WO2019023952A1 - 全断面岩石掘进机关键部位振动与应变监测方法 - Google Patents
全断面岩石掘进机关键部位振动与应变监测方法 Download PDFInfo
- Publication number
- WO2019023952A1 WO2019023952A1 PCT/CN2017/095532 CN2017095532W WO2019023952A1 WO 2019023952 A1 WO2019023952 A1 WO 2019023952A1 CN 2017095532 W CN2017095532 W CN 2017095532W WO 2019023952 A1 WO2019023952 A1 WO 2019023952A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vibration
- strain
- sensor
- point
- monitoring
- Prior art date
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000013507 mapping Methods 0.000 claims abstract description 18
- 238000005259 measurement Methods 0.000 claims description 35
- 230000001681 protective effect Effects 0.000 claims description 13
- 239000011435 rock Substances 0.000 claims description 13
- 230000005641 tunneling Effects 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 6
- 238000011156 evaluation Methods 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 2
- 230000035772 mutation Effects 0.000 claims description 2
- 230000008054 signal transmission Effects 0.000 claims description 2
- 238000001179 sorption measurement Methods 0.000 claims description 2
- 238000003466 welding Methods 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 abstract description 4
- 230000007774 longterm Effects 0.000 abstract description 3
- 238000012806 monitoring device Methods 0.000 abstract description 3
- 238000012423 maintenance Methods 0.000 abstract description 2
- 230000008439 repair process Effects 0.000 abstract description 2
- 238000010276 construction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000013210 evaluation model Methods 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000009412 basement excavation Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D9/00—Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
- E21D9/003—Arrangement of measuring or indicating devices for use during driving of tunnels, e.g. for guiding machines
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D9/00—Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
- E21D9/10—Making by using boring or cutting machines
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D9/00—Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
- E21D9/10—Making by using boring or cutting machines
- E21D9/11—Making by using boring or cutting machines with a rotary drilling-head cutting simultaneously the whole cross-section, i.e. full-face machines
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/0061—Force sensors associated with industrial machines or actuators
Definitions
- the invention relates to a real-time vibration and strain monitoring and strain equivalent mapping measurement method for a full-face rock tunneling machine mainframe system, and belongs to the technical field of underground construction real-time monitoring of a full-section rock tunneling machine.
- TBM full-face rock tunneling machine
- the TBM mainframe system mainly includes key parts such as cutterhead, support shield, drive motor, main beam and support boots.
- the severe load conditions are important factors for the failure of the TBM host system.
- Life estimation requires mastering the vibration of the TBM mainframe and the strain at critical structural locations. Establish a real-time monitoring system to monitor the vibration and strain of key weak parts of the TBM host system, which can remind the construction workers to carry out timely maintenance and avoid further damage. At the same time, it can improve the vibration reduction scheme and the life of key structural parts. Estimate the basis for the offer.
- the present invention performs an overall safety layout and a local strengthening protection measure for the existing vibration and strain sensors, and gives a method for evaluating the strain state of the unmeasured part, the equivalent mapping method. Therefore, a set of vibration monitoring and strain monitoring system for the whole process of key parts of the TBM host system was constructed.
- Vibration and strain monitoring system and equivalent mapping method for key parts of full-face rock tunneling machine including acceleration node for measuring vibration, strain gauge and strain node for measuring strain, antenna for amplifying acquisition signal, wireless gateway for receiving wireless signal, display Computer and equivalent mapping method for measuring data.
- the wireless sensor in the key part monitors the vibration and strain state during its operation, and accepts transmission vibration and strain data based on the wireless network protocol to realize real-time monitoring of the critical weak position operation status of the TBM host system.
- the measurement signal is input to the model equivalent mapping method to evaluate the strain state of the unmeasured portion.
- the specific system construction is divided into the following two aspects: sensor layout; equivalent mapping method measurement model.
- the monitoring method mainly measures the cutter head 1, the support shield 2, the drive motor, the main beam 3, and the support shoe 4 of the full-section rock tunneling machine (TBM), and the overall structure is shown in Fig. 1.
- TBM full-section rock tunneling machine
- the second step is to strengthen local protection measures and connections.
- the system adds a metal protective cover to the sensor node (f2 in Fig. 9) and the industrial battery (e2 in Fig. 8).
- the protective cover structure of the industrial battery and the sensor node are respectively e1 in Fig. 8 and f1 in Fig. 9.
- the tested part and all metal protective covers are fixed by welding.
- the sensor node (f2 in Fig. 9) is coupled with the protective cover by a strong magnetic seat (e3 in Fig.
- the wireless signal transmitting and receiving antennas (V in Fig. 4) are fixed by magnetic adsorption.
- the strain gauge (III in Fig. 4) for collecting the strain information is fixed by screwing with the detected portion.
- the third step is to supply power.
- All the sensors in the system are divided into two types.
- One is the sensor in the cutter head. Since the cutter head is a rotating part, the power cord is difficult to arrange. Therefore, it is powered by an industrial battery. As shown in the figure, the battery can be replaced regularly. Other sensors use electricity directly from the power line.
- the fourth step is signal transmission and monitoring.
- the wireless gateway is set in the TBM host operation room, accepting the vibration and strain signals of the TBM host system cutterhead, supporting the vibration signals of the shield body, the front section of the main beam, the drive motor and the support shoe, and detecting the vibration and vibration signals beyond the normal value. Timely warning and display on the computer in the TBM host operating room to generate a TBM work log.
- the measurement of the physical quantity such as the strain of the workpiece due to the measurement of the working conditions at the site and the structure of the workpiece itself, makes it impossible to make relevant measurements on the parts we care about.
- a method for reversing the strain at a critical portion that cannot be directly measured by measuring the strain at other portions is proposed.
- the schematic diagram of the measurement model is shown in Fig. 10.
- the evaluation values of the equivalent mapping point S0 are as follows:
- ⁇ 0 is the strain of the point S0 to be measured
- ⁇ i is the strain of the measuring points S1, S2, S3, S4;
- P is the local structural parameter of the measured part formed by measuring points S1, S2, S3, S4.
- P 1 ⁇ 10, the more ribs, the larger P ;
- the invention has the beneficial effects that the invention uses the vibration and strain sensor and the wireless data transmission system to acquire the monitoring data, realizes the long-term real-time monitoring of the vibration and strain state of the key parts of the TBM host system, promptly reminds the operator to maintain and repair, and prevents the TBM host. Fatigue damage occurs at critical locations in the system, ensuring that the TBM works safely and reliably.
- the present invention proposes a new indirect measurement strain model-equivalent mapping method measurement model, by arranging a strain sensor around the point to be measured to calculate the strain of the point to be measured, which is the strain of the portion where the sensor cannot be directly arranged. Measurement provides a method.
- FIG. 1 is a general view of the TBM.
- Figure 2 is a structural view of the back of the cutter head.
- Figure 3 is a partial enlarged view of the position of the manhole of the cutter head.
- Figure 4 is a partial enlarged view of the position of the water hole.
- Figure 5 is a partial enlarged view of the support shield.
- Figure 6 is a partial enlarged view of the front end of the main beam.
- Figure 7 is a structural view of the support shoe.
- Figure 8 is a schematic view of an industrial battery and its protective cover.
- FIG. 1 Schematic diagram of sensor nodes (including vibration and strain) and their protective covers.
- Figure 10 is a schematic diagram of the equivalent mapping method measurement model.
- A1 manhole; a2 water hole; b1 supports the inner surface of the top of the shield;
- C1 drives the side of the motor motor box; c2 front end of the main beam; d1 supports the inner side of the boot;
- E1 industrial battery protection cover e2 industrial battery
- E3 strong magnetic seat e4 industrial battery protection cover groove; f1 sensor protection cover; f2 sensor;
- I sensor and its protective cover II voltage node (with strain gauge) and its protective cover;
- S1, S2, S3, and S4 are respectively four direct measurement points
- H1, h2, h3, h4 are the distances between the direct measurement point and the equivalent mapping measurement point, respectively;
- A is a measurement circle that limits the measurement range.
- FIG. 1 is a schematic diagram of a TBM host system of a certain project, including main parts such as a cutter head, a support shield, a drive motor, a main beam and a support shoe, and a TBM cutter head.
- main parts such as a cutter head, a support shield, a drive motor, a main beam and a support shoe, and a TBM cutter head.
- the rock is continuously cut during the working process, and the cutter disk is subjected to rock impact to generate a large load and the load is transmitted to the rear parts, causing vibration of the support shield, the drive motor, the main beam and the support shoe.
- the vibration sensor disposed in the water hole of the cutter disc is powered by the battery.
- the battery is used for about 1 week at an appropriate sampling frequency, and the collected vibration signal is transmitted through the antenna;
- the strain gauge measures the strain score of the measuring point, the strain gauge cooperates with the voltage node to measure the strain signal, amplifies the signal through the antenna and transmits it to the gateway; in addition, the vibration of the supporting shield, the driving motor, the front section of the main beam and the supporting shoe Sensors will each have their own vibration letter The number is transmitted to the gateway via the antenna.
- the strain sensor is arranged at S1, S2, S3, S4, and the equivalent mapping measurement point S0, thereby determining various parameters of the evaluation model, thereby calculating the strain of S0.
- the real-time vibration and strain signals generated by the TBM can be displayed on the computer in the TBM host operating room and generate a TBM work log to achieve the desired functional requirements.
- the monitoring device and the all-weather remote monitoring and forecasting system thereof of the invention obtain the monitoring data by using the vibration and strain sensor and the wireless data transmission system thereof, thereby realizing long-term real-time monitoring of the vibration and strain state of the key components of the TBM host system during operation, and Equivalent mapping evaluation of other parts that cannot be directly measured to timely report the working status of the TBM to the operator to prevent sudden failure of the critical position of the TBM host system and ensure that the TBM works safely and reliably.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Environmental & Geological Engineering (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
- Excavating Of Shafts Or Tunnels (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
Abstract
一种全断面岩石掘进机关键部位振动与应变监测方法、一种监测装置及其全天候监测预警系统,利用振动及应变传感器及其无线数据传输系统获取监测数据,实现对全断面岩石掘进机主机系统工作时关键部位振动及应变状态长期实时监测,及时提醒操作人员维护检修,防止全断面岩石掘进机主机系统关键薄弱位置发生疲劳破坏,确保全断面岩石掘进机安全可靠地进行工作,同时还采用等效映射法对无法测量部位应变状态进行评估。
Description
本发明涉及一种全断面岩石掘进机主机系统振动、应变实时监测与应变等效映射测量法,属于全断面岩石掘进机地下施工实时监测技术领域。
随着我国经济的发展,近年来全断面岩石掘进机(TBM)广泛用于我国的水利工程,铁路交通,地铁工程,油气管道及国防等隧道建设中。全断面岩石掘进机在作业时,由于工况复杂、服役环境恶劣等原因,具有重载、冲击的特点,最终造成TBM主机系统关键薄弱部位发生磨损甚至断裂。
TBM主机系统主要包含刀盘、支撑盾体、驱动电机、主梁、支撑靴等关键部位,恶劣的载荷条件是造成TBM主机系统故障的重要因素,为了对主机进行抗振设计以及关键结构件的寿命估计,必须掌握TBM主机的振动情况和关键结构部位的应变情况。建立一套实时监测系统对TBM主机系统关键薄弱部位振动及应变情况进行监测,既可以提醒工程施工人员进行及时的检修,避免进一步的破坏,同时可以为减振方案的改进以及关键结构件的寿命估计提供依据。
由于TBM的工况十分恶劣,对TBM状态的监测极其困难。目前国内外对TBM主机系统振动及应变的监测尚没有一套完整的方案。并且一些关键部位的理论危险点,由于实际工况的限制,无法安装传感器进行直接测量。虽也有一些学者或企业对掘进过程中的某一小段振动数据进行采集,由于采集的样本较少,因此具有一定的局限性。
基于以上情况,本发明对已有的振动及应变传感器,进行了总体安全性布局和局部强化保护措施,并给出一种对无法测量部位应变状态进行评估的方法——等效映射法。从而构建了一套用于TBM主机系统关键部位掘进全程的振动监测、应变监测系统。
本发明的目的在于提供一种监测装置及其全天候远程监测与预测系统。
本发明的技术方案:
全断面岩石掘进机关键部位振动与应变监测方法,步骤如下:
全断面岩石掘进机关键部位振动和应变监测系统与等效映射法,包含用于测量振动的加速度节点、测量应变的应变计及应变节点、放大采集信号的天线、接受无线信号的无线网关、显示测量数据的计算机及等效映射法测量模型。其特征在于,通过布置在TBM主机系统
关键部位的无线传感器监测其运行过程中的振动及应变状态,同时基于无线网络协议接受传输振动及应变数据,实现TBM主机系统关键薄弱位置运行状态的实时监测。并将测量信号输入模等效映射法测量模型,对无法测量部位的应变状态进行评估。具体的系统搭建分为以下两个方面:传感器的布置;等效映射法测量模型。
Ⅰ、传感器的布置
第一步,总体安全性布局
本监测方法主要针对全断面岩石掘进机(TBM)的刀盘1、支撑盾体2、驱动电机、主梁3、支撑靴4进行测量,其总体结构如图1。为了使传感器能安全稳定地工作,首先要在各个被检测部件上选择既能反应运动状态又相对安全的测量点。参考大量实际工程,测量点选择岩渣等不易掉落到地方,具体布局如下:
选择刀盘1的振动测量点和应变测量点,在两个人孔(图2中a1所示)和两个水孔(图2中a2所示)中布置传感器,人孔中只布置振动传感器,水孔中布置振动传感器和应变传感器,振动传感器和应变传感器具体位置见a1和a2位置的局部放大图,分别为图3和图4;
选择支撑盾体2(图5中b1)的振动测量点,在支撑盾体2顶部、内表面布置振动传感器,具体位置如图5;
选择驱动电机(图6中c1)的振动测量点,在电机盒的侧面布置振动传感器,具体位置如图6;
选择主梁3(图6中c2)的振动测量点,在主梁前端上表面布置振动传感器,具体位置如图6;
选择支撑靴4(图7中d1)的振动测量点,在支撑靴4内侧面布置振动传感器,具体位置如图7;
第二步,局部强化保护措施和连接
由于传感器等属于易损件,为避免岩渣冲击和地下潮湿环境导致传感器的失效,本系统对传感器节点(图9中f2)和工业电池(图8中e2)等加装金属保护罩(图8中e1),以实现抗撞击和防水防潮的作用,工业电池和传感器节点的保护罩结构分别为图8中e1和图9中f1。首先,被检测部位与所有金属保护罩均采用焊接方式进行固定。其次,传感器节点(图9中f2)与保护罩采用强力磁座(图8中e3)联结,并且保护罩底部加工有与磁座相对应的凹槽(图8中e4),以确保节点在检测过程中,节点方向不会偏移。对于无线信号发射与接收天线(图4中Ⅴ)均采用磁吸附的方式固定。对于采集应变信息的应变计(图4中Ⅲ)与被检测部位采用螺纹连接固定。
第三步,供电。
系统里全部的传感器用电分为两种,一种是刀盘内的传感器用电,由于刀盘为旋转部件,电源线难以布置,故采用工业电池方式供电,如图,定时更换电池即可;其他的传感器用电采用电源线直接供电的方式。
第四步,信号传输及监测。
无线网关设置在TBM主机操作室,接受TBM主机系统刀盘的振动及应变信号,支撑盾体、主梁前段、驱动电机及支撑靴的振动信号,对于检测到的超出正常值得应变及振动信号就行及时预警,并显示在TBM主机操作室的计算机上,生成TBM的工作日志。
Ⅱ、等效映射法测量模型
对工件的应变等物理量的测量,由于测量现场工况以及工件本身的结构的限制,导致无法对我们关心的部位进行相关测量。下面,提出一种通过测量其他部位的应变来反求无法直接测量的关键部位应变的方法。测量模型示意图如图10,等效映射待测点S0的评估值如下:
式中:ε0为待测点S0的应变;
εi为测量点S1,S2,S3,S4的应变;
αi为各测量点的位置参数,αi=1~10;各测量点距离S0点越近,相应的αi越大;
P为测量点S1,S2,S3,S4所形成的被测部位的局部结构参数,无加强筋时,P=1,有加强筋时,P=1~10,加强筋越多,P越大;
β为突变系数,当待测点S0处有加强筋时,β=0.3~0.7;当待测点S0处有应力突变时,β=1.1~1.6,当待测点S0处无特殊结构,β=1;
误差说明:因为应变与载荷和工件结构都有密切关系,所以这种方法的应用范围不能放大,经过一些工程应用,测量圆A的直径一般不超过0.5m。由于工况的复杂性,这一评估模型并不是准确计算值,具有一定的误差,其误差在工程上可以接受。
本发明的有益效果:本发明利用振动及应变传感器及其无线数据传输系统获取监测数据,实现对TBM主机系统工作时关键部位振动及应变状态长期实时监测,及时提醒操作人员维护检修,防止TBM主机系统关键薄弱位置发生疲劳破坏,确保TBM安全可靠地进行工作。此外,本发明提出了一种新型间接测量应变的模型——等效映射法测量模型,通过在待测点周围布置应变传感器,来计算出待测点应变,为无法直接布置传感器的部位的应变测量提供了一种方法。
附图说明
图1是TBM总体图。
图2是刀盘背面结构图。
图3是刀盘人孔位置局部放大图。
图4是水孔位置局部放大图。
图5是支撑盾体局部放大图。
图6是主梁前端局部放大图。
图7是支撑靴结构图。
图8工业电池及其保护罩示意图。
图9传感器节点(包括振动和应变)及其保护罩示意图。
图10等效映射法测量模型示意图。
图中:1刀盘;2支撑盾体;3主梁;4支撑靴;
a1人孔;a2水孔;b1支撑盾体顶部内表面;
c1驱动电机电机盒的侧面;c2主梁前端;d1支撑靴内侧面;
e1工业电池保护罩;e2工业电池;
e3强力磁座;e4工业电池保护罩凹槽;f1传感器保护罩;f2传感器;
Ⅰ传感器及其保护罩;Ⅱ电压节点(与应变计配合)及其保护罩;
Ⅲ应变计;Ⅳ工业电池及其保护罩;Ⅴ天线;S0为等效映射测量点;
S1,S2,S3,S4分别为四个直接测量点;
h1,h2,h3,h4分别为直接测量点与等效映射测量点的距离;
A为限制测量范围的测量圆。
下面结合附图及技术方案详细说明本发明的具体实施方式,图1为某工程的TBM主机系统示意图,包含刀盘、支撑盾体、驱动电机、主梁及支撑靴等主要部件,TBM刀盘在工作过程中不停地切割岩石,刀盘受岩石冲击作用产生受载较大且载荷传递到后面的部件,造成了支撑盾体、驱动电机、主梁及支撑靴的振动。
在刀盘部位,布置在刀盘水孔内的振动传感器,采用电池供电,在适当的采样频率下电池的使用周期约为1周,采集到的振动信号经天线;布置在刀盘水孔内的应变计,对测量点进行应变得分测量,应变计配合电压节点测量应变信号,通过天线放大信号并传输至网关;除此以外,在支撑盾体、驱动电机、主梁前段以及支撑靴的振动传感器分别将各自的振动信
号经天线传至网关。
当所有传感器将信号传至无线网关后,所有数据由计算机配套软件处理,并实时显示和保存。对于等效映射测量模型,通过在S1,S2,S3,S4处布置应变传感器,以及等效映射测量点S0,从而确定评估模型的各个参数,进而计算出S0的应变。通过这样数据流动方式,TBM工作时产生的实时振动以及应变信号就可以显示在TBM主机操作室的计算机上,并生成TBM的工作日志,以实现预期的功能要求。
本发明的一种监测装置及其全天候远程监测与预测系统,利用振动及应变传感器及其无线数据传输系统获取监测数据,实现对TBM主机系统工作时关键部件的振动及应变状态长期实时监测,并对其它无法直接测量的部位进行等效映射评估,以将TBM的工作状态及时反馈给操作人员,防止TBM主机系统关键位置突发故障,确保TBM安全可靠地工作。
Claims (2)
- 一种全断面岩石掘进机关键部位振动与应变监测方法,其特征在于,步骤如下:Ⅰ、传感器的布置第一步,总体安全性布局本监测方法针对全断面岩石掘进机的刀盘、支撑盾体、驱动电机、主梁、支撑靴进行测量;被监测部件要求既能反应运动状态又相对安全的测量点;具体布局如下:选择刀盘的振动测量点和应变测量点,在两个人孔和两个水孔中布置传感器,人孔中只布置振动传感器,水孔中布置振动传感器和应变传感器;选择支撑盾体的振动测量点,在支撑盾体顶部、内表面布置振动传感器;选择驱动电机的振动测量点,在电机盒的侧面布置振动传感器;选择主梁的振动测量点,在主梁前端上表面布置振动传感器;选择支撑靴的振动测量点,在支撑靴内侧面布置振动传感器;第二步,局部强化保护和连接对各监测点布置的传感器和使用的工业电池加装金属保护罩,以实现抗撞击和防水防潮的作用;金属保护罩均采用焊接方式进行固定,传感器节点与金属保护罩采用强力磁座联结,并且金属保护罩底部设有与磁座相对应的凹槽,以确保传感器在监测过程中,方向不偏移;对于无线信号发射与接收天线均采用磁吸附的方式固定;对于采集应变信息的应变计与被监测部位采用螺纹连接固定;第三步,供电供电方式分为两种,刀盘内的传感器采用工业电池方式供电;其他监测部位的传感器采用电源线直接供电的方式;第四步,信号传输及监测无线网关设置在TBM主机操作室,接受TBM主机系统刀盘的振动及应变信号,支撑盾体、主梁、驱动电机及支撑靴的振动信号,对于检测到的超出正常值的应变及振动信号及时预警,并显示在TBM主机操作室的计算机上,生成TBM的工作日志;Ⅱ、等效映射法测量模型的建立等效映射待测点S0的评估值如下:式中:ε0为待测点S0的应变;εi为测量点S1,S2,S3,S4的应变;αi为各测量点的位置参数,αi=1~10;各测量点距离S0点越近,相应的αi越大;P为测量点S1,S2,S3,S4所形成的被测部位的局部结构参数,无加强筋时,P=1,有加强筋时,P=1~10,加强筋越多,P越大;β为突变系数,当待测点S0处有加强筋时,β=0.3~0.7;当待测点S0处有应力突变时,β=1.1~1.6,当待测点S0处无特殊结构,β=1。
- 根据权利要求1所述的全断面岩石掘进机关键部位振动与应变监测方法,其特征在于,所述的测量点S1,S2,S3,S4所在的测量圆的直径不超过0.5m。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17920184.3A EP3505724B1 (en) | 2017-08-01 | 2017-08-01 | Method for monitoring vibration and strain of key parts of tunnel boring machine |
US16/338,956 US10711609B2 (en) | 2017-08-01 | 2017-08-01 | Vibration and strain monitoring method for key positions of tunnel boring machine |
PCT/CN2017/095532 WO2019023952A1 (zh) | 2017-08-01 | 2017-08-01 | 全断面岩石掘进机关键部位振动与应变监测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/095532 WO2019023952A1 (zh) | 2017-08-01 | 2017-08-01 | 全断面岩石掘进机关键部位振动与应变监测方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019023952A1 true WO2019023952A1 (zh) | 2019-02-07 |
Family
ID=65232184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/095532 WO2019023952A1 (zh) | 2017-08-01 | 2017-08-01 | 全断面岩石掘进机关键部位振动与应变监测方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10711609B2 (zh) |
EP (1) | EP3505724B1 (zh) |
WO (1) | WO2019023952A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114216430A (zh) * | 2021-11-17 | 2022-03-22 | 盾构及掘进技术国家重点实验室 | 一种大型掘进机主驱动轴承滚子应变的实时监测方法 |
CN117454114A (zh) * | 2023-11-02 | 2024-01-26 | 中国矿业大学 | 基于多点位分布的地铁隧道掘进爆破振动安全监测装置 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109738022A (zh) * | 2019-02-18 | 2019-05-10 | 中国科学院武汉岩土力学研究所 | Tbm掘进过程围岩与tbm相互作用监测方法及装置 |
CN111679319B (zh) * | 2020-06-16 | 2023-07-18 | 中铁十四局集团隧道工程有限公司 | 一种适应tbm快速掘进地表参数识别方法 |
CN111927558B (zh) * | 2020-10-13 | 2021-01-12 | 中国科学院武汉岩土力学研究所 | 动水软弱围岩隧道全断面掘进的安全预警方法及装置 |
CN113175326B (zh) * | 2021-04-09 | 2022-08-19 | 重庆文理学院 | 自动测量式tbm施工的掘进测量机及使用方法 |
CN113390502B (zh) * | 2021-06-09 | 2022-04-12 | 大连理工大学 | 一种tbm刀盘振动监测及评价方法 |
CN113362469B (zh) * | 2021-08-09 | 2021-10-08 | 长沙市轨道交通三号线建设发展有限公司 | 综合城市建筑信息和地层结构的盾构隧道施工预警方法 |
CN113673050B (zh) * | 2021-08-11 | 2022-04-12 | 中国科学院力学研究所 | 一种基于采掘头动臂应变响应的采掘物识别方法 |
CN114088194A (zh) * | 2021-11-15 | 2022-02-25 | 中铁工程装备集团有限公司 | 一种tbm主机振动异常自适应判别方法及tbm |
CN114791347B (zh) * | 2022-06-23 | 2022-09-02 | 中国飞机强度研究所 | 飞机高温振动疲劳测试中基于映射修正的响应控制方法 |
CN116644799B (zh) * | 2023-07-27 | 2023-10-17 | 青岛理工大学 | 基于隧道掘进参数的地层振动加速度预测方法及相关装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1098066A1 (de) * | 1999-11-05 | 2001-05-09 | Wirth Maschinen- und Bohrgeräte-Fabrik GmbH | Tunnelbohrmaschine |
CN203114288U (zh) * | 2013-02-20 | 2013-08-07 | 安徽恒源煤电股份有限公司 | 一种掘进机的监测装置 |
CN103867205A (zh) * | 2014-03-11 | 2014-06-18 | 西安科技大学 | 一种掘进机远程控制系统及方法 |
CN107420105A (zh) * | 2017-08-01 | 2017-12-01 | 大连理工大学 | 全断面岩石掘进机关键部位振动与应变监测方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1783025B1 (de) * | 1968-09-20 | 1970-10-15 | Bergwerksverband Gmbh | Vorrichtung zum abtasten von im weg des vorrueckendenden ,schreitenden strebausbaus befindlichen hindernissen im bereich des abbaustosses |
US5181934A (en) * | 1988-09-02 | 1993-01-26 | Stolar, Inc. | Method for automatically adjusting the cutting drum position of a resource cutting machine |
JP2819042B2 (ja) * | 1990-03-08 | 1998-10-30 | 株式会社小松製作所 | 地中掘削機の位置検出装置 |
PL191697B1 (pl) * | 1999-07-09 | 2006-06-30 | Dbt Gmbh | Sposób i układ sterowania, zwłaszcza sekcjami obudowy górniczej uwzględniający obecność załogi w wyrobisku górniczym |
BRPI0913286B1 (pt) * | 2008-05-30 | 2019-02-19 | The Robbins Company | Equipamento e método para monitoração da eficiência de perfuração de túnel e equipamento de perfuração de túnel |
JP6463184B2 (ja) * | 2015-03-24 | 2019-01-30 | 日立造船株式会社 | トンネル掘進機 |
-
2017
- 2017-08-01 US US16/338,956 patent/US10711609B2/en not_active Expired - Fee Related
- 2017-08-01 WO PCT/CN2017/095532 patent/WO2019023952A1/zh unknown
- 2017-08-01 EP EP17920184.3A patent/EP3505724B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1098066A1 (de) * | 1999-11-05 | 2001-05-09 | Wirth Maschinen- und Bohrgeräte-Fabrik GmbH | Tunnelbohrmaschine |
CN203114288U (zh) * | 2013-02-20 | 2013-08-07 | 安徽恒源煤电股份有限公司 | 一种掘进机的监测装置 |
CN103867205A (zh) * | 2014-03-11 | 2014-06-18 | 西安科技大学 | 一种掘进机远程控制系统及方法 |
CN107420105A (zh) * | 2017-08-01 | 2017-12-01 | 大连理工大学 | 全断面岩石掘进机关键部位振动与应变监测方法 |
Non-Patent Citations (3)
Title |
---|
CHEN, HONGWEI: "Research on Tunnel Boring Machine Construction and Status Monitoring Technology in Jinping with Complex Geology", THESIS, vol. 4, 15 April 2016 (2016-04-15), CN, pages 1 - 111, XP009513783, ISSN: 1674-0246 * |
See also references of EP3505724A4 * |
YANG, JING: "Vibration Characteristic Analysis of TBM Cutter-Head System and Research on Tunnelling Testing", THESIS, vol. 7, 15 July 2015 (2015-07-15), CN, pages 1 - 97, XP009513782, ISSN: 1674-0246 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114216430A (zh) * | 2021-11-17 | 2022-03-22 | 盾构及掘进技术国家重点实验室 | 一种大型掘进机主驱动轴承滚子应变的实时监测方法 |
CN114216430B (zh) * | 2021-11-17 | 2024-03-26 | 盾构及掘进技术国家重点实验室 | 一种大型掘进机主驱动轴承滚子应变的实时监测方法 |
CN117454114A (zh) * | 2023-11-02 | 2024-01-26 | 中国矿业大学 | 基于多点位分布的地铁隧道掘进爆破振动安全监测装置 |
CN117454114B (zh) * | 2023-11-02 | 2024-05-03 | 中国矿业大学 | 基于多点位分布的地铁隧道掘进爆破振动安全监测装置 |
Also Published As
Publication number | Publication date |
---|---|
US20200011176A1 (en) | 2020-01-09 |
EP3505724A1 (en) | 2019-07-03 |
EP3505724B1 (en) | 2020-08-19 |
EP3505724A4 (en) | 2019-10-16 |
US10711609B2 (en) | 2020-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019023952A1 (zh) | 全断面岩石掘进机关键部位振动与应变监测方法 | |
CN107420105B (zh) | 全断面岩石掘进机关键部位振动与应变监测方法 | |
CN104111346B (zh) | 一种盾构滚刀工作及磨损状态在线检测方法 | |
CN109883470A (zh) | 盾构机刀盘状态监测系统和方法 | |
CN103226151B (zh) | 一种掘进机刀盘盘形滚刀群体运行状态监测系统和方法 | |
CN103698237B (zh) | 电阻柱芯式盾构刀具磨损传感器及磨损量监测装置 | |
Wu et al. | Development and application of cutterhead vibration monitoring system for TBM tunnelling | |
CN103472247A (zh) | 一种tbm滚刀转速在线监测装置 | |
CN204388773U (zh) | 一种用于盾构机及顶管机的刀具磨损在线检测装置 | |
CN110672248B (zh) | 一种基于磨损检测装置的盾构滚刀二向力检测方法 | |
CN203572455U (zh) | 硬岩隧道掘进机盘形滚刀磨损的在线检测装置 | |
CN102607478B (zh) | 一种用于盾构机刀具磨损量的检测装置及检测方法 | |
CN103195437B (zh) | 在线检测掘进机滚刀刀刃弦磨的装置 | |
CN103512527B (zh) | 硬岩隧道掘进机盘形滚刀磨损的在线检测装置 | |
CN211370405U (zh) | 一种新型刀具载荷感知系统及其盾构机刀盘 | |
CN109296373B (zh) | 全断面岩石掘进机主梁及其连接法兰振动及应变的监测方法 | |
CN109209408B (zh) | 全断面岩石掘进机刀盘连接法兰应变的监测方法 | |
CN204854812U (zh) | 一种盾构开挖测量系统 | |
CN107036800B (zh) | 一种矿井天轮绳槽径向特性检测系统 | |
Huang et al. | Development of a Real-Time Monitoring and Calculation Method for TBM Disc-Cutter’s Cutting Force in Complex Ground | |
CN202882931U (zh) | 一种带有检测装置的撕裂刀 | |
CN109488307B (zh) | 全断面岩石掘进机刀盘系统关键位置振动及应变的监测方法 | |
CN214997606U (zh) | 钻机自动钻进监测装置、钻头机构及钻头更换预报系统 | |
CN104833496A (zh) | 刨煤机刨刀力学特性在线测试系统 | |
CN203772666U (zh) | 电阻柱芯式盾构刀具磨损传感器及磨损量监测装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17920184 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017920184 Country of ref document: EP Effective date: 20190326 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |