WO2019022545A1 - Solvent-free thermosetting organic/inorganic hybrid insulating material - Google Patents

Solvent-free thermosetting organic/inorganic hybrid insulating material Download PDF

Info

Publication number
WO2019022545A1
WO2019022545A1 PCT/KR2018/008492 KR2018008492W WO2019022545A1 WO 2019022545 A1 WO2019022545 A1 WO 2019022545A1 KR 2018008492 W KR2018008492 W KR 2018008492W WO 2019022545 A1 WO2019022545 A1 WO 2019022545A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
thermosetting
group
weight
nanoparticles
Prior art date
Application number
PCT/KR2018/008492
Other languages
French (fr)
Korean (ko)
Inventor
강동준
임현균
박효열
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Publication of WO2019022545A1 publication Critical patent/WO2019022545A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention relates to a solventless thermosetting organic / inorganic hybrid material, and more particularly, to a hybrid inorganic / organic hybrid material having various molecular weights and viscosities and a hybrid organic oligosiloxane material, And more particularly, to a thermosetting and non-dispersible hybrid inorganic insulating material.
  • inorganic materials have excellent properties such as corrosion resistance, chemical resistance, abrasion resistance, heat resistance, hardness, moisture and gas barrier, and are actively used in such fields as structural materials, protective coating materials, abrasive materials, .
  • Minerals with such physical properties are also required to be applied to electric, electronic, and energy materials, and active research for application is underway.
  • the produced inorganic materials are difficult to produce as a thick film due to the brittleness of the material itself, and there are many limitations in applying a simple wet process.
  • Such conventional organic / inorganic hybrid compositions are disclosed in Korean Patent Registration No. 10-1454447 as a method for manufacturing a composite material for improving durability and insulation, and Korean Patent Application No. 10-2016-0014971, which discloses high transparency, And a method of producing a hybrid coating material having the above-mentioned properties.
  • a step of removing the solvent must be separately included in the process of applying the hybrid composition.
  • a hybrid composition not containing a solvent It is ideal to obtain. Accordingly, there is known a technique for obtaining a solvent-free composition such as the prior art 'Korean Patent Office Registration No.
  • the organic hybrid composition is prepared without using a solvent as described above, since the solvent is not used, the viscosity is not easily controlled and the viscosity is high at about 3000 to 10000 cp. It is difficult to perform smoothly.
  • thermoplastic resin composition comprising 10% by weight or more of an oligosiloxane having a thermosetting organic group; At least 10% by weight of an organic monomer or organic oligomer having a carbon chain structure and having a side chain and a thermosetting organic group at a terminal thereof; Up to 20% by weight of nanoparticles in the form of spherical particles substituted with thermosetting organic groups on their surfaces; 1 to 15% by weight of a curing accelerator having an organic group capable of being covalently bonded by heat treatment; A thermosetting initiator for initiating a thermosetting reaction together with the thermosetting organic group through heat treatment and a thermosetting agent for promoting a thermosetting reaction; 0.01 to 5% by weight of a thermosetting catalyst added to accelerate the thermosetting reaction; 0.1 to 3% by weight of a dispersion stabilizer having polarity and non-polarity polarity at both ends thereof; 0.1 to 15% by weight of a surface energy modifier for surface energy control; 0.1 to 10% by weight of a liquid flow
  • the oligosiloxane preferably has a molecular weight of 300 to 3,000 and the molecular weight of the organic monomer or the organic oligomer is preferably 100 to 10,000.
  • the nanoparticles may be organic nanoparticles, inorganic oxide nanoparticles, And the organic nanoparticles are selected from the group consisting of polystyrene, polyurethane, polymethylmethacrylate, and mixtures thereof, and the inorganic nanoparticles are selected from the group consisting of , Silica, zirconia, alumina, titania, and mixtures thereof.
  • thermosetting initiator is a radical thermosetting initiator or a cationic thermosetting initiator and that the type of the thermosetting initiator is selected depending on the kind of the thermosetting organic group.
  • the thermosetting agent may be selected from the group consisting of the oligosiloxane having the thermosetting organic group, And a functional group selected from the group consisting of an acid anhydride system, a phenolic system, an isocyanate system, a mercaptan system, an amine system, and a mixture thereof.
  • the curing accelerator includes a thermosetting organic group at one end and a side chain, and at least one of a hydroxyl group, a carboxyl group, a phosphate group, an amine group, an epoxy group, an oxetane group, an olefin group, a urethane group, A functional group selected from the group consisting of an acrylic group, a methacryl group, an aryl group, a vinyl group urethane group, a mercapto group, a carboxyl group, an amine group, an olefin group and a mixture thereof.
  • the hybrid insulation material further comprises a surface leveling agent, and the surface leveling agent is selected from the group consisting of silicone resin, silane, acrylic resin, methacrylic resin, fluorine resin, and mixtures thereof.
  • thermosetting organic / inorganic hybrid material in a non-solvent condition
  • thermosetting organic material having various molecular weights and viscosities
  • organic hybrid oligosiloxane material an organic hybrid oligosiloxane material
  • the improved physical properties of the organic and oligosiloxane materials added to the organic hybrid materials can be obtained, such as water resistance, hardness, low shrinkage and fast curing properties.
  • the solventless thermosetting organic / inorganic hybrid material of the present invention includes an oligosiloxane, an organic monomer or an organic oligomer and nanoparticles, and the viscosity of the insulating material is controlled by the oligosiloxane, organic monomer or organic oligomer and nanoparticles. Therefore, the solventless thermosetting inorganic hybrid An insulating material can be obtained. In other words, when high viscosity is desired according to the application field of organic / inorganic hybrid insulating material, an insulating material is produced by controlling the viscosity to a high level.
  • an insulation material having low viscosity is required, conventionally, In the present invention, it is possible to obtain an insulation material capable of controlling the viscosity of the solventless type through controlling the mixing ratio of oligosiloxane, organic monomer or organic oligomer and nanoparticles.
  • the organic monomer or organic oligomer is suitable for obtaining an insulating material having a low viscosity when the molecular weight is smaller than the oligosiloxane, and the viscosity of the insulating material can be increased when the molecular weight of the organic oligomer is higher than that of the siloxane.
  • Oligosiloxane has siloxane as the main structure and functional organic groups at the side chain and terminal.
  • the functional organic group comprises a thermoset organic group and may further comprise a functional organic group other than a thermosetting organic group.
  • the thermosetting organic group means a radical thermosetting organic group capable of acting in radical thermal polymerization or a cationic thermosetting organic group capable of acting in cationic thermal polymerization.
  • thermosetting organic group is preferably selected from the group consisting of a cycloaliphatic epoxy group, a glycidyl epoxy group, an ether group, a cyclic acetal group, a cyclic sulfide group, a lactone group, a lactam group, an oxetane group and a mixture thereof.
  • the number of functional organic groups is at least one, and it may have a polyfunctional organic group.
  • the oligosiloxane containing a thermosetting organic group and further containing a functional organic group preferably has a molecular weight of 300 to 3000. It is preferable to use an oligosiloxane having a molecular weight controlled and a mixture of oligosiloxanes having different molecular weights,
  • the viscosity can be controlled in various ways. Oligosiloxane is difficult to form with a molecular weight of less than 300, and when the molecular weight exceeds 3000, the viscosity is so high that it can not be uniformly mixed with other components during mixing to form an insulating material, Therefore, the molecular weight of the oligosiloxane is preferably 300 to 3,000.
  • the oligosiloxane is preferably contained in an amount of 10% by weight or more based on 100% by weight of the total composition. This is because the oligosiloxane together with the organic monomer or organic oligomer in the insulating material corresponds to the base component. Therefore, it is preferable that 10 wt% or more of the total composition is contained in order to smoothly mix with other components, and 50 wt% have.
  • the oligosiloxane may additionally contain other organic substituents as well as thermosetting organic groups, wherein the organic substituent may be an alkyl group, a perfluoroalkyl group, a hydroxyl group, a carboxylate group, or the like.
  • the organic monomer or organic oligomer has a main structure of a carbonized chain structure and a thermosetting organic group at its side chain and terminal.
  • the main structure of the carbon chain of the organic oligomer is selected from the group consisting of a cycloaliphatic epoxy group, a glycidyl epoxy group, an ether group, a cyclic acetal group, a cyclic sulfide group, a lactone group, a lactam group, .
  • the thermoset organic group contained in the organic monomer or organic oligomer means a radical thermosetting organic group or a cationic thermosetting organic group like the oligosiloxane.
  • the oligosiloxane contains a radical thermosetting organic group
  • the kind of radical thermosetting organic group and the kind of cationic thermosetting organic group are applicable to the same as oligosiloxane.
  • the number of functional organic groups possessed by the organic monomer and the organic oligomer is at least one or more, and may be a polyfunctional organic group.
  • the molecular weight of the organic monomer or organic oligomer is preferably 100 to 10,000, and when the molecular weight is closer to 100, the viscosity of the insulating material can be reduced.
  • the organic oligomer having a molecular weight close to 10,000 is used, It is possible to adjust the amount appropriately according to the viscosity of the insulating material required.
  • Such an organic monomer or organic oligomer may be contained in an amount of 10% by weight or more, preferably 50% by weight or more, based on 100% by weight of the entire composition, and the range may be adjusted according to required properties. When the content of the organic monomer or organic oligomer is less than 10% by weight, the viscosity of the insulating material can not be controlled properly. Viscosity can also be controlled by using some kinds of organic materials having different molecular weights and molecular weights.
  • Nanoparticles having a spherical particle shape mean organic nanoparticles, inorganic oxide nanoparticles, silicon nanoparticles, and particles composed of a mixture thereof, and thermosetting organic groups are substituted on the surface of the particles.
  • the organic nanoparticles similarly have a carbonized-chain structure as a main structure, and a functional organic group at a side chain and a terminal.
  • the organic nanoparticles include, but are not limited to, polystyrene, polyurethane, polymethylmethacrylate, and mixtures thereof.
  • the organic nanoparticles may have a particle size of 1 to 500 nm. If the thickness of the organic nanoparticles is less than 1 nm, it is impossible to produce the organic nanoparticles. When the thickness exceeds 500 nm, So that it is not beautiful in appearance.
  • the optimum content of the organic nanoparticles is preferably in the range of 0 to 20 wt% based on the total mass weight ratio of the composition. That is, the organic nanoparticles may not be added if necessary, desirable. A more preferable addition amount is 10% by weight or less. Since the organic nanoparticles are polymers, the viscosity of the insulating material increases as the content of the organic nanoparticles increases. Therefore, the viscosity can be controlled by controlling the content. It also reduces the shrinkage after curing and improves the flatness of the surface. These organic nanoparticles can be expected to contribute to enhancement of mechanical properties and dimensional stability of the coating film and the structure through size control and mixing of different size particles.
  • the inorganic oxide nanoparticles are selected from the group consisting of silica, zirconia, alumina, titania, and mixtures thereof.
  • the particle size is preferably 1 to 500 nm, similarly to the organic nanoparticles.
  • the inorganic oxide nanoparticles are preferably contained in an amount of 0 to 20 wt%, more preferably 10 wt% or less, based on 100 wt% of the entire composition.
  • the inorganic oxide nanoparticles not only control the viscosity through the content control but also reduce the shrinkage after curing as in the case of the organic particles, thereby improving the flatness of the surface and improving the mechanical properties.
  • Silicon nanoparticles are spherical particles that have a siloxane structure as the main structure.
  • the optimum content of the silicon nanoparticles is in the range of 0 to 20 wt%, more preferably 10 wt% or less, of 100 wt% of the whole.
  • Organic nanoparticles, inorganic oxide nanoparticles, and silicon nanoparticles are added when the viscosity control and shrinkage-preventing function are not sufficient by the composition of oligosiloxane, organic monomer or organic oligomer.
  • the shrinkage problem that occurs during the heat treatment increases the density of the structure while strengthening the siloxane network, which can prevent shrinkage considerably.
  • organic nanoparticles, inorganic oxide nanoparticles, or silicon nanoparticles are added to and mixed with the main component, and the deformation caused by heat treatment and curing is supported by organic or inorganic nanoparticles Can be prevented.
  • the dispersion of the matrix material of the heterogeneous nanoparticles causes problems such as flocculation and settling primarily due to the difference in surface energy, and due to such a problem, the drop of the optical thickness of the coating film and the cause of the surface defect of the coating film Uniform distribution of organic and inorganic nanoparticles having viscosity control and anti-shrinkage function is indispensable. A dispersant is necessarily required for such uniform dispersion.
  • thermosetting organic / inorganic hybrid insulating material should further include not only oligosiloxane, organic monomer or organic oligomer, nanoparticles but also a curing accelerator, a thermosetting initiator, a thermosetting agent, a thermosetting catalyst, a dispersion stabilizer, a surface energy regulator, a liquid flow regulator, .
  • the curing accelerator is used for enhancing adhesion of thermosetting organic monomer, oligomer and polymer, enhancing durability, enhancing chemical resistance, and acting as a crosslinking promoter. It is also used as a crosslinking agent capable of covalent bond by heat, such as hydroxyl group, carboxyl group, phosphate group, , An epoxy group, an olefin group, a urethane group, and a mixture thereof. Or an organosilane containing a functional group selected from the group consisting of a hydroxyl group, a hydrogen group, a urethane group, a mercapto group, a carboxyl group, an amine group, an olefin group and a mixture thereof may act as a curing accelerator.
  • the content of the curing accelerator is 1 to 15% by weight, more preferably 5% by weight or more, of 100% by weight of the whole.
  • the thermoset initiator can be divided into a cationic thermal initiator and a radical thermal decomposition agent.
  • the cationic thermal initiator is an ionic compound composed of an organic cation and an initiator having an inorganic anion as a double ion. Refers to a compound that generates organic cations and inorganic anions in the presence of monomers through exposure to thermal energy, and the bonds of weak chemical bonds are broken by heat to form cations and anions. The ions formed can serve to initiate and grow the cationic thermosetting reaction.
  • Typical cationic thermal initiators are preferably selected from the group consisting of organic metal salts, iodonium salts, metallocene compounds, aromatic diazonium salts, triarylsulfuric acid salts, latent sulfuric acid, and mixtures thereof.
  • the content of the cationic thermal initiator is preferably 0.1 to 10% by weight based on 100% by weight of the oligosiloxane, organic monomer, organic oligomer or organic polymer having a thermosetting organic group.
  • amount of the cationic initiator is less than 0.1 wt%, it takes a long time for the heat curing to take place by heat treatment.
  • amount exceeds 10 wt% the heat curing is performed within a very short period of time, There is a problem that curing occurs.
  • a radical thermal initiator is a compound that generates radicals in the presence of monomers through heat. Radicals are formed by breaking bonds at weak chemical bonds by heat. The radicals formed may serve to initiate the thermosetting reaction together with the thermosetting organic groups.
  • a peroxide initiator is typically used, and the peroxide initiator is selected from the group consisting of benzoyl peroxide, acetyl peroxide, dilauryl peroxide, potassium persulfate, and mixtures thereof.
  • the azo compound system can also be used as a thermosetting initiator capable of forming radicals by heat.
  • the content of the radical thermal initiator is preferably 1 to 5% by weight based on 100% by weight of the oligosiloxane, organic monomer, organic oligomer or organic polymer having a thermosetting organic group.
  • the radical scavenging agent is less than 1% by weight, it takes a long time for thermal curing to take place by heat treatment. If it exceeds 5% by weight, the thermosetting is performed within a very short period of time, There is a problem that curing occurs.
  • the oligosiloxane containing a radical thermosetting organic group is thermoset through the following action.
  • Si-O-Si (siloxane) network is formed through a sufficient condensation reaction in the process of synthesizing an insulating material including an oligosiloxane, and a thermosetting radical thermosetting organic group is formed on the siloxane network in a four-
  • the main structure of the siloxane network contains a radical thermosetting organic group in the side chain and the like. Since the organic radicals and organic oligomers containing the same radical thermosetting organic groups are mixed together, the organic network structure of the siloxane inorganic structure and the radical thermosetting organic group can be obtained through heat treatment as well as the siloxane network formed in the solution reaction. Can be formed at the same time.
  • the organic crosslinking of the radical thermosetting organic group is promoted and the whole organic network reaction proceeds, and the organic network progresses sufficiently through the heat treatment.
  • the chemical structure of the hybrid insulation material can form an organic / inorganic chemical structure through formation of a sufficient organic network structure of the radical thermosetting organic group through the siloxane inorganic network structure and the heat treatment through the solution synthesis of the siloxane material.
  • the insulating material composed only of the oligosiloxane main component it is necessary to compensate for the shrinkage caused by thermal curing, the more closely adherence to the substrate, and the improvement of the chemical resistance related thereto, and depending on the process,
  • the molecular weight control of the oligosiloxane main component may be added, or a component having various viscosities may be constituted through mixing of the main components having different molecular weights.
  • the structure of the organic network through the mixing of the organic monomers and the organic oligomers having different molecular weights and the chemical structure of the organic compounds through the heat treatment of the oligosiloxane and the organic monomer or organic oligomer .
  • viscosity control by controlling the molecular weight of the main components such as oligosiloxane, organic monomer or organic oligomer, it is possible to control the water resistance, hardness, low shrinkage, chemical resistance, Fast curability and other properties.
  • functional added materials are required to facilitate dispersion among different dissimilar materials.
  • thermosetting agent and the thermosetting catalyst are added so as to promote thermosetting through heat treatment.
  • the thermosetting agent is selected from the group consisting of acid anhydride, phenolic, isocyanate, mercaptan, amine and mixtures thereof.
  • the content of the thermosetting agent is determined theoretically in consideration of the equivalent of the host material.
  • an amine-based catalyst or phosphorus-based catalyst may be used.
  • the content of the thermosetting catalyst may be 0.01 to 5 wt% of 100 wt%. This can determine the content depending on the required curing temperature, curing time and required process temperature, and can increase the curing density as well as increase the bond strength with use of the curing catalyst.
  • the dispersion stabilizer is a composition that facilitates dispersion of nanoparticles, inorganic oxide nanoparticles, silicon nanoparticles, oligosiloxane, organic monomers, or organic oligomers.
  • the dispersant may be used in an amount of 0.1 to 3% by weight, preferably 1% by weight, based on 100% by weight of the total composition.
  • the surface energy regulator plays a role in control of material flow, defect control such as pinhole, and improvement of wet processability by controlling the surface energy of the hybrid material of the non-use type.
  • the surface energy regulator is preferably selected from the group consisting of silicone resins, silanes, acrylic resins, methacrylic resins, fluororesins, and mixtures thereof.
  • the content of the surface energy regulating agent can be appropriately adjusted from 0.1 to 15% by weight based on 100% by weight of the whole.
  • the flow control agent is in the form of a liquid phase, which is additionally controllable to control the viscosity. By controlling the viscosity and flowability, it improves wet processability, improves flow control and storage stability, and controls the thickness of the coating film.
  • the fluidity controlling agent include polycarboxylic acid amides, polyhydroxycarboxylic acid amides, polyhydroxycarboxylic acid esters, modified ureas, urea-modified polyurethanes, polyamides and And mixtures thereof.
  • the fluidity control agent may be used in an amount of 0.1 to 10% by weight, preferably 5% or more, based on 100% by weight of the total composition.
  • the amount of the flow control agent is less than 0.1 wt%, it is difficult to finely control the viscosity of the insulating material.
  • the amount of the flow control agent is more than 10 wt%, the liquid flow control agent fails to thermoset.
  • the antifoaming agent is added to remove air bubbles which can be caused by mixing the components contained in the hybrid insulation material, and can exhibit such effects as wet processability improvement, coating film defect control, and appearance improvement.
  • the defoaming agent may be classified into a silicone type and a non-silicone type.
  • the silicone type is polysilicon.
  • the non-silicone type is selected from the group consisting of acrylic resin, fluorine-acrylic resin, fluorine resin and mixtures thereof. Do.
  • Such antifoaming agents may be added in an amount of 0.1 to 5% by weight, preferably 3% by weight, based on 100% by weight of the total composition. If the antifoaming agent is less than 0.1 wt%, the bubbles can not be removed sufficiently, and if the antifoaming agent is more than 5 wt%, the uniform dispersion between the components may be hindered.
  • the hybrid insulation material of the present invention may further be mixed together with an adhesion promoter and a surface leveling agent.
  • the adhesion promoter has a thermosetting organic group at one terminal and side chains while having a carbon chain structure or a siloxane structure as a main structure and has a hydroxyl group, a carboxyl group, a phosphate group, an amine group, an epoxy group, Oxetane groups, olefin groups, urethane groups, and mixtures thereof.
  • the content of the adhesion-promoting agent is preferably 1 to 15% by weight, more preferably 5% by weight, of 100% by weight of the total composition.
  • the reaction site is not enough to form a chemical bond through a covalent bond with the substrate or a hydrogen bond
  • the chemical bond with the substrate and the cross- Adhesion promoting agent that can be used in the present invention is required. It is possible to improve the adhesion to various substrates and materials such as metals, glass, electrodes, films and the like through the adhesion promoter and to improve the chemical crosslinking with oligosiloxane, organic monomer or organic oligomer having a thermosetting organic group, The mechanical properties including the adhesive force of the material can be improved.
  • the surface leveling agent can control the flow control of insulation material, defect control such as pinhole, and improve wet processability through surface energy control of solventless type hybrid insulation material.
  • the surface leveling agent may be selected from the group consisting of silicone resins, silanes, acrylic resins, methacrylic resins, fluororesins, and mixtures thereof, but is not limited thereto. Also, the content of the surface leveling agent may be 0.1 to 15% by weight, preferably 5% by weight or more, of 100% by weight of the total composition.
  • Examples 1 to 5 use a cationic thermosetting type system and use an aqueous nitric acid solution which is a catalyst for hydrolysis and condensation reaction of epoxycyclohexylethyltrimethoxysilane having a cycloaliphatic epoxy group as an organic group capable of cationic thermosetting
  • a thermosetting epoxy cycloaliphatic siloxane was prepared.
  • the molecular weight can be controlled by controlling the reaction parameters including the concentration of the catalyst and the reaction time.
  • the molecular weight of the produced siloxane is approximately 2,000 to 3,000, respectively, and the molecular weight can be controlled up to 3,000 by increasing the catalyst concentration and the reaction time.
  • This molecular weight control can control the viscosity of the solution, which is an important process parameter of the wet material.
  • the molecular weight control can also improve the mechanical and chemical properties of the insulating material after final curing.
  • cationic thermosetting cycloaliphatic epoxy siloxane having a molecular weight of 2,000 to 3,000 was prepared and used as a main constituent material of a transparent hybrid insulation material. The content was 25 to 75% by weight of 100% And the viscosity of the solution can be controlled according to the mixing amount.
  • an organic monomer having a molecular weight of about 140 which has a thermosetting epoxy cycloaliphatic organic group and mixed with the mixed siloxane, is mixed with 100% by weight of the total composition, and the polystyrene nanoparticles having an average size of 60 nm are mixed with a siloxane
  • the organic monomer mixture was mixed with a solution of 10 wt% based on 100 wt% of the total composition, and then the materials and the properties of the coating film were compared with each other.
  • the mixing method of the constituent materials was uniformly mixed using a high viscosity vacuum mixing mixer to obtain a transparent solution.
  • Polystyrene nano-organic particles having a size of 60 nm were prepared by mixing styrene monomer, water as a reaction solvent, acetone and AIBA (2-methylpropionamidine) as a cationic initiator, DVB (divinyl benzene) as a crosslinking agent, PVP polyvinylpyrrolidone) for 24 hours at 70 ° C. Polymerization Polystyrene organic nanoparticles were finally made into polystyrene nanoparticles through centrifugation and solvent drying.
  • Si-60L (Sanshin Chem.) was mixed in an amount of 1.5% by weight at the time of cationic curing for thermosetting and 1.5% by weight of an amine-based adhesion promoter was added to a mixed solution containing siloxane, organic monomer and nano- A leveling agent, a bipolar ether-type polymer dispersant, a polycarboxylic acid amide-based fluidity control agent and a non-silicone-based defoaming agent were each mixed at 0.5 wt%, and finally a transparent thermosetting organic hybrid material . At this time, mixing of the hybrid insulation material was able to obtain a transparent and uniformly mixed insulating material by using a high viscosity vacuum stirring mixer.
  • Siloxane is a thermal curable cyclo-epoxy siloxane and the monomer is a cationic thermal epoxy monomer.
  • Example 1 Example 2 Example 3 Example 4 Example 5 Siloxane (MW: 2,000 ⁇ 3,000) 75 75 50 50 25 The monomer (MW: 140) 10 25 40 45 70 PS nanoparticles 10 - 5 - - Thermal initiator (SL-60L) 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
  • Surface leveling agent 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Liquid fluidity control agent 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Defoamer 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Degree of hardening ⁇ ⁇ ⁇ ⁇ ⁇ Viscosity (cP) ⁇ 25,000 ⁇ 10,000 ⁇ 3,500 ⁇ 1,500 ⁇ 300 Permeability (%) 91 91 91 91 91 Adhesion (B) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 Crack (O: yes, X: no) X X X
  • thermosetting glycidyl epoxy siloxane was prepared by using a nitric acid aqueous solution as a catalyst for the hydrolysis and condensation reaction of glycidylpropyl methoxysilane having a glycidyl epoxy group as an organic group capable of thermosetting .
  • the molecular weight can be controlled by controlling the reaction parameters including the concentration of the catalyst and the reaction time.
  • the molecular weight of the prepared siloxane was approximately 2,000 to 3,000, respectively, and the molecular weight could be controlled up to 3,000 by increasing the catalyst concentration and the reaction time. This molecular weight control can control the viscosity of the solution, which is an important process parameter of the wet material.
  • the molecular weight control can also improve the mechanical and chemical properties of the material after final curing.
  • a thermosetting glycidyl epoxy siloxane material having a molecular weight of 2,000 to 3,000 was prepared and used as a main constituent material of the transparent hybrid insulation material.
  • the content of the glycidyl epoxy siloxane material was 20 to 80 wt% And the viscosity of the solution could be controlled according to the mixing amount.
  • an amine-based adhesion promoter containing an excited group was mixed in an amount of 1.5% by weight based on the mixing amount of the epoxy composition and the spherical silicon nano-particles, and a silicone surface leveling agent, a bipolar cross- ) Amide-based fluidity control agent and a non-silicone based defoaming agent were mixed at 0.5 wt% with respect to the mixing amount of the epoxy composition and spherical silicon particles, respectively, to finally prepare a thermosetting epoxy siloxane-epoxy resin hybrid insulation material. At this time, mixing of the hybrid insulation material was able to obtain a transparent and uniformly mixed insulating material by using a high viscosity vacuum stirring mixer.
  • the viscosity of the obtained hybrid insulation material varied from 10,000 to 25,000 cP in the high viscosity region, which could be controlled by controlling the molecular weight and content of the mixed material. By controlling the content of the constituent material in addition to the viscosity range shown in Table 2, it is possible to control the viscosity more variously.
  • the prepared thermosetting organic / inorganic hybrid insulation material is coated on a glass and metal substrate having a size of 10 cm ⁇ 10 cm by bar coating to have a thickness of about 10 ⁇ m.
  • the prepared coating film was heat treated in an oven at 180 ° C. for 90 minutes to finally produce a thermally cured hybrid insulating film.
  • the siloxane of the contents shown in the following Table 2 is a thermosetting glycidyl-epoxy siloxane, and the organic monomer and the polymer are a thermosetting glycidyl epoxy monomer and a thermosetting glycidyl Means a thermal curable glycidyl epoxy resin, and the heat curing agent and curing catalyst means an acid anhydride curing agent and an amine curing catalyst.
  • the viscosity of the insulating material can be controlled even under solvent-free conditions without using a solvent as in the prior art.
  • the higher the content of oligosiloxane having a lower molecular weight the lower the viscosity and the higher molecular weight siloxane content The higher the viscosity, the higher the viscosity. It is also possible to control the viscosity depending on the molecular weight and addition amount of the organic monomer and the organic oligomer, and it is also confirmed that the viscosity increases even when the nanoparticles are included.
  • a wide range of viscosity can be controlled finely and freely through oligosiloxane, organic monomer or organic oligomer, and nanoparticles. Since the prepared insulating material does not use a solvent, the degree of cure, permeability , Adhesive strength and chemical resistance, and cracks are not formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention relates to a solvent-free thermosetting organic/inorganic hybrid insulating material comprising: 10 wt% or more of an oligosiloxane having a thermosetting organic group; 10 wt% or more of an organic monomer or an organic oligomer having a carbonated chain structure, and having a thermosetting organic group on the side chains and ends thereof; 20 wt% or less of nanoparticles having a spherical particle form and having a thermosetting organic layer substituted on the surface thereof; 1-15 wt% of a curing accelerator having an organic group capable of covalently bonding by heat treatment; a thermosetting initiator for initiating a thermosetting reaction together with the thermosetting organic group by heat treatment, and a thermosetting agent for proceeding with the thermosetting reaction; 0.01-5 wt% of a thermosetting catalyst to be added so as to accelerate the thermosetting reaction; 0.1-3 wt% of an amphiphilic dispersion stabilizer being polar and nonpolar at both ends thereof; 0.1-15 wt% of a surface energy controller for controlling surface energy; 0.1-10 wt% of a liquid flow control agent composed of liquid; 1-15 wt% of an adhesion enhancer having a carbonated chain structure or a siloxane structure; and 0.1-5 wt% of an antifoaming agent, wherein viscosity is controlled through amounts of the oligosiloxane, the organic monomer or the organic oligomer, and the nanoparticles, and an organic network is formed by heat treatment among the thermosetting organic groups included in respective components. Therefore, the present invention can obtain: an effect of enabling the viscosity of a thermosetting organic/inorganic hybrid insulating material to be controlled in a solvent-free condition by mixing a thermosetting organic material and an organic/inorganic hybrid oligosiloxane material, which have various molecular weights and viscosities; and improved physical properties by adding characteristics and the like, such as water resistance, hardness, low shrinkage and fast curing, of each of the mixed organic material and oligosiloxane material to an organic/inorganic hybrid material.

Description

무용매 타입의 열경화성 유무기 하이브리드 절연소재Non-solvent type thermosetting organic / inorganic hybrid insulating material
본 발명은 무용매 타입의 열경화성 유무기 하이브리드 절연소재에 관한 것으로, 더욱 상세하게는 다양한 분자량 및 점도를 지니는 열경화성 유기소재와 유무기 하이브리드 올리고실록산 소재를 혼합하여 무용매 조건에서 하이브리드 절연소재의 점도를 제어할 수 있는 무용매 타입의 열경화성 유무기 하이브리드 절연소재에 관한 것이다.The present invention relates to a solventless thermosetting organic / inorganic hybrid material, and more particularly, to a hybrid inorganic / organic hybrid material having various molecular weights and viscosities and a hybrid organic oligosiloxane material, And more particularly, to a thermosetting and non-dispersible hybrid inorganic insulating material.
일반적으로 무기물은 내부식성, 내화학성, 내마모성, 내열특성, 고경도, 수분 및 가스의 차단성과 같은 우수한 물성을 지니고 있어 구조재료, 보호용 코팅재료, 연마재료, 차폐 및 차단막과 같은 분야에서 활발하게 사용되어 지고 있다. 이러한 물성을 지니는 무기물은 또한 적용범위가 전기전자, 정보용, 에너지 소재로까지 요구되어 지고 있고 적용을 위한 활발한 연구도 진행 중에 있다. 하지만 무기물은 제조를 위해 고가의 공정 및 건식 공정이 요구될 뿐 아니라 제조된 무기물은 소재자체의 취성으로 인해 후막으로 제조하기가 힘들고 간단한 습식공정을 적용하는 데 많은 한계점이 있다.In general, inorganic materials have excellent properties such as corrosion resistance, chemical resistance, abrasion resistance, heat resistance, hardness, moisture and gas barrier, and are actively used in such fields as structural materials, protective coating materials, abrasive materials, . Minerals with such physical properties are also required to be applied to electric, electronic, and energy materials, and active research for application is underway. However, in addition to the high cost and dry process required for the production of inorganic minerals, the produced inorganic materials are difficult to produce as a thick film due to the brittleness of the material itself, and there are many limitations in applying a simple wet process.
이러한 한계점들을 극복하기 위해 최근에는 무기물의 기존 물성 저하 없이 습식공정이 가능한 콜로이드 상의 무기물 나노졸에 관한 제조연구 및 무기물의 습식소재로의 적용을 위한 분산연구가 많이 진행되고 있다. 기존 무기물 나노졸의 경우에는 일반적으로 구조용 재료로 많이 활용되었으며, 유기바인더인 고분자 수지와 혼합하여 유무기 하이브리드 조성물 형성시킨 후 습식 코팅을 통해 막을 제조하여 무기물의 기계적, 열적, 화학적 물성을 향상시킬 수 있었다.In order to overcome these limitations, researches on the preparation of colloidal inorganic nano-sols capable of wet processing without deteriorating the existing properties of inorganic materials and dispersion studies for application of inorganic materials to wet materials have been conducted. In the case of the conventional inorganic nano-sol, it is generally used as a structural material, and it is possible to improve the mechanical, thermal and chemical properties of the inorganic material by forming a hybrid organic composition by mixing with a polymer resin, which is an organic binder, there was.
이와 같은 종래의 유무기 하이브리드 조성물은 '대한민국특허청 등록특허 제10-1454447호 내구성 및 절연성 향상을 위한 융복합 소재 제조방법', '대한민국특허청 공개특허 제10-2016-0014971호 고투명, 내열성 및 절연성을 갖는 하이브리드 코팅소재의 제조방법' 등과 같이 하이브리드 조성물을 제조함에 있어 용매를 포함하는 기술이 주로 이용되어져 왔다. 하지만 용매를 포함하여 하이브리드 조성물을 제조할 경우 하이브리드 조성물을 도포하는 과정에서 용매를 제거해야하는 단계가 따로 포함되어야 할 뿐만 아니라 용매의 경우 환경 또는 인체에 유해한 종류도 있기 때문에 용매를 포함하지 않는 하이브리드 조성물을 얻는 것이 이상적이다. 이에 종래기술 '대한민국특허청 등록특허 제10-1198316호 무용제형 실리카졸 및 그 제조방법'과 같이 무용제형 조성물을 얻는 기술이 알려져 있으나, 종래의 무용제형 조성물의 경우에도 제조 공정에서는 용매를 첨가하여 반응을 일으킨 후 용매를 제거하는 공정으로 이루어지기 때문에 용매를 제거하는 과정을 줄이거나 유해한 용매를 사용하지 않아 환경 또는 인체를 보호하기 어렵다는 문제점이 있다.Such conventional organic / inorganic hybrid compositions are disclosed in Korean Patent Registration No. 10-1454447 as a method for manufacturing a composite material for improving durability and insulation, and Korean Patent Application No. 10-2016-0014971, which discloses high transparency, And a method of producing a hybrid coating material having the above-mentioned properties. However, when preparing a hybrid composition including a solvent, a step of removing the solvent must be separately included in the process of applying the hybrid composition. In addition, since the solvent may be harmful to the environment or human body, a hybrid composition not containing a solvent It is ideal to obtain. Accordingly, there is known a technique for obtaining a solvent-free composition such as the prior art 'Korean Patent Office Registration No. 10-1198316 Silica Sol for Solvent Formulation and its Manufacturing Method'. However, even in the case of a conventional solventless composition, And then removing the solvent. Therefore, there is a problem that it is difficult to protect the environment or the human body because the process of removing the solvent is reduced or the harmful solvent is not used.
또한 이와 같이 용매를 사용하지 않고 유무기 하이브리드 조성물을 제조할 경우 용매를 사용하지 않기 때문에 점도의 조절이 용이하지 못하며, 3000 내지 10000cp 정도로 점도가 높게 나타나기 때문에 패턴 공정이 아닌 대면적으로 도포하는 공정을 원활히 수행하기 힘들다는 단점이 있다.In addition, when the organic hybrid composition is prepared without using a solvent as described above, since the solvent is not used, the viscosity is not easily controlled and the viscosity is high at about 3000 to 10000 cp. It is difficult to perform smoothly.
따라서 본 발명의 목적은, 다양한 분자량 및 점도를 지니는 열경화성 유기소재와 유무기 하이브리드 올리고실록산 소재를 혼합하여 무용매 조건에서 하이브리드 절연소재의 점도를 제어할 수 있는 무용매 타입의 열경화성 유무기 하이브리드 절연소재를 제공하는 것이다.Accordingly, it is an object of the present invention to provide a solvent-free thermosetting and non-aqueous organic hybrid material capable of controlling the viscosity of a hybrid insulation material under a solventless condition by mixing a thermosetting organic material having various molecular weights and viscosities with an organic hybrid oligosiloxane material .
상기한 목적은, 열경화성 유기기를 가지는 10중량% 이상의 올리고실록산과; 탄화사슬 구조로 이루어지며 측쇄 및 말단에 열경화성 유기기를 가지는 10중량% 이상의 유기모노머 또는 유기올리고머와; 구형 입자형태로 이루어지며 표면에 열경화성 유기기가 치환된 20중량% 이하의 나노입자와; 열처리에 의해 공유결합이 가능한 유기기를 가지는 1 내지 15중량%의 경화촉진제와; 열처리를 통해 상기 열경화성 유기기와 함께 열경화 반응을 개시하는 열경화성 개시제 및 열경화 반응을 진행시키는 열경화제와; 열경화 반응이 촉진되도록 첨가되는 0.01 내지 5중량%의 열경화촉매와; 양측 말단에 극성과 비극성의 양극성을 가지는 0.1 내지 3중량%의 분산안정제와; 표면에너지 제어를 위한 0.1 내지 15중량%의 표면에너지조절제와; 액상으로 이루어진 0.1 내지 10중량%의 액상유동성조정제와; 탄화사슬 구조 또는 실록산 구조로 이루어지진 1 내지 15중량%의 부착증진제와; 0.1 내지 5중량%의 소포제를 포함하며, 상기 올리고실록산, 상기 유기모노머 또는 상기 유기올리고머, 상기 나노입자의 함량을 통해 점도를 제어하며, 열처리를 통해 각각이 가지는 상기 열경화성 유기기 간의 유기네트워크가 이루어지는 것을 특징으로 하는 무용매 타입의 열경화성 유무기 하이브리드 절연소재에 의해서 달성된다.The above object is achieved by a thermoplastic resin composition comprising 10% by weight or more of an oligosiloxane having a thermosetting organic group; At least 10% by weight of an organic monomer or organic oligomer having a carbon chain structure and having a side chain and a thermosetting organic group at a terminal thereof; Up to 20% by weight of nanoparticles in the form of spherical particles substituted with thermosetting organic groups on their surfaces; 1 to 15% by weight of a curing accelerator having an organic group capable of being covalently bonded by heat treatment; A thermosetting initiator for initiating a thermosetting reaction together with the thermosetting organic group through heat treatment and a thermosetting agent for promoting a thermosetting reaction; 0.01 to 5% by weight of a thermosetting catalyst added to accelerate the thermosetting reaction; 0.1 to 3% by weight of a dispersion stabilizer having polarity and non-polarity polarity at both ends thereof; 0.1 to 15% by weight of a surface energy modifier for surface energy control; 0.1 to 10% by weight of a liquid flowability-regulating agent in a liquid phase; 1 to 15% by weight of an adhesion promoter composed of a carbon chain structure or a siloxane structure; And 0.1 to 5% by weight of an antifoaming agent, wherein viscosity is controlled through the content of the oligosiloxane, the organic monomer or the organic oligomer, and the nanoparticles, and the organic network between the thermosetting organic units Wherein the thermosetting organic / inorganic hybrid material is a non-solvent type thermosetting organic / inorganic hybrid material.
여기서, 상기 올리고실록산은 분자량이 300 내지 3,000이며, 상기 유기모노머 또는 상기 유기올리고머는 분자량이 100 내지 10,000인 것이 바람직하며, 상기 나노입자는, 유기나노입자, 무기산화물나노입자, 실리콘나노입자 및 이의 혼합으로 이루어진 군으로부터 선택되며, 1 내지 500nm 사이즈로 이루어진 것이 바람직하며, 이때 상기 유기나노입자는, 폴리스티렌, 폴리우레탄, 폴리메틸메타아크릴레이트 및 이의 혼합으로 이루어진 군으로부터 선택되며, 상기 무기나노입자는, 실리카, 지르코니아, 알루미나, 티타니아 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다.The oligosiloxane preferably has a molecular weight of 300 to 3,000 and the molecular weight of the organic monomer or the organic oligomer is preferably 100 to 10,000. The nanoparticles may be organic nanoparticles, inorganic oxide nanoparticles, And the organic nanoparticles are selected from the group consisting of polystyrene, polyurethane, polymethylmethacrylate, and mixtures thereof, and the inorganic nanoparticles are selected from the group consisting of , Silica, zirconia, alumina, titania, and mixtures thereof.
상기 열경화성 개시제는 라디칼 열경화성 개시제 또는 양이온 열경화성 개시제이며, 상기 열경화성 유기기의 종류에 따라 상기 열경화성 개시제의 종류가 선택되는 것이 바람직하며, 상기 열경화제는, 상기 열경화성 유기기를 지니는 상기 올리고실록산, 상기 유기모노머 및 상기 유기올리고머의 당량에 의해 양론적으로 함량이 결정되며, 산무수물계, 폐놀계, 이소시아네이트계, 머캅탄계, 아민계 및 이의 혼합으로 이루어진 군으로부터 선택되는 기능기를 포함하는 것이 바람직하다. It is preferable that the thermosetting initiator is a radical thermosetting initiator or a cationic thermosetting initiator and that the type of the thermosetting initiator is selected depending on the kind of the thermosetting organic group. The thermosetting agent may be selected from the group consisting of the oligosiloxane having the thermosetting organic group, And a functional group selected from the group consisting of an acid anhydride system, a phenolic system, an isocyanate system, a mercaptan system, an amine system, and a mixture thereof.
상기 경화촉진제는, 한쪽 말단 및 측쇄에는 열경화성 유기기를 포함하며, 다른쪽 말단 및 측쇄에는 하이드록시기, 카르복실엑시드기, 포스페이트기, 아민기, 에폭시기, 옥세탄기, 올레핀기, 우레탄기, 하이드록시기, 아크릴기, 메타아크릴기, 아릴기, 비닐기 우레탄기, 머캡토기, 카르복실엑시드기, 아민기, 올레핀기 및 이의 혼합으로 이루어진 군으로부터 선택되는 기능기를 포함하는 것이 바람직하다.The curing accelerator includes a thermosetting organic group at one end and a side chain, and at least one of a hydroxyl group, a carboxyl group, a phosphate group, an amine group, an epoxy group, an oxetane group, an olefin group, a urethane group, A functional group selected from the group consisting of an acrylic group, a methacryl group, an aryl group, a vinyl group urethane group, a mercapto group, a carboxyl group, an amine group, an olefin group and a mixture thereof.
상기 하이브리드 절연소재는 표면레벨링제를 더 포함하며, 상기 표면레벨링제는 실리콘수지류, 실란류, 아크릴수지류, 메타아크릴수지류, 불소수지류 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다.Preferably, the hybrid insulation material further comprises a surface leveling agent, and the surface leveling agent is selected from the group consisting of silicone resin, silane, acrylic resin, methacrylic resin, fluorine resin, and mixtures thereof.
상술한 본 발명의 구성에 따르면, 다양한 분자량 및 점도를 지니는 열경화성 유기소재와 유무기 하이브리드 올리고실록산 소재를 혼합하여 무용매 조건에서 열경화성 유무기 하이브리드 절연소재의 점도를 제어할 수 있는 효과뿐만 아니라 혼합된 각각의 유기소재 및 올리고실록산 소재들이 지니는 내수성, 경도, 저수축성, 속경화성과 같은 특성 등을 유무기 하이브리드 소재에 추가하여 증진된 물성을 얻을 수 있다.According to the constitution of the present invention described above, it is possible to control the viscosity of a thermosetting organic / inorganic hybrid material in a non-solvent condition by mixing a thermosetting organic material having various molecular weights and viscosities and an organic hybrid oligosiloxane material, The improved physical properties of the organic and oligosiloxane materials added to the organic hybrid materials can be obtained, such as water resistance, hardness, low shrinkage and fast curing properties.
이하 본 발명의 실시예에 따른 무용매 타입의 열경화성 유무기 하이브리드 절연소재를 상세히 설명한다.BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a solventless thermosetting organic / inorganic hybrid material according to an embodiment of the present invention will be described in detail.
본 발명의 무용매 타입의 열경화성 유무기 하이브리드 절연소재는 올리고실록산, 유기모노머 또는 유기올리고머, 나노입자를 포함하며, 이를 통해 절연소재의 점도가 제어되므로 용매를 사용하지 않은 무용매 타입의 열경화성 무기 하이브리드 절연소재를 얻을 수 있다. 즉 유무기 하이브리드 절연소재의 적용 분야에 따라 높은 점도를 원할 경우에는 점도를 높게 제어하여 절연소재를 제조하며, 낮은 점도의 절연소재를 필요로 할 경우에 종래에는 용매를 혼합하여 점도를 낮췄지만 본 발명에서는 올리고실록산, 유기모노머 또는 유기올리고머, 나노입자의 혼합비 제어를 통해 무용매 타입의 점도 제어가 가능한 절연소재를 얻을 수 있다.The solventless thermosetting organic / inorganic hybrid material of the present invention includes an oligosiloxane, an organic monomer or an organic oligomer and nanoparticles, and the viscosity of the insulating material is controlled by the oligosiloxane, organic monomer or organic oligomer and nanoparticles. Therefore, the solventless thermosetting inorganic hybrid An insulating material can be obtained. In other words, when high viscosity is desired according to the application field of organic / inorganic hybrid insulating material, an insulating material is produced by controlling the viscosity to a high level. When an insulating material having low viscosity is required, conventionally, In the present invention, it is possible to obtain an insulation material capable of controlling the viscosity of the solventless type through controlling the mixing ratio of oligosiloxane, organic monomer or organic oligomer and nanoparticles.
절연소재의 점도 제어를 위해 혼합되는 올리고실록산, 유기모노머 또는 유기올리고머, 나노입자 중 먼저, 올리고실록산의 경우 기본적으로 분자량이 큰 소재이기 때문에 올리고실록산의 함량을 증가시키게 되면 절연소재의 점도가 증가하게 된다. 유기모노머 또는 유기올리고머는 올리고실록산보다 분자량이 작은 경우 낮은 점도의 절연소재를 얻기에 적합하며, 유기올리고머의 분자량이 올리고실록산보다 클 경우에는 절연소재의 점도를 증가시킬 수 있다. 또한 나노입자는 함량이 증가할수록 점도가 증가하기 때문에 올리고실록산과 마찬가지로 높은 점도의 절연소재를 요구할 경우에 물성의 제어 범위 내에서 함량이 증가하게 된다. 다만, 광투과도가 요구되는 절연소재의 경우, 나노입자의 크기 및 함량을 요구되는 광투과도에 맞게 제어할 필요가 있다.The oligosiloxane, organic monomer or organic oligomer mixed for controlling the viscosity of the insulating material, the first of the nanoparticles, since the oligosiloxane is basically a material having a high molecular weight, if the content of oligosiloxane is increased, the viscosity of the insulating material is increased do. The organic monomer or organic oligomer is suitable for obtaining an insulating material having a low viscosity when the molecular weight is smaller than the oligosiloxane, and the viscosity of the insulating material can be increased when the molecular weight of the organic oligomer is higher than that of the siloxane. Also, as the content of nanoparticles increases, the viscosity increases. Therefore, when an insulating material having a high viscosity is required as in the case of oligosiloxane, the content of the nanoparticles increases within the control range of the physical properties. However, in the case of an insulating material requiring light transmittance, it is necessary to control the size and content of nanoparticles according to required light transmittance.
올리고실록산(oligosiloxane)은 실록산(siloxane)을 메인 구조로 가지며 측쇄 및 말단에는 기능성 유기기를 가진다. 여기서 기능성 유기기는 열경화성 유기기를 포함하며, 열경화성 유기기 이외에 다른 기능성 유기기를 더 포함할 수도 있다. 열경화성 유기기는 라디칼 열중합에 작용할 수 있는 라디칼 열경화성 유기기 또는 양이온 열중합에 작용할 수 있는 양이온 열경화성 유기기를 의미한다. 열경화성 유기기는 사이클로알리파틱에폭시기, 글리시딜에폭시기, 에테르기, 사이클릭아세탈기, 사이클릭설파이드기, 락톤기, 락탐기, 옥세탄기 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다. 여기서 기능성 유기기의 수는 최소 하나 이상이며, 다관능 유기기를 지닐 수 있다.Oligosiloxane has siloxane as the main structure and functional organic groups at the side chain and terminal. Wherein the functional organic group comprises a thermoset organic group and may further comprise a functional organic group other than a thermosetting organic group. The thermosetting organic group means a radical thermosetting organic group capable of acting in radical thermal polymerization or a cationic thermosetting organic group capable of acting in cationic thermal polymerization. The thermosetting organic group is preferably selected from the group consisting of a cycloaliphatic epoxy group, a glycidyl epoxy group, an ether group, a cyclic acetal group, a cyclic sulfide group, a lactone group, a lactam group, an oxetane group and a mixture thereof. Here, the number of functional organic groups is at least one, and it may have a polyfunctional organic group.
열경화성 유기기를 포함하면서 추가로 기능성 유기기를 포함하는 올리고실록산은 분자량(molecular weight)이 300 내지 3000인 것을 사용하는 것이 바람직하며, 분자량의 제어 및 분자량이 각각 다른 올리고실록산의 혼합을 통해 하이브리드 절연소재의 점도를 다양하게 제어 가능하다. 올리고실록산은 분자량 300미만으로는 형성하기 힘들며, 분자량이 3000을 초과할 경우 점도가 매우 높아 절연소재를 형성하기 위해 혼합시 다른 성분들과 균일한 혼합이 이루어지지 않으며 점도 제어를 용이하게 할 수 없기 때문에 올리고실록산의 분자량은 300 내지 3000인 것이 바람직하다.The oligosiloxane containing a thermosetting organic group and further containing a functional organic group preferably has a molecular weight of 300 to 3000. It is preferable to use an oligosiloxane having a molecular weight controlled and a mixture of oligosiloxanes having different molecular weights, The viscosity can be controlled in various ways. Oligosiloxane is difficult to form with a molecular weight of less than 300, and when the molecular weight exceeds 3000, the viscosity is so high that it can not be uniformly mixed with other components during mixing to form an insulating material, Therefore, the molecular weight of the oligosiloxane is preferably 300 to 3,000.
올리고실록산은 전체 조성물 100중량%에 대해 10중량% 이상 포함되는 것이 바람직하다. 이는 절연소재 중 유기모노머 또는 유기올리고머와 함께 올리고실록산이 베이스 성분에 해당하기 때문에 다른 성분과 원활한 혼합을 위해서는 전체 조성물 중 10중량% 이상 포함되는 것이 바람직하며, 요구 물성에 따라 50중량% 이상 포함될 수도 있다. 또한 올리고실록산은 열경화성 유기기뿐만 아니라 다른 유기 치환기를 추가로 함유할 수 있는데, 여기서 유기 치환기는 알킬기, 퍼플루오르알킬기, 하이드록시기, 카르복실엑시드기 등이 가능하나 이에 한정되지는 않는다.The oligosiloxane is preferably contained in an amount of 10% by weight or more based on 100% by weight of the total composition. This is because the oligosiloxane together with the organic monomer or organic oligomer in the insulating material corresponds to the base component. Therefore, it is preferable that 10 wt% or more of the total composition is contained in order to smoothly mix with other components, and 50 wt% have. The oligosiloxane may additionally contain other organic substituents as well as thermosetting organic groups, wherein the organic substituent may be an alkyl group, a perfluoroalkyl group, a hydroxyl group, a carboxylate group, or the like.
유기모노머 또는 유기올리고머는 탄화사슬 구조를 메인구조로 가지며 측쇄 및 말단에 열경화성 유기기를 포함하는 구성으로, 분자량이 작을 경우에는 절연소재의 점도를 감소시킬 수 있으며, 분자량이 클 경우에는 절연소재의 점도를 증가시킬 수 있다. 특히 유기올리고머의 탄화사슬 메인구조로는 사이클로알리파틱에폭시기, 글리시딜에폭시기, 에테르기, 사이클릭아세탈기, 사이클릭설파이드기, 락톤기, 락탐기, 옥세탄기 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다. 유기모노머 또는 유기올리고머에 포함되는 열경화성 유기기는 올리고실록산과 마찬가지로 라디칼 열경화성 유기기 또는 양이온 열경화성 유기기를 의미한다. 여기서 유기기는 올리고실록산이 라디칼 열경화성 유기기를 포함할 경우에는 동일하게 라디칼 열경화성 유기기를 포함하는 소재를 사용하는 것이 바람직하며, 이와 반대의 경우도 마찬가지이다. 이는 절연소재를 도포한 후 열경화를 시킬 경우 각각 상이한 유기기를 포함할 경우에는 완전한 열경화를 위한 긴 열처리 시간의 요구와 같은 열경화 공정의 효율이 떨어질 수도 있기 때문이다. 이러한 라디칼 열경화성 유기기의 종류 및 양이온 열경화성 유기기의 종류는 올리고실록산과 동일하게 적용 가능하다. 또한, 여기서 유기모노머 및 유기올리고머가 지니고 있는 기능성 유기기의 수는 최소 하나 이상이며, 다관능 유기기를 지닐 수 있다.The organic monomer or organic oligomer has a main structure of a carbonized chain structure and a thermosetting organic group at its side chain and terminal. When the molecular weight is small, the viscosity of the insulating material can be reduced. When the molecular weight is large, Can be increased. In particular, the main structure of the carbon chain of the organic oligomer is selected from the group consisting of a cycloaliphatic epoxy group, a glycidyl epoxy group, an ether group, a cyclic acetal group, a cyclic sulfide group, a lactone group, a lactam group, . The thermoset organic group contained in the organic monomer or organic oligomer means a radical thermosetting organic group or a cationic thermosetting organic group like the oligosiloxane. Here, when the oligosiloxane contains a radical thermosetting organic group, it is preferable to use a material including a radical thermosetting organic group in the organic group, and vice versa. This is because, when thermally curing after applying the insulating material, if different organic groups are included, the efficiency of the thermal curing process such as a long heat treatment time for complete thermal curing may be lowered. The kind of radical thermosetting organic group and the kind of cationic thermosetting organic group are applicable to the same as oligosiloxane. Also, the number of functional organic groups possessed by the organic monomer and the organic oligomer is at least one or more, and may be a polyfunctional organic group.
유기모노머 또는 유기올리고머의 분자량은 100 내지 10,000인 것이 바람직하며, 분자량이 100에 가까울수록 이를 혼합할 경우 절연소재의 점도를 감소시킬 수 있고 분자량이 10,000에 가까운 유기올리고머를 사용할 경우 절연소재의 점도를 증가시킬 수 있기 때문에 필요한 절연소재의 점도에 따라 적절하게 양을 조절 가능하다. 이러한 유기모노머 또는 유기올리고머는 조성물 전체 100중량% 중 10중량% 이상, 바람직하게는 50중량% 이상으로 포함될 수 있으며 요구물성에 따라 그 범위를 조절할 수 있다. 유기모노머 또는 유기올리고머가 10중량% 미만일 경우 절연소재의 점도를 제대로 제어할 수 없으며, 유기소재의 분자량 및 분자량이 다른 유기소재의 몇종을 함께 사용함으로써 점도 제어 또한 가능하다.The molecular weight of the organic monomer or organic oligomer is preferably 100 to 10,000, and when the molecular weight is closer to 100, the viscosity of the insulating material can be reduced. When the organic oligomer having a molecular weight close to 10,000 is used, It is possible to adjust the amount appropriately according to the viscosity of the insulating material required. Such an organic monomer or organic oligomer may be contained in an amount of 10% by weight or more, preferably 50% by weight or more, based on 100% by weight of the entire composition, and the range may be adjusted according to required properties. When the content of the organic monomer or organic oligomer is less than 10% by weight, the viscosity of the insulating material can not be controlled properly. Viscosity can also be controlled by using some kinds of organic materials having different molecular weights and molecular weights.
구형 입자형태를 지니는 나노입자는, 유기나노입자, 무기산화물나노입자, 실리콘나노입자 및 이의 혼합으로 이루어진 입자를 의미하며, 입자의 표면에 열경화성 유기기가 치환된다.Nanoparticles having a spherical particle shape mean organic nanoparticles, inorganic oxide nanoparticles, silicon nanoparticles, and particles composed of a mixture thereof, and thermosetting organic groups are substituted on the surface of the particles.
이 중 유기나노입자는 마찬가지로 탄화사슬 구조를 메인구조로 가지고, 측쇄 및 말단에 기능성 유기기를 포함한다. 유기나노입자의 종류로는 폴리스티렌, 폴리우레탄, 폴리메틸메타아크릴레이트 및 이의 혼합으로 이루어진 군으로부터 선택 가능하나 이에 한정되지는 않는다. 또한 유기나노입자의 입자 사이즈는 1 내지 500nm 사이즈를 사용할 수 있는데, 1nm 미만으로 유기나노입자를 제조하기는 거의 불가능하며 500nm를 초과할 경우 절연소재를 도포시 표면이 균일하지 못하고 유기나노입자가 돌출되어 외관상 미려하지 못하다는 단점이 있다.Among them, the organic nanoparticles similarly have a carbonized-chain structure as a main structure, and a functional organic group at a side chain and a terminal. Examples of the organic nanoparticles include, but are not limited to, polystyrene, polyurethane, polymethylmethacrylate, and mixtures thereof. The organic nanoparticles may have a particle size of 1 to 500 nm. If the thickness of the organic nanoparticles is less than 1 nm, it is impossible to produce the organic nanoparticles. When the thickness exceeds 500 nm, So that it is not beautiful in appearance.
유기나노입자의 적정 함량은 조성물의 전체 무게 질량비에서 0 내지 20중량% 범위로 혼합되는 것이 바람직한데, 즉 유기나노입자는 경우에 따라서 첨가하지 않을 수 있으며 첨가될 경우 20중량% 이하로 첨가하는 것이 바람직하다. 더욱 바람직한 첨가량은 10중량% 이하이다. 유기나노입자는 고분자에 해당하기 때문에 함량이 증가할수록 절연소재의 점도가 증가하기 때문에 함량 제어를 통해 점도를 제어할 수 있다. 뿐만 아니라 경화 후 수축을 줄여주고 표면의 평탄도를 향상시키는 역할을 수행한다. 이러한 유기나노입자는 사이즈 제어 및 이종 사이즈 입자의 혼합 사용을 통한 코팅막 및 구조체의 기계적 물성 증진 및 치수 안정성에 기여하는 역할을 기대할 수 있다.The optimum content of the organic nanoparticles is preferably in the range of 0 to 20 wt% based on the total mass weight ratio of the composition. That is, the organic nanoparticles may not be added if necessary, desirable. A more preferable addition amount is 10% by weight or less. Since the organic nanoparticles are polymers, the viscosity of the insulating material increases as the content of the organic nanoparticles increases. Therefore, the viscosity can be controlled by controlling the content. It also reduces the shrinkage after curing and improves the flatness of the surface. These organic nanoparticles can be expected to contribute to enhancement of mechanical properties and dimensional stability of the coating film and the structure through size control and mixing of different size particles.
무기산화물나노입자는 실리카, 지르코니아, 알루미나, 티타니아 및 이의 혼합으로 이루어진 군으로부터 선택되며, 입자 사이즈는 유기나노입자와 마찬가지로 1 내지 500nm로 이루어지는 것이 바람직하다. 무기산화물나노입자는 조성물 전체 100중량% 중 0 내지 20중량% 범위로 함유하는 것이 바람직하며, 더욱 바람직하게는 10중량% 내외로 존재할 수 있다. 무기산화물나노입자는 함량 제어를 통해 점도를 제어할 수 있을 뿐 아니라 유기입자와 마찬가지로 경화 후 수축을 줄여주고 표면의 평탄도 향상 및 기계적 물성을 증진시키는 역할을 하게 된다. 함량 뿐 아니라 크기의 제어 및 이종 크기 입자의 혼합 사용을 통한 코팅막 및 구조체의 기계적 물성 증진 및 치수 안정성에 기여하는 역할을 기대할 수 있다. 다만 분산성이 떨어지는 경우 광투과도가 떨어지고 응집 등의 문제로 인해 평탄도 및 관련 기계적 물성의 저하를 유발할 수 있으므로 균일 분산이 요구된다.The inorganic oxide nanoparticles are selected from the group consisting of silica, zirconia, alumina, titania, and mixtures thereof. The particle size is preferably 1 to 500 nm, similarly to the organic nanoparticles. The inorganic oxide nanoparticles are preferably contained in an amount of 0 to 20 wt%, more preferably 10 wt% or less, based on 100 wt% of the entire composition. The inorganic oxide nanoparticles not only control the viscosity through the content control but also reduce the shrinkage after curing as in the case of the organic particles, thereby improving the flatness of the surface and improving the mechanical properties. It can be expected to contribute not only to the content but also to the mechanical properties of the coating film and the structure and to the dimensional stability through control of the size and mixing of different size particles. However, when the dispersibility is lowered, uniform dispersion is required because the light transmittance is lowered and the flatness and the related mechanical properties may be lowered due to problems such as aggregation.
실리콘나노입자는 실록산 구조를 메인구조로 지니는 구형의 입자형태를 말한다. 실리콘나노입자의 적정 함량은 전체 100중량% 중 0 내지 20중량% 범위 내외이며, 보다 바람직하게는 10중량% 내외의 경우가 바람직하다. 실리콘나노입자의 함량 제어를 통해 점소를 제어할 수 있을 뿐 아니라, 경화 후 수축을 줄여주고 평탄도를 향상시키는 역할을 한다.Silicon nanoparticles are spherical particles that have a siloxane structure as the main structure. The optimum content of the silicon nanoparticles is in the range of 0 to 20 wt%, more preferably 10 wt% or less, of 100 wt% of the whole. By controlling the content of silicon nanoparticles, it is possible not only to control the pores but also to reduce the shrinkage after curing and improve the flatness.
올리고실록산, 유기모노머 또는 유기올리고머의 구성만으로 점도제어 및 수축방지 기능이 충분하지 못할 경우 유기나노입자, 무기산화물나노입자, 실리콘나노입자가 추가된다. 열처리시 발생하는 수축 문제는 실록산 네트워크를 보다 강화하면서 구조의 치밀도를 높이게 되어 상당 부분 수축을 방지할 수 있다. 하지만 보다 높은 코팅막 또는 구조체의 치수안정성을 위해서는 유기나노입자, 무기산화물나노입자 또는 실리콘나노입자를 주성분에 추가, 혼합함으로써 열처리시 및 경화시 발생하는 변형을 유기 또는 무기나노입자들이 버팀목 역할을 함으로써 변형을 방지할 수 있다. 그러므로 코팅막의 표면 변화를 최소화할 수 있고, 코팅막 및 형성된 구조체의 치수안정성에 기여할 수 있다. 하지만 입자의 사이즈를 너무 크게 한다든지 또는 너무 많은 함량을 적용할 시에는 수축방지와 같은 기계적인 물성은 증대할 수 있으나 광학적 투과도가 저하될 수 있다. 따라서 함량 제어와 혼합할 유무기 나노입자의 크기제어가 반드시 필요하게 된다. 추가적으로 이러한 나노입자의 혼합은 혼합된 구성용액의 점도를 증가시킬 수 있으므로 공정상 점도증가가 필요할 때 점증제의 역할을 할 수 있다. 하지만 앞서 언급하였듯이 이종 나노입자의 메트릭스 소재 분산은 서로 다른 표면에너지 차이에 의해 응집 및 침전과 같은 문제점을 일차적으로 야기하게 되고, 그런 문제점으로 인해 코팅막의 광학적 투하도 저하 문제 및 코팅막의 표면 결함 원인이 될 수 있으므로 점도 제어 및 수축방지 기능을 지니는 유무기 나노입자의 균일한 분산이 반드시 필요하다. 이러한 균일 분산을 위해서는 분산제가 반드시 필요하게 된다.Organic nanoparticles, inorganic oxide nanoparticles, and silicon nanoparticles are added when the viscosity control and shrinkage-preventing function are not sufficient by the composition of oligosiloxane, organic monomer or organic oligomer. The shrinkage problem that occurs during the heat treatment increases the density of the structure while strengthening the siloxane network, which can prevent shrinkage considerably. However, in order to improve the dimensional stability of a coating film or a structure, organic nanoparticles, inorganic oxide nanoparticles, or silicon nanoparticles are added to and mixed with the main component, and the deformation caused by heat treatment and curing is supported by organic or inorganic nanoparticles Can be prevented. Therefore, the surface change of the coating film can be minimized, and the coating film and the dimensional stability of the formed structure can be contributed. However, when the particle size is too large or when too much content is applied, the mechanical properties such as shrinkage prevention can be increased but the optical transmittance may be lowered. Therefore, size control of organic nanoparticles to be mixed with the content control is indispensable. In addition, the mixing of these nanoparticles can increase the viscosity of the mixed constituent solution and can act as an incremental agent when an increase in viscosity is required in the process. However, as mentioned above, the dispersion of the matrix material of the heterogeneous nanoparticles causes problems such as flocculation and settling primarily due to the difference in surface energy, and due to such a problem, the drop of the optical thickness of the coating film and the cause of the surface defect of the coating film Uniform distribution of organic and inorganic nanoparticles having viscosity control and anti-shrinkage function is indispensable. A dispersant is necessarily required for such uniform dispersion.
열경화성 유무기 하이브리드 절연소재에는 올리고실록산, 유기모노머 또는 유기올리고머, 나노입자뿐만 아니라 경화촉진제, 열경화성개시제, 열경화제, 열경화촉매, 분산안정제, 표면에너지조절제, 액상유동성조정제, 소포제를 더 포함하여야 한다. The thermosetting organic / inorganic hybrid insulating material should further include not only oligosiloxane, organic monomer or organic oligomer, nanoparticles but also a curing accelerator, a thermosetting initiator, a thermosetting agent, a thermosetting catalyst, a dispersion stabilizer, a surface energy regulator, a liquid flow regulator, .
경화촉진제는 열경화성 유기 모노머, 올리고머 및 고분자의 부착성 증진, 내구성 증진, 내화학성 증진과 가교 촉진제 역할을 위해 사용되며, 열에 의한 공유결합이 가능한 하이드록시기, 카르복실엑시드기, 포스페이트기, 아민기, 에폭시기, 올레핀기, 우레탄기 및 이의 혼합으로 이루어진 군으로부터 선택된 기능기를 포함한다. 또는 하이드록시기, 하이드로젠기, 우레탄기, 머캡토기, 카르복실엑시드기, 아민기, 올레핀기 및 이의 혼합으로 이루어진 군으로부터 선택된 기능기를 포함하는 유기 실란이 경화촉진제 역할을 할 수도 있다.The curing accelerator is used for enhancing adhesion of thermosetting organic monomer, oligomer and polymer, enhancing durability, enhancing chemical resistance, and acting as a crosslinking promoter. It is also used as a crosslinking agent capable of covalent bond by heat, such as hydroxyl group, carboxyl group, phosphate group, , An epoxy group, an olefin group, a urethane group, and a mixture thereof. Or an organosilane containing a functional group selected from the group consisting of a hydroxyl group, a hydrogen group, a urethane group, a mercapto group, a carboxyl group, an amine group, an olefin group and a mixture thereof may act as a curing accelerator.
경화촉진제의 함량은 전체 100중량% 중 1 내지 15중량% 포함되며, 보다 바람직하게는 5중량% 내외의 경우가 될 수 있다. 경화촉진제를 통해 금속, 유리, 전극, 필름과 같은 다양한 기판 및 소재에 부착력을 향상시키고 열경화형 유기기를 가지는 올리고 실록산, 유기 모노머, 올리고머 또는 고분자와의 화학적 가교의 증진을 위해 열경화 후의 하이브리드 소재 코팅막 및 하이브리드 소재의 부착력을 포함한 기계적 특성을 향상시킬 수 있다. 또한, 열결화성 수지의 경화 후 수축 및 크랙 등의 기계적 물성저하를 해결할 수 있는 이점이 있을 뿐 아니라 내수성 및 내화학성을 동시에 증진할 수 있다.The content of the curing accelerator is 1 to 15% by weight, more preferably 5% by weight or more, of 100% by weight of the whole. A hybrid material coating film after thermosetting for improving chemical bonding to oligosiloxane, organic monomer, oligomer or polymer having a thermosetting organic group and improving adhesion to various substrates and materials such as metal, glass, electrode, film and the like through a curing accelerator And the mechanical properties including the adhesive force of the hybrid material can be improved. Further, not only is there a merit that mechanical properties such as shrinkage and cracking after the curing of thermosetting resin can be lowered, but also water resistance and chemical resistance can be enhanced at the same time.
열경화성 개시제는 양이온성 열개시제와 라디칼 열개시제로 나눌 수 있다. 양이온성 열개시제는 유기 양이온으로 구성되는 이온화합물로 무기음이온을 쌍이온으로 가지는 개시제이다. 열에너지의 노출을 통해 단량체 존재 하에서 유기 양이온과 무기 음이온을 생성하는 화합물을 말하며, 열에 의해 화학결합이 약한 부분의 결합이 분해되어 양이온과 음이온이 형성된다. 형성된 이온은 양이온 열경화 반응을 개시 및 성장하는 역할을 할 수 있다. 대표적인 양이온 열개시제는 유기금속염 계열, 요오드늄염 계열, 메탈로센계 화합물류, 방향족 디아조늄염 계열, 트리아릴설포이윰염 계열, 잠재성 황산 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다. The thermoset initiator can be divided into a cationic thermal initiator and a radical thermal decomposition agent. The cationic thermal initiator is an ionic compound composed of an organic cation and an initiator having an inorganic anion as a double ion. Refers to a compound that generates organic cations and inorganic anions in the presence of monomers through exposure to thermal energy, and the bonds of weak chemical bonds are broken by heat to form cations and anions. The ions formed can serve to initiate and grow the cationic thermosetting reaction. Typical cationic thermal initiators are preferably selected from the group consisting of organic metal salts, iodonium salts, metallocene compounds, aromatic diazonium salts, triarylsulfuric acid salts, latent sulfuric acid, and mixtures thereof.
양이온 열개시제의 함량은 열경화성 유기기를 지니는 올리고실록산, 유기모노머, 유기올리고머 또는 유기고분자의 함량을 100중량%로 하여 0.1 내지 10중량% 적용하는 것이 바람직하다. 양이온 열개시제가 0.1중량% 미만일 경우 열처리를 하여 열경화가 이루어지는 데 많은 시간이 걸리며, 10중량%를 초과할 경우 너무 빠른 시간 내에 열경화가 이루어져 내부는 열경화가 이루어지지 않은 상태에서 외부만 열경화가 이루어지는 문제점이 생길 수 있다.The content of the cationic thermal initiator is preferably 0.1 to 10% by weight based on 100% by weight of the oligosiloxane, organic monomer, organic oligomer or organic polymer having a thermosetting organic group. When the amount of the cationic initiator is less than 0.1 wt%, it takes a long time for the heat curing to take place by heat treatment. When the amount exceeds 10 wt%, the heat curing is performed within a very short period of time, There is a problem that curing occurs.
라디칼 열개시제는 열을 통해 단량체 존재 하에서 라디칼을 생성하는 화합물을 말하며 열에 의해 화학결합이 약한 부분의 결합이 끊어져서 라디칼이 형성된다. 형성된 라디칼은 열경화가 가능한 유기기에 함께 열경화 반응을 개시하는 역할을 할 수 있다. 라디칼 열개시제의 종류로는 과산화물계 개시제가 대표적으로 사용되어지며, 과산화물계 개시제는 벤조일퍼옥사이드, 아세틸퍼옥사이드, 디라우릴퍼옥사이드, 포타슘퍼설페이트 및 이의 혼합으로 이루어진 군으로부터 선택된다. 과산화물계 개시제 이외에도 아조화합물계도 열에 의해 라디칼을 형성할 수 있는 열경화성 개시제로 사용할 수 있다.A radical thermal initiator is a compound that generates radicals in the presence of monomers through heat. Radicals are formed by breaking bonds at weak chemical bonds by heat. The radicals formed may serve to initiate the thermosetting reaction together with the thermosetting organic groups. As the radical thermal initiator, a peroxide initiator is typically used, and the peroxide initiator is selected from the group consisting of benzoyl peroxide, acetyl peroxide, dilauryl peroxide, potassium persulfate, and mixtures thereof. In addition to the peroxide initiator, the azo compound system can also be used as a thermosetting initiator capable of forming radicals by heat.
라디칼 열개시제의 함량은 열경화성 유기기를 지니는 올리고실록산, 유기모노머, 유기올리고머 또는 유기고분자의 함량을 100중량%로 하여 1 내지 5중량% 적용하는 것이 바람직하다. 라디칼 열개시제가 1중량% 미만일 경우 열처리를 하여 열경화가 이루어지는 데 많은 시간이 걸리며, 5중량%를 초과할 경우 너무 빠른 시간 내에 열경화가 이루어져 내부는 열경화가 이루어지지 않은 상태에서 외부만 열경화가 이루어지는 문제점이 생길 수 있다.The content of the radical thermal initiator is preferably 1 to 5% by weight based on 100% by weight of the oligosiloxane, organic monomer, organic oligomer or organic polymer having a thermosetting organic group. When the radical scavenging agent is less than 1% by weight, it takes a long time for thermal curing to take place by heat treatment. If it exceeds 5% by weight, the thermosetting is performed within a very short period of time, There is a problem that curing occurs.
라디칼 열경화성 유기기를 포함하는 올리고실록산은 다음과 같은 작용을 통해 열경화가 이루어지게 된다. 올리고실록산을 포함하는 절연소재를 합성하는 과정에서 충분한 축합반응을 통해 Si-O-Si(실록산) 네트워크를 형성하게 되고, 열경화가 가능한 라디칼 열경화성 유기기가 실록산 네트워크 상에서 실리콘(Si)의 4배위 중 한 배위를 차지하면서 실록산 네트워크 메인구조에 측쇄 등에 라디칼 열경화성 유기기를 함유하고 있게 된다. 여기에 같은 라디칼 열경화성 유기기가 포함된 유기모노머 및 유기올리고머를 함께 혼합하므로 용액반응에서 형성된 실록산 네트워크 뿐 아니라 열처리를 통해 유기네트워크 구조를 함께 이룰 수 있으므로 실록산 무기구조와 라디칼 열경화성 유기기의 유기네트워크를 또한 동시에 형성할 수 있다. The oligosiloxane containing a radical thermosetting organic group is thermoset through the following action. Si-O-Si (siloxane) network is formed through a sufficient condensation reaction in the process of synthesizing an insulating material including an oligosiloxane, and a thermosetting radical thermosetting organic group is formed on the siloxane network in a four- The main structure of the siloxane network contains a radical thermosetting organic group in the side chain and the like. Since the organic radicals and organic oligomers containing the same radical thermosetting organic groups are mixed together, the organic network structure of the siloxane inorganic structure and the radical thermosetting organic group can be obtained through heat treatment as well as the siloxane network formed in the solution reaction. Can be formed at the same time.
여기서 라디칼 열경화성 유기기의 유기가교를 촉진하여 전체적인 유기네트워크 반응을 진행하게 되고, 열처리를 통해 충분히 유기네트워크가 진행된다. 최종적으로 하이브리드 절연소재의 화학적 구조는 실록산 소재의 용액 합성을 통해 이루어진 실록산 무기네트워크 구조와 열처리를 통해 라디칼 열경화성 유기기의 충분한 유기네트워크 구조의 형성을 통해 유무기 화학구조를 함께 형성할 수 있다. 하지만 올리고실록산 주성분만으로 이루어진 절연소재의 경우 열경화시 발생하는 수축문제, 기판과의 보다 치밀한 부착, 그와 관련한 내화학성 증진 등의 보완이 필요하며, 공정 상에서도 어떤 공정을 적용하느냐에 따라 용액의 점도 제어가 필요하기에 올리고실록산 주성분의 분자량 제어를 추가로 하거나 또는 분자량이 다른 주성분의 혼합을 통해 다양한 점도를 지니는 성분을 구성할 수 있다. Here, the organic crosslinking of the radical thermosetting organic group is promoted and the whole organic network reaction proceeds, and the organic network progresses sufficiently through the heat treatment. Finally, the chemical structure of the hybrid insulation material can form an organic / inorganic chemical structure through formation of a sufficient organic network structure of the radical thermosetting organic group through the siloxane inorganic network structure and the heat treatment through the solution synthesis of the siloxane material. However, in the case of the insulating material composed only of the oligosiloxane main component, it is necessary to compensate for the shrinkage caused by thermal curing, the more closely adherence to the substrate, and the improvement of the chemical resistance related thereto, and depending on the process, The molecular weight control of the oligosiloxane main component may be added, or a component having various viscosities may be constituted through mixing of the main components having different molecular weights.
추가적으로, 열처리를 통한 유기네트워크 반응에서 각기 다른 분자량을 지니는 유기모노머 및 유기올리고머의 혼합을 통해 보다 치밀한 유기네트워크의 구조 확립과 올리고실록산과 유기모노머 또는 유기올리고머의 열처리를 통한 유기기들의 화학적인 구조를 형성할 수 있다. 이러한 올리고실록산, 유기모노머 또는 유기올리고머와 같은 주성분들의 분자량 제어를 통한 점도 제어뿐 아니라 각기 다른 특성과 분자량을 지니는 주성분의 혼합을 통해 공정 및 적용품에서 요구되는 내수성, 경도, 저수축성, 내화학성, 속경화성 등 물성들의 보완 효과를 가져올 수 있다. 또한, 서로 다른 이종재료 간의 분산을 용이하게 하기 위한 기능성 첨가소재가 요구되어진다.In addition, in the organic network reaction through heat treatment, the structure of the organic network through the mixing of the organic monomers and the organic oligomers having different molecular weights and the chemical structure of the organic compounds through the heat treatment of the oligosiloxane and the organic monomer or organic oligomer . In addition to viscosity control by controlling the molecular weight of the main components such as oligosiloxane, organic monomer or organic oligomer, it is possible to control the water resistance, hardness, low shrinkage, chemical resistance, Fast curability and other properties. In addition, functional added materials are required to facilitate dispersion among different dissimilar materials.
열경화제 및 열경화촉매는 열처리를 통해 열경화가 촉진되도록 첨가되는 것으로, 열경화제는 산무수물계, 폐놀계, 이소시아네이트계, 머캅탄계, 아민계 및 이의 혼합으로 이루어진 군으로 선택된다. 이때 열경화제의 함량은 주재의 당량을 고려하여 양론적으로 결정된다. 열경화촉매의 경우 아민계, 인계 등의 촉매를 사용할 수 있으며, 열경화촉매의 함량은 전에 100중량% 중 0.01 내지 5중량%를 적용할 수 있다. 이는 요구되는 경화온도, 경화시간 및 요구 공정 온도에 따라 함량을 결정할 수 있으며, 경화촉매제의 사용에 따라 경화 밀도를 상승시킬 뿐 아니라 접합강도를 증가시킬 수 있다.The thermosetting agent and the thermosetting catalyst are added so as to promote thermosetting through heat treatment. The thermosetting agent is selected from the group consisting of acid anhydride, phenolic, isocyanate, mercaptan, amine and mixtures thereof. At this time, the content of the thermosetting agent is determined theoretically in consideration of the equivalent of the host material. In the case of the thermosetting catalyst, an amine-based catalyst or phosphorus-based catalyst may be used. The content of the thermosetting catalyst may be 0.01 to 5 wt% of 100 wt%. This can determine the content depending on the required curing temperature, curing time and required process temperature, and can increase the curing density as well as increase the bond strength with use of the curing catalyst.
분산안정제는 나노입자, 무기산화물나노입자, 실리콘나노입자, 올리고실록산, 유기모노머 또는 유기올리고머의 분산을 용이하게 하는 구성으로, 분산안정제의 종류로는 양측 말단에 극성과 비극성의 양극성을 가지는 유기고분자류, 실란류, 양극성 유기단분자 및 이의 혼합으로 이루어진 군으로부터 선택될 수 있다. 이러한 분산제는 전체 조성물 100중량% 중 0.1 내지 3중량%를 적용할 수 있으며, 바람직하게는 1중량% 내외를 적용할 수 있다.The dispersion stabilizer is a composition that facilitates dispersion of nanoparticles, inorganic oxide nanoparticles, silicon nanoparticles, oligosiloxane, organic monomers, or organic oligomers. As the dispersion stabilizer, organic polymers having polarities of polarity and non- A silane, a bipolar organic monomer, and a mixture thereof. The dispersant may be used in an amount of 0.1 to 3% by weight, preferably 1% by weight, based on 100% by weight of the total composition.
표면에너지조절제는 무용제형 하이브리드 소재의 표면에너지의 제어를 통해 소재의 흐름성 제어, 핀홀과 같은 결함 제어 및 습식 공정성을 향상시키는 역할을 한다. 표면에너지조절제의 종류로는 실리콘수지류, 실란류, 아크릴수지류, 메타아크릴수지류, 불소수지류 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다. 표면에너지조절제의 함량은 전체 100중량%에 대해 0.1 내지 15중량%에서 적절하게 조절해서 사용 가능하다.The surface energy regulator plays a role in control of material flow, defect control such as pinhole, and improvement of wet processability by controlling the surface energy of the hybrid material of the non-use type. The surface energy regulator is preferably selected from the group consisting of silicone resins, silanes, acrylic resins, methacrylic resins, fluororesins, and mixtures thereof. The content of the surface energy regulating agent can be appropriately adjusted from 0.1 to 15% by weight based on 100% by weight of the whole.
유동성제어제는 액상으로 이루어져 추가적으로 점도를 제어가능하도록 포함되며, 점도 및 유동성을 제어함으로써 습식 공정성 향상, 흐름성 제어, 저장 안정성 증진뿐만 아니라 도막의 두께를 제어하는 역할을 수행한다. 유동성제어제의 종류로는, 폴리카르복실릭엑시드아마이드류, 폴리하이드록시카르복실릭엑시드아마이드류, 폴리하이드록시카르복실릭엑시드 에스터류, 변성우레아류, 우레아 변성 폴리우레탄류, 폴리아마이드류 및 이의 혼합으로 이루어진 군으로부터 선택되는 것이 바람직하다. 또한 유동성제어제는 전체 조성물 100중량% 중 0.1 내지 10중량%를 적용할 수 있으며, 바람직하게는 5% 내외를 적용할 수 있다. 유동성제어제가 0.1중량% 미만일 경우 절연소재의 점도를 미세하게 조절하기 용이하지 못하며, 10중량%를 초과할 경우 액상의 유동성제어제에 의해 열경화가 제대로 이루어지지 않는다는 단점이 있다.The flow control agent is in the form of a liquid phase, which is additionally controllable to control the viscosity. By controlling the viscosity and flowability, it improves wet processability, improves flow control and storage stability, and controls the thickness of the coating film. Examples of the fluidity controlling agent include polycarboxylic acid amides, polyhydroxycarboxylic acid amides, polyhydroxycarboxylic acid esters, modified ureas, urea-modified polyurethanes, polyamides and And mixtures thereof. The fluidity control agent may be used in an amount of 0.1 to 10% by weight, preferably 5% or more, based on 100% by weight of the total composition. When the amount of the flow control agent is less than 0.1 wt%, it is difficult to finely control the viscosity of the insulating material. When the amount of the flow control agent is more than 10 wt%, the liquid flow control agent fails to thermoset.
소포제는 하이브리드 절연소재에 포함된 성분들이 혼합됨에 의해 유발될 수 있는 기포를 제거하기 위해 첨가되는 성분으로, 습식 공정성 향상, 도막 결함 제어 및 외관 향상 등의 효과를 볼 수 있다. 소포제의 종류로는 실리콘류와 비실리콘류로 나눌 수 있는데, 실리콘류는 폴리실리콘류이며, 비실리콘류는 아크릴수지류, 불소-아크릴수지류, 불소수지류 및 이의 혼합으로 이루어진 군으로부터 선택 가능하다. 이러한 소포제는 전체 조성물 100중량% 중 0.1 내지 5중량%, 바람직하게는 3중량% 첨가될 수 있다. 소포제가 0.1중량% 미만일 경우 기포를 충분히 제거하지 못하며, 5중량%를 초과할 경우 성분들 간에 균일한 분산을 방해할 수 있기 때문에 적절하지 못하다.The antifoaming agent is added to remove air bubbles which can be caused by mixing the components contained in the hybrid insulation material, and can exhibit such effects as wet processability improvement, coating film defect control, and appearance improvement. The defoaming agent may be classified into a silicone type and a non-silicone type. The silicone type is polysilicon. The non-silicone type is selected from the group consisting of acrylic resin, fluorine-acrylic resin, fluorine resin and mixtures thereof. Do. Such antifoaming agents may be added in an amount of 0.1 to 5% by weight, preferably 3% by weight, based on 100% by weight of the total composition. If the antifoaming agent is less than 0.1 wt%, the bubbles can not be removed sufficiently, and if the antifoaming agent is more than 5 wt%, the uniform dispersion between the components may be hindered.
본 발명의 하이브리드 절연소재는 부착증진제 및 표면레벨링제를 추가로 함께 혼합할 수도 있다. 이 중 부착증진제는 탄화사슬 구조 또는 실록산 구조를 메인구조로 하면서 열경화성 유기기를 한쪽 말단 및 측쇄에 보유하고, 다른쪽 말단 및 측쇄에 하이드록시기, 카르복실엑시드기, 포스페이트기, 아민기, 에폭시기, 옥세탄기, 올레핀기, 우레탄기 및 이의 혼합으로 이루어진 군으로부터 선택된다. 또는 하이드록시기, 아크릴기, 메타아크릴기, 아릴기, 비닐기 우레탄기, 머캡토기, 카르복실엑시드기, 아민기, 올레핀기 및 이의 혼합으로 이루어진 군으로부터 선택되는 기능기를 포함하는 유기 실란이 부착증진제 역할을 할 수도 있다. 이러한 부착증진제의 함량은 전체 조성물 100중량% 중 1 내지 15중량% 혼합되는 것이 바람직하며, 보다 바람직하게는 5중량% 내외가 적당하다.The hybrid insulation material of the present invention may further be mixed together with an adhesion promoter and a surface leveling agent. Among these, the adhesion promoter has a thermosetting organic group at one terminal and side chains while having a carbon chain structure or a siloxane structure as a main structure and has a hydroxyl group, a carboxyl group, a phosphate group, an amine group, an epoxy group, Oxetane groups, olefin groups, urethane groups, and mixtures thereof. Or an organosilane containing functional groups selected from the group consisting of a hydroxyl group, an acrylic group, a methacrylic group, an aryl group, a vinyl group urethane group, a mercapto group, a carboxyl group, an amine group, an olefin group, It may also act as an enhancer. The content of the adhesion-promoting agent is preferably 1 to 15% by weight, more preferably 5% by weight, of 100% by weight of the total composition.
올리고실록산, 유기모노머 또는 유기올리고머, 나노입자로 이루어진 소재에서는 기판과의 공유결합 또는 수소결합을 통해 화학적인 결합을 이룰만한 반응 사이트가 부족할 경우 기판과의 화학적 결합과 매트릭스 소재와의 가교를 동시에 증진할 수 있는 부착증진제가 요구된다. 부착증진제를 통해 금속, 유리, 전극, 필름 등과 같은 다양한 기판 및 소재에 부착력을 향상시키고, 열경화성 유기기를 가지는 올리고실록산, 유기모노머 또는 유기올리고머와의 화학적 가교 증진을 통해 열경화 후의 하이브리드 소재 코팅막 및 하이브리드 소재의 부착력을 포함한 기계적 특성을 향상시킬 수 있다.In the case of a material comprising an oligosiloxane, an organic monomer or an organic oligomer or nanoparticles, if the reaction site is not enough to form a chemical bond through a covalent bond with the substrate or a hydrogen bond, the chemical bond with the substrate and the cross- Adhesion promoting agent that can be used in the present invention is required. It is possible to improve the adhesion to various substrates and materials such as metals, glass, electrodes, films and the like through the adhesion promoter and to improve the chemical crosslinking with oligosiloxane, organic monomer or organic oligomer having a thermosetting organic group, The mechanical properties including the adhesive force of the material can be improved.
표면레벨링제는 무용매 타입의 하이브리드 절연소재의 표면에너지 제어를 통해 절연소재의 흐름성 제어, 핀홀과 같은 결함 제어, 습식 공정성을 향상시키는 역할을 할 수 있다. 표면레벨링제의 종류로는 실리콘수지류, 실란류, 아크릴수지류, 메타아크릴수지류, 불소수지류 및 이의 혼합으로 이루어진 군으로부터 선택 가능하나 이에 한정되지는 않는다. 또한 표면레벨링제의 함량은 전체 조성물 100중량% 중 0.1 내지 15중량%, 바람직하게는 5중량% 내외를 함유할 수 있다.The surface leveling agent can control the flow control of insulation material, defect control such as pinhole, and improve wet processability through surface energy control of solventless type hybrid insulation material. The surface leveling agent may be selected from the group consisting of silicone resins, silanes, acrylic resins, methacrylic resins, fluororesins, and mixtures thereof, but is not limited thereto. Also, the content of the surface leveling agent may be 0.1 to 15% by weight, preferably 5% by weight or more, of 100% by weight of the total composition.
이하에서는 본 발명의 실시예를 좀 더 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in more detail.
<실시예 1 내지 5>&Lt; Examples 1 to 5 >
실시예 1 내지 5는 양이온 열경화형 방식을 이용하는 것으로, 양이온 열경화가 가능한 유기기인 사이클로알리파틱에폭시기를 가지는 에폭시사이클로헥실에틸트리메톡시실란의 가수분해와 축합반응을 위한 촉매인 질산수용액을 이용하여 열경화형 에폭시사이클로알리파틱실록산을 제조하였다. 여기서 촉매의 농도와 반응시간을 포함한 반응 변수를 제어하여 분자량을 제어할 수 있다. 제조된 실록산의 분자량은 각각 대략적으로 2,000 내지 3,000이며, 촉매 농도 증대와 반응 시간을 증가시켜 분자량은 최대 3,000까지 제어할 수 있다. 이러한 분자량 제어는 습식재료의 중요한 공정변수인 용액의 점도를 제어할 수 있다. 또한 분자량 제어를 통해 최종적인 경화 후 절연소재의 기계적 및 화학적 물성을 증진시킬 수 있다. 본 실시예 1 내지 5에서는 분자량 2,000 내지 3,000을 지니는 양이온 열경화형 사이클로알리파틱에폭시실록산을 제조하여 투명 하이브리드 절연소재의 주요구성 소재로 활용하였고, 함량은 전체 조성물 100중량% 중 25 내지 75중량%으로 각각 포함하여 혼합되며, 혼합 함량에 따라 용액의 점도를 제어할 수 있었다.Examples 1 to 5 use a cationic thermosetting type system and use an aqueous nitric acid solution which is a catalyst for hydrolysis and condensation reaction of epoxycyclohexylethyltrimethoxysilane having a cycloaliphatic epoxy group as an organic group capable of cationic thermosetting A thermosetting epoxy cycloaliphatic siloxane was prepared. Here, the molecular weight can be controlled by controlling the reaction parameters including the concentration of the catalyst and the reaction time. The molecular weight of the produced siloxane is approximately 2,000 to 3,000, respectively, and the molecular weight can be controlled up to 3,000 by increasing the catalyst concentration and the reaction time. This molecular weight control can control the viscosity of the solution, which is an important process parameter of the wet material. The molecular weight control can also improve the mechanical and chemical properties of the insulating material after final curing. In Examples 1 to 5, cationic thermosetting cycloaliphatic epoxy siloxane having a molecular weight of 2,000 to 3,000 was prepared and used as a main constituent material of a transparent hybrid insulation material. The content was 25 to 75% by weight of 100% And the viscosity of the solution can be controlled according to the mixing amount.
다음으로 혼합된 혼합 실록산에 열경화성 에폭시사이클로알리파틱 유기기를 지니는 분자량 140 정도의 유기 모노머를 전체 조성물 100중량% 대비 10 내지 70중량%를 혼합하고, 추가적으로 평균 60nm 사이즈를 가지는 폴리스티렌 나노유기입자를 실록산과 유기모노머가 혼합된 용액에 전체 조성물 100중량% 대비 10중량%를 적용하여 함께 혼합한 다음 혼합 유무에 대한 소재 및 코팅막의 물성을 비교하였다. 이러한 구성 소재들의 혼합 방법은 고점도 진공 혼합 믹서를 이용하여 균일하게 혼합하여 투명한 용액을 수득하였다. 60nm 사이즈를 가지는 폴리스티렌 나노유기입자는 스티렌모노머, 반응용매인 물, 아세톤과 양이온성 개시제인 AIBA(2,2'-azobis(2-methylpropionamidine), 가교제인 DVB(divinyl benzene), 분산안정제인 PVP(polyvinylpyrrolidone)를 이용하여 70℃에서 24시간 동안 반응을 통해 중합 제조하였다. 중합 제조된 폴리스티렌 유기나노입자는 원심분리 및 용매 건조과정을 통해 최종적으로 폴리스티렌 나노유기입자로 제조되었다.Next, 10 to 70% by weight of an organic monomer having a molecular weight of about 140, which has a thermosetting epoxy cycloaliphatic organic group and mixed with the mixed siloxane, is mixed with 100% by weight of the total composition, and the polystyrene nanoparticles having an average size of 60 nm are mixed with a siloxane The organic monomer mixture was mixed with a solution of 10 wt% based on 100 wt% of the total composition, and then the materials and the properties of the coating film were compared with each other. The mixing method of the constituent materials was uniformly mixed using a high viscosity vacuum mixing mixer to obtain a transparent solution. Polystyrene nano-organic particles having a size of 60 nm were prepared by mixing styrene monomer, water as a reaction solvent, acetone and AIBA (2-methylpropionamidine) as a cationic initiator, DVB (divinyl benzene) as a crosslinking agent, PVP polyvinylpyrrolidone) for 24 hours at 70 ° C. Polymerization Polystyrene organic nanoparticles were finally made into polystyrene nanoparticles through centrifugation and solvent drying.
실록산, 유기 모노머 및 나노유기입자를 포함하는 혼합액에 열경화를 위한 양이온 열개시제로 SI-60L(Sanshin Chem.)을 1.5중량% 혼합하고, 추가적으로 아민계 부착증진제를 1.5중량% 혼합하였으며, 실리콘계 표면레벨링제, 양극성 에테르형 고분자 분산제, 폴리카르복실릭엑시드(poly carboxylic acid) 아마이드계 유동성 제어제 및 비실리콘계 소포제를 각각 0.5중량% 혼합하여 최종적으로 양이온 열 개시를 통한 투명 열경화성 유무기 하이브리드 절연소재를 제조하였다. 이때 하이브리드 절연소재의 혼합은 고점도 진공 교반 혼합기를 이용하여 투명하고 균일하게 혼합된 절연소재를 획득할 수 있었다.Si-60L (Sanshin Chem.) Was mixed in an amount of 1.5% by weight at the time of cationic curing for thermosetting and 1.5% by weight of an amine-based adhesion promoter was added to a mixed solution containing siloxane, organic monomer and nano- A leveling agent, a bipolar ether-type polymer dispersant, a polycarboxylic acid amide-based fluidity control agent and a non-silicone-based defoaming agent were each mixed at 0.5 wt%, and finally a transparent thermosetting organic hybrid material . At this time, mixing of the hybrid insulation material was able to obtain a transparent and uniformly mixed insulating material by using a high viscosity vacuum stirring mixer.
다음 표 1을 통해서도 알 수 있듯이 수득한 하이브리드 절연소재의 점도는 250 내지 25,000cp를 나타내며, 이는 혼합된 소재의 분자량, 함량 또는 입도를 제어함으로써 점도를 다양하게 제어 가능하다. 제조된 열경화성 유무기 하이브리드 절연소재는 10cm×10cm 크기를 지니는 유리 및 금속 기판에 10㎛ 내외의 두께를 지니도록 바코팅(bar coating)을 통해 코팅막을 제조한다. 제조된 코팅막은 오븐 내에서 130℃, 30분간 열처리를 통해 최종적으로 열경화된 튜명 하이브리드 절연소재막을 제조하였다. 제조된 투명 하이브리드 절연소재막의 투과도, 접착력, 크랙 유무 및 유기용매에 대한 내화학성을 확인한 결과들을 표 1에서 나타낸 바와 같이 우수한 물성을 가지는 것을 확인할 수 있었다. 이러한 물성은 혼합된 구성소재의 혼합비율 및 적용소재의 종류에 따라서 물성의 차이가 발생할 수 있으므로, 각각 구성소재의 선택 및 배합비율의 결정이 물성 제어 및 증진에 매우 중요한 요소이다. As can be seen from the following Table 1, the obtained hybrid insulation material has a viscosity of 250 to 25,000 cp, which can control the viscosity by controlling the molecular weight, content, or particle size of the mixed material. The prepared thermosetting organic / inorganic hybrid insulation material is coated on a glass and metal substrate having a size of 10 cm × 10 cm by bar coating to have a thickness of about 10 μm. The prepared coating film was thermally treated in an oven at 130 ° C. for 30 minutes to finally produce a thermally cured tubular insulation insulating film. The results of confirming the permeability, adhesive strength, cracking resistance and chemical resistance of the organic solvent of the prepared transparent hybrid insulating material film were confirmed to have excellent physical properties as shown in Table 1. These physical properties may be different depending on the blending ratio of the mixed constituent materials and the kinds of the applied materials. Therefore, the selection of the constituent materials and the determination of the mixing ratio are very important factors for control and enhancement of physical properties.
실시예 1 내지 5에 따른 실험 결과를 표 1에 나타내었다. 여기서 경화도는 경화 후 끈적거림 유무를 확인하는 것으로, ◎: 매우우수, ○: 우수, △: 미흡, X: 불량으로 표시된다. 또한 측정하는 방법에 있어 점도는 Brookfield 점도계, 투과도는 UV-Vis Spectroscopy (Coatings on quartz glass), 접착력은 ASTM D3359-97 규격 (Cross-Cut Tape Test, glass substrate)을 통해 측정된다. 크랙유무의 경우에는 코팅막의 경화 후 육안관찰 및 OEM 관찰을 통해 측정되며, 내화학성의 경우 DI water, 알콜류, 중극성 셀루솔브류, 무극성 케톤류 적용하였다. 각 용매에 코팅막을 완전히 담근 후 7일 뒤 코팅막의 크랙, swelling, 분해 등을 육안 및 OEM 관찰을 통해 측정되며, ◎: 매우우수, ○: 우수, △: 미흡, X: 불량으로 표시된다.Experimental results according to Examples 1 to 5 are shown in Table 1. Here, the degree of hardening is determined by checking whether or not sticky after curing, and it is expressed as?: Very excellent,?: Excellent,?: Poor, and X: poor. The viscosity is measured with a Brookfield viscometer, the UV-Vis spectroscopy (Coatings on quartz glass), and the adhesive strength measured with a cross-cut tape test (ASTM D3359-97). In case of cracks, it is measured by visual observation after curing of coating film and OEM observation. In case of chemical resistance, DI water, alcohols, medium polarity cellosolve, and nonpolar ketone were applied. Cracking, swelling, decomposition, etc. of the coating film after seven days from completely immersing the coating film in each solvent were measured by visual observation and OEM observation. The results are shown as ⊚: very excellent, ◯: excellent, △: insufficient, and X: defective.
다음 표 1에 기재된 내용 중 실록산은 양이온 열개시형 열경화성 사이클로에폭시 실록산(thermal curable cyclo-epoxy siloxane)이며, 모노머는 양이온 열개시형 열경화성 에폭시 모노머(thermal epoxy monomer)를 의미한다.Siloxane is a thermal curable cyclo-epoxy siloxane and the monomer is a cationic thermal epoxy monomer.
실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 실시예 5Example 5
실록산(MW:2,000~3,000)Siloxane (MW: 2,000 ~ 3,000) 7575 7575 5050 5050 2525
모노머(MW:140)The monomer (MW: 140) 1010 2525 4040 4545 7070
PS 나노입자PS nanoparticles 1010 -- 55 -- --
열개시제(SL-60L)Thermal initiator (SL-60L) 1.51.5 1.51.5 1.51.5 1.51.5 1.51.5
부착 촉진제Adhesion promoter 1.51.5 1.51.5 1.51.5 1.51.5 1.51.5
표면 레벨링제Surface leveling agent 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5
분산안정제Dispersion stabilizer 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5
액상유동성 조절제Liquid fluidity control agent 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5
소포제Defoamer 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5
경화도Degree of hardening
점도(cP)Viscosity (cP) ~25,000~ 25,000 ~10,000~ 10,000 ~3,500~ 3,500 ~1,500~ 1,500 ~300~ 300
투과도(%)Permeability (%) 9191 9191 9191 9191 9191
접착력(B)Adhesion (B) 55 55 55 55 55
크랙(O:유, X:무)Crack (O: yes, X: no) XX XX XX XX XX
내화학성Chemical resistance
<실시예 6 내지 10>&Lt; Examples 6 to 10 >
실시예 6 내지 10은 열경화가 가능한 유기기인 글리시딜에폭시기를 가지는 글리시딜프로필메톡시실란의 가수분해와 축합반응을 위한 촉매인 질산수용액을 이용하여 열경화형 글리시딜에폭시 실록산을 제조하였다. 여기서 촉매의 농도와 반응시간을 포함한 반응 변수를 제어하여 분자량을 제어할 수 있다. 제조된 실록산의 분자량은 각각 대략적으로 2,000 내지 3,000이었으며, 촉매 농도 증대와 반응시간을 증가시켜 분자량을 최대 3,000까지 제어할 수 있었다. 이러한 분자량 제어는 습식재료의 중요한 공정변수인 용액의 점도를 제어할 수 있다. 또한 분자량 제어를 통해 최종적인 경화 후 재료의 기계적 및 화학적 물성을 증진할 수 있다. 본 실시예 6 내지 10에서는 분자량 2,000 내지 3,000을 지니는 열경화형 글리시딜에폭시 실록산 소재를 제조하여 투명 하이브리드 절연소재의 주요구성소재로 활용하고, 함량은 전체 조성물 100중량% 구성 대비 20 내지 80중량%까지 혼합하였고, 혼합 함량에 따라 용액의 점도를 제어할 수 있었다.In Examples 6 to 10, a thermosetting glycidyl epoxy siloxane was prepared by using a nitric acid aqueous solution as a catalyst for the hydrolysis and condensation reaction of glycidylpropyl methoxysilane having a glycidyl epoxy group as an organic group capable of thermosetting . Here, the molecular weight can be controlled by controlling the reaction parameters including the concentration of the catalyst and the reaction time. The molecular weight of the prepared siloxane was approximately 2,000 to 3,000, respectively, and the molecular weight could be controlled up to 3,000 by increasing the catalyst concentration and the reaction time. This molecular weight control can control the viscosity of the solution, which is an important process parameter of the wet material. The molecular weight control can also improve the mechanical and chemical properties of the material after final curing. In Examples 6 to 10, a thermosetting glycidyl epoxy siloxane material having a molecular weight of 2,000 to 3,000 was prepared and used as a main constituent material of the transparent hybrid insulation material. The content of the glycidyl epoxy siloxane material was 20 to 80 wt% And the viscosity of the solution could be controlled according to the mixing amount.
다음으로 각각 다른 함량의 실록산 소재에 열경화형 글리시딜에폭시 유기기를 지니는 분자량 유기 모노머 및 유기 고분자소재를 전체 조성물 100중량% 대비 20 내지 80중량%를 혼합하였다. 실록산, 유기 모노머 및 고분자를 포함하는 혼합액에 열경화를 위한 열경화제로 산무수물 경화제를 실록산, 유기 모노머 및 고분자를 포함하는 혼합액의 당량에 맞게 혼합하였으며, 아민계 경화촉매를 실록산, 유기모노머, 고분자 및 경화제를 포함하는 혼합액 총량의 0.05중량% 혼합하였다. 추가적으로 평균 700nm 사이즈를 지니는 상용 실리콘 구형입자(Shin-Etsu chemical Co.)를 글리시딜에폭시기를 지니는 실록산, 유기 모노머, 고분자, 경화제 및 촉매가 혼합된 용액 100중량% 대비 10중량%를 적용하여 함께 혼합하여 혼합 유무에 대한 소재 및 코팅막의 물성을 비교하였다.Next, 20 to 80% by weight of a molecular weight organic monomer and an organic polymer material having thermosetting glycidyl epoxy organic groups in different contents of siloxane material, based on 100% by weight of the total composition, were mixed. An organic anhydride curing agent was mixed with a thermosetting agent for thermosetting in a mixed solution containing a siloxane, an organic monomer and a polymer. The amine curing catalyst was mixed with a siloxane, an organic monomer, a polymer And 0.05% by weight of the total amount of the mixed liquid including the curing agent. (Shin-Etsu chemical Co.) having an average size of 700 nm was mixed with 10 wt% of 100 wt% of a solution containing a siloxane having an epoxy group, an organic monomer, a polymer, a curing agent and a catalyst, And the physical properties of the material and the coating film were compared with each other.
추가적으로, 부착증진을 위해서 엑시드기를 함유하는 아민계 부착증진제를 에폭시 조성물과 구상 실리콘 나노입자 혼합 양 대비 1.5중량% 혼합하였으며, 실리콘계 표면레벨링제, 양극성 이서형 고분자 분산제, 폴리카르복실릭엑시드(poly carboxylic acid) 아마이드계 유동성 제어제 및 비실리콘계 소포제를 각각 에폭시 조성물과 구상 실리콘 입자 혼합양 대비 0.5중량% 혼합하여 최종적으로 열경화성 에폭시 실록산-에폭시 수지 하이브리드 절연소재를 제조하였다. 이때 하이브리드 절연소재의 혼합은 고점도 진공 교반 혼합기를 이용하여 투명하고 균일하게 혼합된 절연소재를 획득할 수 있었다.In addition, for adhesion enhancement, an amine-based adhesion promoter containing an excited group was mixed in an amount of 1.5% by weight based on the mixing amount of the epoxy composition and the spherical silicon nano-particles, and a silicone surface leveling agent, a bipolar cross- ) Amide-based fluidity control agent and a non-silicone based defoaming agent were mixed at 0.5 wt% with respect to the mixing amount of the epoxy composition and spherical silicon particles, respectively, to finally prepare a thermosetting epoxy siloxane-epoxy resin hybrid insulation material. At this time, mixing of the hybrid insulation material was able to obtain a transparent and uniformly mixed insulating material by using a high viscosity vacuum stirring mixer.
표 2를 통해서도 알 수 있듯이 수득한 하이브리드 절연소재의 점도는 10,000 내지 25,000 cP 까지 고점도 영역에서 다양하게 나타났으며, 이는 혼합된 소재의 분자량 및 함량을 제어함으로써 다양하게 제어할 수 있었다. 표 2에서 나타난 점도 범위 외에 구성소재의 함량을 제어함으로서 보다 다양하게 점도를 조절할 수 있다. 제조된 열경화성 유무기 하이브리드 절연소재는 10cm×10cm 크기를 지니는 유리 및 금속 기판에 10㎛ 내외의 두께를 지니도록 바코팅(bar coating)을 통해 코팅막을 제조한다. 제조된 코팅막은 오븐 내에서 180℃, 90분간 열처리를 통해 최종적으로 열경화된 하이브리드 절연소재막을 제조하였다. 제조된 투명 하이브리드 절연소재막의 표면저항, 접착력, 크랙 유무 및 유기용매에 대한 내화학성을 확인한 결과들을 표 2에서 나타낸 바와 같이 우수한 물성을 가지는 것을 확인할 수 있었다. 이러한 물성은 혼합된 구성소재의 혼합비율 및 적용소재의 종류에 따라서 물성의 차이가 발생할 수 있으므로, 각각 구성소재의 선택 및 배합비율의 결정이 물성 제어 및 증진에 매우 중요한 요소이다. As can be seen from Table 2, the viscosity of the obtained hybrid insulation material varied from 10,000 to 25,000 cP in the high viscosity region, which could be controlled by controlling the molecular weight and content of the mixed material. By controlling the content of the constituent material in addition to the viscosity range shown in Table 2, it is possible to control the viscosity more variously. The prepared thermosetting organic / inorganic hybrid insulation material is coated on a glass and metal substrate having a size of 10 cm × 10 cm by bar coating to have a thickness of about 10 μm. The prepared coating film was heat treated in an oven at 180 ° C. for 90 minutes to finally produce a thermally cured hybrid insulating film. The results of confirming the surface resistance, adhesive strength, cracking resistance and chemical resistance of the organic solvent of the prepared transparent hybrid insulating material film were confirmed to have excellent physical properties as shown in Table 2. These physical properties may be different depending on the blending ratio of the mixed constituent materials and the kinds of the applied materials. Therefore, the selection of the constituent materials and the determination of the mixing ratio are very important factors for control and enhancement of physical properties.
실시예 6 내지 11에 따른 실험 결과를 표 2를 통해 나타내었다. 여기서 경화도는 경화 후 끈적거림 유무를 확인하는 것으로, ◎: 매우우수, ○: 우수, △: 미흡, X: 불량으로 표시된다. 또한 측정하는 방법에 있어 점도는 Brookfield 점도계, 투과도는 UV-Vis Spectroscopy (Coatings on quartz glass), 접착력은 ASTM D3359-97 규격 (Cross-Cut Tape Test, glass substrate)을 통해 측정된다. 크랙 유무의 경우에는 코팅막의 경화 후 육안관찰 및 OEM 관찰을 통해 측정되며, 내화학성의 경우 DI water, 알콜류, 중극성 셀루솔브류, 무극성 케톤류 적용. 각 용매에 코팅막을 완전히 담근 후 7일 뒤 코팅막의 크랙, swelling, 분해 등을 육안 및 OEM 관찰을 통해 측정되며, ◎: 매우우수, ○: 우수, △: 미흡, X: 불량으로 표시하였다.Experimental results according to Examples 6 to 11 are shown in Table 2. Here, the degree of hardening is determined by checking whether or not sticky after curing, and it is expressed as?: Very excellent,?: Excellent,?: Poor, and X: poor. The viscosity is measured with a Brookfield viscometer, the UV-Vis spectroscopy (Coatings on quartz glass), and the adhesive strength measured with a cross-cut tape test (ASTM D3359-97). In case of cracks, it is measured by visual observation after curing of coating film and OEM observation. In case of chemical resistance, DI water, alcohols, medium polarity cellosolve, non-polar ketone are applied. Cracking, swelling, decomposition, etc. of the coating film after 7 days from completely immersing the coating film in each solvent were measured by visual observation and OEM observation, and were marked as ⊚: very excellent, ◯: excellent, △: insufficient, and X: poor.
다음 표 2에 기재된 내용 중 실록산은 열경화성 글리시딜 에폭시 실록산(Thermal curable glycidyl-epoxy siloxane)이며, 유기 모노머 및 고분자는 열경화형 글리시딜 에폭시 모노머(Thermal curable glycidyl epoxy monomer) 및 열경화형 글리시딜 에폭시 고분자(Thermal curable glycidyl epoxy resin)를 의미하고 열경화제 및 경화촉매는 산무수물 경화제와 아민계경화촉매를 의미한다.The siloxane of the contents shown in the following Table 2 is a thermosetting glycidyl-epoxy siloxane, and the organic monomer and the polymer are a thermosetting glycidyl epoxy monomer and a thermosetting glycidyl Means a thermal curable glycidyl epoxy resin, and the heat curing agent and curing catalyst means an acid anhydride curing agent and an amine curing catalyst.
실시예 6Example 6 실시예 7Example 7 실시예 8Example 8 실시예 9Example 9 실시예 10Example 10 실시예 11Example 11
실록산Siloxane 8080 5050 2020 -- 2020 3030
유기모노머Organic monomer -- 1010 3030 -- 1010 3030
유기고분자Organic polymer -- 2020 3030 8080 5050 2020
열경화제Heat curing agent 7878 7979 8383 6969 7575 8484
열경화촉매Thermosetting catalyst 0.050.05 0.050.05 0.050.05 0.050.05 0.050.05 0.050.05
실리콘 구형입자Silicon spherical particles -- 1010 55 55 1010 --
부착증진제Adhesion promoter 55 55 55 55 55 --
표면레벨링제Surface leveling agent 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5
분산제Dispersant 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5
유동성제어제Liquidity control agent 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5
소포제Defoamer 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5
경화도Degree of hardening
점도(cP)Viscosity (cP) ~25,000~ 25,000 ~17,500~ 17,500 ~12,500~ 12,500 ~23,000~ 23,000 ~16,000~ 16,000 ~10,000~ 10,000
절연저항(Ωcm)Insulation resistance (Ωcm) 1×1018 1 x 10 18 1×1018 1 x 10 18 1×1018 1 x 10 18 1×1018 1 x 10 18 1×1018 1 x 10 18 1×1018 1 x 10 18
투과도(%)Permeability (%) 9191 7070 8080 8080 7070 9191
접착력(B)Adhesion (B) 55 55 55 55 55 22
크랙(O:유,X:무)Crack (O: yes, X: no) XX XX XX XX XX XX
내화학성Chemical resistance
이와 같은 실시예를 통해 확인할 수 있듯이 종래기술과 같이 용매를 사용하지 않은 무용매 조건에서도 절연소재의 점도를 제어 가능하며, 특히 낮은 분자량의 올리고실록산의 함량이 많을수록 점도가 낮아지며 높은 분자량의 실록산의 함량이 많을수록 점도가 높아지는 것을 확인할 수 있다. 또한 유기모노머와 유기올리고머의 분자량 및 첨가량에 따라서도 점도 제어가 가능하며, 나노입자를 포함할 경우에도 점도가 증가하는 것을 확인 가능하다. 이와 같이 올리고실록산, 유기모노머 또는 유기 올리고머, 나노입자를 통해 넓은 범위의 점도를 미세하게 자유자제로 조절 가능하며, 제조된 절연소재는 용매를 사용하지 않기 때문에 용매를 사용하는 경우보다 경화도, 투과도, 접착력, 내화학성이 모두 우수하고 크랙이 형성되지 않는다는 장점이 있다.As can be seen from the above examples, the viscosity of the insulating material can be controlled even under solvent-free conditions without using a solvent as in the prior art. In particular, the higher the content of oligosiloxane having a lower molecular weight, the lower the viscosity and the higher molecular weight siloxane content The higher the viscosity, the higher the viscosity. It is also possible to control the viscosity depending on the molecular weight and addition amount of the organic monomer and the organic oligomer, and it is also confirmed that the viscosity increases even when the nanoparticles are included. Thus, a wide range of viscosity can be controlled finely and freely through oligosiloxane, organic monomer or organic oligomer, and nanoparticles. Since the prepared insulating material does not use a solvent, the degree of cure, permeability , Adhesive strength and chemical resistance, and cracks are not formed.

Claims (9)

  1. 무용매 타입의 열경화성 유무기 하이브리드 절연소재에 있어서,A thermosetting organic / inorganic hybrid insulating material of no solvent type,
    열경화성 유기기를 가지는 10중량% 이상의 올리고실록산과;At least 10% by weight of an oligosiloxane having a thermoset organic group;
    탄화사슬 구조로 이루어지며 측쇄 및 말단에 열경화성 유기기를 가지는 10중량% 이상의 유기모노머 또는 유기올리고머와;At least 10% by weight of an organic monomer or organic oligomer having a carbon chain structure and having a side chain and a thermosetting organic group at a terminal thereof;
    구형 입자형태로 이루어지며 표면에 열경화성 유기기가 치환된 20중량% 이하의 나노입자와;Up to 20% by weight of nanoparticles in the form of spherical particles substituted with thermosetting organic groups on their surfaces;
    열처리에 의해 공유결합이 가능한 유기기를 가지는 1 내지 15중량%의 경화촉진제와;1 to 15% by weight of a curing accelerator having an organic group capable of being covalently bonded by heat treatment;
    열처리를 통해 상기 열경화성 유기기와 함께 열경화 반응을 개시하는 열경화성 개시제 및 열경화 반응을 진행시키는 열경화제와;A thermosetting initiator for initiating a thermosetting reaction together with the thermosetting organic group through heat treatment and a thermosetting agent for promoting a thermosetting reaction;
    열경화 반응이 촉진되도록 첨가되는 0.01 내지 5중량%의 열경화촉매와;0.01 to 5% by weight of a thermosetting catalyst added to accelerate the thermosetting reaction;
    양측 말단에 극성과 비극성의 양극성을 가지는 0.1 내지 3중량%의 분산안정제와;0.1 to 3% by weight of a dispersion stabilizer having polarity and non-polarity polarity at both ends thereof;
    표면에너지 제어를 위한 0.1 내지 15중량%의 표면에너지조절제와;0.1 to 15% by weight of a surface energy modifier for surface energy control;
    액상으로 이루어진 0.1 내지 10중량%의 액상유동성조정제와;0.1 to 10% by weight of a liquid flowability-regulating agent in a liquid phase;
    탄화사슬 구조 또는 실록산 구조로 이루어지진 1 내지 15중량%의 부착증진제와;1 to 15% by weight of an adhesion promoter composed of a carbon chain structure or a siloxane structure;
    0.1 내지 5중량%의 소포제를 포함하며,0.1 to 5% by weight of an antifoaming agent,
    상기 올리고실록산, 상기 유기모노머 또는 상기 유기올리고머, 상기 나노입자의 함량을 통해 점도를 제어하며, 열처리를 통해 각각이 가지는 상기 열경화성 유기기 간의 유기네트워크가 이루어지는 것을 특징으로 하는 무용매 타입의 열경화성 유무기 하이브리드 절연소재.Wherein the viscosity of the oligosiloxane, the organic monomer or the organic oligomer, and the nanoparticles are controlled, and an organic network is formed between the thermosetting organic groups of the oligosiloxane, thermosetting organic group, Hybrid insulation material.
  2. 제 1항에 있어서,The method according to claim 1,
    상기 올리고실록산은 분자량이 300 내지 3,000인 것을 특징으로 하는 무용매 타입의 열경화성 유무기 하이브리드 절연소재.Wherein the oligosiloxane has a molecular weight of 300 to 3,000. The thermosetting organic /
  3. 제 1항에 있어서,The method according to claim 1,
    상기 유기모노머 또는 상기 유기올리고머는 분자량이 100 내지 10,000인 것을 특징으로 하는 무용매 타입의 열경화성 유무기 하이브리드 절연소재.Wherein the organic monomer or the organic oligomer has a molecular weight of 100 to 10,000, and a thermosetting organic / inorganic hybrid material.
  4. 제 1항에 있어서,The method according to claim 1,
    상기 나노입자는, 유기나노입자, 무기산화물나노입자, 실리콘나노입자 및 이의 혼합으로 이루어진 군으로부터 선택되며, 1 내지 500nm 사이즈로 이루어진 것을 특징으로 하는 무용매 타입의 열경화성 유무기 하이브리드 절연소재.Wherein the nanoparticles are selected from the group consisting of organic nanoparticles, inorganic oxide nanoparticles, silicon nanoparticles, and mixtures thereof, and have a size of 1 to 500 nm.
  5. 제 4항에 있어서,5. The method of claim 4,
    상기 유기나노입자는, 폴리스티렌, 폴리우레탄, 폴리메틸메타아크릴레이트 및 이의 혼합으로 이루어진 군으로부터 선택되며, Wherein the organic nanoparticles are selected from the group consisting of polystyrene, polyurethane, polymethylmethacrylate, and mixtures thereof,
    상기 무기산화물나노입자는, 실리카, 지르코니아, 알루미나, 티타니아 및 이의 혼합으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 무용매 타입의 열경화성 유무기 하이브리드 절연소재.Wherein the inorganic oxide nanoparticles are selected from the group consisting of silica, zirconia, alumina, titania, and mixtures thereof.
  6. 제 1항에 있어서,The method according to claim 1,
    상기 열경화성 개시제는 라디칼 열경화성 개시제 또는 양이온 열경화성 개시제이며,Wherein the thermosetting initiator is a radical thermosetting initiator or a cationic thermosetting initiator,
    상기 열경화성 유기기의 종류에 따라 상기 열경화성 개시제의 종류가 선택되는 것을 특징으로 하는 무용매 타입의 열경화성 유무기 하이브리드 절연소재.Wherein the type of the thermosetting initiator is selected according to the kind of the thermosetting organic polymer.
  7. 제 1항에 있어서,The method according to claim 1,
    상기 열경화제는, 상기 열경화성 유기기를 지니는 상기 올리고실록산, 상기 유기모노머 및 상기 유기올리고머의 당량에 의해 양론적으로 함량이 결정되며,The content of the thermosetting agent is determined theoretically by the equivalents of the oligosiloxane having the thermosetting organic group, the organic monomer and the organic oligomer,
    산무수물계, 폐놀계, 이소시아네이트계, 머캅탄계, 아민계 및 이의 혼합으로 이루어진 군으로부터 선택되는 기능기를 포함하는 것을 특징으로 하는 무용매 타입의 열경화성 유무기 하이브리드 절연소재.And a functional group selected from the group consisting of anhydride-based, phenolic-based, isocyanate-based, mercaptan-based, amine-based, and mixtures thereof.
  8. 제 1항에 있어서,The method according to claim 1,
    상기 경화촉진제는, 한쪽 말단 및 측쇄에는 열경화성 유기기를 포함하며, 다른쪽 말단 및 측쇄에는 하이드록시기, 카르복실엑시드기, 포스페이트기, 아민기, 에폭시기, 옥세탄기, 올레핀기, 우레탄기, 하이드록시기, 아크릴기, 메타아크릴기, 아릴기, 비닐기 우레탄기, 머캡토기, 카르복실엑시드기, 아민기, 올레핀기 및 이의 혼합으로 이루어진 군으로부터 선택되는 기능기를 포함하는 것을 특징으로 하는 무용매 타입의 열경화성 유무기 하이브리드 절연소재.The curing accelerator includes a thermosetting organic group at one end and a side chain, and at least one of a hydroxyl group, a carboxyl group, a phosphate group, an amine group, an epoxy group, an oxetane group, an olefin group, a urethane group, And a functional group selected from the group consisting of an acrylic group, a methacryl group, an aryl group, a vinyl group urethane group, a mercapto group, a carboxyl group, an amine group, an olefin group and a mixture thereof. Type thermosetting organic / inorganic hybrid insulating material.
  9. 제 1항에 있어서,The method according to claim 1,
    상기 하이브리드 절연소재는 표면레벨링제를 더 포함하며,Wherein the hybrid insulation material further comprises a surface leveling agent,
    상기 표면레벨링제는 실리콘수지류, 실란류, 아크릴수지류, 메타아크릴수지류, 불소수지류 및 이의 혼합으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 무용매 타입의 열경화성 유무기 하이브리드 절연소재.Wherein the surface leveling agent is selected from the group consisting of a silicone resin, a silane, an acrylic resin, a methacrylic resin, a fluororesin, and a mixture thereof.
PCT/KR2018/008492 2017-07-28 2018-07-27 Solvent-free thermosetting organic/inorganic hybrid insulating material WO2019022545A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170096400A KR101906815B1 (en) 2017-07-28 2017-07-28 Solventless thermosetting organic-inorganic hybrid insulation materials
KR10-2017-0096400 2017-07-28

Publications (1)

Publication Number Publication Date
WO2019022545A1 true WO2019022545A1 (en) 2019-01-31

Family

ID=63865093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008492 WO2019022545A1 (en) 2017-07-28 2018-07-27 Solvent-free thermosetting organic/inorganic hybrid insulating material

Country Status (2)

Country Link
KR (1) KR101906815B1 (en)
WO (1) WO2019022545A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102542110B1 (en) * 2018-11-27 2023-06-09 한국전기연구원 Substrate adhesive material for conductive paste and manufacturing method of the smae
KR20200140509A (en) * 2019-06-07 2020-12-16 한국전기연구원 Highly heat-resistant nanohybrid siloxane insulating material and method for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004250470A (en) * 2003-02-18 2004-09-09 Hitachi Chem Co Ltd Insulating resin composition and use thereof
KR20110053579A (en) * 2009-11-16 2011-05-24 한국전기연구원 Solventless colloidal silica sol and fabrication method thereof
WO2013073638A1 (en) * 2011-11-18 2013-05-23 旭硝子株式会社 Curable composition, composition for application, cured film, laser processing method, and manufacturing method for multi-layer wiring structure
KR101444820B1 (en) * 2013-05-21 2014-09-30 한국전기연구원 manufacturing method of hybrid packaging materials for insulation and corrosion proof in flexible energy devices
KR20150010051A (en) * 2013-07-17 2015-01-28 한국전기연구원 high barrier and optically transparent hybrid packaging films
KR20160014971A (en) * 2014-07-30 2016-02-12 한국전기연구원 Manufacturing method of hybrid coating materials with high transmittance, high heat resistance and high electric insulation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004250470A (en) * 2003-02-18 2004-09-09 Hitachi Chem Co Ltd Insulating resin composition and use thereof
KR20110053579A (en) * 2009-11-16 2011-05-24 한국전기연구원 Solventless colloidal silica sol and fabrication method thereof
WO2013073638A1 (en) * 2011-11-18 2013-05-23 旭硝子株式会社 Curable composition, composition for application, cured film, laser processing method, and manufacturing method for multi-layer wiring structure
KR101444820B1 (en) * 2013-05-21 2014-09-30 한국전기연구원 manufacturing method of hybrid packaging materials for insulation and corrosion proof in flexible energy devices
KR20150010051A (en) * 2013-07-17 2015-01-28 한국전기연구원 high barrier and optically transparent hybrid packaging films
KR20160014971A (en) * 2014-07-30 2016-02-12 한국전기연구원 Manufacturing method of hybrid coating materials with high transmittance, high heat resistance and high electric insulation

Also Published As

Publication number Publication date
KR101906815B1 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
US20200230069A1 (en) Core-shell nanoparticles
DE69811283T2 (en) Liquid, curable resin composition
JP7087059B2 (en) Highly durable anti-fog coating and coating composition
DE69606069T2 (en) REACTIVE SILICONE PARTICLES, METHOD FOR THE PRODUCTION AND USE THEREOF
US11041076B2 (en) Highly durable antifogging coating film and coating composition
EP0457616B1 (en) Flame retardant coating compositions and coated articles
JPH08253708A (en) Radiation-curable composition and production thereof
JP2002504952A (en) Use of nanoscale metal oxide particles as polymerization catalyst
JP2002265870A (en) Polymerizable organosilicon nanocapsule
WO2019022545A1 (en) Solvent-free thermosetting organic/inorganic hybrid insulating material
CN105504923B (en) A kind of quick-dry type solventless coatings and preparation method thereof
JP2011508712A (en) Sol-gel method using encapsulated catalyst
RU2687075C2 (en) Method of producing resin systems of acrylic powder coatings
EP0690101A2 (en) Functional polyorganosiloxane emulsions from silanes having two hydrolysable functional groups and photocurable compositions therefrom
WO2018043987A1 (en) Silica-siloxane nanohybrid coating material and production method therefor
CN107964333B (en) Amino-terminated reactive fluorine-containing polymer modified waterborne epoxy coating and preparation and application thereof
WO2019083136A1 (en) Self-healing polyurea/sol-gel silica nanohybrid cured product, and preparation method therefor
JP7026446B2 (en) Anti-fog coating and coating composition
KR102269181B1 (en) Composition for manufacturing solventless photocurable organic-inorganic hybrid insulation materials
JP2008274242A (en) Aqueous coating composition, organic-inorganic composite coating film, silane condensate dispersion and method for producing the same
Çakmakçı et al. UV-curable fluorine-containing hybrid coatings via thiol-ene “click” reaction and an in situ sol–gel method
JPH09175868A (en) Polycarbonate product covered with hard coat film and its production
JP7328829B2 (en) Coating composition and anti-fogging coating
WO2020246663A1 (en) Highly heat resistant nanohybrid siloxane insulation material and preparation method therefor
KR20090021379A (en) Alkoxysilyl functional oligomers and particles surface-modified therewith

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838721

Country of ref document: EP

Kind code of ref document: A1