WO2019024781A1 - 小区质量计算方法、参数配置方法及相关设备 - Google Patents

小区质量计算方法、参数配置方法及相关设备 Download PDF

Info

Publication number
WO2019024781A1
WO2019024781A1 PCT/CN2018/097416 CN2018097416W WO2019024781A1 WO 2019024781 A1 WO2019024781 A1 WO 2019024781A1 CN 2018097416 W CN2018097416 W CN 2018097416W WO 2019024781 A1 WO2019024781 A1 WO 2019024781A1
Authority
WO
WIPO (PCT)
Prior art keywords
target cell
beams
cell
quality calculation
working frequency
Prior art date
Application number
PCT/CN2018/097416
Other languages
English (en)
French (fr)
Inventor
谢芳
陈卓
刘光毅
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Publication of WO2019024781A1 publication Critical patent/WO2019024781A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength

Definitions

  • the embodiments of the present disclosure relate to the field of communications technologies, and in particular, to a cell quality calculation method, a parameter configuration method, and related devices.
  • cells operating on different carrier frequencies can be configured with different beam numbers.
  • the higher the operating frequency of the cell the more the number of configurable beams, the narrower the width of each beam, and thus the more the number of beams detected by the mobile communication terminal in the cell.
  • the mobile communication terminal can detect 2 beams in a cell with a carrier frequency of 3.5 GHz and 4 beams in a cell with a carrier frequency of 26 GHz.
  • the quality can be calculated by no more than N beams in the number of beams configured by the cell.
  • different cells can be configured for cells operating on different carrier frequencies.
  • no effective conclusion has been proposed yet. Therefore, there is currently no relevant solution for the acquisition of the number of beams N used to calculate the quality of the cell.
  • An object of the embodiments of the present disclosure is to provide a cell quality calculation method, a parameter configuration method, and related equipment to standardize acquisition of a beam number N for calculating a cell quality.
  • an embodiment of the present disclosure provides a cell quality calculation method for a mobile communication terminal, where the cell quality calculation method includes:
  • the target cell is a serving cell or a neighboring cell, and the N and the working frequency of the target cell and the number of beams configured by the target cell are At least one related;
  • the quality calculation result of the target cell is reported.
  • the embodiment of the present disclosure further provides a parameter configuration method for a network device, where the parameter configuration method includes:
  • Determining a number of beams N for performing cell quality calculation of the target cell where the target cell is a serving cell or a neighboring cell, the working frequency of the N and the target cell, and the number of beams configured by the target cell At least one of the relevant;
  • the N is issued.
  • an embodiment of the present disclosure further provides a mobile communication terminal, where the mobile communication terminal includes:
  • a processor configured to select no more than N beams to perform cell quality calculation of the target cell, where the target cell is a serving cell or a neighboring cell, and the N and the working frequency of the target cell and the target cell Configuring at least one of the number of beams;
  • a transmitter configured to report a quality calculation result of the target cell.
  • the embodiment of the present disclosure further provides a network device, where the network device includes:
  • a processor configured to determine a number of beams N for performing cell quality calculation of the target cell, where the target cell is a serving cell or a neighboring cell, and the N and the working frequency of the target cell and the target At least one of the number of beams configured by the cell is associated;
  • a transmitter configured to deliver the N.
  • an embodiment of the present disclosure further provides a communication device including a memory, a processor, and a computer program stored on the memory and executable on the processor, the computer program being The cell quality calculation method as described above is implemented when the processor is executed, or the parameter configuration method as described above is implemented.
  • an embodiment of the present disclosure further provides a computer readable storage medium having stored thereon a computer program, wherein the computer program is executed by a processor to implement a cell quality calculation method as described above, Or implement the parameter configuration method as described above.
  • the cell quality calculation of the target cell is performed by using no more than N beams, where the target cell is a serving cell or a neighboring cell, the working frequency of the N and the target cell, and the At least one of the number of beams configured by the target cell is correlated; and a quality calculation result of the target cell is reported.
  • the embodiment of the present disclosure determines N by the working frequency of the target cell or/and the number of beams configured by the target cell, and specifies the acquisition of the number N of beams used to calculate the quality of the cell.
  • FIG. 1 is a flowchart of a cell quality calculation method provided by an embodiment of the present disclosure
  • FIG. 2 is a flowchart showing a parameter configuration method provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a mobile communication terminal provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a network device provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a mobile communication terminal according to still another embodiment of the present disclosure.
  • FIG. 6 shows a schematic diagram of a network device provided by another embodiment of the present disclosure.
  • system and “network” are used interchangeably herein.
  • B corresponding to A means that B is associated with A, and B can be determined from A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • FIG. 1 is a flowchart of a cell quality calculation method provided by an embodiment of the present disclosure.
  • the cell quality calculation method in this embodiment is used in a mobile communication terminal, as shown in FIG. 1, and includes the following steps:
  • Step 101 Select no more than N beams to perform cell quality calculation of the target cell.
  • the mobile communication terminal may perform quality calculation on each beam configured by the target cell to select no more than N beams that can be used for measuring cell quality from the beam configured by the target cell, for example, no more than N qualities.
  • the beam exceeding the beam quality threshold of the network configuration calculates the quality of the target cell.
  • a linear average or weighted average calculation may be performed on the no more than N beams to obtain a cell quality calculation result of the target cell.
  • the target cell is a serving cell or a neighboring cell
  • the N is related to at least one of a working frequency of the target cell and a number of beams configured by the target cell, where the N beams are target cell configurations.
  • the mobile communication terminal acquires the N in advance.
  • the mobile communication terminal may obtain the N from a message sent by the network device, or determine the N according to the working configuration parameter of the target cell, where the working configuration parameter may include a working frequency point and a configuration. At least one of the number of beams.
  • the cell of the target cell can be used by using the number of beams that can be used to calculate the cell quality in the beam configured by the target cell. Quality calculation. For example, if the mobile communication terminal acquires the N of the target cell as 10, and the number of beams that can be used to calculate the cell quality in the beam configured by the target cell is 8, the 8 beams can be used to perform the cell quality calculation of the target cell.
  • Step 102 Report a cell quality calculation result of the target cell quality measurement.
  • the mobile communication terminal may carry the quality calculation result of the target cell in the measurement report and report it to the network device, for example, after obtaining the quality calculation result of the target cell.
  • the mobile communication terminal may be, for example, a mobile phone, a tablet personal computer, a laptop computer, a personal digital assistant (PDA), a mobile internet device (Mobile Internet). Device, MID) or Wearable Device.
  • the network device may be, for example, a base station, and may be a 3G base station (Node B), a 4G base station (eNB), or a 5G base station (gNB), but is not limited thereto.
  • the cell quality calculation of the target cell is performed by using no more than N beams, where the target cell is a serving cell or a neighboring cell, and the working frequency of the N and the target cell is At least one of the number of beams configured by the target cell is correlated; and the target cell mass quality calculation result is reported.
  • the embodiment of the present disclosure determines N by at least one of a working frequency point of the target cell and a number of beams configured by the target cell, thereby standardizing acquisition of the number N of beams for calculating the cell quality.
  • the method before the selecting does not exceed N beams to perform cell quality calculation of the target cell, the method further includes:
  • the mobile communication terminal may obtain the N from the message sent by the network device, that is, the N sent by the receiving network device, or determine the N according to the working configuration parameter of the target cell.
  • the operational configuration parameters may include at least one of a working frequency point and a configured number of beams.
  • the obtaining the N specifically includes:
  • the working configuration parameter of the target cell includes at least one of a working frequency point of the target cell and a number of beams configured by the target cell;
  • the N is closely related to the working configuration parameter of the target cell, and therefore, the mobile communication terminal may acquire the working configuration parameter of the target cell in advance, and then use the target cell working configuration parameter and the pre-acquired
  • the mapping relationship between the number of beams calculated by the cell quality determines the N corresponding to the working configuration parameter of the target cell.
  • the mapping relationship between the target cell working configuration parameter and the number of beams used for cell quality calculation may be performed, because the working configuration parameter of the target cell includes at least one of a working frequency of the target cell and a number of beams configured by the target cell.
  • N f(F, Nb), where F is the working frequency of the target cell, and Nb is the number of beams configured by the target cell.
  • mapping relationship between the working configuration parameter of the target cell and the number of beams used for cell quality calculation may be recorded by using a function or a mapping table, and is not limited herein.
  • mapping relationship between the working configuration parameters of the target cell and the number of beams used for cell quality calculation, if the working configuration parameter of the target cell includes the working frequency of the target cell and the number of configured beams Can be expressed in Table 1, Table 2 and Table 3, as follows:
  • Table 1 Mapping table of the working frequency point F and the number of beams B and N of the target cell
  • the mobile communication terminal can refer to the N corresponding to the target cell according to the working frequency of the target cell and the configured number of beams. For example, if the working frequency of the target cell A is F1 and the number of configured beams is 64, the reference table 1 can obtain that the N corresponding to the target cell A is 5. Similarly, if the working frequency of the target cell P is F2 and the number of configured beams is 8, the reference table 1 can obtain that the N corresponding to the target cell P is 3.
  • Table 2 Mapping table of working frequency point F, number of beams (or range of beam numbers) B and N of the target cell
  • the mobile communication terminal can obtain the N corresponding to the target cell from the table 2 according to the working frequency of the target cell and the configured number of beams. For example, if the target frequency of the target cell C is F1 and the number of configured beams is in the range of 64 to 32, refer to Table 2 to obtain that the N corresponding to the target cell D is 5. Similarly, if the target frequency of the target cell D is F2 and the number of configured beams is 16, then the reference table 2 can obtain that the N corresponding to the target cell D is 4.
  • Table 3 Mapping table of working frequency point F and beam number range B and N of the target cell
  • the mobile communication terminal can obtain the N corresponding to the target cell from the table 3 according to the working frequency of the target cell and the configured number of beams. For example, if the working frequency of the target cell E is F2 and the number of configured beams is in the range of 64 to 32, refer to Table 3 to obtain that the N corresponding to the target cell E is 4. Similarly, if the working frequency of the target cell G is F2 and the number of configured beams is in the range of 16-8, the reference table 3 can obtain that the N corresponding to the target cell G is 3. Similarly, if the working frequency of the target cell H is F2 and the number of configured beams is in the range of 4 to 2, the N corresponding to the target cell H can be obtained by referring to Table 3.
  • Table 3 is a mapping table of the number of beams of the target cell and N
  • Table 4 is a mapping table of the working frequency of the target cell and N, as follows:
  • Table 4 Mapping table of the number of beams (or range of beam numbers) of the target cell B and N
  • the mobile communication terminal can obtain the N corresponding to the target cell from the table 4 according to the configured number of beams of the target cell. For example, if the number of beams configured in the target cell I is in the range of 64 to 32, refer to Table 4 to obtain that the N corresponding to the target cell I is 5. Similarly, if the number of beams configured in the target cell J is 16, the lookup table 4 can obtain that the N corresponding to the target cell J is 4. Similarly, if the number of beams configured in the target cell K is in the range of 8 to 4, refer to Table 4 to obtain that the N corresponding to the target cell K is 3.
  • the number of configured beams (or the range of the number of beams) and N in Table 4 are only examples, and may be determined according to actual needs, and thus the specific values and ranges are not limited.
  • Table 5 Mapping table of working frequency points F and N of the target cell
  • the mobile communication terminal can refer to the working frequency of the target cell that is acquired in advance, and obtain the N corresponding to the target cell from the table 5. For example, if the operating frequency of the target cell L is F1, the lookup table 5 can obtain that the N corresponding to the target cell L is 5. Similarly, if the working frequency of the target cell J is F2, the N corresponding to the target cell J can be obtained by referring to Table 5. Similarly, if the working frequency of the target cell O is in the range of F3 to F4, the N corresponding to the target cell O can be obtained by referring to Table 5.
  • working frequency or working frequency range
  • N in Table 3 are only examples, and may be determined according to actual needs, and thus the specific values and ranges are not limited.
  • each working frequency point (or working frequency range) and the number of beams (or the number of beam ranges) respectively correspond to a unique N value. Therefore, after acquiring the working configuration parameters of the target cell, the mobile terminal By referring to the corresponding working configuration parameter and the mapping table of N, the N corresponding to the target cell can be consulted, which is convenient and quick.
  • mapping relationship is recorded in the manner of a function in the following optional steps. For details, refer to the following description, and details are not described herein again.
  • the mobile communication terminal may obtain the working configuration parameter of the target cell according to the mapping relationship between the target cell working configuration parameter and the number of beams used for cell quality calculation. N, and then the quality calculation of the target cell is implemented by N beams.
  • mapping relationship is related to a cell quality calculation manner.
  • the mapping relationship may be recorded by a function, where the function may include at least one of a number of beams configured by the target cell, a related parameter of the number of beams, a working frequency point, and related parameters of the working frequency point, that is, a function. At least one of a working configuration parameter of the target cell and a related parameter of the working configuration parameter may be included.
  • Xi can be a decimal or an integer
  • Yi can be an integer.
  • Xi and Yi may be positive numbers, but it is necessary to ensure that the obtained N is a positive number.
  • NR-SS New Radio-Synchronization Signal
  • CSI-RS Channel State Information-Reference Signal
  • the mobile communication terminal can obtain the N corresponding to the target cell according to the cell quality calculation formula.
  • the mapping relationship records a number of reference beams corresponding to a typical number of beams per working frequency point
  • mapping relationship between the target cell working configuration parameter and the number of beams used for cell quality calculation specifically:
  • Determining a maximum number of beams for calculating a cell quality is a sum of the beam quantity adjustment value and a reference beam quantity, wherein the reference beam quantity corresponds to a working frequency point of the target cell and a typical number of beams.
  • the mapping relationship for each working frequency point, the number of typical beams of the working frequency point and the number of reference beams corresponding to the number of typical beams are recorded, wherein the reference beam number is the reference value for obtaining N. .
  • the mobile communication terminal may determine the number of typical beams corresponding to the working frequency of the target cell by querying the mapping relationship; and then determining whether the number of beams configured by the target cell corresponds to the working frequency of the target cell.
  • the number of typical beams is equal.
  • the number of reference beams corresponding to the number of typical beams may be directly set to N.
  • the beam quantity adjustment value may be determined according to the number of beams configured by the target cell and the number of typical beams corresponding to the working frequency.
  • the sum of the number of reference beams corresponding to the number of typical beams of the working frequency of the target cell and the beam quantity adjustment value is the N corresponding to the target cell, that is, the maximum number of beams used to calculate the cell quality.
  • the adjustment coefficient for the working frequency point Fi is obtained in advance by the mobile communication terminal, and may be an integer or a decimal, and may be a positive number or a negative number, but it is necessary to ensure that the obtained N is a positive number.
  • each working frequency point only one typical number of beams and the number of reference beams corresponding to the number of the typical beams are recorded in the mapping relationship, and the mobile communication terminal may calculate N based on the number of the reference beams, which is different from the foregoing implementation.
  • each working frequency point corresponds to at least two beam numbers, and the embodiment can save storage space.
  • the obtaining the working configuration parameter of the target cell specifically includes:
  • the number of beams configured by the target cell is obtained or estimated by a system message.
  • the mobile communication terminal may acquire the working frequency of the target cell according to the system information or the measurement configuration information. point. In addition, the mobile communication terminal can also acquire the working frequency of the target cell by scanning.
  • the mobile communication terminal may directly acquire the number of beams configured by the target cell according to the system message sent by the target cell, or calculate the number of beams configured by the target cell according to the content in the system message sent by the target cell.
  • the mobile communication terminal can obtain the working frequency of the target cell through scanning, system message or measurement configuration information, and obtain or estimate the number of beams configured by the target cell through the system message, according to the mapping relationship, such as the cell quality. Calculate the formula to obtain the N corresponding to the target cell.
  • the method before the acquiring the N according to the mapping relationship between the target cell working configuration parameter and the number of beams used for cell quality calculation, the method further includes:
  • mapping relationship may be directly implemented in the communication protocol between the network device and the mobile communication terminal, and is sent by the network device to the mobile communication terminal, so that additional signaling overhead can be avoided.
  • the mapping relationship of the neighboring cell may also be configured by the network device in the dedicated signaling of the measurement configuration message.
  • the mapping relationship between the serving cell of the mobile communication terminal and the neighboring cell may be implemented by the following mechanism: the serving cell and the neighboring cell are mapped on the X2 interface; or the serving cell is enhanced by ANR (Automatic Neighbor Relations). Controlling the mobile communication terminal to read the mapping relationship of the neighboring cells.
  • ANR Automatic Neighbor Relations
  • mapping relationship in this embodiment may be a cell quality calculation formula, a mapping table, or a reference adjustment formula.
  • the mapping relationship in this embodiment may be a cell quality calculation formula, a mapping table, or a reference adjustment formula.
  • the type of the mapping relationship may be determined by the network device according to actual needs, thereby improving flexibility.
  • the obtaining the N specifically includes:
  • the network device may obtain N according to the mapping relationship between the working configuration parameters of the target cell and the number of beams used for cell quality calculation, and then send the N to the mobile communication terminal.
  • the N can be directly solidified in the communication protocol between the network device and the mobile communication terminal, and is sent by the network device to the mobile communication terminal, so that additional signaling overhead can be avoided.
  • the N can also be configured in the broadcast message and sent by the network device to the mobile communication terminal, so that the mobile communication terminal in the idle state and the connected state can acquire N.
  • the N-series of the neighboring cell may also be configured by the network device in the dedicated signaling of the measurement configuration message.
  • the serving cell of the mobile communication terminal acquires the N of the neighboring cell by the following mechanism: the serving cell and the neighboring cell interact with each other on the X2 interface; or the serving cell controls the mobile by enhancing ANR (Automatic Neighbor Relations)
  • the communication terminal reads N of the neighboring cell.
  • the network device may also configure the parameters Xi and Yi for calculating the cell quality in the system broadcast message, so that the mobile communication terminal in the idle state and the connected state can pass the parameter and solidify on the network device and move.
  • the cell calculation formula in the communication protocol of the communication terminal or in the enterprise standard obtains the N corresponding to the target cell.
  • the network device may also configure the working frequency of the neighboring cell or the configured number of beams in the system broadcast message, so that the mobile communication terminal can calculate the N corresponding to the neighboring cell based on the parameter.
  • the method further includes:
  • the difference between the number of beams M whose quality exceeds the beam quality threshold of the network configuration and the N is reported.
  • the mobile communication terminal may perform quality calculation on each beam configured by the target cell, and select, from the beams configured by the target cell, no more than N beams whose quality exceeds the beam quality threshold of the network configuration, and perform cell quality on the target cell. Calculation.
  • the mobile communication terminal can report the number of beams M whose target cell quality exceeds the beam quality threshold of the network configuration, or the number of beams M whose quality exceeds the beam quality threshold of the network configuration, in addition to the quality of the reported target cell.
  • the difference of N is described, so that the network device can better understand the quality of the beam calculated by the mobile communication terminal.
  • FIG. 2 is a flowchart of a parameter configuration method provided by an embodiment of the present disclosure. As shown in Figure 2, the method includes:
  • Step 201 Determine a number of beams N for performing cell quality calculation of the target cell, where the target cell is a serving cell or a neighboring cell, and the working frequency of the N and the target cell and the target cell configuration At least one of the number of beams is related.
  • the network device can calculate the number of beams N for performing cell quality calculation of the target cell by using a calculation formula, and can also refer to the mapping table to obtain the number N of beams for performing cell quality calculation of the target cell.
  • the target cell is a serving cell or a neighboring cell, and the N is related to at least one of a working frequency of the target cell and a number of beams configured by the target cell, where the N beams are target cell configurations.
  • Step 202 Send the N.
  • the N can be directly solidified in the communication protocol between the network device and the mobile communication terminal, and is sent by the network device to the mobile communication terminal, so that additional signaling overhead can be avoided.
  • the N can also be configured in the broadcast message and sent by the network device to the mobile communication terminal, so that the mobile communication terminal in the idle state and the connected state can acquire N.
  • the N of the neighboring cell may also be configured by the network device in the dedicated signaling of the measurement configuration message.
  • the serving cell of the mobile communication terminal acquires the N of the neighboring cell by the following mechanism: the serving cell and the neighboring cell interact with each other on the X2 interface; or the serving cell controls the mobile by enhancing ANR (Automatic Neighbor Relations)
  • the communication terminal reads N of the neighboring cell.
  • the network device determines a number of beams N for performing cell quality calculation of the target cell, where the target cell is a serving cell or a neighboring cell, and the operating frequency and location of the N and the target cell are Determining at least one of the number of beams configured by the target cell; delivering the N.
  • the embodiment of the present disclosure determines N by at least one of a working frequency point of the target cell and a number of beams configured by the target cell, thereby standardizing acquisition of the number N of beams for calculating the cell quality.
  • the determining the number of beams N used for performing cell quality calculation includes:
  • the working configuration parameter of the target cell includes at least one of a working frequency point of the target cell and a number of beams configured by the target cell;
  • the mobile communication terminal may acquire the working configuration parameter of the target cell in advance, and then use the target cell working configuration parameter and the pre-acquired
  • the mapping relationship between the number of beams calculated by the cell quality determines the N corresponding to the working configuration parameter of the target cell.
  • the mapping relationship between the target cell working configuration parameter and the number of beams used for cell quality calculation may be performed, because the working configuration parameter of the target cell includes at least one of a working frequency of the target cell and a number of beams configured by the target cell.
  • N f(F, Nb), where F is the working frequency of the target cell, and Nb is the number of beams configured by the target cell.
  • mapping relationship between the working configuration parameter of the target cell and the number of beams used for cell quality calculation may be recorded by using a function or a mapping table, and is not limited herein.
  • the manner in which the network device determines the N is the same as the manner in which the mobile communication terminal acquires the N. Therefore, the description of the mobile communication terminal may be specifically referred to. To avoid repetition, details are not described herein again.
  • mapping relationship is related to a cell quality calculation manner.
  • the mapping relationship may be recorded by a function, where the function may include at least one of a number of beams configured by the target cell, a related parameter of the number of beams, a working frequency point, and related parameters of the working frequency point, that is, a function. At least one of a working configuration parameter of the target cell and a related parameter of the working configuration parameter may be included.
  • Xi can be a decimal or an integer
  • Yi can be an integer.
  • Xi and Yi may be positive numbers, but it is necessary to ensure that the obtained N is a positive number.
  • both NR-SS and CSI-RS can be used to calculate the cell quality
  • the configured N can also adopt the same calculation formula as above, or can adopt different calculation formulas. If the same formula is used to calculate N, different Xi, Yi values can also be used.
  • the mapping relationship records a number of reference beams corresponding to a typical number of beams per working frequency point
  • Determining a maximum number of beams for calculating a cell quality is a sum of the beam quantity adjustment value and a reference beam quantity, wherein the reference beam quantity corresponds to a working frequency point of the target cell and a typical number of beams.
  • the mapping relationship for each working frequency point, the number of typical beams of the working frequency point and the number of reference beams corresponding to the number of typical beams are recorded, wherein the reference beam number is the reference value for obtaining N. .
  • the network device may determine the number of typical beams corresponding to the working frequency of the target cell by querying the mapping relationship; and then determining whether the number of beams configured by the target cell corresponds to the working frequency of the target cell. The number of beams is equal.
  • the number of reference beams corresponding to the number of typical beams can be directly set to N.
  • the beam quantity adjustment value may be determined according to the number of beams configured by the target cell and the number of typical beams corresponding to the working frequency.
  • the sum of the number of reference beams corresponding to the number of typical beams of the working frequency of the target cell and the beam quantity adjustment value is the N corresponding to the target cell, that is, the maximum number of beams used to calculate the cell quality.
  • the adjustment coefficient for the working frequency point Fi is obtained in advance by the network device, and may be an integer or a decimal, and may be a positive number or a negative number, but it is necessary to ensure that the obtained N is a positive number.
  • the network device can calculate N based on the number of the reference beams, thereby saving storage space.
  • FIG. 3 is a schematic diagram of a mobile communication terminal provided by an embodiment of the present disclosure.
  • the mobile communication terminal 300 includes a processor 301, a transmitter 302, and a receiver 303.
  • the processor 301 is configured to select, by using no more than N beams, a cell quality calculation of the target cell, where the target cell is a serving cell or a neighboring cell, and the operating frequency and location of the N and the target cell are At least one of the number of beams configured by the target cell is related.
  • the transmitter 302 is configured to report a quality calculation result of the target cell.
  • the processor 301 is further configured to acquire a working configuration parameter of the target cell, where the working configuration parameter of the target cell includes the work of the target cell, before the cell quality calculation of the target cell is performed by using no more than N beams. At least one of a frequency point and a number of beams configured by the target cell;
  • mapping relationship is related to a cell quality calculation manner.
  • the mapping relationship records a number of reference beams corresponding to a typical number of beams per working frequency point.
  • the processor 301 is configured to: according to the mapping relationship between the target cell working configuration parameter and the number of beams used for cell quality calculation, when acquiring the N, specifically:
  • Determining a number of beams used for calculating cell quality is a sum of the beam quantity adjustment value and a reference beam quantity, wherein the reference beam quantity corresponds to a working frequency point of the target cell and a typical number of beams.
  • processor 301 when the processor 301 is configured to obtain the working configuration parameter of the target cell, specifically:
  • the number of beams configured by the target cell is obtained or estimated by a system message.
  • the receiver 303 is configured to receive the N sent by the network side.
  • the transmitter 302 is further configured to report a beam quantity M whose quality exceeds a beam quality threshold of the network configuration after selecting a cell quality calculation of the target cell that does not exceed N beams; or a beam whose quality exceeds the network configuration. The difference between the number of beams M of the quality threshold and the N.
  • the mobile communication device of the embodiment of the present disclosure selects no more than N beams to perform cell quality calculation of the target cell, where the target cell is a serving cell or a neighboring cell, and the N and the working frequency of the target cell Correlating with at least one of the number of beams configured by the target cell; reporting a quality calculation result of the target cell.
  • the embodiment of the present disclosure determines N by the working frequency of the target cell or/and the number of beams configured by the target cell, and specifies the acquisition of the number N of beams used to calculate the quality of the cell.
  • the embodiment of the present disclosure also provides a network device.
  • 4 is a schematic diagram of a network device provided by an embodiment of the present disclosure. As shown in FIG. 4, network device 400 includes a processor 401 and a transmitter 402.
  • the processor 401 is configured to determine a number of beams N for performing cell quality calculation of the target cell, where the target cell is a serving cell or a neighboring cell, the working frequency of the N and the target cell, and the At least one of the number of beams configured by the target cell is related.
  • the transmitter 402 is configured to send the N.
  • the processor 401 when the processor 401 is configured to determine the number of beams N used for performing cell quality calculation, specifically, the processor is configured to:
  • the working configuration parameter of the target cell includes at least one of a working frequency point of the target cell and a number of beams configured by the target cell;
  • mapping relationship is related to a cell quality calculation manner.
  • the mapping relationship records a number of reference beams corresponding to a typical number of beams per working frequency point
  • the processor 401 is configured to: according to the mapping relationship between the target cell working configuration parameter and the number of beams used for cell quality calculation, when determining the N, specifically:
  • Determining a maximum number of beams for calculating a cell quality is a sum of the beam quantity adjustment value and a reference beam quantity, wherein the reference beam quantity corresponds to a working frequency point of the target cell and a typical number of beams.
  • the network device of the embodiment of the present disclosure determines, by the processor, a number N of beams used for performing cell quality calculation of the target cell, where the target cell is a serving cell or a neighboring cell, and the N is related to the target cell.
  • the working frequency point is associated with at least one of the number of beams configured by the target cell; the N is delivered by the transmitter.
  • the embodiment of the present disclosure determines N by the working frequency of the target cell or/and the number of beams configured by the target cell, and specifies the acquisition of the number N of beams used to calculate the quality of the cell.
  • Embodiments of the present disclosure also provide a communication device including a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the communication device may be a mobile communication terminal or a network device.
  • the computer program can be implemented by the processor to implement the cell quality calculation method in any of the foregoing method embodiments.
  • the communication device is a mobile communication terminal
  • the parameter configuration method of any one of the foregoing method embodiments may be implemented when the computer program is executed by the processor.
  • the embodiment of the present disclosure also provides a mobile communication terminal.
  • 5 is a schematic diagram of a mobile communication terminal provided by an embodiment of the present disclosure.
  • the mobile communication terminal 500 includes a memory 501, a processor 502, and a computer stored on the memory 501 and operable on the processor 502.
  • the program 5011 when executed by the processor 502, implements the following steps:
  • the target cell is a serving cell or a neighboring cell, and the N and the working frequency of the target cell and the number of beams configured by the target cell are At least one related;
  • the quality calculation result of the target cell is reported.
  • the working configuration parameter of the target cell includes the working frequency of the target cell and the configuration of the target cell, before the calculating, by the N, the beam, the cell quality calculation of the target cell is performed. At least one of the number of beams;
  • mapping relationship is related to a cell quality calculation manner.
  • the mapping relationship records a number of reference beams corresponding to a typical number of beams per working frequency point
  • the computer program 5011 can also implement the following steps when executed by the processor 502:
  • the maximum number of beams used to calculate the cell quality is a sum of the beam quantity adjustment value and the reference beam number, wherein the reference beam number corresponds to a working frequency point of the target cell and a typical number of beams.
  • the number of beams configured by the target cell is obtained or estimated by a system message.
  • the N that is sent by the network device is received before the cell quality calculation of the target cell is performed by the N beam.
  • the difference between the number of beams M whose quality exceeds the beam quality threshold of the network configuration and the N is reported.
  • the mobile communication device of the embodiment of the present disclosure selects no more than N beams to perform cell quality calculation of the target cell, where the target cell is a serving cell or a neighboring cell, and the N and the working frequency of the target cell Corresponding to at least one of the number of beams configured by the target cell.
  • the embodiment of the present disclosure determines N by the working frequency of the target cell or/and the number of beams configured by the target cell, and specifies the acquisition of the number N of beams used to calculate the quality of the cell.
  • an embodiment of the present disclosure further provides a network device, which includes a memory 601, a processor 602, and a computer program 6011 stored on the memory 601 and executable on the processor 602.
  • the computer program 6011 is When the processor 602 executes, the following steps are implemented:
  • Determining a number of beams N for performing cell quality calculation of the target cell where the target cell is a serving cell or a neighboring cell, the working frequency of the N and the target cell, and the number of beams configured by the target cell At least one of the correlations;
  • the N is issued.
  • the working configuration parameter of the target cell includes at least one of a working frequency point of the target cell and a number of beams configured by the target cell;
  • mapping relationship is related to a cell quality calculation manner.
  • the mapping relationship records a number of reference beams corresponding to a typical number of beams per working frequency point
  • the computer program 6011 may further implement the following steps when the processor 602 performs the determining the target uplink frequency range from the access uplink frequency range:
  • Determining a maximum number of beams for calculating a cell quality is a sum of the beam quantity adjustment value and a reference beam quantity, wherein the reference beam quantity corresponds to a working frequency point of the target cell and a typical number of beams.
  • the mobile communication device of the embodiment of the present disclosure determines a beam number N for performing cell quality calculation of a target cell, where the target cell is a serving cell or a neighboring cell, and the N and the target cell operate at a frequency
  • the point is associated with at least one of the number of beams configured by the target cell; the N is delivered.
  • the embodiment of the present disclosure determines N by the working frequency of the target cell or/and the number of beams configured by the target cell, and specifies the acquisition of the number N of beams used to calculate the quality of the cell.
  • the embodiment of the present disclosure further provides a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements a cell quality calculation or parameter configuration method of any of the above method embodiments.
  • the storage medium is, for example, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开文本实施例提供一种小区质量计算方法、参数配置方法及相关设备。该小区质量计算方法包括:选择不超过N个波束进行目标小区的小区质量计算,其中,所述目标小区为服务小区或相邻小区,所述N与所述目标小区的工作频点和所述目标小区配置的波束数量中的至少一个相关;上报所述目标小区的质量计算结果。本公开文本实施例规范了用于计算小区质量的波束数量N的获取。

Description

小区质量计算方法、参数配置方法及相关设备
相关申请的交叉引用
本申请主张在2017年7月31日在中国提交的中国专利申请号No.201710641329.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开文本实施例涉及通信技术领域,特别涉及一种小区质量计算方法、参数配置方法及相关设备。
背景技术
在第五代移动通信技术(5th-Generation,简称5G)系统中,工作在不同载频上的小区,可配置不同的波束数量。小区的工作频率越高,可配置的波束数量越多,每个波束的宽度越窄,从而移动通信终端在该小区中检测到的波束数量越多。例如,移动通信终端可以在载频为3.5GHz的小区中检测到2个波束,在载频为26GHz的小区中检测到4个波束。
对于配置了波束的小区,其质量可以通过小区配置的波束数量中的不超过N个波束计算。目前,对于工作在不同载频上的小区,可配置不同的波束数量。然而,对于工作在相同载频上的小区,是否可配置不同的波束数量,目前尚未提出有效的结论。因此,对于用于计算小区质量的波束数量N的获取,目前还没有相关的解决方案。
发明内容
本公开文本实施例的目的在于提供一种小区质量计算方法、参数配置方法及相关设备,以规范用于计算小区质量的波束数量N的获取。
为了达到上述目的,在第一个方面中,本公开文本实施例提供一种小区质量计算方法,用于移动通信终端,该小区质量计算方法包括:
选择不超过N个波束进行目标小区的小区质量计算,其中,所述目标小区为服务小区或相邻小区,所述N与所述目标小区的工作频点和所述目标小 区配置的波束数量中的至少一个相关;以及
上报所述目标小区的质量计算结果。
在第二个方面中,本公开文本实施例还提供一种参数配置方法,用于网络设备,该参数配置方法包括:
确定用于进行目标小区的小区质量计算的波束数量N,其中,所述目标小区为服务小区或相邻小区,所述N与所述目标小区的工作频点和所述目标小区配置的波束数量中的至少一个相关;以及
下发所述N。
在第三个方面中,本公开文本实施例还提供一种移动通信终端,该移动通信终端包括:
处理器,用于选择不超过N个波束进行目标小区的小区质量计算,其中,所述目标小区为服务小区或相邻小区,所述N与所述目标小区的工作频点和所述目标小区配置的波束数量中的至少一个相关;以及
发送器,用于上报所述目标小区的质量计算结果。
在第四个方面中,本公开文本实施例还提供一种网络设备,该网络设备包括:
处理器,用于确定用于进行目标小区的小区质量计算的波束数量N,其中,所述目标小区为服务小区或相邻小区,所述N与所述目标小区的工作频点和所述目标小区配置的波束数量中的至少一个相关;以及
发送器,用于下发所述N。
在第五个方面中,本公开文本实施例还提供一种通信设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述的小区质量计算方法,或者实现如上所述的参数配置方法。
在第六个方面中,本公开文本实施例还提供一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如上所述的小区质量计算方法,或者实现如上所述的参数配置方法。
本公开文本实施例中,选择不超过N个波束进行目标小区的小区质量计算,其中,所述目标小区为服务小区或相邻小区,所述N与所述目标小区的 工作频点和所述目标小区配置的波束数量中的至少一个相关;上报所述目标小区的质量计算结果。本公开文本实施例通过目标小区的工作频点或/和目标小区配置的波束数量确定N,规范了用于计算小区质量的波束数量N的获取。
附图说明
为了更清楚地说明本公开文本实施例或相关技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开文本的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1表示本公开文本实施例提供的小区质量计算方法的流程图;
图2表示本公开文本实施例提供的参数配置方法的流程图;
图3表示本公开文本实施例提供的移动通信终端的示意图;
图4表示本公开文本实施例提供的网络设备的示意图;
图5表示本公开文本又一实施例提供的移动通信终端的示意图;
图6表示本公开文本又一实施例提供的网络设备的示意图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。在下面的描述中,提供诸如具体的配置和组件的特定细节仅仅是为了帮助全面理解本公开的实施例。因此,本领域技术人员应该清楚,可以对这里描述的实施例进行各种改变和修改而不脱离本公开的范围和精神。另外,为了清楚和简洁,省略了对已知功能和构造的描述。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本公开的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
在本公开的各种实施例中,应理解,下述各过程的序号的大小并不意味 着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常可互换使用。
在本申请所提供的实施例中,应理解,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
为使本公开实施例要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
参见图1,图1表示本公开文本实施例提供的小区质量计算方法的流程图。本实施例的小区质量计算方法用于移动通信终端,如图1所示,包括以下步骤:
步骤101、选择不超过N个波束进行目标小区的小区质量计算。
本公开文本实施例中,移动通信终端可以对目标小区配置的各个波束进行质量计算,以从目标小区配置的波束中选择不超过N个可用于测量小区质量的波束,例如:不超过N个质量超过网络配置的波束质量门限的波束,对目标小区的质量进行计算。具体地,可以对该不超过N个波束进行线性平均或加权平均计算,得到所述目标小区的小区质量计算结果。其中,所述目标小区为服务小区或相邻小区,所述N与所述目标小区的工作频点和所述目标小区配置的波束数量中的至少一个相关,所述N个波束为目标小区配置的波束中能够用于计算小区质量的波束。
本公开文本实施例中,移动通信终端预先获取所述N。在实际应用中,移动通信终端可以从网络设备下发的消息中获取所述N,也可以自身基于目标小区的工作配置参数确定所述N,其中,工作配置参数可以包括工作频点和配置的波束数量中的至少一种。
需要说明的是,若目标小区配置的波束中实际能够用于计算小区质量的波束的数量小于N,则采用目标小区配置的波束中实际能够用于计算小区质量的波束的数量进行目标小区的小区质量计算。例如:若移动通信终端获取目标小区的N为10,而目标小区配置的波束中实际能够用于计算小区质量的波束数量为8,则可以采用该8个波束进行目标小区的小区质量计算。
步骤102、上报所述目标小区质量测量的小区质量计算结果。
本公开文本实施例中,移动通信终端例如可以在得到目标小区的质量计算结果后,将所述目标小区的质量计算结果携带于测量报告中,上报至网络设备。
本公开文本实施例中,移动通信终端可以例如是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,简称PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等。网络设备可以例如是基站,具体地,可以为3G基站(Node B),也可以为4G基站(eNB),也可以为5G基站(gNB),但不仅限于此。
本实施例的小区质量计算方法,选择不超过N个波束进行目标小区的小区质量计算,其中,所述目标小区为服务小区或相邻小区,所述N与所述目标小区的工作频点和所述目标小区配置的波束数量中的至少一个相关;上报所述目标小区量质量计算结果。本公开文本实施例通过目标小区的工作频点和目标小区配置的波束数量中的至少一个确定N,从而规范了用于计算小区质量的波束数量N的获取。
可选的,所述选择不超过N个波束进行目标小区的小区质量计算之前,所述方法还包括:
获取所述N。
本实施例中,移动通信终端可以从网络设备下发的消息中获取所述N,即接收网络设备下发的所述N;也可以自身基于目标小区的工作配置参数确定所述N,其中,工作配置参数可以包括工作频点和配置的波束数量中的至少一种。
可选的,所述获取所述N具体包括:
获取目标小区的工作配置参数,其中,所述目标小区的工作配置参数包括目标小区的工作频点和所述目标小区配置的波束数量中的至少一个;以及
根据所述目标小区工作配置参数与用于小区质量计算的波束数量的映射关系,获取所述N。
本实施例中,考虑到所述N与目标小区的工作配置参数强相关,因此, 移动通信终端可以预先获取目标小区的工作配置参数,再根据预先获取的所述目标小区工作配置参数与用于小区质量计算的波束数量的映射关系,确定目标小区的工作配置参数对应的N。
由于目标小区的工作配置参数包括目标小区的工作频点和所述目标小区配置的波束数量中的至少一个,因此,所述目标小区工作配置参数与用于小区质量计算的波束数量的映射关系可以表达为:N=f(F,Nb),其中,F为目标小区的工作频点,Nb为目标小区配置的波束数量。
在实际应用中,所述目标小区工作配置参数与用于小区质量计算的波束数量的映射关系可以用函数或者映射表格等方式记录,在此不作限定。
针对用映射表格记录映射关系的方式,若所述目标小区的工作配置参数包括目标小区的工作频点和配置波束数量,则目标小区的工作配置参数与用于小区质量计算的波束数量的映射关系可以用表1、表2和表3表示,具体如下:
表1:目标小区的工作频点F、波束数量B与N的映射表格
Figure PCTCN2018097416-appb-000001
移动通信终端可以根据预先获取的目标小区的工作频点和配置的波束数量,从表1中查阅得到该目标小区对应的N。例如:若目标小区A的工作频点为F1,配置的波束数量为64,则查阅表1可得到目标小区A对应的N为5。同样的,若目标小区P的工作频点为F2,配置的波束数量为8,则查阅表1可得到目标小区P对应的N为3。
需要说明的是,表1中的工作频点、配置的波束数量以及N仅为示例,具体可根据实际需要决定,并不因此对其具体的值作出限定。
表2:目标小区的工作频点F、波束数量(或波束数量范围)B与N的映 射表格
Figure PCTCN2018097416-appb-000002
移动通信终端可以根据预先获取的目标小区的工作频点和配置的波束数量,从表2中查阅得到该目标小区对应的N。例如:若目标小区C的工作频点为F1,配置的波束数量在64~32范围内,则查阅表2可得到目标小区D对应的N为5。同样的,若目标小区D的工作频点为F2,配置的波束数量为16,则查阅表2可得到目标小区D对应的N为4。
需要说明的是,表2中的工作频点、配置的波束数量(或波束数量范围)以及N仅为示例,具体可根据实际需要决定,并不因此对其具体的值和范围作出限定。
表3:目标小区的工作频点F、波束数量范围B与N的映射表格
Figure PCTCN2018097416-appb-000003
移动通信终端可以根据预先获取的目标小区的工作频点和配置的波束数量,从表3中查阅得到该目标小区对应的N。例如:若目标小区E的工作频点为F2,配置的波束数量在64~32范围内,则查阅表3可得到目标小区E对应的N为4。同样的,若目标小区G的工作频点为F2,配置的波束数量在16~8范围内,则查阅表3可得到目标小区G对应的N为3。同样的,若目标小区H的工作频点为F2,配置的波束数量在4~2范围内,则查阅表3可得到目标小区H对应的N为2。
需要说明的是,表3中的工作频点、配置的波束数量范围以及N仅为示例,具体可根据实际需要决定,并不因此对其具体的值和范围作出限定。
针对用映射表格记录映射关系的方式,若所述目标小区的工作配置参数包括目标小区的工作频点或配置波束数量,则目标小区的工作配置参数与用于小区质量计算的波束数量的映射关系可以用表3和表4表示,其中,表3为目标小区的波束数量与N的映射表格,表4为目标小区的工作频点与N的映射表格,具体如下:
表4:目标小区的波束数量(或波束数量范围)B与N的映射表格
B N
64~32 5
16 4
8~4 3
移动通信终端可以根据预先获取的目标小区的配置的波束数量,从表4中查阅得到该目标小区对应的N。例如:若目标小区I配置的波束数量在64~32范围内,则查阅表4可得到目标小区I对应的N为5。同样的,若目标小区J配置的波束数量为16,则查阅表4可得到目标小区J对应的N为4。同样的,若目标小区K配置的波束数量在8~4范围内,则查阅表4可得到目标小区K对应的N为3。
需要说明的是,表4中的配置的波束数量(或波束数量范围)以及N仅为示例,具体可根据实际需要决定,并不因此对其具体的值和范围作出限定。
表5:目标小区的工作频点F与N的映射表格
F N
F1 5
F2 4
F3~F4 3
移动通信终端可以根据预先获取的目标小区的工作频点,从表5中查阅得到该目标小区对应的N。例如:若目标小区L配置的工作频点为F1,则查 阅表5可得到目标小区L对应的N为5。同样的,若目标小区J的工作频点为F2,则查阅表5可得到目标小区J对应的N为4。同样的,若目标小区O的工作频点在F3~F4范围内,则查阅表5可得到目标小区O对应的N为3。
需要说明的是,表3中的工作频点(或工作频点范围)以及N仅为示例,具体可根据实际需要决定,并不因此对其具体的值和范围作出限定。
由表1至表5可知,每一个工作频点(或工作频点范围)和波束数量(或波束数量范围)都分别对应唯一的N值,因此,移动终端在获取目标小区的工作配置参数后,可通过查阅对应的工作配置参数与N的映射表格,查阅该目标小区对应的N,方便快捷。
针对用函数的方式记录映射关系的方式,将在下列可选步骤中进行详细的描述,具体可参考下述描述,在此不再赘述。
本实施例中,移动通信终端在获取目标小区的工作配置参数之后,即可根据所述目标小区工作配置参数与用于小区质量计算的波束数量的映射关系,获取目标小区的工作配置参数对应的N,进而通过N个波束实现对目标小区的质量计算。
可选的,所述映射关系与小区质量计算方式相关。
本实施例中,所述映射关系可以通过函数进行记录,函数中可以包括目标小区配置的波束数量、波束数量的相关参数、工作频点和工作频点的相关参数中的至少一个,即函数中可以包括目标小区的工作配置参数和工作配置参数的相关参数中的至少一个。例如:对于工作频点为Fi的目标小区,其N可以通过Ni=floor(Xi*log2Nb)+Yi,或Ni=ceil(Xi*log2Nb)+Yi,或Ni=floor(Xi*log2Nb+Yi),或Ni=ceil(Xi*log2Nb+Yi)的小区质量计算公式求出,其中,Nb为目标小区配置的波束数量,Xi和Yi为针对工作频点Fi的调整系数,由移动通信终端预先获取,Xi可以是小数或整数,Yi可以是整数。另外,Xi和Yi可以是正数,但需保证求出的N为正数。
另外,NR-SS(New Radio-Synchronization Signal,无线接入-同步信号)和CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)都可以用来计算小区质量,其配置的N也可以采用上述相同的计算公式,也可采取不同的计算公式。若采用相同的公式计算N,也可使用不同的Xi, Yi值。
这样,移动通信终端在获取到目标小区的工作配置参数后,可以结合小区质量计算公式求出目标小区对应的N。
可选的,所述映射关系记录每一个工作频点的典型波束数量对应的基准波束数量;
所述根据所述目标小区工作配置参数与用于小区质量计算的波束数量的映射关系,获取所述N具体包括:
确定所述目标小区配置的波束数量,以及所述目标小区的工作频点对应的典型波束数量;
根据所述目标小区配置的波束数量,以及所述目标小区的工作频点对应的典型波束数量,确定波束数量调整值;以及
确定用于计算小区质量的最大波束数量为所述波束数量调整值和基准波束数量的和值,其中,所述基准波束数量与所述目标小区的工作频点以及典型波束数量对应。
本实施例中,在映射关系中,对于每个工作频点,记录有该工作频点的典型波束数量,以及典型波束数量对应的基准波束数量,其中,基准波束数量即为获取N的基准值。
移动通信终端在获取到目标小区的工作配置参数后,可以通过查询映射关系确定目标小区的工作频点对应的典型波束数量;然后判断目标小区配置的波束数量是否与目标小区的工作频点对应的典型波束数量相等。
若目标小区配置的波束数量与目标小区的工作频点对应的典型波束数量相等,则可以直接将该典型波束数量对应的基准波束数量作为N。
若目标小区配置的波束数量与目标小区的工作频点对应的典型波束数量不相等,则可以根据目标小区配置的波束数量和其工作频点对应的典型波束数量,确定波束数量调整值,并将目标小区的工作频点的典型波束数量对应的基准波束数量与该波束数量调整值的和值作为目标小区对应的N,即用于计算小区质量的最大波束数量。例如:对于工作频点为Fi的目标小区,若目标小区配置的波束数量Nb为16,而工作频点Fi对应的典型波束数量Nbi为32,且该典型波束数量Nbi对应的基准波束数量Ni为5,则目标小区对应的 N可以通过N=Ni+ceil(Xi*log2(Nb/Nbi))或N=Ni+floor(Xi*log2(Nb/Nbi))计算公式求出,其中,Xi为针对工作频点Fi的调整系数,由移动通信终端预先获取,可以是整数或小数,可以是正数,也可以是负数,但需保证求出的N为正数。
本实施例中,针对于每个工作频点,映射关系中仅需记录一个典型波束数量和该典型波束数量对应的基准波束数量,移动通信终端可以基于该基准波束数量计算N,区别于上述实施例中的映射表格,每个工作频点对应至少两个波束数量,本实施例可以节约存储空间。
可选的,所述获取目标小区的工作配置参数具体包括:
通过扫描、系统信息或测量配置信息获取所述目标小区的工作频点;和/或
通过系统消息获取或推算所述目标小区配置的波束数量。
本实施例中,对于目标小区工作频点的获取,由于系统信息或测量配置信息中可以携带目标小区的工作频点,因此,移动通信终端可以根据系统信息或测量配置信息获取目标小区的工作频点。另外,移动通信终端也可以通过扫描获取目标小区的工作频点。
对于目标小区的波束数量的获取,移动通信终端可以根据目标小区发送的系统消息直接获取目标小区配置的波束数量,或根据目标小区发送的系统消息中的内容推算出目标小区配置的波束数量。
因此,本实施例中,移动通信终端可以通过扫描、系统消息或测量配置信息获取目标小区的工作频点,以及通过系统消息获取或推算目标小区配置的波束数量后,根据映射关系,如小区质量计算公式,获取目标小区对应的N。
可选的,所述根据所述目标小区工作配置参数与用于小区质量计算的波束数量的映射关系,获取所述N之前,还包括:
接收网络设备下发的所述映射关系。
本实施例中,所述映射关系可以直接固化在网络设备与移动通信终端的通信协议中,由网络设备下发至移动通信终端,从而可以避免额外的信令开销。
另外,对于连接态下的移动通信终端的小区切换,为了计算相邻小区的质量,相邻小区的映射关系也可以由网络设备配置在测量配置消息的专用信令中。
移动通信终端的服务小区获取相邻小区的映射关系可以由如下机制实现:服务小区和相邻小区在X2接口上交互映射关系;或者服务小区通过增强ANR(Automatic Neighbor Relations,自动邻区关系),控制移动通信终端读取相邻小区的映射关系。
需要说明的是,本实施例中的映射关系可以是小区质量计算公式、映射表格或者基准调整公式,具体可参考上述描述,在此不再赘述。
本实施例中,映射关系的类型可以由网络设备根据实际需要决定,从而提高灵活度。
可选的,所述获取所述N具体包括:
接收网络设备下发的所述N。
本实施例中,网络设备可以预先根据目标小区的工作配置参数与用于小区质量计算的波束数量的映射关系,获取N,再将N下发至移动通信终端。
其中,N可以直接固化在网络设备与移动通信终端的通信协议中,由网络设备下发至移动通信终端,从而可以避免额外的信令开销。
N也可以配置在广播消息中,由网络设备下发至移动通信终端,这样,空闲态和连接态的移动通信终端都可以获取N。
另外,对于连接态下的移动通信终端的小区切换,为了计算相邻小区的质量,相邻小区的N系也可以由网络设备配置在测量配置消息的专用信令中。
移动通信终端的服务小区获取相邻小区的N可以由如下机制实现:服务小区和相邻小区在X2接口上交互N;或者服务小区通过增强ANR(Automatic Neighbor Relations,自动邻区关系),控制移动通信终端读取相邻小区的N。
需要说明的是,网络设备在系统广播消息中也可以配置用于计算小区质量的参数Xi和Yi,从而空闲态和连接态的移动通信终端都可以通过该参数,以及固化在在网络设备与移动通信终端的通信协议中或企业标准中的小区计算公式,得到目标小区对应的N。网络设备在系统广播消息中也可以配置相邻小区的工作频点或配置的波束数量,以使移动通信终端能基于该参数计算 相邻小区对应的N。
可选的,所述选择不超过N个波束进行目标小区的小区质量计算之后,还包括:
上报质量超过网络配置的波束质量门限的波束数量M;或
上报质量超过网络配置的波束质量门限的波束数量M与所述N的差值。
本实施例中,移动通信终端可以对目标小区配置的各个波束进行质量计算,以从目标小区配置的波束中选择不超过N个质量超过网络配置的波束质量门限的波束,对目标小区进行小区质量计算。
移动通信终端在上报测量报告时,除了上报目标小区的质量,还可上报目标小区质量超过网络配置的波束质量门限的波束数量M,或者是质量超过网络配置的波束质量门限的波束数量M与所述N的差值,从而可以使得网络设备可以更好地了解移动通信终端计算到的波束的质量情况。
请参阅图2,图2表示本公开文本实施例提供的参数配置方法的流程图。如图2所示,该方法包括:
步骤201、确定用于进行目标小区的小区质量计算的波束数量N,其中,所述目标小区为服务小区或相邻小区,所述N与所述目标小区的工作频点和所述目标小区配置的波束数量中的至少一个相关。
该步骤中,网络设备可以通过计算公式计算进行目标小区的小区质量计算的波束数量N,也可以查阅映射表格得到进行目标小区的小区质量计算的波束数量N。其中,所述目标小区为服务小区或相邻小区,所述N与所述目标小区的工作频点和所述目标小区配置的波束数量中的至少一个相关,所述N个波束为目标小区配置的波束中能够用于计算小区质量的波束。
步骤202、下发所述N。
该步骤中,N可以直接固化在网络设备与移动通信终端的通信协议中,由网络设备下发至移动通信终端,从而可以避免额外的信令开销。
N也可以配置在广播消息中,由网络设备下发至移动通信终端,这样,空闲态和连接态的移动通信终端都可以获取N。
另外,对于连接态下的移动通信终端的小区切换,为了计算相邻小区的质量,相邻小区的N也可以由网络设备配置在测量配置消息的专用信令中。
移动通信终端的服务小区获取相邻小区的N可以由如下机制实现:服务小区和相邻小区在X2接口上交互N;或者服务小区通过增强ANR(Automatic Neighbor Relations,自动邻区关系),控制移动通信终端读取相邻小区的N。
本实施例中,网络设备确定用于进行目标小区的小区质量计算的波束数量N,其中,所述目标小区为服务小区或相邻小区,所述N与所述目标小区的工作频点和所述目标小区配置的波束数量中的至少一个相关;下发所述N。本公开文本实施例通过目标小区的工作频点和目标小区配置的波束数量中的至少一个确定N,从而规范了用于计算小区质量的波束数量N的获取。
可选的,所述确定用于进行小区质量计算的波束数量N,具体包括:
获取所述目标小区的工作配置参数,其中,所述目标小区的工作配置参数包括目标小区的工作频点和所述目标小区配置的波束数量中的至少一个;以及
根据所述目标小区工作配置参数与用于小区质量计算的波束数量的映射关系,确定所述N。
本实施例中,考虑到所述N与目标小区的工作配置参数强相关,因此,移动通信终端可以预先获取目标小区的工作配置参数,再根据预先获取的所述目标小区工作配置参数与用于小区质量计算的波束数量的映射关系,确定目标小区的工作配置参数对应的N。由于目标小区的工作配置参数包括目标小区的工作频点和所述目标小区配置的波束数量中的至少一个,因此,所述目标小区工作配置参数与用于小区质量计算的波束数量的映射关系可以表达为:N=f(F,Nb),其中,F为目标小区的工作频点,Nb为目标小区配置的波束数量。
在实际应用中,所述目标小区工作配置参数与用于小区质量计算的波束数量的映射关系可以用函数或者映射表格等方式记录,在此不作限定。
需要说明的是,该步骤中网络设备确定N的方式与移动通信终端获取N的方式相同,因此,具体可参考移动通信终端的描述,为避免重复,在此不再赘述。
可选的,所述映射关系与小区质量计算方式相关。
本实施例中,所述映射关系可以通过函数进行记录,函数中可以包括目 标小区配置的波束数量、波束数量的相关参数、工作频点和工作频点的相关参数中的至少一个,即函数中可以包括目标小区的工作配置参数和工作配置参数的相关参数中的至少一个。例如:对于工作频点为Fi的目标小区,其N可以通过Ni=floor(Xi*log2Nb)+Yi,或Ni=ceil(Xi*log2Nb)+Yi,或Ni=floor(Xi*log2Nb+Yi),或Ni=ceil(Xi*log2Nb+Yi)的小区质量计算公式求出,其中,Nb为目标小区配置的波束数量,Xi和Yi为针对工作频点Fi的调整系数,由移动通信终端预先获取,Xi可以是小数或整数,Yi可以是整数。另外,Xi和Yi可以是正数,但需保证求出的N为正数。
另外,NR-SS和CSI-RS都可以用来计算小区质量,其配置的N也可以采用上述相同的计算公式,也可采取不同的计算公式。若采用相同的公式计算N,也可使用不同的Xi,Yi值。
可选的,所述映射关系记录每一个工作频点的典型波束数量对应的基准波束数量;
所述根据所述目标小区工作配置参数与用于小区质量计算的波束数量的映射关系,确定所述N,具体包括:
确定所述目标小区配置的波束数量,以及所述目标小区的工作频点对应的典型波束数量;
根据所述目标小区配置的波束数量,以及所述目标小区的工作频点对应的典型波束数量,确定波束数量调整值;以及
确定用于计算小区质量的最大波束数量为所述波束数量调整值和基准波束数量的和值,其中,所述基准波束数量与所述目标小区的工作频点以及典型波束数量对应。
本实施例中,在映射关系中,对于每个工作频点,记录有该工作频点的典型波束数量,以及典型波束数量对应的基准波束数量,其中,基准波束数量即为获取N的基准值。
网络设备在获取到目标小区的工作配置参数后,可以通过查询映射关系确定目标小区的工作频点对应的典型波束数量;然后判断目标小区配置的波束数量是否与目标小区的工作频点对应的典型波束数量相等。
若目标小区配置的波束数量与目标小区的工作频点对应的典型波束数量 相等,则可以直接将该典型波束数量对应的基准波束数量作为N。
若目标小区配置的波束数量与目标小区的工作频点对应的典型波束数量不相等,则可以根据目标小区配置的波束数量和其工作频点对应的典型波束数量,确定波束数量调整值,并将目标小区的工作频点的典型波束数量对应的基准波束数量与该波束数量调整值的和值作为目标小区对应的N,即用于计算小区质量的最大波束数量。例如:对于工作频点为Fi的目标小区,若目标小区配置的波束数量Nb为16,而工作频点Fi对应的典型波束数量Nbi为32,且该典型波束数量Nbi对应的基准波束数量Ni为5,则目标小区对应的N可以通过N=Ni+ceil(Xi*log2(Nb/Nbi))或N=Ni+floor(Xi*log2(Nb/Nbi))计算公式求出,其中,Xi为针对工作频点Fi的调整系数,由网络设备预先获取,可以是整数或小数,可以是正数,也可以是负数,但需保证求出的N为正数。
本实施例中,针对于每个工作频点,映射关系中仅需记录一个典型波束数量和该典型波束数量对应的基准波束数量,网络设备可以基于该基准波束数量计算N,从而可以节约存储空间。
本公开文本实施例还提供一种移动通信终端。图3表示本公开文本实施例提供的移动通信终端的示意图。如图3所示,移动通信终端300包括处理器301、发送器302和接收器303。
其中,处理器301,用于选择不超过N个波束进行目标小区的小区质量计算,其中,所述目标小区为服务小区或相邻小区,所述N与所述目标小区的工作频点和所述目标小区配置的波束数量中的至少一个相关。
发送器302,用于上报所述目标小区的质量计算结果。
可选的,处理器301,还用于在选择不超过N个波束进行目标小区的小区质量计算之前,获取目标小区的工作配置参数,其中,所述目标小区的工作配置参数包括目标小区的工作频点和所述目标小区配置的波束数量中的至少一个;以及
根据所述目标小区工作配置参数与用于小区质量计算的波束数量的映射关系,获取所述N。
可选的,所述映射关系与小区质量计算方式相关。
可选的,所述映射关系记录每一个工作频点的典型波束数量对应的基准波束数量。
处理器301用于根据所述目标小区工作配置参数与用于小区质量计算的波束数量的映射关系,获取所述N时,具体用于:
确定所述目标小区配置的波束数量,以及所述目标小区的工作频点对应的典型波束数量;
根据所述目标小区配置的波束数量,以及所述目标小区的工作频点对应的典型波束数量,确定波束数量调整值;以及
确定用于计算小区质量的波束数量为所述波束数量调整值和基准波束数量的和值,其中,所述基准波束数量与所述目标小区的工作频点以及典型波束数量对应。
可选的,处理器301用于获取目标小区的工作配置参数时,具体用于:
通过扫描、系统信息或测量配置信息获取所述目标小区的工作频点;和/或
通过系统消息获取或推算所述目标小区配置的波束数量。
可选的,接收器303,用于接收网络侧下发的所述N。
可选的,所述发送器302,还用于在选择不超过N个波束进行目标小区的小区质量计算之后,上报质量超过网络配置的波束质量门限的波束数量M;或质量超过网络配置的波束质量门限的波束数量M与所述N的差值。
本公开文本实施例的移动通信设备,选择不超过N个波束进行目标小区的小区质量计算,其中,所述目标小区为服务小区或相邻小区,所述N与所述目标小区的工作频点和所述目标小区配置的波束数量中的至少一个相关;上报所述目标小区的质量计算结果。本公开文本实施例通过目标小区的工作频点或/和目标小区配置的波束数量确定N,规范了用于计算小区质量的波束数量N的获取。
本公开文本实施例还提供一种网络设备。图4表示本公开文本实施例提供的网络设备的示意图。如图4所示,网络设备400包括处理器401和发送器402。
处理器401,用于确定用于进行目标小区的小区质量计算的波束数量N, 其中,所述目标小区为服务小区或相邻小区,所述N与所述目标小区的工作频点和所述目标小区配置的波束数量中的至少一个相关。
发送器402,用于下发所述N。
可选的,处理器401用于确定用于进行小区质量计算的波束数量N时,具体用于:
获取所述目标小区的工作配置参数,其中,所述目标小区的工作配置参数包括目标小区的工作频点和所述目标小区配置的波束数量中的至少一个;以及
根据所述目标小区工作配置参数与用于小区质量计算的波束数量的映射关系,确定所述N。
可选的,所述映射关系与小区质量计算方式相关。
可选的,所述映射关系记录每一个工作频点的典型波束数量对应的基准波束数量;
处理器401用于根据所述目标小区工作配置参数与用于小区质量计算的波束数量的映射关系,确定所述N时,具体用于:
确定所述目标小区配置的波束数量,以及所述目标小区的工作频点对应的典型波束数量;
根据所述目标小区配置的波束数量,以及所述目标小区的工作频点对应的典型波束数量,确定波束数量调整值;以及
确定用于计算小区质量的最大波束数量为所述波束数量调整值和基准波束数量的和值,其中,所述基准波束数量与所述目标小区的工作频点以及典型波束数量对应。
本公开文本实施例的网络设备,通过处理器确定用于进行目标小区的小区质量计算的波束数量N,其中,所述目标小区为服务小区或相邻小区,所述N与所述目标小区的工作频点和所述目标小区配置的波束数量中的至少一个相关;通过发送器下发所述N。本公开文本实施例通过目标小区的工作频点或/和目标小区配置的波束数量确定N,规范了用于计算小区质量的波束数量N的获取。
本公开文本实施例还提供一种通信设备,包括存储器、处理器及存储在 所述存储器上并可在所述处理器上运行的计算机程序。其中,通信设备可以是移动通信终端,也可以是网络设备。具体地,若通信设备为移动通信终端,则所述计算机程序被所述处理器执行时可实现上述任一方法实施例的小区质量计算方法,具体可参考图5实施例中的描述。另外,若通信设备为网络设备,则所述计算机程序被所述处理器执行时可实现上述任一方法实施例的参数配置方法,具体可参考图6实施例中的描述。
本公开文本实施例还提供一种移动通信终端。图5表示本公开文本实施例提供的移动通信终端的示意图,如图5所示,该移动通信终端500包括存储器501、处理器502及存储在存储器501上并可在处理器502上运行的计算机程序5011,计算机程序5011被处理器502执行时实现如下步骤:
选择不超过N个波束进行目标小区的小区质量计算,其中,所述目标小区为服务小区或相邻小区,所述N与所述目标小区的工作频点和所述目标小区配置的波束数量中的至少一个相关;
上报所述目标小区的质量计算结果。
可选的,计算机程序5011被处理器502执行时还可以实现如下步骤:
在所述选择不超过N个波束进行目标小区的小区质量计算之前,获取目标小区的工作配置参数,其中,所述目标小区的工作配置参数包括目标小区的工作频点和所述目标小区配置的波束数量中的至少一个;
根据所述目标小区工作配置参数与用于小区质量计算的波束数量的映射关系,获取所述N。
可选的,所述映射关系与小区质量计算方式相关。
可选的,所述映射关系记录每一个工作频点的典型波束数量对应的基准波束数量;
计算机程序5011被处理器502执行时还可以实现如下步骤:
确定所述目标小区配置的波束数量,以及所述目标小区的工作频点对应的典型波束数量;
根据所述目标小区配置的波束数量,以及所述目标小区的工作频点对应的典型波束数量,确定波束数量调整值;
确定用于计算小区质量的最大波束数量为所述波束数量调整值和基准波 束数量的和值,其中,所述基准波束数量与所述目标小区的工作频点以及典型波束数量对应。
可选的,计算机程序5011被处理器502执行时还可以实现如下步骤:
通过扫描、系统信息或测量配置信息获取所述目标小区的工作频点;和/或
通过系统消息获取或推算所述目标小区配置的波束数量。
可选的,计算机程序5011被处理器502执行时还可以实现如下步骤:
在所述选择不超过N个波束进行目标小区的小区质量计算之前,接收网络设备下发的所述N。
可选的,计算机程序5011被处理器502执行时还可以实现如下步骤:
上报质量超过网络配置的波束质量门限的波束数量M;或
上报质量超过网络配置的波束质量门限的波束数量M与所述N的差值。
本公开文本实施例的移动通信设备,选择不超过N个波束进行目标小区的小区质量计算,其中,所述目标小区为服务小区或相邻小区,所述N与所述目标小区的工作频点和所述目标小区配置的波束数量中的至少一个相关。本公开文本实施例通过目标小区的工作频点或/和目标小区配置的波束数量确定N,规范了用于计算小区质量的波束数量N的获取。
参见图6,本公开文本实施例还提供一种网络设备,该网络设备600包括存储器601、处理器602及存储在存储器601上并可在处理器602上运行的计算机程序6011,计算机程序6011被处理器602执行时实现如下步骤:
确定用于进行目标小区的小区质量计算的波束数量N,其中,所述目标小区为服务小区或相邻小区,所述N与所述目标小区的工作频点和所述目标小区配置的波束数量中的至少一个相关;
下发所述N。
可选的,计算机程序6011被处理器602执行时还可以实现如下步骤:
获取所述目标小区的工作配置参数,其中,所述目标小区的工作配置参数包括目标小区的工作频点和所述目标小区配置的波束数量中的至少一个;
根据所述目标小区工作配置参数与用于小区质量计算的波束数量的映射关系,确定所述N。
可选的,所述映射关系与小区质量计算方式相关。
可选的,所述映射关系记录每一个工作频点的典型波束数量对应的基准波束数量;
计算机程序6011被处理器602执行所述从所述接入上行频率范围中确定所述目标上行频率范围时还可以实现如下步骤:
确定所述目标小区配置的波束数量,以及所述目标小区的工作频点对应的典型波束数量;
根据所述目标小区配置的波束数量,以及所述目标小区的工作频点对应的典型波束数量,确定波束数量调整值;
确定用于计算小区质量的最大波束数量为所述波束数量调整值和基准波束数量的和值,其中,所述基准波束数量与所述目标小区的工作频点以及典型波束数量对应。
本公开文本实施例的移动通信设备,确定用于进行目标小区的小区质量计算的波束数量N,其中,所述目标小区为服务小区或相邻小区,所述N与所述目标小区的工作频点和所述目标小区配置的波束数量中的至少一个相关;下发所述N。本公开文本实施例通过目标小区的工作频点或/和目标小区配置的波束数量确定N,规范了用于计算小区质量的波束数量N的获取。
本公开文本实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述任一方法实施例的小区质量计算或参数配置方法。
本领域普通技术人员可以理解实现上述实施例方法的全部或者部分步骤是可以通过程序指令相关的硬件来完成,所述的程序可以存储于一计算机可读取介质中,该程序被处理器执行时,可实现上述任一方法实施例的小区质量计算或参数配置方法,且能达到相同的技术效果,为避免重复,这里不再赘述。
所述的存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
以上所述是本公开文本的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开文本所述原理的前提下,还可以作出若 干改进和润饰,这些改进和润饰也应视为本公开文本的保护范围。

Claims (24)

  1. 一种小区质量计算方法,用于移动通信终端,所述小区质量计算方法包括:
    选择不超过N个波束进行目标小区的小区质量计算,其中,所述目标小区为服务小区或相邻小区,所述N与所述目标小区的工作频点和所述目标小区配置的波束数量中的至少一个相关;以及
    上报所述目标小区的质量计算结果。
  2. 根据权利要求1所述的小区质量计算方法,其中,在所述选择不超过N个波束进行目标小区的小区质量计算之前,所述小区质量计算方法还包括:
    获取目标小区的工作配置参数,其中,所述目标小区的工作配置参数包括目标小区的工作频点和所述目标小区配置的波束数量中的至少一个;以及
    根据所述目标小区工作配置参数与用于小区质量计算的波束数量的映射关系,获取所述N。
  3. 根据权利要求2所述的小区质量计算方法,其中,所述映射关系与小区质量计算方式相关。
  4. 根据权利要求2所述的小区质量计算方法,其中,所述映射关系记录每一个工作频点的典型波束数量对应的基准波束数量;
    所述根据所述目标小区工作配置参数与用于小区质量计算的波束数量的映射关系,获取所述N,具体包括:
    确定所述目标小区配置的波束数量,以及所述目标小区的工作频点对应的典型波束数量;
    根据所述目标小区配置的波束数量,以及所述目标小区的工作频点对应的典型波束数量,确定波束数量调整值;
    确定用于计算小区质量的最大波束数量为所述波束数量调整值和基准波束数量的和值,其中,所述基准波束数量与所述目标小区的工作频点以及典型波束数量对应。
  5. 根据权利要求2至4中任一项所述的小区质量计算方法,其中,所述获取目标小区的工作配置参数,具体包括:
    通过扫描、系统信息或测量配置信息获取所述目标小区的工作频点;和/或
    通过系统消息获取或推算所述目标小区配置的波束数量。
  6. 根据权利要求1至5中任一项所述的小区质量计算方法,其中,在所述选择不超过N个波束进行目标小区的小区质量计算之前,所述小区质量计算方法还包括:
    接收网络设备下发的所述N。
  7. 根据权利要求1至6中任一项所述的小区质量计算方法,其中,在所述选择不超过N个波束进行目标小区的小区质量计算之后,所述小区质量计算方法还包括:
    上报质量超过网络配置的波束质量门限的波束数量M;或
    上报质量超过网络配置的波束质量门限的波束数量M与所述N的差值。
  8. 一种参数配置方法,用于网络设备,所述参数配置方法包括:
    确定用于进行目标小区的小区质量计算的波束数量N,其中,所述目标小区为服务小区或相邻小区,所述N与所述目标小区的工作频点和所述目标小区配置的波束数量中的至少一个相关;以及
    下发所述N。
  9. 根据权利要求8所述的参数配置方法,其中,所述确定用于进行小区质量计算的波束数量N,具体包括:
    获取所述目标小区的工作配置参数,其中,所述目标小区的工作配置参数包括目标小区的工作频点和所述目标小区配置的波束数量中的至少一个;以及
    根据所述目标小区工作配置参数与用于小区质量计算的波束数量的映射关系,确定所述N。
  10. 根据权利要求9所述的参数配置方法,其中,所述映射关系与小区质量计算方式相关。
  11. 根据权利要求9或10所述的参数配置方法,其中,所述映射关系记录每一个工作频点的典型波束数量对应的基准波束数量;
    所述根据所述目标小区工作配置参数与用于小区质量计算的波束数量的 映射关系,确定所述N,具体包括:
    确定所述目标小区配置的波束数量,以及所述目标小区的工作频点对应的典型波束数量;
    根据所述目标小区配置的波束数量,以及所述目标小区的工作频点对应的典型波束数量,确定波束数量调整值;以及
    确定用于计算小区质量的最大波束数量为所述波束数量调整值和基准波束数量的和值,其中,所述基准波束数量与所述目标小区的工作频点以及典型波束数量对应。
  12. 一种移动通信终端,包括:
    处理器,用于选择不超过N个波束进行目标小区的小区质量计算,其中,所述目标小区为服务小区或相邻小区,所述N与所述目标小区的工作频点和所述目标小区配置的波束数量中的至少一个相关;
    发送器,用于上报所述目标小区的质量计算结果。
  13. 根据权利要求12所述的移动通信终端,其中,所述处理器,还用于在所述选择不超过N个波束进行目标小区的小区质量计算之前,获取目标小区的工作配置参数,其中,所述目标小区的工作配置参数包括目标小区的工作频点和所述目标小区配置的波束数量中的至少一个;以及
    根据所述目标小区工作配置参数与用于小区质量计算的波束数量的映射关系,获取所述N。
  14. 根据权利要求13所述的移动通信终端,其中,所述映射关系与小区质量计算方式相关。
  15. 根据权利要求13所述的移动通信终端,其中,所述映射关系记录每一个工作频点的典型波束数量对应的基准波束数量;
    所述处理器用于根据所述目标小区工作配置参数与用于小区质量计算的波束数量的映射关系,获取所述N时,具体用于:
    确定所述目标小区配置的波束数量,以及所述目标小区的工作频点对应的典型波束数量;
    根据所述目标小区配置的波束数量,以及所述目标小区的工作频点对应的典型波束数量,确定波束数量调整值;以及
    确定用于计算小区质量的最大波束数量为所述波束数量调整值和基准波束数量的和值,其中,所述基准波束数量与所述目标小区的工作频点以及典型波束数量对应。
  16. 根据权利要求13至15中任一项所述的移动通信终端,其中,所述处理器用于获取目标小区的工作配置参数时,具体用于:
    通过扫描、系统信息或测量配置信息获取所述目标小区的工作频点;和/或
    通过系统消息获取或推算所述目标小区配置的波束数量。
  17. 根据权利要求12至16中任一项所述的移动通信终端,其中,所述移动通信终端还包括:接收器,用于在所述选择不超过N个波束进行目标小区的小区质量计算之前,接收网络侧下发的所述N。
  18. 根据权利要求12至17中任一项所述的移动通信终端,其中,所述发送器,还用于在选择不超过N个波束进行目标小区的小区质量计算之后,上报质量超过网络配置的波束质量门限的波束数量M;或上报质量超过网络配置的波束质量门限的波束数量M与所述N的差值。
  19. 一种网络设备,包括:
    处理器,用于确定用于进行目标小区的小区质量计算的波束数量N,其中,所述目标小区为服务小区或相邻小区,所述N与所述目标小区的工作频点和所述目标小区配置的波束数量中的至少一个相关;以及
    发送器,用于下发所述N。
  20. 根据权利要求19所述的网络设备,其中,所述处理器用于确定用于进行小区质量计算的波束数量N时,具体用于:
    获取所述目标小区的工作配置参数,其中,所述目标小区的工作配置参数包括目标小区的工作频点和所述目标小区配置的波束数量中的至少一个;以及
    根据所述目标小区工作配置参数与用于小区质量计算的波束数量的映射关系,确定所述N。
  21. 根据权利要求20所述的网络设备,其中,所述映射关系与小区质量计算方式相关。
  22. 根据权利要求20或21所述的网络设备,其中,所述映射关系记录每一个工作频点的典型波束数量对应的基准波束数量;
    所述处理器用于根据所述目标小区工作配置参数与用于小区质量计算的波束数量的映射关系,确定所述N时,具体用于:
    确定所述目标小区配置的波束数量,以及所述目标小区的工作频点对应的典型波束数量;
    根据所述目标小区配置的波束数量,以及所述目标小区的工作频点对应的典型波束数量,确定波束数量调整值;以及
    确定用于计算小区质量的最大波束数量为所述波束数量调整值和基准波束数量的和值,其中,所述基准波束数量与所述目标小区的工作频点以及典型波束数量对应。
  23. 一种通信设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述计算机程序被所述处理器执行时实现如权利要求1至7中任一项所述的小区质量计算方法,或者实现如权利要求8至11中任一项所述的参数配置方法。
  24. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至7中任一项所述的小区质量计算方法,或者实现如权利要求8至11中任一项所述的参数配置方法。
PCT/CN2018/097416 2017-07-31 2018-07-27 小区质量计算方法、参数配置方法及相关设备 WO2019024781A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710641329.XA CN109327852B (zh) 2017-07-31 2017-07-31 一种小区质量计算方法、参数配置方法及相关设备
CN201710641329.X 2017-07-31

Publications (1)

Publication Number Publication Date
WO2019024781A1 true WO2019024781A1 (zh) 2019-02-07

Family

ID=65233520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097416 WO2019024781A1 (zh) 2017-07-31 2018-07-27 小区质量计算方法、参数配置方法及相关设备

Country Status (2)

Country Link
CN (1) CN109327852B (zh)
WO (1) WO2019024781A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230308164A1 (en) * 2022-03-25 2023-09-28 Qualcomm Incorporated Beam switching diversity across slots

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112788615B (zh) * 2019-11-11 2023-01-17 中国移动通信有限公司研究院 小区质量测量方法、装置、设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106793125A (zh) * 2017-01-06 2017-05-31 宇龙计算机通信科技(深圳)有限公司 波束配置方法及波束配置装置
US20170207843A1 (en) * 2016-01-14 2017-07-20 Samsung Electronics Co., Ltd. System, method, and apparatus of beam-tracking and beam feedback operation in a beam-forming based system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140090495A (ko) * 2013-01-09 2014-07-17 주식회사 케이티 빔포밍 장치, 및 그의 빔 셀 형성 방법
CN103858482B (zh) * 2013-06-27 2018-03-13 华为技术有限公司 邻区频点上报、配置方法、装置及系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170207843A1 (en) * 2016-01-14 2017-07-20 Samsung Electronics Co., Ltd. System, method, and apparatus of beam-tracking and beam feedback operation in a beam-forming based system
CN106793125A (zh) * 2017-01-06 2017-05-31 宇龙计算机通信科技(深圳)有限公司 波束配置方法及波束配置装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CMCC: "On the Number of Beams to Derive Cell Quality", 3GPP TSG-RAN WG2 MEETING #98, R2-1705793, vol. RAN WG2, 7 May 2017 (2017-05-07), Hangzhou, China, pages 1 - 4, XP051265170 *
HTC: "Discussion on cell (re)selection while the beam number is less than N", 3GPP TSG-RAN WG2 NR AD HOC 2, R2-1707447, vol. RAN WG2, 27 June 2017 (2017-06-27), Qingdao, China, pages 1 - 2, XP051301936 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230308164A1 (en) * 2022-03-25 2023-09-28 Qualcomm Incorporated Beam switching diversity across slots
US12040875B2 (en) * 2022-03-25 2024-07-16 Qualcomm Incorporated Beam switching diversity across slots

Also Published As

Publication number Publication date
CN109327852A (zh) 2019-02-12
CN109327852B (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
TWI846627B (zh) 信號傳輸、信號測量上報、定位方法及裝置、電腦存儲介質
WO2021000951A1 (zh) 信号传输方法及装置
WO2018058948A1 (zh) 传输定位辅助数据的方法和设备
US8675580B2 (en) Method and apparatus for facilitating packet scheduling for a hybrid communication network
WO2019223659A1 (zh) 一种信号传输方法及装置
CN110999370B (zh) 一种测量方法、设备及系统
TWI687126B (zh) 無線資源管理測量的方法、終端設備和網路設備
TWI760931B (zh) 資訊傳輸方法、裝置及電腦存儲介質
US20130045693A1 (en) Method and apparatus for triggering measurement reporting based upon neighbor cell interference
WO2020151535A1 (zh) 一种信号传输、检测方法及装置
WO2020164151A1 (zh) 无线通信方法、终端设备和网络设备
TW202014030A (zh) 信號回報的方法、終端設備和網路設備
KR20230134141A (ko) 신호 처리 방법 및 장치
WO2016033736A1 (zh) 无线网络中小区选择的方法、基站和用户设备
WO2019024781A1 (zh) 小区质量计算方法、参数配置方法及相关设备
WO2018059507A1 (zh) 通信方法与设备
WO2016161606A1 (zh) 消息发送/接收方法、覆盖增强等级确定/获取方法及相关设备
WO2020038469A1 (zh) 一种信息接收和发送方法及装置
CN105591960A (zh) 调整隧道负载的方法和设备
WO2016090947A1 (zh) 一种实现功率控制的方法及装置
WO2019024901A1 (zh) 一种资源分配方法及装置
US10567978B2 (en) Method and apparatus for setting initial window value in wireless communication system
WO2020134122A1 (zh) 一种远端干扰的规避方法、系统及装置
US10524160B2 (en) Balancing load across radio frequency channels
US20130090143A1 (en) System and method for enhancing cell-edge performance in a wireless communication network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18840421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/06/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18840421

Country of ref document: EP

Kind code of ref document: A1