WO2019024435A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2019024435A1
WO2019024435A1 PCT/CN2018/071457 CN2018071457W WO2019024435A1 WO 2019024435 A1 WO2019024435 A1 WO 2019024435A1 CN 2018071457 W CN2018071457 W CN 2018071457W WO 2019024435 A1 WO2019024435 A1 WO 2019024435A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
region
substrate
shielding
area
Prior art date
Application number
PCT/CN2018/071457
Other languages
English (en)
French (fr)
Inventor
陈黎暄
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/750,181 priority Critical patent/US10345638B2/en
Publication of WO2019024435A1 publication Critical patent/WO2019024435A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element

Definitions

  • the present application relates to the field of liquid crystal display technology, and in particular, to a display panel and a display device having the same.
  • a polarizing structure between the color filter layer and the liquid crystal layer. This is based on the following two considerations: (1) The color filter layer is generally composed of components such as pigments, and the tiny particles of the pigment have a certain degree of depolarization effect on the polarization state of the polarized light, which may result in The contrast of the entire display panel is lowered, and therefore, a polarization structure is required to be placed between the color filter layer and the liquid crystal layer.
  • the size of the color sub-pixel is large relative to the thickness of the liquid crystal cell, and the incident light is deviated from the corresponding color sub-pixel only when the incident light is incident in the horizontal direction.
  • a polarizing structure or other functional layer is placed between the color filter layer and the liquid crystal layer, so that the spacing between the color filter layer and the thin film transistor layer is greatly increased, so that the incident angle is greater than about 14.59° of incident light.
  • the regions corresponding to the normal color sub-pixels are all off, which causes most of the incident light to deviate from the corresponding color sub-pixel region and exit to other adjacent sub-pixel regions, causing crosstalk between the sub-pixel regions. Causes the displayed image to be abnormal.
  • an object of the present application is to provide a display panel and a display device that solve the problem of light crosstalk between sub-pixel regions in a color filter layer.
  • the present application provides a display panel including a liquid crystal layer, a first substrate, and a second substrate, wherein the liquid crystal layer is disposed on the first substrate and the second substrate
  • the first substrate has a first light-transmitting region, a first light-shielding region and a second light-transmitting region
  • the second substrate has a third light-transmitting region, a second light-shielding region and a a light-transmissive area
  • the first light-transmissive area is opposite to the third light-transmissive area
  • the first light-shielding area is opposite to the second light-shielding area
  • the first light-shielding area is in the a projection area on the second substrate covers the second light shielding area
  • the first light shielding area is configured to block the first light from being projected to the second through when the first light is projected to the first light transmission area
  • the second light-shielding region is configured to block the second light from being projected to the
  • intersection of the first light shielding area and the first light transmission area is a first side
  • intersection of the second light shielding area and the fourth light transmission area is a second side
  • the first The angle between the line connecting the edge and the second side and the first substrate is less than or equal to 79°.
  • the first light-transmitting region, the first light-shielding region and the second light-transmitting region are distributed along a first direction, and the length of the first light-shielding region in the first direction is a first length.
  • the length of the second light-shielding region in the first direction is a second length, and the ratio of the first length to the second length is 3:1 to 6:1.
  • the first substrate forms an angle of less than or equal to 5° parallel to or between the second substrate.
  • the first substrate is a thin film transistor layer
  • the second substrate is a color filter substrate
  • the display substrate further includes a backlight
  • the backlight is disposed on the thin film transistor layer facing away from the color filter substrate. a side, the backlight emits the first light to be transmitted through the first light transmissive region to the third light transmissive region.
  • the first light shielding region includes a first metal wiring region and a third light shielding region, and the third light shielding region is disposed between the first metal wiring region and the first light transmission region and the first Between the metal wiring region and the second light transmitting region.
  • the material of the third light shielding area is the same as the material of the second light shielding area.
  • the first substrate is a color filter substrate
  • the second substrate is a thin film transistor layer
  • the display substrate further includes a backlight
  • the backlight is disposed on the thin film transistor layer facing away from the color filter substrate. a side, the backlight emitting the second light to the first light transmitting region through the second light transmitting region.
  • the second light shielding region includes a second metal wiring region, and a projection area of the first light shielding region on the second substrate covers the second metal wiring region.
  • the present application further provides a display device including a display panel, the display panel includes a liquid crystal layer, a first substrate, and a second substrate, wherein the liquid crystal layer is disposed on the first substrate and the second Between the substrates, the first substrate has a first light-transmissive region, a first light-shielding region and a second light-transmitting region, and the second substrate has a third light-transmitting region and a second light-shielding region connected in sequence.
  • the first light-transmitting region is opposite to the third light-transmitting region
  • the first light-shielding region is opposite to the second light-shielding region
  • the first light-shielding region is in the a projection area on the second substrate covers the second light shielding area
  • the first light shielding area is configured to block the first light from being projected to the second when the first light is projected to the first light transmission area a light-transmitting region
  • the second light-shielding region is configured to block the second light from being projected to the fourth light-transmitting region when the second light is projected to the third light-transmitting region.
  • the display panel provided by the present application has at least the following beneficial effects:
  • the display panel reduces the size of the light-transmitting region in the light layer of the thin film crystal, or increases the size of the light-shielding region of the color filter substrate, thereby reducing the incidence of light from the light-transmitting region of the thin film crystal layer to the opposite color resist on the color filter substrate.
  • the pixel area is deviated from the corresponding color resist sub-pixel area, even if it is emitted to another adjacent color-blocking sub-pixel area, the display image is abnormal and the like.
  • FIG. 1 is a schematic structural diagram of a display panel according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an optical path provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of another optical path provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of still another optical path provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an optical path of a display panel structure according to a first embodiment of the present application.
  • FIG. 6 is a schematic diagram of still another optical path provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an optical path of a display panel structure according to a second embodiment of the present application.
  • Embodiments of the present application provide a display device.
  • the display device may be an electronic device having a display panel such as a liquid crystal television, a mobile phone, a personal digital assistant (PDA), a digital camera, a computer screen, or a notebook computer screen.
  • a display panel such as a liquid crystal television, a mobile phone, a personal digital assistant (PDA), a digital camera, a computer screen, or a notebook computer screen.
  • the present application is exemplified by a vertically aligned mode liquid crystal display (VA-LCD).
  • VA-LCD vertically aligned mode liquid crystal display
  • the liquid crystal molecules can be deflected by 90 degrees, which is similar to the area of the thin film transistor layer facing the color filter substrate opposite to the color resisting sub-pixel region of the color filter substrate.
  • Light-transmissive windows of similar size, so that light enters the liquid crystal layer through the light-transmissive window, and is projected into the color-blocking sub-pixel region (for example, the R/G/B color resist sub-pixel region) to display color.
  • the incident window area through which the light passes is close to the area and size of the color resist sub-pixel area.
  • the display device includes a display panel 100 .
  • the display panel 100 includes a first substrate 110 , a second substrate 120 , an upper substrate 130 , a liquid crystal layer 140 , and a backlight 150 .
  • the upper substrate 130 and the liquid crystal layer 140 are disposed between the first substrate 110 and the second substrate 120 .
  • the first substrate 110 may be a color filter substrate
  • the second substrate 120 may be a thin film transistor layer
  • the first substrate 110 may be a thin film transistor layer
  • the second substrate 120 may be a color film substrate.
  • the upper substrate 130 is disposed between the liquid crystal layer 140 and the color filter substrate.
  • the upper substrate 130 may include a glass substrate 131, a transparent conductive film layer 132, a polarizing layer 133, and a flat layer 134.
  • the positions of the layers in the upper substrate 130 are not limited and may be set as shown in FIG.
  • the polarizing layer 133 may also be disposed on a side of the color filter substrate away from the thin film transistor layer. The position of the polarizing layer 133 is not limited in the present application.
  • the first substrate 110 is a color filter substrate
  • the second substrate 120 is a thin film transistor layer.
  • the polarizing layer 133 is disposed between the color filter substrate 110 and the liquid crystal layer 140, the following beneficial effects are obtained: on the one hand, the color filter substrate 110 is generally composed of a pigment and the like, and the minute particles of the pigment are polarized to the polarized light. There is a certain degree of depolarization, which causes the contrast of the entire display panel 100 to decrease. Therefore, in some cases, the polarizing layer 133 is placed between the color filter substrate 110 and the liquid crystal layer 140, which can reduce the color filter substrate. Depolarization of the polarization state of 110 pairs of polarized light.
  • the display panel 100 having the quantum dot color film substrate is fabricated, since the mechanism of color generation by the quantum dot material lies in photoluminescence, the polarization light transmission of the display panel 100 is affected, and the polarizing layer 13 is placed. Between the quantum dot color film substrate and the liquid crystal layer 140, it is possible to prevent the polarized light from becoming partially polarized after passing through the quantum dot color filter substrate, thereby affecting the display result.
  • the polarizing layer 133 when the polarizing layer 133 is placed between the color filter substrate 110 and the liquid crystal layer 140 (also referred to as an external color film substrate in the present application), the light is incident from the thin film transistor layer 120 to the color film.
  • D1' is the thickness of the liquid crystal layer 140, and d1' is about 3.5 um.
  • L may be the width of the color resist sub-pixel in the color film substrate 110, then L is 105 um.
  • d1 may be reduced, that is, the distance between the liquid crystal layer 140 and the color filter substrate 110 may be reduced, and a thin upper substrate 130, such as a flexible substrate such as PI, may be used to make an external color filter substrate.
  • the effect of 110 on the angle of incidence becomes smaller.
  • the embodiments of the present application further provide the following embodiments, by increasing L, increasing the critical angle of the incident light deviation from the normal corresponding color resist sub-pixel region.
  • FIG. 3 and FIG. 4 are partial cross-sectional views of a display panel 100 according to an embodiment of the present application.
  • the first substrate 110 has a first top wall 111, and the first top wall 111 has a first light-transmissive region 112, a first light-shielding region 113, and a second light-transmitting region 114 that are sequentially connected.
  • the first light transmitting region 112, the first light shielding region 113, and the second light transmitting region 114 are distributed along the first direction x.
  • the first direction x is the short side direction of the color resist sub-pixel region.
  • the second substrate 120 has a second top wall 121 opposite to the first top wall 111, and the second top wall 121 has a third light-transmissive area 122, a second light-shielding area 123, and a fourth Light transmissive area 124.
  • the third light transmitting region 122, the second light shielding region 123, and the fourth light transmitting region 124 are distributed along the first direction x.
  • the first light transmitting region 112 is disposed opposite to the third light transmitting region 122.
  • the first light-shielding region 113 is disposed opposite to the second light-shielding region 123 , and the projection area of the first light-shielding region 113 on the second substrate 120 covers the second light-shielding region 123 .
  • the first light shielding area 113 is configured to block the first light ray a1 from being projected to the second light transmitting area 114 when the first light ray a1 is projected to the first light transmitting area 112.
  • the second light shielding area 123 is configured to block the second light ray a2 from being projected to the fourth light transmitting area 124 when the second light ray a2 is projected to the third light transmitting area 122.
  • the first substrate 110 forms an angle of less than or equal to 5° between the second substrate 120 or the second substrate 120.
  • the first substrate 110 is parallel to the second substrate 120.
  • the center line of the first light shielding area 113 substantially coincides with the center line of the second light shielding area 123.
  • the first substrate 110 includes a plurality of transparent regions for transmitting or emitting light, and a first light shielding region 113 is disposed between the adjacent transparent regions for shielding.
  • the second substrate 120 also includes a plurality of light-transmissive regions for transmitting or emitting light, and a second light-blocking region 123 is disposed between the adjacent light-transmitting regions for shielding.
  • the light-transmitting area in the first substrate 110 is opposite to the light-transmitting area in the second substrate 120, and the first light-shielding area 113 and the second side in the first substrate 110 are opposite to each other.
  • the second light shielding regions 123 in the substrate 120 are opposed one by one. The specific difference between the first substrate 110 and the second substrate 120 will be described in detail in the following embodiments.
  • the first substrate 110 is a thin film transistor layer
  • the second substrate 120 is a color filter substrate.
  • the backlight 150 is disposed on a side of the thin film transistor layer 110 facing away from the color filter substrate 120.
  • the backlight 150 emits the first light ray a1 and is projected through the third light transmitting area 122 to the first light transmitting area 112.
  • the first light transmitting region 112 and the second light transmitting region 114 may be an open region of the thin film transistor layer 110, and the first light blocking region 113 may be a metal wiring region (including a thin film transistor and a corresponding metal wiring).
  • the third light transmitting region 122 and the fourth light transmitting region 124 may be color resist sub-pixel regions, and the second light blocking region 123 may be a black matrix.
  • the light transmissive area of the thin film transistor layer 110 is substantially the same as the area of the light transmissive area of the color filter substrate 120.
  • the present embodiment calculates the size along the first direction x, and the thin film transistor layer 110 is transparent.
  • the light transmission area of the light area and the color filter substrate 120 may both be 105 um, and the length of the first light shielding area 113 and the second light shielding area 123 along the first direction x is 40 um.
  • the embodiment of the present application improves the problem of incident optical crosstalk by improving the size of the light transmitting region of the thin film transistor layer 110 with respect to the light transmitting region of the color filter substrate 120 on the basis of the prior art.
  • the embodiment reduces the size of the transparent region of the thin film transistor layer 110 such that the size of the transparent region of the thin film transistor layer 110 is smaller than the size of the transparent region of the color filter substrate 120. That is, the embodiment increases the size of the light-shielding region between the respective light-transmissive regions of the thin film transistor layer 110, such that the projection area of the first light-shielding region 113 on the color filter substrate 120 covers the second light-shielding The area 123, that is, the area where the first light shielding area 113 is disposed is much larger than the area of the second light shielding area 123.
  • the first light shielding region 113 includes a first metal wiring region 113a and a third light shielding region 113b.
  • the third light shielding region 113b is disposed between the first metal wiring region 113a and the first light transmitting region 112 and between the first metal wiring region 113a and the second light transmitting region 114.
  • the projection area of the second light shielding region 123 on the thin film transistor layer 110 may be substantially equal to the area of the first metal wiring region 113a.
  • the third light-shielding region 113b may be the same material as the second light-shielding region 123, and may be black matrix or may be fabricated in the same process.
  • the size of the first light-shielding region of the thin film transistor layer 110 is not particularly limited in this embodiment.
  • the first light-transmitting region 112, the first light-shielding region 113, and the second light-transmitting region 114 are distributed along a first direction x, and the first light-shielding region 113 is in the first direction x
  • the length of the upper portion is a first length L1'
  • the length of the second light-shielding region 123 in the first direction x is a second length L2'
  • the first length L1' and the second length L1' The ratio is 3:1 to 6:1.
  • the ratio of the first length L1' to the second length L2' can be derived from the following calculations: Referring to FIG.
  • the distance between the first substrate 110 and the second substrate 120 is
  • the first pitch h1 may be 400 um to 700 um.
  • the length L1 of the third light transmitting region 121 along the first direction x is 105 um.
  • the length L2' of the second light-shielding region 123 along the first direction x is 40 um.
  • the intersection of the first light-shielding region 113 and the first light-transmissive region 112 is a first side 115
  • the intersection of the second light-shielding region 123 and the fourth light-transmitting region 124 is The second side 125.
  • the fourth light transmissive area 124 is described. An angle between the line connecting the first side 115 and the second side 125 and the first top wall 111 is ⁇ 2.
  • the incident light at point A does not crosstalk to the fourth light-transmitting region 124. That is, when the angle ⁇ 2 between the line connecting the first side 115 and the second side 125 and the first top wall 111 is less than or equal to 79°, the incident light at the point A does not Crosstalk to the fourth light transmissive region 124.
  • the first pitch h1 is 700 um
  • the length of the third light-shielding region 113a between the first metal wiring region 113b and the first metal wiring region 113b and the first light-transmitting region 112 is calculated to be 145 um
  • a metal wiring region 113b is 40 um
  • the area of the first light-shielding region 113 can be appropriately reduced, so the ratio of the area of the first light-shielding region 113 to the second light-shielding region 123 can be 3:1. ⁇ 6:1.
  • the first substrate 110 may also be a color film substrate
  • the second substrate 120 may also be a thin film transistor layer.
  • the display substrate further includes a backlight 150 disposed on a side of the thin film transistor layer facing away from the color filter substrate. The backlight 150 emits the second light ray a2 to be projected through the first light transmitting region 112 to the third light transmitting region 122.
  • the first light transmitting region 112 and the second light transmitting region 114 may be color resist sub-pixel regions, and the first light blocking region 113 may be a black matrix.
  • the third light transmitting region 122 and the fourth light transmitting region 124 may be an open region of the thin film transistor layer 120, and the second light blocking region 113 may be a second metal wiring region.
  • the projection area of the first light shielding area 113 on the second substrate 120 covers the second metal wiring area.
  • L is increased by increasing the size of the first light-shielding region 113 (ie, the black matrix) to increase the critical angle at which incident light is projected onto other color-blocking sub-pixel regions.
  • the ratio of the length of the first light-shielding region 113 in the first direction x to the length of the second light-shielding region 123 in the first direction x is 3:1 to 6 :1.
  • An angle between the line connecting the first side 115 and the second side 125 and the first top wall 111 is ⁇ 3.
  • ⁇ 3 is less than or equal to 79°, incident light rays do not crosstalk to the second light transmitting region 114.
  • the specific calculation manner is the same as that of the first embodiment, and details are not described herein again.
  • the first light-shielding region 113 in the embodiment of the present application is a black matrix.
  • the size of the black matrix may be increased in the process of the black matrix, so that the size of the black matrix is a thin film transistor layer.
  • the size of the second metal wiring area is 3 to 6 times. This allows more incident light to be blocked by the black matrix without crosstalk to adjacent color resist sub-pixel regions.
  • the embodiment of the present application discusses the dimensions of the first light-shielding region 113 and the second light-shielding region 123 in the first direction x direction, which is the short-side direction of the color-blocking sub-pixel region.
  • the dimensional relationship between the first light-shielding region 113 and the second light-shielding region 123 in the longitudinal direction of the color-resisting sub-pixel region can be determined according to the inventive concept of the present application, and will not be further described herein.
  • Embodiments of the present application provide a display panel and a display terminal, which reduce light from a thin film crystal layer by reducing a size of a light transmitting region of a thin film crystal layer or by increasing a size of a light shielding region of the color filter substrate.
  • the light region is incident on the opposite color resist sub-pixel region on the color filter substrate, it deviates from the corresponding color resist sub-pixel region, and even exits to other adjacent color-resistance sub-pixel regions, causing problems such as abnormal image display.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板(100)和显示装置,显示面板(100)包括液晶层、第一基板(110)及第二基板(120)。液晶层(140)设于第一基板(110)与第二基板(120)之间。第一基板(110)具有依次相连的第一透光区(112)、第一遮光区(113)及第二透光区(114)。第二基板(120)具有依次相连的第三透光区(122)、第二遮光区(123)及第四透光区(124)。第一遮光区(113)在第二基板(120)上的投影区域覆盖第二遮光区(123)。第一遮光区(113)用于在第一光线投射至第一透光区(112)时,阻挡第一光线投射至第二透光区(114)。第二遮光区(123)用于在第二光线投射至第三透光区(122)时,阻挡第二光线投射至第四透光区(124)。

Description

显示面板及显示装置
本申请要求于2017年08月01日提交中国专利局、申请号为2017106473676、申请名称为“显示面板及显示装置”的中国专利申请的优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本申请涉及液晶显示技术领域,具体涉及一种显示面板及具有该显示面板的显示装置。
背景技术
传统的显示面板中,通常彩色滤光层的相对两侧设置上下偏光片,配合液晶光学形成彩色发光面板。在一些新的技术发展中,需要将偏振结构置于彩色滤光层与液晶层之间。这样做基于如以下两种情况的考虑:(1)彩色滤光层一般由颜料等成分组成,颜料这种微小的颗粒对偏振光的偏振态存在一定程度的消偏作用,这一机制会导致整个显示面板的对比度下降,因此,需要偏振结构置于彩色滤光层与液晶层之间。(2)在制作具有量子点彩色滤光层的显示面板时,由于量子点材料产生颜色的机理在于光致发光,故而液晶显示器的偏振光传递会受到影响,而将偏振结构置于量子点彩色滤光层与液晶层之间,可以避免偏振光在经过量子点彩色滤光层后变成部分偏振光从而影响显示的结果。
在传统的结构中,相对液晶盒厚而言,彩色子像素的尺寸很大,只有当入射光线贴近水平方向入射时,才会发生出射光偏离对应彩色子像素的情况。然而,如果将偏振结构或其他的功能层置于彩色滤光层与液晶层之间时,彩色滤光层与薄膜晶体管层之间的间距极大地增加,使得入射角大于约14.59°的入射光均偏出正常的对应彩色子像素的区域,这将导致大部分的入射光均偏离对应的彩色子像素区域,出射到相邻的其他子像素区域,造成子像素区域间的光线串扰的问题,导致显示的图像异常。
发明内容
针对以上的问题,本申请的目的是提供一种显示面板及显示装置,解决了彩色滤光层中子像素区域间的光线串扰的问题。
为了解决背景技术中存在的问题,一方面,本申请提供了一种显示面板,包括液晶层、第一基板及第二基板,所述液晶层设于所述第一基板与所述第二基板之间,所述第一基板具有依次相连的第一透光区、第一遮光区及第二透光区,所述第二基板具有依次相连的第三透光区、第二遮光区及第四透光区,所述第一透光区与所述第三透光区相对设置,所述第一遮光区与所述第二遮光区相对设置,且所述第一遮光区在所述第二基板上的投影区域覆盖所述第二遮光区,所述第一遮光区用于在第一光线投射至所述第一透光区时,阻挡所述第一光线投射至所述第二透光区,所述第二遮光区用于在第二光线投射至所述第三透光区时,阻挡所述第二光线投射至所述第四透光区。
其中,所述第一遮光区与所述第一透光区的交接线为第一边,所述第二遮光区与所述第四透光区的交接线为第二边,所述第一边与所述第二边之间的连线与所述第一基板之间的夹角小于等于79°。
其中,所述第一透光区、所述第一遮光区及所述第二透光区沿第一方向分布,所述第一遮光区在所述第一方向上的长度为第一长度,所述第二遮光区在所述第一方向上的长度为第二长度,所述第一长度与所述第二长度之比为3:1~6:1。
其中,所述第一基板平行于所述第二基板或与所述第二基板之间形成小于等于5°的夹角。
其中,所述第一基板是薄膜晶体管层,所述第二基板是彩膜基板,所述显示基板还包括背光源,所述背光源设于所述薄膜晶体管层背离所述彩膜基板的一侧,所述背光源发射所述第一光线透过所述第一透光区投射至所述第三透光区。
其中,所述第一遮光区包括第一金属布线区和第三遮光区,所述第三遮光区设于所述第一金属布线区与所述第一透光区之间及所述第一金属布线区与所述第二透光区之间。
其中,所述第三遮光区的材质与所述第二遮光区的材质相同。
其中,所述第一基板是彩膜基板,所述第二基板是薄膜晶体管层,所述显示基板还包括背光源,所述背光源设于所述薄膜晶体管层背离所述彩膜基板的 一侧,所述背光源发射所述第二光线透过所述第二透光区投射至所述第一透光区。
其中,所述第二遮光区包括第二金属布线区,所述第一遮光区在所述第二基板上的投影区域覆盖所述第二金属布线区。
另一方面,本申请还提供了一种显示装置,包括显示面板,所述显示面板包括液晶层、第一基板及第二基板,所述液晶层设于所述第一基板与所述第二基板之间,所述第一基板具有依次相连的第一透光区、第一遮光区及第二透光区,所述第二基板具有依次相连的第三透光区、第二遮光区及第四透光区,所述第一透光区与所述第三透光区相对设置,所述第一遮光区与所述第二遮光区相对设置,且所述第一遮光区在所述第二基板上的投影区域覆盖所述第二遮光区,所述第一遮光区用于在第一光线投射至所述第一透光区时,阻挡所述第一光线投射至所述第二透光区,所述第二遮光区用于在第二光线投射至所述第三透光区时,阻挡所述第二光线投射至所述第四透光区。
相较于现有技术,本申请提供的一种显示面板,至少具有以下的有益效果:
该显示面板通过减少薄膜晶体光层中透光区的尺寸,或者通过增加彩膜基板的遮光区的尺寸,来减少光线从薄膜晶体光层透光区入射至彩膜基板上相对的色阻子像素区域时,偏离对应的色阻子像素区域,甚至出射到相邻的其他色阻子像素区域,导致显示的图像异常等问题。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种显示面板结构示意图。
图2是本申请实施例提供的一种光路示意图。
图3是本申请实施例提供的另一种光路示意图。
图4是本申请实施例提供的再一种光路示意图。
图5是本申请第一实施例提供的一种显示面板结构的光路示意图。
图6是本申请实施例提供的再一种光路示意图。
图7是本申请第二实施例提供的一种显示面板结构的光路示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例的技术方案进行清楚、完整地描述。
本申请实施例提供了一种显示装置。所述显示装置可以是液晶电视、移动电话、个人数字助理(PDA)、数字相机、计算机屏幕或笔记本电脑屏幕等具有显示面板的电子设备。
本申请以垂直取向型液晶显示器(vertically aligned mode liquid crystal display,VA-LCD)举例。当薄膜晶体管层侧输入适当的驱动电压信号,可以让液晶分子偏转90度,这样就类似于在薄膜晶体管层朝向彩膜基板的一侧打开了与彩膜基板的色阻子像素区相对且面积大小相近的透光窗口,以便于光线透过该透光窗口进入液晶层,投射至色阻子像素区(例如R/G/B色阻子像素区),显示彩色。当显示最大亮度画面时,在图案化的彩膜基板下方,光通过的入射窗口面积接近色阻子像素区的面积和大小。
一种实施方式中,请参阅图1,所述显示装置包括显示面板100。所述显示面板100包括第一基板110、第二基板120、上侧基板130、液晶层140及背光源150。所述上侧基板130及所述液晶层140设于所述第一基板110与所述第二基板120之间。本实施方式中,所述第一基板110可以是彩膜基板,第二基板120可以是薄膜晶体管层,或者,所述第一基板110可以是薄膜晶体管层,第二基板120可以是彩膜基板。所述上侧基板130设于液晶层140与彩膜基板之间。所述上侧基板130可以包括玻璃基板131、透明导电薄膜层132、偏振层133及平坦层134。所述上侧基板130中各层的位置不做限定,可以按照图1所示设置。所述偏振层133还可以设于彩膜基板远离所述薄膜晶体管层的一侧,本申请对于所述偏振层133的位置不做限定。
本实施方式中,请参阅图1,以所述第一基板110是彩膜基板,第二基板120是薄膜晶体管层为例。如果将偏振层133置于彩膜基板110与液晶层140之间,具有以下的有益效果:一方面,彩膜基板110一般由颜料等成分组成, 颜料这种微小的颗粒对偏振光的偏振态存在一定程度的消偏作用,这一机制会导致整个显示面板100的对比度下降,因此,在某些情况下,偏振层133置于彩膜基板110与液晶层140之间,可以减少彩膜基板110对偏振光的偏振态的消偏作用。另一方面,在制作具有量子点彩膜基板的显示面板100时,由于量子点材料产生颜色的机理在于光致发光,故而显示面板100的偏振光传递会受到影响,而将偏振层13置于量子点彩膜基板与液晶层140之间,可以避免偏振光在经过量子点彩膜基板后变成部分偏振光从而影响显示的结果。
请参阅图1及图2,将偏振层133置于彩膜基板110与液晶层140之间(在本申请中也叫外置彩膜基板)时,从薄膜晶体管层120入射至所述彩膜基板110的光线的入射角90°-θ=arctan((d1+d1`)/L),其中,d1是液晶层140与所述彩膜基板110之间的间距,由于液晶层140与所述彩膜基板110之间设有玻璃基板131和偏振层133等,所以d1大于等于400um。d1`是液晶层140的厚度,d1`约为3.5um。若色阻子像素长为315um,宽为105um,L可以是彩膜基板110中色阻子像素的宽度,那么L为105um。当光线a的入射角90°-θ=arctan(403.5/105)=14.59°,也就是说,入射角大于14.59°的入射光均偏出正常的对应色阻子像素区域110a,这将导致大部分的入射光均偏离对应色阻子像素区域110a,甚至出射到相邻的其他色阻子像素区域,导致显示的图像异常。
为了解决上述的问题,可以减小d1,即减小液晶层140与所述彩膜基板110之间的间距,采用很薄的上侧基板130,例如PI等柔性基板,使得外置彩膜基板110对入射角的影响变小。此外,本申请实施例还提供了以下的实施方式,通过增大L,来增大入射光偏出正常的对应色阻子像素区域的临界角度。
请参阅图3及图4,图3及图4是本申请实施例提供的一种显示面板100的局部截面图。所述第一基板110具有第一顶壁111,所述第一顶壁111具有依次相连的第一透光区112、第一遮光区113及第二透光区114。所述第一透光区112、所述第一遮光区113及所述第二透光区114沿着第一方向x分布。第一方向x是色阻子像素区域的短边方向。所述第二基板120具有与所述第一顶壁111相对设置的第二顶壁121,所述第二顶壁121具有依次相连的第三透光区122、第二遮光区123及第四透光区124。第三透光区122、第二遮光区 123及第四透光区124沿着第一方向x分布。所述第一透光区112与所述第三透光区122相对设置。所述第一遮光区113与所述第二遮光区123相对设置,且所述第一遮光区113在所述第二基板120上的投影区域覆盖所述第二遮光区123。所述第一遮光区113用于在第一光线a1投射至所述第一透光区112时,阻挡所述第一光线a1投射至所述第二透光区114。所述第二遮光区123用于在第二光线a2投射至所述第三透光区122时,阻挡所述第二光线a2投射至所述第四透光区124。
可选的,所述第一基板110平行于所述第二基板120或与所述第二基板120之间形成小于等于5°的夹角。优选地,所述第一基板110平行于所述第二基板120。所述第一遮光区113的中心线与所述第二遮光区123的中心线大致重合。
具体而言,所述第一基板110包括多个透光区,用于透光或发光,相邻的透光区之间设有第一遮光区113,用于遮光。所述第二基板120也包括多个透光区,用于透光或发光,相邻的透光区之间设有第二遮光区123,用于遮光。本实施例中,所述第一基板110中的透光区与所述第二基板120中的透光区一一相对,所述第一基板110中的第一遮光区113与所述第二基板120中的第二遮光区123一一相对。第一基板110与第二基板120的具体区别将在下面的实施例中进行详细的描述。
第一实施例
请参阅图5,所述第一基板110是薄膜晶体管层,所述第二基板120是彩膜基板。所述背光源150设于所述薄膜晶体管层110背离所述彩膜基板120的一侧。所述背光源150发射所述第一光线a1透过所述第三透光区122投射至所述第一透光区112。第一透光区112和第二透光区114可以是薄膜晶体管层110的开口区,第一遮光区113可以为金属布线区(包括薄膜晶体管及相应的金属布线)。第三透光区122和第四透光区124可以是色阻子像素区,第二遮光区123可以为黑矩阵。
一般情况下,薄膜晶体管层110的透光区与彩膜基板120的透光区的面积大致相同,为了便于描述,本实施例以沿第一方向x的尺寸进行计算,薄膜晶体管层110的透光区与彩膜基板120的透光区可以均为105um,第一遮光区 113和第二遮光区123沿第一方向x的长度为40um。本申请实施例在现有技术的基础上,通过改进薄膜晶体管层110的透光区相对于所述彩膜基板120的透光区的尺寸来改进入射光串扰的问题。
可选的,本实施例减小了薄膜晶体管层110的透光区尺寸,使得薄膜晶体管层110的透光区尺寸小于所述彩膜基板120的透光区的尺寸。也就是说,本实施例增加了薄膜晶体管层110的各个透光区之间的遮光区尺寸,使得所述第一遮光区113在所述彩膜基板120上的投影区域覆盖所述第二遮光区123,即设置第一遮光区113的面积远远大于所述第二遮光区123的面积。
可选的,有多种实施方式增加薄膜晶体管层110的各个透光区之间的第一遮光区尺寸,本申请不做限定。
具体而言,请参阅图5,所述第一遮光区113包括第一金属布线区113a和第三遮光区113b。所述第三遮光区113b设于所述第一金属布线区113a与所述第一透光区112之间及所述第一金属布线区113a与所述第二透光区114之间。其中,所述第二遮光区123在所述薄膜晶体管层110上的投影区域可以与所述第一金属布线区113a的面积大致相等。所述第三遮光区113b可以与所述第二遮光区123为相同的材质,均为黑矩阵,也可以在同一制程制得。
本实施例对于薄膜晶体管层110的第一遮光区增大的尺寸不做很具体的限定。可选地,所述第一透光区112、所述第一遮光区113及所述第二透光区114沿第一方向x分布,所述第一遮光区113在所述第一方向x上的长度为第一长度L1`,所述第二遮光区123在所述第一方向x上的长度为第二长度L2`,所述第一长度L1`与所述第二长度L1`之比为3:1~6:1。该第一长度L1`与所述第二长度L2`之比可以由以下的计算推导:请参阅图6,一般情况下,所述第一基板110与所述第二基板120之间的间距为第一间距h1,所述第一间距h1可以为400um~700um。第三透光区121沿所述第一方向x上的长度L1为105um。第二遮光区123沿所述第一方向x上的长度L2`为40um。那么光线射至相邻色阻子像素区的临界入射角为90°-θ1=arctan(h1/(L1+L2))为11°~20°,则θ1为70°~79°,入射角大于11°的入射光入射至第二透光区114。
请参阅图5,所述第一遮光区113与所述第一透光区112的交接线为第一边115,所述第二遮光区123与所述第四透光区124的交接线为第二边125。 从第一透光区112入射至第二基板120的光线中,如若使得A点处的入射光线不会串扰至所述第四透光区124,那么其他地方的入射光线也不会串扰至所述第四透光区124。所述第一边115与所述第二边125之间的连线与所述第一顶壁111之间的夹角为θ2。当光线入射角(90°-θ2)小于光线射至相邻色阻子像素区的临界入射角时,A点处的入射光线不会串扰至所述第四透光区124。也就是说,所述第一边115与所述第二边125之间的连线与所述第一顶壁111之间的夹角θ2小于等于79°时,A点处的入射光线不会串扰至所述第四透光区124。当θ2等于79°时,第一间距h1为700um,计算得到第一金属布线区113b及第一金属布线区113b与第一透光区112之间的第三遮光区113a的长度为145um,第一金属布线区113b为40um,那么第一遮光区113的尺寸为105um+40um+105um=250um。即所述第二遮光区123与所述第一遮光区113的面积之比接近6:1。考虑到所述薄膜晶体管层110的开口率,可以适当减少所述第一遮光区113的面积,所以所述第一遮光区113与所述第二遮光区123的面积之比可以为3:1~6:1。
第二实施例
请参阅图7,所述第一基板110还可以是彩膜基板,所述第二基板120还可以是薄膜晶体管层。所述显示基板还包括背光源150,所述背光源150设于所述薄膜晶体管层背离所述彩膜基板的一侧。所述背光源150发射所述第二光线a2透过所述第一透光区112投射至所述第三透光区122。
第一透光区112和第二透光区114可以是色阻子像素区,第一遮光区113可以为黑矩阵。第三透光区122和第四透光区124可以是薄膜晶体管层120的开口区,所述第二遮光区113可以是第二金属布线区。其中,所述第一遮光区113在所述第二基板120上的投影区域覆盖所述第二金属布线区。
本实施例中,通过增大第一遮光区113(即黑矩阵)的尺寸来增大L,来增大入射光投射至其他的色阻子像素区域的临界角度。
与第一实施例相同的,本实施例可以使得第一遮光区113在第一方向x上的长度与所述第二遮光区123在第一方向x上的长度之比为3:1~6:1。所述第一边115与所述第二边125之间的连线与所述第一顶壁111之间的夹角为θ3。θ3小于等于79°时,入射光线不会串扰至所述第二透光区114。具体的计算 方式与第一实施例相同,本申请不再赘述。
本申请实施例中的第一遮光区113为黑矩阵,那么在增加第一遮光区113的尺寸时,可以在黑矩阵的制程中,增加黑矩阵的尺寸,使得黑矩阵的尺寸为薄膜晶体管层中第二金属布线区尺寸的3~6倍。这样可以使得较多的入射光线被黑矩阵阻挡,而不会串扰至相邻的色阻子像素区域。
本申请实施例对于沿第一方向x方向上第一遮光区113和第二遮光区123的尺寸进行了讨论,所述第一方向x为色阻子像素区域的短边方向。色阻子像素区域的长边方向的第一遮光区113和第二遮光区123的尺寸关系可以根据本申请的发明构思确定,本申请不再赘述。
本申请实施例提供了一种显示面板及显示终端,该显示面板通过减少薄膜晶体光层透光区的尺寸,或者通过增加彩膜基板的遮光区的尺寸,来减少光线从薄膜晶体光层透光区入射至彩膜基板上相对的色阻子像素区域时,偏离对应的色阻子像素区域,甚至出射到相邻的其他色阻子像素区域,导致显示的图像异常等问题。
综上所述,虽然本申请已以较佳实施例揭露如上,但该较佳实施例并非用以限制本申请,该领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (18)

  1. 一种显示面板,其中,包括液晶层、第一基板及第二基板,所述液晶层设于所述第一基板与所述第二基板之间,所述第一基板具有依次相连的第一透光区、第一遮光区及第二透光区,所述第二基板具有依次相连的第三透光区、第二遮光区及第四透光区,所述第一透光区与所述第三透光区相对设置,所述第一遮光区与所述第二遮光区相对设置,且所述第一遮光区在所述第二基板上的投影区域覆盖所述第二遮光区,所述第一遮光区用于在第一光线投射至所述第一透光区时,阻挡所述第一光线投射至所述第二透光区,所述第二遮光区用于在第二光线投射至所述第三透光区时,阻挡所述第二光线投射至所述第四透光区。
  2. 如权利要求1所述的显示面板,其中,所述第一遮光区与所述第一透光区的交接线为第一边,所述第二遮光区与所述第四透光区的交接线为第二边,所述第一边与所述第二边之间的连线与所述第一基板之间的夹角小于等于79°。
  3. 如权利要求1所述的显示面板,其中,所述第一透光区、所述第一遮光区及所述第二透光区沿第一方向分布,所述第一遮光区在所述第一方向上的长度为第一长度,所述第二遮光区在所述第一方向上的长度为第二长度,所述第一长度与所述第二长度之比为3:1~6:1。
  4. 如权利要求1所述的显示面板,其中,所述第一基板平行于所述第二基板或与所述第二基板之间形成小于等于5°的夹角。
  5. 如权利要求1所述的显示面板,其中,所述第一基板是薄膜晶体管层,所述第二基板是彩膜基板,所述显示基板还包括背光源,所述背光源设于所述薄膜晶体管层背离所述彩膜基板的一侧,所述背光源发射所述第一光线透过所述第一透光区投射至所述第三透光区。
  6. 如权利要求5所述的显示面板,其中,所述第一遮光区包括第一金属布线区和第三遮光区,所述第三遮光区设于所述第一金属布线区与所述第一透光区之间及所述第一金属布线区与所述第二透光区之间。
  7. 如权利要求6所述的显示面板,其中,所述第三遮光区的材质与所述第 二遮光区的材质相同。
  8. 如权利要求1所述的显示面板,其中,所述第一基板是彩膜基板,所述第二基板是薄膜晶体管层,所述显示基板还包括背光源,所述背光源设于所述薄膜晶体管层背离所述彩膜基板的一侧,所述背光源发射所述第二光线透过所述第二透光区投射至所述第一透光区。
  9. 如权利要求8所述的显示面板,其中,所述第二遮光区包括第二金属布线区,所述第一遮光区在所述第二基板上的投影区域覆盖所述第二金属布线区。
  10. 一种显示装置,其中,包括显示面板,所述显示面板包括液晶层、第一基板及第二基板,所述液晶层设于所述第一基板与所述第二基板之间,所述第一基板具有依次相连的第一透光区、第一遮光区及第二透光区,所述第二基板具有依次相连的第三透光区、第二遮光区及第四透光区,所述第一透光区与所述第三透光区相对设置,所述第一遮光区与所述第二遮光区相对设置,且所述第一遮光区在所述第二基板上的投影区域覆盖所述第二遮光区,所述第一遮光区用于在第一光线投射至所述第一透光区时,阻挡所述第一光线投射至所述第二透光区,所述第二遮光区用于在第二光线投射至所述第三透光区时,阻挡所述第二光线投射至所述第四透光区。
  11. 如权利要求10所述的显示装置,其中,所述第一遮光区与所述第一透光区的交接线为第一边,所述第二遮光区与所述第四透光区的交接线为第二边,所述第一边与所述第二边之间的连线与所述第一基板之间的夹角小于等于79°。
  12. 如权利要求10所述的显示装置,其中,所述第一透光区、所述第一遮光区及所述第二透光区沿第一方向分布,所述第一遮光区在所述第一方向上的长度为第一长度,所述第二遮光区在所述第一方向上的长度为第二长度,所述第一长度与所述第二长度之比为3:1~6:1。
  13. 如权利要求10所述的显示装置,其中,所述第一基板平行于所述第二基板或与所述第二基板之间形成小于等于5°的夹角。
  14. 如权利要求10所述的显示装置,其中,所述第一基板是薄膜晶体管层,所述第二基板是彩膜基板,所述显示基板还包括背光源,所述背光源设于所述 薄膜晶体管层背离所述彩膜基板的一侧,所述背光源发射所述第一光线透过所述第一透光区投射至所述第三透光区。
  15. 如权利要求14所述的显示装置,其中,所述第一遮光区包括第一金属布线区和第三遮光区,所述第三遮光区设于所述第一金属布线区与所述第一透光区之间及所述第一金属布线区与所述第二透光区之间。
  16. 如权利要求15所述的显示装置,其中,所述第三遮光区的材质与所述第二遮光区的材质相同。
  17. 如权利要求10所述的显示装置,其中,所述第一基板是彩膜基板,所述第二基板是薄膜晶体管层,所述显示基板还包括背光源,所述背光源设于所述薄膜晶体管层背离所述彩膜基板的一侧,所述背光源发射所述第二光线透过所述第二透光区投射至所述第一透光区。
  18. 如权利要求17所述的显示装置,其中,所述第二遮光区包括第二金属布线区,所述第一遮光区在所述第二基板上的投影区域覆盖所述第二金属布线区。
PCT/CN2018/071457 2017-08-01 2018-01-04 显示面板及显示装置 WO2019024435A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/750,181 US10345638B2 (en) 2017-08-01 2018-01-04 Display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710647367.6A CN107219674B (zh) 2017-08-01 2017-08-01 显示面板及显示装置
CN201710647367.6 2017-08-01

Publications (1)

Publication Number Publication Date
WO2019024435A1 true WO2019024435A1 (zh) 2019-02-07

Family

ID=59954403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071457 WO2019024435A1 (zh) 2017-08-01 2018-01-04 显示面板及显示装置

Country Status (2)

Country Link
CN (1) CN107219674B (zh)
WO (1) WO2019024435A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10345638B2 (en) 2017-08-01 2019-07-09 Shenzhen China Star Optoelectronics Technology Co., Ltd Display panel and display device
CN107219674B (zh) * 2017-08-01 2020-02-14 深圳市华星光电技术有限公司 显示面板及显示装置
CN108873452B (zh) * 2018-06-25 2021-04-23 Tcl华星光电技术有限公司 液晶显示装置
CN108681146B (zh) * 2018-07-26 2021-07-23 上海天马微电子有限公司 显示面板、显示装置及3d打印系统
CN110441930B (zh) * 2019-06-11 2021-09-10 惠科股份有限公司 一种显示面板和显示装置
CN112054131B (zh) * 2020-09-14 2022-09-20 京东方科技集团股份有限公司 显示面板、显示装置及显示设备
CN113156700A (zh) * 2021-02-24 2021-07-23 捷开通讯(深圳)有限公司 一种显示面板、制备显示面板的方法及电子设备
CN115868259A (zh) * 2021-06-25 2023-03-28 京东方科技集团股份有限公司 显示基板、显示面板和显示装置
CN117769898A (zh) * 2022-07-25 2024-03-26 京东方科技集团股份有限公司 显示面板及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120287605A1 (en) * 2011-05-09 2012-11-15 Apple Inc. Display with color control
JP2015069119A (ja) * 2013-09-30 2015-04-13 パナソニック液晶ディスプレイ株式会社 表示装置
CN104698674A (zh) * 2015-03-30 2015-06-10 京东方科技集团股份有限公司 一种显示面板和显示装置
CN106371242A (zh) * 2016-11-11 2017-02-01 合肥京东方光电科技有限公司 一种显示基板、显示面板、显示装置及制作方法
CN106773379A (zh) * 2017-02-06 2017-05-31 京东方科技集团股份有限公司 显示面板、显示装置及其控制方法
CN107219674A (zh) * 2017-08-01 2017-09-29 深圳市华星光电技术有限公司 显示面板及显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1668922B1 (en) * 2003-09-20 2014-03-26 Koninklijke Philips N.V. Image display device
CN201107514Y (zh) * 2007-06-26 2008-08-27 上海广电光电子有限公司 改善斜向漏光的液晶显示装置
CN103698894B (zh) * 2013-12-27 2015-12-02 合肥京东方光电科技有限公司 一种被动偏光式三维显示装置及其制作方法
CN104808381A (zh) * 2015-04-28 2015-07-29 厦门天马微电子有限公司 显示面板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120287605A1 (en) * 2011-05-09 2012-11-15 Apple Inc. Display with color control
JP2015069119A (ja) * 2013-09-30 2015-04-13 パナソニック液晶ディスプレイ株式会社 表示装置
CN104698674A (zh) * 2015-03-30 2015-06-10 京东方科技集团股份有限公司 一种显示面板和显示装置
CN106371242A (zh) * 2016-11-11 2017-02-01 合肥京东方光电科技有限公司 一种显示基板、显示面板、显示装置及制作方法
CN106773379A (zh) * 2017-02-06 2017-05-31 京东方科技集团股份有限公司 显示面板、显示装置及其控制方法
CN107219674A (zh) * 2017-08-01 2017-09-29 深圳市华星光电技术有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
CN107219674A (zh) 2017-09-29
CN107219674B (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
WO2019024435A1 (zh) 显示面板及显示装置
CN107632453B (zh) 显示面板及制造方法和显示装置
US9341345B2 (en) Light diffusion member, method of manufacturing same, and display device
US8926157B2 (en) Light diffusing member and method of manufacturing the same, and display device
US10288781B2 (en) Display device and light-diffusing member
WO2018166260A1 (zh) 显示基板及其制作方法、显示面板及显示装置
WO2017071404A1 (zh) 一种光学结构及其制作方法以及显示基板和显示器件
US7982848B2 (en) Variable transmission light quantity element with dielectric layers and projection display
WO2017035911A1 (zh) Boa型液晶面板
US20150212540A1 (en) Light diffusing touch panel and manufacturing method for same, as well as display device
CN108363235B (zh) 减反膜及其制备方法、阵列基板、显示装置
CN111965864B (zh) 调光结构和显示装置
US11209691B2 (en) Electro-optical device and electronic apparatus
US10168569B2 (en) Display device, adhesive-layer-including light-diffusion member, and method of manufacturing the light-diffusion member
JP4609525B2 (ja) 液晶表示装置
WO2021174976A1 (zh) 显示面板和显示装置
WO2019184810A1 (zh) 液晶显示面板、液晶显示装置及其灰阶控制方法
US10345638B2 (en) Display panel and display device
US10018755B2 (en) Light diffusion member and display device
TW202117523A (zh) 顯示裝置
CN111919163B (zh) 阵列基板以及显示装置
JP2009276743A (ja) 液晶表示装置、電子機器
US8223302B2 (en) Display panel, electro-optical apparatus, and methods for manufacturing the same
US20170153377A1 (en) Display device
WO2020224094A1 (zh) 半透半反式液晶显示面板及半透半反式液晶显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18840457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18840457

Country of ref document: EP

Kind code of ref document: A1