WO2019024694A1 - 无线充电电路、无线充电方法、无线充电系统及移动终端 - Google Patents

无线充电电路、无线充电方法、无线充电系统及移动终端 Download PDF

Info

Publication number
WO2019024694A1
WO2019024694A1 PCT/CN2018/096431 CN2018096431W WO2019024694A1 WO 2019024694 A1 WO2019024694 A1 WO 2019024694A1 CN 2018096431 W CN2018096431 W CN 2018096431W WO 2019024694 A1 WO2019024694 A1 WO 2019024694A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
current
wireless charging
information
unit
Prior art date
Application number
PCT/CN2018/096431
Other languages
English (en)
French (fr)
Inventor
丁志涛
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP18840522.9A priority Critical patent/EP3664249B1/en
Priority to US16/634,097 priority patent/US11489360B2/en
Priority to ES18840522T priority patent/ES2904652T3/es
Publication of WO2019024694A1 publication Critical patent/WO2019024694A1/zh

Links

Images

Classifications

    • H02J7/025
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/20The network being internal to a load
    • H02J2310/22The load being a portable electronic device

Definitions

  • the embodiments of the present disclosure relate to the field of communications technologies, and in particular, to a wireless charging circuit, a wireless charging method, a wireless charging system, and a mobile terminal.
  • the wireless charging technology is currently a popular charging technology. Since the magnetic energy is transmitted between the charger and the electric device, the wires are not connected between the two, so the charger and the electric device can be exposed without conductive contacts. It has the characteristics of convenient use and beautiful appearance, and is widely used in electronic products such as mobile intelligent terminals.
  • the receiving end obtains a charging signal through an induction coil and sends it to a DC-DC buck circuit, which is processed by a step-down, harmonic, etc. of the DC-DC buck circuit, and then sent to the battery. Charge the battery.
  • the wireless charging scheme in the related art has low overall power conversion efficiency and causes a large amount of heat to be generated in the wireless charging process, thereby limiting the wireless charging technology in the related art to use a high voltage and a large current for fast charging.
  • the present disclosure provides a wireless charging circuit, a wireless charging method, a wireless charging system, and a mobile terminal.
  • an embodiment of the present disclosure provides a wireless charging circuit, which is applied to a mobile terminal, and includes:
  • An acquisition unit configured to collect voltage information of a battery in the mobile terminal
  • the charging control unit is connected to the collecting unit, configured to acquire voltage information of the battery collected by the collecting unit, and determine current information when the battery is charged according to the voltage information;
  • the first communication unit is connected to the charging control unit, and configured to send voltage information of the battery and the current information to an external wireless charging device;
  • a receiving unit configured to generate a DC charging current by sensing the external wireless charging device according to the voltage information of the battery and the electrical signal generated by the current information
  • a switching unit one end of which is connected to the receiving unit, and the other end is connected to the collecting unit, and the switching unit is in an on state, and the DC charging current generated by the receiving unit is input through the collecting unit.
  • an embodiment of the present disclosure further provides a wireless charging method, including:
  • the DC charging current is input to the battery.
  • an embodiment of the present disclosure further provides a wireless charging system including a first wireless charging device and a second wireless charging device, wherein the first wireless charging device includes the wireless charging circuit provided by the above embodiments of the present disclosure. ;
  • the first wireless charging device is configured to collect voltage information of a battery in the mobile terminal, and send the voltage information and current information when the battery is generated based on the voltage information to the second wireless charging device, Sensing the second wireless charging device to generate a DC charging current according to the voltage information of the battery and the electrical signal generated by the current information, and input the DC charging current into the battery;
  • the second wireless charging device is configured to generate a corresponding electrical signal according to the received voltage information of the battery and the current information.
  • an embodiment of the present disclosure further provides a mobile terminal, including the wireless charging circuit provided by the above embodiments of the present disclosure.
  • FIG. 1 is a schematic structural diagram 1 of a wireless charging circuit according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram 2 of a wireless charging circuit according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram 3 of a wireless charging circuit according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart 1 of a wireless charging method according to an embodiment of the present disclosure
  • FIG. 5 is a second schematic flowchart of a wireless charging method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram 1 of a wireless charging system according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram 2 of a wireless charging system according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram 1 of a mobile terminal according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram 2 of a mobile terminal according to an embodiment of the present disclosure.
  • the embodiment of the present disclosure provides a wireless charging circuit, which is applied to a mobile terminal. As shown in FIG. 1 and FIG.
  • the collecting unit 110 is configured to collect voltage information of the battery 10 in the mobile terminal.
  • the charging control unit 120 is connected to the collecting unit 110 for acquiring the voltage information of the battery 10 collected by the collecting unit 110, and determining the current information when the battery 10 is charged according to the voltage information of the battery 10.
  • the first communication unit 130 can be coupled to the charging control unit 120 for transmitting voltage information and current information of the battery 10 to an external wireless charging device (such as the second wireless charging shown in FIG. Device 620).
  • an external wireless charging device such as the second wireless charging shown in FIG. Device 620.
  • the receiving unit 140 is configured to generate a DC charging current by sensing an electrical signal generated by the external wireless charging device according to the voltage information of the battery 10 and the current information.
  • the switch unit 150 can be connected to the receiving unit 140.
  • the other end of the switch unit 150 can be connected to the collecting unit 110.
  • the receiving unit 140 can generate the DC generated by the receiving unit 140.
  • the charging current is input to the battery 10.
  • the collecting unit 110 may specifically include a current sampling resistor R1 having a preset resistance.
  • One end of the current sampling resistor R1 is connected to the battery 10 in the mobile terminal, and the current sampling resistor is connected.
  • the other end of R1 can be connected to the charging control unit 120 and the switching unit 150. Thereby, the current voltage value of the battery 10 can be determined by detecting the voltage difference across the current sampling resistor R1.
  • the current sampling resistor R1 may specifically adopt any mature and reliable resistor of the related art.
  • the charging control unit 120 involved in the embodiment of the present disclosure is a logic control unit of the wireless charging circuit, and performs logic control on other devices in the wireless charging circuit through corresponding communication interactions, and has a corresponding data collection and analysis function.
  • the charging control unit 120 obtains the voltage information of the mobile terminal battery 10 collected by the collecting unit 110 in real time, and generates information such as the current value of the corresponding charging current based on the voltage information, so as to control the external wireless charging device to adjust the generated electrical signal.
  • the current wireless power control device based on the current power control of the battery 10 generates a corresponding electrical signal at different stages of charging, so that the wireless charging circuit generates a corresponding DC charging current by sensing the electrical signal, thereby completing the DC charging process.
  • the inductor device for implementing the step-down function is not required in the embodiment of the present disclosure, problems such as conduction loss, magnetic saturation loss, and high heat of the inductor itself can be avoided, thereby significantly improving the power conversion efficiency of the wireless charging circuit. And charging efficiency, avoiding the situation that the mobile terminal is overheated during the wireless charging process, and can realize high-voltage, high-current wireless fast charging. Tests have shown that the power conversion effect of the wireless charging circuit provided by the embodiments of the present disclosure can be as high as 98%.
  • the charging control unit 120 involved in the embodiments of the present disclosure may be implemented by using a more mature logic chip in the related art, such as MSM8976, MSM8996, MSM8953, MT6750, MT6752, etc., by inputting corresponding execution instructions or programs.
  • the above logic chip has the corresponding functions of the charging control unit 120 according to the embodiment of the present disclosure.
  • the charging control unit 120 can be specifically connected to the collecting unit 110, and obtain the voltages of the two ends of the current sampling resistor R1 (ie, the node B and the node C in FIG. 1) in the collecting unit 110, and determine the current current state of the mobile terminal battery 10 through the difference calculation. Voltage information.
  • the charging control unit 120 can also specifically communicate with a device such as a central processing unit (CPU) included in the mobile terminal to obtain corresponding charging control information, working power, and the like.
  • the charging control unit 120 can specifically communicate with the CPU through an internal integrated circuit (I 2 C) bus interface.
  • I 2 C internal integrated circuit
  • the first communication unit 130 may specifically acquire the voltage information of the battery 10 and the current information of the battery 10 generated by the charging control unit 120 according to the voltage information of the battery 10, and pass the charging control unit 120.
  • the preset communication mode transmits the voltage information and current information to the external wireless charging device.
  • the first communication unit 130 can transmit the voltage information and the current information of the battery 10 to the external wireless charging device through the induction coil.
  • the induction coil can be an induction coil disposed in the first communication unit 130, or It is an induction coil set in the wireless charging circuit.
  • the first communication unit 130 can also transmit the voltage information and the current information of the battery 10 to the external wireless charging device through a communication manner such as Bluetooth or infrared.
  • the communication protocol and the communication manner between the first communication unit 130 and the external wireless charging device may be determined in advance, thereby ensuring smooth communication between the first communication unit 130 and the external wireless charging device.
  • the communication process of the first communication unit 130 can be implemented under the logic control of the charging control unit 120, that is, the first communication unit 130 can be communicatively coupled to the charging control unit 120.
  • the first communication unit 130 involved in the embodiments of the present disclosure may be implemented by using an existing mature communication device.
  • the embodiments of the present disclosure are not limited thereto.
  • the first communication unit 130 can be independently disposed in the wireless charging circuit, or can be built in the charging control unit 120 to integrate the first communication unit 130 and the charging control unit 120 to reduce the area of the wireless charging circuit.
  • the receiving unit 140 of the embodiment of the present disclosure may be specifically provided with an induction coil 141, and the receiving unit 140 may sense the electrical signal generated by the external wireless charging device by electromagnetic induction or the like, and the induced electrical signal. The conversion generates a corresponding DC charging current.
  • the receiving unit 140 may be provided with a rectifying unit 142 for converting the electrical signal induced by the receiving unit 140 into a DC charging current.
  • the rectifying unit may specifically adopt a full bridge rectifying circuit.
  • the charging control unit 120 may also perform sampling detection on the DC charging circuit generated by the receiving unit 140 (ie, sampling and detecting the DC charging current at the node A in the wireless charging circuit shown in FIG. 1) to determine Whether the voltage and current information of the DC charging current corresponds to the current voltage of the battery 10 and the charging current information corresponding to the current voltage of the battery to ensure the charging effect.
  • the charging control unit 120 can control the switching unit 150 to be in an on state to input the DC charging current into the battery 10.
  • the charging control unit 120 may perform a voltage and current compensation operation on the DC charging current to make the compensated DC charging current.
  • the charging control unit 120 can control the switching unit 150 to be in an off state to suspend charging, and trigger the first communication unit 130 to retransmit the voltage information and current information of the battery 10 to make the external
  • the wireless charging device verifies the generated electrical signal.
  • the charging control unit 120 can be connected to the collecting unit 110 and the receiving unit 140 through an analog-to-digital converter (ADC) circuit.
  • ADC analog-to-digital converter
  • the switch unit 150 may be specifically connected to the collection unit 110, the charging control unit 120, and the receiving unit 140, respectively.
  • the switch unit 150 and the acquisition unit 110 involved in the embodiment of the present disclosure constitute a wireless direct charging path through which the DC charging output of the receiving unit 140 can be output.
  • the current is directly input into the mobile terminal battery 10 without passing through a device such as an inductor.
  • the on and off states of the switch unit 150 can be specifically controlled by the charge control unit 120.
  • the switching unit 150 may specifically be composed of a load switch, a transistor, or the like.
  • the load switch according to the embodiment of the present disclosure may specifically adopt an existing model, such as FZN12, FZN21, FZN25, and the like.
  • the transistors involved in the embodiments of the present disclosure may be implemented by existing models, such as 2N7002, IRF540A, and the like.
  • the switch unit 150 may specifically include:
  • the first transistor Q1 and the second transistor Q2, the first transistor Q1 and the second transistor Q2 may specifically be N-type transistors.
  • the gate of the first transistor Q1 can be connected to the charging control unit 120, the source of the first transistor Q1 can be connected to the collecting unit 110, and the drain of the first transistor Q1 can be connected to the second transistor Q2;
  • the gate of the second transistor Q2 can be connected to the charging control unit 120, the source of the second transistor Q2 can be connected to the receiving unit 140, and the drain of the second transistor Q2 can be connected to the first transistor Q1.
  • the wireless charging circuit configured to collect the voltage information of the battery in the mobile terminal by setting an acquisition unit in the wireless charging circuit, and the charging control unit is connected to the collecting unit for acquiring the voltage of the battery collected by the collecting unit.
  • Information determining current information when the battery is charged according to the voltage information
  • the first communication unit is connected to the charging control unit for transmitting the voltage information and the current information of the battery to the external wireless charging device
  • the receiving unit is configured to sense the external wireless
  • the charging device generates a DC charging current according to the voltage information of the battery and the electrical signal generated by the current information
  • the switching unit has one end connected to the receiving unit and the other end connected to the collecting unit, and the switching unit is in an ON state through the collecting unit
  • the DC charging current generated by the receiving unit is input to the battery.
  • the battery voltage information and the current information acquired in real time are used to control the external wireless charging device to generate a corresponding electrical signal at different stages of charging, and the direct current charging current generated by the induced electrical signal is directly input into the battery, thereby significantly improving the wireless
  • the power conversion efficiency and charging efficiency of the charging system avoid the situation that the mobile terminal is overheated during the wireless charging process, and can realize high-voltage, high-current wireless fast charging.
  • the embodiment of the present disclosure further provides a wireless charging method, which is specifically applicable to the wireless charging circuit provided by the embodiment of the present disclosure.
  • the method may specifically include:
  • Step 410 Collect voltage information of the battery 10 in the mobile terminal.
  • the current voltage information of the battery 10 can be determined by acquiring the voltage across the current sampling resistor R1.
  • Step 420 determining current information when the battery is charged according to the voltage information of the battery 10.
  • the current information required for the battery 10 at the time of charging is obtained by a corresponding calculation.
  • step 430 the voltage information and current information of the battery 10 are transmitted to the external wireless charging device.
  • the voltage information and the current information of the battery 10 can be sent to the external wireless charging device by means of an induction coil, Bluetooth, infrared, etc., to control the external wireless charging device to adjust the generated electrical signal, thereby realizing the current power control based on the battery 10.
  • the external wireless charging device generates a corresponding electrical signal at different stages of charging. Since the DC charging process can be completed without providing an inductive device, problems such as conduction loss, magnetic saturation loss, and high heat of the inductor itself can be avoided. Thereby, the power conversion efficiency and the charging efficiency of the wireless charging circuit are significantly improved, the temperature of the mobile terminal is not excessively high during the wireless charging process, and the wireless fast charging of the high voltage and the large current can be realized. Tests have shown that the power conversion effect of the wireless charging circuit provided by the embodiments of the present disclosure can be as high as 98%.
  • Step 440 generating a DC charging current by sensing an external wireless charging device based on the voltage information of the battery 10 and the electrical signal generated by the current information.
  • the induction coil can be used to sense an electrical signal generated by an external wireless charging device by electromagnetic induction or the like, and convert the induced electrical signal into a corresponding DC charging current.
  • step 450 a DC charging current is input to the battery.
  • the DC charging current generated by the induction can be directly input into the battery 10 through the switching unit in the on state without passing through an inductor or the like, thereby avoiding energy loss and heat generation, and significantly improving the wireless DC. Charging charging effect.
  • the wireless charging method provided by the embodiment of the present application controls the external wireless charging device to generate a corresponding electrical signal at different stages of charging through the battery voltage information acquired in real time, and directly inputs the DC charging current generated by the induced electrical signal to the battery.
  • the power conversion efficiency and the charging efficiency of the wireless charging system are significantly improved, and the temperature of the mobile terminal is not excessively high during the wireless charging process, and the wireless fast charging of the high voltage and the large current can be realized.
  • the embodiment of the present disclosure further provides a wireless charging method, which is applicable to the wireless charging circuit provided by the embodiment of the present disclosure.
  • the method may specifically include:
  • Step 510 Collect voltage information of the battery 10 in the mobile terminal.
  • the current voltage information of the battery 10 can be determined by acquiring the voltage across the current sampling resistor R1.
  • Step 520 determining current information when the battery is charged according to the voltage information of the battery 10.
  • the current information required for the battery 10 at the time of charging is obtained by a corresponding calculation.
  • step 530 the voltage information and current information of the battery 10 are transmitted to the external wireless charging device.
  • the voltage information and the current information of the battery 10 can be sent to the external wireless charging device by means of an induction coil, Bluetooth, infrared, etc., to control the external wireless charging device to adjust the generated electrical signal, thereby realizing the current power control based on the battery 10.
  • the external wireless charging device generates a corresponding electrical signal at different stages of charging.
  • Step 540 generating a DC charging current by sensing an external wireless charging device based on the voltage information of the battery 10 and the electrical signal generated by the current information.
  • the induction coil can be used to sense an electrical signal generated by an external wireless charging device by electromagnetic induction or the like, and the induced electrical signal is converted into a corresponding DC charging current by a rectification process.
  • Step 550 detecting whether the DC charging current corresponds to voltage information and/or current information of the battery 10.
  • step 560 is performed; when the detection result is not corresponding, step 570 is performed.
  • Step 560 the control switch unit is in an on state, and the DC charging current is input into the battery 10 through the switch unit.
  • the DC charging current corresponds to the voltage information and the current information of the battery 10, it indicates that the DC charging current is the required charging current, and the DC charging current is input into the battery 10 through the switching unit by controlling the switching unit to be in an on state.
  • High-voltage, high-current wireless fast charging can significantly improve the charging effect of wireless DC charging.
  • step 570 the DC charging current is compensated, or the switching unit is controlled to be in an off state, and the voltage information and current information of the battery 10 are retransmitted to the external wireless charging device.
  • the DC charging current can be compensated to make the compensated DC charging current the required charging current.
  • the switch unit may be controlled to be in an off state, that is, the wireless direct charge path is cut off, and the first communication unit is controlled to retransmit the voltage information and current information of the battery 10 to the external wireless charging device, so that the external wireless charging device generates the correct power. signal.
  • the implementation of this embodiment can ensure the charging effect of wireless DC charging by detecting the generated DC charging current.
  • the embodiment of the present disclosure further provides a wireless charging system 600.
  • the wireless charging system may specifically include a first wireless charging device 610 and a second wireless charging device 620.
  • the first wireless charging device 610 may specifically include the wireless charging circuit provided by the foregoing embodiments of the present disclosure.
  • the first wireless charging device 610 is specifically configured to collect voltage information of the battery 10 in the mobile terminal, and transmit voltage information of the battery 10 and current information when the battery 10 is generated based on the voltage information to the second wireless charging device 620, by sensing The second wireless charging device 620 generates a DC charging current based on the voltage information of the battery 10 and the electrical signal generated by the current information, and inputs the DC charging current to the battery 10.
  • first wireless charging device 610 For a detailed description of the first wireless charging device 610 provided by the embodiment of the present disclosure, reference may be made to the description of the wireless charging circuit shown in FIGS. 1-3 above. I will not repeat them here.
  • the second wireless charging device 620 is specifically configured to generate a corresponding electrical signal according to the received voltage information of the battery 10 and the current information.
  • the second wireless charging device 620 may specifically include:
  • the second communication unit 621 is configured to receive voltage information and current information of the battery 10 sent by the first communication unit 130 in the first wireless charging device 610.
  • the generating unit 622 is configured to generate a corresponding electrical signal based on the voltage information of the battery 10 and the current information received by the second communication unit 621.
  • the generating unit 622 may specifically include an induction coil 623.
  • the wireless charging system acquires current battery voltage information in real time by the first wireless charging device to control the second wireless charging device to generate a corresponding electrical signal at different stages of charging, and the first wireless charging device will
  • the DC charging current generated by sensing the electrical signal is directly input into the battery 10, thereby significantly improving the power conversion efficiency and the charging efficiency of the wireless charging system, thereby avoiding the situation that the mobile terminal is overheated during the wireless charging process, and the high voltage can be realized.
  • the embodiment of the present disclosure further provides a mobile terminal, and the mobile terminal specifically includes the wireless charging circuit shown in the above 1, 2, and 3.
  • the structure and function of the mobile terminal other than the wireless charging circuit can be similar to the related art, and the specific structural composition and implementation process of the wireless charging circuit of the mobile terminal can be referred to the description and explanation of the foregoing embodiment, and no longer Narration.
  • the mobile terminal controls the external wireless charging device to generate a corresponding electrical signal at different stages of charging through the current voltage information of the battery 10 acquired in real time, and directly inputs the DC charging current generated by the induced electrical signal. Up to the battery 10, thereby significantly improving the power conversion efficiency and charging efficiency of the wireless charging system, avoiding the situation that the temperature rise of the mobile terminal is too high during the wireless charging process, and achieving high-voltage, high-current wireless fast charging.
  • Embodiments of the present disclosure also provide a mobile terminal, including a processor, a memory, a computer program stored on the memory and executable on the processor, the computer program being implemented by the processor to implement the wireless
  • a mobile terminal including a processor, a memory, a computer program stored on the memory and executable on the processor, the computer program being implemented by the processor to implement the wireless
  • the embodiment of the present disclosure further provides a computer readable storage medium.
  • the computer readable storage medium stores a computer program, where the computer program is executed by the processor to implement various processes of the wireless charging method embodiment, and can achieve the same Technical effects, to avoid repetition, will not be repeated here.
  • the computer readable storage medium such as a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • FIG. 8 is a block diagram of a mobile terminal 800 in accordance with another embodiment of the present disclosure.
  • the mobile terminal 800 shown in FIG. 8 includes: at least one processor 810, a memory 820, at least one network interface 840, a user interface 830, the wireless charging circuit 860 provided by the above embodiments of the present disclosure, and a battery 870.
  • the various components in mobile terminal 800 are coupled together by a bus system 850.
  • the bus system 850 is used to implement connection communication between these components.
  • the bus system 850 includes a power bus, a control bus, and a status signal bus.
  • various buses are labeled as bus system 850 in FIG.
  • the user interface 830 can include a display, a keyboard, or a pointing device (eg, a mouse, a trackball, a touchpad, or a touch screen, and the like).
  • a pointing device eg, a mouse, a trackball, a touchpad, or a touch screen, and the like.
  • the memory 820 in an embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM Synchronous Connection Dynamic Random Access Memory
  • DRRAM direct memory bus random access memory
  • memory 820 stores elements, executable modules or data structures, or a subset thereof, or their extended set: operating system 821 and application 822.
  • the operating system 821 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • the application 822 includes various applications, such as a media player (Media Player), a browser (Browser), etc., for implementing various application services.
  • a program implementing the method of the embodiments of the present disclosure may be included in the application 822.
  • the mobile terminal 800 further includes: a computer program stored on the memory 820 and executable on the processor 810, and specifically, may be a computer program in the application 822, and the computer program is executed by the processor 810.
  • the following steps are implemented: collecting voltage information of the battery 870 in the mobile terminal 800; determining current information when the battery 870 is charged according to the voltage information of the battery 870; transmitting voltage information and current information of the battery 870 to the external wireless charging device;
  • the wireless charging device generates a DC charging current based on the voltage information of the battery 870 and the electrical signal generated by the current information; and inputs the DC charging current to the battery 870.
  • Processor 810 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 810 or an instruction in a form of software.
  • the processor 810 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the embodiments of the present disclosure may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 820, and the processor 810 reads the information in the memory 820 and completes the steps of the above method in combination with its hardware.
  • the embodiments described herein can be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, other electronic unit for performing the functions of the present application Or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • controller microcontroller
  • microprocessor other electronic unit for performing the functions of the present application Or a combination thereof.
  • the techniques described herein can be implemented by modules (eg, procedures, functions, and so on) that perform the functions described herein.
  • the software code can be stored in memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the computer program when executed by the processor 810, may also implement the step of determining the voltage information of the battery 870 by taking the voltage across the current sampling resistor.
  • the following steps may be implemented: sending voltage information and current information of the battery 870 to the external wireless charging device through an induction coil; or, by Bluetooth and/or infrared communication
  • the voltage information and current information of the battery 870 are sent to an external wireless charging device.
  • the computer program when executed by the processor 810, may also implement the steps of detecting whether the DC charging current corresponds to voltage information and/or current information of the battery 870; when the DC charging current is related to the voltage information and/or current of the battery 870 When the information corresponds, the control switch unit is in an on state; when the DC charging current does not correspond to the voltage information and/or current information of the battery 870, the DC charging current is compensated, or the control switch unit is in an off state, and the battery is re-powered.
  • the voltage information and current information of the 870 are sent to an external wireless charging device.
  • the mobile terminal 800 provided by the embodiment of the present disclosure controls the external wireless charging device to generate different electrical signals at different stages of charging by using the current voltage information of the battery 870 acquired in real time, and directly generates the DC charging current generated by the induced electrical signal.
  • the battery 870 is input into the battery 870, thereby significantly improving the power conversion efficiency and the charging efficiency of the wireless charging system, avoiding the excessive temperature of the mobile terminal 800 during the wireless charging process, and achieving high-voltage, high-current wireless fast charging.
  • FIG. 9 is a schematic structural diagram of a mobile terminal 900 according to another embodiment of the present disclosure.
  • the mobile terminal 900 in FIG. 9 may be a mobile phone, a tablet computer, a personal digital assistant (PDA), or a car computer.
  • PDA personal digital assistant
  • the mobile terminal 900 in FIG. 9 includes a radio frequency (RF) circuit 910, a memory 920, an input unit 930, a display unit 940, a wireless charging circuit 950, a processor 960, an audio circuit 970, a WiFi (Wireless Fidelity) module 980, and Battery 990.
  • RF radio frequency
  • the input unit 930 can be configured to receive numeric or character information input by the user, and generate signal input related to user settings and function control of the mobile terminal 900.
  • the input unit 930 may include a touch panel 931.
  • the touch panel 931 also referred to as a touch screen, can collect touch operations on or near the user (such as the operation of the user using any suitable object or accessory such as a finger or a stylus on the touch panel 931), and according to the preset The programmed program drives the corresponding connection device.
  • the touch panel 931 may include two parts of a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 960 is provided and can receive commands from the processor 960 and execute them.
  • the touch panel 931 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 930 may further include other input devices 932, which may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like. One or more of them.
  • the display unit 940 can be used to display information input by the user or information provided to the user and various menu interfaces of the mobile terminal 900.
  • the display unit 940 may include a display panel 941.
  • the display panel 941 may be configured in the form of an LCD or an Organic Light-Emitting Diode (OLED).
  • the touch panel 931 can cover the display panel 941 to form a touch display screen, and when the touch display screen detects a touch operation on or near it, it is transmitted to the processor 960 to determine the type of the touch event, and then the processor The 960 provides a corresponding visual output on the touch display depending on the type of touch event.
  • the touch display includes an application interface display area and a common control display area.
  • the arrangement manner of the application interface display area and the display area of the common control is not limited, and the arrangement manner of the two display areas can be distinguished by up-and-down arrangement, left-right arrangement, and the like.
  • the application interface display area can be used to display the interface of the application. Each interface can contain interface elements such as at least one application's icon and/or widget desktop control.
  • the application interface display area can also be an empty interface that does not contain any content.
  • the common control display area is used to display controls with high usage, such as setting buttons, interface numbers, scroll bars, phone book icons, and the like.
  • the processor 960 is a control center of the mobile terminal 900, and connects various parts of the entire mobile phone by using various interfaces and lines, by running or executing software programs and/or modules stored in the first memory 921, and calling the second storage.
  • the data in the memory 922 performs various functions and processing data of the mobile terminal 900, thereby performing overall monitoring of the mobile terminal 900.
  • processor 960 can include one or more processing units.
  • the mobile terminal 900 further includes: a computer program stored on the memory 920 and operable on the processor 960.
  • the computer program When the computer program is executed by the processor 960, the following steps are performed: collecting the voltage of the battery 990 in the mobile terminal 900 Information; determining current information when the battery 990 is charged according to the voltage information of the battery 990; transmitting voltage information and current information of the battery 990 to the external wireless charging device; generating by using the external wireless charging device according to the voltage information and current information of the battery 990 The electrical signal generates a DC charging current; the DC charging current is input to the battery 990.
  • the computer program when executed by the processor 960, may also implement the step of determining the voltage information of the battery 990 by taking the voltage across the current sampling resistor.
  • the following steps may be implemented: transmitting the voltage information and the current information of the battery 990 to the external wireless charging device through the induction coil; or, by using the Bluetooth and/or infrared communication method, the battery 990 The voltage information and current information are sent to an external wireless charging device.
  • the following steps may be implemented: detecting whether the DC charging current corresponds to voltage information and/or current information of the battery 990; and when the DC charging current is related to the voltage information and/or current of the battery 990.
  • the control switch unit is in an on state; when the DC charging current does not correspond to the voltage information and/or current information of the battery 990, the DC charging current is compensated, or the control switch unit is in an off state, and the battery is re-powered.
  • the voltage information and current information of 990 are sent to the external wireless charging device.
  • the mobile terminal 900 provided by the embodiment of the present disclosure controls the external wireless charging device to generate different electrical signals at different stages of charging by using the current voltage information of the battery 990 obtained in real time, and directly generates the DC charging current generated by the induced electrical signal.
  • the battery 990 is input into the battery 990, thereby significantly improving the power conversion efficiency and charging efficiency of the wireless charging system, avoiding the situation that the mobile terminal 900 is overheated during the wireless charging process, and achieving high-voltage, high-current wireless fast charging.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, a portion of the technical solution of the present disclosure that contributes in essence or to the related art or a part of the technical solution may be embodied in the form of a software product stored in a storage medium, including several The instructions are for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本公开提供了一种无线充电电路、无线充电方法、无线充电系统及移动终端。所述无线充电电路包括:用于采集移动终端中电池的电压信息的采集单元;用于获取电池的电压信息并根据电压信息确定电池充电时的电流信息的充电控制单元;用于将电池的电压信息以及电流信息发送至外部无线充电装置的第一通信单元;用于通过感应外部无线充电装置根据电池的电压信息以及电流信息生成的电信号而生成直流充电电流的接收单元;以及在导通状态下通过采集单元将直流充电电流输入电池的开关单元。

Description

无线充电电路、无线充电方法、无线充电系统及移动终端
相关申请的交叉引用
本申请主张在2017年7月31日在中国提交的中国专利申请No.201710640369.2的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及通信技术领域,尤其涉及一种无线充电电路、无线充电方法、无线充电系统及移动终端。
背景技术
无线充电技术是目前比较流行的充电技术,由于充电器与用电装置之间以磁场传送能量,两者之间不用电线连接,因此充电器及用电的装置都可以做到无导电接点外露,具有使用方便、外形美观简介等特点,被广泛应用在电子产品中例如移动智能终端中。
传统的无线充电方案中,接收端通过感应线圈得到充电信号后送到直流降压(DC-DC buck)电路,经过DC-DC buck电路的降压、谐波等处理后再送入到电池,实现对电池的充电。
由于DC-DC buck电路中需要增加电感的开关动作,会带来晶体管(MOSFET)开关损耗以及导通损耗,同时电感本身还会引入导通损耗、磁饱和损耗等,由于这些损耗的存在,致使相关技术中的无线充电方案整体电能转换效率较低,并导致在无线充电过程中产生了大量的热量,从而限制了相关技术中的无线充电技术使用高电压、大电流进行快速充电。
发明内容
本公开提供一种无线充电电路、无线充电方法、无线充电系统及移动终端。
一方面,本公开实施例提供了一种无线充电电路,应用于移动终端,包括:
采集单元,用于采集移动终端中电池的电压信息;
充电控制单元,所述充电控制单元与所述采集单元连接,用于获取所述采集单元采集的所述电池的电压信息,根据所述电压信息确定所述电池充电时的电流信息;
第一通信单元,所述第一通信单元与所述充电控制单元连接,用于将所述电池的电压信息以及所述电流信息发送至外部无线充电装置;
接收单元,用于通过感应所述外部无线充电装置根据所述电池的电压信息以及所述电流信息生成的电信号,生成直流充电电流;
开关单元,所述开关单元的一端与所述接收单元连接,另一端与所述采集单元连接,所述开关单元处于导通状态下通过所述采集单元将所述接收单元生成的直流充电电流输入所述电池。
另一方面,本公开实施例还提供了无线充电方法,包括:
采集移动终端中电池的电压信息;
根据所述电池的电压信息确定电池充电时的电流信息;
将所述电池的电压信息以及所述电流信息发送至外部无线充电装置;
通过感应所述外部无线充电装置根据所述电池的电压信息以及所述电流信息生成的电信号,生成直流充电电流;
将所述直流充电电流输入所述电池。
另一方面,本公开实施例还提供了一种无线充电系统,包括第一无线充电装置和第二无线充电装置,其中,所述第一无线充电装置包括上述本公开实施例提供的无线充电电路;
所述第一无线充电装置用于采集移动终端中电池的电压信息,将所述电压信息以及基于所述电压信息生成的所述电池充电时的电流信息发送至所述第二无线充电装置,通过感应所述第二无线充电装置根据所述电池的电压信息以及所述电流信息生成的电信号,生成直流充电电流,并将所述直流充电电流输入所述电池;
所述第二无线充电装置,用于根据接收的所述电池的电压信息以及所述电流信息生成对应的电信号。
另一方面,本公开实施例还提供了一种移动终端,包括上述本公开实施 例提供的无线充电电路。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的无线充电电路结构示意图一;
图2为本公开实施例提供的无线充电电路结构示意图二;
图3为本公开实施例提供的无线充电电路结构示意图三;
图4为本公开实施例提供的无线充电方法流程示意图一;
图5为本公开实施例提供的无线充电方法流程示意图二;
图6为本公开实施例提供的无线充电系统结构示意图一;
图7为本公开实施例提供的无线充电系统结构示意图二;
图8为本公开实施例提供的移动终端结构示意图一;
图9为本公开实施例提供的移动终端结构示意图二。
具体实施方式
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置 关系,当被描述对象的绝对位置改变后,则该相对位置关系也相应地改变。
本公开实施例提供了一种无线充电电路,应用于移动终端,如图1、2、3所示,该无线充电电路具体可以包括:
采集单元110,用于采集移动终端中电池10的电压信息。
充电控制单元120,该充电控制单元120可与采集单元110连接,用于获取采集单元110采集的电池10的电压信息,并根据该电池10的电压信息确定电池10充电时的电流信息。
第一通信单元130,该第一通信单元130可与充电控制单元120连接,用于将电池10的电压信息以及电流信息发送至外部无线充电装置(例如附图6中所示的第二无线充电装置620)。
接收单元140,用于通过感应外部无线充电装置根据电池10的电压信息以及电流信息生成的电信号,生成直流充电电流。
开关单元150,该开关单元150的一端可与接收单元140连接,开关单元150的另一端可与采集单元110连接,开关单元150处于导通状态下可通过采集单元110将接收单元140生成的直流充电电流输入电池10。
在一具体实施例中,采集单元110具体可包括电流采样电阻R1,该电流采样电阻R1具有预设的阻值,该电流采样电阻R1的一端与移动终端中的电池10连接,该电流采样电阻R1的另一端可与充电控制单元120、开关单元150连接。从而可通过检测该电流采样电阻R1两端的电压差值确定电池10当前的电压值。
本公开实施例所涉及的电流采样电阻R1具体可采用相关技术中的任一种成熟、可靠的电阻。
本公开实施例所涉及的充电控制单元120是该无线充电电路的逻辑控制单元,通过相应的通信交互对无线充电电路中的其它器件进行逻辑控制,并具有相应的数据采集分析功能。
该充电控制单元120通过获取采集单元110实时采集的移动终端电池10电压信息,并基于该电压信息生成对应的充电电流的电流值等信息,以控制外部无线充电装置调整其所生成的电信号,从而实现基于电池10的当前电量控制外部无线充电装置在充电的不同阶段生成对应的的电信号,以使无线充 电电路通过感应该电信号生成对应的直流充电电流,从而完成直流充电过程。
由于本公开实施例中不需要设置用于实现降压作用的电感器件,因此可避免电感本身所存在的导通损耗、磁饱和损耗以及高热量等问题,从而显著提高无线充电电路的电能转换效率和充电效率,避免了无线充电过程中移动终端出现温度过高的情况,可实现高电压、大电流的无线快速充电。试验表明,本公开实施例所提供的无线充电电路的电能转换效果可高达98%。
本公开实施例所涉及的充电控制单元120具体可采用相关技术中的较为成熟的逻辑芯片来实现,例如MSM8976、MSM8996、MSM8953,MT6750、MT6752等等,通过输入相应的执行指令或程序,可使上述逻辑芯片具备本公开实施例所涉及的充电控制单元120的相应功能。
该充电控制单元120具体可与采集单元110连接,通过获取采集单元110中电流采样电阻R1两端(即图1中节点B和节点C)的电压,通过差值计算确定移动终端电池10当前的电压信息。
该充电控制单元120具体还可与移动终端所包括的中央处理器(Central Processing Unit,CPU)等器件进行通信,以获取相应的充电控制信息以及工作电能等。该充电控制单元120具体可通过内部集成电路(Internal Integrated Circuit,I 2C)总线接口与CPU进行通信。
本公开实施例所涉及的第一通信单元130具体可通过与充电控制单元120交互获取电池10的电压信息以及充电控制单元120根据电池10的电压信息生成的电池10充电时的电流信息,并通过预设的通信方式将该电压信息和电流信息发送至外部无线充电装置。
在具体实现时,第一通信单元130可通过感应线圈将电池10的电压信息以及电流信息发送至外部无线充电装置,上述感应线圈具体可为第一通信单元130内所设置的感应线圈,也可以是无线充电电路中设置的感应线圈。在另一具体实施例中,第一通信单元130也可通过蓝牙或红外线等通信方式将电池10的电压信息以及电流信息发送至外部无线充电装置。
本公开实施例中可事先确定第一通信单元130与外部无线充电装置之间的通信协议以及通信方式,从而确保第一通信单元130与外部无线充电装置之间通信的顺利进行。
第一通信单元130的通信过程可在充电控制单元120的逻辑控制下实现,即该第一通信单元130可与充电控制单元120通信连接。
本公开实施例所涉及的第一通信单元130可采用已有成熟通信器件实现。对此本公开实施例并不限制。该第一通信单元130即可独立设置于无线充电电路中,也可内置于充电控制单元120中,以使第一通信单元130与充电控制单元120集成设置,以降低无线充电电路的面积。
本公开实施例所涉及的接收单元140具体可设置有感应线圈141,接收单元140可利用该感应线圈141通过电磁感应等方式感应外部无线充电装置所生成的电信号,并将感应到的电信号转换生成对应的直流充电电流。
本公开实施例所涉及的接收单元140内可设置有整流单元142,用于将接收单元140感应的电信号转换为直流充电电流。在一具体实施例中,整流单元具体可采用全桥整流电路。
本公开实施例所涉及的充电控制单元120还可对接收单元140生成的直流充电电路进行采样检测(即对图1所示无线充电电路中节点A处的直流充电电流进行采样检测),以确定该直流充电电流的电压、电流信息是否与电池10当前电压、以及电池当前电压所对应的充电电流信息相对应,以确保充电效果。
当采样检测结果表明接收单元140生成的直流充电电流与电池10的当前电压、电流信息相对应,则充电控制单元120可控制开关单元150处于导通状态,以使该直流充电电流输入电池10。
当采样检测结果表明接收单元140生成的直流充电电流与电池10的当前电压、电流信息不对应,则充电控制单元120可对直流充电电流进行电压、电流补偿操作,以使补偿后的直流充电电流与电池10的当前电压、电流信息相对应;或者充电控制单元120可控制开关单元150处于截止状态以暂停充电,并触发第一通信单元130重新发送电池10的电压信息和电流信息,以使外部无线充电装置校验生成的电信号。
本公开实施例中,充电控制单元120可通过模数转换(Analog-to-Digital Converter,ADC)电路与采集单元110、接收单元140连接。
本公开实施例所涉及的开关单元150具体可分别与采集单元110、充电 控制单元120、接收单元140连接。那么从图1、2、3所示中可以看出,本公开实施例中所涉及的开关单元150、采集单元110构成了无线直充通路,通过该通路,可将接收单元140输出的直流充电电流直接输入移动终端电池10中而无需经过电感等器件。
开关单元150的导通、截止状态具体可由充电控制单元120进行控制。
开关单元150具体可由负载开关、晶体管等组成。本公开实施例所涉及的负载开关具体可采用已有型号,例如FZN12、FZN21、FZN25等。本公开实施例所涉及的晶体管可采用已有型号实现,例如2N7002、IRF540A等。
在一具体实施例中,开关单元150具体可以包括:
第一晶体管Q1和第二晶体管Q2,该第一晶体管Q1和第二晶体管Q2具体可为N型晶体管。
其中,第一晶体管Q1的栅极可与充电控制单元120连接,第一晶体管Q1的源极可与采集单元110连接,第一晶体管Q1的漏极可与第二晶体管Q2连接;
第二晶体管Q2的栅极可与充电控制单元120连接,第二晶体管Q2的源极可与接收单元140连接,第二晶体管Q2的漏极可与第一晶体管Q1连接。
本公开实施例提供的无线充电电路,通过在无线充电电路中设置采集单元,用于采集移动终端中电池的电压信息;充电控制单元,与采集单元连接,用于获取采集单元采集的电池的电压信息,根据电压信息确定电池充电时的电流信息;第一通信单元,与充电控制单元连接,用于将电池的电压信息以及电流信息发送至外部无线充电装置;接收单元,用于通过感应外部无线充电装置根据电池的电压信息以及电流信息生成的电信号,生成直流充电电流;开关单元,开关单元的一端与接收单元连接,另一端与采集单元连接,开关单元处于导通状态下通过采集单元将接收单元生成的直流充电电流输入电池。从而通过实时获取的电池电压信息和电流信息以控制外部无线充电装置在充电的不同阶段生成对应的电信号,并将通过感应电信号而生成的直流充电电流直接输入至电池中,从而显著提高无线充电系统的电能转换效率和充电效率,避免了无线充电过程中移动终端出现温度过高的情况,可实现高电压、大电流的无线快速充电。
本公开实施例还提供了一种无线充电方法,该方法具体可应用于上述本公开实施例提供的无线充电电路中。
如图4所示,该方法具体可以包括:
步骤410,采集移动终端中电池10的电压信息。
具体可通过获取电流采样电阻R1两端的电压确定电池10当前的电压信息。
步骤420,根据电池10的电压信息确定电池充电时的电流信息。
在获取电池10当前的电压信息后,通过相应的计算获取电池10在充电时所需的电流信息例如电流值大小等。
步骤430,将电池10的电压信息以及电流信息发送至外部无线充电装置。
具体可通过感应线圈、蓝牙、红外线等方式将电池10的电压信息以及电流信息发送至外部无线充电装置,以控制外部无线充电装置调整其所生成的电信号,从而实现基于电池10的当前电量控制外部无线充电装置在充电的不同阶段生成对应的电信号,由于可在不设置电感器件的情况下完成直流充电过程,可避免电感本身所存在的导通损耗、磁饱和损耗以及高热量等问题,从而显著提高无线充电电路的电能转换效率和充电效率,避免了无线充电过程中移动终端出现温度过高的情况,可实现高电压、大电流的无线快速充电。试验表明,本公开实施例所提供的无线充电电路的电能转换效果可高达98%。
步骤440,通过感应外部无线充电装置基于电池10的电压信息以及电流信息生成的电信号,生成直流充电电流。
具体可利用感应线圈通过电磁感应等方式感应外部无线充电装置所生成的电信号,并将感应到的电信号转换为对应的直流充电电流。
步骤450,将直流充电电流输入电池。
本公开实施例中,通过感应生成的直流充电电流可通过处于导通状态下的开关单元直接输入电池10中,而无需经过电感等器件,从而避免了能量损耗以及发热现象,可显著提高无线直流充电的充电效果。
本申请实施例所提供的无线充电方法,通过实时获取的电池电压信息以控制外部无线充电装置在充电的不同阶段生成对应的电信号,并将通过感应电信号而生成的直流充电电流直接输入至电池中,从而显著提高无线充电系 统的电能转换效率和充电效率,避免了无线充电过程中移动终端出现温度过高的情况,可实现高电压、大电流的无线快速充电。
本公开实施例还提供了一种无线充电方法,该方法可应用于上述本公开实施例提供的无线充电电路中。
如图5所示,该方法具体可以包括:
步骤510,采集移动终端中电池10的电压信息。
具体可通过获取电流采样电阻R1两端的电压确定电池10当前的电压信息。
步骤520,根据电池10的电压信息确定电池充电时的电流信息。
在获取电池10当前的电压信息后,通过相应的计算获取电池10在充电时所需的电流信息例如电流值大小等。
步骤530,将电池10的电压信息以及电流信息发送至外部无线充电装置。
具体可通过感应线圈、蓝牙、红外线等方式将电池10的电压信息以及电流信息发送至外部无线充电装置,以控制外部无线充电装置调整其所生成的电信号,从而实现基于电池10的当前电量控制外部无线充电装置在充电的不同阶段生成对应的电信号。
步骤540,通过感应外部无线充电装置基于电池10的电压信息以及电流信息生成的电信号,生成直流充电电流。
具体可利用感应线圈通过电磁感应等方式感应外部无线充电装置所生成的电信号,并将感应到的电信号通过整流处理转换为对应的直流充电电流。
步骤550,检测直流充电电流是否与电池10的电压信息和/或电流信息对应。
当检测结果为对应时,执行步骤560;当检测结果不对应时执行步骤570。
步骤560,控制开关单元处于导通状态,直流充电电流通过开关单元输入电池10中。
在直流充电电流与电池10的电压信息、电流信息对应时,表明该直流充电电流为所需充电电流,通过控制开关单元处于导通状态,以使直流充电电流通过开关单元输入电池10中,实现高电压、大电流的无线快速充电,可显著提高无线直流充电的充电效果。
步骤570,对直流充电电流进行补偿,或者控制开关单元处于截止状态,并重新将电池10的电压信息和电流信息发送至外部无线充电装置。
在直流充电电流与电池10的电压信息、电流信息不对应时,可通过对该直流充电电流进行补偿以使补偿后的直流充电电流为所需充电电流。
或者,也可以控制开关单元处于截止状态,即切断无线直充通路,并控制第一通信单元重新将电池10的电压信息和电流信息发送至外部无线充电装置,以便外部无线充电装置生成正确的电信号。
此实施例的实现可通过对生成的直流充电电流的检测,以确保无线直流充电的充电效果。
本公开实施例还提供了一种无线充电系统600,如图6所示,该无线充电系统具体可以包括第一无线充电装置610和第二无线充电装置620。
其中,第一无线充电装置610具体可以包括上述本公开实施例提供的无线充电电路。
第一无线充电装置610具体可用于采集移动终端中电池10的电压信息,将电池10的电压信息以及基于该电压信息生成的电池10充电时的电流信息发送至第二无线充电装置620,通过感应第二无线充电装置620根据电池10的电压信息以及电流信息生成的电信号,生成直流充电电流,并将直流充电电流输入电池10。
本公开实施例所提供的第一无线充电装置610的具体说明可参见上述图1-3所示的无线充电电路的说明。在此不再赘述。
第二无线充电装置620具体可用于根据接收的电池10的电压信息以及电流信息生成对应的电信号。
如图7所示,第二无线充电装置620具体可以包括:
第二通信单元621,用于接收第一无线充电装置610中第一通信单元130发送的电池10的电压信息以及电流信息。
生成单元622,用于基于第二通信单元621接收的电池10的电压信息以及电流信息生成对应的电信号。
在一具体实施例中,生成单元622具体可包括感应线圈623。
本公开实施例所提供的无线充电系统,通过第一无线充电装置实时获取 电池当前的电压信息以控制第二无线充电装置在充电的不同阶段生成对应的电信号,并且,第一无线充电装置将通过感应该电信号而生成的直流充电电流直接输入至电池10中,从而显著提高无线充电系统的电能转换效率和充电效率,避免了无线充电过程中移动终端出现温度过高的情况,可实现高电压、大电流的无线快速充电。
本公开实施例所还提供了一种移动终端,该移动终端内具体可包括上述附图1、2、3所示的无线充电电路。
该移动终端除无线充电电路之外的结构与功能可与相关技术类似,而该移动终端所具有的无线充电电路的具体结构组成以及实现过程可参照上述实施例的说明和解释,在此不再赘述。
本公开实施例所提供的移动终端,通过实时获取的电池10当前的电压信息以控制外部无线充电装置在充电的不同阶段生成对应的电信号,并将感应电信号而生成的直流充电电流直接输入至电池10中,从而显著提高无线充电系统的电能转换效率和充电效率、避免了无线充电过程中移动终端出现温升过高的情况,可实现高电压、大电流的无线快速充电。
本公开实施例还提供一种移动终端,包括处理器,存储器,存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述无线充电方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述无线充电方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
图8是本公开另一个实施例的移动终端800的框图。图8所示的移动终端800包括:至少一个处理器810、存储器820、至少一个网络接口840、用户接口830、上述本公开实施例所提供的无线充电电路860以及电池870。移动终端800中的各个组件通过总线系统850耦合在一起。可理解,总线系统850用于实现这些组件之间的连接通信。总线系统850除包括数据总线之外, 还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图8中将各种总线都标为总线系统850。
其中,用户接口830可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本公开实施例中的存储器820可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本文描述的系统和方法的存储器820旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器820存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统821和应用程序822。
其中,操作系统821,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序822,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序822中。
在本公开实施例中,移动终端800还包括:存储在存储器820上并可在处理器810上运行的计算机程序,具体地,可以是应用程序822中的计算机程序,计算机程序被处理器810执行时实现如下步骤:采集移动终端800中 电池870的电压信息;根据电池870的电压信息确定电池870充电时的电流信息;将电池870的电压信息以及电流信息发送至外部无线充电装置;通过感应外部无线充电装置根据电池870的电压信息以及电流信息生成的电信号,生成直流充电电流;将直流充电电流输入电池870。
上述本公开实施例揭示的方法可以应用于处理器810中,或者由处理器810实现。处理器810可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器810中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器810可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器820,处理器810读取存储器820中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请功能的其它电子单元或其组合中。
对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来实现本文所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
可选地,计算机程序被处理器810执行时还可实现如下步骤:通过获取 电流采样电阻两端的电压确定电池870的电压信息。
可选地,计算机程序被处理器810执行时还可实现如下步骤:通过感应线圈将电池870的电压信息以及电流信息发送至所述外部无线充电装置;或者,通过蓝牙和/或红外线通信方式将电池870的电压信息以及电流信息发送至外部无线充电装置。
可选地,计算机程序被处理器810执行时还可实现如下步骤:检测直流充电电流是否与电池870的电压信息和/或电流信息对应;当直流充电电流与电池870的电压信息和/或电流信息对应时,控制开关单元处于导通状态;当直流充电电流与电池870的电压信息和/或电流信息不对应时,对直流充电电流进行补偿,或者控制开关单元处于截止状态,并重新将电池870的电压信息和电流信息发送至外部无线充电装置。
本公开实施例所提供的移动终端800通过实时获取的电池870当前的电压信息以控制外部无线充电装置在充电的不同阶段生成不同的电信号,并将通过感应电信号而生成的直流充电电流直接输入至电池870中,从而显著提高无线充电系统的电能转换效率和充电效率、避免了无线充电过程中移动终端800出现温度过高的情况,可实现高电压、大电流的无线快速充电。
图9是本公开另一个实施例的移动终端900的结构示意图。具体地,图9中的移动终端900可以为手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)、或车载电脑等。
图9中的移动终端900包括射频(Radio Frequency,RF)电路910、存储器920、输入单元930、显示单元940、无线充电电路950、处理器960、音频电路970、WiFi(Wireless Fidelity)模块980和电池990。
其中,输入单元930可用于接收用户输入的数字或字符信息,以及产生与移动终端900的用户设置以及功能控制有关的信号输入。具体地,本公开实施例中,该输入单元930可以包括触控面板931。触控面板931,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板931上的操作),并根据预先设定的程式驱动相应的连接装置。可选地,触控面板931可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来 的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给该处理器960,并能接收处理器960发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板931。除了触控面板931,输入单元930还可以包括其他输入设备932,其他输入设备932可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
其中,显示单元940可用于显示由用户输入的信息或提供给用户的信息以及移动终端900的各种菜单界面。显示单元940可包括显示面板941,可选地,可以采用LCD或有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板941。
应注意,触控面板931可以覆盖显示面板941,形成触摸显示屏,当该触摸显示屏检测到在其上或附近的触摸操作后,传送给处理器960以确定触摸事件的类型,随后处理器960根据触摸事件的类型在触摸显示屏上提供相应的视觉输出。
触摸显示屏包括应用程序界面显示区及常用控件显示区。该应用程序界面显示区及该常用控件显示区的排列方式并不限定,可以为上下排列、左右排列等可以区分两个显示区的排列方式。该应用程序界面显示区可以用于显示应用程序的界面。每一个界面可以包含至少一个应用程序的图标和/或widget桌面控件等界面元素。该应用程序界面显示区也可以为不包含任何内容的空界面。该常用控件显示区用于显示使用率较高的控件,例如,设置按钮、界面编号、滚动条、电话本图标等应用程序图标等。
其中处理器960是移动终端900的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在第一存储器921内的软件程序和/或模块,以及调用存储在第二存储器922内的数据,执行移动终端900的各种功能和处理数据,从而对移动终端900进行整体监控。可选地,处理器960可包括一个或多个处理单元。
本公开实施例中,移动终端900还包括:存储在存储器920上并可在处理器960上运行的计算机程序,计算机程序被处理器960执行时实现如下步 骤:采集移动终端900中电池990的电压信息;根据电池990的电压信息确定电池990充电时的电流信息;将电池990的电压信息以及电流信息发送至外部无线充电装置;通过感应外部无线充电装置根据电池990的电压信息以及电流信息生成的电信号,生成直流充电电流;将直流充电电流输入电池990。
可选地,计算机程序被处理器960执行时还可实现如下步骤:通过获取电流采样电阻两端的电压确定电池990的电压信息。
可选地,计算机程序被处理器960执行时还可实现如下步骤:通过感应线圈将电池990的电压信息以及电流信息发送至外部无线充电装置;或者,通过蓝牙和/或红外线通信方式将电池990的电压信息以及电流信息发送至外部无线充电装置。
可选地,计算机程序被处理器960执行时还可实现如下步骤:检测直流充电电流是否与电池990的电压信息和/或电流信息对应;当直流充电电流与电池990的电压信息和/或电流信息对应时,控制开关单元处于导通状态;当直流充电电流与电池990的电压信息和/或电流信息不对应时,对直流充电电流进行补偿,或者控制开关单元处于截止状态,并重新将电池990的电压信息和电流信息发送至外部无线充电装置。
本公开实施例所提供的移动终端900通过实时获取的电池990当前的电压信息以控制外部无线充电装置在充电的不同阶段生成不同的电信号,并将通过感应电信号而生成的直流充电电流直接输入至电池990中,从而显著提高无线充电系统的电能转换效率和充电效率、避免了无线充电过程中移动终端900出现温度过高的情况,可实现高电压、大电流的无线快速充电。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种无线充电电路,应用于移动终端,其中,所述无线充电电路包括:
    采集单元,用于采集移动终端中电池的电压信息;
    充电控制单元,所述充电控制单元与所述采集单元连接,用于获取所述采集单元采集的所述电池的电压信息,根据所述电压信息确定所述电池充电时的电流信息;
    第一通信单元,所述第一通信单元与所述充电控制单元连接,用于将所述电池的电压信息以及所述电流信息发送至外部无线充电装置;
    接收单元,用于通过感应所述外部无线充电装置根据所述电池的电压信息以及所述电流信息生成的电信号,生成直流充电电流;
    开关单元,所述开关单元的一端与所述接收单元连接,另一端与所述采集单元连接,所述开关单元处于导通状态下通过所述采集单元将所述接收单元生成的直流充电电流输入所述电池。
  2. 如权利要求1所述的无线充电电路,其中,所述采集单元包括电流采样电阻,所述电流采样电阻的第一端与所述电池连接,所述电流采样电阻的第二端与所述充电控制单元连接;
    所述充电控制单元通过获取所述电流采样电阻两端的电压确定所述电池的电压信息。
  3. 如权利要求1所述的无线充电电路,其中,所述第一通信单元通过感应线圈将所述电池的电压信息以及所述电流信息发送至外部无线充电装置;或者,
    所述第一通信单元通过蓝牙或红外线通信方式将所述电池的电压信息以及所述电流信息发送至外部无线充电装置。
  4. 如权利要求1所述的无线充电电路,其中,所述开关单元还与所述充电控制单元连接,用于在所述充电控制单元的控制下处于导通或截止状态;
    所述开关单元包括负载开关和/或晶体管。
  5. 如权利要求4所述的无线充电电路,其中,所述开关单元包括第一晶体管和第二晶体管,所述第一晶体管和第二晶体管为N型晶体管;
    所述第一晶体管的栅极与所述充电控制单元连接,所述第一晶体管的源极与所述采集单元连接,所述第一晶体管的漏极与所述第二晶体管连接;
    所述第二晶体管的栅极与所述充电控制单元连接,所述第二晶体管的源极与所述接收单元连接,所述第二晶体管的漏极与所述第一晶体管连接。
  6. 如权利要求1或4所述的无线充电电路,其中,所述充电控制单元还用于检测所述接收单元生成直流充电电流是否与所述电池的电压信息和/或所述电流信息对应;
    当所述直流充电电流与所述电池的电压信息和/或所述电流信息对应时,所述充电控制单元控制所述开关单元处于导通状态;
    当所述直流充电电流与所述电池的电压信息和/或所述电流信息不对应时,对所述直流充电电流进行补偿,或者控制所述开关单元处于截止状态,并触发所述第一通信单元重新将所述电池的电压信息和所述电流信息发送至所述外部无线充电装置。
  7. 如权利要求1所述的无线充电电路,其中,所述充电控制单元通过内部集成电路总线接口与所述移动终端的中央处理器连接;
    所述充电控制单元通过模数转换电路与所述采集单元、所述接收单元连接。
  8. 如权利要求1所述的无线充电电路,其中,接收单元还包括:
    整流单元,用于将所述接收单元感应的电信号转换为直流充电电流。
  9. 一种无线充电方法,包括:
    采集移动终端中电池的电压信息;
    根据所述电池的电压信息确定电池充电时的电流信息;
    将所述电池的电压信息以及所述电流信息发送至外部无线充电装置;
    通过感应所述外部无线充电装置根据所述电池的电压信息以及所述电流信息生成的电信号,生成直流充电电流;
    将所述直流充电电流输入所述电池。
  10. 如权利要求9所述的方法,其中,所述采集移动终端中电池的电压信息包括:
    通过获取电流采样电阻两端的电压确定所述电池的电压信息。
  11. 如权利要求9所述的方法,其中,所述将所述电池的电压信息以及所述电流信息发送至外部无线充电装置包括:
    通过感应线圈将所述电池的电压信息以及所述电流信息发送至所述外部无线充电装置;或者,
    通过蓝牙和/或红外线通信方式将所述电池的电压信息以及所述电流信息发送至所述外部无线充电装置。
  12. 如权利要求9所述的方法,还包括:
    检测所述直流充电电流是否与所述电池的电压信息和/或所述电流信息对应;
    当所述直流充电电流与所述电池的电压信息和/或所述电流信息对应时,控制开关单元处于导通状态;
    当所述直流充电电流与所述电池的电压信息和/或所述电流信息不对应时,对所述直流充电电流进行补偿,或者控制所述开关单元处于截止状态,并重新将所述电池的电压信息和所述电流信息发送至所述外部无线充电装置。
  13. 一种无线充电系统,包括第一无线充电装置和第二无线充电装置,其中,所述第一无线充电装置包括如权利要求1-8任一项所述的无线充电电路;
    所述第一无线充电装置用于采集移动终端中电池的电压信息,将所述电压信息以及基于所述电压信息生成的所述电池充电时的电流信息发送至所述第二无线充电装置,通过感应所述第二无线充电装置根据所述电池的电压信息以及所述电流信息生成的电信号,生成直流充电电流,并将所述直流充电电流输入所述电池;
    所述第二无线充电装置,用于根据接收的所述电池的电压信息以及所述电流信息生成对应的电信号。
  14. 如权利要求13所述的无线充电系统,其中,所述第二无线充电装置包括:
    第二通信单元,用于接收所述第一无线充电装置发送的所述电池的电压信息和所述电流信息;
    生成单元,用于基于所述第二通信单元接收的所述电池的电压信息以及所述电流信息生成对应的电信号。
  15. 一种移动终端,包括如权利要求1-8任一项所述的无线充电电路。
PCT/CN2018/096431 2017-07-31 2018-07-20 无线充电电路、无线充电方法、无线充电系统及移动终端 WO2019024694A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18840522.9A EP3664249B1 (en) 2017-07-31 2018-07-20 Wireless charging circuit, wireless charging method, wireless charging system and mobile terminal
US16/634,097 US11489360B2 (en) 2017-07-31 2018-07-20 Wireless charging circuit, wireless charging method, wireless charging system and mobile terminal
ES18840522T ES2904652T3 (es) 2017-07-31 2018-07-20 Circuito de carga inalámbrica, método de carga inalámbrica, sistema de carga inalámbrica y terminal móvil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710640369.2A CN107248769B (zh) 2017-07-31 2017-07-31 无线充电电路、无线充电方法、无线充电系统及移动终端
CN201710640369.2 2017-07-31

Publications (1)

Publication Number Publication Date
WO2019024694A1 true WO2019024694A1 (zh) 2019-02-07

Family

ID=60013384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096431 WO2019024694A1 (zh) 2017-07-31 2018-07-20 无线充电电路、无线充电方法、无线充电系统及移动终端

Country Status (5)

Country Link
US (1) US11489360B2 (zh)
EP (1) EP3664249B1 (zh)
CN (1) CN107248769B (zh)
ES (1) ES2904652T3 (zh)
WO (1) WO2019024694A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116545077A (zh) * 2023-07-06 2023-08-04 深圳市磁迹科技有限公司 基于人工智能的无线充电方法、装置、设备及存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107248769B (zh) * 2017-07-31 2019-04-12 维沃移动通信有限公司 无线充电电路、无线充电方法、无线充电系统及移动终端
CN108429362B (zh) * 2018-04-23 2020-08-04 维沃移动通信有限公司 无线充电装置、无线充电方法、无线充电系统及移动终端
EP3745554A4 (en) * 2018-04-25 2021-02-17 Guangdong Oppo Mobile Telecommunications Corp., Ltd. TERMINAL DEVICE AND CHARGE CONTROL METHOD
EP3719956B1 (en) * 2018-05-15 2022-11-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Device to be charged and wireless charging method and system
WO2020124571A1 (zh) * 2018-12-21 2020-06-25 Oppo广东移动通信有限公司 充电装置、待充电设备、充电方法及计算机存储介质
CN111929594B (zh) * 2020-09-23 2020-12-29 深圳英集芯科技有限公司 电流检测芯片、电池及电子设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105098900A (zh) * 2015-08-05 2015-11-25 青岛海信移动通信技术股份有限公司 移动终端、可直充电源适配器及充电方法
CN107248769A (zh) * 2017-07-31 2017-10-13 维沃移动通信有限公司 无线充电电路、无线充电方法、无线充电系统及移动终端

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9444247B2 (en) 2011-05-17 2016-09-13 Samsung Electronics Co., Ltd. Apparatus and method of protecting power receiver of wireless power transmission system
US9325187B2 (en) * 2012-05-21 2016-04-26 Lg Electronics Inc. Structure of transmission and reception unit in wireless charging system
KR102040717B1 (ko) * 2013-05-16 2019-11-27 삼성전자주식회사 무선 전력 전송 장치 및 무선 전력 전송 방법
US20150214748A1 (en) * 2014-01-24 2015-07-30 Mediatek Inc. Wireless power supply scheme capable of dynamically adjusting output power of wireless power transmitter according to voltage/current/power information of portable electronic device to be charged
EP3223386B1 (en) * 2014-11-18 2022-11-16 LG Electronics Inc. Wireless power transmission device, wireless power reception device, and wireless charging system
KR102391190B1 (ko) * 2015-03-13 2022-04-28 삼성전자주식회사 무선 충전 시스템에서 무선 전력 수신기의 로드 생성 방법 및 무선 전력 수신기
KR102487237B1 (ko) * 2015-08-07 2023-01-10 삼성전자주식회사 배터리 전압 트래킹을 이용한 충전 제어 회로와 이를 포함하는 장치
CN206211578U (zh) * 2016-10-20 2017-05-31 广州视源电子科技股份有限公司 一种无线充电电路与系统
CN106532834A (zh) * 2016-11-30 2017-03-22 努比亚技术有限公司 移动终端及移动终端充电方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105098900A (zh) * 2015-08-05 2015-11-25 青岛海信移动通信技术股份有限公司 移动终端、可直充电源适配器及充电方法
CN107248769A (zh) * 2017-07-31 2017-10-13 维沃移动通信有限公司 无线充电电路、无线充电方法、无线充电系统及移动终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3664249A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116545077A (zh) * 2023-07-06 2023-08-04 深圳市磁迹科技有限公司 基于人工智能的无线充电方法、装置、设备及存储介质
CN116545077B (zh) * 2023-07-06 2023-12-22 深圳市磁迹科技有限公司 基于人工智能的无线充电方法、装置、设备及存储介质

Also Published As

Publication number Publication date
EP3664249A4 (en) 2020-06-10
US11489360B2 (en) 2022-11-01
EP3664249A1 (en) 2020-06-10
CN107248769A (zh) 2017-10-13
EP3664249B1 (en) 2021-11-24
US20200212706A1 (en) 2020-07-02
CN107248769B (zh) 2019-04-12
ES2904652T3 (es) 2022-04-05

Similar Documents

Publication Publication Date Title
WO2019024694A1 (zh) 无线充电电路、无线充电方法、无线充电系统及移动终端
WO2018157662A1 (zh) 一种移动终端的显示控制方法及移动终端
CN102810023B (zh) 识别手势动作的方法及终端设备
JP5990340B2 (ja) イヤホンケーブルで端末を制御する方法、イヤホンケーブルで端末を制御する装置、デバイス、プログラム及び記録媒体
CN110221764B (zh) 用户界面上的触摸操作方法与移动终端
CN107069888B (zh) 一种充电电路及移动终端
CN106791021B (zh) 一种闪光灯的控制方法及移动终端
CN105528113A (zh) 一种基于曲面触摸屏的触控方法和终端
CN103116469A (zh) 一种文件传输方法及其系统
WO2018166469A1 (zh) 一种多路径复制粘贴方法及移动终端
WO2017161587A1 (zh) 一种负载供电电路和终端
KR20190010388A (ko) 펜 장치 및 펜 장치가 출력한 전자기 신호에 의한 패널 상호 작용
CN106488019B (zh) 一种移动终端及移动终端的开机方法
US20150153921A1 (en) Apparatuses and methods for inputting a uniform resource locator
CN105811543A (zh) 一种移动电源的电量显示方法、移动终端及移动电源
TWI401585B (zh) 具指標器之電子裝置及指標器操作方法
CN110262985A (zh) 一种处理方法以及电子设备
CN109313533A (zh) 一种触控屏的触控响应方法、装置以及终端
CN108429362B (zh) 无线充电装置、无线充电方法、无线充电系统及移动终端
JP6710771B1 (ja) 端末装置、プログラム、方法、及びシステム
WO2012159323A1 (zh) 用电容屏手写笔模拟左右键输入的方法、电容屏手写笔及终端
CN111030205A (zh) 充电控制方法、装置、存储介质及电子设备
CN206431612U (zh) 一种触摸屏幕点击装置、终端及系统
TWM464801U (zh) 觸控鍵盤
CN108337377A (zh) 基于压力传感器的终端控制方法、装置、终端及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18840522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018840522

Country of ref document: EP

Effective date: 20200302