WO2019026156A1 - 燃料電池システムおよび燃料電池システムの制御方法 - Google Patents

燃料電池システムおよび燃料電池システムの制御方法 Download PDF

Info

Publication number
WO2019026156A1
WO2019026156A1 PCT/JP2017/027768 JP2017027768W WO2019026156A1 WO 2019026156 A1 WO2019026156 A1 WO 2019026156A1 JP 2017027768 W JP2017027768 W JP 2017027768W WO 2019026156 A1 WO2019026156 A1 WO 2019026156A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
fuel cell
cell system
air
raw
Prior art date
Application number
PCT/JP2017/027768
Other languages
English (en)
French (fr)
Inventor
朋子 有阪
慎二 宮川
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2017/027768 priority Critical patent/WO2019026156A1/ja
Priority to EP17919778.5A priority patent/EP3664207A4/en
Priority to US16/635,252 priority patent/US11205792B2/en
Priority to JP2019533760A priority patent/JP6777238B2/ja
Priority to CN201780093492.5A priority patent/CN110959211B/zh
Publication of WO2019026156A1 publication Critical patent/WO2019026156A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04373Temperature; Ambient temperature of auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system that generates heat for warm-up by a combustor and a control method thereof.
  • JP2008-293756 is provided with a combustor having a catalyst for promoting combustion, and fuel and air are supplied to the combustor when the system is started, and the fuel cell is heated using heat generated by combustion of hydrogen as the fuel. And promoting the warm-up of the fuel cell (paragraph 0068, 0069).
  • An object of the present invention is to provide a fuel cell system and a control method of the fuel cell system in consideration of the above problems.
  • the present invention provides a fuel cell, a catalytic combustor supplied with a raw fuel and an oxidant, and generating a combustion gas of the raw fuel, and a control unit controlling supply of the raw fuel and the oxidant to the catalytic combustor. And providing a fuel cell system.
  • the control unit according to the present embodiment supplies the raw fuel and the oxidant to the catalytic burner at the start of the fuel cell system, and the reforming reaction of the raw fuel in the catalytic burner is superior to the burning reaction of the raw fuel
  • the air-fuel ratio which is the ratio of the oxidant to the raw fuel, is increased more than before the time at which the reforming reaction predominates.
  • the present invention provides, in another form, a method of controlling a fuel cell system.
  • FIG. 1 is an explanatory view conceptually showing the configuration of a fuel cell system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a specific example of a fuel cell system.
  • FIG. 3 is an explanatory view showing an operating state at the start of the fuel cell system.
  • FIG. 4 is an explanatory view showing an operation state of the fuel cell system at the normal time.
  • FIG. 5 is a flow chart showing the flow of activation control according to an embodiment of the present invention.
  • FIG. 6 is a time chart explaining the operation effect of the start control.
  • FIG. 7 is an explanatory view schematically showing a change of the specific gas component discharge amount.
  • FIG. 8 is a time chart showing a modified example of activation control.
  • FIG. 9 is a time chart showing another modification of activation control.
  • FIG. 10 is a flowchart showing the flow of start control according to another embodiment of the present invention.
  • FIG. 11 is an explanatory view schematically showing the configuration of a fuel
  • FIG. 1 conceptually shows the configuration of a fuel cell system S according to an embodiment of the present invention.
  • a fuel cell system (hereinafter referred to as “fuel cell system” and may be simply referred to as “system”) S according to the present embodiment includes a fuel cell stack 1, a fuel processing unit 2, an oxidant gas heating unit 3, A catalytic combustor (hereinafter simply referred to as "combustor”) 4 and a control unit 5 are provided.
  • fuel cell system includes a fuel cell stack 1, a fuel processing unit 2, an oxidant gas heating unit 3, A catalytic combustor (hereinafter simply referred to as “combustor”) 4 and a control unit 5 are provided.
  • combustor catalytic combustor
  • a fuel cell stack (hereinafter sometimes simply referred to as "stack") 1 is configured by stacking a plurality of fuel cells or fuel cell unit cells, and each fuel cell serving as a power source is, for example, a solid oxide type It is a fuel cell (SOFC).
  • Fuel cell stack 1 includes, in an anode system, an anode gas passage 11 for supplying a fuel gas to the anode electrode of the fuel cell, and an anode off gas passage 11 exh for flowing an anode off gas after a power generation reaction discharged from the anode electrode.
  • a cathode gas passage 12 for supplying an oxidant gas to the cathode electrode of the fuel cell in the cathode system, and a cathode off gas after power generation reaction discharged from the cathode electrode in the cathode system.
  • a cathode off gas passage 12 exh (not shown) for flowing the
  • the fuel processing unit 2 is for processing a raw fuel which is a primary fuel to generate a fuel gas used for a power generation reaction in a fuel cell.
  • the fuel processor 2 is interposed in the anode gas passage 11, and receives the supply of raw fuel (arrow A1).
  • the raw fuel is, for example, an oxygenated fuel, and in the present embodiment is ethanol.
  • the oxidant gas heating unit 3 is for heating the oxidant gas.
  • the oxidant gas heating unit 3 is interposed in the cathode gas passage 12 and receives the supply of oxidant gas (arrow B).
  • the oxidant gas is, for example, air, and oxygen used for a power generation reaction can be supplied to the cathode electrode by supplying air in the atmosphere to the cathode electrode of the fuel cell.
  • Suction of oxidant gas or air from the atmosphere to the cathode gas passage 12 is carried out, for example, by an air suction means 6 such as an air compressor or blower installed near the open end of the cathode gas passage 12.
  • reaction involved in power generation at the anode and cathode of the solid oxide fuel cell can be represented by the following equation.
  • the combustor 4 burns the raw fuel of the fuel cell to generate combustion gas.
  • the combustor 4 receives the supply of the raw fuel (arrow A2) and the supply of the oxidant (arrow C).
  • the heat amount of the combustion gas is supplied not only to the fuel cell stack 1 but also to the fuel processor 2 and the oxidant gas heater 3.
  • FIG. 1 shows the transfer of heat from the combustor 4 to the fuel cell stack 1, the fuel processor 2 and the oxidant gas heater 3 by thick dotted lines.
  • the control unit 5 controls the supply of the raw fuel and the oxidant to the fuel processing unit 2, the oxidant gas heating unit 3 and the combustor 4, and can be configured to include an electronic control unit.
  • the control unit 5 includes a controller 51 configured as an electronic control unit.
  • the main fuel supply unit 52 for supplying the raw fuel to the fuel processing unit 2 and the auxiliary fuel supply unit 53 for supplying the raw fuel to the combustor 4 are both injectors (first fuel injector 52, second It may be a fuel injector 53).
  • the first fuel injector 52 and the second fuel injector 53 operate in response to a command signal from the controller 51, and can supply raw fuel to the fuel processor 2 and the combustor 4 continuously or intermittently. be able to.
  • the controller 51 executes control to promote the warm-up of the fuel cell system S when the fuel cell system S is started.
  • the fuel processing unit 2 determines whether or not the raw fuel can be processed, and when the raw fuel can be processed, the raw fuel is supplied to the fuel cell system S through the first fuel injector 52.
  • the raw fuel is supplied through the second fuel injector 53 when the raw fuel can not be processed.
  • FIG. 2 shows a specific configuration of the fuel cell system S.
  • the fuel cell system S includes a solid oxide fuel cell (SOFC) as a power source, and includes a fuel tank 7 that can be mounted on a vehicle.
  • the raw fuel as the primary fuel is an oxygenated fuel (for example, ethanol)
  • the fuel tank 7 is a mixture of an oxygenated fuel and water (for example, ethanol containing 45% by volume of ethanol) Aqueous solution is stored.
  • the fuel tank 7 and the fuel cell stack 1 are connected via the anode gas passage 11, and the evaporator 21, the fuel heat exchanger 22, and the reformer are connected to the anode gas passage 11 sequentially from the upstream side with respect to the flow direction. 23 are interspersed.
  • a branch fuel passage 11sub branches from the anode gas passage 11 on the upstream side of the evaporator 21, and the branch fuel passage 11sub is connected to a combustor (catalytic combustor) 41.
  • a first fuel injector 52 is interposed in the anode gas passage 11 between the branch point of the branch fuel passage 11sub and the evaporator 21, and a second fuel injector 53 is interposed in the branch fuel passage 11sub.
  • the evaporator 21, the fuel heat exchanger 22, and the reformer 23 constitute the fuel processing unit 2 of the fuel cell system S, process the raw fuel, and generate the fuel gas of the fuel cell.
  • the evaporator 21 receives the supply of an aqueous ethanol solution from the fuel tank 7 and heats it to evaporate both liquid ethanol and water to generate ethanol gas and water vapor.
  • the fuel heat exchanger 22 receives the amount of heat generated by the combustion from the combustor 41 and heats the ethanol gas and the steam.
  • the reformer 23 incorporates a reforming catalyst, and generates hydrogen which is a fuel gas by steam reforming from gaseous ethanol which is a raw fuel.
  • Steam reforming can be represented by the following equation. Steam reforming is an endothermic reaction, and it is necessary to supply heat from the outside at the time of reforming. In the present embodiment, the remaining fuel in the anode off gas is burned by the combustor 41 also during reforming, and the heat generated by the combustion is supplied to the reformer 23.
  • the oxidant gas heating unit 3 includes an air heat exchanger 31 and heats the oxidant gas flowing through the cathode gas passage 12 by heat exchange with the combustion gas supplied from the combustor 41 through the combustion gas passage 42.
  • an air compressor 61 is installed near the open end of the cathode gas passage 12, and air in the atmosphere as the oxidant gas is drawn into the cathode gas passage 12 through the air compressor 61.
  • the drawn air is heated from normal temperature (for example, 25 ° C.) when passing through the air heat exchanger 31, and is supplied to the fuel cell stack 1.
  • the combustor 41 incorporates a combustion catalyst composed of three elements of Pt (platinum), Pd (palladium) and Rh (rhodium), receives supply of an aqueous ethanol solution through the branch fuel passage 11sub, and is a catalyst of ethanol which is a raw fuel Combustion produces a combustion gas.
  • the combustor 41 and the evaporator 21 are connected via the combustion gas passage 42, and the evaporator 21 is heated by the heat amount of the combustion gas.
  • the fuel heat exchanger 22 and the reformer 23 are accommodated in a case shared with the combustor 41 (indicated by a two-dot chain line L), and the heat quantity of the combustion gas is transferred to the fuel heat exchanger in the shared case L. 22 and to the reformer 23.
  • the combustor 41 may be dedicated to heating either the fuel cell stack S or the fuel processing unit 2.
  • the combustor 41 is connected to a passage (hereinafter referred to as “branch air passage”) 12sub branched from the cathode gas passage 12 on the downstream side of the air compressor 61, and flows to the branch air passage 12sub through the passage 12sub.
  • a flow control valve 62 is provided to control the flow rate of the oxidant (air).
  • the combustor 41 is connected to an anode off gas passage 11 exh and a cathode off gas passage 12 exh extending from the fuel cell stack 1.
  • the flow control valve 62 is opened until the reformer 23 reaches the reformable temperature, thereby supplying the oxidant to the combustor 41 through the branch air passage 12sub. After reaching the reformable temperature, it is possible to close the flow control valve 62 and supply an oxidant (remaining oxygen in the anode off gas) via the cathode off gas passage 12exh.
  • reaction of the raw fuel in the combustor 41 can be expressed by the following equation.
  • the power generated by the fuel cell stack 1 can be used to charge a battery or drive an external device such as an electric motor or a motor generator.
  • the fuel cell system S can be applied to a drive system for a vehicle, and charges the battery with the power generated by the rated operation of the fuel cell stack 1 and travels the power according to the target driving force of the vehicle from the battery Supply to the motor generator for
  • the controller 51 controls the operation of the first fuel injector 52, the second fuel injector 53, the air compressor 61, the flow control valve 62, and various devices or components used to operate the fuel cell system S.
  • the controller 51 is configured as an electronic control unit including a microcomputer including a central processing circuit, various storage devices such as a ROM and a RAM, an input / output interface and the like.
  • the controller 51 sets the supply amount (hereinafter referred to as the “normal supply amount”) of the raw fuel required for the rated operation of the fuel cell stack 1, in other words, the operation at the maximum power generation output, at the normal time after the start is completed.
  • the normal supply amount of raw fuel is supplied to the fuel cell system S through the first fuel injector 52.
  • the controller 51 executes start control for warming up the entire fuel cell system S.
  • start-up control the fuel cell stack 1 which has been at a low temperature (for example, normal temperature) during the stop is heated up to its operating temperature.
  • the operating temperature of the solid oxide fuel cell is about 800 to 1000 ° C., and in the present embodiment, the temperature of the fuel cell stack 1 to the fuel cell is raised to 600 to 700 ° C.
  • the controller 51 as the information relating to the start control signal from the stack temperature sensor 101 for detecting the stack temperature T stk, signals from the combustor temperature sensor 102 for detecting the combustor temperature T cmb, the reformer temperature T ref A signal from the reformer temperature sensor 103 to be detected, a signal from the exhaust gas sensor 104 to detect the exhaust gas concentration C cmb , etc. are input.
  • the stack temperature T stk is an index indicating the temperature of the fuel cell stack 1 or the fuel cell, and in the present embodiment, the stack temperature sensor 101 is installed near the cathode off gas outlet of the fuel cell stack 1 and detected by the stack temperature sensor 101 Let the stack temperature T stk be the stack temperature.
  • the combustor temperature T cmb is the temperature of the combustor 41.
  • the combustor temperature sensor 102 is installed in the combustion gas passage 42 on the downstream side of the combustor 41, and the temperature detected by the combustor temperature sensor 102, that is, the outlet temperature of the combustor 41 T cmb .
  • the reformer temperature T ref is the temperature of the reformer 23.
  • the reformer temperature sensor 103 is installed in the anode gas passage 11 on the downstream side of the reformer 23, and the temperature detected by the reformer temperature sensor 103 is set as the reformer temperature T ref .
  • the exhaust gas concentration C cmb is the concentration of a specific gas component in the combustion gas generated by the combustor 41.
  • CO is a potential component of the combustion gas, CO 2, CH 4, H 2, H 2 O and CH 3 of CHO, CO resulting product of the reforming reaction, CH 4, H 2 And at least one gas component of CH 3 CHO as a specific gas component.
  • An exhaust gas sensor 104 is installed in the combustion gas passage 42 between the combustor 41 and the air heat exchanger 31, and the concentration detected by the exhaust gas sensor 104 is the exhaust gas concentration C cmb .
  • FIG. 3 and 4 show the operating state of the fuel cell system S
  • FIG. 3 shows the operating state at the start of the fuel cell system S
  • FIG. 4 shows the operating state at the normal time after the start is completed.
  • the channel through which the gas actually flows is indicated by a thick solid line
  • the channel through which the gas flow is stopped is indicated by a thin dotted line.
  • the supply of the raw fuel through the first fuel injector 52 is stopped, and the raw fuel required to warm up the fuel cell stack 1 is supplied to the combustor 41 through the second fuel injector 53 (FIG. 3).
  • the oxidant air
  • the branch air passage 12sub by operating the air compressor 61 and opening the flow control valve 62, the oxidant (air) is supplied to the combustor 41 through the branch air passage 12sub.
  • the fuel heat exchanger 22 and the reformer 23 are heated by the amount of heat generated by the combustion of the raw fuel, and the combustion gas is supplied to the air heat exchanger 31 and the evaporator 21 through the combustion gas passage 42. Together with the evaporator 21, the fuel heat exchanger 22, the reformer 23, and the air heat exchanger 31, the fuel cell stack 1 can be heated to promote the warm-up of the entire fuel cell system S.
  • the raw fuel of normal supply amount required for rated operation of the fuel cell stack 1 is supplied to the fuel cell system S through the first fuel injector 52, and the fuel cell stack 1 is operated at rated output (FIG. 4) .
  • the remaining fuel in the anode off gas is burned by the combustor 41, and the heat required for reforming is supplied to the reformer 23, and the combustion gas of the remaining fuel is supplied to the air heat exchanger 31 and the evaporator 21. , And maintain the entire fuel cell system S at a temperature required for operation.
  • FIG. 5 is a flowchart showing a flow of start control of the fuel cell system S according to the present embodiment.
  • the controller 51 is programmed to execute start control of the fuel cell system S according to the procedure shown in the flowchart of FIG. 5 when the start request signal is inputted from the start switch 105 based on the operation of the start switch 105 by the driver. .
  • the controller 51 starts the start control in response to the input of the start request signal, and ends the determination that the fuel cell stack 1 or the fuel cell has been warmed up.
  • stack temperature T stk various sensor outputs related to start control are read. Specifically, stack temperature T stk, combustor temperature T cmb, the reformer temperature T ref and the exhaust gas concentration C cmb read.
  • the supply amount of raw fuel (hereinafter referred to as "start-up supply amount”) Qf_str to be supplied to the combustor 41 at startup is calculated.
  • the startup time supply amount Q f — str can be set according to the target temperature (eg, 800 ° C.) of the combustion gas. Then, the supply amount of the raw fuel capable of generating the amount of heat necessary for setting the combustion gas to the target temperature is calculated as the start-up supply amount Qf_str .
  • the start-up supply amount Q f — str can be set in advance as an amount determined not only by calculation but also by adaptation through experiments and the like.
  • a target rotation number (hereinafter referred to as “target compressor rotation number”) N cmp_t of the air compressor 61 at the time of startup is calculated.
  • the target compressor rotational speed N cmp_t is an amount of air required to make the air-fuel ratio to a predetermined value (hereinafter referred to as “start-up target air-fuel ratio”) relative to the raw fuel of the start-up supply amount Qf_str.
  • start-up target air-fuel ratio a predetermined value relative to the raw fuel of the start-up supply amount Qf_str.
  • the target compressor rotation calculates the number N cmp_t .
  • the air-fuel ratio in the combustor 41 is increased.
  • the "air-fuel ratio” refers to the ratio of the mass of the oxidant (air) to the mass of the raw fuel (ethanol) supplied to the combustor 41, and in the present embodiment, the combustor 41 through the branch air passage 12sub.
  • the air-fuel ratio is increased by increasing the amount of air supplied to the air-fuel ratio (hereinafter, the increased air-fuel ratio may be referred to as "start-up corrected air-fuel ratio").
  • start-up corrected air-fuel ratio the discharge amount of the air compressor 61 is increased by correcting the target compressor rotation speed N cmp_t to be increased.
  • the amount of air supplied to the combustor 41 may be increased by increasing the opening degree of the flow control valve 62.
  • the combustion reaction shown by the above equations (3.1) to (3.3) is more than the reforming reaction shown by the above equations (3.4) and (3.5) It is determined whether or not it is progressing ahead. Specifically, the air fuel ratio is increased by the process shown in S106, assuming that the exhaust gas concentration C cmb exceeds the predetermined value C cmb_thr by the process shown in S105, and the reforming reaction turns to be superior to the combustion reaction. exhaust gas concentration C cmb is lowered, it determines whether the rate of decrease [Delta] C cmb is reduced to a predetermined value ⁇ C cmb_thr.
  • the increase correction of the air-fuel ratio by the process shown in S106 is canceled, and the air-fuel ratio in the combustor 41 is returned to the original startup target air-fuel ratio.
  • the target compressor rotational speed N cmp_t is decreased to reduce the amount of air supplied to the combustor 41 through the branch air passage 12sub to the original supply amount.
  • the reformer temperature T ref is the lower limit temperature at which the reformer 23 can be reformed. It is determined whether it is T ref_min or more. If the reformer temperature T ref is equal to or higher than the lower limit temperature T ref_min, it is determined that the raw fuel can be processed, and the process proceeds to S109. If the reformer temperature T ref is lower than the lower limit temperature T ref_min , the raw fuel can be processed. If it is not in the state, the process returns to S101, and the process shown in S101 to S108 is repeated to maintain the temperature T cmb of the combustor 41 at or above the target value T cmb_t .
  • the determination as to whether or not the raw fuel can be processed depends not only on the determination as to whether or not the reformer 23 is capable of reforming the raw fuel, but it is added to or in addition to this determination. Alternatively, it is also possible to determine whether the evaporator 21 is in a state capable of evaporating the raw fuel. Specifically, the evaporator temperature T vap it is determined whether a vaporizable lower limit temperature T Vap_min more evaporator 21, when the evaporator temperature T vap is the lower limit temperature T Vap_min above, raw fuel It is determined that the processing of is possible.
  • the evaporator temperature T vap is the temperature of the evaporator 21.
  • an evaporator temperature sensor is installed in the combustion gas passage 42 on the downstream side of the evaporator 21, and the combustor temperature is detected by the evaporator temperature sensor. It is referred to as T vap .
  • the raw fuel is supplied to the reformer 23. That is, after the start control is started, when the temperature of the reformer 23 rises and the raw fuel can be processed, the supply destination of the raw fuel is changed from the combustor 41 to the fuel processing unit 2 or the reforming unit 2
  • the fuel cell stack 1 is switched to the fuel cell 23 and the reformer 23 generates a fuel gas, and the heat generated by the power generation continues the warm-up of the fuel cell stack 1.
  • S111 it is determined whether the warm-up of the fuel cell stack 1 is completed. Specifically, when the stack temperature T stk it is determined whether or not has reached a predetermined temperature T Stk_wup for determining the completion of warming up, the stack temperature T stk has reached the predetermined temperature T Stk_wup, the fuel cell stack Assuming that warm-up of 1 is completed, start-up control is ended, and if the predetermined temperature Tstk_wup is not reached, warm-up is not yet completed and the process returns to S101 and repeats the processing shown in S101 to 110. . When the start control is finished, the normal control is executed according to another routine not shown to operate the fuel cell stack 1 at the rated output.
  • the controller 51, the second fuel injector 53, and the air compressor 61 constitute a "control unit" of the fuel cell system S.
  • the fuel cell system S according to the present embodiment is configured as described above, and the operation and effects obtained by the present embodiment will be described below.
  • FIG. 6 shows changes in the discharge amount Q g of the specific gas component, the supply amounts Q f and Q a of the raw fuel and the oxidant to the combustor 41, and the temperature T cmb of the combustor 41 when the fuel cell system S starts up. ing.
  • the temperature T cmb of the combustor 41 refers to the temperature that regulates the reaction occurring on the catalyst, and in the present embodiment, is represented by the outlet temperature of the combustor 41.
  • the raw fuel is burned by the combustor 41 having a catalyst, and the heat produced by the combustion is used to heat the fuel cell stack 1 and the fuel processor 2 (reformer 23).
  • the warm-up of the entire fuel cell system S can be promoted.
  • the air-fuel ratio is assumed to be that the reforming reaction of the raw fuel in the combustor 41 has become dominant over the combustion reaction when the predetermined time (time t1) is reached after the start control is started.
  • time t1 the predetermined time
  • the temperature of the combustor 41 can be raised and the warm-up can be promoted while suppressing the emission of air pollutants.
  • the discharge amount Q g of specific gas components after reduction by increasing the air-fuel ratio is shown by a thick solid line.
  • the predetermined time can be set more appropriately based on the concentration of the specific gas component, and the emission of air pollutants can be suppressed.
  • the exhaust gas sensor 104 can determine that the predetermined time has been reached with a simple configuration.
  • the supply amount Q a of the oxidizing agent to the combustor 41 to increase the air-fuel ratio, the supply amount Q f of raw fuel Since it is not necessary to reduce it, it is possible to suppress the occurrence of a delay in the temperature rise of the combustor 41 due to the lack of the heat amount, and to avoid the excessive delay in the completion of the start.
  • FIG. 6 shows the change in the case where the air-fuel ratio is increased by reducing the amount of the raw fuel, by a two-dot chain line. According to reduction of the raw fuel, it is not necessary to increase the supply amount Q a of the oxidizing agent, it is possible to suppress the progress of deterioration of the catalyst provided in the combustor 41.
  • the concentration of the specific gas component (exhaust gas concentration C cmb ) is detected, and when the concentration reaches the predetermined concentration C cmb_thr , the air-fuel ratio is increased assuming that the predetermined time has been reached.
  • the determination as to whether or not the predetermined time has been reached can be made based on the temperature of the combustor 41 without being limited thereto.
  • a temperature sensor for detecting a temperature that regulates a reaction occurring on the catalyst or a temperature correlated with the temperature is installed, and after start control is started, the temperature sensor detects When the temperature reaches the first predetermined temperature (the temperature T1 shown in FIG. 6) (time t1), the air-fuel ratio is increased assuming that the predetermined time has been reached. Thereafter, when the temperature of the combustor 41 further rises and the temperature detected by the temperature sensor reaches a second predetermined temperature (temperature T2) higher than the first predetermined temperature T1, the air-fuel ratio is decreased.
  • the specific method of increasing the air-fuel ratio may be the same as that described above, either increasing the amount of oxidant supplied to the combustor 41 or decreasing the amount of raw fuel supplied.
  • the combustion reaction has changed from the state in which the combustion reaction is dominant to the state in which the reforming reaction is dominant.
  • the determination can be made with an inexpensive configuration using a temperature sensor, and the emission of air pollutants can be suppressed.
  • the temperature of the combustor 41 reaches the second predetermined temperature T2
  • the air-fuel ratio is decreased to prevent the deterioration of the catalyst provided in the combustor 41 from progressing due to the unnecessary increase of the air-fuel ratio. be able to.
  • the air-fuel ratio may be increased by measuring the elapsed time after the start of startup and when the elapsed time reaches a predetermined time (time t1).
  • a predetermined time time t1
  • the relationship between the elapsed time after the start of activation and the temperature of the combustor 41 can be grasped in advance through experiments and the like. Therefore, after setting the elapsed times t1 and t2 estimated that the temperature of the combustor 41 will be the predetermined temperatures T1 and T2 and starting the start control, when the elapsed time reaches the first predetermined time t1, the air-fuel ratio The air fuel ratio is decreased when the second predetermined time t2 later than the first predetermined time t1 is reached.
  • CO is a potential component of the combustion gas, CO 2, CH 4, H 2, H 2 O and CH 3 of CHO, CO resulting product of the reforming reaction, CH 4, H 2 and CH 3 and the specific gas component at least one gas component of CHO, it was decided to determine whether a predetermined time the concentration of the component (exhaust gas concentration C cmb) based.
  • the determination as to whether or not it is at a predetermined time is not limited to this, and it is possible to use CO 2 or H 2 O generated as a result of the combustion reaction as a specific gas component, and based on the concentration of that component in the combustion gas It is.
  • FIG. 7 shows changes in CO, CH 4 , H 2 and CH 3 CHO emissions with respect to an increase in temperature of the combustor 41 in the upper stage, and changes in CO 2 and H 2 O emissions in the lower stage.
  • the determination as to whether or not the predetermined time for increasing the air-fuel ratio has been reached can also be made based on the amount of emission of the gas component which tends to decrease as the reforming reaction is predominantly shifted.
  • the air-fuel ratio when the air-fuel ratio is increased by decreasing the supply amount of the raw fuel, the supply amount of the raw fuel is uniformly reduced after reaching the predetermined time.
  • the increase of the air-fuel ratio due to the reduction of the raw fuel can be performed not only by this but also by alternately executing the reduction and the increase of the raw fuel.
  • FIG. 8 shows the content of start control according to another embodiment of the present invention in a time chart.
  • the controller 51 stops the supply of the raw fuel to the combustor 41 when increasing the air-fuel ratio, and then alternately executes the restart and the stop of the supply.
  • the combustion reaction can be promoted by the increase of the air-fuel ratio, and the emission of air pollutants can be suppressed.
  • the restart and stop of the supply the progress of the deterioration of the catalyst provided in the combustor 41 is suppressed, and the supply of the raw fuel is stopped by stopping the supply of the raw fuel. It is possible to prevent the temperature rise from being excessively disturbed and the time required for the start-up to be significantly prolonged.
  • FIG. 9 is a time chart showing the contents of start control according to still another embodiment of the present invention.
  • the controller 51 determines whether or not the predetermined time has been reached based on the elapsed time after the start of activation and determines the degree of deterioration of the catalyst provided in the combustor 41, and determines the degree of deterioration of the catalyst In response to this, the first predetermined time t1 and the second predetermined time t2 are corrected. Specifically, as the deterioration of the catalyst progresses, the first predetermined time t1 and the second predetermined time t2 are delayed and set. As the deterioration of the catalyst progresses, the rising gradient of the temperature of the combustor 41 with respect to the elapsed time tends to be gentler.
  • the first predetermined time t12 and the second predetermined time t22 are delayed and set as compared with before the deterioration, and the period B (t12 to t22) in which the air fuel ratio is increased is further set.
  • the air-fuel ratio can be increased at an appropriate time according to the degree of deterioration, and the emission of air pollutants can be suppressed.
  • the degree of deterioration of the catalyst can be detected based on the temperature rise of the combustor 41 after the supply of the raw fuel is started.
  • FIG. 10 is a flow chart showing the flow of activation control according to another embodiment of the present invention.
  • the controller 51 When the controller 51 receives an activation request signal from the activation switch 105, the controller 51 reads out the activation control program from the storage device, and executes the activation control of the fuel cell system S according to the procedure shown in the flowchart of FIG. The differences from the start control (FIG. 5) according to the previous embodiment will be mainly described.
  • the reforming reaction proceeds advantage, determine whether emissions Q g of the specific gas component from the combustor 41 is in the area (temperature T1 ⁇ T2) exceeding a predetermined amount Q G_thr Do.
  • the determination as to whether or not the temperature is within the predetermined temperature range can be made not only by directly detecting the temperature of the combustor 41 but also by detecting the exhaust gas concentration C cmb , and is determined from the elapsed time after the start of activation. It is also possible.
  • the combustor 41 is in the predetermined temperature range, the reforming reaction is dominant, and the process proceeds to S203.
  • the combustion reaction is dominant and the process proceeds to S202.
  • the air-fuel ratio in the combustor 41 is set to a relatively low second air-fuel ratio ⁇ 2.
  • the air-fuel ratio in the combustor 41 is set to a first air-fuel ratio ⁇ 1 higher than the second air-fuel ratio ⁇ 2.
  • the supply amount (start-up supply amount) Qf_str of the raw fuel to achieve the first air-fuel ratio ⁇ 1 or the second air-fuel ratio ⁇ 2 is calculated.
  • the air-fuel ratio is increased by increasing the amount of oxidant, and the start-up supply amount Q f — str is the same as that of the previous embodiment.
  • a target rotational speed (target compressor rotational speed) N cmp_t of the air compressor 61 for achieving the first or second air-fuel ratio ⁇ 1, ⁇ 2 is calculated.
  • calculation of the target compressor rotational speed N cmp_t is performed by calculating the amount of air required to achieve the first or second air-fuel ratio ⁇ 1 or ⁇ 2 with respect to the raw fuel at the startup supply amount Q f_str. By converting the calculated amount of air into a target compressor rotational speed N cmp_t based on the operating characteristics of the air compressor 61.
  • the temperature of the combustor 41 is directed to the target value (the temperature required to warm up the fuel cell system S, for example, 800 ° C.) In the process of rising, when passing through a predetermined temperature range in which the reforming reaction is dominant in the combustor 41 (period B), compared with the case (period A or C) outside the predetermined temperature range
  • the target value the temperature required to warm up the fuel cell system S, for example, 800 ° C.
  • FIG. 11 shows an embodiment in that case.
  • a catalytic combustor 32 is provided in addition to the exhaust side combustor (hereinafter, particularly referred to as “exhaust combustor”) 41, and the catalytic combustor 32 on the supply side is interposed in the cathode gas passage 12. ing.
  • the raw fuel and the oxidizer can be supplied to the catalytic burner 32 (the supply path is indicated by a dotted line).
  • ethanol from the fuel tank 7 and the air compressor 61 are further provided. Air in the atmosphere is supplied respectively.
  • the catalytic combustor 32 is configured as a heat exchanger that heats the oxidant gas (air) flowing through the cathode gas passage 12 with the combustion gas, and is taken into the cathode gas passage 12 by the air compressor 61 when the fuel cell system 1 is started.
  • the heated air is heated and supplied to the cathode of the fuel cell. It is also possible to stop the supply of the raw fuel and the oxidant to the exhaust combustor 41 and to warm up the fuel cell stack 1 exclusively by the catalytic combustor 32.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

燃料電池と、原燃料および酸化剤が供給され、原燃料の燃焼ガスを生成する触媒燃焼器と、触媒燃焼器に対する原燃料および酸化剤の供給を制御する制御部と、を備える燃料電池システムである。制御部は、燃料電池システムの起動時において、触媒燃焼器に原燃料および酸化剤を供給し、触媒燃焼器における原燃料の改質反応が原燃料の燃焼反応に対して優位に転ずる時期に、原燃料に対する酸化剤の比率である空燃比を、改質反応が優位に転ずる時期前よりも増大させる。

Description

燃料電池システムおよび燃料電池システムの制御方法
 本発明は、暖機用の熱量を燃焼器により生じさせる燃料電池システムおよびその制御方法に関する。
 JP2008-293756には、燃焼促進用の触媒を有する燃焼器を備え、システム起動時にこの燃焼器に燃料と空気とを供給し、燃料である水素の燃焼により生じた熱量を用いて燃料電池を加熱し、燃料電池の暖機を促進することが開示されている(段落0068、0069)。
 暖機の早期達成の観点から、燃焼器に備わる触媒を速やかに昇温させることが求められる。他方で、燃焼器により燃料処理前の原燃料を燃焼させる場合は、水素を燃焼させる場合とは異なり、原燃料の燃焼により、触媒を昇温させる過程で大気汚染物質の排出量が増大する場合がある。よって、単に原燃料を燃焼器に供給し、燃焼させるだけでは、大気中に放出される大気汚染物質が増大することが懸念される。
 本発明は、以上の問題を考慮した燃料電池システムおよび燃料電池システムの制御方法を提供することを目的とする。
 本発明は、一形態において、燃料電池と、原燃料および酸化剤が供給され、原燃料の燃焼ガスを生成する触媒燃焼器と、触媒燃焼器に対する原燃料および酸化剤の供給を制御する制御部と、を備える燃料電池システムを提供する。本形態に係る制御部は、燃料電池システムの起動時において、触媒燃焼器に原燃料および酸化剤を供給し、触媒燃焼器における原燃料の改質反応が原燃料の燃焼反応に対して優位に転ずる時期に、原燃料に対する酸化剤の比率である空燃比を、改質反応が優位に転ずる時期前よりも増大させる。
 本発明は、他の形態において、燃料電池システムの制御方法を提供する。
図1は、本発明の一実施形態に係る燃料電池システムの構成を概念的に示す説明図である。 図2は、燃料電池システムの具体例を示す構成図である。 図3は、燃料電池システムの起動時における作動状態を示す説明図である。 図4は、燃料電池システムの通常時における作動状態を示す説明図である。 図5は、本発明の一実施形態に係る起動制御の流れを示すフローチャートである。 図6は、起動制御の作用効果を説明するタイムチャートである。 図7は、特定ガス成分排出量の変化を模式的に示す説明図である。 図8は、起動制御の変更例を示すタイムチャートである。 図9は、起動制御の他の変更例を示すタイムチャートである。 図10は、本発明の他の実施形態に係る起動制御の流れを示すフローチャートである。 図11は、本発明の更に別の実施形態に係る燃料電池システムの構成を概略的に示す説明図である。
 以下、図面を参照して、本発明の実施形態について説明する。
 (燃料電池システムの全体構成)
 図1は、本発明の一実施形態に係る燃料電池システムSの構成を概念的に示している。
 本実施形態に係る燃料電池システム(以下「燃料電池システム」といい、単に「システム」という場合がある)Sは、燃料電池スタック1と、燃料処理部2と、酸化剤ガス加熱部3と、触媒燃焼器(以下、単に「燃焼器」という)4と、制御部5と、を備える。
 燃料電池スタック(以下、単に「スタック」という場合がある)1は、複数の燃料電池または燃料電池単位セルを積層して構成され、発電源である個々の燃料電池は、例えば、固体酸化物型燃料電池(SOFC)である。燃料電池スタック1は、アノード系において、燃料電池のアノード極に燃料ガスを供給するためのアノードガス通路11と、アノード極から排出される発電反応後のアノードオフガスを流すためのアノードオフガス通路11exh(図1において、図示せず)と、を備える一方、カソード系において、燃料電池のカソード極に酸化剤ガスを供給するためのカソードガス通路12と、カソード極から排出される発電反応後のカソードオフガスを流すためのカソードオフガス通路12exh(図示せず)と、を備える。
 燃料処理部2は、一次燃料である原燃料を処理し、燃料電池での発電反応に用いられる燃料ガスを生成するためのものである。燃料処理部2は、アノードガス通路11に介装され、原燃料の供給を受ける(矢印A1)。原燃料は、例えば、含酸素燃料であり、本実施形態では、エタノールである。
 酸化剤ガス加熱部3は、酸化剤ガスを加熱するためのものである。酸化剤ガス加熱部3は、カソードガス通路12に介装され、酸化剤ガスの供給を受ける(矢印B)。酸化剤ガスは、例えば、空気であり、大気中の空気を燃料電池のカソード極に供給することにより、発電反応に用いられる酸素をカソード極に供給することが可能である。大気からカソードガス通路12への酸化剤ガスないし空気の吸入は、例えば、カソードガス通路12の開放端付近に設置されたエアコンプレッサまたはブロア等の空気吸入手段6による。
 ここで、固体酸化物型燃料電池のアノード極およびカソード極での発電に係る反応は、次式により表すことができる。
 アノード極: 2H2+4O2- → 2H2O+4e- …(1.1)
 カソード極: O2+4e- → 2O2- …(1.2)
 燃焼器4は、燃料電池の原燃料を燃焼させ、燃焼ガスを生成する。燃焼器4は、原燃料の供給を受けるとともに(矢印A2)、酸化剤の供給を受ける(矢印C)。燃焼ガスが有する熱量は、燃料電池スタック1に供給されるばかりでなく、燃料処理部2および酸化剤ガス加熱部3にも供給される。図1は、燃焼器4から燃料電池スタック1、燃料処理部2および酸化剤ガス加熱部3への熱量の移動を、太い点線により示している。
 制御部5は、燃料処理部2、酸化剤ガス加熱部3および燃焼器4に対する原燃料および酸化剤の供給を制御するものであり、電子制御ユニットを含んで構成することが可能である。本実施形態において、制御部5は、電子制御ユニットとして構成されるコントローラ51を備える。燃料処理部2に原燃料を供給するための主燃料供給ユニット52と、燃焼器4に原燃料を供給するための副燃料供給ユニット53とは、いずれもインジェクタ(第1燃料インジェクタ52、第2燃料インジェクタ53)であってよい。第1燃料インジェクタ52および第2燃料インジェクタ53は、コントローラ51からの指令信号に応じて作動し、燃料処理部2および燃焼器4に対して原燃料を連続的または間欠的に供給可能に構成することができる。
 コントローラ51は、燃料電池システムSの起動時に、燃料電池システムSの暖機を促進するため制御を実行する。燃料処理部2が原燃料の処理が可能な状態にあるか否かを判定し、原燃料の処理が可能な状態にある場合に、第1燃料インジェクタ52を通じて燃料電池システムSに原燃料を供給し、原燃料の処理が可能な状態にない場合に、第2燃料インジェクタ53を通じて原燃料を供給する。これにより、燃料処理部2が原燃料の処理が可能な状態にない場合に、燃焼器4で生成された燃焼ガスを熱源として、燃料電池スタック1および燃料処理部2を加熱し、燃料電池システムSの暖機を促進する。
 図2は、燃料電池システムSの具体的な構成を示している。
 燃料電池システムSは、発電源として固体酸化物型燃料電池(SOFC)を備え、車上に搭載可能な燃料タンク7を備える。本実施形態において、一次燃料である原燃料は、含酸素燃料(例えば、エタノール)であり、燃料タンク7には、含酸素燃料と水との混合物(例えば、45体積%のエタノールを含有するエタノール水溶液)が貯蔵されている。燃料タンク7と燃料電池スタック1とが、アノードガス通路11を介して接続され、アノードガス通路11には、流れの方向に関して上流側から順に、蒸発器21、燃料熱交換器22および改質器23が介装されている。他方で、蒸発器21の上流側でアノードガス通路11から分岐燃料通路11subが分岐し、分岐燃料通路11subは、燃焼器(触媒燃焼器)41に接続されている。分岐燃料通路11subの分岐点と蒸発器21との間のアノードガス通路11に第1燃料インジェクタ52が介装され、分岐燃料通路11subに第2燃料インジェクタ53が介装されている。これにより、アノードガス通路11と分岐燃料通路11subとの間で原燃料の流通を切り換えることが可能である。蒸発器21、燃料熱交換器22および改質器23は、燃料電池システムSの燃料処理部2を構成するものであり、原燃料を処理し、燃料電池の燃料ガスを生成する。
 蒸発器21は、燃料タンク7からエタノール水溶液の供給を受け、これを加熱して、液体のエタノールと水とをいずれも蒸発させ、エタノールガスおよび水蒸気を生成する。
 燃料熱交換器22は、燃焼器41から燃焼により生じた熱量を受け、エタノールガスおよび水蒸気を加熱する。
 改質器23は、改質用触媒を内蔵し、原燃料である気体のエタノールから、水蒸気改質により燃料ガスである水素を生成する。水蒸気改質は、次式により表すことができる。水蒸気改質は、吸熱反応であり、改質に際して外部から熱量を供給する必要がある。本実施形態では、改質中も燃焼器41でアノードオフガス中の残燃料を燃焼させ、燃焼により生じた熱量を改質器23に供給する。
 C25OH+3H2O → 6H2+2CO2 …(2)
 酸化剤ガス加熱部3は、空気熱交換器31により構成され、燃焼器41から燃焼ガス通路42を通じて供給される燃焼ガスとの熱交換により、カソードガス通路12を流れる酸化剤ガスを加熱する。本実施形態では、カソードガス通路12の開放端付近にエアコンプレッサ61が設置され、酸化剤ガスとして大気中の空気が、エアコンプレッサ61を通じてカソードガス通路12に吸入される。吸入された空気は、空気熱交換器31を通過する際に常温(例えば、25℃)から加熱され、燃料電池スタック1に供給される。
 燃焼器41は、Pt(白金)、Pd(パラジウム)およびRh(ロジウム)の3元素からなる燃焼用触媒を内蔵し、分岐燃料通路11subを通じてエタノール水溶液の供給を受け、原燃料であるエタノールの触媒燃焼により燃焼ガスを生成する。本実施形態では、燃焼器41と蒸発器21とが燃焼ガス通路42を介して接続され、燃焼ガスが有する熱量により蒸発器21を加熱する。他方で、燃料熱交換器22および改質器23が燃焼器41と共用のケースに収容され(二点鎖線Lにより示す)、燃焼ガスの熱量がこの共用のケースLの内部で燃料熱交換器22および改質器23に伝わるように構成されている。このように、本実施形態では、燃焼器41で生成された燃焼ガスにより、燃料電池スタック1ばかりでなく、燃料処理部2も加熱する。これに限らず、燃焼器41は、燃料電池スタックSか燃料処理部2かのいずれかを加熱する専用のものであってもよい。
 本実施形態において、燃焼器41は、エアコンプレッサ61の下流側でカソードガス通路12から分岐する通路(以下「分岐空気通路」という)12subと接続され、分岐空気通路12subには、通路12subを流れる酸化剤(空気)の流量を調節するための流量制御弁62が設置されている。さらに、燃焼器41は、燃料電池スタック1から延びるアノードオフガス通路11exhおよびカソードオフガス通路12exhと接続されている。これにより、燃料電池システムSの起動時に、改質器23が改質可能温度に達するまでは、流量制御弁62を開くことで、分岐空気通路12subを通じて燃焼器41に酸化剤を供給する一方、改質可能温度に達した後は、流量制御弁62を閉じ、カソードオフガス通路12exhを介して酸化剤(アノードオフガス中の残酸素)を供給することが可能である。
 ここで、燃焼器41における原燃料の反応は、次式により表すことができる。
 C25OH+1/2O2 → 2CO+3H2 …(3.1)
 CO+1/2O2 → CO2 …(3.2)
 H2+1/2O2 → H2O …(3.3)
 C25OH → CH3CHO+H2 …(3.4)
 CH3CHO → CH4+CO …(3.5)
 上式(3.1)~(3.5)のうち、式(3.1)~(3.3)が原燃料の燃焼反応を示し、式(3.4)および(3.4)が原燃料の改質反応を示す。よって、燃焼反応に対して改質反応が優位に進行すると、炭化水素および一酸化炭素等の大気汚染物質の排出量が増大することとなる。
 燃料電池スタック1の発電電力は、バッテリを充電したり、電動モータまたはモータジェネレータ等の外部装置を駆動したりするのに用いることが可能である。例えば、燃料電池システムSは、車両用の駆動システムに適用することができ、燃料電池スタック1の定格運転により生じた電力をバッテリに充電し、車両の目標駆動力に応じた電力をバッテリから走行用のモータジェネレータに供給する。
 (制御システムの構成)
 第1燃料インジェクタ52、第2燃料インジェクタ53、エアコンプレッサ61および流量制御弁62、その他、燃料電池システムSの運転に用いられる各種装置ないし部品の動作は、コントローラ51により制御される。本実施形態において、コントローラ51は、中央演算回路、ROMおよびRAM等の各種記憶装置、入出力インターフェース等を備えるマイクロコンピュータからなる電子制御ユニットとして構成される。
 コントローラ51は、起動完了後の通常時において、燃料電池スタック1の定格運転、換言すれば、最大発電出力での運転に要する原燃料の供給量(以下「通常時供給量」という)を設定し、通常時供給量の原燃料を、第1燃料インジェクタ52を通じて燃料電池システムSに供給する。
 他方で、コントローラ51は、燃料電池システムSの起動時に、燃料電池システムS全体の暖機を行う起動制御を実行する。起動制御により、停止中に低温(例えば、常温)にあった燃料電池スタック1を、その動作温度にまで昇温させる。固体酸化物型燃料電池の動作温度は、800~1000℃程度であり、本実施形態では、燃料電池スタック1ないし燃料電池の温度を600~700℃にまで上昇させる。
 コントローラ51は、起動制御に関わる情報として、スタック温度Tstkを検出するスタック温度センサ101からの信号、燃焼器温度Tcmbを検出する燃焼器温度センサ102からの信号、改質器温度Trefを検出する改質器温度センサ103からの信号、排ガス濃度Ccmbを検出する排ガスセンサ104からの信号等を入力する。
 スタック温度Tstkは、燃料電池スタック1または燃料電池の温度を示す指標であり、本実施形態では、燃料電池スタック1のカソードオフガス出口付近にスタック温度センサ101を設置し、スタック温度センサ101により検出された温度をもってスタック温度Tstkとする。
 燃焼器温度Tcmbは、燃焼器41の温度である。本実施形態では、燃焼器41の下流側の燃焼ガス通路42に燃焼器温度センサ102を設置し、燃焼器温度センサ102により検出された温度、つまり、燃焼器41の出口部温度をもって燃焼器温度Tcmbとする。
 改質器温度Trefは、改質器23の温度である。本実施形態では、改質器23の下流側のアノードガス通路11に改質器温度センサ103を設置し、改質器温度センサ103により検出された温度をもって改質器温度Trefとする。
 排ガス濃度Ccmbは、燃焼器41で生成される燃焼ガス中の特定ガス成分の濃度である。本実施形態では、燃焼ガスの潜在的な成分であるCO、CO2、CH4、H2、H2OおよびCH3CHOのうち、改質反応の結果物として生じるCO、CH4、H2およびCH3CHOの少なくとも一種のガス成分を、特定ガス成分とする。燃焼器41と空気熱交換器31との間の燃焼ガス通路42に排ガスセンサ104を設置し、排ガスセンサ104により検出された濃度をもって排ガス濃度Ccmbとする。
 (燃料電池システムの動作説明)
 図3および4は、燃料電池システムSの作動状態を示しており、図3は、燃料電池システムSの起動時における作動状態を、図4は、起動完了後の通常時における作動状態を示している。アノード系およびカソード系の通路のうち、実際にガスが流通している通路を太い実線により、ガスの流通が停止している通路を細い点線により示している。
 起動時では、第1燃料インジェクタ52を通じた原燃料の供給を停止し、燃料電池スタック1の暖機に要する原燃料を、第2燃料インジェクタ53を通じて燃焼器41に供給する(図3)。他方で、エアコンプレッサ61を作動させ、流量制御弁62を開くことで、分岐空気通路12subを通じて燃焼器41に酸化剤(空気)を供給する。原燃料の燃焼により生じた熱量により燃料熱交換器22および改質器23を加熱するとともに、燃焼ガスを、燃焼ガス通路42を介して空気熱交換器31および蒸発器21に供給する。蒸発器21、燃料熱交換器22、改質器23および空気熱交換器31に併せ、燃料電池スタック1を加熱し、燃料電池システムS全体の暖機を促進することができる。
 通常時では、燃料電池スタック1の定格運転に要する通常時供給量の原燃料を、第1燃料インジェクタ52を通じて燃料電池システムSに供給し、燃料電池スタック1を定格出力で運転する(図4)。他方で、アノードオフガス中の残燃料を燃焼器41で燃焼させ、改質器23に対して改質に必要な熱量を供給するとともに、残燃料の燃焼ガスを空気熱交換器31および蒸発器21に供給し、燃料電池システムS全体を運転に必要な温度に維持する。
 燃料電池システムSの起動制御について、以下にフローチャートを参照して具体的に説明する。
 (起動制御の説明)
 図5は、本実施形態に係る燃料電池システムSの起動制御の流れを示すフローチャートである。
 コントローラ51は、運転者による起動スイッチ105の操作に基づき、起動スイッチ105から起動要求信号を入力すると、図5のフローチャートに示す手順に従って燃料電池システムSの起動制御を実行するようにプログラムされている。コントローラ51は、起動要求信号の入力をもって起動制御を開始し、燃料電池スタック1ないし燃料電池の暖機が完了したとの判定をもってこれを終了する。
 S101では、起動制御に関わる各種センサ出力を読み込む。具体的には、スタック温度Tstk、燃焼器温度Tcmb、改質器温度Trefおよび排ガス濃度Ccmbを読み込む。
 S102では、燃焼器41の温度Tcmbがその目標値Tcmb_tに達した否かを判定する。燃焼器温度Tcmbが目標値Tcmb_tに達した場合は、S109へ進み、達していない場合は、S103へ進む。燃焼器温度Tcmbの目標値Tcmb_tは、例えば、800℃である。
 S103では、燃焼器41に対して起動時に供給する原燃料の供給量(以下「起動時供給量」という)Qf_strを算出する。起動時供給量Qf_strは、燃焼ガスの目標温度(例えば、800℃)に応じて設定することが可能である。そして、燃焼ガスを目標温度とするのに必要な熱量を発生可能な原燃料の供給量を、起動時供給量Qf_strとして算出する。起動時供給量Qf_strは、演算によるばかりでなく、実験等を通じた適合により定められた量として、予め設定しておくことも可能である。
 S104では、起動時におけるエアコンプレッサ61の目標回転数(以下「目標コンプレッサ回転数」という)Ncmp_tを算出する。目標コンプレッサ回転数Ncmp_tは、起動時供給量Qf_strの原燃料に対して空燃比を予め定められた所定値(以下「起動時目標空燃比」という)とするのに必要な量の空気を、燃焼器41に供給可能なエアコンプレッサ61の回転数である。本実施形態では、目標コンプレッサ回転数Ncmp_tを起動時供給量Qf_str毎に割り付けたマップデータをコントローラ51に記憶させ、起動時供給量Qf_strによりこのマップデータを検索することで、目標コンプレッサ回転数Ncmp_tを算出する。
 S105では、燃焼器41で生じる反応のうち、上式(3.4)および(3.5)で示す改質反応が上式(3.1)~(3.3)で示す燃焼反応よりも優位に進行しているか否かを判定する。本実施形態では、排ガスセンサ104の出力をもとに、特定ガス成分の濃度である排ガス濃度Ccmbが所定値Ccmb_thrを超えているか否かを判定し、排ガス濃度Ccmbが所定値Ccmb_thrを超えている場合に、改質反応が優位であるとして、S106へ進む。他方で、排ガス濃度Ccmbが所定値Ccmb_thr以下である場合は、燃焼反応が優位であるとして、S110へ進む。
 S106では、燃焼器41における空燃比を増大させる。ここで、「空燃比」とは、燃焼器41に供給される原燃料(エタノール)の質量に対する酸化剤(空気)の質量の比率をいい、本実施形態では、分岐空気通路12subを通じて燃焼器41に供給される空気の量を増大させることで、空燃比を増大させる(以下、増大後の空燃比を「起動時補正空燃比」という場合がある)。具体的には、目標コンプレッサ回転数Ncmp_tを増大補正して、エアコンプレッサ61の吐出量を増大させる。これに限らず、流量制御弁62の開度を増大させることで、燃焼器41に供給される空気の量を増大させてもよい。
 S107では、燃焼器41で生じる反応のうち、上式(3.1)~(3.3)で示す燃焼反応が上式(3.4)および(3.5)で示す改質反応よりも優位に進行しているか否かを判定する。具体的には、S105に示す処理により排ガス濃度Ccmbが所定値Ccmb_thrを超え、改質反応が燃焼反応に対して優位に転じたとして、S106に示す処理により空燃比を増大させた後、排ガス濃度Ccmbが低下し、その低下速度ΔCcmbが所定値ΔCcmb_thrにまで減じたか否かを判定する。そして、排ガス濃度Ccmbの変化速度ΔCcmbが所定値ΔCcmb_thrにまで減じた場合は、燃焼反応が優位に転じたとして、S108へ進み、減じていない場合は、改質反応が依然優位な状態にあるとして、S106へ戻り、S106および107に示す処理を繰り返し実行する。
 S108では、S106に示す処理による空燃比の増大補正を解除し、燃焼器41における空燃比を元の起動時目標空燃比に復帰させる。本実施形態では、目標コンプレッサ回転数Ncmp_tを減少させることで、分岐空気通路12subを通じて燃焼器41に供給される空気の量を、元の供給量に減少させる。流量制御弁62の制御により空燃比を増大させた場合は、流量制御弁62の開度を減少させる。
 S109では、原燃料の処理が可能な状態にあるか否かを判定する。本実施形態では、改質器23が原燃料を改質可能な状態にあるか否かを判定し、具体的には、改質器温度Trefが改質器23の改質可能な下限温度Tref_min以上であるか否かを判定する。改質器温度Trefが下限温度Tref_min以上である場合は、原燃料の処理が可能な状態にあるとして、S109へ進み、下限温度Tref_min未満である場合は、原燃料の処理が可能な状態にないとして、S101へ戻り、S101~108に示す処理を繰り返し実行して、燃焼器41の温度Tcmbをその目標値Tcmb_t以上に維持する。
 原燃料の処理が可能な状態にあるか否かの判定は、改質器23が原燃料を改質可能な状態にあるか否かの判定によるばかりでなく、この判定に加えるかまたはこれに代えて、蒸発器21が原燃料を蒸発可能な状態にあるか否かを判定することによっても可能である。具体的には、蒸発器温度Tvapが蒸発器21の蒸発可能な下限温度Tvap_min以上であるか否かを判定し、蒸発器温度Tvapが下限温度Tvap_min以上である場合に、原燃料の処理が可能な状態にあると判定する。蒸発器温度Tvapは、蒸発器21の温度であり、例えば、蒸発器21の下流側の燃焼ガス通路42に蒸発器温度センサを設置し、蒸発器温度センサにより検出された温度をもって燃焼器温度Tvapとする。
 S110では、原燃料を改質器23に供給する。つまり、起動制御を開始した後、改質器23の温度が上昇し、原燃料の処理が可能な状態となった場合は、原燃料の供給先を燃焼器41から燃料処理部2ないし改質器23に切り換えて、改質器23により燃料ガスを生成し、発電で生じた熱量により燃料電池スタック1の暖機を継続する。
 S111では、燃料電池スタック1の暖機が完了したか否かを判定する。具体的には、スタック温度Tstkが暖機完了を判定するための所定温度Tstk_wupに達したか否かを判定し、スタック温度Tstkが所定温度Tstk_wupに達した場合は、燃料電池スタック1の暖機が完了したとして、起動制御を終了し、所定温度Tstk_wupに達していない場合は、暖機が未だ完了していないとして、S101へ戻り、S101~110に示す処理を繰り返し実行する。起動制御を終了した場合は、図示しない別のルーチンに従って通常時の制御を実行し、燃料電池スタック1を定格出力で運転する。
 本実施形態では、コントローラ51、第2燃料インジェクタ53およびエアコンプレッサ61が燃料電池システムSの「制御部」を構成する。
 (作用効果の説明)
 本実施形態に係る燃料電池システムSは、以上のように構成され、本実施形態により得られる作用および効果について、以下に説明する。
 図6は、燃料電池システムSの起動時における特定ガス成分の排出量Qg、燃焼器41に対する原燃料および酸化剤の供給量Qf、Qa、燃焼器41の温度Tcmbの変化を示している。燃焼器41の温度Tcmbは、触媒上で生じる反応を律する温度をいい、本実施形態では、燃焼器41の出口部温度で代表する。図6を適宜に参照しながら、本実施形態により得られる効果について説明する。
 第1に、燃料電池システムSの起動時に、触媒を有する燃焼器41により原燃料を燃焼させ、燃焼により生じた熱量を用いて燃料電池スタック1および燃料処理部2(改質器23)を加熱し、燃料電池システムS全体の暖機を促進することができる。
 ここで、触媒の昇温の過程で、図6の第1段に点線で示すように、原燃料であるエタノールの燃焼による大気汚染物質の排出量が増大する。原燃料の燃焼による大気汚染物質の生成は、主に触媒の温度により律速されることが判明しており、通常は、改質反応に対して燃焼反応が優位に進行することで、これが抑制される(期間AおよびC)。しかし、触媒の温度が図6に示すT1~T2の範囲にあるときは(期間B)、燃焼反応に対して改質反応が優位に転じ、炭化水素および一酸化炭素等の特定ガス成分の排出量Qgが増大する。
 そこで、本実施形態では、起動制御を開始した後、所定時期(時刻t1)に達したときに、燃焼器41における原燃料の改質反応が燃焼反応に対して優位に転じたとして、空燃比を増大させることで、酸化剤の相対的な増量により燃焼反応を促進し、改質反応による大気汚染物質の生成を抑制する。これにより、大気汚染物質の排出を抑制しながら、燃焼器41の温度を上昇させ、暖機を促進することができる。図6は、空燃比の増大による低減後の特定ガス成分の排出量Qgを、太い実線により示している。
 第2に、起動制御の開始後、燃料ガスにおける特定ガス成分の濃度(排ガス濃度Ccmb)が所定濃度Ccmb_thrに達したときに(時刻t1)、所定時期に達したとして、空燃比を増大させることで、特定ガス成分の濃度をもとに所定時期をより適切に設定可能とし、大気汚染物質の排出を抑制することができる。
 第3に、排ガスセンサ104により、簡易な構成で所定時期に達したことを判定することができる。
 第4に、図6の第3段に太い実線で示すように、燃焼器41に対する酸化剤の供給量Qaを増大させることにより空燃比を増大させることで、原燃料の供給量Qfを減少させる必要がないため、熱量の不足により燃焼器41の昇温に遅れが生じるのを抑制し、起動の完了が過度に遅れるのを回避することができる。
 ここで、空燃比の増大は、酸化剤の供給量Qaを増大させることによるほか、原燃料の供給量Qfを減少させることによっても可能である。図6は、原燃料の減量により空燃比を増大させた場合の変化を、二点鎖線により示している。原燃料の減量によれば、酸化剤の供給量Qaを増大させる必要がないため、燃焼器41に備わる触媒の劣化が進行するのを抑制することができる。
 本実施形態では、特定ガス成分の濃度(排ガス濃度Ccmb)を検出し、これが所定濃度Ccmb_thrに達したときに、所定時期に達したとして、空燃比を増大させることとした。所定時期に達したか否かの判断は、これに限らず、燃焼器41の温度をもとに行うことも可能である。
 具体的には、触媒上で生じる反応を律する温度またはこれに相関する温度(例えば、燃焼器温度Tcmb)を検出する温度センサを設置し、起動制御を開始した後、温度センサにより検出された温度が第1所定温度(図6に示す温度T1)に達したときに(時刻t1)、所定時期に達したとして、空燃比を増大させる。その後、燃焼器41の温度がさらに上昇し、温度センサの検出温度が第1所定温度T1よりも高い第2所定温度(温度T2)に達したときに、空燃比を減少させる。空燃比を増大させる具体的な方法は、先に述べたのと同様であってよく、燃焼器41に対する酸化剤の供給量を増大させるか、原燃料の供給量を減少させる。
 このように、起動制御の開始後、所定時期に達したか否か、換言すれば、燃焼器41における原燃料の反応として燃焼反応が優位な状態から改質反応が優位な状態に転じたか否かの判定を燃焼器41の温度をもとに行うことで、温度センサを用いた廉価な構成により判定可能とし、大気汚染物質の排出を抑制することができる。そして、燃焼器41の温度が第2所定温度T2に達したときに、空燃比を減少させることで、空燃比の不要な増大により、燃焼器41に備わる触媒の劣化が進行するのを回避することができる。
 さらに、起動開始後の経過時間を計測し、経過時間が所定時間に達したときに(時刻t1)、空燃比を増大させるようにしてもよい。起動開始後の経過時間と燃焼器41の温度との関係は、実験等を通じて予め把握しておくことが可能である。そこで、燃焼器41の温度が所定温度T1およびT2となると推定される経過時間t1、t2を設定し、起動制御を開始した後、経過時間が第1所定時間t1に達したときに、空燃比を増大させ、その後、第1所定時間t1よりも後の第2所定時間t2に達したときに、空燃比を減少させるのである。
 このように、所定時期に達したか否かの判定を時間により行うことで、センサ等の追加部品を必要とせずに大気汚染物質の排出を抑制することができる。
 (他の実施形態の説明)
 以上の説明では、燃焼ガスの潜在的な成分であるCO、CO2、CH4、H2、H2OおよびCH3CHOのうち、改質反応の結果物として生じるCO、CH4、H2およびCH3CHOの少なくとも一種のガス成分を特定ガス成分とし、この成分の濃度(排ガス濃度Ccmb)をもとに所定時期にあるか否かを判定することとした。所定時期にあるか否かの判定は、これに限らず、燃焼反応の結果物として生じるCO2またはH2Oを特定ガス成分とし、燃焼ガスにおけるその成分の濃度をもとに行うことも可能である。
 図7は、燃焼器41の温度の上昇に対するCO、CH4、H2およびCH3CHOの排出量の変化を上段に、CO2およびH2Oの排出量の変化を下段に、夫々示している。このように、空燃比を増大させるべき所定時期に達したか否かの判定は、改質反応が優位に転ずることで減少する傾向にあるガス成分の排出量をもとに行うこともできる。
 さらに、以上の説明では、原燃料の供給量を減少させることにより空燃比を増大させる場合に、所定時期に達した後、原燃料の供給量を一律に減少させることとした。原燃料の減量による空燃比の増大は、これに限らず、原燃料の減量と増量とを交互に実行することにより行うことも可能である。
 図8は、その場合の実施形態として、本発明の他の実施形態に係る起動制御の内容をタイムチャートにより示している。
 本実施形態において、コントローラ51は、空燃比を増大させるときに、燃焼器41に対する原燃料の供給を停止し、その後、供給の再開および停止を交互に実行する。このように、原燃料の供給を停止することで、空燃比の増大により燃焼反応を促進し、大気汚染物質の排出を抑制することができる。そして、原燃料の供給停止後、供給の再開と停止とを交互に実行することで、燃焼器41に備わる触媒の劣化が進行するのを抑制しながら、原燃料の供給停止により燃焼器41の昇温が過度に妨げられ、起動に要する時間が大幅に長引くのを回避することができる。
 図9は、本発明の更に別の実施形態に係る起動制御の内容をタイムチャートにより示している。
 本実施形態では、コントローラ51は、所定時期に達したか否かの判定を起動開始後の経過時間をもとに行うとともに、燃焼器41に備わる触媒の劣化度合いを判定し、触媒の劣化度合いに応じて第1所定時間t1および第2所定時間t2を補正する。具体的には、触媒の劣化が進行するほど、第1所定時間t1および第2所定時間t2を遅らせて設定する。触媒の劣化が進行するほど、経過時間に対する燃焼器41の温度の上昇勾配が緩やかになる傾向がある。よって、触媒の劣化が進行した場合に、劣化前と比較して、第1所定時間t12および第2所定時間t22を遅らせて設定し、さらに、空燃比を増大させる期間B(t12~t22)を延長することで、劣化度合いに応じた適切な時期に空燃比を増大させ、大気汚染物質の排出を抑制することができる。触媒の劣化度合いは、原燃料の供給を開始した後の燃焼器41の温度の上昇勾配をもとに検出することが可能である。
 図10は、本発明の更に別の実施形態に係る起動制御の流れを示すフローチャートである。
 コントローラ51は、起動スイッチ105から起動要求信号を入力すると、記憶装置から起動制御のプログラムを読み出し、図10のフローチャートに示す手順に従って燃料電池システムSの起動制御を実行する。先の実施形態に係る起動制御(図5)との相違点を中心に説明する。
 起動制御の開始後、燃焼器41の温度Tcmbが未だその目標値Tcmb_tに達していない場合に、S201では、燃焼器41が所定温度領域にあるか否か、具体的には、燃焼器41で生じる反応のうち、改質反応が優位に進行し、燃焼器41からの特定ガス成分の排出量Qgが所定量Qg_thrを超える領域(温度T1~T2)にあるか否かを判定する。所定温度領域にあるか否かの判定は、燃焼器41の温度を直接的に検出することによるほか、排ガス濃度Ccmbを検出することによっても可能であり、起動開始後の経過時間から判断することも可能である。燃焼器41が所定温度領域にある場合は、改質反応が優位であるとして、S203へ進み、所定温度領域にない場合は、燃焼反応が優位であるとして、S202へ進む。
 S202では、燃焼器41における空燃比を、比較的低い第2空燃比λ2に設定する。
 S203では、燃焼器41における空燃比を、第2空燃比λ2よりも高い第1空燃比λ1に設定する。
 S204では、第1空燃比λ1または第2空燃比λ2を達成するための原燃料の供給量(起動時供給量)Qf_strを算出する。本実施形態では、次に述べるように、酸化剤の増量により空燃比を増大させることとし、起動時供給量Qf_strは、先の実施形態と同様に、燃焼器41で生成される燃焼ガスの目標温度(Tcmb_t)に応じて設定する。
 S205では、第1または第2空燃比λ1、λ2を達成するためのエアコンプレッサ61の目標回転数(目標コンプレッサ回転数)Ncmp_tを算出する。本実施形態において、目標コンプレッサ回転数Ncmp_tの算出は、起動時供給量Qf_strの原燃料に対して第1または第2空燃比λ1、λ2を達成するのに必要な空気の量を算出し、算出された空気量をエアコンプレッサ61の作動特性に基づき目標コンプレッサ回転数Ncmp_tに換算することによる。
 このように、本実施形態によれば、燃料電池システムSの起動時に、燃焼器41の温度がその目標値(燃料電池システムSの暖機に要する温度であり、例えば、800℃)に向けて上昇する過程で、燃焼器41で改質反応が優位となる所定温度領域を通過するときに(期間B)、所定温度領域外にある場合(期間AまたはC)と比較して燃焼器41における空燃比を増大させることで、酸化剤を相対的に増量し、燃焼反応を優位に進行させて、大気汚染物質の排出を抑制することができる。
 燃焼ガスを生成する燃焼器ないし触媒燃焼器は、燃料電池の排出側に配置するばかりでなく、供給側に配置することも可能である。図11は、その場合の実施形態を示している。本実施形態では、排出側の燃焼器(以下、特に「排気燃焼器」という)41に加えて触媒燃焼器32が設けられ、供給側の触媒燃焼器32は、カソードガス通路12に介装されている。触媒燃焼器32に対し、原燃料と酸化剤とが供給可能に構成されており(供給経路を、点線により示す)、具体的には、燃料タンク7からエタノールが、さらに、エアコンプレッサ61を介して大気中の空気が、夫々供給される。触媒燃焼器32は、カソードガス通路12を流れる酸化剤ガス(空気)を燃焼ガスにより加熱する熱交換器として構成され、燃料電池システム1の起動時において、エアコンプレッサ61によりカソードガス通路12に取り込まれた空気を加熱し、燃料電池のカソード極に供給する。排気燃焼器41に対する原燃料および酸化剤の供給を停止させ、燃料電池スタック1の暖機を専ら触媒燃焼器32により実行することも可能である。
 以上、本発明の実施形態について説明したが、上記実施形態は、本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を、上記実施形態の具体的構成に限定する趣旨ではない。上記実施形態に対し、特許請求の範囲に記載した事項の範囲内で様々な変更および修正が可能である。

Claims (14)

  1.  燃料電池と、
     原燃料および酸化剤が供給され、前記原燃料の燃焼ガスを生成する触媒燃焼器と、
     前記触媒燃焼器に対する前記原燃料および前記酸化剤の供給を制御する制御部と、
    を備える燃料電池システムであって、
     前記制御部は、
     前記燃料電池システムの起動時において、前記触媒燃焼器に前記原燃料および前記酸化剤を供給し、前記触媒燃焼器における前記原燃料の改質反応が前記原燃料の燃焼反応に対して優位に転ずる時期に、前記原燃料に対する前記酸化剤の比率である空燃比を、前記改質反応が優位に転ずる時期前よりも増大させる、
    燃料電池システム。
  2.  請求項1に記載の燃料電池システムであって、
     前記燃料電池に燃料ガスを供給するためのアノードガス通路と、
     前記アノードガス通路に介装され、原燃料を処理し、前記燃料電池の燃料ガスを生成する燃料処理部と、
     をさらに備え、
     前記触媒燃焼器は、前記燃料電池および前記燃料処理部のうち少なくとも一方を加熱可能に設けられた、
    燃料電池システム。
  3.  請求項1または2に記載の燃料電池システムであって、
     前記制御部は、前記燃料電池システムの起動開始後、前記燃焼ガスにおける特定ガス成分の濃度が所定濃度に達したときに、前記空燃比を増大させる、
    燃料電池システム。
  4.  請求項3に記載の燃料電池システムであって、
     前記原燃料は、エタノールであり、
     前記特定ガス成分は、CO、CO2、CH4、H2、H2OおよびCH3CHOのうち少なくとも一つである、
    燃料電池システム。
  5.  請求項4に記載の燃料電池システムであって、
     前記制御部は、前記特定ガス成分の濃度を検出可能に配設された排ガスセンサを有する、
    燃料電池システム。
  6.  請求項1に記載の燃料電池システムであって、
     前記制御部は、前記燃料電池システムの起動開始後、前記触媒燃焼器の温度が第1所定温度に達したときに、前記空燃比を増大させる、
    燃料電池システム。
  7.  請求項1に記載の燃料電池システムであって、
     前記制御部は、前記燃料電池システムの起動開始後の経過時間が所定時間に達したときに、前記空燃比を増大させる、
    燃料電池システム
  8.  請求項7に記載の燃料電池システムであって、
     前記制御部は、前記触媒燃焼器に備わる触媒の劣化度合いを判定し、前記触媒の劣化が進行するほど、前記所定時間を遅らせる、
    燃料電池システム。
  9.  請求項1~8のいずれか一項に記載の燃料電池システムであって、
     前記制御部は、前記空燃比を増大させた後、前記触媒燃焼器の温度が上昇し、第2所定温度に達したときに、前記空燃比を減少させる、
    燃料電池システム。
  10.  請求項1~9のいずれか一項に記載の燃料電池システムであって、
     前記制御部は、前記空燃比を増大させるときに、前記触媒燃焼器に対する前記酸化剤の供給量を増大させる、
    燃料電池システム。
  11.  請求項1~9のいずれか一項に記載の燃料電池システムであって、
     前記制御部は、前記空燃比を増大させるときに、前記触媒燃焼器に対する前記原燃料の供給量を減少させる、
    燃料電池システム。
  12.  請求項11に記載の燃料電池システムであって、
     前記制御部は、前記空燃比を増大させるときに、前記触媒燃焼器に対する前記原燃料の供給を停止し、さらに、供給の再開および停止を交互に実行する、
    燃料電池システム。
  13.  燃料電池と、
     原燃料と酸化剤が供給され、前記原燃料の燃焼ガスを生成する触媒燃焼器と、
     前記触媒燃焼器に対する前記原燃料および前記酸化剤の供給を制御する制御部と、
    を備える燃料電池システムであって、
     前記制御部は、
     前記燃料電池システムの起動時において、前記触媒燃焼器に前記原燃料および前記酸化剤を供給し、前記触媒燃焼器の温度が目標温度に向けて上昇する過程で、前記目標温度よりも低い所定温度領域を通過するときに、前記所定温度領域外にある場合と比べ、前記原燃料に対する前記酸化剤の比率である空燃比を増大させる、
    燃料電池システム。
  14.  原燃料の処理により生じた燃料ガスを燃料電池に供給する燃料電池システムを制御する、燃料電池システムの制御方法であって、
     前記燃料電池システムの起動時において、
      前記原燃料を触媒上で燃焼させ、
      燃焼により生じた燃焼ガスを熱源として、前記燃料電池システムの暖機を促進し、
      前記触媒上での前記原燃料の改質反応が前記原燃料の燃焼反応に対して優位に転ずる時期に、前記燃焼に供する酸化剤の前記原燃料に対する比率である空燃比を、前記改質反応が優位に転ずる時期前よりも増大させる、
    燃料電池システムの制御方法。
PCT/JP2017/027768 2017-07-31 2017-07-31 燃料電池システムおよび燃料電池システムの制御方法 WO2019026156A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2017/027768 WO2019026156A1 (ja) 2017-07-31 2017-07-31 燃料電池システムおよび燃料電池システムの制御方法
EP17919778.5A EP3664207A4 (en) 2017-07-31 2017-07-31 FUEL CELL SYSTEM AND ITS CONTROL PROCESS
US16/635,252 US11205792B2 (en) 2017-07-31 2017-07-31 Fuel cell system and control method for same
JP2019533760A JP6777238B2 (ja) 2017-07-31 2017-07-31 燃料電池システムおよび燃料電池システムの制御方法
CN201780093492.5A CN110959211B (zh) 2017-07-31 2017-07-31 燃料电池系统和燃料电池系统的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/027768 WO2019026156A1 (ja) 2017-07-31 2017-07-31 燃料電池システムおよび燃料電池システムの制御方法

Publications (1)

Publication Number Publication Date
WO2019026156A1 true WO2019026156A1 (ja) 2019-02-07

Family

ID=65232382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027768 WO2019026156A1 (ja) 2017-07-31 2017-07-31 燃料電池システムおよび燃料電池システムの制御方法

Country Status (5)

Country Link
US (1) US11205792B2 (ja)
EP (1) EP3664207A4 (ja)
JP (1) JP6777238B2 (ja)
CN (1) CN110959211B (ja)
WO (1) WO2019026156A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT522101A1 (de) * 2019-02-13 2020-08-15 Avl List Gmbh Brennstoffzellensystem und Verfahren zur Ermittlung eines Degradationszustandes eines Katalysators

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008293756A (ja) 2007-05-23 2008-12-04 Honda Motor Co Ltd 燃料電池システム及びその運転方法
JP2012079422A (ja) * 2010-09-30 2012-04-19 Toto Ltd 固体酸化物形燃料電池装置
JP2014026982A (ja) * 2013-09-26 2014-02-06 Toto Ltd 固体酸化物形燃料電池装置
JP2016207413A (ja) * 2015-04-21 2016-12-08 パナソニックIpマネジメント株式会社 固体酸化物形燃料電池システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077620A (en) * 1997-11-26 2000-06-20 General Motors Corporation Fuel cell system with combustor-heated reformer
JP3700603B2 (ja) 2001-04-06 2005-09-28 日産自動車株式会社 燃料電池システム
CN100495789C (zh) 2003-09-09 2009-06-03 丰田自动车株式会社 燃料电池系统
CN100527513C (zh) 2005-02-18 2009-08-12 松下电器产业株式会社 燃料电池系统
EP2406844A1 (en) * 2009-03-09 2012-01-18 Toyota Jidosha Kabushiki Kaisha Fuel cell system, control method for the fuel cell system, and state detection method for fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008293756A (ja) 2007-05-23 2008-12-04 Honda Motor Co Ltd 燃料電池システム及びその運転方法
JP2012079422A (ja) * 2010-09-30 2012-04-19 Toto Ltd 固体酸化物形燃料電池装置
JP2014026982A (ja) * 2013-09-26 2014-02-06 Toto Ltd 固体酸化物形燃料電池装置
JP2016207413A (ja) * 2015-04-21 2016-12-08 パナソニックIpマネジメント株式会社 固体酸化物形燃料電池システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3664207A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT522101A1 (de) * 2019-02-13 2020-08-15 Avl List Gmbh Brennstoffzellensystem und Verfahren zur Ermittlung eines Degradationszustandes eines Katalysators
AT522101B1 (de) * 2019-02-13 2021-07-15 Avl List Gmbh Brennstoffzellensystem und Verfahren zur Ermittlung eines Degradationszustandes eines Katalysators

Also Published As

Publication number Publication date
EP3664207A1 (en) 2020-06-10
EP3664207A4 (en) 2020-09-02
US11205792B2 (en) 2021-12-21
CN110959211A (zh) 2020-04-03
US20200381755A1 (en) 2020-12-03
JPWO2019026156A1 (ja) 2020-07-27
JP6777238B2 (ja) 2020-10-28
CN110959211B (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
JP6627888B2 (ja) 固体酸化物型燃料電池システム、固体酸化物型燃料電池システムの制御方法
WO2017110303A1 (ja) 燃料電池システム及びその制御方法
JP6627887B2 (ja) 燃料電池システム、及び燃料電池システムの制御方法
JP3750597B2 (ja) 触媒燃焼器
WO2019064539A1 (ja) 燃料電池システムおよび燃料電池システムの制御方法
WO2019026156A1 (ja) 燃料電池システムおよび燃料電池システムの制御方法
CN110959213B (zh) 燃料电池系统和燃料电池系统的控制方法
JP4611248B2 (ja) 燃料電池システム
JP6597677B2 (ja) 内燃機関の排気浄化装置
JP2019220367A (ja) 燃料電池システムおよびその制御方法
JP7087341B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP6777237B2 (ja) 燃料電池システムの制御方法、及び、燃料電池システム
JP2020009723A (ja) 燃料電池システムおよび燃料電池システムの制御方法
CN113632269A (zh) 燃料电池系统和燃料电池系统的控制方法
CN114365313A (zh) 燃料电池系统和燃料电池系统的控制方法
CN113169363B (zh) 燃烧系统和燃烧系统的控制方法
JP7110859B2 (ja) 燃料電池システムおよび燃料電池システムの運転方法
WO2021116725A1 (ja) 燃料電池システムの制御方法、及び燃料電池システム
JP7111158B2 (ja) 触媒燃焼装置の制御方法及び触媒燃焼システム
JP2021150112A (ja) 燃料電池システム
JP2020181730A (ja) 燃料電池システム制御方法及び燃料電池システム
JP2019220366A (ja) 燃料電池システムおよびその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919778

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019533760

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017919778

Country of ref document: EP

Effective date: 20200302