WO2019023872A1 - 进度跟踪方法、装置、系统及机器人 - Google Patents

进度跟踪方法、装置、系统及机器人 Download PDF

Info

Publication number
WO2019023872A1
WO2019023872A1 PCT/CN2017/095233 CN2017095233W WO2019023872A1 WO 2019023872 A1 WO2019023872 A1 WO 2019023872A1 CN 2017095233 W CN2017095233 W CN 2017095233W WO 2019023872 A1 WO2019023872 A1 WO 2019023872A1
Authority
WO
WIPO (PCT)
Prior art keywords
progress information
robot
progress
detecting device
information
Prior art date
Application number
PCT/CN2017/095233
Other languages
English (en)
French (fr)
Inventor
李卓泉
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201780017910.2A priority Critical patent/CN108883532A/zh
Priority to PCT/CN2017/095233 priority patent/WO2019023872A1/zh
Publication of WO2019023872A1 publication Critical patent/WO2019023872A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0095Means or methods for testing manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/161Hardware, e.g. neural networks, fuzzy logic, interfaces, processor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present invention relates to the field of robot technology, and in particular, to a progress tracking method, device, system, and robot.
  • the way to obtain the progress of the competition is mainly through artificial acquisition. Specifically, by forcing the participating teams to submit technical reports regularly, and then manually reviewing the progress information of the participating teams, it is very labor-intensive and consumes the energy of the participating teams. .
  • the invention provides a method, a device, a system and a robot for tracking progress, which are used for solving the problem of consuming human and material resources in the prior art and consuming the energy of the participating teams.
  • a first aspect of the present invention is to provide a progress tracking method for tracking a progress of a robot, the robot being pre-configured with a detecting device; the method comprising:
  • Debugging data of function debugging of the plurality of functional units of the robot by the detecting device is obtained by means of a wireless network, and second progress information of the manufacturing robot is determined according to the debugging data;
  • a second aspect of the present invention is to provide a progress tracking device for making a robot Tracking, the robot is preset to be configured with a detecting device; the detecting device is communicatively coupled to the progress tracking device; the progress tracking device includes: a processor and a memory, the memory is configured to store program instructions, The number of processors may be one or more, and may work separately or in cooperation, and the processor is configured to execute program instructions stored in the memory to implement:
  • Debugging data of function debugging of the plurality of functional units of the robot by the detecting device is obtained by means of a wireless network, and second progress information of the manufacturing robot is determined according to the debugging data;
  • a third aspect of the present invention is to provide a robot including a robot body, wherein the robot body is provided with a detecting device, a plurality of functional units, and a wireless communication device;
  • the detecting device is communicatively coupled to a plurality of the functional units and is configured to control the functional unit;
  • the plurality of the functional units send the debugging data for function debugging by itself to the detecting device, and the detecting device transmits the installation information of the self and the debugging data of the plurality of the functional units remotely through the wireless communication device. Give the progress tracking device.
  • a fourth aspect of the present invention is to provide a progress tracking system including:
  • the robot includes a robot body, and the robot body is provided with a detecting device, and the detecting device is communicably connected with the progress tracking device.
  • the method, the device, the system and the robot provided by the invention can be installed on the robot through a pre-configured detecting device, and the first progress information can be obtained by detecting the installation information of the device, and the first progress information is obtained by the detecting device.
  • the debugging data for function debugging of the plurality of functional units of the robot can determine the second progress information, and the first progress information and the second progress information can be used to determine the overall progress information of the robot, which not only ensures the acquisition progress information of the robot. Accurate and reliable, and also effectively reduce the consumption and waste of human and material resources, and reduce The additional energy required by the team has improved the quality and efficiency of robot production.
  • FIG. 1 is a schematic flowchart of a progress tracking method according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of acquiring installation information of the detecting device by using a wireless network according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of acquiring self-test data generated by a self-test operation of the detecting device by using a wireless network according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of determining second progress information of a production robot according to the debug data according to an embodiment of the present invention
  • FIG. 5 is a schematic flowchart of determining sub-progress information of each functional unit according to the hardware assembly preliminary completion progress information and function debugging completion progress information according to an embodiment of the present invention
  • FIG. 6 is a schematic flowchart of determining the second progress information according to sub-progress information of all functional units according to an embodiment of the present disclosure
  • FIG. 7 is a schematic flowchart of determining production progress information of the robot according to the first progress information and the second progress information according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of a detecting apparatus provided in an application embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of acquiring working state data of all components in the detecting device by using a wireless network according to an embodiment of the present disclosure
  • FIG. 10 is a schematic structural diagram of a progress tracking apparatus according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram 1 of a robot according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram 2 of a robot according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a progress tracking system according to an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of a progress tracking method according to an embodiment of the present invention
  • the embodiment provides a progress tracking method
  • the execution body of the method is a progress tracking device
  • the device may be a server or a processor having a processing function for tracking the progress of the robot, and the robot is pre-configured with the detecting device; specifically, the method may include:
  • S101 Acquire installation information of the detection device by using a wireless network, and determine first progress information of the production robot according to the installation information;
  • the wireless network includes: a wireless local area network and a wireless wide area network, wherein the wireless local area network can be a wifi communication connection; the wireless wide area network can be a code division multiple access CDMA, a general packet wireless service technology GPRS, strong Type data rate GSM evolution technology EDGE and other 2G wireless wide area network, and code division multiple access CDMA2000, wideband code division multiple access WCDMA, time division synchronous code division multiple access TD-SCDMA and other 3G wireless wide area network communication.
  • the detection device is pre-configured to assist in the acquisition of the robot's production progress. In general, in the robot competition, the team needs to first make the robot.
  • the detection device can be installed on the robot, and the installation information of the detection device can be obtained according to the installation state of the detection device, and the first progress of the production robot can be further determined according to the installation information.
  • Information, the first progress information can be used to characterize the production and installation progress of the robot.
  • the detecting device may include a plurality of manufacturing devices for assisting in acquiring the robot.
  • the detecting sub-component or the controller for example, the detecting sub-component can respectively correspond to the component that realizes the specific function on the robot, and the participating team can install the detecting device based on different installation strategies, for example, the robot.
  • Each of the components may include a first component, a second component, and a third component
  • the detecting device may include a first detecting subcomponent corresponding to the first component, a second detecting subcomponent corresponding to the second component, and a third The third detecting sub-component corresponding to the component, then, when the detecting device is installed, the first detecting sub-component and the second detecting may be sequentially installed after the first component, the second component, and the third component are all installed.
  • a sub-component and a third detecting sub-component or, after the first component is installed, installing a corresponding first detecting sub-component; after the second component is installed, installing a corresponding second detecting sub-component; After the third component is installed, the corresponding third detecting sub-component is installed, so that the installation information of the detecting device can also be obtained;
  • those skilled in the art may choose different ways according to the specific installation requirements and the design of the game scoring policy, as long as the information can be acquired to the mounting device can be detected, are not repeated here.
  • S102 acquire, by using a wireless network, debug data of performing function debugging on a plurality of functional units of the robot by the detecting device, and determine second progress information of the manufacturing robot according to the debugging data;
  • the detecting device can perform function debugging on the plurality of functional units on the robot, and can obtain the debugging data after the function debugging; specifically, the detecting device can include multiple functional units a communication connection, a controller for controlling a plurality of functional units; the functional unit may include at least one of: a projectile device, an image transmission device, an armor device, a positioning device, and a communication device; wherein the projectile device is used to launch a game bullet
  • the image transmission device is configured to collect image information, and specifically includes a camera module and a wireless image transmission device, which can transmit the first perspective image of the robot through a wireless manner; the armor device is configured to receive the bullets emitted by other robots, and The pressure information can be calculated; the positioning device is used to determine the position information of the robot; and the communication device is used for data interaction with the detecting device or other control device.
  • the controller in the detecting device can control the above-mentioned functional unit to perform corresponding function debugging, and further can use the debugging data acquired by the controller to determine the second progress information of the manufacturing robot, and the second progress information can be used to characterize the function of the robot. Achieve progress.
  • S103 Determine the production progress information of the robot according to the first progress information and the second progress information.
  • the determination progress strategy set in advance may be used to determine the overall progress information of the robot. For example: you can directly pass the first progress information and The sum value of the second progress information is used as the progress progress information of the entire robot, or the first progress information or the second progress information may be used as the progress progress information of the entire robot; of course, those skilled in the art may also use other The method is to determine the progress information of the robot, as long as the accuracy and reliability of the robot's production progress information can be ensured, and details are not described herein.
  • the progress tracking method provided in this embodiment can be installed on the robot by using a pre-configured detecting device, and can obtain the first progress information by detecting the installation information of the device, and the plurality of functional units of the robot are detected by the detecting device.
  • the debugging data for function debugging can determine the second progress information, and the first progress information and the second progress information can be used to determine the overall progress information of the robot, which not only ensures the accuracy and reliability of the robot's production progress information acquisition, but also is effective.
  • the reduction of the consumption and waste of manpower and material resources reduces the extra energy required by the participating teams, thereby improving the quality and efficiency of robot production.
  • FIG. 2 is a schematic flowchart of obtaining installation information of a detection device by using a wireless network according to an embodiment of the present invention
  • FIG. 3 is a self-test generated by a self-check operation performed by a wireless network to acquire a detection device according to an embodiment of the present invention
  • the flow chart of the data based on the above-mentioned embodiments, with reference to FIG. 1-3, the specific implementation manner of acquiring the installation information of the detecting device by using the wireless network is not limited, and those skilled in the art may According to the specific design requirements, the installation information of the detection device can be obtained by using a wireless network.
  • S1011 Obtain self-test data generated by the self-test operation of the detecting device by using a wireless network
  • the self-checking operation may include multiple specific implementation manners.
  • One achievable manner is: the control detecting device tests each function of the detecting device according to a preset self-testing test program; another achievable manner is:
  • the self-test data generated by the self-checking operation performed by the detecting device by the wireless network may include the following sub-steps S10111-S10112.
  • S10111 After the detecting device is powered on, obtaining working state data of all components in the detecting device by using a wireless network;
  • the detection device After the detection device is installed, the detection device is powered on, and then the detection device is started. At this time, the working state data of all components in the detection device is obtained, and the working state data may include: an online state and an offline state; or, normal Operating status and abnormal running status, etc.
  • S10112 Determine self-test data according to working state data.
  • the self-checking data of the detecting device may be determined by using the correspondence between the preset working state data and the self-test data, wherein the self-checking data may be all components in the detecting device. Summary information of work status data.
  • S1012 Determine installation information according to self-test data.
  • the installation information of the detection device may be determined by using a mapping relationship between the self-test data and the installation information, where the installation information may include: uncompleted installation information and completion installation information; or, information during installation And complete the installation information and more.
  • the self-test data is determined by acquiring the working state data of all the components in the detecting device, and the installation information of the detecting device is determined according to the self-checking data, thereby effectively ensuring the accurate reliability of the detecting device installation information, and further The stability reliability of the method is improved.
  • FIG. 4 is a schematic flowchart of determining second progress information of a manufacturing robot according to debug data according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of determining preliminary progress information and function debugging completion progress information according to hardware assembly according to an embodiment of the present invention, and determining each A schematic flowchart of the sub-progress information of the functional unit
  • FIG. 6 is a schematic flowchart of determining the second progress information according to the sub-progress information of all functional units according to an embodiment of the present invention
  • the debug data in this embodiment may include multiple sub-debugging data generated by the detecting device for performing function debugging on multiple functional units of the robot, and further, determining second progress information of the manufacturing robot according to the debugging data.
  • S1021 Determine, according to current sub-debugging data, progress information of initial completion of hardware assembly and corresponding function completion progress information;
  • the debug data may include multiple sub-debugging data information generated by the device for performing function debugging on the plurality of functional units
  • the sub-debugging data generated after debugging the respective functional units may be acquired first, and then according to the acquired
  • the sub-debugging data determines the initial completion progress information of the hardware assembly of the robot and the corresponding function debugging completion progress information; specifically, after the hardware components of the robot are assembled according to the preset installation requirements, the above hardware components can be debugged.
  • the corresponding sub-debugging data can be obtained. At this time, it indicates that the hardware component of the robot has been installed, and the corresponding functional operation can be realized, so that the corresponding hardware assembly preliminary completion progress information and the corresponding function debugging completion can be determined. Progress information.
  • determining the sub-progress information of each functional unit may include the following sub-steps S10221-S10222.
  • the function debugging process may include multiple debugging stages, and each debugging stage may have different standard debugging parameters, so in order to accurately obtain the second
  • the progress information may first obtain the function debugging completion parameter generated by the detecting device for function debugging of each functional unit, compare the function debugging completion parameter with the corresponding standard debugging parameter, and obtain the corresponding to each functional unit.
  • the comparison result can be determined according to the comparison result of each functional unit. Specifically, the weighting value corresponding to the comparison result of each functional unit may be first obtained, and the comparison result of each functional unit is weighted and summed based on the corresponding weighting value to determine the corresponding function debugging completion progress.
  • those skilled in the art can also use other methods to determine the progress of the function debugging completion, as long as the accuracy of the function debugging completion progress can be ensured, and details are not described herein again.
  • S10222 Determine the sub-progress information according to the hardware assembly preliminary completion progress information, the function debugging completion progress information, and the corresponding weighting values.
  • the weighting values corresponding to the hardware assembly preliminary completion progress information and the function debugging completion progress information may be obtained, and the preliminary completion progress information is obtained according to the hardware assembly.
  • the function debugging completes the progress information and the corresponding weighting values, and determines the child progress information; specifically, the hardware assembly preliminary completion progress information and the function debugging completion progress information may be weighted and summed based on the respective weighting values, thereby determining the child. Progress information.
  • weighting value corresponding to the hardware assembly preliminary completion progress information and the function debugging completion progress information may be the same or different, and the weighting value corresponding to the hardware assembly preliminary completion progress information may be 0 or 100%, the weighting value corresponding to the function debugging completion progress information may also be 0 or 100%.
  • S1023 Determine second progress information according to sub-progress information of all functional units.
  • determining the second progress information according to the sub progress information of all the functional units may include the following sub-steps S10231-S10232:
  • the weighting values corresponding to each child progress information may be the same or different.
  • S10232 Determine second progress information according to each sub-progress information and the corresponding weighting value.
  • each sub-progress information may be used as the second progress information based on the weighted value corresponding to the weighted value.
  • those skilled in the art may also determine the second progress information in other manners.
  • each sub-progress information may be weighted averaged based on the corresponding weighted value as the second progress information or the like.
  • the obtained preliminary progress information and the function debugging completion progress information are used to determine the sub-progress information of each functional unit, and the second progress information is further determined according to the sub-progress information of all the functional units, specifically, according to Each sub-progress information and the corresponding weighting value determine the second progress information, which effectively ensures the accuracy and reliability of the second progress information acquisition, and further improves the stability and reliability of the method.
  • FIG. 7 is a schematic flowchart of determining progress information of a robot according to first progress information and second progress information according to an embodiment of the present invention. and based on any one of the foregoing embodiments, referring to FIG.
  • the embodiment does not limit the specific implementation process of determining the production progress information of the robot according to the first progress information and the second progress information, and the person skilled in the art may set according to specific design requirements, and more preferably, according to the first progress information and
  • the second progress information determines that the production progress information of the robot may include:
  • S1031 Acquire a first weighting value corresponding to the first progress information and a second weighting value corresponding to the second progress information;
  • the first weighting value and the second weighting value may be the same or different, and the first weighting value may be 0 or 100%, and the second weighting value may also be 0 or 100%.
  • S1032 Determine production progress information according to the first progress information, the second progress information, the first weighting value, and the second weighting value.
  • the first progress information and the second progress information are used as the production progress information based on the weighted summation value of the first weighting value and the second weighting value; of course, those skilled in the art may also adopt other methods to determine the production progress.
  • the first progress information and the second progress information may be based on the weighted average of the first weighting value and the second weighting value as the production progress information or the like. As long as the accuracy and reliability of the production progress information can be ensured, it will not be described here.
  • the detecting device can be used to assist in obtaining progress information of the robot making, the detecting device can include a plurality of modules, and can involve various technologies, including WIFI communication technology. Infrared detection technology, near field communication technology, sensor technology, etc. Specifically, as shown in FIG.
  • the detecting device 200 may include: a main control light bar module 201 (also may be a controller), a positioning detecting module 202 , a projectile speed measuring module 203 , a field interaction module 204 , an armor detecting module 205 , and a camera
  • the image transmission detection module 203 wherein the main control light bar module 201 is in communication with the positioning detection module 202, the field interaction module 204, the armor detection module 205, and the camera image detection module 206, and the camera image transmission detection module 206 and the projectile velocity measurement module 203 Communication connection.
  • each module in the above-described detecting device 200 can be mounted on the robot that is manufactured.
  • the specific functions of each module of the detecting device 200 are as follows:
  • the main control light bar module 201 can be used as the core of the whole detecting device 200 for communicating with all other modules, and the module has a built-in WIFI chip, and the module can access the network through the WIFI wireless network, thereby interacting with other control terminals. The communication connection is made.
  • the module can also have an SD memory card built in. When the detection device 200 does not perform data transmission, the data can be saved to the SD memory card.
  • Projectile speed measuring module 203 Two infrared pair tubes can be disposed in the projectile speed measuring module 203. When the robotic projectile device launches the projectile, the speed of the projectile and the frequency of the projectile can be calculated by sequentially triggering the time difference of the infrared pair of tubes.
  • Armor detection module 205 may include a plurality of pressure sensors (for example: 4, 5 or more), and the pressure value may be calculated when the robot's armor device is impacted or attacked by different types of projectiles.
  • Position detection module 202 The module is based on a wireless carrier communication technology, and is mainly used for obtaining the relative position information of the robot indoors by using the positioning device in the case of no GPS signal indoors.
  • Camera image transmission detection module 206 for detecting image acquisition and transmission functions of the image transmission device on the robot.
  • Site interaction module 204 Based on the near field communication technology, wireless communication can be performed with other modules of the site to implement interaction, so as to implement detection on the communication device on the robot.
  • the detection device 200 is issued to the participating team of the participating robot competition.
  • the team can assemble the robot. After the assembly is completed, the issued detection device 200 will be installed according to the preset installation requirements. This stage is defined as the P1 of the first stage robot.
  • the P1 stage authentication process may include the completion of the overall installation of the detection device 200, and successfully pass the self-test.
  • Each module in the detecting device 200 is successfully installed, and then the detecting device 200 is powered on.
  • the detecting device 200 automatically performs a system self-test on each module. If it is detected that each module is normal, it indicates that the progress of the first phase is completed.
  • the process of performing the self-test by the detecting device 200 can be referred to FIG.
  • the detecting device 200 can be connected via WIFI
  • the progress information will be automatically uploaded to the pre-set server, and the user can retrieve and view the progress information of the first phase of each participating team through the server.
  • the progress information is mainly evaluated by collecting data by each module in the detecting device 200.
  • an infantry robot can be divided into a pan-tilt launching part (including a projectile device) and a chassis control part. After completing the two basic parts, it is necessary to debug the entire infantry robot.
  • the armor detection module 205, the venue interaction module 204, and the camera map detection module 206 are used.
  • the completion progress of the chassis control part is indicated by P2 2 , and when the chassis control part is completed, the main control light bar module 201 can detect the chassis control power, and at the same time, the positioning of the robot can be detected by the positioning detection module 202 and the positioning device on the robot.
  • the data obtains the moving distance of the robot.
  • the sub-S2 5; the positioning device can calculate the cumulative moving distance n of the robot is km, and during the whole competition, the maximum distance traveled by the participating team to make the robot is 50km, then the progress of the robot chassis control part in case If the value is greater than 1, the value is equal to 1, indicating that the team has achieved a perfect score.
  • the progress of the entire robot debugging part is also obtained by the same calculation method, and the progress is represented by P2 3 .
  • the source data is obtained mainly through the armor detection module 205 and the site interaction module 204, and the specific calculation manner is analogous to the first two calculation methods.
  • the progress tracking method provided by the technical solution can automatically obtain the progress information of the robots produced by the participating teams according to the detecting device 200, thereby reducing the consumption of human and material resources, thereby accurately estimating the quality of the participating teams and ensuring the robot competition level.
  • implementations of the present application can also be translated into educational products for robots.
  • Customers buy robot education products, If some sensing devices are built in the product, similar to the detecting device 200 in the present application, the configured testing device 200 can collect the learning progress of the customer during the use of the product, and can be appropriately and efficiently according to the progress of the customer.
  • To push the customer to the knowledge level equivalent to the customer level further, according to the progress of the study, appropriately set a certain level of difficulty to stimulate, can make the customer's sense of participation more intense, improve the customer's interest in learning, and thus achieve better Learning efficiency.
  • FIG. 10 is a schematic structural diagram of a schedule tracking apparatus according to an embodiment of the present invention.
  • the embodiment provides a schedule tracking apparatus 100, which may be a data processing function. a server or a processor, the progress tracking device 100 may perform the progress tracking method in any one of the above embodiments for tracking the progress of the robot.
  • the robot is preset with the detecting device 200; the detecting device 200 and the progress tracking device 100.
  • the communication connection; the progress tracking device 100 includes a processor 101 and a memory 102.
  • the memory 102 is used to store program instructions.
  • the number of the processors 101 may be one or more, and may work separately or in cooperation.
  • the processor 101 is used by the processor 101. Run program instructions stored in memory to achieve:
  • the data determines second progress information of the production robot; and the production progress information of the robot is determined according to the first progress information and the second progress information.
  • the detecting device 200 may include a controller for performing communication connection with a plurality of functional units for controlling a plurality of functional units; the functional unit may include at least one of the following: a projectile device, an image transmitting device, an armor device, a positioning device, and a communication Device.
  • the progress tracking device 100 provided in this embodiment can be installed on the robot through the pre-configured detecting device 200, and the processor 101 can obtain the first progress information by detecting the installation information of the device 200, and pass the detecting device.
  • the debugging data of the function debugging of the plurality of functional units of the robot can determine the second progress information, and the first progress information and the second progress information can be used to determine the overall progress information of the robot, which not only ensures the system of the robot. Accurate reliability of progress information acquisition, and also effectively reduce the consumption and waste of human and material resources, reducing the extra effort required by the participating teams, thereby improving the quality and efficiency of robot production.
  • the specific implementation manner for the processor 101 to obtain the installation information of the detection device 200 by using the wireless network is not limited, and those skilled in the art may The design requirements are set.
  • the processor 101 when the processor 101 acquires the installation information of the detecting device 200 through the wireless network, the processor 101 can be used to perform the following steps:
  • the self-test data generated by the self-test operation by the detecting device 200 is acquired by means of a wireless network; and the installation information is determined according to the self-test data.
  • the processor 101 when the processor 101 acquires the self-test data generated by the self-test operation by the detecting device 200, the processor 101 may be further configured to: after the detecting device 200 is powered on, through the wireless network. The manner of acquiring the working state data of all the components in the detecting device 200; determining the self-test data according to the working state data.
  • the processor 101 determines the self-test data by acquiring the working state data of all the components in the detecting device 200, and determines the installation information of the detecting device 200 according to the self-checking data, thereby effectively ensuring the installation information of the detecting device 200.
  • the precise reliability of the acquisition further enhances the stable reliability of the device.
  • the debug data includes a plurality of sub-debug data generated by the detecting device 200 for performing function debugging on a plurality of functional units of the robot.
  • the processor 101 is configured according to the debug data.
  • the processor 101 can be used to perform the following steps:
  • determining the preliminary completion progress information of the hardware assembly and the corresponding function debugging completion progress information determining the sub-progress information of each functional unit according to the preliminary completion progress information of the hardware assembly and the function debugging completion progress information; The sub-progress information of the unit determines the second progress information.
  • the processor 101 completes the preliminary progress information and the function debugging according to the hardware assembly.
  • the processor 101 may be specifically configured to: determine the function debugging completion progress information according to the function debugging completion parameter and the preset standard debugging parameter; and initially complete the progress information according to the hardware assembly.
  • the function debugging completion progress information and the corresponding weighting values are determined to determine the sub progress information.
  • the processor 101 may be specifically configured to: acquire a weight value corresponding to each sub progress information in advance; according to each sub progress The information and the corresponding weighting value determine the second progress information.
  • the processor 101 determines the sub-progress information of each functional unit by using the acquired hardware assembly preliminary completion progress information and the function debugging completion progress information, and further determines the second progress information according to the sub-progress information of all the functional units, specifically The second progress information is determined according to each child progress information and the corresponding weighting value, thereby effectively ensuring the accuracy and reliability of the second progress information acquisition, and further improving the stability and reliability of the device.
  • the specific implementation process of determining the progress information of the robot by the processor 101 according to the first progress information and the second progress information is not limited.
  • the processor 101 can be configured according to a specific design requirement.
  • the processor 101 determines the production progress information of the robot according to the first progress information and the second progress information, the processor 101 can be configured to perform the following steps:
  • FIG. 11 is a schematic structural diagram 1 of a robot according to an embodiment of the present invention
  • FIG. The second embodiment of the present invention provides a robot 300.
  • the robot 300 includes a robot body 301.
  • the robot body 301 is provided with a detecting device.
  • the detecting device is communicatively coupled to the plurality of functional units and is used to control the functional unit;
  • the plurality of functional units send the debugging data for self-function debugging to the detecting device, and the detecting device remotely transmits the self-installing information and the debugging data of the plurality of functional units to the progress tracking device via the wireless communication device 306.
  • the specific structure of the progress tracking apparatus 100 in this embodiment may be referred to the above-mentioned FIG. 10, which is in communication connection with the detecting apparatus 200, and the detecting apparatus 200 may include a controller for controlling a plurality of functional units, the control The device may be configured to control each of the functional units to perform a function detecting operation, so that the plurality of functional units transmit the debugging data for performing the function debugging to the detecting device; and when the detecting device 200 is mounted to the robot body 301, the device may be acquired. The installation information of the device 200 is detected.
  • the detecting device 200 can send its own installation information and the acquired debugging data of the plurality of functional units to the progress tracking device 100 through the wireless communication device 306, so that the progress tracking device 100 can
  • the production progress information of the robot 300 is determined based on the above-described installation information and debug data.
  • the robot 300 provided in this embodiment can make the detecting device 200 remotely transmit the debugging information of the plurality of functional units and the acquired debugging data of the plurality of functional units through the wireless communication device 306 by setting the detecting device 200 that can control the plurality of functional units.
  • the schedule tracking device 100 can be sent to the progress tracking device 100, and the progress tracking device 100 can determine the production progress information of the robot based on the installation information and the debug data, which not only ensures the accurate reliability of the production progress information acquisition of the robot 300, but also effectively reduces the manpower.
  • the consumption and waste of material resources reduce the extra energy required by the participating teams, thus improving the quality and efficiency of robot production.
  • the progress tracking apparatus 100 in this embodiment may include a processor 101 and a memory 102 for storing program instructions, and the number of processors 101. There may be one or more, and may work alone or in combination, and the processor 101 is configured to execute program instructions stored in the memory to implement:
  • the first progress information of the robot 300 is generated; the debugging data of the function debugging of the plurality of functional units of the robot 300 by the detecting device 200 is acquired by means of a wireless network, and the second progress information of the manufacturing robot 300 is determined according to the debugging data; The information and the second progress information determine the production progress information of the robot 300.
  • the detecting device 200 may further include a controller for controlling a plurality of functional units, and the controller may be connected to the above-described projectile detecting device for controlling the projectile detecting device to detect the function of the projectile device, and specifically for measuring The speed and/or number of shots fired by the projectile device.
  • the detecting device 200 further includes a positioning detecting device for performing function debugging on the positioning device.
  • the positioning detecting device is configured to detect the moving distance of the robot 300 by using the positioning device when the positioning device has output power.
  • the controller may be coupled to the positioning detecting device described above for detecting the function of the positioning device on the robot 300, wherein the positioning device may be used to detect the moving distance of the robot 300, that is, the robot 300 may be determined to be located. Specific location.
  • the specific implementation manner for the processor 101 to obtain the installation information of the detection device 200 by using the wireless network is not limited, and those skilled in the art may
  • the setting is performed according to a specific design requirement.
  • the processor 101 acquires the installation information of the detecting device 200 by using a wireless network
  • the processor 101 can be used to perform the following steps:
  • the self-test data generated by the self-test operation by the detecting device 200 is acquired by means of a wireless network; and the installation information is determined according to the self-test data.
  • the processor 101 when the processor 101 acquires the self-test data generated by the self-test operation by the detecting device 200, the processor 101 may be further configured to: after the detecting device 200 is powered on, through the wireless network. The manner of acquiring the working state data of all the components in the detecting device 200; determining the self-test data according to the working state data.
  • the debug data includes a plurality of sub-debug data generated by the detecting device 200 for performing function debugging on the plurality of functional units of the robot 300.
  • the processor 101 can be configured to perform the following steps:
  • determining the preliminary completion progress information of the hardware assembly and the corresponding function debugging completion progress information determining the sub-progress information of each functional unit according to the preliminary completion progress information of the hardware assembly and the function debugging completion progress information; The sub-progress information of the unit determines the second progress information.
  • the processor 101 may be specifically configured to: complete the parameters according to the function debugging and the preset standard.
  • the debugging parameters are determined, and the progress information of the function debugging completion is determined; the sub progress information is determined according to the initial progress information of the hardware assembly, the progress information of the function debugging completion, and the corresponding weighting values.
  • the processor 101 may be specifically configured to: acquire a weight value corresponding to each sub progress information in advance; according to each sub progress The information and the corresponding weighting value determine the second progress information.
  • the specific implementation process of determining the production progress information of the robot 300 by the processor 101 according to the first progress information and the second progress information is not limited.
  • a person skilled in the art can set according to specific design requirements.
  • the processor 101 can be used to perform the following steps. :
  • the detecting device 200 includes: a projectile detecting device for performing function debugging on the projectile device, and the projectile detecting device is used for measuring The speed and/or number of shots fired by the projectile device.
  • FIG. 13 is a schematic structural diagram of a schedule tracking system according to an embodiment of the present invention. Referring to FIG. 13 , the embodiment provides a schedule tracking system, including:
  • the progress tracking device 100 in any one of the above embodiments;
  • the robot 300 includes a robot body, and the robot body is provided with a detecting device, and the detecting device is communicably connected with the progress tracking device 100.
  • the specific structure of the progress tracking device in the embodiment and the function of the implemented function are the same as the specific structure and the implemented function in the embodiment corresponding to FIG. 10 above, and the specific content may be referred to herein. No longer.
  • the specific structure of the robot in this embodiment and the function implemented are the same as the specific structure and the function implemented in the embodiment corresponding to the above-mentioned FIG. 11-12, and the specific content can be referred to here. No longer.
  • system further includes a control terminal 400 that is communicatively coupled to the progress tracking device 100 via the control terminal 400.
  • the control terminal 400 can be a smart phone, a personal computer, a smart watch, a smart wristband, etc., and the control terminal 400 can be installed with an application program for implementing the above-mentioned progress tracking method.
  • an achievable manner is that the detecting device can be used to perform a self-checking operation under the control of the control terminal 400, and send the self-test data generated by the self-checking operation to the progress through the control terminal 400.
  • Tracking device 100 is
  • the detecting device can also be used to perform function debugging on a plurality of functional units of the robot under the control of the control terminal 400, and send the debugging data generated by performing the function debugging to the progress through the control terminal 400.
  • Tracking device 100 can also be used to perform function debugging on a plurality of functional units of the robot under the control of the control terminal 400, and send the debugging data generated by performing the function debugging to the progress through the control terminal 400. Tracking device 100.
  • the detecting device includes: a projectile detecting device for performing function debugging on the projectile device, and the projectile detecting device is used under the control of the control terminal 400 The speed and/or number of shots fired by the projectile device are measured.
  • the detecting device further includes a positioning detecting device for performing function debugging on the positioning device, and the positioning detecting device is configured to detect the moving distance of the robot by using the positioning device under the control of the control terminal 400.
  • the progress tracking system provided by the technical solution can automatically obtain the progress information of the robots produced by the participating teams during the robot competition process, reduce the human and material consumption, thereby effectively evaluating the quality of the participating teams and ensuring the level of the robot competition.
  • the present application Implementation can also be transformed into robotic education products.
  • the customer purchases the robot education product. If there are some sensing devices built in the product, similar to the testing device in this application, the learning progress of the customer in the process of using the product can be collected, and the progress of the customer can be appropriately and efficiently according to the progress of the customer. Pushing customers with knowledge points that are equivalent to the customer level. Further, they can also motivate according to the progress of the study and set a certain level of difficulty. This can make the customer's participation more intense and improve the customer's interest in learning, thus achieving better learning. effectiveness.
  • the present application also provides a computer readable storage medium, including instructions, when executed on a computer, causing a computer to execute the progress tracking method corresponding to the above-mentioned FIG. 1 to FIG. 9, or may also perform an attached The progress tracking method that the progress tracking device corresponding to FIG. 10 can perform.
  • the present application further provides another progress tracking device, which may include:
  • An acquiring module configured to acquire installation information of the detecting device by using a wireless network, and determine first progress information of the manufacturing robot according to the installation information;
  • An obtaining module configured to acquire, by means of a wireless network, debugging data of function debugging of a plurality of functional units of the robot by the detecting device, and determining second progress information of the manufacturing robot according to the debugging data;
  • the determining module is configured to determine the production progress information of the robot according to the first progress information and the second progress information.
  • the progress tracking device in this embodiment can also implement the progress tracking method corresponding to FIG. 2-9.
  • the specific implementation process and the implementation effect are the same as those in the above description, and details are not described herein again.
  • the related apparatus and method disclosed may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • An integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, can be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer processor 101 to perform all or part of the steps of the various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Manipulator (AREA)

Abstract

一种进度跟踪方法、装置、系统及机器人,其中,方法用于对机器人的制作进度进行跟踪,机器人预先配置有检测设备;方法包括:通过无线网络的方式获取检测设备的安装信息,根据安装信息确定制作机器人的第一进度信息(S101);通过无线网络的方式获取检测设备对机器人的多个功能单元进行功能调试的调试数据,根据调试数据确定制作机器人的第二进度信息(S102);根据第一进度信息与第二进度信息确定机器人的制作进度信息(S103)。该进度跟踪方法、装置、系统及机器人,不仅保证了机器人的制作进度信息获取的准确可靠性,并且还有效地减少了人力物力的消耗与浪费,降低了参赛队伍所需要花费的额外精力,提高了机器人制作的质量和效率。

Description

进度跟踪方法、装置、系统及机器人 技术领域
本发明涉及机器人技术领域,尤其涉及一种进度跟踪方法、装置、系统及机器人。
背景技术
随着科学技术的飞速发展,机器人技术越来越成熟,近年来,机器人相关的竞赛也越来越受到欢迎,参赛队伍越来越多,为了保证比赛的质量,就不得不对参赛队伍质量进行把关,主要就是跟踪参赛队伍的备赛的进度。
目前,比赛进度的获取方式主要是通过人为获取,具体的,通过强制要求参赛队伍定期提交技术报告,然后人为审核来获得参赛队伍的进度信息,这样非常的耗费人力物力,同时消耗参赛队伍的精力。
发明内容
本发明提供了一种进度跟踪方法、装置、系统及机器人,用于解决现有技术中存在的耗费人力物力,同时消耗参赛队伍精力的问题。
本发明的第一方面是为了提供一种进度跟踪方法,用于对机器人的制作进度进行跟踪,所述机器人预先配置有检测设备;所述方法包括:
通过无线网络的方式获取所述检测设备的安装信息,根据所述安装信息确定制作机器人的第一进度信息;
通过无线网络的方式获取所述检测设备对所述机器人的多个功能单元进行功能调试的调试数据,根据所述调试数据确定制作机器人的第二进度信息;
根据所述第一进度信息与所述第二进度信息确定所述机器人的制作进度信息。
本发明的第二方面是为了提供了一种进度跟踪装置,用于对机器人的制 作进度进行跟踪,所述机器人预设配置有检测设备;所述检测设备与所述进度跟踪装置通信连接;所述进度跟踪装置包括:处理器和存储器,所述存储器用于存储程序指令,所述处理器的个数可以为1个或多个,且可以单独或协同工作,所述处理器用于运行所述存储器中存储的程序指令,以实现:
通过无线网络的方式获取所述检测设备的安装信息,根据所述安装信息确定制作机器人的第一进度信息;
通过无线网络的方式获取所述检测设备对所述机器人的多个功能单元进行功能调试的调试数据,根据所述调试数据确定制作机器人的第二进度信息;
根据所述第一进度信息与所述第二进度信息确定所述机器人的制作进度信息。
本发明的第三方面是为了提供一种机器人,包括机器人主体,所述机器人主体上设置有检测设备、多个功能单元以及无线通信装置;
所述检测设备与多个所述功能单元通信连接,并且用于控制所述功能单元;
其中,多个所述功能单元将自身进行功能调试的调试数据发送给所述检测设备,所述检测设备将自身的安装信息以及多个所述功能单元的调试数据通过所述无线通信装置远程发送给进度跟踪装置。
本发明的第四方面是为了提供一种进度跟踪系统,包括:
上述的进度跟踪装置;
机器人,包括机器人主体,所述机器人主体上设置有检测设备,所述检测设备与所述进度跟踪装置通信连接。
本发明提供的进度跟踪方法、装置、系统及机器人,通过预先配置的检测设备,该检测设备可以安装在机器人上,并可以通过检测设备的安装信息获取到第一进度信息,通过检测设备获取的对机器人的多个功能单元进行功能调试的调试数据可以确定第二进度信息,进而可以通过第一进度信息和第二进度信息确定机器人整体的制作进度信息,不仅保证了机器人的制作进度信息获取的准确可靠性,并且还有效地减小了人力物力的消耗与浪费,降低 了参赛队伍所需要花费的额外精力,从而提高了有利于提高机器人制作的质量和效率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种进度跟踪方法的流程示意图;
图2为本发明实施例提供的通过无线网络的方式获取所述检测设备的安装信息的流程示意图;
图3为本发明实施例提供的通过无线网络的方式获取所述检测设备进行自检操作所生成的自检数据的流程示意图;
图4为本发明实施例提供的根据所述调试数据确定制作机器人的第二进度信息的流程示意图;
图5为本发明实施例提供的根据所述硬件组装初步完成进度信息以及功能调试完成进度信息,确定每个功能单元的子进度信息的流程示意图;
图6为本发明实施例提供的根据所有功能单元的子进度信息确定所述第二进度信息的流程示意图;
图7为本发明实施例提供的根据所述第一进度信息与所述第二进度信息确定所述机器人的制作进度信息的流程示意图;
图8为本发明应用实施例中提供的检测设备的结构示意图;
图9为本发明应用实施例中提供的通过无线网络的方式获取所述检测设备中的所有部件的工作状态数据的流程示意图;
图10为本发明实施例提供的一种进度跟踪装置的结构示意图;
图11为本发明实施例提供的一种机器人的结构示意图一;
图12为本发明实施例提供的一种机器人的结构示意图二;
图13为本发明实施例提供的一种进度跟踪系统的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特性可以相互组合。
图1为本发明实施例提供的一种进度跟踪方法的流程示意图;参考附图1所示,本实施例提供了一种进度跟踪方法,该方法的执行主体为进度跟踪装置,该装置可以为具有处理功能的服务器或者处理器,用于对机器人的制作进度进行跟踪,机器人预先配置有检测设备;具体的,该方法可以包括:
S101:通过无线网络的方式获取检测设备的安装信息,根据安装信息确定制作机器人的第一进度信息;
其中,无线网络的方式包括:无线局域网的方式和无线广域网的方式,其中,无线局域网的方式可以为wifi通信连接;无线广域网的方式可以为码分多址CDMA、通用分组无线服务技术GPRS、强型数据速率GSM演进技术EDGE等2G无线广域网、以及码分多址CDMA2000、宽带码分多址WCDMA、时分同步码分多址TD-SCDMA等3G无线广域网的通信方式。另外,检测设备为预先配置的,用于协助获取机器人的制作进度,一般情况下,在机器人比赛中,参赛队伍需要先制作机器人,此时,需要将预先制作的机器人的各个组件进行安装,构成机器人整体,此时,在机器人制作安装完毕后,可以将检测设备安装到机器人上,进而可以根据检测设备的安装状态获取到检测设备的安装信息,进一步可以根据安装信息确定制作机器人的第一进度信息,该第一进度信息可以用于表征机器人的制作安装进度。
需要注意的是,检测设备可以包括多个用于协助获取到机器人的制作进 度的检测子部件或者控制器,以检测子部件为例,上述的检测子部件可以分别与机器人上实现特定功能的组件相对应,参赛队伍可以基于不同的安装策略来安装检测设备,例如,机器人个各个组件可以包括第一组件、第二组件、第三组件,检测设备可以包括与第一组件相对应的第一检测子部件、与第二组件相对应的第二检测子部件以及与第三组件相对应的第三检测子部件,那么,在进行检测设备的安装时,可以在第一组件、第二组件和第三组件均安装完毕后,再依次安装第一检测子部件、第二检测子部件以及第三检测子部件;或者,也可以在第一组件安装完毕后,安装相对应的第一检测子部件;在第二组件安装完毕后,安装相对应的第二检测子部件;在第三组件安装完毕后,安装相对应的第三检测子部件,这样也可以获取到检测设备的安装信息;当然的,本领域技术人员可以根据具体的设计需求以及比赛评分策略来选择不同的安装方式,只要能够获取到检测设备的安装信息即可,在此不再赘述。
S102:通过无线网络的方式获取检测设备对机器人的多个功能单元进行功能调试的调试数据,根据调试数据确定制作机器人的第二进度信息;
在获取到检测设备的安装信息之后,可以利用检测设备对机器人上的多个功能单元进行功能调试,并可以获取到进行功能调试后的调试数据;具体的,检测设备可以包括与多个功能单元进行通信连接、用于控制多个功能单元的控制器;功能单元可以包括如下至少一种:弹丸装置、图像传输装置、装甲装置、定位装置以及通信装置;其中,弹丸装置用于发射比赛用子弹;图像传输装置用于采集图像信息,具体可以包含一个摄像头模块以及无线图传装置,可以将机器人的第一视角拍摄画面通过无线方式进行传递;装甲装置用于接收其他机器人所发射的子弹,并可以计算出压力信息;定位装置用于确定机器人所处的位置信息;通信装置,用于与检测设备或者其他控制装置进行数据交互。而检测设备中的控制器可以控制上述的功能单元进行相应的功能调试,进一步可以利用控制器所获取的调试数据确定制作机器人的第二进度信息,该第二进度信息可以用于表征机器人的功能实现进度。
S103:根据第一进度信息与第二进度信息确定机器人的制作进度信息。
在获取到第一进度信息和第二进度信息之后,可以利用预先设置的确定策略来确定机器人整体的制作进度信息。例如:可以直接将第一进度信息和 第二进度信息的和值作为机器人整体的制作进度信息,或者,也可以将第一进度信息或者第二进度信息来作为机器人整体的制作进度信息;当然的,本领域技术人员还可以采用其他的方式来确定机器人的制作进度信息,只要能够保证机器人的制作进度信息获取的准确可靠性即可,在此不再赘述。
本实施例提供的进度跟踪方法,通过预先配置的检测设备,该检测设备可以安装在机器人上,并可以通过检测设备的安装信息获取到第一进度信息,通过检测设备对机器人的多个功能单元进行功能调试的调试数据可以确定第二进度信息,进而可以通过第一进度信息和第二进度信息确定机器人整体的制作进度信息,不仅保证了机器人的制作进度信息获取的准确可靠性,并且还有效地减小了人力物力的消耗与浪费,降低了参赛队伍所需要花费的额外精力,从而提高了有利于提高机器人制作的质量和效率。
图2为本发明实施例提供的通过无线网络的方式获取检测设备的安装信息的流程示意图;图3为本发明实施例提供的通过无线网络的方式获取检测设备进行自检操作所生成的自检数据的流程示意图;在上述实施例的基础上,继续参考附图1-3可知,本实施例对于通过无线网络的方式获取检测设备的安装信息的具体实现方式不做限定,本领域技术人员可以根据具体的设计需求进行设置,较为优选的,通过无线网络的方式获取检测设备的安装信息可以包括:
S1011:通过无线网络的方式获取检测设备进行自检操作所生成的自检数据;
其中,自检操作可以包括多种具体实现方式,一种可实现的方式为:控制检测设备按照预设的自检测试程序对检测设备的各个功能进行测试;另一种可实现的方式为:人为对检测设备的各个功能进行检测;为了进一步提高该方法的方便程度,通过无线网络的方式获取检测设备进行自检操作所生成的自检数据可以包括以下子步骤S10111-S10112。
S10111:在检测设备上电启动后,通过无线网络的方式获取检测设备中的所有部件的工作状态数据;
在检测设备安装完毕后,对检测设备进行上电操作,而后启动检测设备,此时,获取检测设备中所有部件的工作状态数据,该工作状态数据可以包括:在线状态和离线状态;或者,正常运行状态和异常运行状态等等。
S10112:根据工作状态数据确定自检数据。
在获取到检测设备中所有部件的工作状态数据之后,可以利用预先设置的工作状态数据与自检数据的对应关系确定检测设备的自检数据,其中,该自检数据可以为检测设备中所有部件工作状态数据的汇总信息。
S1012:根据自检数据确定安装信息。
在获取到自检数据之后,可以利用预先设置的自检数据与安装信息的映射关系确定检测设备的安装信息,该安装信息可以包括:未完成安装信息和完成安装信息;或者,安装过程中信息和完成安装信息等等。
本实施例中,通过获取检测设备中的所有部件的工作状态数据来确定自检数据,并根据自检数据确定检测设备的安装信息,有效地保证了检测设备安装信息获取的精确可靠性,进一步提高了该方法使用的稳定可靠性。
图4为本发明实施例提供的根据调试数据确定制作机器人的第二进度信息的流程示意图;图5为本发明实施例提供的根据硬件组装初步完成进度信息以及功能调试完成进度信息,确定每个功能单元的子进度信息的流程示意图;图6为本发明实施例提供的根据所有功能单元的子进度信息确定第二进度信息的流程示意图;在上述任意一个实施例的基础上,继续参考附图1、4-6可知,本实施例中的调试数据可以包括检测设备对机器人的多个功能单元进行功能调试所产生的多个子调试数据,进一步的,根据调试数据确定制作机器人的第二进度信息可以包括:
S1021:根据当前的子调试数据,确定硬件组装初步完成进度信息以及对应的功能调试完成进度信息;
由于调试数据可以包括检测设备对多个功能单元进行功能调试所产生的多个子调试数据信息,因此,可以先获取到对上述各个功能单元进行调试后所产生的子调试数据,而后根据所获取的子调试数据确定机器人的硬件组装初步完成进度信息以及相对应的功能调试完成进度信息;具体的,在机器人的各个硬件组件按照预设的安装要求组装完毕之后,可以对上述硬件组件进行调试,在调试后,可以获得相应的子调试数据,此时,则说明该机器人的硬件组件已经安装完成,并可以实现相应的功能操作,从而可以确定相应的硬件组装初步完成进度信息以及对应的功能调试完成进度信息。
S1022:根据硬件组装初步完成进度信息以及功能调试完成进度信息,确 定每个功能单元的子进度信息;
具体的,根据硬件组装初步完成进度信息以及功能调试完成进度信息,确定每个功能单元的子进度信息可以包括以下子步骤S10221-S10222。
S10221:根据功能调试完成参数以及预设标准调试参数,确定功能调试完成进度信息;
在检测设备对机器人的多个功能单元进行功能调试时,该功能调试过程可以包括多个调试阶段,而每个调试阶段可以对应有不同的标准调试参数,因此,为了能够准确地获取到第二进度信息,可以先获取到检测设备对每个功能单元进行功能调试所产生的功能调试完成参数,将功能调试完成参数与相对应的标准调试参数进行比较,可以获取到与每个功能单元所对应的比较结果,根据各个功能单元的比较结果,可以确定功能调试完成进度。具体的,可以先获取到各个功能单元的比较结果所对应的加权值,将各个功能单元的比较结果基于所对应的加权值进行加权求和,确定相应的功能调试完成进度。当然的,本领域技术人员还可以采用其他的方式来确定功能调试完成进度,只要能够保证功能调试完成进度确定的精确度即可,在此不再赘述。
S10222:根据硬件组装初步完成进度信息、功能调试完成进度信息以及各自所对应的加权值,确定子进度信息。
在获取到硬件组装初步完成进度信息和功能调试完成进度信息之后,可以获取到上述硬件组装初步完成进度信息和功能调试完成进度信息各自所对应的加权值,并根据上述硬件组装初步完成进度信息、功能调试完成进度信息以及各自所对应的加权值,确定子进度信息;具体的,可以将硬件组装初步完成进度信息、功能调试完成进度信息基于各自所对应的加权值进行加权求和,从而确定子进度信息。其中,需要说明的是,硬件组装初步完成进度信息所对应的加权值与功能调试完成进度信息所对应的加权值可以相同或不同,并且硬件组装初步完成进度信息所对应的加权值可以为0或者100%,功能调试完成进度信息所对应的加权值也可以为0或者100%。
S1023:根据所有功能单元的子进度信息确定第二进度信息。
具体的,根据所有功能单元的子进度信息确定第二进度信息可以包括以下子步骤S10231-S10232:
S10231:获取预先设置与每个子进度信息相对应的加权值;
其中,每个子进度信息所对应的加权值可以相同或不同。
S10232:根据每个子进度信息以及所对应的加权值,确定第二进度信息。
具体的,可以将每个子进度信息基于所对应的加权值进行加权求和值作为第二进度信息。当然的,本领域技术人员也可以采用其他的方式来确定第二进度信息,例如,可以将每个子进度信息基于所对应的加权值进行加权平均值作为第二进度信息等等。
本实施例中,通过所获取的硬件组装初步完成进度信息以及功能调试完成进度信息确定每个功能单元的子进度信息,进一步根据所有功能单元的子进度信息确定第二进度信息,具体的,根据每个子进度信息以及所对应的加权值,确定第二进度信息,有效地保证了第二进度信息获取的准确可靠性,进一步提高了该方法使用的稳定可靠性。
图7为本发明实施例提供的根据第一进度信息与第二进度信息确定机器人的制作进度信息的流程示意图;在上述任意一个实施例的基础上,继续参考附图1、7所示,本实施例对于根据第一进度信息与第二进度信息确定机器人的制作进度信息的具体实现过程不做限定,本领域技术人员可以根据具体的设计需求进行设置,较为优选的,根据第一进度信息与第二进度信息确定机器人的制作进度信息可以包括:
S1031:获取预先设置与第一进度信息相对应的第一加权值、以及与第二进度信息相对应的第二加权值;
其中,第一加权值和第二加权值可以相同或不同,并且,第一加权值可以为0或者100%,第二加权值也可以为0或者100%。
S1032:根据第一进度信息、第二进度信息、第一加权值以及第二加权值,确定制作进度信息。
具体的,将第一进度信息、第二进度信息基于第一加权值以及第二加权值的加权求和值作为制作进度信息;当然的,本领域技术人员也可以采用其他的方式来确定制作进度信息,例如,可以将第一进度信息、第二进度信息基于第一加权值以及第二加权值的加权平均值作为制作进度信息等等。只要能够保证制作进度信息获取的准确可靠性即可,在此不再赘述。
具体应用时,检测装置可以用于辅助获取到机器人制作的进度信息,该检测装置可以包括多个模块,并且可以涉及到多种技术,包含WIFI通信技术, 红外检测技术,近场通信技术、传感器技术等。具体的,如图8所示,检测装置200可以包括:主控灯条模块201(也可以为控制器)、定位检测模块202、弹丸测速模块203、场地交互模块204、装甲检测模块205、相机图传检测模块203,其中,主控灯条模块201与定位检测模块202、场地交互模块204、装甲检测模块205、相机图传检测模块206通信连接,相机图传检测模块206与弹丸测速模块203通信连接。
在参赛队伍在制作机器人的过程中,可以将上述检测装置200中的各模块安装在其制作的机器人上。具体的,检测装置200的各个模块的具体功能作用如下:
1)主控灯条模块201:可以作为整个检测装置200的核心,用于与所有其它模块进行通信,同时该模块内置有WIFI芯片,该模块可以通过WIFI无线接入网络,从而与其他控制终端进行通信连接,此外,该模块还可以内置有SD存储卡,当检测装置200没有进行数据传输时,可以将保存数据至SD存储卡内。
2)弹丸测速模块203:弹丸测速模块203内可以设置有两个红外对管。当机器人弹丸装置发射弹丸时,可以通过依次触发红外对管的时间差来计算发射弹丸的速度以及发弹弹丸的频率。
3)装甲检测模块205:可以包括多个压力传感器(例如:4个、5个或者更多),当机器人的装甲装置受到撞击、或者不同类型的弹丸攻击时,可以计算出压力值。
4)定位检测模块202:该模块基于一种无线载波通信技术,主要用于室内无GPS信号的情况下并利用定位装置获得机器人在室内的相对位置信息。
5)相机图传检测模块206:用于检测机器人上的图像传输装置的图像采集以及传输功能。
6)场地交互模块204:可以基于近场通信技术,与场地其它模块进行无线通信实现交互,以实现对机器人上的通信装置进行检测。
首先,将检测装置200发放给参赛机器人比赛的参赛队,为了方便描述,假定参赛队参加机器人制作比赛的进度用符号P表示,且设定目标值P=100表示能按时完成机器人制作且参加机器人比赛。通过对大量参赛队制作机器人的进度分析,大概可以大体为分两个阶段:
1、完成机器人方案设计并加工完机器人机械零部件,参赛队可以对机器人进行组装,组装完成后,就会按预设的安装要求安装发放的检测装置200。此阶段定义为第一阶段的机器人制作P1。
2、对机器人各功能单元进行调试。如机器人发射机构调试、底盘运动调试、战术对抗调试等,此阶段定义为第二阶段的机器人制作P2。显然机器人整体的制作进度信息P=P1+P2。
具体的,P1阶段的认证过程可以包括检测设备200的整体安装完成,并且顺利通过自检。
检测设备200中各模块顺利完成安装,然后给检测设备200上电,检测设备200就会自动对各个模块进行系统自检,如果检测到各模块均正常,则表示第一阶段的进度完成,具体的检测设备200进行自检的过程可参考附图9所示,包括:(1)对检测设备200进行上电启动;(2)判断装甲检测模块205是否在线;(3)若装甲检测模块205在线,则判断弹丸测速模块203是否在线;(4)若弹丸测速模块203在线,则判断场地交互模块204是否在线;(5)若场地交互模块204在线,则判断定位检测模块202是否在线;(6)若定位检测模块202在线,则判断相机图传检测模块206是否在线;(7)若相机图传检测模块206在线,则存储所有模块自检通过状态,上传服务器;(8)若上述任意一个模块不在线,则可以直接结束检测流程。
如果检测设备200的各模块能通过自检,则参赛队制作机器的人进度P=P1,假定,此阶段预先设置的进度分为50,则P=50;当检测设备200可以通过WIFI连接上预先设置的控制终端或者客户端后,就会将此进度信息自动上传到预先设置的服务器,用户可以通过服务器调取并查看各个参赛队伍相应的第一阶段的进度信息。
而对于第二阶段的制作进度跟踪而言,主要通过检测设备200中的各个模块收集数据来评估出进度信息。
以制作一台步兵机器人为例,步兵机器人可以分为云台发射部分(包括弹丸装置)、底盘控制部分,除此两个基础部分外完成后,还需要对整台步兵机器人进行调试,调试过程中就会使用到装甲检测模块205、场地交互模块204以及相机图传检测模块206。
云台发射机构(包括弹丸装置)进度用P21表示,如果云台发射机构完成,参赛队必然会进行发弹测试,只要检测到第一次发射弹丸测试则获得一个云台发射机构初步完成进度分S1=5,后续的方案调试完善阶段还会不断的发射弹丸,此阶段再给一个进度完成分S2=5,弹丸测速模块203可以累计发射弹丸数量记为n。经过大量数据统计,在整个参赛过程中,预设参赛队制作机器人发射弹丸数量为10000发,则云台发射机构进度可以获得的进度分
Figure PCTCN2017095233-appb-000001
如果
Figure PCTCN2017095233-appb-000002
的值大于1,则让其等于1,表示参赛队完成进度获得了满分。
底盘控制部分完成进度用P22表示,完成了底盘控制部分,则主控灯条模块201就可以检测到底盘控制功率,同时,通过定位检测模块202以及机器人上的定位装置可以检测到机器人的定位数据获得机器人的移动距离。此阶段,一旦检测到机器人底盘有功率输出,且定位装置获得了移动数据就获得一个初步完成进度分S1=5,后续的底盘控制调试,会不断控制机器人移动,就可以获得第二阶段的进度分S2=5;定位装置可以计算机器人的累计移动距离n单位为km,在整个参赛过程中,预设参赛队制作机器人最远移动距离为50km,则机器人底盘控制部分的进度分
Figure PCTCN2017095233-appb-000003
如果
Figure PCTCN2017095233-appb-000004
的值大于1,则让其值等于1,表示参赛队完成进度获得了满分。
同样的,整台机器人调试部分进度也通过同样的计算方式获得,进度分用P23表示。此阶段,主要通过装甲检测模块205以及场地交互模块204来获得源数据,具体的计算方式类比于前两种计算方式。最后可以得到参赛队伍制作机器人的进度分P=P1+P2=P1+P21+P22+P23,此分数越高,代表参赛队伍制作机器人的进度越好,同时作为比赛的组委会可以根据此分数对各参赛队伍进行相应的决策。
本技术方案提供的进度跟踪方法,可以根据检测设备200自动获得机器人竞赛过程中,参赛队伍制作机器人的进度信息,减少人力物力的消耗,从而可以实现准确地评估参赛队伍质量,保证机器人竞赛水平,此外,本申请的实现方式也可以转化到机器人的教育产品中。客户购买机器人教育产品, 如果此产品中内置一些传感装置,类似于本申请中的检测设备200,通过所配置的检测设备200可以收集客户在使用产品过程中的学习进度,根据客户的学习进度,可以适当的、高效地给客户推送与客户水平相当的知识点,进一步的,还可以根据学习进度,适当设置一定的难度来进行激励,可以让客户的参与感更强烈,提高客户的学习兴趣,从而达到更好的学习效率。
图10为本发明一实施例提供的一种进度跟踪装置的结构示意图,参考附图10所示,本实施例提供了一种进度跟踪装置100,该进度跟踪装置100可以为具有数据处理功能的服务器或者处理器,该进度跟踪装置100可以执行上述任意一个实施例中的进度跟踪方法,用于对机器人的制作进度进行跟踪,机器人预设配置有检测设备200;检测设备200与进度跟踪装置100通信连接;进度跟踪装置100包括:处理器101和存储器102,存储器102用于存储程序指令,处理器101的个数可以为1个或多个,且可以单独或协同工作,处理器101用于运行存储器中存储的程序指令,以实现:
通过无线网络的方式获取检测设备200的安装信息,根据安装信息确定制作机器人的第一进度信息;通过无线网络的方式获取检测设备200对机器人的多个功能单元进行功能调试的调试数据,根据调试数据确定制作机器人的第二进度信息;根据第一进度信息与第二进度信息确定机器人的制作进度信息。
其中,检测设备200可以包括与多个功能单元进行通信连接、用于控制多个功能单元的控制器;功能单元可以包括如下至少一种:弹丸装置、图像传输装置、装甲装置、定位装置以及通信装置。
本实施例中处理器101所执行步骤的具体实现过程以及所能达到的技术效果与上述实施例中步骤S101-S103的具体实现过程以及所能达到的技术效果相同,具体可参考上述陈述内容,在此不再赘述。
本实施例提供的进度跟踪装置100,通过预先配置的检测设备200,该检测设备200可以安装在机器人上,并且处理器101可以通过检测设备200的安装信息获取到第一进度信息,通过检测设备200对机器人的多个功能单元进行功能调试的调试数据可以确定第二进度信息,进而可以通过第一进度信息和第二进度信息确定机器人整体的制作进度信息,不仅保证了机器人的制 作进度信息获取的准确可靠性,并且还有效地减小了人力物力的消耗与浪费,降低了参赛队伍所需要花费的额外精力,从而提高了有利于提高机器人制作的质量和效率。
在上述实施例的基础上,继续参考附图10所示,本实施例对于处理器101通过无线网络的方式获取检测设备200的安装信息的具体实现方式不做限定,本领域技术人员可以根据具体的设计需求进行设置,较为优选的,在处理器101通过无线网络的方式获取检测设备200的安装信息时,该处理器你101可以用于执行以下步骤:
通过无线网络的方式获取检测设备200进行自检操作所生成的自检数据;根据自检数据确定安装信息。
具体的,在处理器101通过无线网络的方式获取检测设备200进行自检操作所生成的自检数据时,该处理器101还可以用于执行:在检测设备200上电启动后,通过无线网络的方式获取检测设备200中的所有部件的工作状态数据;根据工作状态数据确定自检数据。
本实施例中处理器101所执行步骤的具体实现过程以及所能达到的技术效果与上述实施例中步骤S1011-S1012、S10111-S10112的具体实现过程以及所能达到的技术效果相同,具体可参考上述陈述内容,在此不再赘述。
本实施例中,处理器101通过获取检测设备200中的所有部件的工作状态数据来确定自检数据,并根据自检数据确定检测设备200的安装信息,有效地保证了检测设备200的安装信息获取的精确可靠性,进一步提高了该装置使用的稳定可靠性。
在上述实施例的基础上,继续参考附图10所示,调试数据包括检测设备200对机器人的多个功能单元进行功能调试所产生的多个子调试数据,此时,在处理器101根据调试数据确定制作机器人的第二进度信息时,该处理器101可以用于执行以下步骤:
根据当前的子调试数据,确定硬件组装初步完成进度信息以及对应的功能调试完成进度信息;根据硬件组装初步完成进度信息以及功能调试完成进度信息,确定每个功能单元的子进度信息;根据所有功能单元的子进度信息确定第二进度信息。
具体的,在处理器101根据硬件组装初步完成进度信息以及功能调试完 成进度信息,确定每个功能单元的子进度信息时,该处理器101可以具体用于:根据功能调试完成参数以及预设标准调试参数,确定功能调试完成进度信息;根据硬件组装初步完成进度信息、功能调试完成进度信息以及各自所对应的加权值,确定子进度信息。
进一步的,在处理器101根据所有功能单元的子进度信息确定第二进度信息时,该处理器你101可以具体用于:获取预先设置与每个子进度信息相对应的加权值;根据每个子进度信息以及所对应的加权值,确定第二进度信息。
本实施例中处理器101所执行步骤的具体实现过程以及所能达到的技术效果与上述实施例中步骤S1021-S1023、S10221-S10222、S10231-S10232的具体实现过程以及所能达到的技术效果相同,具体可参考上述陈述内容,在此不再赘述。
本实施例中,处理器101通过所获取的硬件组装初步完成进度信息以及功能调试完成进度信息确定每个功能单元的子进度信息,进一步根据所有功能单元的子进度信息确定第二进度信息,具体的,根据每个子进度信息以及所对应的加权值,确定第二进度信息,有效地保证了第二进度信息获取的准确可靠性,进一步提高了该装置使用的稳定可靠性。
在上述实施例的基础上,继续参考附图10所示,本实施例对于处理器101根据第一进度信息与第二进度信息确定机器人的制作进度信息的具体实现过程不做限定,本领域技术人员可以根据具体的设计需求进行设置,较为优选的,在处理器101根据第一进度信息与第二进度信息确定机器人的制作进度信息时,该处理器101可以用于执行以下步骤:
获取预先设置与第一进度信息相对应的第一加权值、以及与第二进度信息相对应的第二加权值;根据第一进度信息、第二进度信息、第一加权值以及第二加权值,确定制作进度信息。
本实施例中处理器101所执行步骤的具体实现过程以及所能达到的技术效果与上述实施例中步骤S1031-S1032的具体实现过程以及所能达到的技术效果相同,具体可参考上述陈述内容,在此不再赘述。
图11为本发明一实施例提供的一种机器人的结构示意图一;图12为本 发明一实施例提供的一种机器人的结构示意图二;参考附图11-12所示,本实施例提供了一种机器人300,该机器人300包括机器人主体301,机器人主体301上设置有检测设备、多个功能单元以及无线通信装置306;其中,多个功能单元可以包括以下至少之一:弹丸装置302、图像传输装置303、装甲装置304、定位装置305、底盘装置307;
检测设备与多个功能单元通信连接,并且用于控制功能单元;
其中,多个功能单元将自身进行功能调试的调试数据发送给检测设备,检测设备将自身的安装信息以及多个功能单元的调试数据通过无线通信装置306远程发送给进度跟踪装置。
具体的,本实施例中的进度跟踪装置100的具体结构可参考上述附图10所示,其与检测设备200通信连接,检测设备200可以包括用于控制多个功能单元的控制器,该控制器可以用于控制上述各个功能单元进行功能检测操作,以使得多个功能单元将自身进行功能调试的调试数据发送给检测设备;而在将检测设备200安装到机器人主体301上时,可以获取到检测设备200的安装信息,此时,检测设备200可以将自身的安装信息和所获取到的多个功能单元的调试数据通过无线通信装置306发送给进度跟踪装置100,以使得进度跟踪装置100可以基于上述安装信息和调试数据确定机器人300的制作进度信息。
本实施例提供的机器人300,通过设置可以对多个功能单元进行控制的检测设备200,可以使得检测设备200将自身的安装信息以及所获取的多个功能单元的调试数据通过无线通信装置306远程发送给进度跟踪装置100,进一步进度跟踪装置100可以基于上述安装信息和调试数据确定机器人的制作进度信息,不仅保证了机器人300的制作进度信息获取的准确可靠性,并且还有效地减小了人力物力的消耗与浪费,降低了参赛队伍所需要花费的额外精力,从而提高了有利于提高机器人制作的质量和效率。
在上述实施例的基础上,结合附图10-12所示,本实施例中的进度跟踪装置100可以包括:处理器101和存储器102,存储器102用于存储程序指令,处理器101的个数可以为1个或多个,且可以单独或协同工作,处理器101用于运行存储器中存储的程序指令,以实现:
通过无线网络的方式获取检测设备200的安装信息,根据安装信息确定 制作机器人300的第一进度信息;通过无线网络的方式获取检测设备200对机器人300的多个功能单元进行功能调试的调试数据,根据调试数据确定制作机器人300的第二进度信息;根据第一进度信息与第二进度信息确定机器人300的制作进度信息。
具体应用时,检测设备200还可以包括用于控制多个功能单元的控制器,控制器可以与上述的弹丸检测装置相连接,用于控制弹丸检测装置对弹丸装置的功能进行检测,具体可以测量由弹丸装置所发射出的弹丸的速度和/或数量。
而在功能单元包括定位装置时,检测设备200还包括用于对定位装置进行功能调试的定位检测装置,定位检测装置用于在定位装置存在输出功率时,利用定位装置检测机器人300的移动距离。
控制器可以与上述的定位检测装置相连接,用于对机器人300上的定位装置的功能进行检测,其中,定位装置可以用来检测机器人300的移动距离,也即,可以确定机器人300所处的具体位置。
本实施例中处理器101所执行步骤的具体实现过程以及所能达到的技术效果与上述实施例中步骤S101-S103的具体实现过程以及所能达到的技术效果相同,具体可参考上述陈述内容,在此不再赘述。
在上述实施例的基础上,继续参考附图10-12所示,本实施例对于处理器101通过无线网络的方式获取检测设备200的安装信息的具体实现方式不做限定,本领域技术人员可以根据具体的设计需求进行设置,较为优选的,在处理器101通过无线网络的方式获取检测设备200的安装信息时,该处理器你101可以用于执行以下步骤:
通过无线网络的方式获取检测设备200进行自检操作所生成的自检数据;根据自检数据确定安装信息。
具体的,在处理器101通过无线网络的方式获取检测设备200进行自检操作所生成的自检数据时,该处理器101还可以用于执行:在检测设备200上电启动后,通过无线网络的方式获取检测设备200中的所有部件的工作状态数据;根据工作状态数据确定自检数据。
本实施例中处理器101所执行步骤的具体实现过程以及所能达到的技术效果与上述实施例中步骤S1011-S1012、S10111-S10112的具体实现过程以及 所能达到的技术效果相同,具体可参考上述陈述内容,在此不再赘述。
在上述实施例的基础上,继续参考附图10-12所示,调试数据包括检测设备200对机器人300的多个功能单元进行功能调试所产生的多个子调试数据,此时,在处理器101根据调试数据确定制作机器人300的第二进度信息时,该处理器101可以用于执行以下步骤:
根据当前的子调试数据,确定硬件组装初步完成进度信息以及对应的功能调试完成进度信息;根据硬件组装初步完成进度信息以及功能调试完成进度信息,确定每个功能单元的子进度信息;根据所有功能单元的子进度信息确定第二进度信息。
具体的,在处理器101根据硬件组装初步完成进度信息以及功能调试完成进度信息,确定每个功能单元的子进度信息时,该处理器101可以具体用于:根据功能调试完成参数以及预设标准调试参数,确定功能调试完成进度信息;根据硬件组装初步完成进度信息、功能调试完成进度信息以及各自所对应的加权值,确定子进度信息。
进一步的,在处理器101根据所有功能单元的子进度信息确定第二进度信息时,该处理器你101可以具体用于:获取预先设置与每个子进度信息相对应的加权值;根据每个子进度信息以及所对应的加权值,确定第二进度信息。
本实施例中处理器101所执行步骤的具体实现过程以及所能达到的技术效果与上述实施例中步骤S1021-S1023、S10221-S10222、S10231-S10232的具体实现过程以及所能达到的技术效果相同,具体可参考上述陈述内容,在此不再赘述。
在上述实施例的基础上,继续参考附图10-12所示,本实施例对于处理器101根据第一进度信息与第二进度信息确定机器人300的制作进度信息的具体实现过程不做限定,本领域技术人员可以根据具体的设计需求进行设置,较为优选的,在处理器101根据第一进度信息与第二进度信息确定机器人300的制作进度信息时,该处理器101可以用于执行以下步骤:
获取预先设置与第一进度信息相对应的第一加权值、以及与第二进度信息相对应的第二加权值;根据第一进度信息、第二进度信息、第一加权值以及第二加权值,确定制作进度信息。
本实施例中处理器101所执行步骤的具体实现过程以及所能达到的技术效果与上述实施例中步骤S1031-S1032的具体实现过程以及所能达到的技术效果相同,具体可参考上述陈述内容,在此不再赘述。
在上述实施例的基础上,继续参考附图10-12所示,在功能单元包括弹丸装置时,检测设备200包括:用于对弹丸装置进行功能调试的弹丸检测装置,弹丸检测装置用于测量由弹丸装置所发射出的弹丸的速度和/或数量。
图13为本发明实施例提供的一种进度跟踪系统的结构示意图,参考附图13所示,本实施例提供了一种进度跟踪系统,包括:
上述任意一个实施例中的进度跟踪装置100;
机器人300,包括机器人主体,机器人主体上设置有检测设备,检测设备与进度跟踪装置100通信连接。
其中,本实施例中的进度跟踪装置的具体结构以及所实现的功能作用与上述附图10所对应的实施例中的具体结构以及所实现的功能作用相同,具体可参考上述陈述内容,在此不再赘述。另外,本实施例中的机器人的具体结构以及所实现的功能作用与上述附图11-12所对应的实施例中的具体结构以及所实现的功能作用相同,具体可参考上述陈述内容,在此不再赘述。
进一步的,继续参考附图13所示,该系统还包括控制终端400,检测设备通过控制终端400与进度跟踪装置100通信连接。
其中,控制终端400可以为智能手机、个人电脑、智能手表、智能手环等等等,该控制终端400上可以安装有用于实现上述进度跟踪方法的应用程序。
对于检测设备而言,一种可实现的方式为:检测设备可以用于在控制终端400的控制下进行自检操作,并将进行自检操作所生成的自检数据通过控制终端400发送至进度跟踪装置100。
另一种可实现的方式为:检测设备还可以用于在控制终端400的控制下对机器人的多个功能单元进行功能调试,并将进行功能调试所生成的调试数据通过控制终端400发送至进度跟踪装置100。
具体的,在功能单元包括弹丸装置时,检测设备包括:用于对弹丸装置进行功能调试的弹丸检测装置,弹丸检测装置用于在控制终端400的控制下 测量由弹丸装置所发射出的弹丸的速度和/或数量。
进一步的,在功能单元包括定位装置时,检测设备还包括用于对定位装置进行功能调试的定位检测装置,定位检测装置用于在控制终端400的控制下,利用定位装置检测机器人的移动距离。
本技术方案提供的进度跟踪系统,可以利用检测设备自动获得机器人竞赛过程中,参赛队伍制作机器人的进度信息,减少人力物力消耗、从而有效评估参赛队伍质量,保证机器人竞赛水平,此外,本申请的实现方式也可以转化到机器人教育产品中。客户购买机器人教育产品,如果此产品中内置一些传感装置,类似于本申请中的检测设备,就可以收集客户在使用产品过程中的学习进度,根据客户的学习进度,可以适当的、高效地给客户推送与客户水平相当的知识点,进一步的,还可以根据学习进度,适当设置一定的难度来进行激励,可以让客户的参与感更强烈,提高客户的学习兴趣,从而达到更好的学习效率。
此外,本申请还提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述附图1-附图9所对应的进度跟踪方法,或者,也可以执行附图10所对应的进度跟踪装置可以执行的进度跟踪方法。
另外,本申请还提供了另一种进度跟踪装置,该进度跟踪装置可以包括:
获取模块,用于通过无线网络的方式获取检测设备的安装信息,根据安装信息确定制作机器人的第一进度信息;
获取模块,用于通过无线网络的方式获取检测设备对机器人的多个功能单元进行功能调试的调试数据,根据调试数据确定制作机器人的第二进度信息;
确定模块,用于根据第一进度信息与第二进度信息确定机器人的制作进度信息。
本实施例中的获取模块和确定模块所执行的操作步骤的具体实现过程以及实现效果与上述实施例中步骤S101-S103的具体实现过程以及实现效果相同,具体可参考上述陈述内容,在此不再赘述。
此外,本实施例中的进度跟踪装置还可以实现附图2-9中所对应的进度跟踪方法,具体实现过程以及实现效果与上述陈述内容相同,在此不再赘述。
以上各个实施例中的技术方案、技术特性在与本相冲突的情况下均可以单独,或者进行组合,只要未超出本领域技术人员的认知范围,均属于本申请保护范围内的等同实施例。
在本发明所提供的几个实施例中,应该理解到,所揭露的相关装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特性可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得计算机处理器101(processor)执行本发明各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或者光盘等各种可以存储程序代码的介质。
以上仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对 其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特性进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (33)

  1. 一种进度跟踪方法,其特性在于,用于对机器人的制作进度进行跟踪,所述机器人预先配置有检测设备;所述方法包括:
    通过无线网络的方式获取所述检测设备的安装信息,根据所述安装信息确定制作机器人的第一进度信息;
    通过无线网络的方式获取所述检测设备对所述机器人的多个功能单元进行功能调试的调试数据,根据所述调试数据确定制作机器人的第二进度信息;
    根据所述第一进度信息与所述第二进度信息确定所述机器人的制作进度信息。
  2. 根据权利要求1所述的方法,其特性在于,所述通过无线网络的方式获取所述检测设备的安装信息,包括:
    通过无线网络的方式获取所述检测设备进行自检操作所生成的自检数据;
    根据所述自检数据确定所述安装信息。
  3. 根据权利要求2所述的方法,其特性在于,所述通过无线网络的方式获取所述检测设备进行自检操作所生成的自检数据,包括:
    在所述检测设备上电启动后,通过无线网络的方式获取所述检测设备中的所有部件的工作状态数据;
    根据所述工作状态数据确定所述自检数据。
  4. 根据权利要求1所述的方法,其特性在于,所述调试数据包括检测设备对所述机器人的多个功能单元进行功能调试所产生的多个子调试数据,根据所述调试数据确定制作机器人的第二进度信息,包括:
    根据当前的所述子调试数据,确定硬件组装初步完成进度信息以及对应的功能调试完成进度信息;
    根据所述硬件组装初步完成进度信息以及功能调试完成进度信息,确定每个功能单元的子进度信息;
    根据所有功能单元的子进度信息确定所述第二进度信息。
  5. 根据权利要求4所述的方法,其特性在于,根据所述硬件组装初步完成进度信息以及功能调试完成进度信息,确定每个功能单元的子进度信息,包括:
    根据功能调试完成参数以及预设标准调试参数,确定功能调试完成进度信息;
    根据所述硬件组装初步完成进度信息、功能调试完成进度信息以及各自所对应的加权值,确定所述子进度信息。
  6. 根据权利要求4所述的方法,其特性在于,根据所有功能单元的子进度信息确定所述第二进度信息,包括:
    获取预先设置与每个子进度信息相对应的加权值;
    根据每个子进度信息以及所对应的加权值,确定所述第二进度信息。
  7. 根据权利要求1所述的方法,其特性在于,根据所述第一进度信息与所述第二进度信息确定所述机器人的制作进度信息,包括:
    获取预先设置与所述第一进度信息相对应的第一加权值、以及与所述第二进度信息相对应的第二加权值;
    根据所述第一进度信息、所述第二进度信息、所述第一加权值以及第二加权值,确定所述制作进度信息。
  8. 根据权利要求1-7中任意一项所述的方法,其特性在于,所述检测设备包括与多个所述功能单元进行通信连接、用于控制多个所述功能单元的控制器;
    所述功能单元包括如下至少一种:弹丸装置、图像传输装置、装甲装置、定位装置以及通信装置。
  9. 一种进度跟踪装置,其特性在于,用于对机器人的制作进度进行跟踪,所述机器人预设配置有检测设备;所述检测设备与所述进度跟踪装置通信连接;所述进度跟踪装置包括:处理器和存储器,所述存储器用于存储程序指令,所述处理器的个数可以为1个或多个,且可以单独或协同工作,所述处理器用于运行所述存储器中存储的程序指令,以实现:
    通过无线网络的方式获取所述检测设备的安装信息,根据所述安装信息确定制作机器人的第一进度信息;
    通过无线网络的方式获取所述检测设备对所述机器人的多个功能单元进行功能调试的调试数据,根据所述调试数据确定制作机器人的第二进度信息;
    根据所述第一进度信息与所述第二进度信息确定所述机器人的制作进度 信息。
  10. 根据权利要求9所述的装置,其特性在于,所述处理器,用于:
    通过无线网络的方式获取所述检测设备进行自检操作所生成的自检数据;
    根据所述自检数据确定所述安装信息。
  11. 根据权利要求10所述的装置,其特性在于,所述处理器,用于:
    在所述检测设备上电启动后,通过无线网络的方式获取所述检测设备中的所有部件的工作状态数据;
    根据所述工作状态数据确定所述自检数据。
  12. 根据权利要求9所述的装置,其特性在于,所述调试数据包括检测设备对所述机器人的多个功能单元进行功能调试所产生的多个子调试数据,所述处理器,用于:
    根据当前的所述子调试数据,确定硬件组装初步完成进度信息以及对应的功能调试完成进度信息;
    根据所述硬件组装初步完成进度信息以及功能调试完成进度信息,确定每个功能单元的子进度信息;
    根据所有功能单元的子进度信息确定所述第二进度信息。
  13. 根据权利要求12所述的装置,其特性在于,所述处理器,用于:
    根据功能调试完成参数以及预设标准调试参数,确定功能调试完成进度信息;
    根据所述硬件组装初步完成进度信息、功能调试完成进度信息以及各自所对应的加权值,确定所述子进度信息。
  14. 根据权利要求12所述的装置,其特性在于,所述处理器,用于:
    获取预先设置与每个子进度信息相对应的加权值;
    根据每个子进度信息以及所对应的加权值,确定所述第二进度信息。
  15. 根据权利要求9所述的装置,其特性在于,所述处理器,用于:
    获取预先设置与所述第一进度信息相对应的第一加权值、以及与所述第二进度信息相对应的第二加权值;
    根据所述第一进度信息、所述第二进度信息、所述第一加权值以及第二加权值,确定所述制作进度信息。
  16. 根据权利要求9-15中任意一项所述的装置,其特性在于,所述检测 设备包括与多个所述功能单元进行通信连接、用于控制多个所述功能单元的控制器;
    所述功能单元包括如下至少一种:弹丸装置、图像传输装置、装甲装置、定位装置以及通信装置。
  17. 一种机器人,其特征在于,包括机器人主体,所述机器人主体上设置有检测设备、多个功能单元以及无线通信装置;
    所述检测设备与多个所述功能单元通信连接,并且用于控制所述功能单元;
    其中,多个所述功能单元将自身进行功能调试的调试数据发送给所述检测设备,所述检测设备将自身的安装信息以及多个所述功能单元的调试数据通过所述无线通信装置远程发送给进度跟踪装置。
  18. 根据权利要求17所述的机器人,其特征在于,所述进度跟踪装置包括:处理器和存储器,所述存储器用于存储程序指令,所述处理器的个数可以为1个或多个,且可以单独或协同工作,所述处理器用于运行所述存储器中存储的程序指令,以实现:
    通过无线网络的方式获取所述检测设备的安装信息,根据所述安装信息确定制作机器人的第一进度信息;
    通过无线网络的方式获取所述检测设备对所述机器人的多个功能单元进行功能调试的调试数据,根据所述调试数据确定制作机器人的第二进度信息;
    根据所述第一进度信息与所述第二进度信息确定所述机器人的制作进度信息。
  19. 根据权利要求18所述的机器人,其特性在于,所述处理器,用于:
    通过无线网络的方式获取所述检测设备进行自检操作所生成的自检数据;
    根据所述自检数据确定所述安装信息。
  20. 根据权利要求19所述的机器人,其特性在于,所述处理器,用于:
    在所述检测设备上电启动后,通过无线网络的方式获取所述检测设备中的所有部件的工作状态数据;
    根据所述工作状态数据确定所述自检数据。
  21. 根据权利要求18所述的机器人,其特性在于,所述调试数据包括检 测设备对所述机器人的多个功能单元进行功能调试所产生的多个子调试数据,所述处理器,用于:
    根据当前的所述子调试数据,确定硬件组装初步完成进度信息以及对应的功能调试完成进度信息;
    根据所述硬件组装初步完成进度信息以及功能调试完成进度信息,确定每个功能单元的子进度信息;
    根据所有功能单元的子进度信息确定所述第二进度信息。
  22. 根据权利要求21所述的机器人,其特性在于,所述处理器,用于:
    根据功能调试完成参数以及预设标准调试参数,确定功能调试完成进度信息;
    根据所述硬件组装初步完成进度信息、功能调试完成进度信息以及各自所对应的加权值,确定所述子进度信息。
  23. 根据权利要求21所述的机器人,其特性在于,所述处理器,用于:
    获取预先设置与每个子进度信息相对应的加权值;
    根据每个子进度信息以及所对应的加权值,确定所述第二进度信息。
  24. 根据权利要求18所述的机器人,其特性在于,所述处理器,用于:
    获取预先设置与所述第一进度信息相对应的第一加权值、以及与所述第二进度信息相对应的第二加权值;
    根据所述第一进度信息、所述第二进度信息、所述第一加权值以及第二加权值,确定所述制作进度信息。
  25. 根据权利要求18-24中任意一项所述的机器人,其特性在于,所述功能单元包括如下至少一种:弹丸装置、图像传输装置、装甲装置以及定位装置。
  26. 根据权利要求25所述的机器人,其特征在于,在所述功能单元包括弹丸装置时,所述检测设备包括:用于对所述弹丸装置进行功能调试的弹丸检测装置,所述弹丸检测装置用于测量由所述弹丸装置所发射出的弹丸的速度和/或数量。
  27. 根据权利要求25所述的机器人,其特征在于,在所述功能单元包括定位装置时,所述检测设备还包括用于对所述定位装置进行功能调试的定位检测装置,所述定位检测装置用于在所述定位装置存在输出功率时,利用所 述定位装置检测所述机器人的移动距离。
  28. 一种进度跟踪系统,其特征在于,包括:
    权利要求9-16中任意一项所述的进度跟踪装置;
    机器人,包括机器人主体,所述机器人主体上设置有检测设备,所述检测设备与所述进度跟踪装置通信连接。
  29. 根据权利要求28所述的系统,其特征在于,所述系统还包括控制终端,所述检测设备通过所述控制终端与所述进度跟踪装置通信连接。
  30. 根据权利要求29所述的系统,其特征在于,
    所述检测设备,用于在所述控制终端的控制下进行自检操作,并将进行自检操作所生成的自检数据通过所述控制终端发送至所述进度跟踪装置。
  31. 根据权利要求29所述的系统,其特征在于,
    所述检测设备,用于在所述控制终端的控制下对所述机器人的多个功能单元进行功能调试,并将进行功能调试所生成的调试数据通过所述控制终端发送至所述进度跟踪装置。
  32. 根据权利要求31所述的系统,其特征在于,在所述功能单元包括弹丸装置时,所述检测设备包括:用于对所述弹丸装置进行功能调试的弹丸检测装置,所述弹丸检测装置用于在所述控制终端的控制下测量由所述弹丸装置所发射出的弹丸的速度和/或数量。
  33. 根据权利要求31所述的系统,其特征在于,在所述功能单元包括定位装置时,所述检测设备还包括用于对所述定位装置进行功能调试的定位检测装置,所述定位检测装置用于在所述控制终端的控制下、且在所述定位装置存在输出功率时,利用所述定位装置检测所述机器人的移动距离。
PCT/CN2017/095233 2017-07-31 2017-07-31 进度跟踪方法、装置、系统及机器人 WO2019023872A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780017910.2A CN108883532A (zh) 2017-07-31 2017-07-31 进度跟踪方法、装置、系统及机器人
PCT/CN2017/095233 WO2019023872A1 (zh) 2017-07-31 2017-07-31 进度跟踪方法、装置、系统及机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/095233 WO2019023872A1 (zh) 2017-07-31 2017-07-31 进度跟踪方法、装置、系统及机器人

Publications (1)

Publication Number Publication Date
WO2019023872A1 true WO2019023872A1 (zh) 2019-02-07

Family

ID=64325916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095233 WO2019023872A1 (zh) 2017-07-31 2017-07-31 进度跟踪方法、装置、系统及机器人

Country Status (2)

Country Link
CN (1) CN108883532A (zh)
WO (1) WO2019023872A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110381567B (zh) * 2019-07-08 2021-08-17 浙江大华技术股份有限公司 配置进度管理方法、装置、计算机设备和存储介质
CN111913845A (zh) * 2020-08-14 2020-11-10 中消云(北京)物联网科技研究院有限公司 消防主机的调试方法及装置、消防主机的调试系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719811A (en) * 1980-07-11 1982-02-02 Hitachi Ltd Work proceeding-state controlling system
JPH11306048A (ja) * 1998-04-21 1999-11-05 Toshiba Tec Corp コンピュータの業務スケジュール監視装置及び業務スケジュール監視プログラムを記録した記録媒体
CN1281179A (zh) * 1999-06-30 2001-01-24 戴尔美国公司 在计算机系统制造中使用的设备
CN101266486A (zh) * 2008-05-08 2008-09-17 上海交通大学 半导体制造流程辅助决策系统
CN103854124A (zh) * 2012-12-06 2014-06-11 新疆石文科技发展有限公司 一种电梯安装管理系统
CN105094092A (zh) * 2015-07-23 2015-11-25 上海极熵数据科技有限公司 自动化工业设备的作业矫正方法
CN105117318A (zh) * 2015-08-18 2015-12-02 北京恒华伟业科技股份有限公司 设备生产进度的监控方法及装置
US20160274897A1 (en) * 2014-01-09 2016-09-22 Bank Of America Corporation Entity wide software tracking and maintenance reporting tool

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202171824U (zh) * 2011-07-11 2012-03-21 东莞市科达计算机系统工程有限公司 服装生产进度智能监管系统
US10089096B2 (en) * 2014-07-24 2018-10-02 Tivadar Bodorlo Progress tracking system and method
CN106779474A (zh) * 2017-01-10 2017-05-31 对松堂电子(苏州)有限公司 一种工程管理软件系统及其管理方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719811A (en) * 1980-07-11 1982-02-02 Hitachi Ltd Work proceeding-state controlling system
JPH11306048A (ja) * 1998-04-21 1999-11-05 Toshiba Tec Corp コンピュータの業務スケジュール監視装置及び業務スケジュール監視プログラムを記録した記録媒体
CN1281179A (zh) * 1999-06-30 2001-01-24 戴尔美国公司 在计算机系统制造中使用的设备
CN101266486A (zh) * 2008-05-08 2008-09-17 上海交通大学 半导体制造流程辅助决策系统
CN103854124A (zh) * 2012-12-06 2014-06-11 新疆石文科技发展有限公司 一种电梯安装管理系统
US20160274897A1 (en) * 2014-01-09 2016-09-22 Bank Of America Corporation Entity wide software tracking and maintenance reporting tool
CN105094092A (zh) * 2015-07-23 2015-11-25 上海极熵数据科技有限公司 自动化工业设备的作业矫正方法
CN105117318A (zh) * 2015-08-18 2015-12-02 北京恒华伟业科技股份有限公司 设备生产进度的监控方法及装置

Also Published As

Publication number Publication date
CN108883532A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
US20150285593A1 (en) Monitoring shots of firearms
CN106456000A (zh) 生物测定信号的基于运动的估计
CN105260306B (zh) 一种游戏程序中美术资源的性能检测方法及装置
CN103206899A (zh) 一种激光打靶射击训练系统
WO2019023872A1 (zh) 进度跟踪方法、装置、系统及机器人
CN105744223B (zh) 视频数据处理方法和装置
CN108093038A (zh) 一种机场鸟情智能探测防控装置、系统及方法
CN103691102A (zh) 运动信息监控系统及其方法
CN112991219B (zh) 星上处理的地面仿真模拟系统、方法及电子设备
US20220125360A1 (en) Method and computer program for determining psychological state through drawing process of counseling recipient
US20190170482A1 (en) Smart safety contraption and methods related thereto for use with a firearm
WO2016115554A1 (en) Firearm training apparatus and methods
CN108388933A (zh) 赛鸽信息管理系统、方法、电子设备及计算机可读介质
CN104614979A (zh) 一种利用手表将运动记录接入赛事系统的方法
US20240085133A1 (en) Devices, systems, and computer program products for detecting gunshots and related methods
CN110160415A (zh) 一种应用于导弹地面联调的远程测试系统及其测试方法
TWI546517B (zh) Grenade throwing training system
CN202452970U (zh) 基于规则同视场的几何图形标定技术的铅球测量装置
US10788285B2 (en) Dry-fire magazine
CN201984335U (zh) 电子装备战损状态监测与快速评估系统
CN106288998A (zh) 一种排爆训练装置
WO2011037662A2 (en) Apparatus, system, method, and computer program product for detecting projectiles
WO2020079157A1 (fr) Dispositif et procede d'analyse de tir
Pickett et al. Smart Shot: Electronic Target with Smartphone Application
CN104778113B (zh) 一种矫正功率传感器数据的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17919707

Country of ref document: EP

Kind code of ref document: A1