもよいし、その他の方法により実現されてもよい。
The abnormality detection device 8 is an FPGA (Field-Programmable Gate Array), a personal computer or the like. The functions (acquisition unit, determination unit, output unit, adjustment unit, etc.) of the abnormality detection device 8 shown in FIG. 2B may be realized by, for example, an integrated circuit whose configuration can be set by a designer, or the CPU It may be realized by reading and executing a program of the memory, or may be realized by hardware such as a dedicated circuit, or may be realized by another method.
例えば、異常検知装置8は、インバータ5a,5bと通信可能に接続され、インバータ5a,5bを介してモータ4a,4bまたはインバータ5a,5bに流れる電流等の物理量を取得し(取得部の一例)、取得した物理量に基づいて軌道2および駆動系7a,7bの異常を検知(判定)する(判定部の一例)。
For example, the abnormality detection device 8 is communicably connected to the inverters 5a and 5b, and acquires physical quantities such as current flowing to the motors 4a and 4b or the inverters 5a and 5b via the inverters 5a and 5b (an example of an acquisition unit) Based on the acquired physical quantities, abnormalities in the track 2 and the drive systems 7a and 7b are detected (judged) (an example of a determination unit).
また、例えば、異常検知装置8は、上位システム20と通信可能に接続され、各種の情報を送受信(例えば、後述の軌道異常信号、駆動系異常信号等を送信したり、d軸電流指令、q軸電流指令、停止指令、縮退指令等を受信したり)する(出力部の一例)。
Further, for example, the abnormality detection device 8 is communicably connected to the host system 20, and transmits and receives various information (for example, transmits a trajectory abnormality signal described later, a drive system abnormality signal, etc., d axis current command, q An axis current command, a stop command, a degeneracy command and the like are received (an example of an output unit).
異常検知に係る主な構成要素は、以上の通りである。次に、異常検知の問題点について説明する。
The main components related to the abnormality detection are as described above. Next, the problem of abnormality detection will be described.
図3(A)は、軌道2または駆動系7aに異常が生じた場合のモータ4aのU相電流iu-4aの電流波形を示す図であり、図3(B)は、軌道2または駆動系7bに異常が生じた場合のモータ4bのU相電流iu-4bの電流波形を示す図である。
FIG. 3A shows a current waveform of U-phase current iu-4a of motor 4a when abnormality occurs in track 2 or drive system 7a, and FIG. 3B shows track 2 or drive FIG. 18 is a diagram showing a current waveform of U-phase current iu-4 b of motor 4 b when an abnormality occurs in system 7 b.
閾値±iuXは、軌道2および駆動系7a,7bが正常である場合にU相電流iu-4a,iu-4bが収まる範囲を示し、例えば、モータ4aの定格電流値に基づいて設定できる。なお、軌道2の異常としては、摩耗、破断などがある。駆動系7aの異常としては、車輪3aの変形、車輪3aの軸受の焼き付き、モータ4aの回転軸変形、ギア6aの歯の欠損などがある。
Setting the threshold value ± i uX is the track 2 and the driving system 7a, 7b indicates the extent to which U-phase current i u-4a, is i u-4b fit when it is normal, for example, based on the rated current of the motor 4a it can. The abnormality of the track 2 includes wear, breakage and the like. The abnormality of the drive system 7a includes the deformation of the wheel 3a, the seizure of the bearing of the wheel 3a, the deformation of the rotation shaft of the motor 4a, and the loss of the teeth of the gear 6a.
軌道2または駆動系7aの異常は、どちらも最終的にはモータ4aへの外乱トルクとなるが、モータ4aのトルクとモータ4aの電流が比例関係にあるので、電流波形として現れる。例えば、時刻t1において軌道2または駆動系7aの異常が発生すると、U相電流iu-4aは、閾値iuXを超過する。これは、モータ4bのU相電流iu-4bについても同様である。
An abnormality in the track 2 or the drive system 7a eventually becomes a disturbance torque to the motor 4a, but appears as a current waveform since the torque of the motor 4a and the current of the motor 4a are in a proportional relationship. For example, an abnormality of the track 2 or drive system 7a is generated at time t 1, U-phase current i u-4a may exceed the threshold i uX. The same applies to the U-phase current iu-4b of the motor 4b.
ここで問題となるのは、U相電流iu-4aの観測によって異常を検知したとき、その原因を軌道2と駆動系7aとの何れか一方に限定できないことである。このため、保守作業員は、軌道2と駆動系7aとの両方を検査する必要があり、作業時間が増加してしまう。作業時間を減らすには、U相電流iu-4a,iu-4bの観測によって異常検知し、さらに異常原因を特定できる必要がある。
The problem here is that when an abnormality is detected by observation of the U-phase current iu-4a , the cause can not be limited to either the orbit 2 or the drive system 7a. For this reason, the maintenance worker needs to inspect both the track 2 and the drive system 7a, which increases the working time. In order to reduce the working time, it is necessary to be able to detect an abnormality by observing the U-phase currents iu-4a and iu-4b , and to be able to identify the cause of the abnormality.
なお、上述の内容は、U相電流に限られるものではなく、V相電流、W相電流についても同様である。
The contents described above are not limited to the U-phase current, and the same applies to the V-phase current and the W-phase current.
異常検知の問題点は、以上の通りである。次に、異常検知を行う異常検知装置8の動作原理(異常検知方法の一例)ついて説明する。
The problems with anomaly detection are as described above. Next, an operation principle (an example of an abnormality detection method) of the abnormality detection device 8 which performs the abnormality detection will be described.
図4は、異常検知装置8が実行する処理に係るフローチャートを示す図である。図4(A)に示すフローチャート8aは、電流観測用のフローチャートであり、図4(B)に示すフローチャート8bは、異常検知用のフローチャートであり、それぞれ独立に繰り返し処理される。ただし、フローチャート8a,8bに示す処理内容は、異常検知装置8の実装例の一態様であり、図4の軌道異常・駆動系異常判別フローの直前、すなわちフロー(A0)の段階において後述の閾値超過時刻および駆動系位置のデータがあれば、それ以前のフローについては任意である。
FIG. 4 is a diagram showing a flowchart related to the processing performed by the abnormality detection device 8. A flow chart 8a shown in FIG. 4A is a flow chart for current observation, and a flow chart 8b shown in FIG. 4B is a flow chart for detecting an abnormality, and the processes are repeated independently of one another. However, the processing content shown in the flowcharts 8a and 8b is an aspect of an implementation example of the abnormality detection device 8 and immediately before the trajectory abnormality / drive system abnormality determination flow of FIG. 4, that is, the threshold described later in the flow (A0) stage. If there is data on excess time and drive system position, the flow before that is optional.
フローチャート8aに示すように、異常検知装置8は、U相電流を観測する(ステップS10)。続いて、異常検知装置8は、U相電流の特徴量が閾値を超えているか否かを判定する(ステップS12)。異常検知装置8は、超えていると判定した場合、そのときの時刻(以下、閾値超過時刻)および閾値超過の駆動系番号を記録し(ステップS14)、超えていないと判定した場合、処理を終了する。駆動系番号は、駆動系7a~7kを一意に識別可能な情報であり、駆動系番号には、駆動系位置が紐づけられている。
As shown in the flowchart 8a, the abnormality detection device 8 observes the U-phase current (step S10). Subsequently, the abnormality detection device 8 determines whether the feature amount of the U-phase current exceeds a threshold (step S12). If the abnormality detection device 8 determines that it exceeds, it records the time (hereinafter referred to as threshold exceeded time) and the drive system number exceeding the threshold (step S14), and determines that it does not exceed. finish. The drive system number is information which can uniquely identify the drive systems 7a to 7k, and the drive system position is linked to the drive system number.
ここで、特徴量とは、物理量(例えば、U相電流)の最大値、物理量の実効値、物理量のバンドパスフィルタ値、物理量のフーリエ解析(例えば、FFT(Fast Fourier Transform等)による特定周波数成分、物理量についての統計的手法によるデータ処理結果などであり、物理量の観測値を直接用いる場合に比べて異常検知の精度を高めることができる。
Here, the feature value refers to the maximum value of the physical quantity (for example, U-phase current), the effective value of the physical quantity, the band pass filter value of the physical quantity, the specific frequency component by Fourier analysis of the physical quantity (for example, FFT (Fast Fourier Transform etc.) These are data processing results of statistical methods for physical quantities, etc., and the accuracy of anomaly detection can be enhanced compared to the case of directly using observed values of physical quantities.
同様に異常検知の精度を高めるために、以下の観測対象を追加してもよい。また、その代わりにU相電流の観測を中止してもよい。
電気データ:モータ4a~4kの三相交流電流、モータ4a~4dの三相交流電圧、モータ4a~4dのd軸電流、モータ4a~4dのq軸電流、モータ4a~4dのd軸電圧、モータ4a~4dのq軸電圧
機械データ:駆動系7a~7dの回転速度、駆動系7a~7dのトルク、駆動系7a~7dの振動、駆動系7a~7dの騒音
制御ソフトウェア変数:d軸電流指令偏差、q軸電流指令偏差 Similarly, the following observation targets may be added to improve the accuracy of the abnormality detection. Alternatively, the observation of the U-phase current may be stopped instead.
Electrical data: three-phase alternating current ofmotors 4a-4k, three-phase alternating voltage of motors 4a-4d, d-axis current of motors 4a-4d, q-axis current of motors 4a-4d, d-axis voltage of motors 4a-4d, Q axis voltage of motors 4a to 4d Machine data: rotational speed of drive systems 7a to 7d, torque of drive systems 7a to 7d, vibration of drive systems 7a to 7d, noise of drive systems 7a to 7d Control software variable: d axis current Command deviation, q-axis current command deviation
電気データ:モータ4a~4kの三相交流電流、モータ4a~4dの三相交流電圧、モータ4a~4dのd軸電流、モータ4a~4dのq軸電流、モータ4a~4dのd軸電圧、モータ4a~4dのq軸電圧
機械データ:駆動系7a~7dの回転速度、駆動系7a~7dのトルク、駆動系7a~7dの振動、駆動系7a~7dの騒音
制御ソフトウェア変数:d軸電流指令偏差、q軸電流指令偏差 Similarly, the following observation targets may be added to improve the accuracy of the abnormality detection. Alternatively, the observation of the U-phase current may be stopped instead.
Electrical data: three-phase alternating current of
上記のd軸電流指令偏差とは、例えば、制御回路5a2の制御ソフトウェア変数の1つであり、同じく制御ソフトウェア変数のd軸電流指令(上位システム20から送信される指令値)とモータ4aのd軸電流(実測値)との偏差である。q軸電流指令偏差についても同様である。d軸電流指令偏差、q軸電流指令偏差などの制御指令と制御対象量との偏差を示す制御ソフトウェア変数は、正常状態ではゼロであり、異常状態に移行するときに増加するので、異常検知のための観測対象として適している。
The d-axis current command deviation described above is, for example, one of the control software variables of the control circuit 5a2, and the d-axis current command (a command value transmitted from the upper system 20) of the control software variable and the d of the motor 4a. It is a deviation from the axial current (measured value). The same applies to the q-axis current command deviation. The control software variables indicating the deviation between the control command and the control target amount such as d-axis current command deviation and q-axis current command deviation are zero in the normal state, and increase when transitioning to the abnormal state. It is suitable as an observation target for
また、フローチャート8bに示すように、異常検知装置8は、閾値超過時刻および駆動系番号のデータが十分であるか否か(所定数あるか否か)を判定する(ステップS20)。異常検知装置8は、データが所定数あると判定した場合、ステップS22に処理を移し、データが所定数ないと判定した場合、処理を終了する。なお、所定数とは、複数の閾値超過時刻および駆動系位置に相関性があるか否かを判定するために必要な数をいう。例えば、軌道走行車両1の車両速度vが既知とした場合は、この車両速度vに閾値超過時刻および駆動系位置が合っているか否かにより判定できるので、少なくとも2点のデータ(閾値超過時刻および駆動系位置が2セット)があると相関性の判定が可能となる。
Further, as shown in the flowchart 8b, the abnormality detection device 8 determines whether the data of the threshold excess time and the drive system number are sufficient (whether or not there is a predetermined number) (step S20). If the abnormality detection device 8 determines that there is a predetermined number of data, the process proceeds to step S22. If it is determined that the predetermined number of data does not exist, the process ends. The predetermined number is a number necessary to determine whether or not there is a correlation between the plurality of threshold excess times and the drive system position. For example, when the vehicle speed v of the track traveling vehicle 1 is known, it can be determined based on whether the threshold overrun time and the driveline position match the vehicle speed v, so at least two points of data (threshold overtime If there are two sets of drive system positions, the correlation can be determined.
ステップS22では、異常検知装置8は、閾値超過時刻および駆動系番号のデータを読み込む。続いて、異常検知装置8は、閾値超過時刻と駆動系位置の相関性を調べ(ステップS24)、相関性があると判定した場合、軌道2に異常(軌道異常)があることを示す軌道異常信号を出力し(ステップS26)、相関性がないと判定した場合、駆動系7a~7dに異常(駆動系異常)があることを示す駆動系異常信号を出力し(ステップS28)、処理を終了する。
In step S22, the abnormality detection device 8 reads data of the threshold excess time and drive system number. Subsequently, the abnormality detection device 8 examines the correlation between the threshold excess time and the drive system position (step S24), and when it is determined that there is a correlation, a trajectory abnormality indicating that the trajectory 2 is abnormal (trajectory abnormality) When a signal is output (step S26) and it is determined that there is no correlation, a drive system abnormality signal indicating that there is an abnormality (drive system abnormality) in drive systems 7a to 7d is output (step S28), and the process is ended. Do.
なお、出力とは、上位システム20に信号を送信することであってもよいし、軌道走行車両1とは異なる他の軌道走行車両に信号を送信することであってもよいし、軌道走行車両1に設けられるディスプレイ、警告灯等(図示しない)に判定結果を示すことであってもよいし、その他の出力であってもいし、これらの組合せであってもよい。
In addition, an output may be transmitting a signal to the host system 20, may transmit a signal to another orbital traveling vehicle different from the orbital traveling vehicle 1, or an orbital traveling vehicle The determination result may be shown on a display, a warning light, etc. (not shown) provided in 1 or any other output or combination thereof.
図5は、閾値超過時刻ta~tkと駆動系位置ya~ykとの関係の例について示す。図5(A)は、軌道異常における閾値超過時刻ta~tkと駆動系位置ya~ykとの関係の一例を示す図であり、図5(B)は、駆動系異常における閾値超過時刻ta~tkと駆動系位置ya~ykとの関係の一例を示す図である。以下では、閾値の超過に関するログを閾値超過ログと適宜称する。
FIG. 5 shows an example of the relationship between the threshold excess times t a to t k and the drive system positions y a to y k . FIG. 5A is a diagram showing an example of the relationship between threshold excess times t a to t k and drive system positions y a to y k in track abnormality, and FIG. 5B is a threshold on drive system abnormality. it is a diagram showing an example of the relationship between the excess time t a ~ t k and the drive system position y a ~ y k. Hereinafter, a log related to the threshold excess will be referred to as a threshold excess log as appropriate.
例えば、図6(A)に示す軌道異常9aを車輪3a~3kが車両速度vで通過するので、図5(A)に示す点(ta,ya)~(tk,yk)は、傾きvの直線上に並ぶ。
For example, since the track abnormal 9a wheels 3a ~ 3k shown in FIG. 6 (A) is passed by the vehicle speed v, the point shown in FIG. 5 (A) (t a, y a) ~ (t k, y k) is , Aligned on the straight line of inclination v.
一方、例えば、図6(B)に示す駆動系異常9b1~9b4がある場合、傾きvの直線上に並ぶというような規則性は見られず、閾値の超過は、ランダムな時刻で発生する。
On the other hand, for example, in the case where there are drive system abnormalities 9b1 to 9b4 shown in FIG. 6B, regularity such as being aligned on the straight line of the slope v is not seen, and exceeding of the threshold occurs at random time.
すなわち、軌道異常9aがある場合と駆動系異常9b1~9b4がある場合との差は、閾値超過時刻と駆動系位置との相関性の有無となって現れる。そこで、フローチャート8bでは、異常検知装置8は、複数の閾値超過時刻および駆動系位置に相関性がある場合には、軌道異常信号を出力し、相関性がない場合には駆動系異常信号を出力する。
That is, the difference between the case where there is the track abnormality 9a and the case where there is the drive system abnormality 9b1 to 9b4 appears as the presence or absence of the correlation between the threshold excess time and the drive system position. Therefore, in the flowchart 8b, the abnormality detection device 8 outputs a track abnormality signal when there is a correlation between the plurality of threshold excess times and the drive system position, and outputs a drive system abnormality signal when there is no correlation. Do.
ここで、図5(A)の点(ta,ya)~(tk,yk)が傾きvの直線上に並ぶのは、車両速度vが一定である場合に限られる。車両速度vの変化が無視できない場合、異常検知装置8は、例えば、車両加速度pの積分曲線上に点(ta,ya)~(tk,yk)が重なるときには軌道異常信号を出力し、重ならないときには駆動系異常信号を出力する。
Here, FIG. 5 (A) point (t a, y a) ~ (t k, y k) lining up in the gradient v straight line of only if the vehicle speed v is constant. If a change in the vehicle speed v is not negligible, the abnormality detection apparatus 8, for example, a point on the integral curve of the vehicle acceleration p (t a, y a) ~ (t k, y k) outputs a track error signal when the overlap If they do not overlap, they output a drive system abnormality signal.
軌道異常9aと駆動系異常9b1~9b4との差が閾値超過時刻および駆動系位置の相関性の有無となって現れることは、図6(B)において一部の車輪(例えば、車輪3a)のみに異常が発生した場合でも同様である。また、軌道異常9aと駆動系異常9b1~9b4とが同時に発生している場合、相関性に従って軌道異常9aに関するデータを先に抜き出し、残りのデータから駆動系異常9b1~9b4の有無を判別することも可能である。
The difference between the track abnormality 9a and the drive system abnormalities 9b1 to 9b4 appears as the presence or absence of the correlation between the threshold crossing time and the drive system position, as shown in FIG. 6B only for some wheels (for example, the wheels 3a). The same is true when an abnormality occurs in the In addition, when the track abnormality 9a and the drive system errors 9b1 to 9b4 are occurring at the same time, the data on the track abnormality 9a is first extracted according to the correlation, and the presence or absence of the drive system errors 9b1 to 9b4 is determined from the remaining data. Is also possible.
異常検知装置8の動作原理は、以上の通りである。かかる構成によれば、軌道異常と駆動系異常とを判別できるので、保守作業時間を短縮できるようになる。以下、異常検知装置8の有効性を高めるための手段について説明する。
The operation principle of the abnormality detection device 8 is as described above. According to this configuration, since the track abnormality and the drive system abnormality can be determined, the maintenance work time can be shortened. Hereinafter, means for enhancing the effectiveness of the abnormality detection device 8 will be described.
例えば閾値超過時刻および駆動系位置の記録データ量を削減するために、以下を実施してもよい。
(i)上位システム20にデータセンタ(データサーバ等)を構築し、データセンタは、複数の軌道走行車両の記録データを集約する。データの集約後にデータ圧縮技術を適用することにより、例えば幾つかの軌道走行車両に共通する異常検知に係るデータを見つけて圧縮することにより、軌道走行車両ごとにデータ圧縮技術を適用する場合よりもデータ量を全体として削減できる。データセンタには、記録データの他、軌道異常信号および駆動系異常信号の出力ログを集約してもよい。なお、データセンタについては、建屋内に構築してもよく、特定の軌道走行車両に構築してもよい。
(ii)異常検知装置8が動作するのは、特定の時間帯または場所とする。例えば、始発電車または最終電車のみで異常検知装置8を動作させてもよいし、登坂、カーブなどの軌道2の摩耗が進行しやすい場所のみで異常検知装置8を動作させてもよい。
(iii)異常検知装置8は、特定の軌道走行車両のみに搭載してもよい。
(iv)異常検知装置8は、フローチャート8aの演算周期を変更可能であり、特徴量が閾値を超えたあとの所定期間のみ演算周期を短くしてもよい。 For example, in order to reduce the amount of recording data of the threshold excess time and the drive system position, the following may be performed.
(I) A data center (data server or the like) is constructed in thehost system 20, and the data center aggregates record data of a plurality of track traveling vehicles. By applying data compression technology after data aggregation, for example, by finding and compressing data related to anomaly detection common to several track vehicles, it is possible to apply data compression technology for each track vehicle. The amount of data can be reduced as a whole. In the data center, in addition to the recording data, the output logs of the trajectory abnormality signal and the drive system abnormality signal may be aggregated. The data center may be built in a building or may be built on a specific track traveling vehicle.
(Ii) Theabnormality detection device 8 operates at a specific time zone or place. For example, the abnormality detection device 8 may be operated only by the first power generation vehicle or the last train, or the abnormality detection device 8 may be operated only at a place where the wear of the track 2 such as climbing or curve tends to progress.
(Iii) Theabnormality detection device 8 may be mounted only on a specific track traveling vehicle.
(Iv) Theabnormality detection device 8 may change the operation cycle of the flowchart 8a, and may shorten the operation cycle only in a predetermined period after the feature amount exceeds the threshold.
(i)上位システム20にデータセンタ(データサーバ等)を構築し、データセンタは、複数の軌道走行車両の記録データを集約する。データの集約後にデータ圧縮技術を適用することにより、例えば幾つかの軌道走行車両に共通する異常検知に係るデータを見つけて圧縮することにより、軌道走行車両ごとにデータ圧縮技術を適用する場合よりもデータ量を全体として削減できる。データセンタには、記録データの他、軌道異常信号および駆動系異常信号の出力ログを集約してもよい。なお、データセンタについては、建屋内に構築してもよく、特定の軌道走行車両に構築してもよい。
(ii)異常検知装置8が動作するのは、特定の時間帯または場所とする。例えば、始発電車または最終電車のみで異常検知装置8を動作させてもよいし、登坂、カーブなどの軌道2の摩耗が進行しやすい場所のみで異常検知装置8を動作させてもよい。
(iii)異常検知装置8は、特定の軌道走行車両のみに搭載してもよい。
(iv)異常検知装置8は、フローチャート8aの演算周期を変更可能であり、特徴量が閾値を超えたあとの所定期間のみ演算周期を短くしてもよい。 For example, in order to reduce the amount of recording data of the threshold excess time and the drive system position, the following may be performed.
(I) A data center (data server or the like) is constructed in the
(Ii) The
(Iii) The
(Iv) The
また、例えば異常検知の精度を高めるために、上記(i)のデータ集約後においては、上位システム20は、複数の軌道走行車両の記録データを用いて軌道異常信号を出力してもよい。例えば、上位システム20は、個々の軌道走行車両の記録データから得られた軌道異常の位置を互いに照合することによって、軌道異常の発生個所(異常個所)を高精度に推定(特定)できるようになる(特定部の一例)。
Also, for example, in order to enhance the accuracy of abnormality detection, after the data collection in (i) above, the host system 20 may output a track abnormality signal using recording data of a plurality of track traveling vehicles. For example, the host system 20 can estimate (specify) the occurrence point (abnormal point) of the track abnormality with high accuracy by collating the position of the track abnormality obtained from the recorded data of each track traveling vehicle with each other. (An example of a specific part).
また、例えば異常誤検知を防止するために、異常検知装置8は、気温、湿度などの環境条件に関する環境データを測定し、測定結果に基づいて閾値を調整してもよい(調整部の一例)。例えば、低温時においては、軌道2が縮み、軌道2の継目やポインタなどの隙間が増大するので、軌道走行車両1がそれらを通過したときに閾値の超過が発生するおそれがある。その場合、異常検知装置8は、正常であるはずの継目やポインタを軌道異常9aとして誤検知する。そこで、気温に応じて閾値が調整されることによって誤検知を防止できる。また、モータ4a~4kが磁石モータである場合、温度によってトルク定数が変化し、同じトルクでの正常運転時においても電流値が変化する。ゆえに、この場合においても、異常検知装置8は、温度に対して閾値を調整することが望ましい。
Further, for example, in order to prevent abnormal erroneous detection, the abnormality detection device 8 may measure environmental data regarding environmental conditions such as air temperature and humidity, and adjust the threshold based on the measurement result (an example of the adjustment unit) . For example, at low temperatures, the track 2 shrinks and gaps such as joints of the track 2 and pointers increase, so when the track traveling vehicle 1 passes them, there is a possibility that the threshold will be exceeded. In that case, the abnormality detection device 8 erroneously detects the seam or the pointer that should be normal as the trajectory abnormality 9a. Therefore, false detection can be prevented by adjusting the threshold according to the temperature. When the motors 4a to 4k are magnet motors, the torque constant changes with temperature, and the current value also changes during normal operation with the same torque. Therefore, also in this case, it is desirable that the abnormality detection device 8 adjust the threshold with respect to the temperature.
また、例えばより安全な車両運行を実現するために、異常検知装置8は、軌道異常9aを検知した場合には近隣(例えば、後方)の軌道走行車両、上位システム20(例えば、鉄道運航管理システム)などに異常検知信号を送信してもよい。なお、鉄道運航管理システムは、上位システム20に含まれていてもよいし、含まれていなくてもよい。また、上位システム20は、駆動系異常9b1~9b4を検知した場合には該当駆動系を停止または縮退運転させることが望ましい。当該駆動系を停止させた場合においても、当該軌道走行車両に正常な駆動系が残っている場合、上位システム20は、正常な駆動系によって近傍の駅または整備場まで移動する指令を当該軌道走行車両に送信するようにしてもよい。
Further, for example, in order to realize safer vehicle operation, when the abnormality detection device 8 detects the track abnormality 9a, a track traveling vehicle in the vicinity (for example, the rear), the upper system 20 (for example, a railway operation management system And the like) may transmit an abnormality detection signal. The railway operation management system may or may not be included in the upper system 20. Further, it is desirable that the host system 20 stop or degenerate the corresponding drive system when the drive system abnormality 9b1 to 9b4 is detected. Even when the drive system is stopped, if a normal drive system remains in the track traveling vehicle, the host system 20 travels the track traveling command to move to a nearby station or maintenance site by the normal drive system. It may be transmitted to the vehicle.
以上のように、本実施の形態によれば、記録データ量の削減、異常検知の精度の向上、異常誤検知の防止、より安全な車両運行を行うことができる。
As described above, according to the present embodiment, it is possible to reduce the amount of recording data, improve the accuracy of abnormality detection, prevent abnormal error detection, and perform safer vehicle operation.
(2)第2の実施の形態
図7は、第2の実施の形態における異常検知装置8が実行する処理に係るフローチャートを示す図である。ただし、第1の実施の形態と同等の点については、図示およびその説明を適宜に省略する。本実施の形態では、図4に示す(A1)、(A2)から後の処理を図7に示すフローチャートの処理に置き換えることによって、異常検知装置8は、軌道異常と継目とを判別できるようになる。その動作原理を以下で説明する。 (2) Second Embodiment FIG. 7 is a diagram showing a flowchart according to processing performed by theabnormality detection device 8 in the second embodiment. However, illustration and explanation of points equivalent to the first embodiment will be omitted as appropriate. In the present embodiment, the abnormality detection device 8 can distinguish between a track abnormality and a joint by replacing the processing after (A1) and (A2) shown in FIG. 4 with the processing of the flowchart shown in FIG. Become. The operation principle is described below.
図7は、第2の実施の形態における異常検知装置8が実行する処理に係るフローチャートを示す図である。ただし、第1の実施の形態と同等の点については、図示およびその説明を適宜に省略する。本実施の形態では、図4に示す(A1)、(A2)から後の処理を図7に示すフローチャートの処理に置き換えることによって、異常検知装置8は、軌道異常と継目とを判別できるようになる。その動作原理を以下で説明する。 (2) Second Embodiment FIG. 7 is a diagram showing a flowchart according to processing performed by the
図8(A)は、継目10を示す模式図であり、図8(B)は、軌道異常9aを示す模式図である。継目10は、軌道2の異常ではないが、継目10によっても閾値超過が発生する可能性があるので、継目10と軌道異常9aとを判別する構成を採用することが好ましい。
FIG. 8 (A) is a schematic view showing the seam 10, and FIG. 8 (B) is a schematic view showing the orbit abnormality 9a. Although the seam 10 is not an abnormality of the trajectory 2, it is preferable to adopt a configuration for discriminating between the seam 10 and the trajectory abnormality 9 a because the threshold 10 may be generated even by the seam 10.
継目10と軌道異常9aとの差は、それらの位置間隔であり、継目10の位置間隔は、一定であるが、軌道異常9aの位置間隔は、ランダムとなる。このため、図9(A)に示すように、継目10がある場合では、閾値超過時間ta1~tk1と駆動系位置ya~ykの相関性α1が観測された後、相関性α2~α4が一定の閾値超過周期ΔTで観測される。一方、軌道異常9aがある場合には、図9(B)に示すように、相関性β1が観測された後、相関性β2、β3がランダムな閾値超過周期ΔT1、ΔT2で観測される。
The difference between the seam 10 and the orbit anomaly 9a is the position interval between them. The position interval of the seam 10 is constant, but the position interval of the orbit anomaly 9a is random. Therefore, as shown in FIG. 9 (A), in the case where there is a seam 10, after the correlation alpha 1 over-threshold time t a1 ~ t k1 and the drive system position y a ~ y k was observed, correlation α 2 to α 4 are observed at a constant threshold excess period ΔT. On the other hand, when there is the orbit abnormality 9a, as shown in FIG. 9 (B), after the correlation β 1 is observed, the correlation β 2 and β 3 are random threshold excess periods ΔT 1 and ΔT 2 . It is observed.
そこで、図7のフローチャート(軌道異常・継目判別フロー)に示すように、異常検知装置8は、閾値超過時刻および駆動系位置の相関性の周期性の有無を判定する(ステップS30)。例えば、異常検知装置8は、継目10の間隔が既知である場合、少なくとも2つ以上の相関性に基づいて周期性の有無を判定し、継目10の間隔が不明である場合、少なくとも3つ以上の相関性に基づいて周期性の有無を判定する。異常検知装置8は、周期性があると判定した場合、軌道2の継目10を示す継目検知信号を出力し(ステップS32)、周期性がないと判定した場合、軌道異常信号を出力し(ステップS34)、処理を終了する。なお、ステップS28では、異常検知装置8は、第1の実施の形態と同様に、駆動系異常信号を出力する。
Therefore, as shown in the flowchart of FIG. 7 (orbit abnormality / seam determination flow), the abnormality detection device 8 determines the presence or absence of the periodicity of the correlation between the threshold excess time and the drive system position (step S30). For example, when the interval between the seams 10 is known, the abnormality detection device 8 determines the presence or absence of periodicity based on at least two or more correlations, and when the interval between the seams 10 is unknown, at least three or more. The presence or absence of periodicity is determined based on the correlation of If the abnormality detection device 8 determines that there is periodicity, it outputs a seam detection signal indicating the seam 10 of the trajectory 2 (step S32), and if it determines that there is no periodicity, it outputs a trajectory abnormality signal (step S32) S34), the process ends. In step S28, the abnormality detection device 8 outputs a drive system abnormality signal as in the first embodiment.
本実施の形態における異常検知装置8の動作原理は、以上の通りである。かかる構成によれば、第1の実施の形態の効果に加え、継目による軌道異常の誤検知を防止し、保守費用を削減できるようになる。
The operation principle of the abnormality detection device 8 in the present embodiment is as described above. According to this configuration, in addition to the effects of the first embodiment, it is possible to prevent erroneous detection of the track abnormality due to the seam and reduce the maintenance cost.
(3)第3の実施の形態
図10は、第3の実施の形態における異常検知装置8が実行する処理に係るフローチャートを示す図である。ただし、第1の実施の形態と同等の点については、図示およびその説明を適宜に省略する。本実施の形態では、図4に示す(A1)、(A2)から後の処理を図10に示すフローチャートの処理に置き換えることによって、異常検知装置8は、駆動系7a~7dにおける異常箇所を特定できるようになる。その動作原理を以下で説明する。 (3) Third Embodiment FIG. 10 is a diagram showing a flowchart according to processing performed by theabnormality detection device 8 in the third embodiment. However, illustration and explanation of points equivalent to the first embodiment will be omitted as appropriate. In the present embodiment, the abnormality detection device 8 identifies an abnormal part in the drive systems 7a to 7d by replacing the processing after (A1) and (A2) shown in FIG. 4 with the processing of the flowchart shown in FIG. become able to. The operation principle is described below.
図10は、第3の実施の形態における異常検知装置8が実行する処理に係るフローチャートを示す図である。ただし、第1の実施の形態と同等の点については、図示およびその説明を適宜に省略する。本実施の形態では、図4に示す(A1)、(A2)から後の処理を図10に示すフローチャートの処理に置き換えることによって、異常検知装置8は、駆動系7a~7dにおける異常箇所を特定できるようになる。その動作原理を以下で説明する。 (3) Third Embodiment FIG. 10 is a diagram showing a flowchart according to processing performed by the
ここで、駆動系7a~7kの異常は、車輪3a~3k、ギア6a~6k、モータ4a~4kの異常に分類される。ただし、複数の異常が同時に発生する場合もある。以下では、駆動系7aに車輪異常9b1(図6の同記号と同じ意味)が発生し、駆動系7bにギア異常9cが発生し、駆動系7dにモータ異常9dが発生した場合を例に挙げて説明する。図11(A)は、車輪異常9b1を示し、図11(B)は、ギア異常9cを示し、図11(C)は、モータ異常9dを示す図である。図11(B)のギア異常としては、車輪側のギア異常9c'も考えられるが、これが発生した場合の結果については図11(A)の車輪異常9b1と同様であるので、説明を省略する。
Here, the abnormalities of the drive systems 7a to 7k are classified into the abnormalities of the wheels 3a to 3k, the gears 6a to 6k, and the motors 4a to 4k. However, there may be cases where multiple abnormalities occur simultaneously. In the following, a case where a wheel abnormality 9b1 (the same meaning as the same symbol in FIG. 6) occurs in the drive system 7a, a gear abnormality 9c occurs in the drive system 7b, and a motor abnormality 9d occurs in the drive system 7d is taken as an example. Explain. 11 (A) shows a wheel abnormality 9b1, FIG. 11 (B) shows a gear abnormality 9c, and FIG. 11 (C) shows a motor abnormality 9d. The gear abnormality 9c 'on the wheel side can be considered as the gear abnormality in FIG. 11B, but the result when this occurs is the same as the wheel abnormality 9b1 in FIG. 11A, so the description will be omitted. .
図12は、車輪異常9b1、ギア異常9c、モータ異常9dに係る閾値超過ログを示す図である。車両速度vが一定であるとする場合、各異常原因がモータ4a~4dに与える影響は周期的となり、図12に示すように異常個所(異常原因)ごとに異なる周期T1~T3で閾値超過が観測される。
FIG. 12 is a diagram showing a threshold excess log related to the wheel abnormality 9b1, the gear abnormality 9c, and the motor abnormality 9d. If the vehicle speed v is constant, the influence of the cause of the abnormality has on the motor 4a ~ 4d become periodically, the threshold in the period T 1 ~ T 3 different for each abnormal part (the abnormal cause) as shown in FIG. 12 Excess is observed.
閾値超過周期T1~T3については、以下のように導出される。
The threshold excess periods T 1 to T 3 are derived as follows.
(閾値超過周期T1)
図12に示す閾値超過周期T1は、車輪3aの回転周期と等しいことから、車輪半径をrとすると、下記のように表される。
T1=2πr/v・・・(式1) (Threshold excess period T 1 )
Threshold exceeded period T 1 shown in FIG. 12, since equal to the rotation period of thewheel 3a, the wheel radius is r, is expressed as follows.
T 1 = 2πr / v (Equation 1)
図12に示す閾値超過周期T1は、車輪3aの回転周期と等しいことから、車輪半径をrとすると、下記のように表される。
T1=2πr/v・・・(式1) (Threshold excess period T 1 )
Threshold exceeded period T 1 shown in FIG. 12, since equal to the rotation period of the
T 1 = 2πr / v (Equation 1)
(閾値超過周期T2)
図12に示す閾値超過周期T2は、モータ側のギア6bの回転周期と等しいことから、ギア比をηとすると、下記のように表される。
T2=2πr/ηv・・・(式2) (Threshold excess period T 2 )
Threshold exceeded period T 2 shown in FIG. 12, since equal to the rotation period of the motor side of thegear 6b, the gear ratio is eta, is expressed as follows.
T 2 = 2πr / ηv (Equation 2)
図12に示す閾値超過周期T2は、モータ側のギア6bの回転周期と等しいことから、ギア比をηとすると、下記のように表される。
T2=2πr/ηv・・・(式2) (Threshold excess period T 2 )
Threshold exceeded period T 2 shown in FIG. 12, since equal to the rotation period of the motor side of the
T 2 = 2πr / ηv (Equation 2)
(閾値超過周期T3)
図12に示す閾値超過周期T3は、モータ4dの電気的回転周期と等しいことから、モータ4dの極対数をPmとすると、下記のように表される。
T3=2πr/ηPmv・・・(式3) (Threshold excess period T 3 )
Threshold exceeded period T 3 shown in FIG. 12, since equal electrical rotation period of themotor 4d, when the number of pole pairs of the motor 4d and P m, is expressed as follows.
T 3 = 2πr / ηP m v (Equation 3)
図12に示す閾値超過周期T3は、モータ4dの電気的回転周期と等しいことから、モータ4dの極対数をPmとすると、下記のように表される。
T3=2πr/ηPmv・・・(式3) (Threshold excess period T 3 )
Threshold exceeded period T 3 shown in FIG. 12, since equal electrical rotation period of the
T 3 = 2πr / ηP m v (Equation 3)
(式1)~(式3)に示されように、異常原因ごとに閾値超過周期T1~T3は異なる。そこで、図10のフローチャート(駆動系異常判別フロー)に示すように、閾値超過周期T1~T3に応じて異常原因を特定し、車輪3a~3dに異常があることを示す車輪異常信号、ギア6a~6dに異常があることを示すギア異常信号、モータ4a~4dに異常があることを示すモータ異常信号の何れか、複数、または全てを出力する。
As shown in (Equation 1) to (Equation 3), the threshold excess periods T 1 to T 3 differ depending on the cause of abnormality. Therefore, as shown in the flowchart of FIG. 10 (drive system abnormality determination flow), a wheel abnormality signal indicating that the abnormality is identified according to the threshold excess period T 1 to T 3 and indicating that the wheels 3 a to 3 d are abnormal; A gear abnormality signal indicating that there is an abnormality in the gears 6a to 6d and a motor abnormality signal indicating that there is an abnormality in the motors 4a to 4d are output.
より具体的には、異常検知装置8は、駆動系異常信号を出力すると(ステップS28)、閾値超過周期が車輪円周/車両速度となるか否かを判定し(ステップS40)、なると判定した場合、ステップS42に処理を移し、ならないと判定した場合、ステップS44に処理を移す。ステップS42では、異常検知装置8は、車輪・車軸側ギア異常信号(車輪異常信号)を出力し、ステップS44に処理を移す。
More specifically, when the abnormality detection device 8 outputs a drive system abnormality signal (step S28), the abnormality detection device 8 determines whether the threshold excess period becomes the wheel circumference / vehicle speed (step S40). In the case where it is determined that the process is not performed at step S42, the process proceeds to step S44. In step S42, the abnormality detection device 8 outputs a wheel / axle side gear abnormality signal (wheel abnormality signal), and the process proceeds to step S44.
ステップS44では、異常検知装置8は、閾値超過周期が車輪円周/車両速度/ギア比となるか否かを判定し、なると判定した場合、ステップS46に処理を移し、ならないと判定した場合、ステップS48に処理を移す。ステップS46では、異常検知装置8は、モータ側ギア異常信号(ギア異常信号)を出力し、ステップS48に処理を移す。
In step S44, the abnormality detection device 8 determines whether or not the threshold excess period is equal to the wheel circumference / vehicle speed / gear ratio. If it is determined that it is, the process proceeds to step S46. The process moves to step S48. In step S46, the abnormality detection device 8 outputs a motor gear abnormality signal (gear abnormality signal), and the process proceeds to step S48.
ステップS48では、異常検知装置8は、閾値超過周期が車輪円周/車両速度/ギア比/極対数となるか否かを判定し、なると判定した場合、ステップS50に処理を移し、ならないと判定した場合、処理を終了する。ステップS50では、異常検知装置8は、モータ異常信号を出力し、処理を終了する。
In step S48, the abnormality detection device 8 determines whether the threshold excess period is equal to wheel circumference / vehicle speed / gear ratio / pole logarithm. If it is determined that it is, it is determined that the process is not transferred to step S50. If it does, the process ends. In step S50, the abnormality detection device 8 outputs a motor abnormality signal, and the process ends.
なお、ステップS26では、異常検知装置8は、第1の実施の形態と同様に軌道異常信号を出力する。
In step S26, the abnormality detection device 8 outputs a track abnormality signal as in the first embodiment.
図10に示すフローチャートでは、各異常の有無が順々に全て判定されるので、ある駆動系に複数の異常がある場合にも適用可能である。また、1種類の異常が複数ある場合、例えば車輪3aが2か所以上変形した場合においても十分な長さの閾値超過ログがある場合、機械学習などのデータ処理技術によって変形箇所の数を特定することも可能である。
In the flowchart shown in FIG. 10, since the presence or absence of each abnormality is all determined in order, the present invention is also applicable to the case where there is a plurality of abnormalities in a certain drive system. In addition, when there is a plurality of one type of abnormality, for example, when there is a threshold excess log with a sufficient length even when the wheel 3a is deformed in two or more places, the number of deformed portions is specified by data processing technology such as machine learning. It is also possible.
本実施の形態における異常検知装置8の動作原理は、以上の通りである。かかる構成によれば、第1の実施の形態の効果に加え、駆動系の異常箇所を特定できるので、必要な保守部品のみを手配することで保守部品の在庫を削減できるようになる。
The operation principle of the abnormality detection device 8 in the present embodiment is as described above. According to this configuration, in addition to the effects of the first embodiment, since the abnormal part of the drive system can be identified, it is possible to reduce the stock of the maintenance parts by arranging only the necessary maintenance parts.
(4)第4の実施の形態
図13は、第4の実施の形態における異常検知装置8が実行する処理に係るフローチャートを示す図である。図13(A)に示すフローチャート8cは、電流観測用のフローチャートであり、図13(B)に示すフローチャート8dは、異常検知用のフローチャートであり、それぞれ独立に繰り返し処理される。本実施の形態では、フローチャート8c,8dに示す処理を実行することによって、異常検知装置8は、軌道異常、駆動系異常、継目およびポインタの各々を判別する。その動作原理を以下で説明する。 (4) Fourth Embodiment FIG. 13 is a diagram showing a flowchart according to processing performed by theabnormality detection device 8 in the fourth embodiment. A flow chart 8c shown in FIG. 13A is a flow chart for current observation, and a flow chart 8d shown in FIG. 13B is a flow chart for detecting an abnormality, and the process is repeated independently of each other. In the present embodiment, the abnormality detection device 8 determines each of the trajectory abnormality, the drive system abnormality, the seam, and the pointer by executing the processes shown in the flowcharts 8c and 8d. The operation principle is described below.
図13は、第4の実施の形態における異常検知装置8が実行する処理に係るフローチャートを示す図である。図13(A)に示すフローチャート8cは、電流観測用のフローチャートであり、図13(B)に示すフローチャート8dは、異常検知用のフローチャートであり、それぞれ独立に繰り返し処理される。本実施の形態では、フローチャート8c,8dに示す処理を実行することによって、異常検知装置8は、軌道異常、駆動系異常、継目およびポインタの各々を判別する。その動作原理を以下で説明する。 (4) Fourth Embodiment FIG. 13 is a diagram showing a flowchart according to processing performed by the
ステップS60では、異常検知装置8は、第1の実施の形態と同様に電流を観測する。続いて、異常検知装置8は、電流の特徴量および軌道位置を記録し(ステップS62)、処理を終了する。本実施の形態の特徴は、電流の特徴量および軌道位置を記録することであり、以下ではこれを特徴量ログと称する。軌道位置とは、軌道2上の位置(絶対的位置)を表すものである。軌道位置については、例えばGPS(Global Positioning System)によって計測可能である。また、軌道位置については、例えば車両速度vの積分値から推定することも可能である。また、その他の方法により、異常検知装置8が軌道位置を取得することも可能である。軌道位置の原点については任意であるが、例えば始発駅の停止位置目標を原点に設定することができる。
In step S60, the abnormality detection device 8 observes the current as in the first embodiment. Subsequently, the abnormality detection device 8 records the feature amount of the current and the track position (step S62), and ends the process. The feature of the present embodiment is to record the feature amount and the orbit position of the current, which is hereinafter referred to as a feature amount log. The orbital position represents the position on the trajectory 2 (absolute position). The orbital position can be measured, for example, by GPS (Global Positioning System). The track position can also be estimated, for example, from the integral value of the vehicle speed v. Moreover, it is also possible for the abnormality detection apparatus 8 to acquire a track position by another method. Although the origin of the track position is arbitrary, for example, the stop position target of the first train station can be set as the origin.
また、ステップS70では、異常検知装置8は、特徴量および軌道位置のデータの数が軌道異常、駆動系異常、継目およびポインタの判別に十分であるか否かを判定する。異常検知装置8は、十分であると判定した場合、ステップS72に処理を移し、十分でないと判定した場合、処理を終了する。
In step S70, the abnormality detection device 8 determines whether the number of data of the feature amount and the track position is sufficient for the determination of the track abnormality, the drive system abnormality, the seam, and the pointer. If the abnormality detection device 8 determines that the process is sufficient, the process proceeds to step S72, and if it is determined that the process is not sufficient, the process ends.
ステップS72では、異常検知装置8は、特徴量および軌道位置のデータを読み込む。続いて、異常検知装置8は、読み込んだ全てのデータの特徴量が「0」付近であるか否かを判定し(ステップS74)、全てのデータの特徴量が「0」付近であると判定した場合、処理を終了し、全てのデータの何れかの特徴量が「0」付近でないと判定した場合、ステップS76に処理を移す。
In step S72, the abnormality detection device 8 reads data of the feature amount and the trajectory position. Subsequently, the abnormality detection device 8 determines whether the feature amounts of all the read data are in the vicinity of "0" (step S74), and it is determined that the feature amounts of all the data are in the vicinity of "0" If YES in step S76, the processing ends, and if it is determined that any feature amount of all the data is not near “0”, the processing is shifted to step S76.
ステップS76では、異常検知装置8は、軌道位置に対する特徴量の依存性を判定し、依存性があると判定した場合、ステップS78に処理を移し、依存性がないと判定した場合、駆動系異常信号を出力し(ステップS88)、処理を終了する。図14(A)に示すように、駆動系7a~7kに異常がある場合には軌道位置xに関係なく、正規化された特徴量sが閾値「1」を超える。他方、軌道異常、継目、またはポインタがある場合には、これらが軌道位置xに依存する現象であることから特徴量sは、特定の軌道位置xj,xkに限り、閾値「1」を超える。
In step S76, the abnormality detection device 8 determines the dependence of the feature amount on the track position, and if it is determined that there is a dependence, the process proceeds to step S78. If it is determined that there is no dependence, the drive system abnormality A signal is output (step S88), and the process ends. As shown in FIG. 14A, when there is an abnormality in the drive systems 7a to 7k, the normalized feature amount s exceeds the threshold value “1” regardless of the trajectory position x. On the other hand, if there is an orbit abnormality, a seam, or a pointer, the feature quantity s is a phenomenon dependent on the orbit position x, and the feature value s is limited to the threshold value “1” only for specific orbit positions x j and x k. Over.
ステップS78~ステップS86の処理では、異常検知装置8は、図15(A)に示す軌道異常9a、図15(B)に示す継目10、図15(C)に示すポインタ11について判別する。図15(A)に示す軌道異常9a、図15(B)に示す継目10は、図8(A)、図8(B)に示すものと同じであり、継目10の位置間隔は、一定であることから、図7に示すフローチャートの処理によって判別できる(第2の実施形態を参照)。つまり、ステップS78においても同様に、異常検知装置8は、特徴量が閾値を超過する軌道位置(以下、閾値超過位置)の間隔が一定であるか否かを判定し、一定であると判定した場合、継目検知信号を出力し(ステップS80)、処理を終了する。他方、一定でないと判定した場合、図15(C)に示すポインタ11については、軌道異常9aと同様にその位置間隔が一定でないため、異常検知装置8は、この時点では、位置間隔のみではポインタ11と軌道異常9aとを判別することはできない。
In the processing of step S78 to step S86, the abnormality detection device 8 determines the trajectory abnormality 9a shown in FIG. 15 (A), the seam 10 shown in FIG. 15 (B), and the pointer 11 shown in FIG. 15 (C). The trajectory abnormality 9a shown in FIG. 15A and the seam 10 shown in FIG. 15B are the same as those shown in FIGS. 8A and 8B, and the positional distance between the seams 10 is constant. Because of this, it can be determined by the processing of the flowchart shown in FIG. 7 (see the second embodiment). That is, also in step S78, the abnormality detection device 8 similarly determines whether the interval between the track positions at which the feature amount exceeds the threshold (hereinafter, the threshold excess position) is constant, and determines that it is constant. In the case, the seam detection signal is output (step S80), and the process ends. On the other hand, if it is determined that the pointer 11 shown in FIG. 15 (C) is not constant, the position interval is not constant as in the case of the trajectory abnormality 9a. 11 and the orbit abnormality 9a can not be distinguished.
そこで、図16に示すように、ポインタ11と軌道異常9aの特徴量sの経時変化に基づいて、それらを判別する。図16(A)に示すように、軌道異常9aが軌道位置xjで進行する場合、軌道位置xjでの特徴量sは、時刻tの経過(t0→t1→t2→t3)に従って増加する。一方、図16(B)に示すように、ポインタ11が軌道位置xkにある場合、ポインタ11は、軌道2の設置時から存在するものであるから、軌道位置xkでの特徴量sは、時刻tに依存しない。
Therefore, as shown in FIG. 16, based on the temporal change of the feature amount s of the pointer 11 and the trajectory abnormality 9a, they are determined. As shown in FIG. 16 (A), if the trajectory abnormality 9a proceeds in orbital position x j, the feature value s in the orbital position x j, increases with the lapse of time t (t0 → t1 → t2 → t3) . On the other hand, as shown in FIG. 16B, when the pointer 11 is at the trajectory position x k , the pointer 11 is present from the time of installation of the trajectory 2, so the feature amount s at the trajectory position x k is , Does not depend on time t.
このため、ステップS82では、異常検知装置8は、特徴量が時間経過に伴って増加しているか否かを判定し、増加していると判定した場合、軌道異常信号を出力し(ステップS84)、増加していないと判定した場合、軌道2のポインタ11を示すポインタ検知信号を出力し(ステップS86)、処理を終了する。かかる処理により、異常検知装置8は、ポインタ11と軌道異常9aとを判別する。なお、異常検知装置8は、時間経過を見るために、過去に記録したデータを読み出してもよいし、上位システム20から過去のデータを取得してもよい。
Therefore, in step S82, the abnormality detection device 8 determines whether the feature amount increases with the passage of time, and when it is determined that the feature amount increases, outputs the track abnormality signal (step S84). If it is determined that the number does not increase, a pointer detection signal indicating the pointer 11 of the trajectory 2 is output (step S86), and the process is ended. By this processing, the abnormality detection device 8 determines the pointer 11 and the trajectory abnormality 9a. Note that the abnormality detection device 8 may read data recorded in the past in order to see the elapsed time, or may acquire past data from the host system 20.
また、図15(D)に示す軌道異常9a、継目10、ポインタ11が存在する場合の閾値超過ログを図17に示す。このときの異常検知装置8の動作は、以下の通りである。
Further, FIG. 17 shows a threshold value excess log in the case where the trajectory abnormality 9a, the seam 10 and the pointer 11 shown in FIG. 15 (D) are present. The operation of the abnormality detection device 8 at this time is as follows.
(継目判定)
図17に示す軌道位置x1、x2、x3、x4には、継目10があり、閾値超過位置の間隔Δxが一定であることから、継目検知信号が出力される。 (Seam determination)
Since there areseams 10 at the track positions x 1 , x 2 , x 3 , and x 4 shown in FIG. 17, since the interval Δx of the over-threshold position is constant, the seam detection signal is output.
図17に示す軌道位置x1、x2、x3、x4には、継目10があり、閾値超過位置の間隔Δxが一定であることから、継目検知信号が出力される。 (Seam determination)
Since there are
(軌道異常判定)
図17に示すxjには、軌道異常9aがあり、閾値超過位置の間隔が一定でないこと、かつ特徴量が時間経過に伴って増加していることから、軌道異常信号が出力される。 (Orbit error judgment)
The x j shown in FIG. 17, there are track abnormal 9a, the spacing of the over-threshold position is not constant, and since the feature value is increasing with time, the track error signal is output.
図17に示すxjには、軌道異常9aがあり、閾値超過位置の間隔が一定でないこと、かつ特徴量が時間経過に伴って増加していることから、軌道異常信号が出力される。 (Orbit error judgment)
The x j shown in FIG. 17, there are track abnormal 9a, the spacing of the over-threshold position is not constant, and since the feature value is increasing with time, the track error signal is output.
(ポインタ判定)
図17に示すxkには、ポインタ11があり、閾値超過位置の間隔が一定でないこと、かつ特徴量が時間経過に伴って増加していないことから、ポインタ検知信号が出力される。 (Pointer judgment)
A pointer detection signal is output because there is apointer 11 at x k shown in FIG. 17 and the interval of the position exceeding the threshold is not constant and the feature amount does not increase with time.
図17に示すxkには、ポインタ11があり、閾値超過位置の間隔が一定でないこと、かつ特徴量が時間経過に伴って増加していないことから、ポインタ検知信号が出力される。 (Pointer judgment)
A pointer detection signal is output because there is a
以上の継目判定、軌道異常判定、およびポインタ判定を順次に行うことで、異常検知装置8は、軌道異常9a、継目10、ポインタ11が混在する場合においても、それらに合致した異常信号または検知信号を出力できる。
By sequentially performing the above-described seam determination, trajectory abnormality determination, and pointer determination, the abnormality detection device 8 detects an abnormality signal or detection signal that matches the trajectory abnormality 9a, the seam 10, and the pointer 11, even when they are mixed. Can be output.
また、異常検知装置8は、軌道位置の記録と照合(軌道位置を参照)することによって軌道異常9aの発生位置を特定することも可能である。
Further, the abnormality detection device 8 can also specify the occurrence position of the track abnormality 9a by comparing the track position with the recording (refer to the track position).
また、継目10およびポインタ11も経時変化によって摩耗し、異常状態となることが考えられる。この場合には、図17において、異常状態ごとに閾値を変更する、異常状態ごとに観測量および特徴量の定義を変更する、などの手段によって継目10およびポインタ11の異常も検知可能である。
Also, it is conceivable that the seam 10 and the pointer 11 also wear out due to the change with time and become an abnormal state. In this case, in FIG. 17, the abnormality of the seam 10 and the pointer 11 can also be detected by means of changing the threshold for each abnormal state, changing the definition of the observation amount and the feature amount for each abnormal state, or the like.
本実施の形態における異常検知装置8の動作原理は、以上の通りである。かかる構成によれば、軌道異常、駆動系異常、継目およびポインタの各々を判別できるので、保守作業時間を短縮できるようになる。また、かかる構成によれば、第3の実施の形態と同様に、保守部品の在庫を削減できるようになる。
The operation principle of the abnormality detection device 8 in the present embodiment is as described above. According to such a configuration, since each of the track abnormality, the drive system abnormality, the seam and the pointer can be determined, the maintenance work time can be shortened. Moreover, according to such a configuration, it is possible to reduce the stock of maintenance parts as in the third embodiment.
(5)他の実施の形態
なお上述の実施の形態においては、本発明を異常検知システム100に適用するようにした場合について述べたが、本発明はこれに限らず、この他種々の異常検知装置、異常検知システムなどに広く適用することができる。 (5) Other Embodiments Although the above embodiment has described the case where the present invention is applied to theabnormality detection system 100, the present invention is not limited to this and other various abnormality detections. It can be widely applied to devices, abnormality detection systems, and the like.
なお上述の実施の形態においては、本発明を異常検知システム100に適用するようにした場合について述べたが、本発明はこれに限らず、この他種々の異常検知装置、異常検知システムなどに広く適用することができる。 (5) Other Embodiments Although the above embodiment has described the case where the present invention is applied to the
また上述の実施の形態においては、異常検知装置8が異常検知する場合について述べたが、本発明はこれに限らず、他の装置が異常検知するようにしてもよい。例えば、図4のフローチャート8bに示す処理、図7のフローチャートに示す処理、図10のフローチャートに示す処理、図13のフローチャート8dに示す処理を上位システム20が実行するようにしてもよい。
In the above-mentioned embodiment, although the case where abnormality detection device 8 detects abnormality was described, the present invention is not limited to this, and other devices may detect abnormality. For example, the host system 20 may execute the process shown in the flowchart 8b of FIG. 4, the process shown in the flowchart of FIG. 7, the process shown in the flowchart of FIG. 10, and the process shown in the flowchart 8d of FIG.
上述の実施の形態に示した構成については、本発明の要旨を変更しない範囲において、適宜に組み合わせたり、変更したりすることができる。
The configurations shown in the above-described embodiments can be combined or changed as appropriate without departing from the scope of the present invention.
1……軌道走行車両、1a~1n……車両、2……軌道、3a~3k……車輪、4a~4k……モータ、5a~5k……インバータ、5a1……主回路、5a2……制御回路、6a~6k……ギア、7a~7k……駆動系、8……異常検知装置、9a~9k……車輪異常、10……継目、11……ポインタ、20……上位システム、100……異常検知システム
DESCRIPTION OF SYMBOLS 1 ... Trajectory vehicle 1a-1n ...... Vehicle 2 ... Trajectory 3a-3k ...... Wheel 4a-4k ...... Motor 5a-5k ...... inverter 5a1 ...... Main circuit 5a2 ...... Control Circuits 6a to 6k: gear 7a to 7k: drive system 8: abnormality detection device 9a to 9k: wheel abnormality 10: seam 11, 11: pointer 20: upper system 100: 100 ... Anomaly detection system
Claims (18)
- 軌道を走行する軌道走行車両に係る異常を検知する異常検知装置であって、
前記軌道走行車両に設けられた駆動系の物理量の特徴量が閾値を超えた時刻を示す閾値超過時刻、および前記閾値超過時刻における前記駆動系の前記軌道走行車両に対する位置を示す駆動系位置を取得する取得部と、
前記軌道走行車両に設けられた複数の駆動系について前記取得部により取得された複数の閾値超過時刻および前記閾値超過時刻における駆動系位置に相関性があるか否かを判定する判定部と、
前記判定部による判定結果に基づいて出力を行う出力部と、
を備え、
前記出力部は、前記判定部により相関性があると判定された場合、前記軌道に異常があることを示す軌道異常信号を出力する
ことを特徴とする異常検知装置。 An abnormality detection device for detecting an abnormality related to a track traveling vehicle traveling on a track,
Obtain a drive system position indicating the position of the drive system with respect to the track traveling vehicle at a threshold over time when the feature amount of the drive system physical quantity provided in the track traveling vehicle exceeds a threshold and the threshold over time. Acquisition department,
A determination unit that determines whether or not there is a correlation between the plurality of threshold excess times acquired by the acquisition unit and the drive location at the threshold excess time with respect to the plurality of drive trains provided in the track traveling vehicle;
An output unit that outputs based on the determination result by the determination unit;
Equipped with
The said output part outputs the track | orbit abnormality signal which shows that the said track | orbit has abnormality, when it determines with there being correlation by the said determination part, The abnormality detection apparatus characterized by the above-mentioned. - 請求項1に記載の異常検知装置において、
前記出力部は、前記判定部により相関性がないと判定された場合、前記複数の駆動系に異常があることを示す駆動系異常信号を出力する
ことを特徴とする異常検知装置。 In the abnormality detection device according to claim 1,
The abnormality detection device, wherein the output unit outputs a drive system abnormality signal indicating that there is an abnormality in the plurality of drive systems when the determination unit determines that there is no correlation. - 請求項2に記載の異常検知装置において、
前記出力部は、前記軌道走行車両に設けられた駆動系の物理量、前記取得部により取得された閾値超過時刻および前記閾値超過時刻における駆動系位置、前記出力部により出力される軌道異常信号、前記出力部により出力される駆動系異常信号の少なくとも1つをデータセンタに送信する
こと特徴とする異常検知装置。 In the abnormality detection device according to claim 2,
The output unit includes a physical quantity of a drive system provided in the track traveling vehicle, a drive system position at a threshold excess time acquired by the acquisition unit and a threshold excess time, a track abnormality signal output from the output unit, An abnormality detection apparatus, which transmits at least one of drive system abnormality signals output from an output unit to a data center. - 請求項1に記載の異常検知装置において、
前記軌道走行車両に設けられた駆動系の物理量の特徴量は、前記物理量の最大値、前記物理量の実効値、前記物理量のバンドパスフィルタ値、前記物理量のフーリエ解析による特定周波数成分、前記物理量についての統計的手法によるデータ処理結果の何れかである
ことを特徴とする異常検知装置。 In the abnormality detection device according to claim 1,
The characteristic quantities of the physical quantity of the drive system provided in the track traveling vehicle are the maximum value of the physical quantity, the effective value of the physical quantity, the band pass filter value of the physical quantity, the specific frequency component by Fourier analysis of the physical quantity, and the physical quantity An abnormality detection apparatus characterized by being any one of data processing results by the statistical method of - 請求項1に記載の異常検知装置において、
前記軌道走行車両に設けられた駆動系の物理量は、
前記駆動系の駆動源であるモータの三相交流電流、前記モータの三相交流電圧、前記モータのd軸電流、前記モータのq軸電流、前記モータのd軸電圧、前記モータのq軸電圧、
前記駆動系の回転速度、前記駆動系のトルク、前記駆動系の振動、前記駆動系の騒音、
前記モータと接続されたインバータの制御ソフトウェア変数の何れかである
ことを特徴とする異常検知装置。 In the abnormality detection device according to claim 1,
The physical quantity of the drive system provided in the track traveling vehicle is
Three-phase AC current of the motor which is a drive source of the drive system, three-phase AC voltage of the motor, d-axis current of the motor, q-axis current of the motor, d-axis voltage of the motor, q-axis voltage of the motor ,
Rotational speed of the drive system, torque of the drive system, vibration of the drive system, noise of the drive system,
An abnormality detection apparatus characterized by being any one of control software variables of an inverter connected to the motor. - 請求項1に記載の異常検知装置において、
前記軌道走行車両に設けられた駆動系の環境条件に関する環境データに基づいて前記閾値を調整する調整部を更に備える
ことを特徴とする異常検知装置。 In the abnormality detection device according to claim 1,
The abnormality detection device further comprising: an adjustment unit configured to adjust the threshold based on environmental data on an environmental condition of a drive system provided in the track vehicle. - 請求項1に記載の異常検知装置において、
前記出力部は、前記軌道異常信号を他の軌道走行車両または鉄道運航管理システムに送信する
ことを特徴とする異常検知装置。 In the abnormality detection device according to claim 1,
The abnormality detection device, wherein the output unit transmits the track abnormality signal to another track traveling vehicle or a railway operation management system. - 請求項1に記載の異常検知装置において、
前記判定部は、前記相関性の周期性の有無を判定し、
前記出力部は、前記判定部により前記相関性の周期性があると判定された場合、前記軌道の継目を示す継目検知信号を出力し、前記判定部により前記相関性の周期性がないと判定された場合、前記軌道異常信号を出力する
ことを特徴とする異常検知装置。 In the abnormality detection device according to claim 1,
The determination unit determines the presence or absence of the periodicity of the correlation,
The output unit outputs a seam detection signal indicating a seam of the trajectory when the determination unit determines that the correlation periodicity is present, and the determination unit determines that the correlation periodicity is not present. And an abnormality detection device for outputting the trajectory abnormality signal. - 請求項2に記載の異常検知装置において、
前記判定部は、前記閾値を超過する周期に基づいて、前記軌道走行車両に設けられた駆動系に含まれる車輪の異常であるか否か、前記駆動系に含まれるギアの異常であるか否か、前記駆動系に含まれるモータの異常であるか否かを判定し、
前記出力部は、前記判定部により前記車輪の異常であると判定された場合、前記車輪に異常があることを示す車輪異常信号を出力し、前記判定部により前記ギアの異常であると判定された場合、前記ギアに異常があることを示すギア異常信号を出力し、前記判定部により前記モータの異常であると判定された場合、前記モータに異常があることを示すモータ異常信号を出力する
ことを特徴とする異常検知装置。 In the abnormality detection device according to claim 2,
The determination unit determines whether or not there is an abnormality in a wheel included in a drive system provided in the track traveling vehicle, or an abnormality in a gear included in the drive system based on a cycle that exceeds the threshold. Determine whether the motor included in the drive system is abnormal or not
When the determination unit determines that the wheel is abnormal, the output unit outputs a wheel abnormality signal indicating that the wheel has an abnormality, and the determination unit determines that the gear is abnormal. In this case, a gear abnormality signal indicating that there is an abnormality in the gear is output, and a motor abnormality signal indicating that the motor has an abnormality is output when the determination unit determines that the motor has an abnormality. An abnormality detection device characterized by - 請求項9に記載の異常検知装置において、
前記判定部は、前記周期と下記(式1)の周期T1とに基づいて前記車輪の異常であるか否かを判定し、前記周期と下記(式2)の周期T2とに基づいて前記ギアの異常であるか否かを判定し、前記周期と下記(式3)の周期T3とに基づいて前記モータの異常であるか否かを判定する
ことを特徴とする異常検知装置。
T1=2πr/v・・・(式1)
T2=2πr/ηv・・・(式2)
T3=2πr/ηPmv・・・(式3) In the abnormality detection device according to claim 9,
The determination unit determines whether an abnormality of the wheel on the basis of the period T 1 of the said period and the following (Equation 1), based on the period T 2 of the said period and the following (Equation 2) wherein it is determined whether the abnormality of the gear, the period and the following (equation 3) abnormality detection apparatus characterized by determining whether an abnormality of the motor based on the cycle T 3 of.
T 1 = 2πr / v (Equation 1)
T 2 = 2πr / ηv (Equation 2)
T 3 = 2πr / ηP m v (Equation 3) - 請求項3に記載の異常検知装置を複数の軌道走行車両の各々に対応して備える異常検知システムであって、
前記異常検知装置の各々から送信された軌道異常信号に基づいて前記軌道の異常個所を特定する特定部を備える
ことを特徴とする異常検知システム。 An abnormality detection system comprising the abnormality detection device according to claim 3 corresponding to each of a plurality of track traveling vehicles,
An abnormality detection system comprising: a specification unit that specifies an abnormality part of the track based on the track abnormality signal transmitted from each of the abnormality detection devices. - 請求項3に記載の異常検知装置を備える異常検知システムであって、
前記異常検知装置から送信された情報に基づいて前記軌道走行車両に対して指令を行う指令部を備え、
前記指令部は、前記異常検知装置から送信された前記駆動系異常信号に基づいて、前記軌道走行車両に対して、前記駆動系異常信号に係る駆動系を停止または縮退運転させるための指令を行う
ことを特徴とする異常検知システム。 An abnormality detection system comprising the abnormality detection device according to claim 3, wherein
The vehicle control system further includes a command unit that instructs the track traveling vehicle based on the information transmitted from the abnormality detection device.
The command unit instructs the track vehicle to stop or degenerate the drive system related to the drive system abnormality signal based on the drive system abnormality signal transmitted from the abnormality detection device. An anomaly detection system characterized by - 軌道を走行する軌道走行車両であって、
前記軌道走行車両に設けられた駆動系の物理量の特徴量が閾値を超えた時刻を示す閾値超過時刻、および前記閾値超過時刻における前記駆動系の前記軌道走行車両に対する位置を示す駆動系位置を取得する取得部と、
前記軌道走行車両に設けられた複数の駆動系について前記取得部により取得された複数の閾値超過時刻および前記閾値超過時刻における駆動系位置に相関性があるか否かを判定する判定部と、
前記判定部による判定結果に基づいて出力を行う出力部と、
を備え、
前記出力部は、前記判定部により相関性があると判定された場合、前記軌道に異常があることを示す軌道異常信号を出力する
ことを特徴とする軌道走行車両。 An orbiting vehicle traveling on an orbit,
Obtain a drive system position indicating the position of the drive system with respect to the track traveling vehicle at a threshold over time when the feature amount of the drive system physical quantity provided in the track traveling vehicle exceeds a threshold and the threshold over time. Acquisition department,
A determination unit that determines whether or not there is a correlation between the plurality of threshold excess times acquired by the acquisition unit and the drive location at the threshold excess time with respect to the plurality of drive trains provided in the track traveling vehicle;
An output unit that outputs based on the determination result by the determination unit;
Equipped with
The track traveling vehicle, wherein the output unit outputs a track abnormality signal indicating that the track has an abnormality when it is determined by the determination unit that there is a correlation. - 軌道を走行する軌道走行車両に係る異常を検知する異常検知装置が実行する異常検知方法であって、
前記軌道走行車両に設けられた駆動系の物理量の特徴量が閾値を超えた時刻を示す閾値超過時刻、および前記閾値超過時刻における前記駆動系の前記軌道走行車両に対する位置を示す駆動系位置を取得する第1のステップと、
前記軌道走行車両に設けられた複数の駆動系について前記第1のステップで取得された複数の閾値超過時刻および前記閾値超過時刻における駆動系位置に相関性があるか否かを判定する第2のステップと、
前記第2のステップでの判定結果に基づいて信号を出力する第3のステップと、
を備え、
前記第3のステップでは、前記第2のステップで相関性があると判定した場合、前記軌道に異常があることを示す軌道異常信号を出力する
ことを特徴とする異常検知方法。 An anomaly detection method executed by an anomaly detection apparatus for detecting an anomaly related to a track traveling vehicle traveling on a track,
Obtain a drive system position indicating the position of the drive system with respect to the track traveling vehicle at a threshold over time when the feature amount of the drive system physical quantity provided in the track traveling vehicle exceeds a threshold and the threshold over time. The first step to
A second determination is made as to whether or not there is a correlation between the plurality of threshold excess times obtained in the first step with respect to the plurality of drive lines provided in the track vehicle and the drive position at the threshold excess time. Step and
A third step of outputting a signal based on the determination result in the second step;
Equipped with
In the third step, when it is determined that there is a correlation in the second step, a trajectory abnormal signal indicating that the trajectory is abnormal is outputted. - 軌道を走行する軌道走行車両に係る異常を検知する異常検知装置であって、
前記軌道走行車両に設けられた駆動系の物理量の特徴量、および前記特徴量が測定された前記軌道における位置を示す軌道位置を取得する取得部と、
前記軌道走行車両に設けられた複数の駆動系について前記取得部により取得された複数の物理量および前記物理量が取得された軌道位置に依存性があるか否かを判定し、前記複数の軌道位置のうち物理量が閾値を超える軌道位置の間隔が一定であるか否かを判定し、前記閾値を超える軌道位置の物理量が時間経過に伴って増加しているか否かをする判定部と、
前記判定部による判定結果に基づいて出力を行う出力部と、
を備え、
前記出力部は、前記判定部により依存性があると判定され、一定でないと判定され、増加していると判定された場合、前記軌道に異常があることを示す軌道異常信号を出力する
ことを特徴とする異常検知装置。 An abnormality detection device for detecting an abnormality related to a track traveling vehicle traveling on a track,
An acquisition unit for acquiring a feature amount of a physical quantity of a drive system provided on the track traveling vehicle and a track position indicating a position on the track where the feature amount is measured;
It is determined whether or not the plurality of physical quantities acquired by the acquisition unit and the track position at which the physical quantity is acquired is dependent on the plurality of drive systems provided in the track traveling vehicle, and the plurality of track positions And a determination unit that determines whether or not the distance between track positions at which the physical amount exceeds the threshold is constant, and whether the physical amount at the track position above the threshold increases with time.
An output unit that outputs based on the determination result by the determination unit;
Equipped with
The output unit may output a trajectory abnormality signal indicating that the trajectory has an abnormality, when it is determined by the determination unit that there is dependency, is determined not to be constant, and is determined to be increasing. An abnormality detection device characterized by - 請求項15に記載の異常検知装置において、
前記出力部は、前記判定部により依存性がないと判定された場合、前記複数の駆動系に異常があることを示す駆動系異常信号を出力する
ことを特徴とする異常検知装置。 In the abnormality detection device according to claim 15,
The abnormality detection device, wherein the output unit outputs a drive system abnormality signal indicating that there is an abnormality in the plurality of drive systems when it is determined by the determination unit that there is no dependency. - 請求項15に記載の異常検知装置において、
前記出力部は、前記判定部により依存性があると判定され、一定であると判定された場合、前記軌道の継目を示す継目検知信号を出力する
ことを特徴とする異常検知装置。 In the abnormality detection device according to claim 15,
The abnormality detection device, wherein the output unit is configured to output a seam detection signal indicating a seam of the trajectory when it is determined by the determination unit that there is dependency and that the output unit is determined to be constant. - 請求項15に記載の異常検知装置において、
前記出力部は、前記判定部により依存性があると判定され、一定でないと判定され、増加していないと判定された場合、前記軌道に設けられたポインタを示すポインタ検知信号を出力する
ことを特徴とする異常検知装置。 In the abnormality detection device according to claim 15,
The output unit is configured to output a pointer detection signal indicating a pointer provided on the track when it is determined by the determination unit that there is dependency, is determined not to be constant, and is determined not to increase. An abnormality detection device characterized by
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019533879A JP6743304B2 (en) | 2017-08-04 | 2017-08-04 | Abnormality detection device, abnormality detection system, and abnormality detection method |
PCT/JP2017/028493 WO2019026297A1 (en) | 2017-08-04 | 2017-08-04 | Abnormality detection device, abnormality detection system, and abnormality detection method |
EP17920338.5A EP3663160A4 (en) | 2017-08-04 | 2017-08-04 | Abnormality detection device, abnormality detection system, and abnormality detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/028493 WO2019026297A1 (en) | 2017-08-04 | 2017-08-04 | Abnormality detection device, abnormality detection system, and abnormality detection method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019026297A1 true WO2019026297A1 (en) | 2019-02-07 |
Family
ID=65232500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/028493 WO2019026297A1 (en) | 2017-08-04 | 2017-08-04 | Abnormality detection device, abnormality detection system, and abnormality detection method |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3663160A4 (en) |
JP (1) | JP6743304B2 (en) |
WO (1) | WO2019026297A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021022971A (en) * | 2019-07-25 | 2021-02-18 | 東日本旅客鉄道株式会社 | State monitoring device, transport vehicle on which the state monitoring device is mounted and state monitoring method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006023204A (en) * | 2004-07-08 | 2006-01-26 | Hitachi Ltd | Moving body abnormality-detecting system |
JP2006327551A (en) * | 2005-05-30 | 2006-12-07 | Tmp:Kk | Vehicle operation management system, vehicle using the system, and track abnormality diagnostic method |
JP2007275244A (en) * | 2006-04-05 | 2007-10-25 | Kawasaki Plant Systems Ltd | Behavior abnormality detector and detection method |
JP2008148466A (en) * | 2006-12-11 | 2008-06-26 | Mitsubishi Heavy Ind Ltd | Fault diagnosis method and fault diagnosis system of orbital system transportation system |
JP2011245917A (en) * | 2010-05-24 | 2011-12-08 | Hitachi Ltd | Device and method for state monitoring of railroad vehicle, and railroad vehicle |
JP2012078213A (en) * | 2010-10-01 | 2012-04-19 | Hitachi Ltd | Railway vehicle state monitor, state monitoring method and railway vehicle |
JP2015042106A (en) | 2013-08-23 | 2015-03-02 | 三菱重工業株式会社 | Failure detection device for locus traveling electric vehicle and locus traveling electric vehicle |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5579013A (en) * | 1994-05-05 | 1996-11-26 | General Electric Company | Mobile tracking unit capable of detecting defective conditions in railway vehicle wheels and railtracks |
DE19837485A1 (en) * | 1998-08-12 | 2000-02-17 | Siemens Ag | Rail vehicles and track damage detection method |
DE102008049224A1 (en) * | 2008-09-27 | 2010-06-02 | Thales Defence Deutschland Gmbh | Method for monitoring drive mechanism of rail vehicle movable on rail track to identify defect at e.g. rotary stand of chassis, involves detecting component running in certain direction of acceleration of pivot mounting as sensor variable |
JP5812595B2 (en) * | 2010-11-02 | 2015-11-17 | 曙ブレーキ工業株式会社 | Abnormality diagnosis system for railway vehicles |
-
2017
- 2017-08-04 EP EP17920338.5A patent/EP3663160A4/en active Pending
- 2017-08-04 WO PCT/JP2017/028493 patent/WO2019026297A1/en unknown
- 2017-08-04 JP JP2019533879A patent/JP6743304B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006023204A (en) * | 2004-07-08 | 2006-01-26 | Hitachi Ltd | Moving body abnormality-detecting system |
JP2006327551A (en) * | 2005-05-30 | 2006-12-07 | Tmp:Kk | Vehicle operation management system, vehicle using the system, and track abnormality diagnostic method |
JP2007275244A (en) * | 2006-04-05 | 2007-10-25 | Kawasaki Plant Systems Ltd | Behavior abnormality detector and detection method |
JP2008148466A (en) * | 2006-12-11 | 2008-06-26 | Mitsubishi Heavy Ind Ltd | Fault diagnosis method and fault diagnosis system of orbital system transportation system |
JP2011245917A (en) * | 2010-05-24 | 2011-12-08 | Hitachi Ltd | Device and method for state monitoring of railroad vehicle, and railroad vehicle |
JP2012078213A (en) * | 2010-10-01 | 2012-04-19 | Hitachi Ltd | Railway vehicle state monitor, state monitoring method and railway vehicle |
JP2015042106A (en) | 2013-08-23 | 2015-03-02 | 三菱重工業株式会社 | Failure detection device for locus traveling electric vehicle and locus traveling electric vehicle |
Non-Patent Citations (1)
Title |
---|
See also references of EP3663160A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021022971A (en) * | 2019-07-25 | 2021-02-18 | 東日本旅客鉄道株式会社 | State monitoring device, transport vehicle on which the state monitoring device is mounted and state monitoring method |
JP7332379B2 (en) | 2019-07-25 | 2023-08-23 | 東日本旅客鉄道株式会社 | CONDITION MONITORING DEVICE, TRANSPORT VEHICLE INSTALLING CONDITION MONITORING DEVICE, AND CONDITION MONITORING METHOD |
Also Published As
Publication number | Publication date |
---|---|
JP6743304B2 (en) | 2020-08-19 |
EP3663160A4 (en) | 2021-03-10 |
EP3663160A1 (en) | 2020-06-10 |
JPWO2019026297A1 (en) | 2020-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9423290B2 (en) | Abnormality diagnostic device for rolling bearing, wind turbine generation apparatus and abnormality diagnostic system | |
CN101907486B (en) | Lateral, angular and torsional vibration monitoring of rotordynamic systems | |
US10027263B2 (en) | Method for detecting a fault in a motor arrangement with an electrical machine and motor control unit | |
WO2014103861A1 (en) | Bearing device vibration analysis method, bearing device vibration analysis device, and rolling bearing status monitoring device | |
CN104024070B (en) | Method and apparatus for the brakes of the brake apparatus that monitors rail vehicle | |
JP6986480B2 (en) | Abnormality diagnostic equipment and programs | |
JP2015514220A (en) | Sensor element with acoustic emission sensor | |
JP6796545B2 (en) | Railroad vehicle equipment diagnostic equipment and railroad vehicle equipment diagnostic method | |
WO2017150190A1 (en) | Torque measurement device, gearbox, and torque measurement method | |
WO2019167171A1 (en) | Abnormality detecting device and abnormality detecting method | |
KR102697028B1 (en) | Abnormal diagnosis method and abnormal diagnosis device of cloud bearing | |
EP4043699A1 (en) | System and method for automated failure mode detection of rotating machinery | |
JP6743304B2 (en) | Abnormality detection device, abnormality detection system, and abnormality detection method | |
CN103097863B (en) | A kind of method of deviation of the tach signal for identifying speed probe and device | |
CN102798413B (en) | A kind of railway dynamic detection system | |
US9356550B2 (en) | Motor controller having abnormality detection function of power transmission unit between motor and main shaft | |
JP6799977B2 (en) | Bearing abnormality diagnosis method in rotary shaft device and rotary shaft device | |
JP2008058191A (en) | Method of diagnosing rotary machine, program therefor, and diagnosing device therefor | |
US20190066405A1 (en) | Method and system for detecting a road impact event and for diagnosing abnormalities in chassis components | |
US10066971B2 (en) | Rotation angle detection apparatus having function of detecting entry of foreign substance based on frequency characteristic of signals | |
JP5113398B2 (en) | Automatic train control device | |
Strankowski et al. | Faults and fault detection methods in electric drives | |
JP7332379B2 (en) | CONDITION MONITORING DEVICE, TRANSPORT VEHICLE INSTALLING CONDITION MONITORING DEVICE, AND CONDITION MONITORING METHOD | |
EP3889571A1 (en) | Method and system for diagnosing a rotation machine | |
RU2207263C2 (en) | Device for diagnosing condition of automated brake system directly on automobile |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17920338 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019533879 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017920338 Country of ref document: EP Effective date: 20200304 |