WO2019022339A1 - Fluid condition measurement device - Google Patents

Fluid condition measurement device Download PDF

Info

Publication number
WO2019022339A1
WO2019022339A1 PCT/KR2018/003776 KR2018003776W WO2019022339A1 WO 2019022339 A1 WO2019022339 A1 WO 2019022339A1 KR 2018003776 W KR2018003776 W KR 2018003776W WO 2019022339 A1 WO2019022339 A1 WO 2019022339A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupled
receiving tube
fluid
tube
fastening plate
Prior art date
Application number
PCT/KR2018/003776
Other languages
French (fr)
Korean (ko)
Inventor
신창훈
여철호
Original Assignee
주식회사 차후
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 차후 filed Critical 주식회사 차후
Priority claimed from KR1020180036974A external-priority patent/KR102074299B1/en
Publication of WO2019022339A1 publication Critical patent/WO2019022339A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/30Oils, i.e. hydrocarbon liquids for lubricating properties

Definitions

  • the present invention relates to an apparatus for measuring the state of a fluid inside a machine.
  • Modern power or power equipment uses fluids such as insulating oil, lubricants, and the like.
  • the environment in which power or electric equipment is used is a very poor environment in which high temperatures, high pressures or vibrations occur. Therefore, in order for the equipment to operate normally, it is necessary to manage the state of the insulating oil and the lubricating oil and to change them at an appropriate time.
  • the gate valve or globe valve regulates the flow of the fluid as the disk or the plug (hereinafter referred to as the disk) moves up and down.
  • the fluid port since the region that is opened or closed by the disc (hereinafter referred to as the fluid port) is perpendicular to the flow of the fluid (that is, the fluid flows in only one direction in the valve) It is easy to do.
  • the fluid state measuring device can not be inserted because the fluid port is horizontal to the fluid flow (that is, the direction in which the fluid flows in the valve changes).
  • a fluid state measurement device which can be inserted into the structure through a structure in which the flow of the fluid is changed.
  • the fluid state measuring device includes a first receiving pipe, a first connecting plate coupled to one end of the first receiving pipe and having a first through hole at a position where the first receiving pipe is coupled, A second receiving tube which extends in the direction of the first receiving tube and accommodates a first electric wire therein, a second receiving tube which is coupled to one end of the second receiving tube and which is electrically coupled to the first electric wire, A coil member extending in the longitudinal direction of the first receiving tube, a sensor assembly coupled to one end of the coil member for measuring the state of the fluid and electrically coupled to the second wire, A second fastening plate coupled to the other end and having a second through hole at a position where the first receiving pipe is coupled to allow the second receiving pipe to be drawn into or out of the first receiving pipe, The third fastening The can be included.
  • a fluid state measurement apparatus capable of detaching a coil member according to a path structure of a power or electric power equipment to be installed.
  • the fluid state measuring device includes a first receiving pipe, a first connecting plate coupled to one end of the first receiving pipe and having a first through hole at a position where the first receiving pipe is coupled, A sensor assembly coupled to one end of the second receiving tube for measuring the state of the fluid and electrically coupled to the wire, a second receiving tube extending in the direction of the first receiving tube, A second coupling plate coupled to the other end and having a second through hole at a position where the first receiving tube is coupled to allow the second receiving tube to be drawn into or out of the first receiving tube; And a third fastening plate coupled to the other end of the second receiving tube.
  • the coil member may include a horizontally extending portion extending horizontally from one end of the coil member to one end of the coil member, and an inclined extension portion extending obliquely from the horizontally extending portion to one end of the coil member, And a curved portion connecting the horizontal extension portion and the slant extension portion.
  • the coil member may be a cylindrical hollow formed of a metal or a metal alloy.
  • At least one of a distance for drawing the second receiving tube and an angle for rotating the second receiving tube may be displayed on the outer surface of the second receiving tube.
  • the fluid state measuring apparatus may further include a valve in fluid communication with the outer surface of the first receiving tube.
  • the fluid state measuring apparatus may further include a sealing member located inside the first receiving tube and sealing the fluid flowing into the first receiving tube so that the fluid does not flow out to the outside.
  • the first through hole may be formed at a position spaced apart from the center of the first fastening plate.
  • the third fastening plate may be fixed to the second fastening plate.
  • the sensor assembly may include a sensor housing having a through hole for fluid inflow and a sensor disposed inside the sensor housing for measuring a state of the fluid to generate a measurement signal and outputting the measurement signal to the second electric wire electrically connected to the sensor housing .
  • the fluid state measuring apparatus may further include a signal processing device electrically coupled to the first electric wire extended from the third fastening plate and receiving a measurement signal generated in the sensor assembly.
  • FIG. 1 is a perspective view showing an embodiment of a fluid state measuring apparatus.
  • FIG. 2 is a longitudinal sectional view of the fluid measurement apparatus of FIG.
  • FIG. 3 is an exploded perspective view showing a sensor assembly coupled to the fluid measurement device of FIG.
  • Fig. 4 is a partially enlarged view of one end of the coil member of Fig. 1.
  • FIGS. 5A, 5B, 5C, 5D, 5E, and 5F illustrate a process of inserting the sensor assembly of the fluid measurement apparatus of FIG.
  • Fig. 6 is a view exemplarily showing a guide in which the operation method shown in Figs. 5A to 5F is printed.
  • FIG. 7 is a view illustrating a process of inserting the sensor assembly of the fluid measurement device of FIG. 1 fastened to the gate valve into the interior to make contact with the fluid.
  • FIG 8 is a view illustrating a structure in which the sensor assembly is fully inserted into the power or electric equipment and then fixed.
  • FIG. 9 is a view showing a state in which the fluid state measuring apparatus of FIG. 1 and the signal processing apparatus are fastened.
  • first, second, etc. may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • FIG. 1 is a perspective view showing an embodiment of a fluid state measuring apparatus
  • FIG. 2 is a longitudinal sectional view of the fluid measuring apparatus of FIG. 1.
  • the fluid state measuring apparatus includes a first receiving pipe 100, a second receiving pipe 200, a coil member 300, and a sensor assembly 400.
  • the first receiving pipe 100, the second receiving pipe 200 and the coil member 300 are formed of a metal or a metal alloy which is not invaded or corroded by fluid and is not deformed by high temperature, high pressure, or vibration.
  • the first receiving tube 100, the second receiving tube 200, and the coil member 300 are illustrated as having a cylindrical shape having a circular section in the accompanying drawings, but this is merely an example, Of course, be formed.
  • the first receiving tube 100 extends in the horizontal direction (i.e., the longitudinal direction) of FIG. 2 and accommodates at least a part of the second receiving tube 100 and / or at least a part of the coil member 300 in the second receiving tube 100 .
  • the first fastening plate 110 is coupled to one end of the first receiving tube 100 and the second fastening plate 120 is coupled to the other end of the first receiving tube 100.
  • the first fastening plate 110 includes a first through hole 111 formed at a position where one end of the first accommodating tube 100 is coupled.
  • the second fastening plate 120 includes a second through hole 121 formed at a position where the other end of the first accommodating tube 100 is coupled.
  • the first fastening plate 110 includes a plurality of fastening grooves 112 for fastening the fluid state measuring device to a fluid inlet or fluid outlet of a power or electric equipment, for example, an internal combustion engine, a transformer, or the like.
  • the first fastening plate 110, the second fastening plate 120, and the third fastening plate 210 are illustrated as having a circular shape in the accompanying drawings, but the present invention is not limited thereto. For example, Of course.
  • the first receiving tube 100 may be coupled to the central region of the first fastening plate 110. In another embodiment, the first receiving tube 100 may be spaced apart from the central region of the first fastening plate 110. The distance that the first receiving tube 100 and the corresponding first through-hole 111 are spaced apart from the central region of the first fastening plate 110 is determined by the position of the fluid inlet or fluid outlet to which the fluid state measuring device is coupled and / Or the structure of the path through which the sensor assembly 400 will travel to reach the interior of the power or power equipment.
  • the first valve 140 is fluidly coupled to the first receiving tube 100.
  • the first valve 140 may be used to discharge the air inside the first receiving tube 100 to the outside when the fluid flows into the first receiving tube 100 through the first through hole 111 .
  • the first valve 140 is arranged such that the outlet not coupled to the first receiving tube 100 faces the opposite direction of the paper.
  • the second valve 145 is fluidly coupled to the first receiving tube 100.
  • the second valve 145 may be used to discharge the fluid without separating the fluid state measurement device from the power or power equipment.
  • the second valve 145 may be disposed such that the outlet not coupled to the first receiving tube 100 faces the ground.
  • the sealing member 130 is disposed at a position adjacent to the second fastening plate 120 in order to prevent the fluid flowing into the first accommodating tube 100 from flowing out.
  • the second receiving tube 200 extends through the central region of the sealing member 140 and can be drawn into the first receiving tube 100 by a force externally applied thereto.
  • the first receiving pipe 100 is provided with a movement preventing portion 150 ).
  • the sealing member 140 may be disposed between the movement preventing portion 150 and the second fastening plate 120.
  • a plurality of sealing members may be disposed within the first receiving tube 100.
  • the second receiving tube 200 extends in the longitudinal direction of the first receiving tube 100, and at least part of the second receiving tube 200 is accommodated in the first receiving tube 100.
  • One end of the second receiving tube 200 is coupled to the coil member 300 and the other end of the second receiving tube 200 is coupled to the third connecting plate 210.
  • the second receiving tube 200 receives a first wire (not shown) therein, and the first wire is electrically connected to a second wire (not shown) accommodated in the coil member 300.
  • a first connector 220 electrically connected to the first wire may be disposed at one end of the second receiving tube 200.
  • one end of the second accommodating tube 200 may be sealed so that fluid does not flow into the inside.
  • the second fastening plate 120 and the third fastening plate 210 may include a plurality of fastening grooves 122 and 212 formed at positions corresponding to each other.
  • the third fastening plate 210 may be fixed to the second fastening plate 120 by a fastening member such as a bolt, a rivet or the like.
  • a third through hole 211 may be formed to extend to the outside of the connector 200.
  • a first wire may be extended to the outside through the third through hole or a connector electrically connected to the first wire may be exposed to the outside.
  • the coil member 300 may be a cylindrical hollow coil, and may be formed of a metal such as iron, sus, or a metal alloy having excellent elasticity, heat resistance, and chemical resistance. One end of the coil member 300 is coupled to the sensor assembly 400 and the other end is coupled to one end of the second receiving tube 200.
  • the coil member 300 extends in the longitudinal direction of the first receiving tube 100.
  • One end of the coil member 300 may be inclined at a predetermined angle with respect to the longitudinal direction of the first accommodating tube 100 so that the sensor assembly 400 may be inclined at a predetermined angle with respect to the longitudinal direction of the first accommodating tube 100 Are arranged at an angle.
  • the angle between one end of the coil member 300 or the longitudinal direction with respect to the sensor assembly 400 may be determined according to the structure of the path through which the sensor assembly 400 passes in order to reach the inside of the power or electric power equipment.
  • the second connector 340 is located at the other end of the coil member 300 and may be electrically coupled to a second wire contained within the coil member 400.
  • the second connector 340 may be coupled to the first connector 220 of the second receiving tube 200.
  • the coil member 300 and the second receiving tube may be fastened (for example, without using the first connector 220, the second connector 340)
  • a wire may extend into the coil member 300 and be electrically connected to the sensor assembly 400.
  • the sensor assembly 400 is inserted into the power or power equipment and measures the condition of the fluid.
  • FIG. 3 is an exploded perspective view showing a sensor assembly coupled to the fluid measurement device of FIG.
  • the sensor assembly 400 includes a sensor housing composed of a housing body 410 and a housing cover 420.
  • the housing cover 420 may be screwed to the housing body 410.
  • a thread is formed on the outer circumferential surface of one end of the housing cover 420, and a thread (not shown) is formed on the inner circumferential surface of one end of the housing body 410.
  • the housing body 410 and the sensor housing cover 420 may be formed of metal.
  • the sensor housing is coupled to one end of the coil member 400, that is, to the inclined extension 330.
  • the sensor housing receives one or more sensor substrates 430 therein and contacts the fluid to be measured.
  • the housing body 410 may have a cylindrical shape, and a fluid communication hole 411 is formed in the housing body 410 so as to penetrate the outer peripheral surface and the inner peripheral surface.
  • the plurality of fluid communication holes 411 can function to increase the contact between the sensor and the oily body.
  • One or more sensors that measure one or more states of the fluid are disposed on the sensor substrate 430.
  • each of the plurality of sensors may measure one or more states, for example, deterioration, temperature, moisture, level, and degree of contamination depending on the type of fluid.
  • the measurement signal generated by the sensor may be transmitted to the outside through the first wire and / or the second wire.
  • the sensor substrate 430 electrically connects the second wire 340 to one or more sensors.
  • the second electric wire 330 electrically connects the sensor substrate 430 to the signal processing device 700 located outside and transmits the measurement signal generated by the sensor to the signal processing device 700.
  • the second electric wire 330 may be waterproof coated to enhance waterproofing and insulating properties.
  • Fig. 4 is a partially enlarged view of one end of the coil member of Fig. 1.
  • the path through which the sensor assembly 400 will pass to reach the interior of the power or power equipment may have a structure that changes fluid flow.
  • an "L” “type tube,” “S” “type tube or globe valve has a section in which the direction of the path changes at least once in the entire path. Therefore, the coil member 300 having elasticity can not pass through the section in which the direction of the path is changed, or can pass through such section only after very delicate insertion.
  • the coil member 400 whose one end is inclined is easy to change the direction in which the direction of the path changes.
  • 4 (a) to 4 (c) illustrate one end of the coil member 400 that is inclined in various forms.
  • the coil member 300 may include a horizontal extension 310 and an inclined extension 330.
  • any one of the plurality of coils near one end of the coil member 300 can be bent at a predetermined angle a1.
  • the distance between the horizontal extension 310 and the vertical extension 330 may be substantially the same as the inter-coil spacing of the other portion of the coil member 300, The distance between the horizontal extending portion 310 and the vertical extending portion 330 increases as viewed from the bottom.
  • the coil member 300 may include a horizontal extension 310, a curved portion 320, and an inclined extension 330.
  • the intervals between the coils of the horizontal extension 310 and the slope extension 330 are substantially the same.
  • the interval between the coils as viewed from above is substantially the same as the horizontal extending portion 310 or the inclined extending portion 330, but the interval between the coils as viewed from the bottom is equal to the horizontal extending portion 310 Is greater than the inter-coil spacing of the warp extensions (330). Therefore, the inclined extension 330 is inclined at a predetermined angle a1 with respect to the axial direction of the horizontal extending portion 310.
  • more than two curved portions 321 may be formed to increase the angle between the inclined extension 330 and the horizontal extension 310 from a1 to a2.
  • At least one or a combination of the total length of the coil member 400, the length of the warp extension 330 and / or the angle between the warp extension 330 and the horizontal extension 310 is determined by the sensor assembly 400 It can be changed depending on the structure of the power or the path in the power equipment to be passed.
  • FIGS. 5A through 5F are views illustrating a process of entering a sensor assembly of the fluid measurement apparatus of FIG. 1 fastened to a globe valve into a power or electric equipment to make contact with a fluid.
  • FIG. 5A through 5F are views illustrating a process of entering a sensor assembly of the fluid measurement apparatus of FIG. 1 fastened to a globe valve into a power or electric equipment to make contact with a fluid.
  • the fluid state measurement device is coupled to either the fluid outlet port or the fluid inlet port of the power or power equipment.
  • 5A to 5F illustrate the case where the fluid state measuring device is coupled to the globe valve 500 having the " S " ' shaped path, but this is merely an example.
  • a fluid state measurement device is coupled to the globe valve (500).
  • the fluid state measuring device is coupled to the outlet port of the globe valve 500 by a fastening member such as, for example, bolts, rivets, or the like.
  • the fluid port 520 of the globe valve 500 When the fluid state measuring device is connected to the glove valve 500, the fluid port 520 of the globe valve 500 is opened, and the fluid flows into the first receiving pipe 100. Since the inside of the first storage tube 100 is filled with air, internal pressure may increase, resulting in a negative result such as leakage of fluid or introduction of air into the equipment. Accordingly, when the fluid port 520 is opened, the first valve 140 is opened to allow air in the first accommodation pipe 100 to be discharged to the outside.
  • the second receiving pipe 200 is inserted into the first receiving pipe 100 through the second through hole 121, Lt; / RTI >
  • the coil member 300 coupled to one end of the second receiving tube 200 enters the lower fluid path 510 of the globe valve 500.
  • the sensor assembly 400 coupled to one end of the coil member 300 advances to the central upper wall 511 defining the lower fluid path 510 while keeping the inclined state at a predetermined angle.
  • the third fastening plate 210 when the sensor assembly 400 contacts the central upper wall 511 of the lower fluid path 510, the third fastening plate 210 is rotated clockwise by 90 degrees. When the third fastening plate 210 is rotated, the sensor assembly 400 in the lower fluid path 510 also rotates clockwise by 90 degrees. As shown in FIG. 5B, the sensor assembly 400 is allowed to advance because it no longer contacts the central upper wall 511 of the lower fluid path 510 that impedes advancement. Next, the third fastening plate 210 is pushed toward the second fastening plate 120 to advance the sensor assembly 400 to the fluid port 520.
  • the third fastening plate 210 is rotated counterclockwise by 90 degrees so that one end of the sensor assembly 400 is connected to the fluid port 520).
  • the sensor assembly 400 is inclined at a predetermined angle by the inclined extension 330 of the coil member 300 so that at least a part of the sensor assembly 400 enters into the fluid port 520 by rotation .
  • the third fastening plate 210 is pushed toward the second fastening plate 120 so that the sensor assembly 400 ) To the outside of the fluid port (520).
  • the sensor assembly 400 is advanced to come into contact with the upper side wall 541.
  • the sensor assembly 400 in contact with the upper side wall 541 can not advance further.
  • the third fastening plate 210 when the sensor assembly 400 contacts the upper side wall 541, the third fastening plate 210 is rotated clockwise by 90 degrees.
  • the sensor assembly 400 in the upper fluid path 540 also rotates clockwise by 90 degrees.
  • the sensor assembly 400 is no longer in contact with the upper sidewall 541 that impedes advancement, so that it can be advanced.
  • the position of contact of the coil member 300 with the fluid port 520 can be changed due to the elasticity of the coil member 300, and the sensor assembly 400 includes the upper wall 540 defining the upper fluid path 540, (Not shown).
  • the distance d between the fluid port 520 and the disk 530 may be less than that illustrated in Figure 5d so that the sensor assembly 400 may contact the disk 530 and may not advance further . Therefore, it should be understood that Figures 5d and 5e are illustrative only to illustrate situations in which the fluid port 520 can not advance further after passing through it.
  • the third fastening plate 210 is pushed toward the second fastening plate 120, (400) to advance fully into the power or electrical equipment.
  • the length of the second receiving tube 200 and the coil member 300 may be determined to locate the sensor assembly 400 within the power or power equipment and when the sensor assembly 400 is positioned within the equipment, The fastening plate 120 and the third fastening plate 210 can be brought into contact with each other.
  • the second receiving pipe 200 can be drawn out. In this case, the position of the sensor assembly 400 may be changed and a desired measurement signal may not be generated. Accordingly, the second fastening plate 120 and the third fastening plate 210 can be fixed to each other by a fastening member.
  • Fig. 6 is a view exemplarily showing a guide in which the operation method shown in Figs. 5A to 5F is printed.
  • 5A to 5F show a procedure for operating the third fastening plate 210 in order to arrange the sensor assembly 400 inside the equipment. Since the structure of the equipment to which the fluid state measuring apparatus is to be coupled can be known in advance, the operation procedure can be displayed outside the second receiving pipe 200. This allows the operator to properly install the fluid status measuring device even if the internal structure of the device is not known.
  • the operation procedure is composed of any one of a distance for drawing the second receiving tube 200 into the first receiving tube 100 and an angle for rotating the second receiving tube 200 or a combination thereof.
  • the operating sequence may be permanently displayed on the outer surface of the second receiving tube 200, for example, via printing or laser marking.
  • the operation procedure may be printed on the guide 230 and then attached to the outer surface of the second receiving tube 200.
  • the guide 230 may be formed of paper or a synthetic resin, and may be coated to prevent contamination after the operation sequence is printed. When the same fluid state measuring apparatuses are coupled to equipment having different structures, the guide 230 for each equipment can be used to display the correct operation sequence on the second receiving pipe 200.
  • FIG. 7 is a view illustrating a process of inserting the sensor assembly of the fluid measurement device of FIG. 1 fastened to the gate valve into the interior to make contact with the fluid.
  • the coil member 300 May be separated from the second receiving tube 200.
  • the sensor assembly 400 may be coupled to one end of the second receiving tube 200 after the coil member 300 is separated.
  • the fluid state measurement device is coupled to either the fluid outlet port or the fluid inlet port of the power or power equipment.
  • FIG. 7 illustrates the case where the fluid state measuring device is coupled to the gate valve 600 having a straight path, but this is merely an example.
  • the fluid state measuring device is coupled to the gate valve 600 with the disk of the gate valve 600 coupled to the fluid port, i.e., the outlet port of the gate valve 600 and the inlet port are not in fluid communication.
  • the fluid state measurement device is coupled to the outlet port of the gate valve 600 by a fastening member such as, for example, bolts, rivets, or the like.
  • the fluid port of the gate valve 600 When the fluid state measuring device is coupled to the gate valve 600, the fluid port of the gate valve 600 is opened, and the fluid flows into the first receiving pipe 100.
  • the first valve 140 is opened to allow air in the first accommodation pipe 100 to be discharged to the outside.
  • the length of the second receiving tube 200 may be determined to place the sensor assembly 400 in the power or power equipment, and the sensor assembly 400 may be positioned within the equipment
  • the second fastening plate 120 and the third fastening plate 210 can be brought into contact with each other.
  • the second receiving pipe 200 can be drawn out.
  • the position of the sensor assembly 400 may be changed and a desired measurement signal may not be generated. Accordingly, the second fastening plate 120 and the third fastening plate 210 can be fixed to each other by a fastening member.
  • FIGS. 8A and 8B illustrate a structure in which the sensor assembly is fully inserted into a power or electric equipment and then fixed.
  • Figs. 8A and 8B show an embodiment in which the sensor assembly is fixed using a self- Is fixed using a fastening member.
  • the first fastening structure is disposed on a surface of the second fastening plate 120 that is not coupled to the first receiving tube 100 on both sides.
  • the first fastening structure includes a lower structure 123 extending longitudinally from the second fastening plate 120 and an upper structure 124 coupled to the lower structure 123,
  • the diameter is equal to or less than the minimum diameter of the superstructure 124.
  • the length of the substructure 123 is equal to or greater than the thickness of the third fastening plate 210.
  • the third fastening plate 210 is formed with a plurality of fastening grooves 212 and a second fastening structure formed at one side of each fastening groove 212 and including an extending groove 213 extending in the circumferential direction from the fastening groove 212 do.
  • the diameter of the locking groove 212 is equal to or slightly greater than the maximum diameter of the upper structure 124 and the diameter of the extending groove 213 is greater than the maximum diameter of the lower structure 123, small.
  • the first fastening structure and the second fastening structure are formed at positions corresponding to each other.
  • the upper structure 124 of the first fastening structure is fastened to the fastening structure of the second fastening structure And can pass through the groove 212.
  • the third engaging plate 210 rotates clockwise, 123 are positioned inside the extension groove 213. Accordingly, the second fastening plate 120 and the third fastening plate 210 are fixed to each other.
  • FIG. 8 (c) shows a case where the second fastening plate 120 and the third fastening plate 210 are fixed by the fastening member.
  • the second fastening plate 120 and the third fastening plate 210 are respectively provided with a plurality of fastening grooves 122 and 212 and the fastening grooves 122 and 212 are formed at positions corresponding to each other.
  • the second fastening plate 120 and the third fastening plate 210 are fixed to each other by using bolts / nuts in a state where the second fastening plate 120 and the third fastening plate 210 are in contact with each other.
  • FIG. 9 is a view showing a state in which the fluid state measuring apparatus of FIG. 1 and the signal processing apparatus are fastened.
  • the signal processing apparatus 700 includes a housing 710, a signal processing circuit 720, and a connector 730.
  • the housing 710 protects the signal processing circuit 720 from the external environment.
  • the connector 730 is electrically coupled to a wire 250 extending from the fluid status measuring device or to a connector 260 coupled to the wire 250 to form a path through which the measurement signal is transmitted to the signal processing circuit 720 do.
  • the signal processing circuit 720 can be implemented in various forms. Basically, the signal processing circuit 720 converts the analog measurement signal into a digital signal or displays the measurement signal through an analog meter (not shown) that can be externally verified. Alternatively, the signal processing circuit 720 may transmit the digital signal to a server (not shown) located remotely via wired or wireless communication.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Measuring Volume Flow (AREA)

Abstract

The present invention relates to a device for measuring the condition of a fluid inside equipment. According to an embodiment of the present invention, there is provided a fluid condition measurement device that can be inserted inside also through a structure that changes the flow of a fluid. The fluid condition measurement device may comprise: a first containing tube; a first fastening plate that is coupled to one end of the first containing tube and has a first through-hole formed in a position in which the first containing tube is coupled; a second containing tube that extends in the longitudinal direction of the first containing tube and contains a first wire therein; a coil member, the other end of which is coupled to one end of the second containing tube, the coil member containing a second wire therein, the second wire being electrically coupled to the first wire, and the coil member extending in the longitudinal direction (direction of extension) of the first containing tube; a sensor assembly coupled to one end of the coil member in order to measure the condition of the fluid and electrically coupled to the second wire; a second fastening plate that is coupled to the other end of the first containing tube and has a second through-hole formed in a position in which the first containing tube is coupled such that the second containing tube can be moved into or out of the first containing tube; and a third fastening plate coupled to the other end of the second containing tube.

Description

유체 상태 측정 장치Fluid status measuring device
본 발명은 장비 내부에서 유체의 상태를 측정하는 장치에 관한 것이다. The present invention relates to an apparatus for measuring the state of a fluid inside a machine.
현대의 동력 또는 전력 장비들은 절연유, 윤활유 등과 같은 유체를 사용한다. 동력 또는 전력 장비가 사용되는 환경은 고온, 고압 또는 진동이 많이 발생하는 매우 열악한 환경이다. 따라서 장비가 정상적으로 동작하기 위해서는 절연유나 윤활유의 상태를 관리하고, 적절한 시기에 교체해야 할 필요가 발생한다. Modern power or power equipment uses fluids such as insulating oil, lubricants, and the like. The environment in which power or electric equipment is used is a very poor environment in which high temperatures, high pressures or vibrations occur. Therefore, in order for the equipment to operate normally, it is necessary to manage the state of the insulating oil and the lubricating oil and to change them at an appropriate time.
유체의 상태를 측정하기 위한 다양한 형태의 유체 상태 측정 장치가 소개되었다. 다양한 유체 상태 측정 장치가 있지만, 동력 및/또는 전력 장비 내부에서 유체의 상태를 측정하는 방식이 가장 이상적이다. Various types of fluid state measurement devices have been introduced to measure fluid conditions. Although there are a variety of fluid state measurement devices, a method of measuring fluid state within a power and / or power equipment is ideal.
한편, 장비에 유체를 주입하거나 배출하기 위해서, 다양한 종류의 밸브가 사용된다. 게이트 밸브나 글로브 밸브는 디스크 또는 플러그(이하 디스크라 함)가 상하로 이동하면서 유체의 흐름을 규제한다. 게이트 밸브의 경우에는, 디스크에 의해 개방되거나 폐쇄되는 영역(이하 유체 포트라 함)이 이 유체의 흐름에 수직(즉, 유체가 밸브 내에서 한 방향으로만 흐름)하기 때문에, 유체 상태 측정 장치를 삽입하기가 수월하다. 그러나, 글로브 밸브의 경우에는, 유체 포트가 유체의 흐름에 수평(즉, 유체가 밸브 내에서 흐르는 방향이 변경)하기 때문에, 유체 상태 측정 장치를 삽입할 수 없었다.On the other hand, various types of valves are used to inject or discharge fluids into the equipment. The gate valve or globe valve regulates the flow of the fluid as the disk or the plug (hereinafter referred to as the disk) moves up and down. In the case of a gate valve, since the region that is opened or closed by the disc (hereinafter referred to as the fluid port) is perpendicular to the flow of the fluid (that is, the fluid flows in only one direction in the valve) It is easy to do. However, in the case of the globe valve, the fluid state measuring device can not be inserted because the fluid port is horizontal to the fluid flow (that is, the direction in which the fluid flows in the valve changes).
본 발명의 일 실시예에 따르면, 유체의 흐름이 변경되는 구조를 통해서도 내부로 삽입될 수 있는 유체 상태 측정 장치가 제공된다. 유체 상태 측정 장치는, 제1 수용관, 상기 제1 수용관의 일단에 결합되고, 상기 제1 수용관이 결합되는 위치에 제1 관통홀이 형성된 제1 체결판, 상기 제1 수용관의 길이 방향으로 연장되며, 내부에 제1 전선을 수용하는 제2 수용관, 상기 제2 수용관의 일단에 타단이 결합되고, 내부에 상기 제1 전선과 전기적으로 결합되는 제2 전선을 수용하며, 상기 제1 수용관의 길이 방향으로 연장 방향으로 연장되는 코일 부재, 유체의 상태를 측정하기 위해 상기 코일 부재의 일단에 결합되며, 상기 제2 전선과 전기적으로 결합되는 센서 어셈블리, 상기 제1 수용관의 타단에 결합되고, 상기 제2 수용관이 상기 제1 수용관 내부로 인입 또는 입출될 수 있도록 상기 제1 수용관이 결합되는 위치에 제2 관통홀이 형성된 제2 체결판 및 상기 제2 수용관의 타단에 결합된 제3 체결판을 포함할 수 있다. According to an embodiment of the present invention, there is provided a fluid state measurement device which can be inserted into the structure through a structure in which the flow of the fluid is changed. The fluid state measuring device includes a first receiving pipe, a first connecting plate coupled to one end of the first receiving pipe and having a first through hole at a position where the first receiving pipe is coupled, A second receiving tube which extends in the direction of the first receiving tube and accommodates a first electric wire therein, a second receiving tube which is coupled to one end of the second receiving tube and which is electrically coupled to the first electric wire, A coil member extending in the longitudinal direction of the first receiving tube, a sensor assembly coupled to one end of the coil member for measuring the state of the fluid and electrically coupled to the second wire, A second fastening plate coupled to the other end and having a second through hole at a position where the first receiving pipe is coupled to allow the second receiving pipe to be drawn into or out of the first receiving pipe, The third fastening The can be included.
본 발명의 다른 실시예에 따르면, 설치되는 동력 또는 전력 장비의 경로 구조에 따라 코일 부재를 탈착할 수 있는 유체 상태 측정 장치가 제공된다. 유체 상태 측정 장치는, 제1 수용관, 상기 제1 수용관의 일단에 결합되고, 상기 제1 수용관이 결합되는 위치에 제1 관통홀이 형성된 제1 체결판, 상기 제1 수용관의 길이 방향으로 연장되며, 내부에 전선을 수용하는 제2 수용관, 유체의 상태를 측정하기 위해 상기 제2 수용관의 일단에 결합되며, 상기 전선과 전기적으로 결합되는 센서 어셈블리, 상기 제1 수용관의 타단에 결합되고, 상기 제2 수용관이 상기 제1 수용관(100) 내부로 인입 또는 입출될 수 있도록 상기 제1 수용관이 결합되는 위치에 제2 관통홀이 형성된 제2 체결판, 및 상기 제2 수용관의 타단에 결합된 제3 체결판을 포함할 수 있다.According to another embodiment of the present invention, there is provided a fluid state measurement apparatus capable of detaching a coil member according to a path structure of a power or electric power equipment to be installed. The fluid state measuring device includes a first receiving pipe, a first connecting plate coupled to one end of the first receiving pipe and having a first through hole at a position where the first receiving pipe is coupled, A sensor assembly coupled to one end of the second receiving tube for measuring the state of the fluid and electrically coupled to the wire, a second receiving tube extending in the direction of the first receiving tube, A second coupling plate coupled to the other end and having a second through hole at a position where the first receiving tube is coupled to allow the second receiving tube to be drawn into or out of the first receiving tube; And a third fastening plate coupled to the other end of the second receiving tube.
여기서, 상기 코일 부재는, 상기 코일 부재의 타단으로부터 상기 코일 부재의 일단으로 수평하게 연장되는 수평 연장부 및 상기 수평 연장부로부터 상기 코일 부재의 일단으로 경사지게 연장되는 경사 연장부를 포함하며, 추가적으로, 상기 수평 연장부와 상기 경사 연장부를 연결하는 곡선부를 더 포함할 수 있다.Here, the coil member may include a horizontally extending portion extending horizontally from one end of the coil member to one end of the coil member, and an inclined extension portion extending obliquely from the horizontally extending portion to one end of the coil member, And a curved portion connecting the horizontal extension portion and the slant extension portion.
여기서, 상기 코일 부재는 금속 또는 금속 합금으로 형성된 원통형 중공 형상일 수 있다. Here, the coil member may be a cylindrical hollow formed of a metal or a metal alloy.
여기서, 상기 제2 수용관을 인입하는 거리 및 상기 제2 수용관을 회전시키는 각도 중 적어도 하나가 상기 제2 수용관의 외부 표면에 표시될 수 있다. Here, at least one of a distance for drawing the second receiving tube and an angle for rotating the second receiving tube may be displayed on the outer surface of the second receiving tube.
여기서, 유체 상태 측정 장치는, 상기 제1 수용관의 외부 표면에 유체 연통 가능하게 결합된 밸브를 더 포함할 수 있다. Here, the fluid state measuring apparatus may further include a valve in fluid communication with the outer surface of the first receiving tube.
여기서, 유체 상태 측정 장치는, 상기 제1 수용관의 내부에 위치하며, 상기 제1 수용관의 내부로 유입된 유체가 외부로 유출되지 않도록 실링하는 실링 부재를 더 포함할 수 있다. The fluid state measuring apparatus may further include a sealing member located inside the first receiving tube and sealing the fluid flowing into the first receiving tube so that the fluid does not flow out to the outside.
여기서, 상기 제1 관통홀은 상기 제1 체결판의 중심으로부터 이격된 위치에 형성될 수 있다. Here, the first through hole may be formed at a position spaced apart from the center of the first fastening plate.
여기서, 상기 제3 체결판은 상기 제2 체결판에 고정될 수 있다.Here, the third fastening plate may be fixed to the second fastening plate.
여기서, 상기 센서 어셈블리는, 유체 유입을 위한 관통홀이 형성된 센서 하우징 및 상기 센서 하우징 내부에 배치되고, 상기 유체의 상태를 측정하여 측정 신호를 생성하여 전기적으로 연결된 상기 제2 전선에 출력하는 센서를 포함할 수 있다. Here, the sensor assembly may include a sensor housing having a through hole for fluid inflow and a sensor disposed inside the sensor housing for measuring a state of the fluid to generate a measurement signal and outputting the measurement signal to the second electric wire electrically connected to the sensor housing .
여기서, 유체 상태 측정 장치는, 상기 제3 체결판으로부터 연장된 상기 제1 전선에 전기적으로 결합되며, 상기 센서 어셈블리에서 생성된 측정 신호를 수신하는 신호 처리 장치를 더 포함할 수 있다.The fluid state measuring apparatus may further include a signal processing device electrically coupled to the first electric wire extended from the third fastening plate and receiving a measurement signal generated in the sensor assembly.
이하에서, 본 발명은 첨부된 도면에 도시된 실시예를 참조하여 설명된다. 이해를 돕기 위해, 첨부된 전체 도면에 걸쳐, 동일한 구성 요소에는 동일한 도면 부호가 할당되었다. 첨부된 도면에 도시된 구성은 본 발명을 설명하기 위해 예시적으로 구현된 실시예에 불과하며, 본 발명의 범위를 이에 한정하기 위한 것은 아니다Hereinafter, the present invention will be described with reference to the embodiments shown in the accompanying drawings. For the sake of clarity, throughout the accompanying drawings, like elements have been assigned the same reference numerals. It is to be understood that the structure shown in the accompanying drawings is only exemplary embodiments that are illustratively embodied to illustrate the present invention and is not intended to limit the scope of the present invention
도 1은 유체 상태 측정 장치의 일 실시예를 도시한 사시도이다.1 is a perspective view showing an embodiment of a fluid state measuring apparatus.
도 2는 도 1의 유체 측정 장치의 길이 방향 단면도이다.2 is a longitudinal sectional view of the fluid measurement apparatus of FIG.
도 3은 도 1의 유체 측정 장치에 결합되는 센서 어셈블리를 도시한 분해 사시도이다.3 is an exploded perspective view showing a sensor assembly coupled to the fluid measurement device of FIG.
도 4는 도 1의 코일 부재의 일단을 부분적으로 확대한 도면이다.Fig. 4 is a partially enlarged view of one end of the coil member of Fig. 1. Fig.
도 5a, 5b, 5c, 5d, 5e, 5f는 글로브 밸브에 체결된 도 1의 유체 측정 장치의 센서 어셈블리를 유체와 접촉시키기 위해 내부로 진입시키는 과정을 예시적으로 도시한 도면이다.FIGS. 5A, 5B, 5C, 5D, 5E, and 5F illustrate a process of inserting the sensor assembly of the fluid measurement apparatus of FIG.
도 6은 도 5a 내지 5f에 도시된 조작 방법이 인쇄된 가이드를 예시적으로 도시한 도면이다.Fig. 6 is a view exemplarily showing a guide in which the operation method shown in Figs. 5A to 5F is printed.
도 7은 게이트 밸브에 체결된 도 1의 유체 측정 장치의 센서 어셈블리를 유체와 접촉시키기 위해 내부로 진입시키는 과정을 예시적으로 도시한 도면이다.FIG. 7 is a view illustrating a process of inserting the sensor assembly of the fluid measurement device of FIG. 1 fastened to the gate valve into the interior to make contact with the fluid. FIG.
도 8은 센서 어셈블리가 동력 또는 전력 장비 내부로 완전히 진입된 후 고정하는 구조를 예시적으로 도시한 도면이다.8 is a view illustrating a structure in which the sensor assembly is fully inserted into the power or electric equipment and then fixed.
도 9는 도 1의 유체 상태 측정 장치와 신호 처리 장치를 체결한 상태를 예시적으로 도시한 도면이다.FIG. 9 is a view showing a state in which the fluid state measuring apparatus of FIG. 1 and the signal processing apparatus are fastened.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 이를 상세한 설명을 통해 상세히 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.While the present invention has been described in connection with certain exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and similarities. It should be understood, however, that the invention is not intended to be limited to the particular embodiments, but includes all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.The terms first, second, etc. may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. The singular expressions include plural expressions unless the context clearly dictates otherwise. In the present application, the terms "comprises" or "having" and the like are used to specify that there is a feature, a number, a step, an operation, an element, a component or a combination thereof described in the specification, But do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, or combinations thereof.
하나의 요소가 다른 요소에 "연결(connected)"되거나 "결합(coupled)"된다고 기술되는 경우, 그 요소는 다른 요소에 직접 연결되거나 직접 결합될 수 있고, 또는 중간의 개입 요소가 존재할 수도 있다. 반면에, 하나의 요소가 다른 요소에 "직접 연결(directly connected)"되거나 "직접 결합(directly coupled)"된다고 기술되는 경우에는 다른 중간 요소가 존재하지 않는다.Where an element is described as being " connected " or " coupled " to another element, the element may be directly connected or directly coupled to another element, or intermediate intervening elements may be present. On the other hand, if one element is described as being " directly connected " or " directly coupled " to another element, there are no other intermediate elements.
도 1은 유체 상태 측정 장치의 일 실시예를 도시한 사시도이고, 도 2는 도 1의 유체 측정 장치의 길이 방향 단면도이다.FIG. 1 is a perspective view showing an embodiment of a fluid state measuring apparatus, and FIG. 2 is a longitudinal sectional view of the fluid measuring apparatus of FIG. 1. FIG.
도 1 및 도 2를 참조하면, 유체 상태 측정 장치는 제1 수용관(100), 제2 수용관(200), 코일 부재(300) 및 센서 어셈블리(400)를 포함한다. 제1 수용관(100), 제2 수용관(200) 및 코일 부재(300)는 유체에 의해 침습 또는 부식되지 않으며, 고온, 고압, 진동에 의해 변형되지 않는 금속 또는 금속 합금으로 형성된다. 제1 수용관(100), 제2 수용관(200) 및 코일 부재(300)는 첨부된 도면에서 단면이 원형인 원통형상을 가진 것으로 예시되어 있으나, 이는 단지 예시일 뿐이며, 다양한 단면 형상을 가지도록 형성될 수 있음은 물론이다.1 and 2, the fluid state measuring apparatus includes a first receiving pipe 100, a second receiving pipe 200, a coil member 300, and a sensor assembly 400. The first receiving pipe 100, the second receiving pipe 200 and the coil member 300 are formed of a metal or a metal alloy which is not invaded or corroded by fluid and is not deformed by high temperature, high pressure, or vibration. The first receiving tube 100, the second receiving tube 200, and the coil member 300 are illustrated as having a cylindrical shape having a circular section in the accompanying drawings, but this is merely an example, Of course, be formed.
제1 수용관(100)은, 도 2의 수평 방향(즉, 길이 방향)으로 연장되어 그 내부에 제2 수용관(100)의 적어도 일부 및/또는 코일 부재(300)의 적어도 일부를 수용한다. 제1 체결판(110)은 제1 수용관(100)의 일단에 결합되며, 제2 체결판(120)은 제1 수용관(100)의 타단에 결합된다. 제1 체결판(110)은, 제1 수용관(100)의 일단이 결합되는 위치에 형성된 제1 관통홀(111)을 포함한다. 제2 체결판(120)은, 제1 수용관(100)의 타단이 결합되는 위치에 형성된 제2 관통홀(121)을 포함한다. 제2 수용관(200)의 적어도 일부 및/또는 코일 부재(300)의 적어도 일부는 제1 관통홀(111)을 통해 동력 또는 전력 장비의 내부로 삽입될 수 있다. 제2 수용관(200)의 적어도 일부는 제2 관통홀(121)을 통해 제1 수용관(100) 내부로 인입되거나 제1 수용관(100)으로부터 인출될 수 있다. 제1 체결판(110)은, 동력 또는 전력 장비, 예를 들어, 내연기관, 변압기 등의 유체 입구 또는 유체 출구에 유체 상태 측정 장치를 고정하기 위한 복수의 체결홈(112)을 포함한다. 여기서, 제1 체결판(110), 제2 체결판(120) 및 제3 체결판(210)은 첨부된 도면에서 원형을 가진 것으로 예시되어 있으나, 이는 단지 예시일 뿐이며, 다양한 형상을 가지도록 형성될 수 있음은 물론이다.The first receiving tube 100 extends in the horizontal direction (i.e., the longitudinal direction) of FIG. 2 and accommodates at least a part of the second receiving tube 100 and / or at least a part of the coil member 300 in the second receiving tube 100 . The first fastening plate 110 is coupled to one end of the first receiving tube 100 and the second fastening plate 120 is coupled to the other end of the first receiving tube 100. The first fastening plate 110 includes a first through hole 111 formed at a position where one end of the first accommodating tube 100 is coupled. The second fastening plate 120 includes a second through hole 121 formed at a position where the other end of the first accommodating tube 100 is coupled. At least a portion of the second receiving tube 200 and / or at least a portion of the coil member 300 may be inserted into the interior of the power or power equipment through the first through hole 111. At least a part of the second storage tube 200 may be drawn into the first storage tube 100 through the second through hole 121 or may be drawn out from the first storage tube 100. The first fastening plate 110 includes a plurality of fastening grooves 112 for fastening the fluid state measuring device to a fluid inlet or fluid outlet of a power or electric equipment, for example, an internal combustion engine, a transformer, or the like. Here, the first fastening plate 110, the second fastening plate 120, and the third fastening plate 210 are illustrated as having a circular shape in the accompanying drawings, but the present invention is not limited thereto. For example, Of course.
일 실시예에서, 제1 수용관(100)은 제1 체결판(110)의 중심 영역에 결합될 수 있다. 다른 실시예에서, 제1 수용관(100)은 제1 체결판(110)의 중심 영역에서 이격되어 결합될 수 있다. 제1 수용관(100) 및 이에 대응하는 제1 관통홀(111)이 제1 체결판(110)의 중심 영역으로부터 이격되는 거리는, 유체 상태 측정 장치가 결합되는 유체 입구 또는 유체 출구의 위치 및/또는 동력 또는 전력 장비의 내부에 도달하기 위해서 센서 어셈블리(400)가 통과할 경로의 구조에 따라 결정될 수 있다.In one embodiment, the first receiving tube 100 may be coupled to the central region of the first fastening plate 110. In another embodiment, the first receiving tube 100 may be spaced apart from the central region of the first fastening plate 110. The distance that the first receiving tube 100 and the corresponding first through-hole 111 are spaced apart from the central region of the first fastening plate 110 is determined by the position of the fluid inlet or fluid outlet to which the fluid state measuring device is coupled and / Or the structure of the path through which the sensor assembly 400 will travel to reach the interior of the power or power equipment.
일 실시예에서, 제1 밸브(140)는 제1 수용관(100)에 유체 연통 가능하게 결합된다. 제1 밸브(140)는 제1 관통홀(111)을 통해 제1 수용관(100) 내부로 유체가 유입될 때 제1 수용관(100) 내부에 있는 공기를 외부로 배출하기 위해 사용될 수 있다. 이를 위해서, 제1 밸브(140)는 제1 수용관(100)에 결합되지 않은 출구가 지면의 반대 방향을 향하도록 배치된다. 다른 실시예에서, 제2 밸브(145)는 제1 수용관(100)에 유체 연통 가능하게 결합된다. 제2 밸브(145)는 유체 상태 측정 장치를 동력 또는 전력 장비에서 분리하지 않고도 유체를 배출하기 위해 사용될 수 있다. 이를 위해서, 제2 밸브(145)는 제1 수용관(100)에 결합되지 않은 출구가 지면을 향하도록 배치될 수 있다.In one embodiment, the first valve 140 is fluidly coupled to the first receiving tube 100. The first valve 140 may be used to discharge the air inside the first receiving tube 100 to the outside when the fluid flows into the first receiving tube 100 through the first through hole 111 . To this end, the first valve 140 is arranged such that the outlet not coupled to the first receiving tube 100 faces the opposite direction of the paper. In another embodiment, the second valve 145 is fluidly coupled to the first receiving tube 100. The second valve 145 may be used to discharge the fluid without separating the fluid state measurement device from the power or power equipment. To this end, the second valve 145 may be disposed such that the outlet not coupled to the first receiving tube 100 faces the ground.
일 실시예에서, 제1 수용관(100)의 내부 공간 중 적어도 일부는 실링 부재(130)에 의해 점유된다. 제1 수용관(100) 내부로 유입된 유체가 외부로 유출되는 것을 방지하기 위해서, 제2 체결판(120)에 인접한 위치에 실링 부재(130)가 배치된다. 실링 부재(140)의 중앙 영역을 통해 제2 수용관(200)이 연장되며, 외부로부터 인가된 힘에 의해 제1 수용관(100) 내부로 인입될 수 있다. 다른 실시예에서, 제2 수용관(200)의 인입 또는 인출에 의한 마찰로 실링 부재(130)가 이동하지 않도록 하기 위해서, 제1 수용관(100)은 그 내면으로부터 돌출된 이동 방지부(150)를 더 포함할 수 있다. 실링 부재(140)는 이동 방지부(150)와 제2 체결판(120) 사이에 배치될 수 있다. 또 다른 실시예에서, 복수의 실링 부재가 제1 수용관(100) 내부에 배치될 수 있다. In one embodiment, at least a portion of the internal space of the first receiving tube 100 is occupied by the sealing member 130. A sealing member 130 is disposed at a position adjacent to the second fastening plate 120 in order to prevent the fluid flowing into the first accommodating tube 100 from flowing out. The second receiving tube 200 extends through the central region of the sealing member 140 and can be drawn into the first receiving tube 100 by a force externally applied thereto. In another embodiment, in order to prevent the sealing member 130 from moving due to friction caused by the pulling-in or pulling-out of the second receiving pipe 200, the first receiving pipe 100 is provided with a movement preventing portion 150 ). The sealing member 140 may be disposed between the movement preventing portion 150 and the second fastening plate 120. In another embodiment, a plurality of sealing members may be disposed within the first receiving tube 100.
제2 수용관(200)은 제1 수용관(100)의 길이 방향으로 연장되며, 적어도 일부는 제1 수용관(100) 내부에 수용된다. 제2 수용관(200)의 일단은 코일 부재(300)에 결합되며, 제2 수용관(200)의 타단은 제3 체결판(210)에 결합된다. 제2 수용관(200)은 내부에 제1 전선(미도시)을 수용하며, 제1 전선은 코일 부재(300) 내부에 수용된 제2 전선(미도시)에 전기적으로 연결된다. 이를 위해서, 제2 수용관(200)의 일단에는 제1 전선에 전기적으로 연결된 제1 컨넥터(220)가 배치될 수 있다. 여기서, 제2 수용관(200)의 일단은, 유체가 내부로 유입되지 않도록 실링될 수 있다. The second receiving tube 200 extends in the longitudinal direction of the first receiving tube 100, and at least part of the second receiving tube 200 is accommodated in the first receiving tube 100. One end of the second receiving tube 200 is coupled to the coil member 300 and the other end of the second receiving tube 200 is coupled to the third connecting plate 210. The second receiving tube 200 receives a first wire (not shown) therein, and the first wire is electrically connected to a second wire (not shown) accommodated in the coil member 300. To this end, a first connector 220 electrically connected to the first wire may be disposed at one end of the second receiving tube 200. Here, one end of the second accommodating tube 200 may be sealed so that fluid does not flow into the inside.
제2 체결판(120)과 제3 체결판(210)은, 서로 대응하는 위치에 형성된 복수의 체결홈(122, 212)을 포함할 수 있다. 제3 체결판(210은, 예를 들어, 볼트, 리벳 등과 같은 체결 부재에 의해 제2 체결판(120)에 고정될 수 있다. 또한, 제3 체결판(210)의 중앙 영역에는 제1 전선을 외부로 연장하기 위한 제3 관통홀(211)이 형성될 수 있다. 제3 관통홀을 통해 제1 전선이 외부로 연장되거나 제1 전선에 전기적으로 연결된 컨넥터가 외부로 노출될 수 있다.The second fastening plate 120 and the third fastening plate 210 may include a plurality of fastening grooves 122 and 212 formed at positions corresponding to each other. The third fastening plate 210 may be fixed to the second fastening plate 120 by a fastening member such as a bolt, a rivet or the like. And a third through hole 211 may be formed to extend to the outside of the connector 200. A first wire may be extended to the outside through the third through hole or a connector electrically connected to the first wire may be exposed to the outside.
코일 부재(300)는 원통형 중공 형상의 코일일 수 있으며, 탄성력, 내열 및 내화학성이 우수한 철, sus 등과 같은 금속 또는 금속 합금으로 형성될 수 있다. 코일 부재(300)의 일단은 센서 어셈블리(400)에 결합되며, 그 타단이 제2 수용관(200)의 일단에 결합된다. 코일 부재(300)는 제1 수용관(100)의 길이 방향으로 연장된다. 여기서, 코일 부재(300)의 일단은 제1 수용관(100)의 길이 방향에 대해 소정의 각도로 경사질 수 있어서 센서 어셈블리(400) 역시 제1 수용관(100)의 길이 방향에 대해 소정의 각도로 경사지게 배치된다. 코일 부재(300)의 일단 또는 센서 어셈블리(400)와 길이 방향 사이의 각도는, 동력 또는 전력 장비의 내부에 도달하기 위해서 센서 어셈블리(400)가 통과할 경로의 구조에 따라 결정될 수 있다.The coil member 300 may be a cylindrical hollow coil, and may be formed of a metal such as iron, sus, or a metal alloy having excellent elasticity, heat resistance, and chemical resistance. One end of the coil member 300 is coupled to the sensor assembly 400 and the other end is coupled to one end of the second receiving tube 200. The coil member 300 extends in the longitudinal direction of the first receiving tube 100. One end of the coil member 300 may be inclined at a predetermined angle with respect to the longitudinal direction of the first accommodating tube 100 so that the sensor assembly 400 may be inclined at a predetermined angle with respect to the longitudinal direction of the first accommodating tube 100 Are arranged at an angle. The angle between one end of the coil member 300 or the longitudinal direction with respect to the sensor assembly 400 may be determined according to the structure of the path through which the sensor assembly 400 passes in order to reach the inside of the power or electric power equipment.
일 실시예에서, 제2 컨넥터(340)는 코일 부재(300)의 타단에 위치하며, 코일 부재(400) 내부에 수용된 제2 전선에 전기적으로 결합될 수 있다. 제2 컨넥터(340)는 제2 수용관(200)의 제1 컨넥터(220)에 결합될 수 있다. 다른 실시예로, 코일 부재(300)와 제2 수용관은 직접(예를 들어, 제1 컨넥터(220), 제2 컨넥터(340)를 이용하지 않고) 체결될 수 있으며, 이 경우, 제1 전선이 코일 부재(300) 내부로 연장되어 센서 어셈블리(400)에 전기적으로 연결될 수 있다.In one embodiment, the second connector 340 is located at the other end of the coil member 300 and may be electrically coupled to a second wire contained within the coil member 400. The second connector 340 may be coupled to the first connector 220 of the second receiving tube 200. Alternatively, the coil member 300 and the second receiving tube may be fastened (for example, without using the first connector 220, the second connector 340) A wire may extend into the coil member 300 and be electrically connected to the sensor assembly 400.
센서 어셈블리(400)는 동력 또는 전력 장비의 내부에 삽입되며, 유체의 상태를 측정한다.The sensor assembly 400 is inserted into the power or power equipment and measures the condition of the fluid.
도 3은 도 1의 유체 측정 장치에 결합되는 센서 어셈블리를 도시한 분해 사시도이다.3 is an exploded perspective view showing a sensor assembly coupled to the fluid measurement device of FIG.
도 3을 참조하면, 센서 어셈블리(400)는 하우징 몸체(410) 및 하우징 덮개(420)로 구성된 센서 하우징을 포함한다. 하우징 덮개(420)는 하우징 몸체(410)에 나사 결합될 수 있다. 이를 위해서, 하우징 덮개(420) 일단의 외주면에는 나사산이 형성되며, 하우징 몸체(410)의 일단의 내주면에도 나사산(미도시)이 형성된다. 하우징 몸체(410) 및 센서 하우징 덮개(420)는 금속으로 형성될 수 있다. 센서 하우징은, 코일 부재(400)의 일단, 즉, 경사진 연장부(330)에 결합된다. 센서 하우징은 하나 이상의 센서 기판(430)을 그 내부에 수용하며, 측정 대상 유체에 접촉한다. Referring to FIG. 3, the sensor assembly 400 includes a sensor housing composed of a housing body 410 and a housing cover 420. The housing cover 420 may be screwed to the housing body 410. To this end, a thread is formed on the outer circumferential surface of one end of the housing cover 420, and a thread (not shown) is formed on the inner circumferential surface of one end of the housing body 410. The housing body 410 and the sensor housing cover 420 may be formed of metal. The sensor housing is coupled to one end of the coil member 400, that is, to the inclined extension 330. The sensor housing receives one or more sensor substrates 430 therein and contacts the fluid to be measured.
하우징 몸체(410)는 원통형일 수 있으며, 외주면과 내주면을 관통하는 유체 연통홀(411)이 하우징 몸체(410)에 형성된다. 복수의 유체 연통홀(411)은 센서와 오일간 접촉을 증가시키는 기능을 할 수 있다. The housing body 410 may have a cylindrical shape, and a fluid communication hole 411 is formed in the housing body 410 so as to penetrate the outer peripheral surface and the inner peripheral surface. The plurality of fluid communication holes 411 can function to increase the contact between the sensor and the oily body.
유체의 하나 이상의 상태를 측정하는 하나 이상의 센서는 센서 기판(430)에 배치된다. 여기서, 복수의 센서 각각은 유체의 종류에 따라 하나 이상의 상태, 예를 들어, 열화, 온도, 수분, 레벨, 오염도 중 어느 하나를 측정할 수 있다. 센서가 생성한 측정 신호는 제1 전선 및/또는 제2 전선을 통해 외부로 전달될 수 있다. 센서 기판(430)은 제2 전선(340)과 하나 이상의 센서를 전기적으로 연결한다. One or more sensors that measure one or more states of the fluid are disposed on the sensor substrate 430. Here, each of the plurality of sensors may measure one or more states, for example, deterioration, temperature, moisture, level, and degree of contamination depending on the type of fluid. The measurement signal generated by the sensor may be transmitted to the outside through the first wire and / or the second wire. The sensor substrate 430 electrically connects the second wire 340 to one or more sensors.
제2 전선(330)은 센서 기판(430)과 외부에 위치한 신호 처리 장치(700)를 전기적으로 연결하며, 센서가 생성한 측정 신호를 신호 처리 장치(700)로 전달한다. 여기서, 제2 전선(330)은 방수 및 절연 특성을 강화하기 위해 방수피복될 수 있다. The second electric wire 330 electrically connects the sensor substrate 430 to the signal processing device 700 located outside and transmits the measurement signal generated by the sensor to the signal processing device 700. Here, the second electric wire 330 may be waterproof coated to enhance waterproofing and insulating properties.
도 4는 도 1의 코일 부재의 일단을 부분적으로 확대한 도면이다.Fig. 4 is a partially enlarged view of one end of the coil member of Fig. 1. Fig.
동력 또는 전력 장비의 내부에 도달하기 위해서 센서 어셈블리(400)가 통과할 경로는 유체 흐름을 변경하는 구조를 가질 수 있다. 예를 들어, ““L””형 관, ““S””형 관 또는 글로브 밸브는, 전체 경로 중에 적어도 한 번 이상 경로의 방향이 변경되는 구간을 가진다. 따라서 탄성을 가진 코일 부재(300)도 경로의 방향이 변경되는 구간을 통과할 수 없거나, 매우 섬세하게 삽입하여야만 그러한 구간을 통과할 수 있다. 그러나 일단 부근이 경사지게 형성된 코일 부재(400)는, 경로의 방향이 변경되는 구간에서 진행하는 방향을 변경하기 용이하다. 도 4의 (a) 내지 (c)는 다양한 형태로 경사진 코일 부재(400)의 일단을 예시하고 있다.The path through which the sensor assembly 400 will pass to reach the interior of the power or power equipment may have a structure that changes fluid flow. For example, an "L" "type tube," "S" "type tube or globe valve has a section in which the direction of the path changes at least once in the entire path. Therefore, the coil member 300 having elasticity can not pass through the section in which the direction of the path is changed, or can pass through such section only after very delicate insertion. However, the coil member 400 whose one end is inclined is easy to change the direction in which the direction of the path changes. 4 (a) to 4 (c) illustrate one end of the coil member 400 that is inclined in various forms.
도 4의 (a)를 참조하면, 코일 부재(300)는 수평 연장부(310) 및 경사 연장부(330)를 포함할 수 있다. 이를 위해서, 코일 부재(300)의 일단에 가까운 복수의 코일 중 어느 하나를 소정 각도 a1로 절곡할 수 있다. 따라서, 도 4를 기준으로 위쪽에서 봤을 때, 수평 연장부(310)와 수직 연장부(330)간 간격은 코일 부재(300)의 다른 부분의 코일간 간격과 실질적으로 실질적으로 동일할 수 있지만, 아래쪽에서 봤을 때, 수평 연장부(310)와 수직 연장부(330)간 간격은 증가하게 된다. Referring to FIG. 4A, the coil member 300 may include a horizontal extension 310 and an inclined extension 330. For this purpose, any one of the plurality of coils near one end of the coil member 300 can be bent at a predetermined angle a1. 4, the distance between the horizontal extension 310 and the vertical extension 330 may be substantially the same as the inter-coil spacing of the other portion of the coil member 300, The distance between the horizontal extending portion 310 and the vertical extending portion 330 increases as viewed from the bottom.
도 4의 (b)를 참조하면, 코일 부재(300)는 수평 연장부(310), 곡선부(320) 및 경사 연장부(330)를 포함할 수 있다. 수평 연장부(310) 및 경사 연장부(330)의 코일간 간격은 실질적으로 동일하다. 곡선부(320)의 경우, 위쪽에서 봤을 때 코일간 간격은 수평 연장부(310)나 경사 연장부(330)와 실질적으로 동일하지만, 아래쪽에서 봤을 때 코일간 간격은 수평 연장부(310)나 경사 연장부(330)의 코일간 간격보다 크다. 따라서 경사 연장부(330)는 수평 연장부(310)의 축 방향에 대해 소정 각도 a1로 경사지게 된다.Referring to FIG. 4 (b), the coil member 300 may include a horizontal extension 310, a curved portion 320, and an inclined extension 330. The intervals between the coils of the horizontal extension 310 and the slope extension 330 are substantially the same. In the case of the curved portion 320, the interval between the coils as viewed from above is substantially the same as the horizontal extending portion 310 or the inclined extending portion 330, but the interval between the coils as viewed from the bottom is equal to the horizontal extending portion 310 Is greater than the inter-coil spacing of the warp extensions (330). Therefore, the inclined extension 330 is inclined at a predetermined angle a1 with respect to the axial direction of the horizontal extending portion 310. [
도 4의 (c)를 참조하면, 경사 연장부(330)와 수평 연장부(310) 사이 각도를 a1에서 a2로 증가시키기 위해서 둘 이상의 곡선부(321)가 형성될 수 있다. Referring to FIG. 4C, more than two curved portions 321 may be formed to increase the angle between the inclined extension 330 and the horizontal extension 310 from a1 to a2.
코일 부재(400)의 전체 길이, 경사 연장부(330)의 길이 및/또는 경사 연장부(330)와 수평 연장부(310) 사이 각도 중 적어도 어느 하나 또는 이들의 조합은 센서 어셈블리(400)가 통과해야 하는 동력 또는 전력 장비 내 경로의 구조에 따라 변경될 수 있다.At least one or a combination of the total length of the coil member 400, the length of the warp extension 330 and / or the angle between the warp extension 330 and the horizontal extension 310 is determined by the sensor assembly 400 It can be changed depending on the structure of the power or the path in the power equipment to be passed.
도 5a 내지 5f는 글로브 밸브에 체결된 도 1의 유체 측정 장치의 센서 어셈블리를 유체와 접촉시키기 위해 동력 또는 전력 장비 내부로 진입시키는 과정을 예시적으로 도시한 도면이다.FIGS. 5A through 5F are views illustrating a process of entering a sensor assembly of the fluid measurement apparatus of FIG. 1 fastened to a globe valve into a power or electric equipment to make contact with a fluid. FIG.
유체 상태 측정 장치는 동력 또는 전력 장비의 유체 출구 포트 또는 유체 입구 포트 중 어느 하나에 결합된다. 도 5a 내지 5f에서는 ““S””자형 경로를 갖는 글로브 밸브(500)에 유체 상태 측정 장치가 결합된 경우를 예시하고 있으나, 이는 단지 예시이다. 글로브 밸브(500)의 디스크(530)가 유체 포트(520)에 결합된 상태, 즉, 글로브 밸브(500)의 하부 유체 경로(510)와 상부 유체 경로(540)가 유체 연통하지 않는 상태에서, 유체 상태 측정 장치가 글로브 밸브(500)에 결합된다. 유체 상태 측정 장치는, 예를 들어, 볼트, 리벳 등과 같은 체결 부재에 의해 글로브 밸브(500)의 출구 포트에 결합된다. 유체 상태 측정 장치를 글로브 밸브(500)에 결합한 후, 글로브 밸브(500)의 유체 포트(520)를 개방하면, 유체가 제1 수용관(100) 내부로 유입된다. 제1 수용관(100) 내부는 공기로 채워져 있으므로, 내부 압력이 증가하여 유체의 누출되거나 공기가 장비 내부로 유입되는 등 부정적인 결과가 발생할 수도 있다. 따라서 유체 포트(520)를 개방할 때 제1 밸브(140)를 개방하여 제1 수용관(100) 내부의 공기가 외부로 배출될 수 있도록 한다.The fluid state measurement device is coupled to either the fluid outlet port or the fluid inlet port of the power or power equipment. 5A to 5F illustrate the case where the fluid state measuring device is coupled to the globe valve 500 having the " S " ' shaped path, but this is merely an example. In a state where the disk 530 of the globe valve 500 is coupled to the fluid port 520, i.e., the lower fluid path 510 of the globe valve 500 and the upper fluid path 540 are not in fluid communication, A fluid state measurement device is coupled to the globe valve (500). The fluid state measuring device is coupled to the outlet port of the globe valve 500 by a fastening member such as, for example, bolts, rivets, or the like. When the fluid state measuring device is connected to the glove valve 500, the fluid port 520 of the globe valve 500 is opened, and the fluid flows into the first receiving pipe 100. Since the inside of the first storage tube 100 is filled with air, internal pressure may increase, resulting in a negative result such as leakage of fluid or introduction of air into the equipment. Accordingly, when the fluid port 520 is opened, the first valve 140 is opened to allow air in the first accommodation pipe 100 to be discharged to the outside.
도 5a를 참조하면, 제3 체결판(210)을 제2 체결판(120) 방향으로 누르면, 제2 수용관(200)이 제2 관통홀(121)을 통해 제1 수용관(100) 내부로 인입된다. 제2 수용관(200)의 일단에 결합된 코일 부재(300)는 글로브 밸브(500)의 하부 유체 경로(510)에 진입한다. 코일 부재(300)의 일단에 결합된 센서 어셈블리(400)는 소정 각도로 경사진 상태를 유지하면서 하부 유체 경로(510)를 정의하는 중앙 상부벽(511)까지 전진한다.5A, when the third fastening plate 210 is pushed toward the second fastening plate 120, the second receiving pipe 200 is inserted into the first receiving pipe 100 through the second through hole 121, Lt; / RTI > The coil member 300 coupled to one end of the second receiving tube 200 enters the lower fluid path 510 of the globe valve 500. The sensor assembly 400 coupled to one end of the coil member 300 advances to the central upper wall 511 defining the lower fluid path 510 while keeping the inclined state at a predetermined angle.
도 5b를 참조하면, 센서 어셈블리(400)가 하부 유체 경로(510)의 중앙 상부벽(511)과 접촉하면, 제3 체결판(210)을 시계 방향으로 90도 회전한다. 제3 체결판(210)을 회전하면, 하부 유체 경로(510)에 있는 센서 어셈블리(400)도 시계 방향으로 90도 회전하게 된다. 도 5b에 도시된 바와 같이, 센서 어셈블리(400)는, 전진을 방해하는 하부 유체 경로(510)의 중앙 상부벽(511)과 더 이상 접촉하지 않으므로, 전진할 수 있게 된다. 다음으로, 제3 체결판(210)을 제2 체결판(120) 방향으로 눌러서 센서 어셈블리(400)를 유체 포트(520)까지 전진시킨다.5B, when the sensor assembly 400 contacts the central upper wall 511 of the lower fluid path 510, the third fastening plate 210 is rotated clockwise by 90 degrees. When the third fastening plate 210 is rotated, the sensor assembly 400 in the lower fluid path 510 also rotates clockwise by 90 degrees. As shown in FIG. 5B, the sensor assembly 400 is allowed to advance because it no longer contacts the central upper wall 511 of the lower fluid path 510 that impedes advancement. Next, the third fastening plate 210 is pushed toward the second fastening plate 120 to advance the sensor assembly 400 to the fluid port 520.
도 5c를 참조하면, 센서 어셈블리(400)가 유체 포트(520)의 하부에 도달하면, 제3 체결판(210)을 반시계 방향으로 90도 회전하여 센서 어셈블리(400)의 일단이 유체 포트(520)의 내벽(521)에 접촉하게 한다. 센서 어셈블리(400)는 코일 부재(300)의 경사 연장부(330)에 의해 소정 각도로 경사지게 배치되어 있으므로, 센서 어셈블리(400)의 적어도 일부가 회전에 의해 유체 포트(520)의 내부로 진입할 수 있다. 5C, when the sensor assembly 400 reaches the bottom of the fluid port 520, the third fastening plate 210 is rotated counterclockwise by 90 degrees so that one end of the sensor assembly 400 is connected to the fluid port 520). The sensor assembly 400 is inclined at a predetermined angle by the inclined extension 330 of the coil member 300 so that at least a part of the sensor assembly 400 enters into the fluid port 520 by rotation .
도 5d를 참조하면, 센서 어셈블리(400)의 일단이 유체 포트(520)의 내벽(521)에 접촉하면, 제3 체결판(210)을 제2 체결판(120) 방향으로 눌러서 센서 어셈블리(400)를 유체 포트(520) 외부로 전진시킨다. 센서 어셈블리(400)는 전진하여 상부 측벽(541)에 접촉하게 된다. 상부 측벽(541)에 접촉한 센서 어셈블리(400)는 더 이상 전진하지 못한다.5D, when one end of the sensor assembly 400 contacts the inner wall 521 of the fluid port 520, the third fastening plate 210 is pushed toward the second fastening plate 120 so that the sensor assembly 400 ) To the outside of the fluid port (520). The sensor assembly 400 is advanced to come into contact with the upper side wall 541. The sensor assembly 400 in contact with the upper side wall 541 can not advance further.
도 5e를 참조하면, 센서 어셈블리(400)가 상부 측벽(541)과 접촉하면, 제3 체결판(210)을 시계 방향으로 90도 회전한다. 제3 체결판(210)을 회전하면, 상부 유체 경로(540)에 있는 센서 어셈블리(400)도 시계 방향으로 90도 회전하게 된다. 도 5e에 도시된 바와 같이, 센서 어셈블리(400)는, 전진을 방해하는 상부 측벽(541)과 더 이상 접촉하지 않으므로, 전진할 수 있게 된다. 이 때, 코일 부재(300)의 탄성으로 인해서, 코일 부재(300)가 유체 포트(520)와 접촉하는 위치가 달라질 수 있으며, 센서 어셈블리(400)는 상부 유체 경로(540)를 정의하는 상부벽(542)에 접촉할 수 있다.Referring to FIG. 5E, when the sensor assembly 400 contacts the upper side wall 541, the third fastening plate 210 is rotated clockwise by 90 degrees. When the third fastening plate 210 is rotated, the sensor assembly 400 in the upper fluid path 540 also rotates clockwise by 90 degrees. As shown in FIG. 5E, the sensor assembly 400 is no longer in contact with the upper sidewall 541 that impedes advancement, so that it can be advanced. At this time, the position of contact of the coil member 300 with the fluid port 520 can be changed due to the elasticity of the coil member 300, and the sensor assembly 400 includes the upper wall 540 defining the upper fluid path 540, (Not shown).
참고로, 유체 포트(520)와 디스크(530) 사이 거리 d는, 도 5d에 예시된 것보다 작을 수 있어서, 센서 어셈블리(400)는 디스크(530)에 접촉하게 되어 더 이상 전진하지 못할 수도 있다. 따라서 도 5d 및 도 5e는 유체 포트(520)를 통과한 후에도 더 이상 전진하지 못하는 상황을 설명하기 위한 예시에 불과함을 이해하여야 한다.The distance d between the fluid port 520 and the disk 530 may be less than that illustrated in Figure 5d so that the sensor assembly 400 may contact the disk 530 and may not advance further . Therefore, it should be understood that Figures 5d and 5e are illustrative only to illustrate situations in which the fluid port 520 can not advance further after passing through it.
도 5f를 참조하면, 센서 어셈블리(400)의 일단이 상부 유체 경로(540)의 상부벽(542)에 접촉하면, 제3 체결판(210)을 제2 체결판(120) 방향으로 눌러서 센서 어셈블리(400)를 전진시켜서 동력 또는 전력 장비의 내부로 완전히 진입하게 한다. 제2 수용관(200) 및 코일 부재(300)의 길이는 센서 어셈블리(400)를 동력 또는 전력 장비의 내부에 위치시키기 위해 결정될 수 있으며, 센서 어셈블리(400)가 장비 내부에 위치하게 되면 제2 체결판(120)과 제3 체결판(210)은 서로 접하게 될 수 있다. 한편, 장비 내부의 유체에 의한 압력으로 인해서, 제2 수용관(200)이 외부로 인출될 수 있다. 이 경우, 센서 어셈블리(400)의 위치가 변경되어 바람직한 측정 신호를 생성하지 못하는 상황이 발생할 수 있다. 따라서 제2 체결판(120)과 제3 체결판(210)은 체결 부재에 의해 서로 고정될 수 있다. 5f, when one end of the sensor assembly 400 contacts the upper wall 542 of the upper fluid path 540, the third fastening plate 210 is pushed toward the second fastening plate 120, (400) to advance fully into the power or electrical equipment. The length of the second receiving tube 200 and the coil member 300 may be determined to locate the sensor assembly 400 within the power or power equipment and when the sensor assembly 400 is positioned within the equipment, The fastening plate 120 and the third fastening plate 210 can be brought into contact with each other. On the other hand, due to the pressure of the fluid inside the equipment, the second receiving pipe 200 can be drawn out. In this case, the position of the sensor assembly 400 may be changed and a desired measurement signal may not be generated. Accordingly, the second fastening plate 120 and the third fastening plate 210 can be fixed to each other by a fastening member.
도 6은 도 5a 내지 5f에 도시된 조작 방법이 인쇄된 가이드를 예시적으로 도시한 도면이다.Fig. 6 is a view exemplarily showing a guide in which the operation method shown in Figs. 5A to 5F is printed.
도 5a 내지 5f에서 설명된 조작 순서는, 센서 어셈블리(400)를 장비 내부에 배치하기 위해서 제3 체결판(210)을 조작하는 순서를 나타낸다. 유체 상태 측정 장치가 결합될 장비의 구조는 미리 알 수 있으므로, 조작 순서는 제2 수용관(200)의 외부에 표시될 수 있다. 이를 이용하면, 장비의 내부 구조를 알지 못하더라도 작업자가 유체 상태 측정 장치를 올바르게 설치할 수 있다.5A to 5F show a procedure for operating the third fastening plate 210 in order to arrange the sensor assembly 400 inside the equipment. Since the structure of the equipment to which the fluid state measuring apparatus is to be coupled can be known in advance, the operation procedure can be displayed outside the second receiving pipe 200. This allows the operator to properly install the fluid status measuring device even if the internal structure of the device is not known.
조작 순서는, 제2 수용관(200)을 제1 수용관(100) 내부로 인입하는 거리 및 제2 수용관(200)을 회전시키는 각도 중 어느 하나 또는 이들의 조합으로 구성된다. 일 실시예로, 조작 순서는, 예를 들어, 인쇄나 레이저 마킹 등의 방식을 통해서 제2 수용관(200)의 외부 표면에 영구하게 표시될 수 있다. 한편, 다른 실시예로, 유체 상태 측정 장치의 범용성을 위해서, 조작 순서는, 가이드(230)에 인쇄된 후 제2 수용관(200)의 외부 표면에 부착될 수 있다. 가이드(230)는, 종이 또는 합성 수지로 형성될 수 있으며, 조작 순서가 인쇄된 후 오염 방지를 위해 코팅될 수 있다. 동일한 유체 상태 측정 장치를 상이한 구조의 장비에 결합하는 경우, 각 장비에 맞는 가이드(230)를 사용하면 정확한 조작 순서를 제2 수용관(200)에 표시할 수 있게 된다.The operation procedure is composed of any one of a distance for drawing the second receiving tube 200 into the first receiving tube 100 and an angle for rotating the second receiving tube 200 or a combination thereof. In one embodiment, the operating sequence may be permanently displayed on the outer surface of the second receiving tube 200, for example, via printing or laser marking. On the other hand, in another embodiment, for the sake of versatility of the fluid state measuring apparatus, the operation procedure may be printed on the guide 230 and then attached to the outer surface of the second receiving tube 200. The guide 230 may be formed of paper or a synthetic resin, and may be coated to prevent contamination after the operation sequence is printed. When the same fluid state measuring apparatuses are coupled to equipment having different structures, the guide 230 for each equipment can be used to display the correct operation sequence on the second receiving pipe 200.
도 7은 게이트 밸브에 체결된 도 1의 유체 측정 장치의 센서 어셈블리를 유체와 접촉시키기 위해 내부로 진입시키는 과정을 예시적으로 도시한 도면이다.FIG. 7 is a view illustrating a process of inserting the sensor assembly of the fluid measurement device of FIG. 1 fastened to the gate valve into the interior to make contact with the fluid. FIG.
도 7의 (a)를 참조하면, 센서 어셈블리(400)가 배치될 동력 또는 전력 장비 내 위치가 게이트 밸브(600)로부터 멀지 않거나 경로의 방향이 변경되는 구간이 존재하지 않는 경우, 코일 부재(300)는 제2 수용관(200)으로부터 분리될 수 있다. 코일 부재(300)를 분리한 후 제2 수용관(200)의 일단에 센서 어셈블리(400)를 결합시킬 수 있다.7A, when the position in the power or power equipment where the sensor assembly 400 is to be disposed is not distant from the gate valve 600 or there is no section in which the direction of the path is changed, the coil member 300 May be separated from the second receiving tube 200. The sensor assembly 400 may be coupled to one end of the second receiving tube 200 after the coil member 300 is separated.
유체 상태 측정 장치는 동력 또는 전력 장비의 유체 출구 포트 또는 유체 입구 포트 중 어느 하나에 결합된다. 도 7은 직선형 경로를 갖는 게이트 밸브(600)에 유체 상태 측정 장치가 결합된 경우를 예시하고 있으나, 이는 단지 예시이다. 게이트 밸브(600)의 디스크가 유체 포트에 결합된 상태, 즉, 게이트 밸브(600)의 출구 포트와 입구 포트가 유체 연통하지 않는 상태에서, 유체 상태 측정 장치가 게이트 밸브(600)에 결합된다. 유체 상태 측정 장치는, 예를 들어, 볼트, 리벳 등과 같은 체결 부재에 의해 게이트 밸브(600)의 출구 포트에 결합된다.The fluid state measurement device is coupled to either the fluid outlet port or the fluid inlet port of the power or power equipment. FIG. 7 illustrates the case where the fluid state measuring device is coupled to the gate valve 600 having a straight path, but this is merely an example. The fluid state measuring device is coupled to the gate valve 600 with the disk of the gate valve 600 coupled to the fluid port, i.e., the outlet port of the gate valve 600 and the inlet port are not in fluid communication. The fluid state measurement device is coupled to the outlet port of the gate valve 600 by a fastening member such as, for example, bolts, rivets, or the like.
유체 상태 측정 장치를 게이트 밸브(600)에 결합한 후, 게이트 밸브(600)의 유체 포트를 개방하면, 유체가 제1 수용관(100) 내부로 유입된다. 게이트 밸브(600)의 유체 포트를 개방할 때 제1 밸브(140)를 개방하여 제1 수용관(100) 내부의 공기가 외부로 배출될 수 있도록 한다.When the fluid state measuring device is coupled to the gate valve 600, the fluid port of the gate valve 600 is opened, and the fluid flows into the first receiving pipe 100. When the fluid port of the gate valve 600 is opened, the first valve 140 is opened to allow air in the first accommodation pipe 100 to be discharged to the outside.
도 7의 (b)를 참조하면, 제3 체결판(210)을 제2 체결판(120) 방향으로 누르면, 제2 수용관(200)이 제2 관통홀(121)을 통해 제1 수용관(100) 내부로 인입된다. 제2 수용관(200)의 일단에 결합된 센서 어셈블리(400)는 게이트 밸브(600)를 통과해서 장비 내부로 진입한다.7 (b), when the third fastening plate 210 is pushed toward the second fastening plate 120, the second receiving pipe 200 is inserted into the first receiving pipe 120 through the second through hole 121, (Not shown). The sensor assembly 400 coupled to one end of the second storage tube 200 passes through the gate valve 600 and enters the inside of the equipment.
도 7의 (c)를 참조하면, 제2 수용관(200)의 길이는 센서 어셈블리(400)를 동력 또는 전력 장비의 내부에 위치시키기 위해 결정될 수 있으며, 센서 어셈블리(400)가 장비 내부에 위치하게 되면 제2 체결판(120)과 제3 체결판(210)은 서로 접하게 될 수 있다. 한편, 장비 내부의 유체에 의한 압력으로 인해서, 제2 수용관(200)이 외부로 인출될 수 있다. 이 경우, 센서 어셈블리(400)의 위치가 변경되어 바람직한 측정 신호를 생성하지 못하는 상황이 발생할 수 있다. 따라서 제2 체결판(120)과 제3 체결판(210)은 체결 부재에 의해 서로 고정될 수 있다.Referring to FIG. 7C, the length of the second receiving tube 200 may be determined to place the sensor assembly 400 in the power or power equipment, and the sensor assembly 400 may be positioned within the equipment The second fastening plate 120 and the third fastening plate 210 can be brought into contact with each other. On the other hand, due to the pressure of the fluid inside the equipment, the second receiving pipe 200 can be drawn out. In this case, the position of the sensor assembly 400 may be changed and a desired measurement signal may not be generated. Accordingly, the second fastening plate 120 and the third fastening plate 210 can be fixed to each other by a fastening member.
도 8은 센서 어셈블리가 동력 또는 전력 장비 내부로 완전히 진입된 후 고정하는 구조를 예시적으로 도시한 도면으로, (a) 및 (b)는 자체 체결 구조를 이용하여 고정하는 실시예이고, (c)는 체결 부재를 이용하여 고정하는 실시예이다.8A and 8B illustrate a structure in which the sensor assembly is fully inserted into a power or electric equipment and then fixed. Figs. 8A and 8B show an embodiment in which the sensor assembly is fixed using a self- Is fixed using a fastening member.
도 8의 (a)를 참조하면, 제2 체결판(120)의 양면 중 제1 수용관(100)에 결합하지 않은 면에 제1 체결 구조가 배치된다. 제1 체결 구조는, 제2 체결판(120)으로부터 길이 방향으로 연장되는 하부 구조(123) 및 상기 하부 구조(123)에 결합된 상부 구조(124)를 포함하며, 하부 구조(123)의 최대 직경은 상부 구조(124)의 최소 직경과 같거나 작다. 또한, 하부 구조(123)의 길이는 제3 체결판(210)의 두께와 같거나 보다 크다. Referring to FIG. 8A, the first fastening structure is disposed on a surface of the second fastening plate 120 that is not coupled to the first receiving tube 100 on both sides. The first fastening structure includes a lower structure 123 extending longitudinally from the second fastening plate 120 and an upper structure 124 coupled to the lower structure 123, The diameter is equal to or less than the minimum diameter of the superstructure 124. Further, the length of the substructure 123 is equal to or greater than the thickness of the third fastening plate 210.
제3 체결판(210)에는 복수의 체결홈(212) 및 각 체결홈(212)의 일측에는 체결홈(212)으로부터 원주 방향으로 연장된 연장홈(213)을 포함하는 제2 체결 구조가 형성된다. 체결홈(212)의 직경은 상부 구조(124)의 최대 직경과 같거나 다소 크며, 연장홈(213)의 직경은 하부 구조(123)의 최대 직경보다 크지만 상부 구조(124)의 최대 직경보다 작다.The third fastening plate 210 is formed with a plurality of fastening grooves 212 and a second fastening structure formed at one side of each fastening groove 212 and including an extending groove 213 extending in the circumferential direction from the fastening groove 212 do. The diameter of the locking groove 212 is equal to or slightly greater than the maximum diameter of the upper structure 124 and the diameter of the extending groove 213 is greater than the maximum diameter of the lower structure 123, small.
도 8의 (b)를 참조하면, 제1 체결 구조와 제2 체결 구조는 서로 대응하는 위치에 형성된다. 센서 어셈블리(400)가 장비 내 예정된 위치에 배치되도록 제2 체결판(120)과 제3 체결판(210)이 근접하게 되면, 제1 체결 구조의 상부 구조(124)는 제2 체결 구조의 체결홈(212)을 통과할 수 있다. 상부 구조(124)가 체결홈(212)을 완전히 통과하여 제2 체결판(120)과 제3 체결판(210)이 접하게 되면, 제3 체결판(210)이 시계 방향으로 회전하여 하부 구조(123)가 연장홈(213) 내부에 위치하게 된다. 따라서 제2 체결판(120)과 제3 체결판(210)이 서로 고정되게 된다.8 (b), the first fastening structure and the second fastening structure are formed at positions corresponding to each other. When the second fastening plate 120 and the third fastening plate 210 come close to each other so that the sensor assembly 400 is disposed at a predetermined position in the equipment, the upper structure 124 of the first fastening structure is fastened to the fastening structure of the second fastening structure And can pass through the groove 212. When the upper structure 124 completely passes through the engaging groove 212 and the second engaging plate 120 and the third engaging plate 210 are brought into contact with each other, the third engaging plate 210 rotates clockwise, 123 are positioned inside the extension groove 213. Accordingly, the second fastening plate 120 and the third fastening plate 210 are fixed to each other.
도 8의 (c)는, 제2 체결판(120)과 제3 체결판(210)이 체결 부재에 의해 고정된 경우를 나타낸다. 제2 체결판(120)과 제3 체결판(210)에는 각각 복수의 체결홈(122, 212)이 형성되며, 각 체결홈(122, 212)은 서로 대응하는 위치에 형성된다. 제2 체결판(120)과 제3 체결판(210)이 접한 상태에서, 볼트/너트를 이용하여 제2 체결판(120)과 제3 체결판(210)을 서로 고정시킨다.8 (c) shows a case where the second fastening plate 120 and the third fastening plate 210 are fixed by the fastening member. The second fastening plate 120 and the third fastening plate 210 are respectively provided with a plurality of fastening grooves 122 and 212 and the fastening grooves 122 and 212 are formed at positions corresponding to each other. The second fastening plate 120 and the third fastening plate 210 are fixed to each other by using bolts / nuts in a state where the second fastening plate 120 and the third fastening plate 210 are in contact with each other.
도 9는 도 1의 유체 상태 측정 장치와 신호 처리 장치를 체결한 상태를 예시적으로 도시한 도면이다.FIG. 9 is a view showing a state in which the fluid state measuring apparatus of FIG. 1 and the signal processing apparatus are fastened.
신호 처리 장치(700)는 하우징(710), 신호 처리 회로(720) 및 컨넥터(730)를 포함한다. 하우징(710)은 외부 환경으로부터 신호 처리 회로(720)를 보호한다. 컨넥터(730)는 유체 상태 측정 장치로부터 연장된 전선(250) 또는 그 전선(250)에 결합된 컨넥터(260)와 전기적으로 결합하며, 측정 신호가 신호 처리 회로(720)로 전달되는 경로를 형성한다. 신호 처리 회로(720)는 다양한 형태로 구현이 가능하며, 기본적으로, 아날로그 측정 신호를 디지털 신호로 변환하거나, 외부에서 확인할 수 있는 아날로그 미터계(미도시) 등을 통해 측정 신호를 표시한다. 선택적으로, 신호 처리 회로(720)는 디지털 신호를 유선 또는 무선 통신을 통해 원격지에 위치한 서버(미도시)로 전송할 수 있다.The signal processing apparatus 700 includes a housing 710, a signal processing circuit 720, and a connector 730. The housing 710 protects the signal processing circuit 720 from the external environment. The connector 730 is electrically coupled to a wire 250 extending from the fluid status measuring device or to a connector 260 coupled to the wire 250 to form a path through which the measurement signal is transmitted to the signal processing circuit 720 do. The signal processing circuit 720 can be implemented in various forms. Basically, the signal processing circuit 720 converts the analog measurement signal into a digital signal or displays the measurement signal through an analog meter (not shown) that can be externally verified. Alternatively, the signal processing circuit 720 may transmit the digital signal to a server (not shown) located remotely via wired or wireless communication.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. It will be understood by those skilled in the art that the foregoing description of the present invention is for illustrative purposes only and that those of ordinary skill in the art can readily understand that various changes and modifications may be made without departing from the spirit or essential characteristics of the present invention. will be. It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타나며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.It is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents. .

Claims (12)

  1. 제1 수용관;A first receiving tube;
    상기 제1 수용관의 일단에 결합되고, 상기 제1 수용관이 결합되는 위치에 제1 관통홀이 형성된 제1 체결판;A first fastening plate coupled to one end of the first receiving tube and having a first through hole at a position where the first receiving tube is coupled;
    상기 제1 수용관의 길이 방향으로 연장되며, 내부에 제1 전선을 수용하는 제2 수용관;A second receiving tube extending in the longitudinal direction of the first receiving tube and receiving a first wire therein;
    상기 제2 수용관의 일단에 타단이 결합되고, 내부에 상기 제1 전선과 전기적으로 결합되는 제2 전선을 수용하며, 상기 제1 수용관의 길이 방향으로 연장 방향으로 연장되는 코일 부재;A coil member coupled to one end of the second receiving tube and having a second end electrically coupled to the first wire, the coil member extending in a longitudinal direction of the first receiving tube;
    유체의 상태를 측정하기 위해 상기 코일 부재의 일단에 결합되며, 상기 제2 전선과 전기적으로 결합되는 센서 어셈블리;A sensor assembly coupled to one end of the coil member for measuring the state of the fluid, the sensor assembly being electrically coupled to the second wire;
    상기 제1 수용관의 타단에 결합되고, 상기 제2 수용관이 상기 제1 수용관 내부로 인입 또는 입출될 수 있도록 상기 제1 수용관이 결합되는 위치에 제2 관통홀이 형성된 제2 체결판; 및A second fastening plate coupled to the other end of the first accommodating tube and having a second through hole at a position where the first accommodating tube is coupled with the second accommodating tube so that the second accommodating tube can be inserted into or out of the first accommodating tube, ; And
    상기 제2 수용관의 타단에 결합된 제3 체결판을 포함하는 유체 상태 측정 장치.And a third fastening plate coupled to the other end of the second receiving tube.
  2. 청구항 1에 있어서, 상기 코일 부재는, [2] The apparatus according to claim 1,
    상기 코일 부재의 타단으로부터 상기 코일 부재의 일단으로 수평하게 연장되는 수평 연장부; 및A horizontal extension extending horizontally from one end of the coil member to the other end of the coil member; And
    상기 수평 연장부로부터 상기 코일 부재의 일단으로 경사지게 연장되는 경사 연장부를 포함하는 유체 상태 측정 장치.And an inclined extension portion extending obliquely from the horizontal extending portion to one end of the coil member.
  3. 청구항 2에 있어서, 상기 코일 부재는, [3] The apparatus according to claim 2,
    상기 수평 연장부와 상기 경사 연장부를 연결하는 곡선부를 더 포함하는 유체 상태 측정 장치.And a curved portion connecting the horizontal extension portion and the slant extension portion.
  4. 청구항 1에 있어서, 상기 코일 부재는 금속 또는 금속 합금으로 형성된 원통형 중공 형상인 유체 상태 측정 장치. The fluid state measurement device according to claim 1, wherein the coil member is a cylindrical hollow shape formed of a metal or a metal alloy.
  5. 청구항 1에 있어서, 상기 제2 수용관을 인입하는 거리 및 상기 제2 수용관을 회전시키는 각도 중 적어도 하나가 상기 제2 수용관의 외부 표면에 표시되는 유체 상태 측정 장치. The fluid state measurement device according to claim 1, wherein at least one of a distance by which the second receiving tube is drawn and an angle by which the second receiving tube is rotated is displayed on an outer surface of the second receiving tube.
  6. 제1 수용관;A first receiving tube;
    상기 제1 수용관의 일단에 결합되고, 상기 제1 수용관이 결합되는 위치에 제1 관통홀이 형성된 제1 체결판;A first fastening plate coupled to one end of the first receiving tube and having a first through hole at a position where the first receiving tube is coupled;
    상기 제1 수용관의 길이 방향으로 연장되며, 내부에 전선을 수용하는 제2 수용관;A second receiving tube extending in the longitudinal direction of the first receiving tube and receiving a wire therein;
    유체의 상태를 측정하기 위해 상기 제2 수용관의 일단에 결합되며, 상기 전선과 전기적으로 결합되는 센서 어셈블리;A sensor assembly coupled to one end of the second receiving tube for measuring the state of the fluid and electrically coupled to the electric wire;
    상기 제1 수용관의 타단에 결합되고, 상기 제2 수용관이 상기 제1 수용관 내부로 인입 또는 입출될 수 있도록 상기 제1 수용관이 결합되는 위치에 제2 관통홀이 형성된 제2 체결판; 및A second fastening plate coupled to the other end of the first accommodating tube and having a second through hole at a position where the first accommodating tube is coupled with the second accommodating tube so that the second accommodating tube can be inserted into or out of the first accommodating tube, ; And
    상기 제2 수용관의 타단에 결합된 제3 체결판을 포함하는 유체 상태 측정 장치.And a third fastening plate coupled to the other end of the second receiving tube.
  7. 청구항 1 또는 청구항 6에 있어서, The method according to claim 1 or 6,
    상기 제1 수용관의 외부 표면에 유체 연통 가능하게 결합된 밸브를 더 포함하는 유체 상태 측정 장치.Further comprising a valve in fluid communication with an outer surface of said first receiving tube.
  8. 청구항 1 또는 청구항 6에 있어서, The method according to claim 1 or 6,
    상기 제1 수용관의 내부에 위치하며, 상기 제1 수용관의 내부로 유입된 유체가 외부로 유출되지 않도록 실링하는 실링 부재를 더 포함하는 유체 상태 측정 장치.And a sealing member located inside the first receiving tube and sealing the fluid introduced into the first receiving tube so as not to flow out to the outside.
  9. 청구항 1 또는 청구항 6에 있어서,The method according to claim 1 or 6,
    상기 제1 관통홀은 상기 제1 체결판의 중심으로부터 이격된 위치에 형성되는 유체 측정 장치.And the first through-hole is formed at a position spaced apart from the center of the first fastening plate.
  10. 청구항 1 또는 청구항 6에 있어서, The method according to claim 1 or 6,
    상기 제3 체결판은 상기 제2 체결판에 고정될 수 있는 유체 측정 장치.And the third fastening plate can be fixed to the second fastening plate.
  11. 청구항 1 또는 청구항 6에 있어서, The method according to claim 1 or 6,
    상기 센서 어셈블리는, The sensor assembly includes:
    유체 유입을 위한 관통홀이 형성된 센서 하우징; 및A sensor housing having a through hole for fluid inflow; And
    상기 센서 하우징 내부에 배치되고, 상기 유체의 상태를 측정하여 측정 신호를 생성하여 전기적으로 연결된 상기 제2 전선에 출력하는 센서를 포함하는 유체 상태 측정 장치.And a sensor disposed inside the sensor housing for measuring a state of the fluid to generate a measurement signal and outputting the measurement signal to the second electric wire electrically connected.
  12. 청구항 1 또는 청구항 6에 있어서, The method according to claim 1 or 6,
    상기 제3 체결판으로부터 연장된 상기 제1 전선에 전기적으로 결합되며, 상기 센서 어셈블리에서 생성된 측정 신호를 수신하는 신호 처리 장치를 더 포함하는 유체 상태 측정 장치.Further comprising a signal processing device electrically coupled to the first wire extending from the third fastening plate and receiving a measurement signal generated in the sensor assembly.
PCT/KR2018/003776 2017-07-28 2018-03-30 Fluid condition measurement device WO2019022339A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170095926 2017-07-28
KR10-2017-0095926 2017-07-28
KR1020180036974A KR102074299B1 (en) 2017-07-28 2018-03-30 The equipment for condition monitoring of fluid
KR10-2018-0036974 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019022339A1 true WO2019022339A1 (en) 2019-01-31

Family

ID=65040619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003776 WO2019022339A1 (en) 2017-07-28 2018-03-30 Fluid condition measurement device

Country Status (1)

Country Link
WO (1) WO2019022339A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010060244A (en) * 1999-11-03 2001-07-06 존 씨. 메티유 Monitoring fluid condition through an aperture
KR20090128553A (en) * 2007-04-11 2009-12-15 이턴 코포레이션 Integrated oil condition and level sensor
KR20100002026U (en) * 2008-08-18 2010-02-26 주식회사 에스앤에스레볼루션 Dipstick device having sensor mounted in a vehicle
KR20130061524A (en) * 2011-12-01 2013-06-11 한국전력공사 Apparatus for diagnosing state of insulating oil
KR200483577Y1 (en) * 2016-02-18 2017-06-15 주식회사 코펨에코 The equipment for condition monitoring of oil in an internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010060244A (en) * 1999-11-03 2001-07-06 존 씨. 메티유 Monitoring fluid condition through an aperture
KR20090128553A (en) * 2007-04-11 2009-12-15 이턴 코포레이션 Integrated oil condition and level sensor
KR20100002026U (en) * 2008-08-18 2010-02-26 주식회사 에스앤에스레볼루션 Dipstick device having sensor mounted in a vehicle
KR20130061524A (en) * 2011-12-01 2013-06-11 한국전력공사 Apparatus for diagnosing state of insulating oil
KR200483577Y1 (en) * 2016-02-18 2017-06-15 주식회사 코펨에코 The equipment for condition monitoring of oil in an internal combustion engine

Similar Documents

Publication Publication Date Title
TWI798778B (en) Substrate storage apparatus provided with storage environment detection, detecting device and method for mounting detecting device to the substrate storage apparatus
WO2021137527A1 (en) Test socket assembly
JP7189631B2 (en) Fluid control equipment
WO2020009406A1 (en) Steam trap device strainer
WO2019022339A1 (en) Fluid condition measurement device
US6269693B1 (en) Capacitive sensor for a fluid forming a dielectric in a capacitor
WO2014171575A1 (en) Chiller for canister
WO2017164549A1 (en) Pressure sensor apparatus and method for manufacturing pressure sensor apparatus and pressure sensor assembly
WO2018097672A1 (en) Rotatable connector
WO2017217664A1 (en) Motor connector and motor having same
CN113884622A (en) Protective air chamber structure for sensitive element of mining sensor
WO2015088253A1 (en) Tap for prevening freezing and bursting
WO2015190870A1 (en) Solenoid valve having ventilation structure
KR20190013443A (en) The equipment for condition monitoring of fluid
WO2020226194A1 (en) Probe assembly and micro vacuum probe station comprising same
WO2018110859A2 (en) Diaphragm assembly and pressure transmitter system including same
CN217276322U (en) Remote automatic transmission water meter for large caliber
WO2012021021A2 (en) Device and method for measuring dynamic thermal conductivity of micro-structured fluid
US11506046B2 (en) Instrumented coupling electronics
WO2021261813A1 (en) Ultrasonic flow rate measuring apparatus
WO2021040323A1 (en) Sensor assembly for sensing movements of needle bar and sewing machine comprising same
KR20180001129A (en) A case for leak detection sensor
WO2018182350A1 (en) Contactless inhibitor switch
WO2020111502A1 (en) Sensor tube for humidity sensor and humidity sensor assembly using same
WO2019182214A1 (en) Device for inspecting waterproofness

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18837835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18837835

Country of ref document: EP

Kind code of ref document: A1